Sample records for deathly drool evolutionary

  1. Historical review of die drool phenomenon during plastics extrusion

    NASA Astrophysics Data System (ADS)

    Musil, Jan; Zatloukal, Martin

    2013-04-01

    Die drool phenomenon is defined as unwanted spontaneous accumulation of extruded polymer melt on open faces of extrusion die during extrusion process. Such accumulated material builds up on the die exit and frequently or continually sticks onto the extruded product and thus damages it. Since die drool appears, extrusion process must be shut down and die exit must be manually cleaned which is time and money consuming. Although die drool is complex phenomenon and its formation mechanism is not fully understood yet, variety of proposed explanations of its formation mechanism and also many ways to its elimination can be found in open literature. Our review presents in historical order breakthrough works in the field of die drool research, shows many ways to suppress it, introduces methods for its quantitative evaluation and composition analysis and summarizes theories of die drool formation mechanism which can be helpful for extrusion experts.

  2. [Drooling therapy in children with neurological disorders].

    PubMed

    Táboas-Pereira, M Andrea; Paredes-Mercado, Cecilia; Alonso-Curcó, Xènia; Badosa-Pagès, Joaquim; Muchart, Jordi; Póo, Pilar

    2015-07-16

    Drooling is the inability to retain saliva in the mouth and its progression to the digestive tract, being a common problem in pediatric patients with neurological disorders. Three different treatment options are available. To assess the effectiveness and safety of trihexyphenidyl, scopolamine and botulinum toxin infiltration in the treatment of drooling in children with neurological disorders. This is an open and prospective type study. We include patients treated in the Neurology Service that present excessive drooling, affecting their quality of life, between 2009 and 2013. We enrolled 46 patients in the study. The treatment with oral trihexyphenidyl was indicated in 46, obtaining good result in 15 (32.6%), three with temporary effect and the rest with lasting effect. Three patients presented side effects (6.5%). Four out of 11 (36.36%) patients treated with scopolamine patch had beneficial effects. One was withdrawn due to lack of efficacy and six due to side effects. Twenty-five patients were infiltrated with botulinum toxin, with a significant decrease of drooling in 16 patients (64%) after the first injection. We observed no significant changes in nine patients. Only one out of 25 showed side effects (mild dysphagia). Currently there is not a fully effective therapeutic option for drooling. We recommend starting treatment with trihexyphenidyl. A second option could be the scopolamine patch and botulinum toxin as a third option. Botulinum toxin infiltration in salivary glands is shown as an effective and safe alternative in our study.

  3. Drooling in Parkinson's Disease: Evidence of a Role for Divided Attention.

    PubMed

    Reynolds, Hannah; Miller, Nick; Walker, Richard

    2018-05-21

    Drooling is a frequently reported symptom in Parkinson's Disease (PD) with significant psychosocial impact and negative health consequences including silent aspiration of saliva with the associated risk of respiratory infections. It is suggested that in PD drooling is associated with inefficient oropharyngeal swallowing which reduces the effective clearance of saliva rather than hyper-salivation. This is compounded by unintended mouth opening and flexed posture increasing anterior loss of saliva. It is reported to occur most frequently during cognitively distracting concurrent tasks suggesting an impact from divided attention in a dual-task situation. However, this supposition has not been systematically examined. This study assessed whether frequency of saliva swallows reduced, and drooling severity and frequency increased, when people with PD engaged in a cognitively distracting task. 18 patients with idiopathic PD reporting daytime drooling on the Unified Parkinson's Disease Rating Scale (UPDRS) were recruited. They completed the Radboud Oral Motor Inventory for PD saliva questionnaire and the Montreal Cognitive Assessment. UPDRS drooling score, disease stage, duration, gender, and age were recorded. Swallow frequency and drooling severity and frequency were measured at rest and during a distracting computer-based language task. There was no significant difference between drooling severity at rest and during distraction (Wilcoxon signed rank test z = - 1.724, p = 0.085). There was a significant difference between at rest and distraction conditions for both drooling frequency (Wilcoxon signed rank test z = - 2.041, p = 0.041) and swallow frequency (Wilcoxon signed rank test z = - 3.054, p = 0.002). Participants swallowed less frequently and drooled more often during the distraction task. The frequency of saliva swallows and drooling are affected by divided attention in a dual-task paradigm. Further studies are needed to explore the

  4. Rotigotine may control drooling in patients with Parkinson's Disease: Preliminary findings.

    PubMed

    Schirinzi, Tommaso; Imbriani, Paola; D'Elia, Alessio; Di Lazzaro, Giulia; Mercuri, Nicola Biagio; Pisani, Antonio

    2017-05-01

    To evaluate the efficacy of rotigotine in controlling the drooling of Parkinson's Disease (PD) patients. We assessed 7 PD patients (Hoehn and Yahr scale >2.5) with three different clinical scores (Drooling Severity and Frequency Scale - DSFS, Drooling Rating Scale - DRS and Sialorrhea Clinical Scale for PD - SCS) before and after 4 weeks of therapy. Statistical differences were analyzed with Wilcoxon signed-rank test. We observed that rotigotine significantly improves drooling as measured by the lowering of the three scores (p<0.05). Among non-motor symptoms of PD, drooling is one of the most embarrassing and disabling for patients. Current treatments are unsatisfactory and novel approaches are thus desirable. In this open-label pilot study we demonstrated on a small sample of patients that up to 4mg/24h of rotigotine, a non-ergolinic dopamine agonist with continuous transdermal delivery, may be helpful in the management of drooling in advanced PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Botulinum toxin injections for children with excessive drooling.

    PubMed

    Hassin-Baer, Sharon; Scheuer, Esther; Buchman, Aron S; Jacobson, Izhak; Ben-Zeev, Bruria

    2005-02-01

    The objective of this study was to evaluate the feasibility of ultrasonography-guided injections of botulinum toxin A into the parotid glands of children with severe drooling (sialorrhea). Excessive drooling is common in children with chronic neurologic disorders. Preliminary observations in adults suggest that injections of botulinum toxin A into the parotid glands can decrease drooling, but the optimal dose, sites of injection, and concomitant use of imaging during injections and its use for children have not been established. Ultrasonography was used to guide the injection of botulinum toxin (10-25 IU) into both parotid glands of nine children with excessive drooling. Subjective and objective measures of the severity of drooling were collected before and after botulinum toxin A injections. A booster injection was provided if the initial response was inadequate. Injections were well tolerated, and no adverse reactions were observed. Ultrasonography revealed that the parotid gland showed a variable depth, extent, and vascularization. Eight of nine patients needed a booster injection after 1 month. Objective measures of drooling severity were improved in seven of nine patients. However, subjective improvement was reported in only three of nine patients, and this improvement was functionally significant in only one patient. Although intraparotid injection of botulinum toxin A is safe and causes a reduction in saliva production in children, the doses used in this study did not result in functionally significant improvement. Higher doses of botulinum toxin A in the parotid glands or concomitant injections into the submandibular glands can increase the efficacy of these injections. Variability in size, depth, and vascular supply of the parotid gland suggests the importance of ultrasonography guidance for optimizing injections. These results underscore the need for further studies to establish the efficacy of this treatment in children.

  6. Deathly Drool: Evolutionary and Ecological Basis of Septic Bacteria in Komodo Dragon Mouths

    PubMed Central

    Bull, J. J.; Jessop, Tim S.; Whiteley, Marvin

    2010-01-01

    Komodo dragons, the world's largest lizard, dispatch their large ungulate prey by biting and tearing flesh. If a prey escapes, oral bacteria inoculated into the wound reputedly induce a sepsis that augments later prey capture by the same or other lizards. However, the ecological and evolutionary basis of sepsis in Komodo prey acquisition is controversial. Two models have been proposed. The “bacteria as venom” model postulates that the oral flora directly benefits the lizard in prey capture irrespective of any benefit to the bacteria. The “passive acquisition” model is that the oral flora of lizards reflects the bacteria found in carrion and sick prey, with no relevance to the ability to induce sepsis in subsequent prey. A third model is proposed and analyzed here, the “lizard-lizard epidemic” model. In this model, bacteria are spread indirectly from one lizard mouth to another. Prey escaping an initial attack act as vectors in infecting new lizards. This model requires specific life history characteristics and ways to refute the model based on these characteristics are proposed and tested. Dragon life histories (some details of which are reported here) prove remarkably consistent with the model, especially that multiple, unrelated lizards feed communally on large carcasses and that escaping, wounded prey are ultimately fed on by other lizards. The identities and evolutionary histories of bacteria in the oral flora may yield the most useful additional insights for further testing the epidemic model and can now be obtained with new technologies. PMID:20574514

  7. Drooling, saliva production, and swallowing in cerebral palsy.

    PubMed

    Senner, Jill E; Logemann, Jerilyn; Zecker, Steven; Gaebler-Spira, Deborah

    2004-12-01

    Fourteen participants (six females, eight males) ranging in age from 7 years 11 months to 18 years 2 months (mean 11y 7mo) with a confirmed diagnosis of spastic cerebral palsy (CP) were included in the study. Participants included those who drooled (CP+, n=14); age- and sex-matched children with spastic CP who were dry to mild and never to infrequent droolers (CP-, n=14) as well as typically developing peers (CTRL, n=14) served as controls. Frequency of swallowing was measured by using simultaneous cervical ausculation and videotaping of the head and neck. Saliva production was measured with the Saxon test, a simple gauze-chewing procedure. In addition, Pediatric Evaluation of Disability Inventory (PEDI), Test of Nonverbal Intelligence-3 (TONI-3), dysarthria severity scale, and Gross Motor Function Classification System (GMFCS) scores were obtained for each participant. Both groups of participants with CP tended to swallow less frequently than typically developing participants and tended to produce less saliva than typically developing controls; however, these differences were not statistically significant. No correlation was found between amount of saliva produced and amount drooled (r=0.245). An analysis of variance (ANOVA) conducted on the PEDI functional skills mean scores indicated significant differences between the three groups (F(2,39)=23.522,p<0.0001). Likewise, an ANOVA conducted on the TONI-3 scores revealed statistically significant differences between the three groups (F(2,39)=31.761, p<0.0001). A Spearman's rho correlation indicated that GMFCS scores were not significantly correlated with drooling severity (Spearman's rho correlation=0.3951,p=0.037). Drooling severity was found to be positively correlated with dysarthria severity (Spearman's rho correlation=0.82,p<0.0001). These findings suggest that drooling in patients with CP is related to swallowing difficulties rather than hypersalivation.

  8. An investigation of the relationship of drooling with nutrition and head control in individuals with quadriparetic cerebral palsy

    PubMed Central

    Taş, Seda Ayaz; Çankaya, Tamer

    2015-01-01

    [Purpose] The aim of the present study was to investigate the relationship of drooling, nutrition, and head control in individuals with quadriparetic cerebral palsy. [Subjects and Methods] Fifty-six individuals between the ages 2 and 15 diagnosed with spastic quadriparetic cerebral palsy and their families/caretakers were included in the study. Drooling severity and frequency of individuals was evaluated by using the scale developed by Thomas-Stonell and Greenberg (Drooling Severity and Frequency Scale). Individuals having a drooling severity value of 1 were included in the not drooling group (group 2) (n=27). Individuals having a drooling severity of 2, 3, 4, or 5 were included in the drooling group (group 1) (n=29). The evaluations were applied to both groups. [Results] There were significant differences between the two groups in terms of gestational age, nutrition behavior, eating abilities, head control, gagging, nutritional status (inadequate nutrition, normal nutrition, over weight-obese), and low weight. It was established that as head control increased, drooling severity diminished, and as drooling severity increased, BMI index decreased. Independence of eating ability was found to be greater in the group having better drooling control. [Conclusion] In the present study, it was determined that drooling control affected nutritional functions and that drooling control was affected by head control. PMID:26696723

  9. Addition of Kinesio Taping of the orbicularis oris muscles to speech therapy rapidly improves drooling in children with neurological disorders.

    PubMed

    Mikami, Denise Lica Yoshimura; Furia, Cristina Lemos Barbosa; Welker, Alexis Fonseca

    2017-09-21

    To evaluate the effects of Kinesio Taping (KT) of the orbicularis oris muscles as an adjunct to standard therapy for drooling. Fifteen children with neurological disorders and drooling received speech therapy and twice-weekly KT of the orbicularis muscles over a 30-day period. Drooling was assessed by six parameters: impact on the life of the child and caregiver; severity of drooling; frequency of drooling; drooling volume (estimated by number of bibs used); salivary leak; and interlabial gap. Seven markers of oral motor skills were also assessed. KT of the orbicularis oris region reduced the interlabial gap. All oral motor skills and almost all markers of drooling improved after 15 days of treatment. In this sample of children with neurological disorders, adding KT of the orbicularis oris muscles to speech therapy caused rapid improvement in oral motor skills and drooling.

  10. Prevalence and Predictors of Drooling in 7- to 14-Year-Old Children with Cerebral Palsy: A Population Study

    ERIC Educational Resources Information Center

    Reid, Susan M.; McCutcheon, Jennifer; Reddihough, Dinah S.; Johnson, Hilary

    2012-01-01

    Aim: To establish a prevalence estimate for drooling and explore factors associated with drooling in a population sample of children with cerebral palsy (CP) aged 7 to 14 years living in Victoria, Australia. Method: A self-report questionnaire was used to collect data on drooling from parents of children born between 1996 and 2001, and registered…

  11. Behavioral Treatment of Drooling: A Methodological Critique of the Literature with Clinical Guidelines and Suggestions for Future Research

    ERIC Educational Resources Information Center

    Van der Burg, Jan J. W.; Didden, Robert; Jongerius, Peter H.; Rotteveel, Jan J.

    2007-01-01

    Many children with mental retardation and developmental disabilities suffer from the consequences of chronic drooling. Behavioral treatment for drooling should be considered before other, more intrusive treatments such as medication and surgery are implemented. However, empirical studies on behavioral procedures are scarce. This article reviews 19…

  12. Thickened saliva after effective management of drooling with botulinum toxin A.

    PubMed

    Erasmus, Corrie E; Van Hulst, Karen; Van Den Hoogen, Frank Ja; Van Limbeek, Jacques; Roeleveld, Nel; Veerman, Enno Ci; Rotteveel, Jan J; Jongerius, Peter H

    2010-06-01

    The aim of this study was to evaluate the rheological properties of saliva after submandibular botulinum toxin type A (BoNT-A) injections. We enrolled 15 children (11 males and six females; age range 3-17 y, mean age 9 y 10 mo) diagnosed with spastic (n=9) or dyskinetic (n=6) quadriplegic cerebral palsy (CP); Gross Motor Function Classification System level IV or V; and two children with intellectual disability (IQ<70) who experienced moderate to severe drooling. Salivary flow rate and drooling quotient were measured at baseline and at different times after BoNT-A injections up to 24 weeks. The mucin concentration of saliva was analysed before and after BoNT-A treatment. Both submandibular salivary flow rate (baseline 0.38 mL/min; 24 wks after injection 0.26 mL/min) and drooling quotient (baseline 42.5%; 24 wks 28.80%) were substantially reduced, with a concomitant increase in mucin concentration within 8 weeks after BoNT-A injection (from 0.612 to 1.830 U/mL). The parents of nine children observed thickened saliva. Swallowing and chewing were problematic in seven children. Two of these children needed treatment with mucolytics because of pooling of thickened saliva in the throat. When making decisions about the use of BoNT-A, the risk of problems with masticatory and swallowing functions as a result of thickening of saliva after BoNT-A treatment should be taken into account.

  13. Drooling in Parkinson's disease: a novel tool for assessment of swallow frequency.

    PubMed

    Marks, L; Weinreich, J

    2001-01-01

    A non-invasive way to obtain objective measurements of swallowing frequency and thus indirectly, drooling was required as part of the study 'Drooling in Parkinson's disease: objective measurement and response to therapy'. A hard disk, digital recorder was developed, for use on a laptop computer, which was capable of collecting large quantities of swallowing data from an anticipated 40 patients and 10 controls. An electric microphone was taped to the subjects' larynx for recording the swallow sounds when drinking 150 ml of water and at rest for 30 minutes. The software provides an accurate visual display of the audio-signal allowing the researcher easy access to any segment of the recording and to mark and extract the swallow events, so that swallow frequency may be efficiently and accurately ascertained. Preliminary results are presented.

  14. Drooling in Parkinson's disease: A randomized controlled trial of incobotulinum toxin A and meta-analysis of Botulinum toxins.

    PubMed

    Narayanaswami, Pushpa; Geisbush, Thomas; Tarulli, Andrew; Raynor, Elizabeth; Gautam, Shiva; Tarsy, Daniel; Gronseth, Gary

    2016-09-01

    Botulinum toxins are a therapeutic option for drooling in Parkinson's Disease (PD). The aims of this study were to: 1. evaluate the efficacy of incobotulinum toxin A for drooling in PD. 2. Perform a meta-analysis of studies of Botulinum toxins for drooling in PD. 1. Primary study: Randomized, double blind, placebo controlled, cross over trial. Incobotulinum toxin (100 units) or saline was injected into the parotid (20 units) and submandibular (30 units) glands. Subjects returned monthly for three evaluations after each injection. Outcome measures were saliva weight and Drooling Frequency and Severity Scale. 2. Systematic review of literature, followed by inverse variance meta-analyses using random effects models. 1. Primary Study: Nine of 10 subjects completed both arms. There was no significant change in the primary outcome of saliva weight one month after injection in the treatment period compared to placebo period (mean difference, gm ± SD: -0.194 ± 0.61, range: -1.28 to 0.97, 95% CI -0.71 to 0.32). Secondary outcomes also did not change. 2. Meta-analysis of six studies demonstrated significant benefit of Botulinum toxin on functional outcomes (effect size, Cohen's d: -1.32, CI -1.86 to -0.78). The other studies used a higher dose of Botulinum toxin A into the parotid glands. This study did not demonstrate efficacy of incobotulinum toxin A for drooling in PD, but lacked precision to exclude moderate benefit. The parotid/submandibular dose-ratio may have influenced results. Studies evaluating higher doses of incobotulinum toxin A into the parotid glands may be useful. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Descriptive Analysis of Studies on Behavioural Treatment of Drooling (1970-2005)

    ERIC Educational Resources Information Center

    Van der Burg, Jan J. W.; Didden, Robert; Jongerius, Peter H.; Rotteveel, Jan J.

    2007-01-01

    A descriptive analysis was conducted on studies on the behavioural treatment of drooling (published between 1970 and 2005). The 17 articles that met the inclusion criteria described 53 participants (mean age 14y 7mo, [SD 4y 9mo]; range 6-28y). Sex of 87% of the participants was reported: 28 male, 18 female. For 60% of the participants the degree…

  16. Evolutionary games of condensates in coupled birth–death processes

    PubMed Central

    Knebel, Johannes; Weber, Markus F.; Krüger, Torben; Frey, Erwin

    2015-01-01

    Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose–Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth–death processes, which also occur in evolutionary game theory. Here we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that the vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a rock–paper–scissors game of condensates. PMID:25908384

  17. Modeling and executing electronic health records driven phenotyping algorithms using the NQF Quality Data Model and JBoss® Drools Engine.

    PubMed

    Li, Dingcheng; Endle, Cory M; Murthy, Sahana; Stancl, Craig; Suesse, Dale; Sottara, Davide; Huff, Stanley M; Chute, Christopher G; Pathak, Jyotishman

    2012-01-01

    With increasing adoption of electronic health records (EHRs), the need for formal representations for EHR-driven phenotyping algorithms has been recognized for some time. The recently proposed Quality Data Model from the National Quality Forum (NQF) provides an information model and a grammar that is intended to represent data collected during routine clinical care in EHRs as well as the basic logic required to represent the algorithmic criteria for phenotype definitions. The QDM is further aligned with Meaningful Use standards to ensure that the clinical data and algorithmic criteria are represented in a consistent, unambiguous and reproducible manner. However, phenotype definitions represented in QDM, while structured, cannot be executed readily on existing EHRs. Rather, human interpretation, and subsequent implementation is a required step for this process. To address this need, the current study investigates open-source JBoss® Drools rules engine for automatic translation of QDM criteria into rules for execution over EHR data. In particular, using Apache Foundation's Unstructured Information Management Architecture (UIMA) platform, we developed a translator tool for converting QDM defined phenotyping algorithm criteria into executable Drools rules scripts, and demonstrated their execution on real patient data from Mayo Clinic to identify cases for Coronary Artery Disease and Diabetes. To the best of our knowledge, this is the first study illustrating a framework and an approach for executing phenotyping criteria modeled in QDM using the Drools business rules management system.

  18. Modeling and Executing Electronic Health Records Driven Phenotyping Algorithms using the NQF Quality Data Model and JBoss® Drools Engine

    PubMed Central

    Li, Dingcheng; Endle, Cory M; Murthy, Sahana; Stancl, Craig; Suesse, Dale; Sottara, Davide; Huff, Stanley M.; Chute, Christopher G.; Pathak, Jyotishman

    2012-01-01

    With increasing adoption of electronic health records (EHRs), the need for formal representations for EHR-driven phenotyping algorithms has been recognized for some time. The recently proposed Quality Data Model from the National Quality Forum (NQF) provides an information model and a grammar that is intended to represent data collected during routine clinical care in EHRs as well as the basic logic required to represent the algorithmic criteria for phenotype definitions. The QDM is further aligned with Meaningful Use standards to ensure that the clinical data and algorithmic criteria are represented in a consistent, unambiguous and reproducible manner. However, phenotype definitions represented in QDM, while structured, cannot be executed readily on existing EHRs. Rather, human interpretation, and subsequent implementation is a required step for this process. To address this need, the current study investigates open-source JBoss® Drools rules engine for automatic translation of QDM criteria into rules for execution over EHR data. In particular, using Apache Foundation’s Unstructured Information Management Architecture (UIMA) platform, we developed a translator tool for converting QDM defined phenotyping algorithm criteria into executable Drools rules scripts, and demonstrated their execution on real patient data from Mayo Clinic to identify cases for Coronary Artery Disease and Diabetes. To the best of our knowledge, this is the first study illustrating a framework and an approach for executing phenotyping criteria modeled in QDM using the Drools business rules management system. PMID:23304325

  19. Two Persons with Multiple Disabilities Use a Mouth-Drying Response to Reduce the Effects of Their Drooling

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Oliva, Doretta; Smaldone, Angela; La Martire, Maria L.

    2009-01-01

    These two studies involved a boy and a man with multiple disabilities, who were taught to use a mouth-drying response to reduce the effects of their drooling. Both studies relied on microswitch technology to monitor the drying response and follow it with positive stimulation (i.e., during intervention). In Study I, the boy performed the drying…

  20. Towards a mechanistic foundation of evolutionary theory.

    PubMed

    Doebeli, Michael; Ispolatov, Yaroslav; Simon, Burt

    2017-02-15

    Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.

  1. Promoting Mouth-Drying Responses to Reduce Drooling Effects by Persons with Intellectual and Multiple Disabilities: A Study of Two Cases

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Oliva, Doretta; Smaldone, Angela; La Martire, Maria L.; Pichierri, Sabrina; Groeneweg, Jop

    2011-01-01

    This study assessed the use of microswitch technology to promote mouth-drying responses and thereby reduce the effects of drooling by two adults with severe intellectual and multiple disabilities. Mouth-drying responses were performed via a special napkin that contained pressure sensors, a microprocessor and an MP3 to monitor the responses and…

  2. Onabotulinumtoxin A Treatment of Drooling in Children with Cerebral Palsy: A Prospective, Longitudinal Open-Label Study

    PubMed Central

    Møller, Eigild; Pedersen, Søren Anker; Vinicoff, Pablo Gustavo; Bardow, Allan; Lykkeaa, Joan; Svendsen, Pia; Bakke, Merete

    2015-01-01

    The aim of this prospective open-label study was to treat disabling drooling in children with cerebral palsy (CP) with onabotulinumtoxin A (A/Ona, Botox®) into submandibular and parotid glands and find the lowest effective dosage and least invasive method. A/Ona was injected in 14 children, Mean age 9 years, SD 3 years, under ultrasonic guidance in six successive Series, with at least six months between injections. Doses and gland involvement increased from Series A to F (units (U) per submandibular/parotid gland: A, 10/0; B, 15/0; C, 20/0; D, 20/20; E, 30/20; and F, 30/30). The effect was assessed 2, 4, 8, 12, and 20 weeks after A/Ona (drooling problems (VAS), impact (0–7), treatment effect (0–5), unstimulated whole saliva (UWS) flow and composition)) and analyzed by two-way ANOVA. The effect was unchanged–moderate in A to moderate–marked in F. Changes in all parameters were significant in E and F, but with swallowing problems ≤5 weeks in 3 of 28 treatments. F had largest VAS and UWS reduction (64% and 49%). We recommend: Start with dose D A/Ona (both submandibular and parotid glands and a total of 80 U) and increase to E and eventually F (total 120 U) without sufficient response. PMID:26134257

  3. An evolutionary concept analysis of school violence: from bullying to death.

    PubMed

    Jones, Sandra N; Waite, Roberta; Clements, Paul Thomas

    2012-03-01

    School violence has evolved into an identifiably pervasive public health problem. Adverse consequences of school violence vary from bullying to death. In 2007, 457,700 youth (ages 12-18) were victims of serious crimes with 34% occurring on school grounds or on the way to school. A concept analysis of school violence can expand and enhance awareness of the pervasive phenomenon of school violence. Rodgers and Knafl (1993) evolutionary concept analysis method was used to provide a guiding framework for examination of school violence. Related manuscripts from the extant interdisciplinary school violence literature were obtained from relevant health science databases, the Education Resources Information Center, and various governmental and specialty websites within the contemporary time frame of 2000-2010. Analysis revealed the enormous scope and complexity of the problem of school violence including bullying, physical fighting, weapon carrying, alcohol/substance use and street gang presence on school property, school-associated violent death, safe schools legislation, and violence prevention strategies. Forensic nurses across practice settings are uniquely positioned to intervene to improve health of these youth through identification, assessment, treatment, and referral. © 2012 International Association of Forensic Nurses.

  4. Executing medical logic modules expressed in ArdenML using Drools.

    PubMed

    Jung, Chai Young; Sward, Katherine A; Haug, Peter J

    2012-01-01

    The Arden Syntax is an HL7 standard language for representing medical knowledge as logic statements. Despite nearly 2 decades of availability, Arden Syntax has not been widely used. This has been attributed to the lack of a generally available compiler to implement the logic, to Arden's complex syntax, to the challenges of mapping local data to data references in the Medical Logic Modules (MLMs), or, more globally, to the general absence of decision support in healthcare computing. An XML representation (ArdenML) may partially address the technical challenges. MLMs created in ArdenML can be converted into executable files using standard transforms written in the Extensible Stylesheet Language Transformation (XSLT) language. As an example, we have demonstrated an approach to executing MLMs written in ArdenML using the Drools business rule management system. Extensions to ArdenML make it possible to generate a user interface through which an MLM developer can test for logical errors.

  5. Executing medical logic modules expressed in ArdenML using Drools

    PubMed Central

    Jung, Chai Young; Sward, Katherine A

    2011-01-01

    The Arden Syntax is an HL7 standard language for representing medical knowledge as logic statements. Despite nearly 2 decades of availability, Arden Syntax has not been widely used. This has been attributed to the lack of a generally available compiler to implement the logic, to Arden's complex syntax, to the challenges of mapping local data to data references in the Medical Logic Modules (MLMs), or, more globally, to the general absence of decision support in healthcare computing. An XML representation (ArdenML) may partially address the technical challenges. MLMs created in ArdenML can be converted into executable files using standard transforms written in the Extensible Stylesheet Language Transformation (XSLT) language. As an example, we have demonstrated an approach to executing MLMs written in ArdenML using the Drools business rule management system. Extensions to ArdenML make it possible to generate a user interface through which an MLM developer can test for logical errors. PMID:22180871

  6. Stochastic evolutionary voluntary public goods game with punishment in a Quasi-birth-and-death process.

    PubMed

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2017-11-23

    Traditional replication dynamic model and the corresponding concept of evolutionary stable strategy (ESS) only takes into account whether the system can return to the equilibrium after being subjected to a small disturbance. In the real world, due to continuous noise, the ESS of the system may not be stochastically stable. In this paper, a model of voluntary public goods game with punishment is studied in a stochastic situation. Unlike the existing model, we describe the evolutionary process of strategies in the population as a generalized quasi-birth-and-death process. And we investigate the stochastic stable equilibrium (SSE) instead. By numerical experiments, we get all possible SSEs of the system for any combination of parameters, and investigate the influence of parameters on the probabilities of the system to select different equilibriums. It is found that in the stochastic situation, the introduction of the punishment and non-participation strategies can change the evolutionary dynamics of the system and equilibrium of the game. There is a large range of parameters that the system selects the cooperative states as its SSE with a high probability. This result provides us an insight and control method for the evolution of cooperation in the public goods game in stochastic situations.

  7. Evolutionary games on cycles with strong selection

    NASA Astrophysics Data System (ADS)

    Altrock, P. M.; Traulsen, A.; Nowak, M. A.

    2017-02-01

    Evolutionary games on graphs describe how strategic interactions and population structure determine evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times under strong selection and show that there are coexistence games in which fixation occurs in time polynomial in population size. Depending on the underlying game, we observe inherence of demographic noise even under strong selection if the process is driven by random death before selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong selection can remove demographic noise almost entirely.

  8. Remembering the evolutionary Freud.

    PubMed

    Young, Allan

    2006-03-01

    Throughout his career as a writer, Sigmund Freud maintained an interest in the evolutionary origins of the human mind and its neurotic and psychotic disorders. In common with many writers then and now, he believed that the evolutionary past is conserved in the mind and the brain. Today the "evolutionary Freud" is nearly forgotten. Even among Freudians, he is regarded to be a red herring, relevant only to the extent that he diverts attention from the enduring achievements of the authentic Freud. There are three ways to explain these attitudes. First, the evolutionary Freud's key work is the "Overview of the Transference Neurosis" (1915). But it was published at an inopportune moment, forty years after the author's death, during the so-called "Freud wars." Second, Freud eventually lost interest in the "Overview" and the prospect of a comprehensive evolutionary theory of psychopathology. The publication of The Ego and the Id (1923), introducing Freud's structural theory of the psyche, marked the point of no return. Finally, Freud's evolutionary theory is simply not credible. It is based on just-so stories and a thoroughly discredited evolutionary mechanism, Lamarckian use-inheritance. Explanations one and two are probably correct but also uninteresting. Explanation number three assumes that there is a fundamental difference between Freud's evolutionary narratives (not credible) and the evolutionary accounts of psychopathology that currently circulate in psychiatry and mainstream journals (credible). The assumption is mistaken but worth investigating.

  9. Evolutionary genomics and HIV restriction factors.

    PubMed

    Pyndiah, Nitisha; Telenti, Amalio; Rausell, Antonio

    2015-03-01

    To provide updated insights into innate antiviral immunity and highlight prototypical evolutionary features of well characterized HIV restriction factors. Recently, a new HIV restriction factor, Myxovirus resistance 2, has been discovered and the region/residue responsible for its activity identified using an evolutionary approach. Furthermore, IFI16, an innate immunity protein known to sense several viruses, has been shown to contribute to the defense to HIV-1 by causing cell death upon sensing HIV-1 DNA. Restriction factors against HIV show characteristic signatures of positive selection. Different patterns of accelerated sequence evolution can distinguish antiviral strategies--offense or defence--as well as the level of specificity of the antiviral properties. Sequence analysis of primate orthologs of restriction factors serves to localize functional domains and sites responsible for antiviral action. We use recent discoveries to illustrate how evolutionary genomic analyses help identify new antiviral genes and their mechanisms of action.

  10. Nonequivalence of updating rules in evolutionary games under high mutation rates.

    PubMed

    Kaiping, G A; Jacobs, G S; Cox, S J; Sluckin, T J

    2014-10-01

    Moran processes are often used to model selection in evolutionary simulations. The updating rule in Moran processes is a birth-death process, i. e., selection according to fitness of an individual to give birth, followed by the death of a random individual. For well-mixed populations with only two strategies this updating rule is known to be equivalent to selecting unfit individuals for death and then selecting randomly for procreation (biased death-birth process). It is, however, known that this equivalence does not hold when considering structured populations. Here we study whether changing the updating rule can also have an effect in well-mixed populations in the presence of more than two strategies and high mutation rates. We find, using three models from different areas of evolutionary simulation, that the choice of updating rule can change model results. We show, e. g., that going from the birth-death process to the death-birth process can change a public goods game with punishment from containing mostly defectors to having a majority of cooperative strategies. From the examples given we derive guidelines indicating when the choice of the updating rule can be expected to have an impact on the results of the model.

  11. Nonequivalence of updating rules in evolutionary games under high mutation rates

    NASA Astrophysics Data System (ADS)

    Kaiping, G. A.; Jacobs, G. S.; Cox, S. J.; Sluckin, T. J.

    2014-10-01

    Moran processes are often used to model selection in evolutionary simulations. The updating rule in Moran processes is a birth-death process, i. e., selection according to fitness of an individual to give birth, followed by the death of a random individual. For well-mixed populations with only two strategies this updating rule is known to be equivalent to selecting unfit individuals for death and then selecting randomly for procreation (biased death-birth process). It is, however, known that this equivalence does not hold when considering structured populations. Here we study whether changing the updating rule can also have an effect in well-mixed populations in the presence of more than two strategies and high mutation rates. We find, using three models from different areas of evolutionary simulation, that the choice of updating rule can change model results. We show, e. g., that going from the birth-death process to the death-birth process can change a public goods game with punishment from containing mostly defectors to having a majority of cooperative strategies. From the examples given we derive guidelines indicating when the choice of the updating rule can be expected to have an impact on the results of the model.

  12. Evolutionary graph theory: breaking the symmetry between interaction and replacement

    PubMed Central

    Ohtsuki, Hisashi; Pacheco, Jorge M.; Nowak, Martin A.

    2008-01-01

    We study evolutionary dynamics in a population whose structure is given by two graphs: the interaction graph determines who plays with whom in an evolutionary game; the replacement graph specifies the geometry of evolutionary competition and updating. First, we calculate the fixation probabilities of frequency dependent selection between two strategies or phenotypes. We consider three different update mechanisms: birth-death, death-birth and imitation. Then, as a particular example, we explore the evolution of cooperation. Suppose the interaction graph is a regular graph of degree h, the replacement graph is a regular graph of degree g and the overlap between the two graphs is a regular graph of degree l. We show that cooperation is favored by natural selection if b/c > hg/l. Here, b and c denote the benefit and cost of the altruistic act. This result holds for death-birth updating, weak selection and large population size. Note that the optimum population structure for cooperators is given by maximum overlap between the interaction and the replacement graph (g = h = l), which means that the two graphs are identical. We also prove that a modified replicator equation can describe how the expected values of the frequencies of an arbitrary number of strategies change on replacement and interaction graphs: the two graphs induce a transformation of the payoff matrix. PMID:17350049

  13. Most Undirected Random Graphs Are Amplifiers of Selection for Birth-Death Dynamics, but Suppressors of Selection for Death-Birth Dynamics.

    PubMed

    Hindersin, Laura; Traulsen, Arne

    2015-11-01

    We analyze evolutionary dynamics on graphs, where the nodes represent individuals of a population. The links of a node describe which other individuals can be displaced by the offspring of the individual on that node. Amplifiers of selection are graphs for which the fixation probability is increased for advantageous mutants and decreased for disadvantageous mutants. A few examples of such amplifiers have been developed, but so far it is unclear how many such structures exist and how to construct them. Here, we show that almost any undirected random graph is an amplifier of selection for Birth-death updating, where an individual is selected to reproduce with probability proportional to its fitness and one of its neighbors is replaced by that offspring at random. If we instead focus on death-Birth updating, in which a random individual is removed and its neighbors compete for the empty spot, then the same ensemble of graphs consists of almost only suppressors of selection for which the fixation probability is decreased for advantageous mutants and increased for disadvantageous mutants. Thus, the impact of population structure on evolutionary dynamics is a subtle issue that will depend on seemingly minor details of the underlying evolutionary process.

  14. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.

    PubMed

    Olvera-Carrillo, Yadira; Van Bel, Michiel; Van Hautegem, Tom; Fendrych, Matyáš; Huysmans, Marlies; Simaskova, Maria; van Durme, Matthias; Buscaill, Pierre; Rivas, Susana; Coll, Nuria S.; Coppens, Frederik; Maere, Steven; Nowack, Moritz K.

    2015-12-01

    A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Scalable and High-Throughput Execution of Clinical Quality Measures from Electronic Health Records using MapReduce and the JBoss® Drools Engine

    PubMed Central

    Peterson, Kevin J.; Pathak, Jyotishman

    2014-01-01

    Automated execution of electronic Clinical Quality Measures (eCQMs) from electronic health records (EHRs) on large patient populations remains a significant challenge, and the testability, interoperability, and scalability of measure execution are critical. The High Throughput Phenotyping (HTP; http://phenotypeportal.org) project aligns with these goals by using the standards-based HL7 Health Quality Measures Format (HQMF) and Quality Data Model (QDM) for measure specification, as well as Common Terminology Services 2 (CTS2) for semantic interpretation. The HQMF/QDM representation is automatically transformed into a JBoss® Drools workflow, enabling horizontal scalability via clustering and MapReduce algorithms. Using Project Cypress, automated verification metrics can then be produced. Our results show linear scalability for nine executed 2014 Center for Medicare and Medicaid Services (CMS) eCQMs for eligible professionals and hospitals for >1,000,000 patients, and verified execution correctness of 96.4% based on Project Cypress test data of 58 eCQMs. PMID:25954459

  16. Ecological theatre and the evolutionary game: how environmental and demographic factors determine payoffs in evolutionary games.

    PubMed

    Argasinski, K; Broom, M

    2013-10-01

    In the standard approach to evolutionary games and replicator dynamics, differences in fitness can be interpreted as an excess from the mean Malthusian growth rate in the population. In the underlying reasoning, related to an analysis of "costs" and "benefits", there is a silent assumption that fitness can be described in some type of units. However, in most cases these units of measure are not explicitly specified. Then the question arises: are these theories testable? How can we measure "benefit" or "cost"? A natural language, useful for describing and justifying comparisons of strategic "cost" versus "benefits", is the terminology of demography, because the basic events that shape the outcome of natural selection are births and deaths. In this paper, we present the consequences of an explicit analysis of births and deaths in an evolutionary game theoretic framework. We will investigate different types of mortality pressures, their combinations and the possibility of trade-offs between mortality and fertility. We will show that within this new approach it is possible to model how strictly ecological factors such as density dependence and additive background fitness, which seem neutral in classical theory, can affect the outcomes of the game. We consider the example of the Hawk-Dove game, and show that when reformulated in terms of our new approach new details and new biological predictions are produced.

  17. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites.

    PubMed

    Kaczanowski, Szymon; Sajid, Mohammed; Reece, Sarah E

    2011-03-25

    Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities.

  18. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites

    PubMed Central

    2011-01-01

    Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities. PMID:21439063

  19. Programmed cell death as a defence against infection

    PubMed Central

    Jorgensen, Ine; Rayamajhi, Manira; Miao, Edward A.

    2017-01-01

    Eukaryotic cells can die from physical trauma, resulting in necrosis. Alternately, they can die via programmed cell death upon stimulation of specific signalling pathways. Here we discuss the utility of four cell death pathways in innate immune defence against bacterial and viral infection: apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave different programmed cell death pathways, which create complex signalling networks that cross-guard each other in the evolutionary arms race with pathogens. Finally, we describe how the resulting cell corpses — apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil extracellular traps (NETs) — promote clearance of infection. PMID:28138137

  20. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory

    PubMed Central

    Ferriere, Regis; Legendre, Stéphane

    2013-01-01

    Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause ‘evolutionary suicide’. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called ‘evolutionary trapping’. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps. PMID:23209163

  1. Emergence of the sudden oak death pathogen Phytophthora ramorum

    Treesearch

    Niklaus J. Grunwald; Matteo Garbelotto; Erica M. Goss; Kurt Huengens; Simone Prospero

    2012-01-01

    The recently emerged plant pathogen Phytophthora ramorum is responsible for causing the sudden oak death epidemic. This review documents the emergence of P. ramorum based on evolutionary and population genetic analyses. Currently infection by P. ramorum occurs only in Europe and North America and three...

  2. Fast stochastic algorithm for simulating evolutionary population dynamics

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  3. Car and motorcycle deaths: an evolutionary perspective.

    PubMed

    Medeiros, André Luís Dos Santos; Nadanovsky, Paulo

    2016-12-01

    Our aim was to assess differences between men and women in the likelihood of exposure to traffic as drivers of cars and motorcycles, and in the risk of dying from a car or a motorcycle crash, in order to verify the extent to which Darwin's Sexual Selection Theory could have predicted the findings and can help to interpret them. Study population was composed of men and women aged 18 to 60 years residents in the state of Rio de Janeiro between 2004 and 2010, and in the state of Rio Grande do Sul between 2001 and 2010. We built frequency distribution tables and drew bar charts in order to check whether there were differences between the sexes and interactions of sex with age. More men exposed themselves to and died in traffic than women, especially the young. Society should have an especially vigilant attitude towards men on the wheel due to their increased innate tendency to exposure to risk. Darwin's sexual selection theory can be an important ally when postulating hypotheses and interpreting epidemiological findings aiming at improving public policies to reduce the excessive number of traffic deaths, especially in societies where machismo is strong or the stimulus to masculinity is exaggerated.

  4. The Child and the Fear of Death

    PubMed Central

    Mitchell, Nelli L.; Schulman, Karen R.

    1981-01-01

    The central hypothesis of this paper is that the innate fear of death in the human being is universal and that the child, least of all, is immune to death fear and its symbolic representation. This cuts across all ages and developmental levels. This paper is not concerned with the empirical knowledge of death, an area that has been extensively explored by others such as Nagy (1948), Piaget (1929), and Anthony (1940). Examination of the child and his relationship to death is important in order to reach the truth and understand the human meaning of the fear of death. The child's conception of himself and his relationship to the world is an ironic paradox. On one hand, he feels endowed with magical feelings of omnipotence. This feeling is the main defense against the fear of death. On the other hand, his wishes, both benevolent and malevolent, have power independent of him to influence events. The concept of chance is alien, and the differentiation between objective and wishful causation is obscured. Thus, the way in which the child perceives his world makes the terror of death more formidable. Several conclusions are reached in this paper: (1) that even in childhood, loss, endings, separations, and death are core concerns of the individual; (2) that fear of death in children is intensified by the absence of the intellectual equipment and the absence of the necessary defense mechanisms essential for comprehending the experience of loss; and (3) that repression of the fear of death is an evolutionary process which has its origin in childhood. PMID:7310912

  5. Genes from scratch--the evolutionary fate of de novo genes.

    PubMed

    Schlötterer, Christian

    2015-04-01

    Although considered an extremely unlikely event, many genes emerge from previously noncoding genomic regions. This review covers the entire life cycle of such de novo genes. Two competing hypotheses about the process of de novo gene birth are discussed as well as the high death rate of de novo genes. Despite the high death rate, some de novo genes are retained and remain functional, even in distantly related species, through their integration into gene networks. Further studies combining gene expression with ribosome profiling in multiple populations across different species will be instrumental for an improved understanding of the evolutionary processes operating on de novo genes. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  6. Evolutionary Nephrology.

    PubMed

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  7. Evolutionary molecular medicine.

    PubMed

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  8. Evolutionary theory of ageing and the problem of correlated Gompertz parameters.

    PubMed

    Burger, Oskar; Missov, Trifon I

    2016-11-07

    The Gompertz mortality model is often used to evaluate evolutionary theories of ageing, such as the Medawar-Williams' hypothesis that high extrinsic mortality leads to faster ageing. However, fits of the Gompertz mortality model to data often find the opposite result that mortality is negatively correlated with the rate of ageing. This negative correlation has been independently discovered in several taxa and is known in actuarial studies of ageing as the Strehler-Mildvan correlation. We examine the role of mortality selection in determining late-life variation in susceptibility to death, which has been suggested to be the cause of this negative correlation. We demonstrate that fixed-frailty models that account for heterogeneity in frailty do not remove the correlation and that the correlation is an inherent statistical property of the Gompertz distribution. Linking actuarial and biological rates of ageing will continue to be a pressing challenge, but the Strehler-Mildvan correlation itself should not be used to diagnose any biological, physiological, or evolutionary process. These findings resolve some key tensions between theory and data that affect evolutionary and biological studies of ageing and mortality. Tests of evolutionary theories of ageing should include direct measures of physiological performance or condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evolutionary thinking

    PubMed Central

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  10. The application of evolutionary medicine principles for sustainable malaria control: a scoping study.

    PubMed

    Ocampo, Denise; Booth, Mark

    2016-07-22

    Current interventions against malaria have significantly reduced the number of people infected and the number of deaths. Concerns about emerging resistance of both mosquitoes and parasites to intervention have been raised, and questions remain about how best to generate wider knowledge of the underlying evolutionary processes. The pedagogical and research principles of evolutionary medicine may provide an answer to this problem. Eight programme managers and five academic researchers were interviewed by telephone or videoconference to elicit their first-hand views and experiences of malaria control given that evolution is a constant threat to sustainable control. Interviewees were asked about their views on the relationship between practit groups and academics and for their thoughts on whether or not evolutionary medicine may provide a solution to reported tensions. There was broad agreement that evolution of both parasites and vectors presents an obstacle to sustainable control. It was also widely agreed that through more efficient monitoring, evolution could be widely monitored. Interviewees also expressed the view that even well planned interventions may fail if the evolutionary biology of the disease is not considered, potentially making current tools redundant. This scoping study suggests that it is important to make research, including evolutionary principles, available and easily applicable for programme managers and key decision-makers, including donors and politicians. The main conclusion is that sharing knowledge through the educational and research processes embedded within evolutionary medicine has potential to relieve tensions and facilitate sustainable control of malaria and other parasitic infections.

  11. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.

    PubMed

    Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D

    2012-01-01

    Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.

  12. Chemical evolutionary games.

    PubMed

    Aristotelous, Andreas C; Durrett, Richard

    2014-05-01

    Inspired by the use of hybrid cellular automata in modeling cancer, we introduce a generalization of evolutionary games in which cells produce and absorb chemicals, and the chemical concentrations dictate the death rates of cells and their fitnesses. Our long term aim is to understand how the details of the interactions in a system with n species and m chemicals translate into the qualitative behavior of the system. Here, we study two simple 2×2 games with two chemicals and revisit the two and three species versions of the one chemical colicin system studied earlier by Durrett and Levin (1997). We find that in the 2×2 examples, the behavior of our new spatial model can be predicted from that of the mean field differential equation using ideas of Durrett and Levin (1994). However, in the three species colicin model, the system with diffusion does not have the coexistence which occurs in the lattices model in which sites interact with only their nearest neighbors. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Evolutionary dynamics of imatinib-treated leukemic cells by stochastic approach

    NASA Astrophysics Data System (ADS)

    Pizzolato, Nicola; Valenti, Davide; Adorno, Dominique Persano; Spagnolo, Bernardo

    2009-09-01

    The evolutionary dynamics of a system of cancerous cells in a model of chronic myeloid leukemia (CML) is investigated by a statistical approach. Cancer progression is explored by applying a Monte Carlo method to simulate the stochastic behavior of cell reproduction and death in a population of blood cells which can experience genetic mutations. In CML front line therapy is represented by the tyrosine kinase inhibitor imatinib which strongly affects the reproduction of leukemic cells only. In this work, we analyze the effects of a targeted therapy on the evolutionary dynamics of normal, first-mutant and cancerous cell populations. Several scenarios of the evolutionary dynamics of imatinib-treated leukemic cells are described as a consequence of the efficacy of the different modelled therapies. We show how the patient response to the therapy changes when a high value of the mutation rate from healthy to cancerous cells is present. Our results are in agreement with clinical observations. Unfortunately, development of resistance to imatinib is observed in a fraction of patients, whose blood cells are characterized by an increasing number of genetic alterations. We find that the occurrence of resistance to the therapy can be related to a progressive increase of deleterious mutations.

  14. Lineage-specific genomics: Frequent birth and death in the human genome: The human genome contains many lineage-specific elements created by both sequence and functional turnover.

    PubMed

    Young, Robert S

    2016-07-01

    Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage-specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, although there are differences between these groups, e.g. transposable elements contribute predominantly to sequence insertion. Functional turnover - where the activity of a locus is specific to one lineage, but the underlying DNA remains conserved - can also drive birth and death. However, this does not appear to be a major driver of divergent transcriptional regulation. Both sequence and functional turnover have contributed to the birth and death of thousands of functional promoters in the human and mouse genomes. These findings reveal the pervasive nature of evolutionary birth and death and suggest that lineage-specific regions may play an important but previously underappreciated role in human biology and disease. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.

  15. DiscML: an R package for estimating evolutionary rates of discrete characters using maximum likelihood.

    PubMed

    Kim, Tane; Hao, Weilong

    2014-09-27

    The study of discrete characters is crucial for the understanding of evolutionary processes. Even though great advances have been made in the analysis of nucleotide sequences, computer programs for non-DNA discrete characters are often dedicated to specific analyses and lack flexibility. Discrete characters often have different transition rate matrices, variable rates among sites and sometimes contain unobservable states. To obtain the ability to accurately estimate a variety of discrete characters, programs with sophisticated methodologies and flexible settings are desired. DiscML performs maximum likelihood estimation for evolutionary rates of discrete characters on a provided phylogeny with the options that correct for unobservable data, rate variations, and unknown prior root probabilities from the empirical data. It gives users options to customize the instantaneous transition rate matrices, or to choose pre-determined matrices from models such as birth-and-death (BD), birth-death-and-innovation (BDI), equal rates (ER), symmetric (SYM), general time-reversible (GTR) and all rates different (ARD). Moreover, we show application examples of DiscML on gene family data and on intron presence/absence data. DiscML was developed as a unified R program for estimating evolutionary rates of discrete characters with no restriction on the number of character states, and with flexibility to use different transition models. DiscML is ideal for the analyses of binary (1s/0s) patterns, multi-gene families, and multistate discrete morphological characteristics.

  16. Assessing Agreement Between Salivary Alpha Amylase Levels Collected by Passive Drool and Eluted Filter Paper in Adolescents With Cancer

    PubMed Central

    Ameringer, Suzanne; Munro, Cindy; Elswick, R.K.

    2014-01-01

    Purpose/Objectives To assess the validity of filter paper (FP) against the gold standard of passive drool (PD) for collecting salivary alpha amylase as a surrogate biomarker of psychological stress in adolescents with cancer. Design Part of a longitudinal, descriptive study of symptoms in adolescents with cancer during chemotherapy. Setting A pediatric hematology/oncology treatment center. Sample 33 saliva sample pairs from nine adolescents with cancer, aged 13–18 years. Methods Salivary alpha amylase was collected by PD and FP at four time points during a cycle of chemotherapy: days 1 (time 1) and 2 (time 2) of chemotherapy, day 7–10 (time 3), and day 1 of the next cycle (time 4). A random effects regression was used to assess the correlation between PD and FP values, and a Bland Altman analysis was conducted to assess agreement between the values. Main Research Variables Salivary alpha amylase. Findings The estimated correlation between PD and FP values was r = 0.91, p < 0.001. Regression results were also used to rescale FP values to the levels of the PD values because the FP values were on a different scale than the PD values. The Bland Altman analysis revealed that the agreement between the rescaled FP values and PD values was not satisfactory. Conclusions Eluted FP may not be a valid method for collecting salivary alpha amylase in adolescents with cancer. Implications for Nursing Psychological stress in adolescents with cancer may be linked to negative outcomes, such as greater symptom severity and post-traumatic stress disorder. Nurses need valid, efficient, biobehavioral measures to assess psychological stress in the clinical setting. PMID:22750901

  17. The Molecular Ecophysiology of Programmed Cell Death in Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Bidle, Kay D.

    2015-01-01

    Planktonic, prokaryotic, and eukaryotic photoautotrophs (phytoplankton) share a diverse and ancient evolutionary history, during which time they have played key roles in regulating marine food webs, biogeochemical cycles, and Earth's climate. Because phytoplankton represent the basis of marine ecosystems, the manner in which they die critically determines the flow and fate of photosynthetically fixed organic matter (and associated elements), ultimately constraining upper-ocean biogeochemistry. Programmed cell death (PCD) and associated pathway genes, which are triggered by a variety of nutrient stressors and are employed by parasitic viruses, play an integral role in determining the cell fate of diverse photoautotrophs in the modern ocean. Indeed, these multifaceted death pathways continue to shape the success and evolutionary trajectory of diverse phytoplankton lineages at sea. Research over the past two decades has employed physiological, biochemical, and genetic techniques to provide a novel, comprehensive, mechanistic understanding of the factors controlling this key process. Here, I discuss the current understanding of the genetics, activation, and regulation of PCD pathways in marine model systems; how PCD evolved in unicellular photoautotrophs; how it mechanistically interfaces with viral infection pathways; how stress signals are sensed and transduced into cellular responses; and how novel molecular and biochemical tools are revealing the impact of PCD genes on the fate of natural phytoplankton assemblages.

  18. Polymorphic Evolutionary Games.

    PubMed

    Fishman, Michael A

    2016-06-07

    In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Empirical verification of evolutionary theories of aging.

    PubMed

    Kyryakov, Pavlo; Gomez-Perez, Alejandra; Glebov, Anastasia; Asbah, Nimara; Bruno, Luigi; Meunier, Carolynne; Iouk, Tatiana; Titorenko, Vladimir I

    2016-10-25

    We recently selected 3 long-lived mutant strains of Saccharomyces cerevisiae by a lasting exposure to exogenous lithocholic acid. Each mutant strain can maintain the extended chronological lifespan after numerous passages in medium without lithocholic acid. In this study, we used these long-lived yeast mutants for empirical verification of evolutionary theories of aging. We provide evidence that the dominant polygenic trait extending longevity of each of these mutants 1) does not affect such key features of early-life fitness as the exponential growth rate, efficacy of post-exponential growth and fecundity; and 2) enhances such features of early-life fitness as susceptibility to chronic exogenous stresses, and the resistance to apoptotic and liponecrotic forms of programmed cell death. These findings validate evolutionary theories of programmed aging. We also demonstrate that under laboratory conditions that imitate the process of natural selection within an ecosystem, each of these long-lived mutant strains is forced out of the ecosystem by the parental wild-type strain exhibiting shorter lifespan. We therefore concluded that yeast cells have evolved some mechanisms for limiting their lifespan upon reaching a certain chronological age. These mechanisms drive the evolution of yeast longevity towards maintaining a finite yeast chronological lifespan within ecosystems.

  20. Understanding the mind from an evolutionary perspective: an overview of evolutionary psychology.

    PubMed

    Shackelford, Todd K; Liddle, James R

    2014-05-01

    The theory of evolution by natural selection provides the only scientific explanation for the existence of complex adaptations. The design features of the brain, like any organ, are the result of selection pressures operating over deep time. Evolutionary psychology posits that the human brain comprises a multitude of evolved psychological mechanisms, adaptations to specific and recurrent problems of survival and reproduction faced over human evolutionary history. Although some mistakenly view evolutionary psychology as promoting genetic determinism, evolutionary psychologists appreciate and emphasize the interactions between genes and environments. This approach to psychology has led to a richer understanding of a variety of psychological phenomena, and has provided a powerful foundation for generating novel hypotheses. Critics argue that evolutionary psychologists resort to storytelling, but as with any branch of science, empirical testing is a vital component of the field, with hypotheses standing or falling with the weight of the evidence. Evolutionary psychology is uniquely suited to provide a unifying theoretical framework for the disparate subdisciplines of psychology. An evolutionary perspective has provided insights into several subdisciplines of psychology, while simultaneously demonstrating the arbitrary nature of dividing psychological science into such subdisciplines. Evolutionary psychologists have amassed a substantial empirical and theoretical literature, but as a relatively new approach to psychology, many questions remain, with several promising directions for future research. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  1. [Evolutionary medicine].

    PubMed

    Wjst, M

    2013-12-01

    Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Evolutionary awareness.

    PubMed

    Gorelik, Gregory; Shackelford, Todd K

    2014-08-27

    In this article, we advance the concept of "evolutionary awareness," a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities-which we refer to as "intergenerational extended phenotypes"-by helping us to construct a better future for ourselves, for other sentient beings, and for our environment.

  3. Core principles of evolutionary medicine

    PubMed Central

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  4. Applying Evolutionary Anthropology

    PubMed Central

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  5. Applying evolutionary anthropology.

    PubMed

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.

  6. The effects of thoughts of survival and thoughts of death on recall in the adaptive memory paradigm.

    PubMed

    Klein, Stanley B

    2014-01-01

    In a recent paper Hart and Burns (2012) presented evidence that conditions that prime thoughts of one's mortality benefit recall. Drawing on the conceptual relation between thoughts of death and thoughts of survival, Hart and Burns interpret their findings as suggestive of the possibility that death-related thoughts function in manner similar to survival-related thoughts in enhancing recall. In the present study I draw on evolutionary arguments to question whether a conceptual relation between thoughts of death and thoughts of survival translates into a functional relation. I then present data showing that while death-related thoughts can promote high levels of recall, (a) the level achieved does not match that produced by survival processing and (b) survival and death cognition likely rely on different mechanisms to achieve their effects.

  7. The Life and Death of a Plant Cell.

    PubMed

    Kabbage, Mehdi; Kessens, Ryan; Bartholomay, Lyric C; Williams, Brett

    2017-04-28

    Like all eukaryotic organisms, plants possess an innate program for controlled cellular demise termed programmed cell death (PCD). Despite the functional conservation of PCD across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. As in mammalian PCD, the regulation of plant PCD is critical to development, homeostasis, and proper responses to stress. Evidence is emerging that autophagy is key to the regulation of PCD in plants and that it can dictate the outcomes of PCD execution under various scenarios. Here, we provide a broad and comparative overview of PCD processes in plants, with an emphasis on stress-induced PCD. We also discuss the implications of the paradox that is functional conservation of apoptotic hallmarks in plants in the absence of core mammalian apoptosis regulators, what that means, and whether an equivalent form of death occurs in plants.

  8. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    PubMed Central

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  9. Evolutionary domestication in Drosophila subobscura.

    PubMed

    Simões, P; Rose, M R; Duarte, A; Gonçalves, R; Matos, M

    2007-03-01

    The domestication of plants and animals is historically one of the most important topics in evolutionary biology. The evolutionary genetic changes arising from human cultivation are complex because of the effects of such varied processes as continuing natural selection, artificial selection, deliberate inbreeding, genetic drift and hybridization of different lineages. Despite the interest of domestication as an evolutionary process, few studies of multicellular sexual species have approached this topic using well-replicated experiments. Here we present a comprehensive study in which replicated evolutionary trajectories from several Drosophila subobscura populations provide a detailed view of the evolutionary dynamics of domestication in an outbreeding animal species. Our results show a clear evolutionary response in fecundity traits, but no clear pattern for adult starvation resistance and juvenile traits such as development time and viability. These results supply new perspectives on the confounding of adaptation with other evolutionary mechanisms in the process of domestication.

  10. Open Issues in Evolutionary Robotics.

    PubMed

    Silva, Fernando; Duarte, Miguel; Correia, Luís; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    One of the long-term goals in evolutionary robotics is to be able to automatically synthesize controllers for real autonomous robots based only on a task specification. While a number of studies have shown the applicability of evolutionary robotics techniques for the synthesis of behavioral control, researchers have consistently been faced with a number of issues preventing the widespread adoption of evolutionary robotics for engineering purposes. In this article, we review and discuss the open issues in evolutionary robotics. First, we analyze the benefits and challenges of simulation-based evolution and subsequent deployment of controllers versus evolution on real robotic hardware. Second, we discuss specific evolutionary computation issues that have plagued evolutionary robotics: (1) the bootstrap problem, (2) deception, and (3) the role of genomic encoding and genotype-phenotype mapping in the evolution of controllers for complex tasks. Finally, we address the absence of standard research practices in the field. We also discuss promising avenues of research. Our underlying motivation is the reduction of the current gap between evolutionary robotics and mainstream robotics, and the establishment of evolutionary robotics as a canonical approach for the engineering of autonomous robots.

  11. Evolutionary Genomics of Defense Systems in Archaea and Bacteria*

    PubMed Central

    Koonin, Eugene V.; Makarova, Kira S.; Wolf, Yuri I.

    2018-01-01

    Evolution of bacteria and archaea involves an incessant arms race against an enormous diversity of genetic parasites. Accordingly, a substantial fraction of the genes in most bacteria and archaea are dedicated to antiparasite defense. The functions of these defense systems follow several distinct strategies, including innate immunity; adaptive immunity; and dormancy induction, or programmed cell death. Recent comparative genomic studies taking advantage of the expanding database of microbial genomes and metagenomes, combined with direct experiments, resulted in the discovery of several previously unknown defense systems, including innate immunity centered on Argonaute proteins, bacteriophage exclusion, and new types of CRISPR-Cas systems of adaptive immunity. Some general principles of function and evolution of defense systems are starting to crystallize, in particular, extensive gain and loss of defense genes during the evolution of prokaryotes; formation of genomic defense islands; evolutionary connections between mobile genetic elements and defense, whereby genes of mobile elements are repeatedly recruited for defense functions; the partially selfish and addictive behavior of the defense systems; and coupling between immunity and dormancy induction/programmed cell death. PMID:28657885

  12. Game theory in the death galaxy: interaction of cancer and stromal cells in tumour microenvironment.

    PubMed

    Wu, Amy; Liao, David; Tlsty, Thea D; Sturm, James C; Austin, Robert H

    2014-08-06

    Preventing relapse is the major challenge to effective therapy in cancer. Within the tumour, stromal (ST) cells play an important role in cancer progression and the emergence of drug resistance. During cancer treatment, the fitness of cancer cells can be enhanced by ST cells because their molecular signalling interaction delays the drug-induced apoptosis of cancer cells. On the other hand, competition among cancer and ST cells for space or resources should not be ignored. We explore the population dynamics of multiple myeloma (MM) versus bone marrow ST cells by using an experimental microecology that we call the death galaxy, with a stable drug gradient and connected microhabitats. Evolutionary game theory is a quantitative way to capture the frequency-dependent nature of interactive populations. Therefore, we use evolutionary game theory to model the populations in the death galaxy with the gradients of pay-offs and successfully predict the future densities of MM and ST cells. We discuss the possible clinical use of such analysis for predicting cancer progression.

  13. Evolutionary tree reconstruction

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Kanefsky, Bob

    1990-01-01

    It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.

  14. Evolutionary toxicology: Meta-analysis of evolutionary events in response to chemical stressors.

    PubMed

    M Oziolor, Elias; De Schamphelaere, Karel; Matson, Cole W

    2016-12-01

    The regulatory decision-making process regarding chemical safety is most often informed by evidence based on ecotoxicity tests that consider growth, reproduction and survival as end-points, which can be quantitatively linked to short-term population outcomes. Changes in these end-points resulting from chemical exposure can cause alterations in micro-evolutionary forces (mutation, drift, selection and gene flow) that control the genetic composition of populations. With multi-generation exposures, anthropogenic contamination can lead to a population with an altered genetic composition, which may respond differently to future stressors. These evolutionary changes are rarely discussed in regulatory or risk assessment frameworks, but the growing body of literature that documents their existence suggests that these important population-level impacts should be considered. In this meta-analysis we have compared existing contamination levels of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) that have been documented to be associated with evolutionary changes in resident aquatic organisms to regulatory benchmarks for these contaminants. The original intent of this project was to perform a meta-analysis on evolutionary events associated with PCB and PAH contamination. However, this effort was hindered by a lack of consistency in congener selection for "total" PCB or PAH measurements. We expanded this manuscript to include a discussion of methods used to determine PCB and PAH total contamination in addition to comparing regulatory guidelines and contamination that has caused evolutionary effects. Micro-evolutionary responses often lead populations onto unique and unpredictable trajectories. Therefore, to better understand the risk of population-wide alterations occurring, we need to improve comparisons of chemical contamination between affected locations. In this manuscript we offer several possibilities to unify chemical comparisons for PCBs and

  15. Divergent Evolutionary Patterns of NAC Transcription Factors Are Associated with Diversification and Gene Duplications in Angiosperm

    PubMed Central

    Jin, Xiaoli; Ren, Jing; Nevo, Eviatar; Yin, Xuegui; Sun, Dongfa; Peng, Junhua

    2017-01-01

    NAC (NAM/ATAF/CUC) proteins constitute one of the biggest plant-specific transcription factor (TF) families and have crucial roles in diverse developmental programs during plant growth. Phylogenetic analyses have revealed both conserved and lineage-specific NAC subfamilies, among which various origins and distinct features were observed. It is reasonable to hypothesize that there should be divergent evolutionary patterns of NAC TFs both between dicots and monocots, and among NAC subfamilies. In this study, we compared the gene duplication and loss, evolutionary rate, and selective pattern among non-lineage specific NAC subfamilies, as well as those between dicots and monocots, through genome-wide analyses of sequence and functional data in six dicot and five grass lineages. The number of genes gained in the dicot lineages was much larger than that in the grass lineages, while fewer gene losses were observed in the grass than that in the dicots. We revealed (1) uneven constitution of Clusters of Orthologous Groups (COGs) and contrasting birth/death rates among subfamilies, and (2) two distinct evolutionary scenarios of NAC TFs between dicots and grasses. Our results demonstrated that relaxed selection, resulting from concerted gene duplications, may have permitted substitutions responsible for functional divergence of NAC genes into new lineages. The underlying mechanism of distinct evolutionary fates of NAC TFs shed lights on how evolutionary divergence contributes to differences in establishing NAC gene subfamilies and thus impacts the distinct features between dicots and grasses. PMID:28713414

  16. From the "Modern Synthesis" to cybernetics: Ivan Ivanovich Schmalhausen (1884-1963) and his research program for a synthesis of evolutionary and developmental biology.

    PubMed

    Levit, Georgy S; Hossfeld, Uwe; Olsson, Lennart

    2006-03-15

    Ivan I. Schmalhausen was one of the central figures in the Russian development of the "Modern Synthesis" in evolutionary biology. He is widely cited internationally even today. Schmalhausen developed the main principles of his theory facing the danger of death in the totalitarian Soviet Union. His great services to evolutionary and theoretical biology are indisputable. However, the received view of Schmalhausen's contributions to evolutionary biology makes an unbiased reading of his texts difficult. Here we show that taking all of his works into consideration (including those only available in Russian) paints a much more dynamic and exciting picture of what he tried to achieve. Schmalhausen pioneered the integration of a developmental perspective into evolutionary thinking. A main tool for achieving this was his approach to living objects as complex multi-level self-regulating systems. Schmalhausen put enormous effort into bringing this idea into fruition during the final stages of his career by combining evolutionary theory with cybernetics. His results and ideas remain thought-provoking, and his texts are of more than just historical interest. Copyright 2006 Wiley-Liss, Inc.

  17. Climate change and evolutionary adaptation.

    PubMed

    Hoffmann, Ary A; Sgrò, Carla M

    2011-02-24

    Evolutionary adaptation can be rapid and potentially help species counter stressful conditions or realize ecological opportunities arising from climate change. The challenges are to understand when evolution will occur and to identify potential evolutionary winners as well as losers, such as species lacking adaptive capacity living near physiological limits. Evolutionary processes also need to be incorporated into management programmes designed to minimize biodiversity loss under rapid climate change. These challenges can be met through realistic models of evolutionary change linked to experimental data across a range of taxa.

  18. Evolutionary Games of Multiplayer Cooperation on Graphs

    PubMed Central

    Arranz, Jordi; Traulsen, Arne

    2016-01-01

    There has been much interest in studying evolutionary games in structured populations, often modeled as graphs. However, most analytical results so far have only been obtained for two-player or linear games, while the study of more complex multiplayer games has been usually tackled by computer simulations. Here we investigate evolutionary multiplayer games on graphs updated with a Moran death-Birth process. For cycles, we obtain an exact analytical condition for cooperation to be favored by natural selection, given in terms of the payoffs of the game and a set of structure coefficients. For regular graphs of degree three and larger, we estimate this condition using a combination of pair approximation and diffusion approximation. For a large class of cooperation games, our approximations suggest that graph-structured populations are stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate our analytical approximations for random regular graphs and cycles, but show systematic differences for graphs with many loops such as lattices. In particular, our simulation results show that these kinds of graphs can even lead to more stringent conditions for the evolution of cooperation than well-mixed populations. Overall, we provide evidence suggesting that the complexity arising from many-player interactions and spatial structure can be captured by pair approximation in the case of random graphs, but that it need to be handled with care for graphs with high clustering. PMID:27513946

  19. Evolutionary medicine.

    PubMed

    Swynghedauw, B

    2004-04-01

    Nothing in biology makes sense except in the light of evolution. Evolutionary, or darwinian, medicine takes the view that contemporary diseases result from incompatibility between the conditions under which the evolutionary pressure had modified our genetic endowment and the lifestyle and dietary habits in which we are currently living, including the enhanced lifespan, the changes in dietary habits and the lack of physical activity. An evolutionary trait express a genetic polymorphism which finally improve fitness, it needs million years to become functional. A limited genetic diversity is a necessary prerequisite for evolutionary medicine. Nevertheless, search for a genetic endowment would become nearly impossible if the human races were genetically different. From a genetic point of view, homo sapiens, is homogeneous, and the so-called human races have only a socio-economic definition. Historically, Heart Failure, HF, had an infectious origin and resulted from mechanical overload which triggered mechanoconversion by using phylogenically ancient pleiotropic pathways. Adaptation was mainly caused by negative inotropism. Recently, HF was caused by a complex remodelling caused by the trophic effects of mechanics, ischemia, senescence, diabetes and, neurohormones. The generally admitted hypothesis is that cancers were largely caused by a combination of modern reproductive and dietary lifestyles mismatched with genotypic traits, plus the longer time available for a confrontation. Such a concept is illustrated for skin and breast cancers, and also for the link between cancer risk and dietary habits.

  20. Evolutionary principles and their practical application

    PubMed Central

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966

  1. Evolutionary principles and their practical application.

    PubMed

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  2. Evolutionary significance of ageing in the wild.

    PubMed

    Kowald, Axel; Kirkwood, Thomas B L

    2015-11-01

    Human lifespan has risen dramatically over the last 150 years, leading to a significant increase in the fraction of aged people in the population. Until recently it was believed that this contrasted strongly with the situation in wild populations of animals, where the likelihood of encountering demonstrably senescent individuals was believed to be negligible. Over the recent years, however, a series of field studies has appeared that shows ageing can also be observed for many species in the wild. We discuss here the relevance of this finding for the different evolutionary theories of ageing, since it has been claimed that ageing in the wild is incompatible with the so-called non-adaptive (non-programmed) theories, i.e. those in which ageing is presumed not to offer a direct selection benefit. We show that a certain proportion of aged individuals in the population is fully compatible with the antagonistic pleiotropy and the disposable soma theories, while it is difficult to reconcile with the mutation accumulation theory. We also quantify the costs of ageing using life history data from recent field studies and a range of possible metrics. We discuss the merits and problems of the different metrics and also introduce a new metric, yearly death toll, that aims directly at quantifying the deaths caused by the ageing process. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Self-organizing network services with evolutionary adaptation.

    PubMed

    Nakano, Tadashi; Suda, Tatsuya

    2005-09-01

    This paper proposes a novel framework for developing adaptive and scalable network services. In the proposed framework, a network service is implemented as a group of autonomous agents that interact in the network environment. Agents in the proposed framework are autonomous and capable of simple behaviors (e.g., replication, migration, and death). In this paper, an evolutionary adaptation mechanism is designed using genetic algorithms (GAs) for agents to evolve their behaviors and improve their fitness values (e.g., response time to a service request) to the environment. The proposed framework is evaluated through simulations, and the simulation results demonstrate the ability of autonomous agents to adapt to the network environment. The proposed framework may be suitable for disseminating network services in dynamic and large-scale networks where a large number of data and services need to be replicated, moved, and deleted in a decentralized manner.

  4. Algorithmic Mechanism Design of Evolutionary Computation.

    PubMed

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  5. Algorithmic Mechanism Design of Evolutionary Computation

    PubMed Central

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777

  6. Death receptor Fas (CD95) signaling in the central nervous system: tuning neuroplasticity?

    PubMed

    Reich, Arno; Spering, Christopher; Schulz, Jörg B

    2008-09-01

    For over a decade, neuroscientific research has focused on processes of apoptosis and its contribution to the pathophysiology of neurological diseases. In the central nervous system, the degree of intrinsic mitochondrial-mediated apoptotic signaling expresses a cell's individual metabolic stress, whereas activation of the extrinsic death receptor-induced cascade is regarded as a sign of imbalanced cellular networks. Under physiological conditions, most neurons possess death receptors without being sensitive to receptor-mediated apoptosis. This paradox raises two questions: what is the evolutionary advantage of expressing potentially harmful proteins? How is their signaling controlled? This review summarizes the functional relevance of FasL-Fas signaling--a quintessential death ligand/receptor system--in different neurological disease models ranging from traumatic, inflammatory and ischemic to neurodegenerative processes. Furthermore, it outlines alternative non-apoptotic Fas signaling, shedding new light on its neuroplastic capacity. Finally, receptor-proximal regulatory proteins are introduced and identified as potential protagonists of disease-modifying neurological therapies.

  7. Cooperative combinatorial optimization: evolutionary computation case study.

    PubMed

    Burgin, Mark; Eberbach, Eugene

    2008-01-01

    This paper presents a formalization of the notion of cooperation and competition of multiple systems that work toward a common optimization goal of the population using evolutionary computation techniques. It is proved that evolutionary algorithms are more expressive than conventional recursive algorithms, such as Turing machines. Three classes of evolutionary computations are introduced and studied: bounded finite, unbounded finite, and infinite computations. Universal evolutionary algorithms are constructed. Such properties of evolutionary algorithms as completeness, optimality, and search decidability are examined. A natural extension of evolutionary Turing machine (ETM) model is proposed to properly reflect phenomena of cooperation and competition in the whole population.

  8. Evolutionary inevitability of sexual antagonism.

    PubMed

    Connallon, Tim; Clark, Andrew G

    2014-02-07

    Sexual antagonism, whereby mutations are favourable in one sex and disfavourable in the other, is common in natural populations, yet the root causes of sexual antagonism are rarely considered in evolutionary theories of adaptation. Here, we explore the evolutionary consequences of sex-differential selection and genotype-by-sex interactions for adaptation in species with separate sexes. We show that sexual antagonism emerges naturally from sex differences in the direction of selection on phenotypes expressed by both sexes or from sex-by-genotype interactions affecting the expression of such phenotypes. Moreover, modest sex differences in selection or genotype-by-sex effects profoundly influence the long-term evolutionary trajectories of populations with separate sexes, as these conditions trigger the evolution of strong sexual antagonism as a by-product of adaptively driven evolutionary change. The theory demonstrates that sexual antagonism is an inescapable by-product of adaptation in species with separate sexes, whether or not selection favours evolutionary divergence between males and females.

  9. Comparing Evolutionary Programs and Evolutionary Pattern Search Algorithms: A Drug Docking Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1999-02-10

    Evolutionary programs (EPs) and evolutionary pattern search algorithms (EPSAS) are two general classes of evolutionary methods for optimizing on continuous domains. The relative performance of these methods has been evaluated on standard global optimization test functions, and these results suggest that EPSAs more robustly converge to near-optimal solutions than EPs. In this paper we evaluate the relative performance of EPSAs and EPs on a real-world application: flexible ligand binding in the Autodock docking software. We compare the performance of these methods on a suite of docking test problems. Our results confirm that EPSAs and EPs have comparable performance, and theymore » suggest that EPSAs may be more robust on larger, more complex problems.« less

  10. Evolutionary thinking: "A conversation with Carter Phipps about the role of evolutionary thinking in modern culture".

    PubMed

    Hunt, Tam

    2014-12-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution-both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place-has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps' book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging "integral" or "evolutionary" cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps.

  11. Evolutionary Conflict Between Maternal and Paternal Interests: Integration with Evolutionary Endocrinology.

    PubMed

    Mokkonen, Mikael; Koskela, Esa; Mappes, Tapio; Mills, Suzanne C

    2016-08-01

    Conflict between mates, as well as conflict between parents and offspring are due to divergent evolutionary interests of the interacting individuals. Hormone systems provide genetically based proximate mechanisms for mediating phenotypic adaptation and maladaptation characteristic of evolutionary conflict between individuals. Testosterone (T) is among the most commonly studied hormones in evolutionary biology, and as such, its role in shaping sexually dimorphic behaviors and physiology is relatively well understood, but its role in evolutionary conflict is not as clear. In this review, we outline the genomic conflicts arising within the family unit, and incorporate multiple lines of evidence from the bank vole (Myodes glareolus) system to outline how T impacts traits associated with reproduction and survival, resulting in a sexually antagonistic genetic trade-off in fitness. A major prediction arising from this work is that lower T is favored in females, whereas the optimal T level in males fluctuates in relation to social and ecological factors. We additionally discuss future directions to further integrate endocrinology into the study of sexual and parent-offspring conflicts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. Evolutionary origins of a novel host plant detoxification gene in butterflies.

    PubMed

    Fischer, Hanna M; Wheat, Christopher W; Heckel, David G; Vogel, Heiko

    2008-05-01

    Chemical interactions between plants and their insect herbivores provide an excellent opportunity to study the evolution of species interactions on a molecular level. Here, we investigate the molecular evolutionary events that gave rise to a novel detoxifying enzyme (nitrile-specifier protein [NSP]) in the butterfly family Pieridae, previously identified as a coevolutionary key innovation. By generating and sequencing expressed sequence tags, genomic libraries, and screening databases we found NSP to be a member of an insect-specific gene family, which we characterized and named the NSP-like gene family. Members consist of variable tandem repeats, are gut expressed, and are found across Insecta evolving in a dynamic, ongoing birth-death process. In the Lepidoptera, multiple copies of single-domain major allergen genes are present and originate via tandem duplications. Multiple domain genes are found solely within the brassicaceous-feeding Pieridae butterflies, one of them being NSP and another called major allergen (MA). Analyses suggest that NSP and its paralog MA have a unique single-domain evolutionary origin, being formed by intragenic domain duplication followed by tandem whole-gene duplication. Duplicates subsequently experienced a period of relaxed constraint followed by an increase in constraint, perhaps after neofunctionalization. NSP and its ortholog MA are still experiencing high rates of change, reflecting a dynamic evolution consistent with the known role of NSP in plant-insect interactions. Our results provide direct evidence to the hypothesis that gene duplication is one of the driving forces for speciation and adaptation, showing that both within- and whole-gene tandem duplications are a powerful force underlying evolutionary adaptation.

  13. The sweet taste of death: glucose triggers apoptosis during yeast chronological aging.

    PubMed

    Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Madeo, Frank

    2010-10-01

    As time goes by, a postmitotic cell ages following a degeneration process ultimately ending in cell death. This phenomenon is evolutionary conserved and present in unicellular eukaryotes as well, making the yeast chronological aging system an appreciated model. Here, single cells die in a programmed fashion (both by apoptosis and necrosis) for the benefit of the whole population. Besides its meaning for aging and cell death research, age-induced programmed cell death represents the first experimental proof for the so-called group selection theory: Apoptotic genes became selected during evolution because of the benefits they might render to the whole cell culture and not to the individual cell. Many anti‐aging stimuli have been discovered in the yeast chronological aging system and have afterwards been confirmed in higher cells or organisms. New work from the Burhans group (this issue) now demonstrates that glucose signaling has a progeriatric effect on chronologically aged yeast cells: Glucose administration results in a diminished efficacy of cells to enter quiescence, finally causing superoxide‐mediated replication stress and apoptosis.

  14. Integrating genomics into evolutionary medicine.

    PubMed

    Rodríguez, Juan Antonio; Marigorta, Urko M; Navarro, Arcadi

    2014-12-01

    The application of the principles of evolutionary biology into medicine was suggested long ago and is already providing insight into the ultimate causes of disease. However, a full systematic integration of medical genomics and evolutionary medicine is still missing. Here, we briefly review some cases where the combination of the two fields has proven profitable and highlight two of the main issues hindering the development of evolutionary genomic medicine as a mature field, namely the dissociation between fitness and health and the still considerable difficulties in predicting phenotypes from genotypes. We use publicly available data to illustrate both problems and conclude that new approaches are needed for evolutionary genomic medicine to overcome these obstacles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    PubMed

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  16. Toward a unifying framework for evolutionary processes.

    PubMed

    Paixão, Tiago; Badkobeh, Golnaz; Barton, Nick; Çörüş, Doğan; Dang, Duc-Cuong; Friedrich, Tobias; Lehre, Per Kristian; Sudholt, Dirk; Sutton, Andrew M; Trubenová, Barbora

    2015-10-21

    The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Practical advantages of evolutionary computation

    NASA Astrophysics Data System (ADS)

    Fogel, David B.

    1997-10-01

    Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.

  18. Asynchronous spatial evolutionary games.

    PubMed

    Newth, David; Cornforth, David

    2009-02-01

    Over the past 50 years, much attention has been given to the Prisoner's Dilemma as a metaphor for problems surrounding the evolution and maintenance of cooperative and altruistic behavior. The bulk of this work has dealt with the successfulness and robustness of various strategies. Nowak and May (1992) considered an alternative approach to studying evolutionary games. They assumed that players were distributed across a two-dimensional (2D) lattice, interactions between players occurred locally, rather than at long range as in the well mixed situation. The resulting spatial evolutionary games display dynamics not seen in their well-mixed counterparts. An assumption underlying much of the work on spatial evolutionary games is that the state of all players is updated in unison or in synchrony. Using the framework outlined in Nowak and May (1992), we examine the effect of various asynchronous updating schemes on the dynamics of spatial evolutionary games. There are potential implications for the dynamics of a wide variety of spatially extended systems in biology, physics and chemistry.

  19. Evolutionary pattern search algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-09-19

    This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimentalmore » analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.« less

  20. Evolutionary dynamics of taxonomic structure

    PubMed Central

    Foote, Michael

    2012-01-01

    The distribution of species among genera and higher taxa has largely untapped potential to reveal among-clade variation in rates of origination and extinction. The probability distribution of the number of species within a genus is modelled with a stochastic, time-homogeneous birth–death model having two parameters: the rate of species extinction, μ, and the rate of genus origination, γ, each scaled as a multiple of the rate of within-genus speciation, λ. The distribution is more sensitive to γ than to μ, although μ affects the size of the largest genera. The species : genus ratio depends strongly on both γ and μ, and so is not a good diagnostic of evolutionary dynamics. The proportion of monotypic genera, however, depends mainly on γ, and so may provide an index of the genus origination rate. Application to living marine molluscs of New Zealand shows that bivalves have a higher relative rate of genus origination than gastropods. This is supported by the analysis of palaeontological data. This concordance suggests that analysis of living taxonomic distributions may allow inference of macroevolutionary dynamics even without a fossil record. PMID:21865239

  1. Botulinum toxin injections for chronic sialorrhoea in children are effective regardless of the degree of neurological dysfunction: A single tertiary institution experience.

    PubMed

    Mahadevan, Murali; Gruber, Maayan; Bilish, Darin; Edwards, Kathryn; Davies-Payne, David; van der Meer, Graeme

    2016-09-01

    To determine the effectiveness of submandibular salivary gland Botulinum Toxin Type-A (BTX-A) injection in the treatment of drooling in children with varying degrees of neurological dysfunction. A retrospective review of pre- and post-procedure drooling frequency and severity scores of patients receiving BTX-A between January 2008 and January 2013. Stratification to different subgroups of neurological impairment was performed according to Gross Motor Function Classification System (GMFCS) score. Drooling severity was assessed using Thomas-Stonell and Greenberg symptom questionnaires administered at time of initial consultation and 3 months after treatment. 48 sets of BTX-A injections in 26 patients with an average age of 9.45 years (range 7 months-18 years) were included in the study. Marked improvement in drooling was seen in 60.4% of patients, a marginal or brief improvement was seen in 20.8% and there was no improvement in 18.8%. No adverse events were reported following any of the BTX-A injections. BTX-A was safe and effective in the eight patients with pre-existing swallowing dysfunction. Subsequent drooling surgery was performed in 15 (57.7%) of the cohort, all 15 patients responded to BTX-A injections. In patients with Cerebral Palsy, there was no correlation between the severity of the neurological dysfunction as measured by the Gross Motor Function Classification System (GMFCS) score and the response to BTX-A treatment. Injection of BTX-A to the submandibular glands of children with neurological disorders is a safe procedure and results in a reduction in drooling in the majority of patients. Children with severe neurological dysfunction respond to BTX-A injections as effectively as their less impaired peers and the degree of response does not appear to be associated with the severity of neurological disability. BTX-A injection is a good initial procedure when drooling surgery is being considered. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Evolutionary Debunking Arguments

    PubMed Central

    Kahane, Guy

    2011-01-01

    Evolutionary debunking arguments (EDAs) are arguments that appeal to the evolutionary origins of evaluative beliefs to undermine their justification. This paper aims to clarify the premises and presuppositions of EDAs—a form of argument that is increasingly put to use in normative ethics. I argue that such arguments face serious obstacles. It is often overlooked, for example, that they presuppose the truth of metaethical objectivism. More importantly, even if objectivism is assumed, the use of EDAs in normative ethics is incompatible with a parallel and more sweeping global evolutionary debunking argument that has been discussed in recent metaethics. After examining several ways of responding to this global debunking argument, I end by arguing that even if we could resist it, this would still not rehabilitate the current targeted use of EDAs in normative ethics given that, if EDAs work at all, they will in any case lead to a truly radical revision of our evaluative outlook. PMID:21949447

  3. Asymmetric Evolutionary Games.

    PubMed

    McAvoy, Alex; Hauert, Christoph

    2015-08-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.

  4. Asymmetric Evolutionary Games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  5. Core principles of evolutionary medicine: A Delphi study.

    PubMed

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.

  6. Conceptual Barriers to Progress Within Evolutionary Biology

    PubMed Central

    Laland, Kevin N.; Odling-Smee, John; Feldman, Marcus W.; Kendal, Jeremy

    2011-01-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, “niche construction”. This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory. PMID:21572912

  7. Conceptual Barriers to Progress Within Evolutionary Biology.

    PubMed

    Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy

    2009-08-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.

  8. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair

    PubMed Central

    Fallahi, Emma; O’Driscoll, Niamh A.; Matallanas, David

    2016-01-01

    The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders. PMID:27322327

  9. Games of life and death: antibiotic resistance and production through the lens of evolutionary game theory.

    PubMed

    Conlin, Peter L; Chandler, Josephine R; Kerr, Benjamin

    2014-10-01

    In this review, we demonstrate how game theory can be a useful first step in modeling and understanding interactions among bacteria that produce and resist antibiotics. We introduce the basic features of evolutionary game theory and explore model microbial systems that correspond to some classical games. Each game discussed defines a different category of social interaction with different resulting population dynamics (exclusion, coexistence, bistability, cycling). We then explore how the framework can be extended to incorporate some of the complexity of natural microbial communities. Overall, the game theoretical perspective helps to guide our expectations about the evolution of some forms of antibiotic resistance and production because it makes clear the precise nature of social interaction in this context. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Research traditions and evolutionary explanations in medicine.

    PubMed

    Méthot, Pierre-Olivier

    2011-02-01

    In this article, I argue that distinguishing 'evolutionary' from 'Darwinian' medicine will help us assess the variety of roles that evolutionary explanations can play in a number of medical contexts. Because the boundaries of evolutionary and Darwinian medicine overlap to some extent, however, they are best described as distinct 'research traditions' rather than as competing paradigms. But while evolutionary medicine does not stand out as a new scientific field of its own, Darwinian medicine is united by a number of distinctive theoretical and methodological claims. For example, evolutionary medicine and Darwinian medicine can be distinguished with respect to the styles of evolutionary explanations they employ. While the former primarily involves 'forward looking' explanations, the latter depends mostly on 'backward looking' explanations. A forward looking explanation tries to predict the effects of ongoing evolutionary processes on human health and disease in contemporary environments (e.g., hospitals). In contrast, a backward looking explanation typically applies evolutionary principles from the vantage point of humans' distant biological past in order to assess present states of health and disease. Both approaches, however, are concerned with the prevention and control of human diseases. In conclusion, I raise some concerns about the claim that 'nothing in medicine makes sense except in the light of evolution'.

  11. Botulinum toxin type a injections to salivary glands: combination with single event multilevel chemoneurolysis in 2 children with severe spastic quadriplegic cerebral palsy.

    PubMed

    Kim, Heakyung; Lee, Yung; Weiner, Daniel; Kaye, Robin; Cahill, Anne Marie; Yudkoff, Marc

    2006-01-01

    We describe 2 children with severe spastic quadriplegic cerebral palsy (CP) who have significant drooling and frequent aspiration pneumonia. They underwent simultaneous botulinum toxin type A (BTX-A) injections to salivary glands for drooling and prevention of aspiration pneumonia along with single-event multilevel chemoneurolysis (SEMLC) with BTX-A and 5% phenol for severe diffuse spasticity. There was significant improvement in drooling, frequency of aspiration pneumonia, and spasticity without adverse effect. BTX-A injections into the salivary glands, in addition to SEMLC, for these 2 children with medically complicated severe spastic quadriplegic CP, were safe and highly successful procedures, which improved their health-related quality of life.

  12. Evolutionary branching under multi-dimensional evolutionary constraints.

    PubMed

    Ito, Hiroshi; Sasaki, Akira

    2016-10-21

    The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Evolutionary rescue in vertebrates: evidence, applications and uncertainty

    PubMed Central

    Vander Wal, E.; Garant, D.; Festa-Bianchet, M.; Pelletier, F.

    2013-01-01

    The current rapid rate of human-driven environmental change presents wild populations with novel conditions and stresses. Theory and experimental evidence for evolutionary rescue present a promising case for species facing environmental change persisting via adaptation. Here, we assess the potential for evolutionary rescue in wild vertebrates. Available information on evolutionary rescue was rare and restricted to abundant and highly fecund species that faced severe intentional anthropogenic selective pressures. However, examples from adaptive tracking in common species and genetic rescues in species of conservation concern provide convincing evidence in favour of the mechanisms of evolutionary rescue. We conclude that low population size, long generation times and limited genetic variability will result in evolutionary rescue occurring rarely for endangered species without intervention. Owing to the risks presented by current environmental change and the possibility of evolutionary rescue in nature, we suggest means to study evolutionary rescue by mapping genotype → phenotype → demography → fitness relationships, and priorities for applying evolutionary rescue to wild populations. PMID:23209171

  14. Ammonium Is Toxic for Aging Yeast Cells, Inducing Death and Shortening of the Chronological Lifespan

    PubMed Central

    Santos, Júlia

    2012-01-01

    Here we show that in aging Saccharomyces cerevisiae (budding yeast) cells, NH4 + induces cell death associated with shortening of chronological life span. This effect is positively correlated with the concentration of NH4 + added to the culture medium and is particularly evident when cells are starved for auxotrophy-complementing amino acids. NH4 +-induced cell death is accompanied by an initial small increase of apoptotic cells followed by extensive necrosis. Autophagy is inhibited by NH4 +, but this does not cause a decrease in cell viability. We propose that the toxic effects of NH4 + are mediated by activation of PKA and TOR and inhibition of Sch9p. Our data show that NH4 + induces cell death in aging cultures through the regulation of evolutionary conserved pathways. They may also provide new insights into longevity regulation in multicellular organisms and increase our understanding of human disorders such as hyperammonemia as well as effects of amino acid deprivation employed as a therapeutic strategy. PMID:22615903

  15. Evolutionary genetics of plant adaptation.

    PubMed

    Anderson, Jill T; Willis, John H; Mitchell-Olds, Thomas

    2011-07-01

    Plants provide unique opportunities to study the mechanistic basis and evolutionary processes of adaptation to diverse environmental conditions. Complementary laboratory and field experiments are important for testing hypotheses reflecting long-term ecological and evolutionary history. For example, these approaches can infer whether local adaptation results from genetic tradeoffs (antagonistic pleiotropy), where native alleles are best adapted to local conditions, or if local adaptation is caused by conditional neutrality at many loci, where alleles show fitness differences in one environment, but not in a contrasting environment. Ecological genetics in natural populations of perennial or outcrossing plants can also differ substantially from model systems. In this review of the evolutionary genetics of plant adaptation, we emphasize the importance of field studies for understanding the evolutionary dynamics of model and nonmodel systems, highlight a key life history trait (flowering time) and discuss emerging conservation issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Evolutionary disarmament in interspecific competition.

    PubMed

    Kisdi, E; Geritz, S A

    2001-12-22

    Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races.

  17. Evolutionary dynamics from a variational principle.

    PubMed

    Klimek, Peter; Thurner, Stefan; Hanel, Rudolf

    2010-07-01

    We demonstrate with a thought experiment that fitness-based population dynamical approaches to evolution are not able to make quantitative, falsifiable predictions about the long-term behavior of some evolutionary systems. A key characteristic of evolutionary systems is the ongoing endogenous production of new species. These novel entities change the conditions for already existing species. Even Darwin's Demon, a hypothetical entity with exact knowledge of the abundance of all species and their fitness functions at a given time, could not prestate the impact of these novelties on established populations. We argue that fitness is always a posteriori knowledge--it measures but does not explain why a species has reproductive success or not. To overcome these conceptual limitations, a variational principle is proposed in a spin-model-like setup of evolutionary systems. We derive a functional which is minimized under the most general evolutionary formulation of a dynamical system, i.e., evolutionary trajectories causally emerge as a minimization of a functional. This functional allows the derivation of analytic solutions of the asymptotic diversity for stochastic evolutionary systems within a mean-field approximation. We test these approximations by numerical simulations of the corresponding model and find good agreement in the position of phase transitions in diversity curves. The model is further able to reproduce stylized facts of timeseries from several man-made and natural evolutionary systems. Light will be thrown on how species and their fitness landscapes dynamically coevolve.

  18. Evolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions.

    PubMed

    Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel

    2016-01-01

    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary

  19. Evolutionary institutionalism.

    PubMed

    Fürstenberg, Dr Kai

    Institutions are hard to define and hard to study. Long prominent in political science have been two theories: Rational Choice Institutionalism (RCI) and Historical Institutionalism (HI). Arising from the life sciences is now a third: Evolutionary Institutionalism (EI). Comparative strengths and weaknesses of these three theories warrant review, and the value-to-be-added by expanding the third beyond Darwinian evolutionary theory deserves consideration. Should evolutionary institutionalism expand to accommodate new understanding in ecology, such as might apply to the emergence of stability, and in genetics, such as might apply to political behavior? Core arguments are reviewed for each theory with more detailed exposition of the third, EI. Particular attention is paid to EI's gene-institution analogy; to variation, selection, and retention of institutional traits; to endogeneity and exogeneity; to agency and structure; and to ecosystem effects, institutional stability, and empirical limitations in behavioral genetics. RCI, HI, and EI are distinct but complementary. Institutional change, while amenable to rational-choice analysis and, retrospectively, to criticaljuncture and path-dependency analysis, is also, and importantly, ecological. Stability, like change, is an emergent property of institutions, which tend to stabilize after change in a manner analogous to allopatric speciation. EI is more than metaphorically biological in that institutional behaviors are driven by human behaviors whose evolution long preceded the appearance of institutions themselves.

  20. Evolutionary foundations for cancer biology.

    PubMed

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.

  1. The major synthetic evolutionary transitions.

    PubMed

    Solé, Ricard

    2016-08-19

    Evolution is marked by well-defined events involving profound innovations that are known as 'major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These 'synthetic' transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).

  2. Structural symmetry in evolutionary games.

    PubMed

    McAvoy, Alex; Hauert, Christoph

    2015-10-06

    In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be 'evolutionarily equivalent' in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term 'homogeneous' should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. © 2015 The Author(s).

  3. Structural symmetry in evolutionary games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be ‘evolutionarily equivalent’ in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term ‘homogeneous’ should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. PMID:26423436

  4. Evolutionary foundations for cancer biology

    PubMed Central

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles—cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations—provide a foundation for understanding, preventing, and treating cancer. PMID:23396885

  5. The major synthetic evolutionary transitions

    PubMed Central

    Solé, Ricard

    2016-01-01

    Evolution is marked by well-defined events involving profound innovations that are known as ‘major evolutionary transitions'. They involve the integration of autonomous elements into a new, higher-level organization whereby the former isolated units interact in novel ways, losing their original autonomy. All major transitions, which include the origin of life, cells, multicellular systems, societies or language (among other examples), took place millions of years ago. Are these transitions unique, rare events? Have they instead universal traits that make them almost inevitable when the right pieces are in place? Are there general laws of evolutionary innovation? In order to approach this problem under a novel perspective, we argue that a parallel class of evolutionary transitions can be explored involving the use of artificial evolutionary experiments where alternative paths to innovation can be explored. These ‘synthetic’ transitions include, for example, the artificial evolution of multicellular systems or the emergence of language in evolved communicating robots. These alternative scenarios could help us to understand the underlying laws that predate the rise of major innovations and the possibility for general laws of evolved complexity. Several key examples and theoretical approaches are summarized and future challenges are outlined. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431528

  6. Evolutionary genetics of maternal effects

    PubMed Central

    Wolf, Jason B.; Wade, Michael J.

    2016-01-01

    Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population. PMID:26969266

  7. Evolutionary origins of leadership and followership.

    PubMed

    Van Vugt, Mark

    2006-01-01

    Drawing upon evolutionary logic, leadership is reconceptualized in terms of the outcome of strategic interactions among individuals who are following different, yet complementary, decision rules to solve recurrent coordination problems. This article uses the vast psychological literature on leadership as a database to test several evolutionary hypotheses about the origins of leadership and followership in humans. As expected, leadership correlates with initiative taking, trait measures of intelligence, specific task competencies, and several indicators of generosity. The review finds no link between leadership and dominance. The evolutionary analysis accounts for reliable age, health, and sex differences in leadership emergence. In general, evolutionary theory provides a useful, integrative framework for studying leader-follower relationships and generates various novel research hypotheses.

  8. Evolutionary disarmament in interspecific competition.

    PubMed Central

    Kisdi, E.; Geritz, S. A.

    2001-01-01

    Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races. PMID:11749715

  9. Gender Inequality in Interaction--An Evolutionary Account

    ERIC Educational Resources Information Center

    Hopcroft, Rosemary L.

    2009-01-01

    In this article I argue that evolutionary theorizing can help sociologists and feminists better understand gender inequality. Evolutionary theory explains why control of the sexuality of young women is a priority across most human societies both past and present. Evolutionary psychology has extended our understanding of male violence against…

  10. Making evolutionary biology a basic science for medicine

    PubMed Central

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  11. Evolutionary contributions to the study of human fertility.

    PubMed

    Sear, Rebecca

    2015-01-01

    Demography, lacking an overarching theoretical framework of its own, has drawn on theories in many other social sciences to inform its analyses. The aim of this paper is to bring to the demographic community's attention research in the evolutionary sciences on fertility, and to demonstrate that evolutionary theory can be another useful tool in the demographer's toolkit. I first dispel some myths which impede the incorporation of evolutionary theory into demography: I make it clear that evolutionary explanations do not assume that all human behaviour is hardwired and functions to maximize genetic fitness; that they are able to explain variation in human behaviour; and that they are not necessarily alternatives to social science explanations. I then describe the diversity of work on fertility by evolutionary researchers, particularly human evolutionary ecologists and cultural evolutionists, and illustrate the usefulness of the evolutionary approach with examples of its application to age at first birth and the fertility transition.

  12. Archaeogenetics in evolutionary medicine.

    PubMed

    Bouwman, Abigail; Rühli, Frank

    2016-09-01

    Archaeogenetics is the study of exploration of ancient DNA (aDNA) of more than 70 years old. It is an important part of the wider studies of many different areas of our past, including animal, plant and pathogen evolution and domestication events. Hereby, we address specifically the impact of research in archaeogenetics in the broader field of evolutionary medicine. Studies on ancient hominid genomes help to understand even modern health patterns. Human genetic microevolution, e.g. related to abilities of post-weaning milk consumption, and specifically genetic adaptation in disease susceptibility, e.g. towards malaria and other infectious diseases, are of the upmost importance in contributions of archeogenetics on the evolutionary understanding of human health and disease. With the increase in both the understanding of modern medical genetics and the ability to deep sequence ancient genetic information, the field of archaeogenetic evolutionary medicine is blossoming.

  13. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis

    PubMed Central

    Ishikawa, Masakazu; Yuyama, Ikuko; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris. We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris. These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis. PMID:27324918

  14. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

    PubMed Central

    Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir

    2011-01-01

    Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353

  15. Evolutionary relevance facilitates visual information processing.

    PubMed

    Jackson, Russell E; Calvillo, Dusti P

    2013-11-03

    Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  16. Evolutionary and mechanistic theories of aging.

    PubMed

    Hughes, Kimberly A; Reynolds, Rose M

    2005-01-01

    Senescence (aging) is defined as a decline in performance and fitness with advancing age. Senescence is a nearly universal feature of multicellular organisms, and understanding why it occurs is a long-standing problem in biology. Here we present a concise review of both evolutionary and mechanistic theories of aging. We describe the development of the general evolutionary theory, along with the mutation accumulation, antagonistic pleiotropy, and disposable soma versions of the evolutionary model. The review of the mechanistic theories focuses on the oxidative stress resistance, cellular signaling, and dietary control mechanisms of life span extension. We close with a discussion of how an approach that makes use of both evolutionary and molecular analyses can address a critical question: Which of the mechanisms that can cause variation in aging actually do cause variation in natural populations?

  17. Mean-Potential Law in Evolutionary Games

    NASA Astrophysics Data System (ADS)

    Nałecz-Jawecki, Paweł; Miekisz, Jacek

    2018-01-01

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  18. Mean-Potential Law in Evolutionary Games.

    PubMed

    Nałęcz-Jawecki, Paweł; Miękisz, Jacek

    2018-01-12

    The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1/3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.

  19. Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions.

    PubMed

    Zu, Jian; Wang, Jinliang; Huang, Gang

    We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey's trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator's trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a

  20. Causes and consequences of coagulation activation in sepsis: an evolutionary medicine perspective.

    PubMed

    Fiusa, Maiara Marx Luz; Carvalho-Filho, Marco Antonio; Annichino-Bizzacchi, Joyce M; De Paula, Erich V

    2015-05-06

    Coagulation and innate immunity have been linked together for at least 450 million years of evolution. Sepsis, one of the world's leading causes of death, is probably the condition in which this evolutionary link is more evident. However, the biological and the clinical relevance of this association have only recently gained the attention of the scientific community. During sepsis, the host response to a pathogen is invariably associated with coagulation activation. For several years, coagulation activation has been solely regarded as a mechanism of tissue damage, a concept that led to several clinical trials of anticoagulant agents for sepsis. More recently, this paradigm has been challenged by the failure of these clinical trials, and by a growing bulk of evidence supporting the concept that coagulation activation is beneficial for pathogen clearance. In this article we discuss recent basic and clinical data that point to a more balanced view of the detrimental and beneficial consequences of coagulation activation in sepsis. Reappraisal of the association between coagulation and immune activation from an evolutionary medicine perspective offers a unique opportunity to gain new insights about the pathogenesis of sepsis, paving the way to more successful approaches in both basic and clinical research in this field.

  1. Emergence of evolutionary cycles in size-structured food webs.

    PubMed

    Ritterskamp, Daniel; Bearup, Daniel; Blasius, Bernd

    2016-11-07

    The interplay of population dynamics and evolution within ecological communities has been of long-standing interest for ecologists and can give rise to evolutionary cycles, e.g. taxon cycles. Evolutionary cycling was intensely studied in small communities with asymmetric competition; the latter drives the evolutionary processes. Here we demonstrate that evolutionary cycling arises naturally in larger communities if trophic interactions are present, since these are intrinsically asymmetric. To investigate the evolutionary dynamics of a trophic community, we use an allometric food web model. We find that evolutionary cycles emerge naturally for a large parameter ranges. The origin of the evolutionary dynamics is an intrinsic asymmetry in the feeding kernel which creates an evolutionary ratchet, driving species towards larger bodysize. We reveal different kinds of cycles: single morph cycles, and coevolutionary and mixed cycling of complete food webs. The latter refers to the case where each trophic level can have different evolutionary dynamics. We discuss the generality of our findings and conclude that ongoing evolution in food webs may be more frequent than commonly believed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis.

    PubMed

    Chisholm, Rebecca H; Trauer, James M; Curnoe, Darren; Tanaka, Mark M

    2016-08-09

    Tuberculosis (TB) is caused by the Mycobacterium tuberculosis complex (MTBC), a wildly successful group of organisms and the leading cause of death resulting from a single bacterial pathogen worldwide. It is generally accepted that MTBC established itself in human populations in Africa and that animal-infecting strains diverged from human strains. However, the precise causal factors of TB emergence remain unknown. Here, we propose that the advent of controlled fire use in early humans created the ideal conditions for the emergence of TB as a transmissible disease. This hypothesis is supported by mathematical modeling together with a synthesis of evidence from epidemiology, evolutionary genetics, and paleoanthropology.

  3. Signaling pathways that regulate life and cell death: evolution of apoptosis in the context of self-defense.

    PubMed

    Muñoz-Pinedo, Cristina

    2012-01-01

    Programmed Cell Death is essential for the life cycle of many organisms. Cell death in multicellular organisms can occur as a consequence of massive damage (necrosis) or in a controlled form, through engagement of diverse biochemical programs. The best well known form of programmed cell death is apoptosis. Apoptosis occurs in animals as a consequence of a variety of stimuli including stress and social signals and it plays essential roles in morphogenesis and immune defense. The machinery of apoptosis is well conserved among animals and it is composed of caspases (the proteases which execute cell death), adapter proteins (caspase activators), Bcl-2 family proteins and Inhibitor of Apoptosis Proteins (IAPs). We will describe in this chapter the main apoptotic pathways in animals: the extrinsic (death receptor-mediated), the intrinsic/mitochondrial and the Granzyme B pathway. Other forms of non-apoptotic Programmed Cell Death which occur in animals will also be discussed. We will summarize the current knowledge about apoptotic-like and other forms of cell death in other organisms such as plants and protists.Additionally, we will discuss the hypothesis that apoptosis originated as part of a host defense mechanism. We will explore the similarities between the protein complexes which mediate apoptosis (apoptosomes) and complexes involved in immunity: inflammasomes. Additional functions of apoptotic proteins related to immune function will be summarized, in an effort to explore the evolutionary origins of cell death.

  4. Automated Antenna Design with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Globus, Al; Linden, Derek S.; Lohn, Jason D.

    2006-01-01

    Current methods of designing and optimizing antennas by hand are time and labor intensive, and limit complexity. Evolutionary design techniques can overcome these limitations by searching the design space and automatically finding effective solutions. In recent years, evolutionary algorithms have shown great promise in finding practical solutions in large, poorly understood design spaces. In particular, spacecraft antenna design has proven tractable to evolutionary design techniques. Researchers have been investigating evolutionary antenna design and optimization since the early 1990s, and the field has grown in recent years as computer speed has increased and electromagnetic simulators have improved. Two requirements-compliant antennas, one for ST5 and another for TDRS-C, have been automatically designed by evolutionary algorithms. The ST5 antenna is slated to fly this year, and a TDRS-C phased array element has been fabricated and tested. Such automated evolutionary design is enabled by medium-to-high quality simulators and fast modern computers to evaluate computer-generated designs. Evolutionary algorithms automate cut-and-try engineering, substituting automated search though millions of potential designs for intelligent search by engineers through a much smaller number of designs. For evolutionary design, the engineer chooses the evolutionary technique, parameters and the basic form of the antenna, e.g., single wire for ST5 and crossed-element Yagi for TDRS-C. Evolutionary algorithms then search for optimal configurations in the space defined by the engineer. NASA's Space Technology 5 (ST5) mission will launch three small spacecraft to test innovative concepts and technologies. Advanced evolutionary algorithms were used to automatically design antennas for ST5. The combination of wide beamwidth for a circularly-polarized wave and wide impedance bandwidth made for a challenging antenna design problem. From past experience in designing wire antennas, we chose to

  5. Transmissible cancers in an evolutionary context.

    PubMed

    Ujvari, Beata; Papenfuss, Anthony T; Belov, Katherine

    2016-07-01

    Cancer is an evolutionary and ecological process in which complex interactions between tumour cells and their environment share many similarities with organismal evolution. Tumour cells with highest adaptive potential have a selective advantage over less fit cells. Naturally occurring transmissible cancers provide an ideal model system for investigating the evolutionary arms race between cancer cells and their surrounding micro-environment and macro-environment. However, the evolutionary landscapes in which contagious cancers reside have not been subjected to comprehensive investigation. Here, we provide a multifocal analysis of transmissible tumour progression and discuss the selection forces that shape it. We demonstrate that transmissible cancers adapt to both their micro-environment and macro-environment, and evolutionary theories applied to organisms are also relevant to these unique diseases. The three naturally occurring transmissible cancers, canine transmissible venereal tumour (CTVT) and Tasmanian devil facial tumour disease (DFTD) and the recently discovered clam leukaemia, exhibit different evolutionary phases: (i) CTVT, the oldest naturally occurring cell line is remarkably stable; (ii) DFTD exhibits the signs of stepwise cancer evolution; and (iii) clam leukaemia shows genetic instability. While all three contagious cancers carry the signature of ongoing and fairly recent adaptations to selective forces, CTVT appears to have reached an evolutionary stalemate with its host, while DFTD and the clam leukaemia appear to be still at a more dynamic phase of their evolution. Parallel investigation of contagious cancer genomes and transcriptomes and of their micro-environment and macro-environment could shed light on the selective forces shaping tumour development at different time points: during the progressive phase and at the endpoint. A greater understanding of transmissible cancers from an evolutionary ecology perspective will provide novel avenues for

  6. Evolutionary computation in zoology and ecology.

    PubMed

    Boone, Randall B

    2017-12-01

    Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.

  7. Evolutionary computation in zoology and ecology

    PubMed Central

    2017-01-01

    Abstract Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species’ niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate. PMID:29492029

  8. Evolutionary accounts of human behavioural diversity

    PubMed Central

    Brown, Gillian R.; Dickins, Thomas E.; Sear, Rebecca; Laland, Kevin N.

    2011-01-01

    Human beings persist in an extraordinary range of ecological settings, in the process exhibiting enormous behavioural diversity, both within and between populations. People vary in their social, mating and parental behaviour and have diverse and elaborate beliefs, traditions, norms and institutions. The aim of this theme issue is to ask whether, and how, evolutionary theory can help us to understand this diversity. In this introductory article, we provide a background to the debate surrounding how best to understand behavioural diversity using evolutionary models of human behaviour. In particular, we examine how diversity has been viewed by the main subdisciplines within the human evolutionary behavioural sciences, focusing in particular on the human behavioural ecology, evolutionary psychology and cultural evolution approaches. In addition to differences in focus and methodology, these subdisciplines have traditionally varied in the emphasis placed on human universals, ecological factors and socially learned behaviour, and on how they have addressed the issue of genetic variation. We reaffirm that evolutionary theory provides an essential framework for understanding behavioural diversity within and between human populations, but argue that greater integration between the subfields is critical to developing a satisfactory understanding of diversity. PMID:21199836

  9. Evolutionary games on graphs

    NASA Astrophysics Data System (ADS)

    Szabó, György; Fáth, Gábor

    2007-07-01

    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

  10. Evolutionary mysteries in meiosis

    PubMed Central

    2016-01-01

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often ‘weird’ features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’. PMID:27619705

  11. Ecological and evolutionary traps

    USGS Publications Warehouse

    Schlaepfer, Martin A.; Runge, M.C.; Sherman, P.W.

    2002-01-01

    Organisms often rely on environmental cues to make behavioral and life-history decisions. However, in environments that have been altered suddenly by humans, formerly reliable cues might no longer be associated with adaptive outcomes. In such cases, organisms can become 'trapped' by their evolutionary responses to the cues and experience reduced survival or reproduction. Ecological traps occur when organisms make poor habitat choices based on cues that correlated formerly with habitat quality. Ecological traps are part of a broader phenomenon, evolutionary traps, involving a dissociation between cues that organisms use to make any behavioral or life-history decision and outcomes normally associated with that decision. A trap can lead to extinction if a population falls below a critical size threshold before adaptation to the novel environment occurs. Conservation and management protocols must be designed in light of, rather than in spite of, the behavioral mechanisms and evolutionary history of populations and species to avoid 'trapping' them.

  12. A Note on Evolutionary Algorithms and Its Applications

    ERIC Educational Resources Information Center

    Bhargava, Shifali

    2013-01-01

    This paper introduces evolutionary algorithms with its applications in multi-objective optimization. Here elitist and non-elitist multiobjective evolutionary algorithms are discussed with their advantages and disadvantages. We also discuss constrained multiobjective evolutionary algorithms and their applications in various areas.

  13. Characterizing behavioural ‘characters’: an evolutionary framework

    PubMed Central

    Araya-Ajoy, Yimen G.; Dingemanse, Niels J.

    2014-01-01

    Biologists often study phenotypic evolution assuming that phenotypes consist of a set of quasi-independent units that have been shaped by selection to accomplish a particular function. In the evolutionary literature, such quasi-independent functional units are called ‘evolutionary characters’, and a framework based on evolutionary principles has been developed to characterize them. This framework mainly focuses on ‘fixed’ characters, i.e. those that vary exclusively between individuals. In this paper, we introduce multi-level variation and thereby expand the framework to labile characters, focusing on behaviour as a worked example. We first propose a concept of ‘behavioural characters’ based on the original evolutionary character concept. We then detail how integration of variation between individuals (cf. ‘personality’) and within individuals (cf. ‘individual plasticity’) into the framework gives rise to a whole suite of novel testable predictions about the evolutionary character concept. We further propose a corresponding statistical methodology to test whether observed behaviours should be considered expressions of a hypothesized evolutionary character. We illustrate the application of our framework by characterizing the behavioural character ‘aggressiveness’ in wild great tits, Parus major. PMID:24335984

  14. Child murder by parents and evolutionary psychology.

    PubMed

    Friedman, Susan Hatters; Cavney, James; Resnick, Phillip J

    2012-12-01

    This article explores the contribution of evolutionary theory to the understanding of causation and motive in filicide cases and also reviews special issues in the forensic evaluation of alleged perpetrators of filicide. Evolutionary social psychology seeks to understand the context in which our brains evolved, to understand human behaviors. The authors propose evolutionary theory as a framework theory to meaningfully appreciate research about filicide. Using evolutionary psychology as a theoretical lens, this article reviews the research on filicide over the past 40 years, and describes epidemiologic and typologic studies of filicide, and theoretical analyses from a range of disciplines. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Evolutionary models of interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.

    1987-01-01

    The goal of evolutionary models of interstellar chemistry is to understand how interstellar clouds came to be the way they are, how they will change with time, and to place them in an evolutionary sequence with other celestial objects such as stars. An improved Mark II version of an earlier model of chemistry in dynamically evolving clouds is presented. The Mark II model suggests that the conventional elemental C/O ratio less than one can explain the observed abundances of CI and the nondetection of O2 in dense clouds. Coupled chemical-dynamical models seem to have the potential to generate many observable discriminators of the evolutionary tracks. This is exciting, because, in general, purely dynamical models do not yield enough verifiable discriminators of the predicted tracks.

  16. On the origin, evolution, and nature of programmed cell death: a timeline of four billion years.

    PubMed

    Ameisen, J C

    2002-04-01

    Programmed cell death is a genetically regulated process of cell suicide that is central to the development, homeostasis and integrity of multicellular organisms. Conversely, the dysregulation of mechanisms controlling cell suicide plays a role in the pathogenesis of a wide range of diseases. While great progress has been achieved in the unveiling of the molecular mechanisms of programmed cell death, a new level of complexity, with important therapeutic implications, has begun to emerge, suggesting (i) that several different self-destruction pathways may exist and operate in parallel in our cells, and (ii) that molecular effectors of cell suicide may also perform other functions unrelated to cell death induction and crucial to cell survival. In this review, I will argue that this new level of complexity, implying that there may be no such thing as a 'bona fide' genetic death program in our cells, might be better understood when considered in an evolutionary context. And a new view of the regulated cell suicide pathways emerges when one attempts to ask the question of when and how they may have become selected during evolution, at the level of ancestral single-celled organisms.

  17. Neonatal Death

    MedlinePlus

    ... Home > Complications & Loss > Loss & grief > Neonatal death Neonatal death E-mail to a friend Please fill in ... cope with your baby’s death. What is neonatal death? Neonatal death is when a baby dies in ...

  18. Evolutionary analyses of non-genealogical bonds produced by introgressive descent.

    PubMed

    Bapteste, Eric; Lopez, Philippe; Bouchard, Frédéric; Baquero, Fernando; McInerney, James O; Burian, Richard M

    2012-11-06

    All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.

  19. Evolutionary perspectives on ageing.

    PubMed

    Reichard, Martin

    2017-10-01

    From an evolutionary perspective, ageing is a decrease in fitness with chronological age - expressed by an increase in mortality risk and/or decline in reproductive success and mediated by deterioration of functional performance. While this makes ageing intuitively paradoxical - detrimental to individual fitness - evolutionary theory offers answers as to why ageing has evolved. In this review, I first briefly examine the classic evolutionary theories of ageing and their empirical tests, and highlight recent findings that have advanced our understanding of the evolution of ageing (condition-dependent survival, positive pleiotropy). I then provide an overview of recent theoretical extensions and modifications that accommodate those new discoveries. I discuss the role of indeterminate (asymptotic) growth for lifetime increases in fecundity and ageing trajectories. I outline alternative views that challenge a universal existence of senescence - namely the lack of a germ-soma distinction and the ability of tissue replacement and retrogression to younger developmental stages in modular organisms. I argue that rejuvenation at the organismal level is plausible, but includes a return to a simple developmental stage. This may exempt a particular genotype from somatic defects but, correspondingly, removes any information acquired during development. A resolution of the question of whether a rejuvenated individual is the same entity is central to the recognition of whether current evolutionary theories of ageing, with their extensions and modifications, can explain the patterns of ageing across the Tree of Life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Death Cafe.

    PubMed

    Miles, Lizzy; Corr, Charles A

    2017-06-01

    This article explains the meaning of the phrase Death Cafe and describes what typically occurs at a Death Cafe gathering. The article traces the history of the Death Cafe movement, explores some reasons why people take part in a Death Cafe gathering, and gives examples of what individuals think they might derive from their participation. In addition, this article notes similarities between the Death Cafe movement and three other developments in the field of death, dying, and bereavement. Finally, this article identifies two provisional lessons that can be drawn from Death Cafe gatherings and the Death Cafe movement itself.

  1. Interpreting Evolutionary Diagrams: When Topology and Process Conflict

    ERIC Educational Resources Information Center

    Catley, Kefyn M.; Novick, Laura R.; Shade, Courtney K.

    2010-01-01

    The authors argue that some diagrams in biology textbooks and the popular press presented as depicting evolutionary relationships suggest an inappropriate (anagenic) conception of evolutionary history. The goal of this research was to provide baseline data that begin to document how college students conceptualize the evolutionary relationships…

  2. Using Evolutionary Theory to Guide Mental Health Research.

    PubMed

    Durisko, Zachary; Mulsant, Benoit H; McKenzie, Kwame; Andrews, Paul W

    2016-03-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating "normally" (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. © The Author(s) 2016.

  3. Using Evolutionary Theory to Guide Mental Health Research

    PubMed Central

    Mulsant, Benoit H.; McKenzie, Kwame; Andrews, Paul W.

    2016-01-01

    Evolutionary approaches to medicine can shed light on the origins and etiology of disease. Such an approach may be especially useful in psychiatry, which frequently addresses conditions with heterogeneous presentation and unknown causes. We review several previous applications of evolutionary theory that highlight the ways in which psychiatric conditions may persist despite and because of natural selection. One lesson from the evolutionary approach is that some conditions currently classified as disorders (because they cause distress and impairment) may actually be caused by functioning adaptations operating “normally” (as designed by natural selection). Such conditions suggest an alternative illness model that may generate alternative intervention strategies. Thus, the evolutionary approach suggests that psychiatry should sometimes think differently about distress and impairment. The complexity of the human brain, including normal functioning and potential for dysfunctions, has developed over evolutionary time and has been shaped by natural selection. Understanding the evolutionary origins of psychiatric conditions is therefore a crucial component to a complete understanding of etiology. PMID:27254091

  4. Evolutionary engineering of industrial microorganisms-strategies and applications.

    PubMed

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  5. Sex and virulence in Escherichia coli: an evolutionary perspective

    PubMed Central

    Wirth, Thierry; Falush, Daniel; Lan, Ruiting; Colles, Frances; Mensa, Patience; Wieler, Lothar H; Karch, Helge; Reeves, Peter R; Maiden, Martin CJ; Ochman, Howard; Achtman, Mark

    2006-01-01

    Pathogenic Escherichia coli cause over 160 million cases of dysentery and one million deaths per year, whereas non-pathogenic E. coli constitute part of the normal intestinal flora of healthy mammals and birds. The evolutionary pathways underlying this dichotomy in bacterial lifestyle were investigated by multilocus sequence typing of a global collection of isolates. Specific pathogen types [enterohaemorrhagic E. coli, enteropathogenic E. coli, enteroinvasive E. coli, K1 and Shigella] have arisen independently and repeatedly in several lineages, whereas other lineages contain only few pathogens. Rates of evolution have accelerated in pathogenic lineages, culminating in highly virulent organisms whose genomic contents are altered frequently by increased rates of homologous recombination; thus, the evolution of virulence is linked to bacterial sex. This long-term pattern of evolution was observed in genes distributed throughout the genome, and thereby is the likely result of episodic selection for strains that can escape the host immune response. PMID:16689791

  6. A teleofunctional account of evolutionary mismatch.

    PubMed

    Cofnas, Nathan

    When the environment in which an organism lives deviates in some essential way from that to which it is adapted, this is described as "evolutionary mismatch," or "evolutionary novelty." The notion of mismatch plays an important role, explicitly or implicitly, in evolution-informed cognitive psychology, clinical psychology, and medicine. The evolutionary novelty of our contemporary environment is thought to have significant implications for our health and well-being. However, scientists have generally been working without a clear definition of mismatch. This paper defines mismatch as deviations in the environment that render biological traits unable, or impaired in their ability, to produce their selected effects (i.e., to perform their proper functions in Neander's sense). The machinery developed by Millikan in connection with her account of proper function, and with her related teleosemantic account of representation, is used to identify four major types, and several subtypes, of evolutionary mismatch. While the taxonomy offered here does not in itself resolve any scientific debates, the hope is that it can be used to better formulate empirical hypotheses concerning the effects of mismatch. To illustrate, it is used to show that the controversial hypothesis that general intelligence evolved as an adaptation to handle evolutionary novelty can, contra some critics, be formulated in a conceptually coherent way.

  7. Evolutionary public health: introducing the concept.

    PubMed

    Wells, Jonathan C K; Nesse, Randolph M; Sear, Rebecca; Johnstone, Rufus A; Stearns, Stephen C

    2017-07-29

    The emerging discipline of evolutionary medicine is breaking new ground in understanding why people become ill. However, the value of evolutionary analyses of human physiology and behaviour is only beginning to be recognised in the field of public health. Core principles come from life history theory, which analyses the allocation of finite amounts of energy between four competing functions-maintenance, growth, reproduction, and defence. A central tenet of evolutionary theory is that organisms are selected to allocate energy and time to maximise reproductive success, rather than health or longevity. Ecological interactions that influence mortality risk, nutrient availability, and pathogen burden shape energy allocation strategies throughout the life course, thereby affecting diverse health outcomes. Public health interventions could improve their own effectiveness by incorporating an evolutionary perspective. In particular, evolutionary approaches offer new opportunities to address the complex challenges of global health, in which populations are differentially exposed to the metabolic consequences of poverty, high fertility, infectious diseases, and rapid changes in nutrition and lifestyle. The effect of specific interventions is predicted to depend on broader factors shaping life expectancy. Among the important tools in this approach are mathematical models, which can explore probable benefits and limitations of interventions in silico, before their implementation in human populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Multiobjective Multifactorial Optimization in Evolutionary Multitasking.

    PubMed

    Gupta, Abhishek; Ong, Yew-Soon; Feng, Liang; Tan, Kay Chen

    2016-05-03

    In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.

  9. The evolutionary ecology of molecular replicators

    PubMed Central

    2016-01-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology. PMID:27853598

  10. The evolutionary ecology of molecular replicators.

    PubMed

    Nee, Sean

    2016-08-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.

  11. Evolutionary heritage influences Amazon tree ecology.

    PubMed

    Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R

    2016-12-14

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.

  12. Evolutionary heritage influences Amazon tree ecology

    PubMed Central

    Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517

  13. Evolutionary cell biology: two origins, one objective.

    PubMed

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  14. How to Identify and Interpret Evolutionary Tree Diagrams

    ERIC Educational Resources Information Center

    Kong, Yi; Anderson, Trevor; Pelaez, Nancy

    2016-01-01

    Evolutionary trees are key tools for modern biology and are commonly portrayed in textbooks to promote learning about biological evolution. However, many people have difficulty in understanding what evolutionary trees are meant to portray. In fact, some ideas that current professional biologists depict with evolutionary trees are neither clearly…

  15. Bell-Curve Based Evolutionary Strategies for Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    2001-01-01

    Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity. However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold. One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumbersome binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back and Dasgupta and Michalesicz. We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.

  16. Evolutionary psychology and intelligence research.

    PubMed

    Kanazawa, Satoshi

    2010-01-01

    This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative variation on a monomorphic design allows us to incorporate heritable individual differences in evolved adaptations. The Savanna-IQ Interaction Hypothesis, which is one consequence of the integration of evolutionary psychology and intelligence research, can potentially explain why less intelligent individuals enjoy TV more, why liberals are more intelligent than conservatives, and why night owls are more intelligent than morning larks, among many other findings. The general approach proposed here will allow us to integrate evolutionary psychology with any other aspect of differential psychology. Copyright 2010 APA, all rights reserved.

  17. Integrating evolutionary and molecular genetics of aging.

    PubMed

    Flatt, Thomas; Schmidt, Paul S

    2009-10-01

    Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.

  18. Conservation: evolutionary values for all 10,000 birds.

    PubMed

    Lovette, Irby J

    2014-05-19

    Many biologists and conservation practitioners believe that preserving evolutionary diversity should be a priority. An innovative new study measures the evolutionary distinctness of all the world's birds and identifies the species and locations that capture the highest fraction of avian evolutionary history. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis.

    PubMed

    Ishikawa, Masakazu; Yuyama, Ikuko; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-08-03

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Evolutionary dynamics on graphs

    NASA Astrophysics Data System (ADS)

    Lieberman, Erez; Hauert, Christoph; Nowak, Martin A.

    2005-01-01

    Evolutionary dynamics have been traditionally studied in the context of homogeneous or spatially extended populations. Here we generalize population structure by arranging individuals on a graph. Each vertex represents an individual. The weighted edges denote reproductive rates which govern how often individuals place offspring into adjacent vertices. The homogeneous population, described by the Moran process, is the special case of a fully connected graph with evenly weighted edges. Spatial structures are described by graphs where vertices are connected with their nearest neighbours. We also explore evolution on random and scale-free networks. We determine the fixation probability of mutants, and characterize those graphs for which fixation behaviour is identical to that of a homogeneous population. Furthermore, some graphs act as suppressors and others as amplifiers of selection. It is even possible to find graphs that guarantee the fixation of any advantageous mutant. We also study frequency-dependent selection and show that the outcome of evolutionary games can depend entirely on the structure of the underlying graph. Evolutionary graph theory has many fascinating applications ranging from ecology to multi-cellular organization and economics.

  1. Evolutionary mysteries in meiosis.

    PubMed

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E; Wijnker, Erik; Haag, Christoph R

    2016-10-19

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  2. The topology of evolutionary novelty and innovation in macroevolution

    PubMed Central

    2017-01-01

    Sewall Wright's fitness landscape introduced the concept of evolutionary spaces in 1932. George Gaylord Simpson modified this to an adaptive, phenotypic landscape in 1944 and since then evolutionary spaces have played an important role in evolutionary theory through fitness and adaptive landscapes, phenotypic and functional trait spaces, morphospaces and related concepts. Although the topology of such spaces is highly variable, from locally Euclidean to pre-topological, evolutionary change has often been interpreted as a search through a pre-existing space of possibilities, with novelty arising by accessing previously inaccessible or difficult to reach regions of a space. Here I discuss the nature of evolutionary novelty and innovation within the context of evolutionary spaces, and argue that the primacy of search as a conceptual metaphor ignores the generation of new spaces as well as other changes that have played important evolutionary roles. This article is part of the themed issue ‘Process and pattern in innovations from cells to societies’. PMID:29061895

  3. Indirect evolutionary rescue: prey adapts, predator avoids extinction

    PubMed Central

    Yamamichi, Masato; Miner, Brooks E

    2015-01-01

    Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator–prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term ‘indirect evolutionary rescue’, has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change. PMID:26366196

  4. Bell-Curve Based Evolutionary Strategies for Structural Optimization

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    2000-01-01

    Evolutionary methods are exceedingly popular with practitioners of many fields; more so than perhaps any optimization tool in existence. Historically Genetic Algorithms (GAs) led the way in practitioner popularity (Reeves 1997). However, in the last ten years Evolutionary Strategies (ESs) and Evolutionary Programs (EPS) have gained a significant foothold (Glover 1998). One partial explanation for this shift is the interest in using GAs to solve continuous optimization problems. The typical GA relies upon a cumber-some binary representation of the design variables. An ES or EP, however, works directly with the real-valued design variables. For detailed references on evolutionary methods in general and ES or EP in specific see Back (1996) and Dasgupta and Michalesicz (1997). We call our evolutionary algorithm BCB (bell curve based) since it is based upon two normal distributions.

  5. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme

    PubMed Central

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  6. A statistical analogy between collapse of solids and death of living organisms: proposal for a 'law of life'.

    PubMed

    Pugno, Nicola M

    2007-01-01

    In this paper we present a statistical analogy between the collapse of solids and living organisms; in particular we deduce a statistical law governing their probability of death. We have derived such a law coupling the widely used Weibull Statistics, developed for describing the distribution of the strength of solids, with a general model for ontogenetic growth recently proposed in literature. The main idea presented in this paper is that cracks can propagate in solids and cause their failure as sick cells in living organisms can cause their death. Making a rough analogy, living organisms are found to behave as "growing" mechanical components under cyclic, i.e., fatigue, loadings and composed by a dynamic evolutionary material that, as an ineluctable fate, deteriorates. The implications on biological scaling laws are discussed. As an example, we apply such a Dynamic Weibull Statistics to large data collections on human deaths due to cancer of various types recorded in Italy: a significant agreement is observed.

  7. Reconstructing evolutionary trees in parallel for massive sequences.

    PubMed

    Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam

    2017-12-14

    Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .

  8. Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management

    PubMed Central

    Laugen, Ane T; Engelhard, Georg H; Whitlock, Rebecca; Arlinghaus, Robert; Dankel, Dorothy J; Dunlop, Erin S; Eikeset, Anne M; Enberg, Katja; Jørgensen, Christian; Matsumura, Shuichi; Nusslé, Sébastien; Urbach, Davnah; Baulier, Loїc; Boukal, David S; Ernande, Bruno; Johnston, Fiona D; Mollet, Fabian; Pardoe, Heidi; Therkildsen, Nina O; Uusi-Heikkilä, Silva; Vainikka, Anssi; Heino, Mikko; Rijnsdorp, Adriaan D; Dieckmann, Ulf

    2014-01-01

    Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries. PMID:26430388

  9. Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management.

    PubMed

    Laugen, Ane T; Engelhard, Georg H; Whitlock, Rebecca; Arlinghaus, Robert; Dankel, Dorothy J; Dunlop, Erin S; Eikeset, Anne M; Enberg, Katja; Jørgensen, Christian; Matsumura, Shuichi; Nusslé, Sébastien; Urbach, Davnah; Baulier, Loїc; Boukal, David S; Ernande, Bruno; Johnston, Fiona D; Mollet, Fabian; Pardoe, Heidi; Therkildsen, Nina O; Uusi-Heikkilä, Silva; Vainikka, Anssi; Heino, Mikko; Rijnsdorp, Adriaan D; Dieckmann, Ulf

    2014-03-01

    Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.

  10. Evolutionary cell biology: Two origins, one objective

    PubMed Central

    Lynch, Michael; Field, Mark C.; Goodson, Holly V.; Malik, Harmit S.; Pereira-Leal, José B.; Roos, David S.; Turkewitz, Aaron P.; Sazer, Shelley

    2014-01-01

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology. PMID:25404324

  11. Autophagy in lurcher mice: indicted but yet to be acquitted for the death of Purkinje cells.

    PubMed

    Yue, Zhenyu

    2010-05-01

    A recent study published in the Journal of Neuroscience by Nishiyama et al., has revisited an autophagy-neurodegeneration model of lurcher (Lc) mice and promoted further discussion regarding the "autophagic cell death" hypothesis. While the study confirmed the previous report by Yue et al., that GluRD2Lc induces autophagy both in vitro and in vivo, it also suggests that GluRD2 (Lc)-mediated autophagy and cell death occur via pathways outside the nPIST-Beclin 1 pathway. For example, the study makes an interesting observation that GluRD2 (Lc)-induced degeneration is associated with energy crisis and an aberrant AMPK activity. The result provides insight into the downstream events induced by GluRD2 (Lc); however, it is not surprising considering that constitutive ion influx caused by the Lc mutation is expected to cause activation of multiple cellular pathways or responses. In conclusion, the authors state that "constitutive ion flux causes cell death with, but not by, autophagy." The conclusion appears consistent with the primary function of autophagy, from an evolutionary point of view, as a survival mechanism.

  12. Integrating Evolutionary and Molecular Genetics of Aging

    PubMed Central

    Flatt, Thomas; Schmidt, Paul S.

    2010-01-01

    Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940’s and 1950’s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980’s and 1990’s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging. PMID:19619612

  13. Genome-scale rates of evolutionary change in bacteria

    PubMed Central

    Duchêne, Sebastian; Holt, Kathryn E.; Weill, François-Xavier; Le Hello, Simon; Hawkey, Jane; Edwards, David J.; Fourment, Mathieu

    2016-01-01

    Estimating the rates at which bacterial genomes evolve is critical to understanding major evolutionary and ecological processes such as disease emergence, long-term host–pathogen associations and short-term transmission patterns. The surge in bacterial genomic data sets provides a new opportunity to estimate these rates and reveal the factors that shape bacterial evolutionary dynamics. For many organisms estimates of evolutionary rate display an inverse association with the time-scale over which the data are sampled. However, this relationship remains unexplored in bacteria due to the difficulty in estimating genome-wide evolutionary rates, which are impacted by the extent of temporal structure in the data and the prevalence of recombination. We collected 36 whole genome sequence data sets from 16 species of bacterial pathogens to systematically estimate and compare their evolutionary rates and assess the extent of temporal structure in the absence of recombination. The majority (28/36) of data sets possessed sufficient clock-like structure to robustly estimate evolutionary rates. However, in some species reliable estimates were not possible even with ‘ancient DNA’ data sampled over many centuries, suggesting that they evolve very slowly or that they display extensive rate variation among lineages. The robustly estimated evolutionary rates spanned several orders of magnitude, from approximately 10−5 to 10−8 nucleotide substitutions per site year−1. This variation was negatively associated with sampling time, with this relationship best described by an exponential decay curve. To avoid potential estimation biases, such time-dependency should be considered when inferring evolutionary time-scales in bacteria. PMID:28348834

  14. CnidBase: The Cnidarian Evolutionary Genomics Database

    PubMed Central

    Ryan, Joseph F.; Finnerty, John R.

    2003-01-01

    CnidBase, the Cnidarian Evolutionary Genomics Database, is a tool for investigating the evolutionary, developmental and ecological factors that affect gene expression and gene function in cnidarians. In turn, CnidBase will help to illuminate the role of specific genes in shaping cnidarian biodiversity in the present day and in the distant past. CnidBase highlights evolutionary changes between species within the phylum Cnidaria and structures genomic and expression data to facilitate comparisons to non-cnidarian metazoans. CnidBase aims to further the progress that has already been made in the realm of cnidarian evolutionary genomics by creating a central community resource which will help drive future research and facilitate more accurate classification and comparison of new experimental data with existing data. CnidBase is available at http://cnidbase.bu.edu/. PMID:12519972

  15. A framework for evolutionary systems biology

    PubMed Central

    Loewe, Laurence

    2009-01-01

    Background Many difficult problems in evolutionary genomics are related to mutations that have weak effects on fitness, as the consequences of mutations with large effects are often simple to predict. Current systems biology has accumulated much data on mutations with large effects and can predict the properties of knockout mutants in some systems. However experimental methods are too insensitive to observe small effects. Results Here I propose a novel framework that brings together evolutionary theory and current systems biology approaches in order to quantify small effects of mutations and their epistatic interactions in silico. Central to this approach is the definition of fitness correlates that can be computed in some current systems biology models employing the rigorous algorithms that are at the core of much work in computational systems biology. The framework exploits synergies between the realism of such models and the need to understand real systems in evolutionary theory. This framework can address many longstanding topics in evolutionary biology by defining various 'levels' of the adaptive landscape. Addressed topics include the distribution of mutational effects on fitness, as well as the nature of advantageous mutations, epistasis and robustness. Combining corresponding parameter estimates with population genetics models raises the possibility of testing evolutionary hypotheses at a new level of realism. Conclusion EvoSysBio is expected to lead to a more detailed understanding of the fundamental principles of life by combining knowledge about well-known biological systems from several disciplines. This will benefit both evolutionary theory and current systems biology. Understanding robustness by analysing distributions of mutational effects and epistasis is pivotal for drug design, cancer research, responsible genetic engineering in synthetic biology and many other practical applications. PMID:19239699

  16. [Evolutionary medicine: an introduction. Evolutionary biology, a missing element in medical teaching].

    PubMed

    Swynghedauw, Bernard

    2009-05-01

    The aim of this brief review article is to help to reconcile medicine with evolutionary biology, a subject that should be taught in medical school. Evolutionary medicine takes the view that contemporary ills are related to an incompatibility between the environment in which humans currently live and their genomes, which have been shaped by diferent environmental conditions during biological evolution. Human activity has recently induced acute environmental modifications that have profoundly changed the medical landscape. Evolutionary biology is an irreversible, ongoing and discontinuous process characterized by periods of stasis followed by accelerations. Evolutionary biology is determined by genetic mutations, which are selected either by Darwinian selective pressure or randomly by genetic drift. Most medical events result from a genome/environment conflict. Some may be purely genetic, as in monogenic diseases, and others purely environmental, such as traffic accidents. Nevertheless, in most common diseases the clinical landscape is determined by the conflict between these two factors, the genetic elements of which are gradually being unraveled Three examples are examined in depth:--The medical consequences of the greenhouse effect. The absence of excess mortality during recent heat waves suggests that the main determinant of mortality in the 2003 heatwave was heatstroke and old age. The projected long-term effects of global warming call for research on thermolysis, a forgotten branch of physiology.--The hygiene hypothesis postulates that the exponential rise in autoimmune and allergic diseases is linked to lesser exposure to infectious agents, possibly involving counter-regulatory factors such as IL-10.--The recent rise in the incidence of obesity and type 2 diabetes in rich countries can be considered to result from a conflict between a calorie-rich environment and gene variants that control appetite. These variants are currently being identified by genome

  17. Cascading failures and the emergence of cooperation in evolutionary-game based models of social and economical networks.

    PubMed

    Wang, Wen-Xu; Lai, Ying-Cheng; Armbruster, Dieter

    2011-09-01

    We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.

  18. Cascading failures and the emergence of cooperation in evolutionary-game based models of social and economical networks

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Armbruster, Dieter

    2011-09-01

    We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.

  19. An evolutionary advantage for extravagant honesty.

    PubMed

    Bullock, Seth

    2012-01-07

    A game-theoretic model of handicap signalling over a pair of signalling channels is introduced in order to determine when one channel has an evolutionary advantage over the other. The stability conditions for honest handicap signalling are presented for a single channel and are shown to conform with the results of prior handicap signalling models. Evolutionary simulations are then used to show that, for a two-channel system in which honest signalling is possible on both channels, the channel featuring larger advertisements at equilibrium is favoured by evolution. This result helps to address a significant tension in the handicap principle literature. While the original theory was motivated by the prevalence of extravagant natural signalling, contemporary models have demonstrated that it is the cost associated with deception that stabilises honesty, and that the honest signals exhibited at equilibrium need not be extravagant at all. The current model suggests that while extravagant and wasteful signals are not required to ensure a signalling system's evolutionary stability, extravagant signalling systems may enjoy an advantage in terms of evolutionary attainability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Application of evolutionary computation in ECAD problems

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Hyun; Hwang, Seung H.

    1998-10-01

    Design of modern electronic system is a complicated task which demands the use of computer- aided design (CAD) tools. Since a lot of problems in ECAD are combinatorial optimization problems, evolutionary computations such as genetic algorithms and evolutionary programming have been widely employed to solve those problems. We have applied evolutionary computation techniques to solve ECAD problems such as technology mapping, microcode-bit optimization, data path ordering and peak power estimation, where their benefits are well observed. This paper presents experiences and discusses issues in those applications.

  1. Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates

    PubMed Central

    Niimura, Yoshihito

    2007-01-01

    The numbers of functional olfactory receptor (OR) genes in humans and mice are about 400 and 1,000 respectively. In both humans and mice, these genes exist as genomic clusters and are scattered over almost all chromosomes. The difference in the number of genes between the two species is apparently caused by massive inactivation of OR genes in the human lineage and a substantial increase of OR genes in the mouse lineage after the human–mouse divergence. Compared with mammals, fishes have a much smaller number of OR genes. However, the OR gene family in fishes is much more divergent than that in mammals. Fishes have many different groups of genes that are absent in mammals, suggesting that the mammalian OR gene family is characterized by the loss of many group genes that existed in the ancestor of vertebrates and the subsequent expansion of specific groups of genes. Therefore, this gene family apparently changed dynamically depending on the evolutionary lineage and evolved under the birth-and-death model of evolution. Study of the evolutionary changes of two gene families for vomeronasal receptors and two gene families for taste receptors, which are structurally similar, but remotely related to OR genes, showed that some of the gene families evolved in the same fashion as the OR gene family. It appears that the number and types of genes in chemosensory receptor gene families have evolved in response to environmental needs, but they are also affected by fortuitous factors. PMID:16607462

  2. The death spiral: predicting death in Drosophila cohorts.

    PubMed

    Mueller, Laurence D; Shahrestani, Parvin; Rauser, Casandra L; Rose, Michael R

    2016-11-01

    Drosophila research has identified a new feature of aging that has been called the death spiral. The death spiral is a period prior to death during which there is a decline in life-history characters, such as fecundity, as well as physiological characters. First, we review the data from the Drosophila and medfly literature that suggest the existence of death spirals. Second, we re-analyze five cases with such data from four laboratories using a generalized statistical framework, a re-analysis that strengthens the case for the salience of the death spiral phenomenon. Third, we raise the issue whether death spirals need to be taken into account in the analysis of functional characters over age, in aging research with model species as well as human data.

  3. Why an extended evolutionary synthesis is necessary

    PubMed Central

    2017-01-01

    Since the last major theoretical integration in evolutionary biology—the modern synthesis (MS) of the 1940s—the biosciences have made significant advances. The rise of molecular biology and evolutionary developmental biology, the recognition of ecological development, niche construction and multiple inheritance systems, the ‘-omics’ revolution and the science of systems biology, among other developments, have provided a wealth of new knowledge about the factors responsible for evolutionary change. Some of these results are in agreement with the standard theory and others reveal different properties of the evolutionary process. A renewed and extended theoretical synthesis, advocated by several authors in this issue, aims to unite pertinent concepts that emerge from the novel fields with elements of the standard theory. The resulting theoretical framework differs from the latter in its core logic and predictive capacities. Whereas the MS theory and its various amendments concentrate on genetic and adaptive variation in populations, the extended framework emphasizes the role of constructive processes, ecological interactions and systems dynamics in the evolution of organismal complexity as well as its social and cultural conditions. Single-level and unilinear causation is replaced by multilevel and reciprocal causation. Among other consequences, the extended framework overcomes many of the limitations of traditional gene-centric explanation and entails a revised understanding of the role of natural selection in the evolutionary process. All these features stimulate research into new areas of evolutionary biology. PMID:28839929

  4. Deliberating death.

    PubMed

    Landes, Scott D

    2010-01-01

    Utilizing a particular case study of a woman attempting to come to terms with her death, this article explores the difficult metaphors of death present within the Christian tradition. Tracing a Christian understanding of death back to the work of Augustine, the case study is utilized to highlight the difficulties presented by past and present theology embracing ideas of punishment within death. Following the trajectory of the case study, alternative understandings of death present in recent Christian theology and within Native American spirituality are presented in an attempt to find room for a fuller meaning of death post-reconciliation, but premortem.

  5. Evolutionary medicine: its scope, interest and potential

    PubMed Central

    Stearns, Stephen C.

    2012-01-01

    This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host–pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous. PMID:22933370

  6. Evolutionary medicine: its scope, interest and potential.

    PubMed

    Stearns, Stephen C

    2012-11-07

    This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host-pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous.

  7. How mutation affects evolutionary games on graphs

    PubMed Central

    Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E.; Nowak, Martin A.

    2011-01-01

    Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration. PMID:21473871

  8. Scheduling Earth Observing Satellites with Evolutionary Algorithms

    NASA Technical Reports Server (NTRS)

    Globus, Al; Crawford, James; Lohn, Jason; Pryor, Anna

    2003-01-01

    We hypothesize that evolutionary algorithms can effectively schedule coordinated fleets of Earth observing satellites. The constraints are complex and the bottlenecks are not well understood, a condition where evolutionary algorithms are often effective. This is, in part, because evolutionary algorithms require only that one can represent solutions, modify solutions, and evaluate solution fitness. To test the hypothesis we have developed a representative set of problems, produced optimization software (in Java) to solve them, and run experiments comparing techniques. This paper presents initial results of a comparison of several evolutionary and other optimization techniques; namely the genetic algorithm, simulated annealing, squeaky wheel optimization, and stochastic hill climbing. We also compare separate satellite vs. integrated scheduling of a two satellite constellation. While the results are not definitive, tests to date suggest that simulated annealing is the best search technique and integrated scheduling is superior.

  9. The machinery of Nod-like receptors: refining the paths to immunity and cell death.

    PubMed

    Saleh, Maya

    2011-09-01

    One of the fundamental aspects of the innate immune system is its capacity to discriminate between self and non-self or altered self, and to quickly respond by eliciting effector mechanisms that act in concert to restore normalcy. This capacity is determined by a set of evolutionarily conserved pattern recognition receptors (PRRs) that sense the presence of microbial motifs or endogenous danger signals, including tissue damage, cellular transformation or metabolic perturbation, and orchestrate the nature, duration and intensity of the innate immune response. Nod-like receptors (NLRs), a group of intracellular PRRs, are particularly essential as evident by the high incidence of genetic variations in their genes in various diseases of homeostasis. Here, I overview the signaling mechanisms of NLRs and discuss the mounting evidence of evolutionary conservation between their pathways and the cell death machinery. I also describe their effector functions that link the sensing of danger to the induction of inflammation, autophagy or cell death. © 2011 John Wiley & Sons A/S.

  10. Evolutionary change in physiological phenotypes along the human lineage

    PubMed Central

    Vining, Alexander Q.; Nunn, Charles L.

    2016-01-01

    Background and Objectives: Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. Methodology: We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. Results: We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Conclusions and Implications: Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. PMID:27615376

  11. The ABCs of an evolutionary education science: The academic, behavioral, and cultural implications of an evolutionary approach to education theory and practice

    NASA Astrophysics Data System (ADS)

    Kauffman, Rick, Jr.

    Calls for improving research-informed policy in education are everywhere. Yet, while there is an increasing trend towards science-based practice, there remains little agreement over which of the sciences to consult and how to organize a collective effort between them. What Education lacks is a general theoretical framework through which policies can be constructed, implemented, and assessed. This dissertation submits that evolutionary theory can provide a suitable framework for coordinating educational policies and practice, and can provide the entire field of education with a clearer sense of how to better manage the learning environment. This dissertation explores two broad paths that outline the conceptual foundations for an Evolutionary Education Science: "Teaching Evolution" and "Using Evolution to Teach." Chapter 1 introduces both of these themes. After describing why evolutionary science is best suited for organizing education research and practice, Chapter 1 proceeds to "teach" an overview of the "evolutionary toolkit"---the mechanisms and principles that underlie the modern evolutionary perspective. The chapter then employs the "toolkit" in examining education from an evolutionary perspective, outlining the evolutionary precepts that can guide theorizing and research in education, describing how educators can "use evolution to teach.". Chapters 2-4 expand on this second theme. Chapters 2 and 3 describe an education program for at-risk 9th and 10th grade students, the Regents Academy, designed entirely with evolutionary principles in mind. The program was rigorously assessed in a randomized control design and has demonstrated success at improving students' academic performance (Chapter 2) and social & behavioral development (Chapter 3). Chapter 4 examines current teaching strategies that underlie effective curriculum-instruction-assessment practices and proposes a framework for organizing successful, evidence-based strategies for neural

  12. Evolutionary psychology and evolutionary developmental psychology: understanding the evolution of human behavior and development.

    PubMed

    Hernández Blasi, Carlos; Causey, Kayla

    2010-02-01

    This is an introduction to this special issue on evolutionary psychology (EP) and evolutionary developmental psychology (EDP). We suggest here that, contrary to some common assumptions, mainstream psychology continues to be essentially non Darwinian and that EP and EDP are new approaches that can potentially help us to change this situation. We then present the organization of the special issue (composed of six papers). We conclude that evolution is certainly not the final consideration in psychology, but emphasize its importance as the basis upon which all modern behaviors and development are built.

  13. Evolutionary history of Ebola virus.

    PubMed

    Li, Y H; Chen, S P

    2014-06-01

    Since Ebola virus was discovered in 1970s, the virus has persisted in Africa and sporadic fatal outbreaks in humans and non-human primates have been reported. However, the evolutionary history of Ebola virus remains unclear. In this study, 27 Ebola virus strains with complete glycoprotein genes, including five species (Zaire, Sudan, Reston, Tai Forest, Bundibugyo), were analysed. Here, we propose a hypothesis of the evolutionary history of Ebola virus which will be helpful to investigate the molecular evolution of these viruses.

  14. Viruses and mobile elements as drivers of evolutionary transitions

    PubMed Central

    2016-01-01

    The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of ‘public goods’. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host–parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431520

  15. Viruses and mobile elements as drivers of evolutionary transitions.

    PubMed

    Koonin, Eugene V

    2016-08-19

    The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of 'public goods'. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host-parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Authors.

  16. Living with death: The evolution of the mitochondrial pathway of apoptosis in animals

    PubMed Central

    Oberst, Andrew; Bender, Cheryl; Green, Douglas R.

    2008-01-01

    The mitochondrial pathway of cell death, in which apoptosis proceeds following mitochondrial outer membrane permeablization (MOMP), release of cytochrome c, and APAF-1 apoptosome-mediated caspase activation, represents the major pathway of physiological apoptosis in vertebrates. However, the well-characterized apoptotic pathways of the invertebrates C. elegans and D. melanogaster indicate that this apoptotic pathway is not universally conserved among animals. This review will compare the role of the mitochondria in the apoptotic programs of mammals, nematodes, and flies, and will survey our knowledge of the apoptotic pathways of other, less familiar model organisms in an effort to explore the evolutionary origins of the mitochondrial pathway of apoptosis. PMID:18451868

  17. Evolutionary Diversification of Prey and Predator Species Facilitated by Asymmetric Interactions

    PubMed Central

    Zu, Jian; Wang, Jinliang; Huang, Gang

    2016-01-01

    We investigate the influence of asymmetric interactions on coevolutionary dynamics of a predator-prey system by using the theory of adaptive dynamics. We assume that the defense ability of prey and the attack ability of predators all can adaptively evolve, either caused by phenotypic plasticity or by behavioral choice, but there are certain costs in terms of their growth rate or death rate. The coevolutionary model is constructed from a deterministic approximation of random mutation-selection process. To sum up, if prey’s trade-off curve is globally weakly concave, then five outcomes of coevolution are demonstrated, which depend on the intensity and shape of asymmetric predator-prey interactions and predator’s trade-off shape. Firstly, we find that if there is a weakly decelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species may occur, but after branching further coevolution may lead to extinction of the predator species with a larger trait value. However, if there is a weakly accelerating cost and a weakly accelerating benefit for predator species, then evolutionary branching in the predator species is also possible and after branching the dimorphic predator can evolutionarily stably coexist with a monomorphic prey species. Secondly, if the asymmetric interactions become a little strong, then prey and predators will evolve to an evolutionarily stable equilibrium, at which they can stably coexist on a long-term timescale of evolution. Thirdly, if there is a weakly accelerating cost and a relatively strongly accelerating benefit for prey species, then evolutionary branching in the prey species is possible and the finally coevolutionary outcome contains a dimorphic prey and a monomorphic predator species. Fourthly, if the asymmetric interactions become more stronger, then predator-prey coevolution may lead to cycles in both traits and equilibrium population densities. The Red Queen dynamic is a

  18. The integration of Darwinism and evolutionary morphology: Alexej Nikolajevich Sewertzoff (1866-1936) and the developmental basis of evolutionary change.

    PubMed

    Levit, George S; Hossfeld, Uwe; Olsson, Lennart

    2004-07-15

    The growth of evolutionary morphology in the late 19th and early 20th centuries was inspired by the work of Carl Gegenbaur (1826-1903) and his protégé and friend Ernst Haeckel (1834-1919). However, neither of them succeeded in creating and applying a strictly Darwinian (selectionist) methodology. This task was left to the next generation of evolutionary morphologists. In this paper we present a relatively unknown researcher, Alexej Nikolajevich Sewertzoff (1866-1936) who made important contributions towards a synthesis of Darwinism and evolutionary morphology. Copyright 2004 Wiley-Liss, Inc.

  19. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    PubMed

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  20. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    NASA Astrophysics Data System (ADS)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  1. Islamic Medicine and Evolutionary Medicine: A Comparative Analysis

    PubMed Central

    Saniotis, Arthur

    2012-01-01

    The advent of evolutionary medicine in the last two decades has provided new insights into the causes of human disease and possible preventative strategies. One of the strengths of evolutionary medicine is that it follows a multi-disciplinary approach. Such an approach is vital to future biomedicine as it enables for the infiltration of new ideas. Although evolutionary medicine uses Darwinian evolution as a heuristic for understanding human beings’ susceptibility to disease, this is not necessarily in conflict with Islamic medicine. It should be noted that current evolutionary theory was first expounded by various Muslim scientists such as al-Jāḥiẓ, al-Ṭūsī, Ibn Khaldūn and Ibn Maskawayh centuries before Darwin and Wallace. In this way, evolution should not be viewed as being totally antithetical to Islam. This article provides a comparative overview of Islamic medicine and Evolutionary medicine as well as drawing points of comparison between the two approaches which enables their possible future integration. PMID:23864992

  2. Islamic medicine and evolutionary medicine: a comparative analysis.

    PubMed

    Saniotis, Arthur

    2012-01-01

    The advent of evolutionary medicine in the last two decades has provided new insights into the causes of human disease and possible preventative strategies. One of the strengths of evolutionary medicine is that it follows a multi-disciplinary approach. Such an approach is vital to future biomedicine as it enables for the infiltration of new ideas. Although evolutionary medicine uses Darwinian evolution as a heuristic for understanding human beings' susceptibility to disease, this is not necessarily in conflict with Islamic medicine. It should be noted that current evolutionary theory was first expounded by various Muslim scientists such as al-Jāḥiẓ, al-Ṭūsī, Ibn Khaldūn and Ibn Maskawayh centuries before Darwin and Wallace. In this way, evolution should not be viewed as being totally antithetical to Islam. This article provides a comparative overview of Islamic medicine and Evolutionary medicine as well as drawing points of comparison between the two approaches which enables their possible future integration.

  3. Evolutionary perspectives on wildlife disease: concepts and applications

    PubMed Central

    Vander Wal, Eric; Garant, Dany; Pelletier, Fanie

    2014-01-01

    Wildlife disease has the potential to cause significant ecological, socioeconomic, and health impacts. As a result, all tools available need to be employed when host–pathogen dynamics merit conservation or management interventions. Evolutionary principles, such as evolutionary history, phenotypic and genetic variation, and selection, have the potential to unravel many of the complex ecological realities of infectious disease in the wild. Despite this, their application to wildlife disease ecology and management remains in its infancy. In this article, we outline the impetus behind applying evolutionary principles to disease ecology and management issues in the wild. We then introduce articles from this special issue on Evolutionary Perspectives on Wildlife Disease: Concepts and Applications, outlining how each is exemplar of a practical wildlife disease challenge that can be enlightened by applied evolution. Ultimately, we aim to bring new insights to wildlife disease ecology and its management using tools and techniques commonly employed in evolutionary ecology. PMID:25469154

  4. The evolutionary dynamics of language.

    PubMed

    Steels, Luc; Szathmáry, Eörs

    2018-02-01

    The well-established framework of evolutionary dynamics can be applied to the fascinating open problems how human brains are able to acquire and adapt language and how languages change in a population. Schemas for handling grammatical constructions are the replicating unit. They emerge and multiply with variation in the brains of individuals and undergo selection based on their contribution to needed expressive power, communicative success and the reduction of cognitive effort. Adopting this perspective has two major benefits. (i) It makes a bridge to neurobiological models of the brain that have also adopted an evolutionary dynamics point of view, thus opening a new horizon for studying how human brains achieve the remarkably complex competence for language. And (ii) it suggests a new foundation for studying cultural language change as an evolutionary dynamics process. The paper sketches this novel perspective, provides references to empirical data and computational experiments, and points to open problems. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Neuronal boost to evolutionary dynamics

    PubMed Central

    de Vladar, Harold P.; Szathmáry, Eörs

    2015-01-01

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild. PMID:26640653

  6. Neuronal boost to evolutionary dynamics.

    PubMed

    de Vladar, Harold P; Szathmáry, Eörs

    2015-12-06

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild.

  7. Evolutionary engineering for industrial microbiology.

    PubMed

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  8. Stochastic dynamics of adaptive trait and neutral marker driven by eco-evolutionary feedbacks.

    PubMed

    Billiard, Sylvain; Ferrière, Régis; Méléard, Sylvie; Tran, Viet Chi

    2015-11-01

    How the neutral diversity is affected by selection and adaptation is investigated in an eco-evolutionary framework. In our model, we study a finite population in continuous time, where each individual is characterized by a trait under selection and a completely linked neutral marker. Population dynamics are driven by births and deaths, mutations at birth, and competition between individuals. Trait values influence ecological processes (demographic events, competition), and competition generates selection on trait variation, thus closing the eco-evolutionary feedback loop. The demographic effects of the trait are also expected to influence the generation and maintenance of neutral variation. We consider a large population limit with rare mutation, under the assumption that the neutral marker mutates faster than the trait under selection. We prove the convergence of the stochastic individual-based process to a new measure-valued diffusive process with jumps that we call Substitution Fleming-Viot Process (SFVP). When restricted to the trait space this process is the Trait Substitution Sequence first introduced by Metz et al. (1996). During the invasion of a favorable mutation, a genetical bottleneck occurs and the marker associated with this favorable mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how the neutral diversity is restored afterwards, we obtain the condition for a time-scale separation; under this condition, we show that the marker distribution is approximated by a Fleming-Viot distribution between two trait substitutions. We discuss the implications of the SFVP for our understanding of the dynamics of neutral variation under eco-evolutionary feedbacks and illustrate the main phenomena with simulations. Our results highlight the joint importance of mutations, ecological parameters, and trait values in the restoration of neutral diversity after a selective sweep.

  9. Fast simulation of reconstructed phylogenies under global time-dependent birth-death processes.

    PubMed

    Höhna, Sebastian

    2013-06-01

    Diversification rates and patterns may be inferred from reconstructed phylogenies. Both the time-dependent and the diversity-dependent birth-death process can produce the same observed patterns of diversity over time. To develop and test new models describing the macro-evolutionary process of diversification, generic and fast algorithms to simulate under these models are necessary. Simulations are not only important for testing and developing models but play an influential role in the assessment of model fit. In the present article, I consider as the model a global time-dependent birth-death process where each species has the same rates but rates may vary over time. For this model, I derive the likelihood of the speciation times from a reconstructed phylogenetic tree and show that each speciation event is independent and identically distributed. This fact can be used to simulate efficiently reconstructed phylogenetic trees when conditioning on the number of species, the time of the process or both. I show the usability of the simulation by approximating the posterior predictive distribution of a birth-death process with decreasing diversification rates applied on a published bird phylogeny (family Cettiidae). The methods described in this manuscript are implemented in the R package TESS, available from the repository CRAN (http://cran.r-project.org/web/packages/TESS/). Supplementary data are available at Bioinformatics online.

  10. A Philosophical Perspective on Evolutionary Systems Biology

    PubMed Central

    Soyer, Orkun S.; Siegal, Mark L.

    2015-01-01

    Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB’s progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology. PMID:26085823

  11. Evolutionary change in physiological phenotypes along the human lineage.

    PubMed

    Vining, Alexander Q; Nunn, Charles L

    2016-01-01

    Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  12. ECOD: An Evolutionary Classification of Protein Domains

    PubMed Central

    Kinch, Lisa N.; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V.

    2014-01-01

    Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or “fold”). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies. PMID:25474468

  13. ECOD: an evolutionary classification of protein domains.

    PubMed

    Cheng, Hua; Schaeffer, R Dustin; Liao, Yuxing; Kinch, Lisa N; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V

    2014-12-01

    Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or "fold"). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies.

  14. Human genomic disease variants: a neutral evolutionary explanation.

    PubMed

    Dudley, Joel T; Kim, Yuseob; Liu, Li; Markov, Glenn J; Gerold, Kristyn; Chen, Rong; Butte, Atul J; Kumar, Sudhir

    2012-08-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.

  15. Human genomic disease variants: A neutral evolutionary explanation

    PubMed Central

    Dudley, Joel T.; Kim, Yuseob; Liu, Li; Markov, Glenn J.; Gerold, Kristyn; Chen, Rong; Butte, Atul J.; Kumar, Sudhir

    2012-01-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease. PMID:22665443

  16. Making evolutionary history count: biodiversity planning for coral reef fishes and the conservation of evolutionary processes

    NASA Astrophysics Data System (ADS)

    von der Heyden, Sophie

    2017-03-01

    Anthropogenic activities are having devastating impacts on marine systems with numerous knock-on effects on trophic functioning, species interactions and an accelerated loss of biodiversity. Establishing conservation areas can not only protect biodiversity, but also confer resilience against changes to coral reefs and their inhabitants. Planning for protection and conservation in marine systems is complex, but usually focuses on maintaining levels of biodiversity and protecting special and unique landscape features while avoiding negative impacts to socio-economic benefits. Conversely, the integration of evolutionary processes that have shaped extant species assemblages is rarely taken into account. However, it is as important to protect processes as it is to protect patterns for maintaining the evolutionary trajectories of populations and species. This review focuses on different approaches for integrating genetic analyses, such as phylogenetic diversity, phylogeography and the delineation of management units, temporal and spatial monitoring of genetic diversity and quantification of adaptive variation for protecting evolutionary resilience, into marine spatial planning, specifically for coral reef fishes. Many of these concepts are not yet readily applied to coral reef fish studies, but this synthesis highlights their potential and the importance of including historical processes into systematic biodiversity planning for conserving not only extant, but also future, biodiversity and its evolutionary potential.

  17. Genome Alignment Spanning Major Poaceae Lineages Reveals Heterogeneous Evolutionary Rates and Alters Inferred Dates for Key Evolutionary Events.

    PubMed

    Wang, Xiyin; Wang, Jingpeng; Jin, Dianchuan; Guo, Hui; Lee, Tae-Ho; Liu, Tao; Paterson, Andrew H

    2015-06-01

    Multiple comparisons among genomes can clarify their evolution, speciation, and functional innovations. To date, the genome sequences of eight grasses representing the most economically important Poaceae (grass) clades have been published, and their genomic-level comparison is an essential foundation for evolutionary, functional, and translational research. Using a formal and conservative approach, we aligned these genomes. Direct comparison of paralogous gene pairs all duplicated simultaneously reveal striking variation in evolutionary rates among whole genomes, with nucleotide substitution slowest in rice and up to 48% faster in other grasses, adding a new dimension to the value of rice as a grass model. We reconstructed ancestral genome contents for major evolutionary nodes, potentially contributing to understanding the divergence and speciation of grasses. Recent fossil evidence suggests revisions of the estimated dates of key evolutionary events, implying that the pan-grass polyploidization occurred ∼96 million years ago and could not be related to the Cretaceous-Tertiary mass extinction as previously inferred. Adjusted dating to reflect both updated fossil evidence and lineage-specific evolutionary rates suggested that maize subgenome divergence and maize-sorghum divergence were virtually simultaneous, a coincidence that would be explained if polyploidization directly contributed to speciation. This work lays a solid foundation for Poaceae translational genomics. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  18. Evolutionary Determinants of Cancer

    PubMed Central

    Greaves, Mel

    2015-01-01

    ‘Nothing in biology makes sense except in the light of evolution’ Th. Dobzhansky, 1973 Our understanding of cancer is being transformed by exploring clonal diversity, drug resistance and causation within an evolutionary framework. The therapeutic resilience of advanced cancer is a consequence of its character as complex, dynamic and adaptive ecosystem engendering robustness, underpinned by genetic diversity and epigenetic plasticity. The risk of mutation-driven escape by self-renewing cells is intrinsic to multicellularity but is countered by multiple restraints facilitating increasing complexity and longevity of species. But our own has disrupted this historical narrative by rapidly escalating intrinsic risk. Evolutionary principles illuminate these challenges and provide new avenues to explore for more effective control. PMID:26193902

  19. Exact Bayesian Inference for Phylogenetic Birth-Death Models.

    PubMed

    Parag, K V; Pybus, O G

    2018-04-26

    Inferring the rates of change of a population from a reconstructed phylogeny of genetic sequences is a central problem in macro-evolutionary biology, epidemiology, and many other disciplines. A popular solution involves estimating the parameters of a birth-death process (BDP), which links the shape of the phylogeny to its birth and death rates. Modern BDP estimators rely on random Markov chain Monte Carlo (MCMC) sampling to infer these rates. Such methods, while powerful and scalable, cannot be guaranteed to converge, leading to results that may be hard to replicate or difficult to validate. We present a conceptually and computationally different parametric BDP inference approach using flexible and easy to implement Snyder filter (SF) algorithms. This method is deterministic so its results are provable, guaranteed, and reproducible. We validate the SF on constant rate BDPs and find that it solves BDP likelihoods known to produce robust estimates. We then examine more complex BDPs with time-varying rates. Our estimates compare well with a recently developed parametric MCMC inference method. Lastly, we performmodel selection on an empirical Agamid species phylogeny, obtaining results consistent with the literature. The SF makes no approximations, beyond those required for parameter quantisation and numerical integration, and directly computes the posterior distribution of model parameters. It is a promising alternative inference algorithm that may serve either as a standalone Bayesian estimator or as a useful diagnostic reference for validating more involved MCMC strategies. The Snyder filter is implemented in Matlab and the time-varying BDP models are simulated in R. The source code and data are freely available at https://github.com/kpzoo/snyder-birth-death-code. kris.parag@zoo.ox.ac.uk. Supplementary material is available at Bioinformatics online.

  20. The evolutionary outcome of sexual conflict

    PubMed Central

    Lessells, C(Kate). M

    2006-01-01

    Inter-locus sexual conflict occurs by definition when there is sexually antagonistic selection on a trait so that the optimal trait value differs between the sexes. As a result, there is selection on each sex to manipulate the trait towards its own optimum and resist such manipulation by the other sex. Sexual conflict often leads additionally to the evolution of harmful behaviour and to self-reinforcing and even perpetual sexually antagonistic coevolution. In an attempt to understand the determinants of these different outcomes, I compare two groups of traits—those related to parental investment (PI) and to mating—over which there is sexual conflict, but which have to date been explored by largely separate research traditions. A brief review suggests that sexual conflict over PI, particularly over PI per offspring, leads less frequently to the evolution of manipulative behaviour, and rarely to the evolution of harmful behaviour or to the rapid evolutionary changes which may be symptomatic of sexually antagonistic coevolution. The chief determinants of the evolutionary outcome of sexual conflict are the benefits of manipulation and resistance, the costs of manipulation and resistance, and the feasibility of manipulation. All three of these appear to contribute to the differences in the evolutionary outcome of conflicts over PI and mating. A detailed dissection of the evolutionary changes following from sexual conflict exposes greater complexity than a simple adaptation–counter-adaptation cycle and clarifies the role of harm. Not all of the evolutionary changes that follow from sexual conflict are sexually antagonistic, and harm is not necessary for sexually antagonistic coevolution to occur. In particular, whereas selection on the trait over which there is conflict is by definition sexually antagonistic, collateral harm is usually in the interest of neither sex. This creates the opportunity for palliative adaptations which reduce collateral harm. Failure to

  1. The evolutionary outcome of sexual conflict.

    PubMed

    Lessells, C M

    2006-02-28

    Inter-locus sexual conflict occurs by definition when there is sexually antagonistic selection on a trait so that the optimal trait value differs between the sexes. As a result, there is selection on each sex to manipulate the trait towards its own optimum and resist such manipulation by the other sex. Sexual conflict often leads additionally to the evolution of harmful behaviour and to self-reinforcing and even perpetual sexually antagonistic coevolution. In an attempt to understand the determinants of these different outcomes, I compare two groups of traits-those related to parental investment (PI) and to mating-over which there is sexual conflict, but which have to date been explored by largely separate research traditions. A brief review suggests that sexual conflict over PI, particularly over PI per offspring, leads less frequently to the evolution of manipulative behaviour, and rarely to the evolution of harmful behaviour or to the rapid evolutionary changes which may be symptomatic of sexually antagonistic coevolution. The chief determinants of the evolutionary outcome of sexual conflict are the benefits of manipulation and resistance, the costs of manipulation and resistance, and the feasibility of manipulation. All three of these appear to contribute to the differences in the evolutionary outcome of conflicts over PI and mating. A detailed dissection of the evolutionary changes following from sexual conflict exposes greater complexity than a simple adaptation-counter-adaptation cycle and clarifies the role of harm. Not all of the evolutionary changes that follow from sexual conflict are sexually antagonistic, and harm is not necessary for sexually antagonistic coevolution to occur. In particular, whereas selection on the trait over which there is conflict is by definition sexually antagonistic, collateral harm is usually in the interest of neither sex. This creates the opportunity for palliative adaptations which reduce collateral harm. Failure to

  2. Life Experience with Death: Relation to Death Attitudes and to the Use of Death-Related Memories

    ERIC Educational Resources Information Center

    Bluck, Susan; Dirk, Judith; Mackay, Michael M.; Hux, Ashley

    2008-01-01

    The study examines the relation of death experience to death attitudes and to autobiographical memory use. Participants (N = 52) completed standard death attitude measures and wrote narratives about a death-related autobiographical memory and (for comparison) a memory of a low point. Self-ratings of the memory narratives were used to assess their…

  3. Oversimplifying Evolutionary Psychology Leads to Explanatory Gaps

    ERIC Educational Resources Information Center

    Tate, Chuck; Ledbetter, Jay N.

    2010-01-01

    Comments on Evolutionary psychology: Controversies, questions, prospects, and limitations by Confer et al. They argued that SST cannot explain the existence of either homosexuality or suicide within the human species. We contend that a sufficiently nuanced evolutionary position has no difficulties explaining either phenomenon. Also in this…

  4. Eco-Evolutionary Genomics of Chromosomal Inversions.

    PubMed

    Wellenreuther, Maren; Bernatchez, Louis

    2018-05-03

    Chromosomal inversions have long fascinated evolutionary biologists due to their suppression of recombination, which can protect co-adapted alleles. Emerging research documents that inversions are commonly linked to spectacular phenotypes and have a pervasive role in eco-evolutionary processes, from mating systems, social organisation, environmental adaptation, and reproductive isolation to speciation. Studies also reveal that inversions are taxonomically widespread, with many being old and large, and that balancing selection is commonly facilitating their maintenance. This challenges the traditional view that the role of balancing selection in maintaining variation is relatively minor. The ubiquitous importance of inversions in ecological and evolutionary processes suggests that structural variation should be better acknowledged and integrated in studies pertaining to the molecular basis of adaptation and speciation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. An Evolutionary Perspective on Mate Rejection.

    PubMed

    Kelly, Ashleigh J; Dubbs, Shelli L; Barlow, Fiona Kate

    2016-01-01

    We argue that mate rejection and ex-partner relationships are important, multifaceted topics that have been underresearched in social and evolutionary psychology. Mate rejection and relationship dissolution are ubiquitous and form integral parts of the human experience. Both also carry with them potential risks and benefits to our fitness and survival. Hence, we expect that mate rejection would have given rise to evolved behavioral and psychological adaptations. Herein, we outline some of the many unanswered questions in evolutionary psychology on these topics, at each step presenting novel hypotheses about how men and women should behave when rejecting a mate or potential mate or in response to rejection. We intend these hypotheses and suggestions for future research to be used as a basis for enriching our understanding of human mating from an evolutionary perspective.

  6. Evolutionary ethics from Darwin to Moore.

    PubMed

    Allhoff, Fritz

    2003-01-01

    Evolutionary ethics has a long history, dating all the way back to Charles Darwin. Almost immediately after the publication of the Origin, an immense interest arose in the moral implications of Darwinism and whether the truth of Darwinism would undermine traditional ethics. Though the biological thesis was certainly exciting, nobody suspected that the impact of the Origin would be confined to the scientific arena. As one historian wrote, 'whether or not ancient populations of armadillos were transformed into the species that currently inhabit the new world was certainly a topic about which zoologists could disagree. But it was in discussing the broader implications of the theory...that tempers flared and statements were made which could transform what otherwise would have been a quiet scholarly meeting into a social scandal' (Farber 1994, 22). Some resistance to the biological thesis of Darwinism sprung from the thought that it was incompatible with traditional morality and, since one of them had to go, many thought that Darwinism should be rejected. However, some people did realize that a secular ethics was possible so, even if Darwinism did undermine traditional religious beliefs, it need not have any effects on moral thought. Before I begin my discussion of evolutionary ethics from Darwin to Moore, I would like to make some more general remarks about its development. There are three key events during this history of evolutionary ethics. First, Charles Darwin published On the Origin of the Species (Darwin 1859). Since one did not have a fully developed theory of evolution until 1859, there exists little work on evolutionary ethics until then. Shortly thereafter, Herbert Spencer (1898) penned the first systematic theory of evolutionary ethics, which was promptly attacked by T.H. Huxley (Huxley 1894). Second, at about the turn of the century, moral philosophers entered the fray and attempted to demonstrate logical errors in Spencer's work; such errors were alluded

  7. [Charles Darwin and the problem of evolutionary progress].

    PubMed

    Iordanskiĭ, N N

    2010-01-01

    According to Ch. Darwin's evolutionary theory, evolutionary progress (interpreted as morpho-physiological progress or arogenesis in recent terminology) is one of logical results of natural selection. At the same time, natural selection does not hold any factors especially promoting evolutionary progress. Darwin emphasized that the pattern of evolutionary changes depends on organism nature more than on the pattern of environment changes. Arogenesis specificity is determined by organization of rigorous biological systems - integral organisms. Onward progressive development is determined by fundamental features of living organisms: metabolism and homeostasis. The concept of social Darwinism differs fundamentally from Darwin's ideas about the most important role of social instincts in progress of mankind. Competition and selection play secondary role in socio-cultural progress of human society.

  8. The evolutionary psychology of violence.

    PubMed

    Goetz, Aaron T

    2010-02-01

    This paper reviews theory and research on the evolutionary psychology of violence. First, I examine evidence suggesting that humans have experienced an evolutionary history of violence. Next, I discuss violence as a context-sensitive strategy that might have provided benefits to our ancestors under certain circumstances. I then focus on the two most common forms of violence that plague humans -violence over status contests and intimate partner violence- outlining psychological mechanisms involved in each. Finally, I suggest that greater progress will be made by shifting the study from contexts to mechanisms.

  9. Evolutionary adaptations: theoretical and practical implications for visual ergonomics.

    PubMed

    Fostervold, Knut Inge; Watten, Reidulf G; Volden, Frode

    2014-01-01

    The literature discussing visual ergonomics often mention that human vision is adapted to light emitted by the sun. However, theoretical and practical implications of this viewpoint is seldom discussed or taken into account. The paper discusses some of the main theoretical implications of an evolutionary approach to visual ergonomics. Based on interactional theory and ideas from ecological psychology an evolutionary stress model is proposed as a theoretical framework for future research in ergonomics and human factors. The model stresses the importance of developing work environments that fits with our evolutionary adaptations. In accordance with evolutionary psychology, the environment of evolutionary adaptedness (EEA) and evolutionarily-novel environments (EN) are used as key concepts. Using work with visual display units (VDU) as an example, the paper discusses how this knowledge can be utilized in an ergonomic analysis of risk factors in the work environment. The paper emphasises the importance of incorporating evolutionary theory in the field of ergonomics. Further, the paper encourages scientific practices that further our understanding of any phenomena beyond the borders of traditional proximal explanations.

  10. Did death certificates and a death review process agree on lung cancer cause of death in the National Lung Screening Trial?

    PubMed

    Marcus, Pamela M; Doria-Rose, Vincent Paul; Gareen, Ilana F; Brewer, Brenda; Clingan, Kathy; Keating, Kristen; Rosenbaum, Jennifer; Rozjabek, Heather M; Rathmell, Joshua; Sicks, JoRean; Miller, Anthony B

    2016-08-01

    Randomized controlled trials frequently use death review committees to assign a cause of death rather than relying on cause of death information from death certificates. The National Lung Screening Trial, a randomized controlled trial of lung cancer screening with low-dose computed tomography versus chest X-ray for heavy and/or long-term smokers ages 55-74 years at enrollment, used a committee blinded to arm assignment for a subset of deaths to determine whether cause of death was due to lung cancer. Deaths were selected for review using a pre-determined computerized algorithm. The algorithm, which considered cancers diagnosed during the trial, causes and significant conditions listed on the death certificate, and the underlying cause of death derived from death certificate information by trained nosologists, selected deaths that were most likely to represent a death due to lung cancer (either directly or indirectly) and deaths that might have been erroneously assigned lung cancer as the cause of death. The algorithm also selected deaths that might be due to adverse events of diagnostic evaluation for lung cancer. Using the review cause of death as the gold standard and lung cancer cause of death as the outcome of interest (dichotomized as lung cancer versus not lung cancer), we calculated performance measures of the death certificate cause of death. We also recalculated the trial primary endpoint using the death certificate cause of death. In all, 1642 deaths were reviewed and assigned a cause of death (42% of the 3877 National Lung Screening Trial deaths). Sensitivity of death certificate cause of death was 91%; specificity, 97%; positive predictive value, 98%; and negative predictive value, 89%. About 40% of the deaths reclassified to lung cancer cause of death had a death certificate cause of death of a neoplasm other than lung. Using the death certificate cause of death, the lung cancer mortality reduction was 18% (95% confidence interval: 4.2-25.0), as

  11. An evolutionary critique of cultural analysis in sociology.

    PubMed

    Crippen, T

    1992-12-01

    A noteworthy development that has transpired in American sociology in the past quarter century has been the increasingly sophisticated interest in the analysis of human cultural systems. Sadly, however, these analyses reveal that social scientists rarely appreciate the profoundly evolutionary aspects of human culture. The chief purpose of this essay is to address this shortcoming and to offer some tentative suggestions toward its rectification. The essay begins by briefly reviewing recent developments in the analysis of cultural systems, primarily by reference to the influential work of Wuthnow. Second, a common flaw in these approaches is addressed-namely, the absence of any recognition of the value of grounding sociocultural theory in an informed evolutionary framework-and the case is made that this shortcoming is avoidable, even within the context of the intellectual traditions of the social sciences. Third, the evolutionary foundations of human cultural behavior are explored in terms of an analysis of relevant theoretical and empirical developments in the evolutionary neurosciences. Fourth, the value of these insights is illustrated by reference to an evolutionary critique of a recent and thought-provoking contribution to the study of modern political culture-Douglas and Wildavsky's analysis ofRisk and Culture. Finally, the article concludes by emphasizing the value of and the necessity for incorporating evolutionary reasoning into the domain of sociocultural theory.

  12. The evolutionary rate dynamically tracks changes in HIV-1 epidemics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maljkovic-berry, Irina; Athreya, Gayathri; Daniels, Marcus

    Large-sequence datasets provide an opportunity to investigate the dynamics of pathogen epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the root in a given phylogenetic tree to estimate the most homogenous evolutionary rate between samples from at least two different time points. Simulations showed that the method had no bias in the estimation of evolutionary rates and that it was robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1 subtype B and C epidemics have changedmore » over time, with the rate of evolution inversely correlated to the rate of virus spread. For subtype B, the evolutionary rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks epidemic events.« less

  13. An evolutionary perspective on health psychology: new approaches and applications.

    PubMed

    Tybur, Joshua M; Bryan, Angela D; Hooper, Ann E Caldwell

    2012-12-20

    Although health psychologists' efforts to understand and promote health are most effective when guided by theory, health psychology has not taken full advantage of theoretical insights provided by evolutionary psychology. Here, we argue that evolutionary perspectives can fruitfully inform strategies for addressing some of the challenges facing health psychologists. Evolutionary psychology's emphasis on modular, functionally specialized psychological systems can inform approaches to understanding the myriad behaviors grouped under the umbrella of "health," as can theoretical perspectives used by evolutionary anthropologists, biologists, and psychologists (e.g., Life History Theory). We detail some early investigations into evolutionary health psychology, and we provide suggestions for directions for future research.

  14. Predicting loss of evolutionary history: Where are we?

    PubMed

    Veron, Simon; Davies, T Jonathan; Cadotte, Marc W; Clergeau, Philippe; Pavoine, Sandrine

    2017-02-01

    The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic

  15. How evolutionary principles improve the understanding of human health and disease.

    PubMed

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-03-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies.

  16. How evolutionary principles improve the understanding of human health and disease

    PubMed Central

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-01-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies. PMID:25567971

  17. Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a Unifying Perspective.

    PubMed

    Lion, Sébastien

    2018-01-01

    Evolutionary biology and ecology have a strong theoretical underpinning, and this has fostered a variety of modeling approaches. A major challenge of this theoretical work has been to unravel the tangled feedback loop between ecology and evolution. This has prompted the development of two main classes of models. While quantitative genetics models jointly consider the ecological and evolutionary dynamics of a focal population, a separation of timescales between ecology and evolution is assumed by evolutionary game theory, adaptive dynamics, and inclusive fitness theory. As a result, theoretical evolutionary ecology tends to be divided among different schools of thought, with different toolboxes and motivations. My aim in this synthesis is to highlight the connections between these different approaches and clarify the current state of theory in evolutionary ecology. Central to this approach is to make explicit the dependence on environmental dynamics of the population and evolutionary dynamics, thereby materializing the eco-evolutionary feedback loop. This perspective sheds light on the interplay between environmental feedback and the timescales of ecological and evolutionary processes. I conclude by discussing some potential extensions and challenges to our current theoretical understanding of eco-evolutionary dynamics.

  18. On evolutionary spatial heterogeneous games

    NASA Astrophysics Data System (ADS)

    Fort, H.

    2008-03-01

    How cooperation between self-interested individuals evolve is a crucial problem, both in biology and in social sciences, that is far from being well understood. Evolutionary game theory is a useful approach to this issue. The simplest model to take into account the spatial dimension in evolutionary games is in terms of cellular automata with just a one-parameter payoff matrix. Here, the effects of spatial heterogeneities of the environment and/or asymmetries in the interactions among the individuals are analysed through different extensions of this model. Instead of using the same universal payoff matrix, bimatrix games in which each cell at site ( i, j) has its own different ‘temptation to defect’ parameter T(i,j) are considered. First, the case in which these individual payoffs are constant in time is studied. Second, an evolving evolutionary spatial game such that T=T(i,j;t), i.e. besides depending on the position evolves (by natural selection), is used to explore the combination of spatial heterogeneity and natural selection of payoff matrices.

  19. The evolutionary implications of epigenetic inheritance.

    PubMed

    Jablonka, Eva

    2017-10-06

    The Modern Evolutionary Synthesis (MS) forged in the mid-twentieth century was built on a notion of heredity that excluded soft inheritance, the inheritance of the effects of developmental modifications. However, the discovery of molecular mechanisms that generate random and developmentally induced epigenetic variations is leading to a broadening of the notion of biological heredity that has consequences for ideas about evolution. After presenting some old challenges to the MS that were raised, among others, by Karl Popper, I discuss recent research on epigenetic inheritance, which provides experimental and theoretical support for these challenges. There is now good evidence that epigenetic inheritance is ubiquitous and is involved in adaptive evolution and macroevolution. I argue that the many evolutionary consequences of epigenetic inheritance open up new research areas and require the extension of the evolutionary synthesis beyond the current neo-Darwinian model.

  20. Quality insights of university teachers on dying, death, and death education.

    PubMed

    Mak, Mui-Hing June

    One of the main responsibilities of teachers is to help individual students cope with life difficulties such as grief following a death. However, very little research explores teachers' views on death, dying, and how they handle grief and loss in schools. This study aims to explore university teachers' knowledge and attitudes on dying, death, and death education. Fifteen university teachers were recruited using a qualitative method. This study reveals that most teachers' views on death and related issues are largely affected by their death experiences, religious beliefs, professional background, and the mass media. Although they have a general negative response toward death and dying, some teachers begin to affirm their meanings of life and death. Most teachers agree that they do not feel adequate about managing and teaching on life and death issues, so they strongly support including death education in the formal programs in Hong Kong.

  1. Euryhalinity in an evolutionary context

    USGS Publications Warehouse

    Schultz, Eric T.; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    This chapter focuses on the evolutionary importance and taxonomic distribution of euryhalinity. Euryhalinity refers to broad halotolerance and broad halohabitat distribution. Salinity exposure experiments have demonstrated that species vary tenfold in their range of tolerable salinity levels, primarily because of differences in upper limits. Halotolerance breadth varies with the species’ evolutionary history, as represented by its ordinal classification, and with the species’ halohabitat. Freshwater and seawater species tolerate brackish water; their empirically-determined fundamental haloniche is broader than their realized haloniche, as revealed by the halohabitats they occupy. With respect to halohabitat distribution, a minority of species (<10%) are euryhaline. Habitat-euryhalinity is prevalent among basal actinopterygian fishes, is largely absent from orders arising from intermediate nodes, and reappears in the most derived taxa. There is pronounced family-level variability in the tendency to be halohabitat-euryhaline, which may have arisen during a burst of diversification following the Cretaceous-Palaeogene extinction. Low prevalence notwithstanding, euryhaline species are potent sources of evolutionary diversity. Euryhalinity is regarded as a key innovation trait whose evolution enables exploitation of new adaptive zone, triggering cladogenesis. We review phylogenetically-informed studies that demonstrate freshwater species diversifying from euryhaline ancestors through processes such as landlocking. These studies indicate that some euryhaline taxa are particularly susceptible to changes in halohabitat and subsequent diversification, and some geographic regions have been hotspots for transitions to freshwater. Comparative studies on mechanisms among multiple taxa and at multiple levels of biological integration are needed to clarify evolutionary pathways to, and from, euryhalinity.

  2. The great opportunity: Evolutionary applications to medicine and public health.

    PubMed

    Nesse, Randolph M; Stearns, Stephen C

    2008-02-01

    Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for

  3. Decoding cell death signals in liver inflammation.

    PubMed

    Brenner, Catherine; Galluzzi, Lorenzo; Kepp, Oliver; Kroemer, Guido

    2013-09-01

    Inflammation can be either beneficial or detrimental to the liver, depending on multiple factors. Mild (i.e., limited in intensity and destined to resolve) inflammatory responses have indeed been shown to exert consistent hepatoprotective effects, contributing to tissue repair and promoting the re-establishment of homeostasis. Conversely, excessive (i.e., disproportionate in intensity and permanent) inflammation may induce a massive loss of hepatocytes and hence exacerbate the severity of various hepatic conditions, including ischemia-reperfusion injury, systemic metabolic alterations (e.g., obesity, diabetes, non-alcoholic fatty liver disorders), alcoholic hepatitis, intoxication by xenobiotics and infection, de facto being associated with irreversible liver damage, fibrosis, and carcinogenesis. Both liver-resident cells (e.g., Kupffer cells, hepatic stellate cells, sinusoidal endothelial cells) and cells that are recruited in response to injury (e.g., monocytes, macrophages, dendritic cells, natural killer cells) emit pro-inflammatory signals including - but not limited to - cytokines, chemokines, lipid messengers, and reactive oxygen species that contribute to the apoptotic or necrotic demise of hepatocytes. In turn, dying hepatocytes release damage-associated molecular patterns that-upon binding to evolutionary conserved pattern recognition receptors-activate cells of the innate immune system to further stimulate inflammatory responses, hence establishing a highly hepatotoxic feedforward cycle of inflammation and cell death. In this review, we discuss the cellular and molecular mechanisms that account for the most deleterious effect of hepatic inflammation at the cellular level, that is, the initiation of a massive cell death response among hepatocytes. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  4. Primum Non Nocere: An Evolutionary Analysis of Whether Antidepressants Do More Harm than Good

    PubMed Central

    Andrews, Paul W.; Thomson, J. Anderson; Amstadter, Ananda; Neale, Michael C.

    2012-01-01

    Antidepressant medications are the first-line treatment for people meeting current diagnostic criteria for major depressive disorder. Most antidepressants are designed to perturb the mechanisms that regulate the neurotransmitter serotonin – an evolutionarily ancient biochemical found in plants, animals, and fungi. Many adaptive processes evolved to be regulated by serotonin, including emotion, development, neuronal growth and death, platelet activation and the clotting process, attention, electrolyte balance, and reproduction. It is a principle of evolutionary medicine that the disruption of evolved adaptations will degrade biological functioning. Because serotonin regulates many adaptive processes, antidepressants could have many adverse health effects. For instance, while antidepressants are modestly effective in reducing depressive symptoms, they increase the brain’s susceptibility to future episodes after they have been discontinued. Contrary to a widely held belief in psychiatry, studies that purport to show that antidepressants promote neurogenesis are flawed because they all use a method that cannot, by itself, distinguish between neurogenesis and neuronal death. In fact, antidepressants cause neuronal damage and mature neurons to revert to an immature state, both of which may explain why antidepressants also cause neurons to undergo apoptosis (programmed death). Antidepressants can also cause developmental problems, they have adverse effects on sexual and romantic life, and they increase the risk of hyponatremia (low sodium in the blood plasma), bleeding, stroke, and death in the elderly. Our review supports the conclusion that antidepressants generally do more harm than good by disrupting a number of adaptive processes regulated by serotonin. However, there may be specific conditions for which their use is warranted (e.g., cancer, recovery from stroke). We conclude that altered informed consent practices and greater caution in the prescription of

  5. Michael Akam and the rise of evolutionary developmental biology

    PubMed Central

    Stern, David L.; Dawes-Hoang, Rachel E.

    2010-01-01

    Michael Akam has been awarded the 2007 Kowalevsky medal for his many research accomplishments in the area of evolutionary developmental biology. We highlight three tributaries of Michael’s contribution to evolutionary developmental biology. First, he has made major contributions to our understanding of development of the fruit fly, Drosophila melanogaster. Second, he has maintained a consistent focus on several key problems in evolutionary developmental biology, including the evolving role of Hox genes in arthropods and, more recently, the evolution of segmentation mechanisms. Third, Michael has written a series of influential reviews that have integrated progress in developmental biology into an evolutionary perspective. Michael has also made a large impact on the field through his effective mentorship style, his selfless promotion of younger colleagues, and his leadership of the University Museum of Zoology at Cambridge and the European community of evolutionary developmental biologists. PMID:20209429

  6. From computers to cultivation: reconceptualizing evolutionary psychology.

    PubMed

    Barrett, Louise; Pollet, Thomas V; Stulp, Gert

    2014-01-01

    Does evolutionary theorizing have a role in psychology? This is a more contentious issue than one might imagine, given that, as evolved creatures, the answer must surely be yes. The contested nature of evolutionary psychology lies not in our status as evolved beings, but in the extent to which evolutionary ideas add value to studies of human behavior, and the rigor with which these ideas are tested. This, in turn, is linked to the framework in which particular evolutionary ideas are situated. While the framing of the current research topic places the brain-as-computer metaphor in opposition to evolutionary psychology, the most prominent school of thought in this field (born out of cognitive psychology, and often known as the Santa Barbara school) is entirely wedded to the computational theory of mind as an explanatory framework. Its unique aspect is to argue that the mind consists of a large number of functionally specialized (i.e., domain-specific) computational mechanisms, or modules (the massive modularity hypothesis). Far from offering an alternative to, or an improvement on, the current perspective, we argue that evolutionary psychology is a mainstream computational theory, and that its arguments for domain-specificity often rest on shaky premises. We then go on to suggest that the various forms of e-cognition (i.e., embodied, embedded, enactive) represent a true alternative to standard computational approaches, with an emphasis on "cognitive integration" or the "extended mind hypothesis" in particular. We feel this offers the most promise for human psychology because it incorporates the social and historical processes that are crucial to human "mind-making" within an evolutionarily informed framework. In addition to linking to other research areas in psychology, this approach is more likely to form productive links to other disciplines within the social sciences, not least by encouraging a healthy pluralism in approach.

  7. On Reciprocal Causation in the Evolutionary Process.

    PubMed

    Svensson, Erik I

    2018-01-01

    Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause-effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist . Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach

  8. From computers to cultivation: reconceptualizing evolutionary psychology

    PubMed Central

    Barrett, Louise; Pollet, Thomas V.; Stulp, Gert

    2014-01-01

    Does evolutionary theorizing have a role in psychology? This is a more contentious issue than one might imagine, given that, as evolved creatures, the answer must surely be yes. The contested nature of evolutionary psychology lies not in our status as evolved beings, but in the extent to which evolutionary ideas add value to studies of human behavior, and the rigor with which these ideas are tested. This, in turn, is linked to the framework in which particular evolutionary ideas are situated. While the framing of the current research topic places the brain-as-computer metaphor in opposition to evolutionary psychology, the most prominent school of thought in this field (born out of cognitive psychology, and often known as the Santa Barbara school) is entirely wedded to the computational theory of mind as an explanatory framework. Its unique aspect is to argue that the mind consists of a large number of functionally specialized (i.e., domain-specific) computational mechanisms, or modules (the massive modularity hypothesis). Far from offering an alternative to, or an improvement on, the current perspective, we argue that evolutionary psychology is a mainstream computational theory, and that its arguments for domain-specificity often rest on shaky premises. We then go on to suggest that the various forms of e-cognition (i.e., embodied, embedded, enactive) represent a true alternative to standard computational approaches, with an emphasis on “cognitive integration” or the “extended mind hypothesis” in particular. We feel this offers the most promise for human psychology because it incorporates the social and historical processes that are crucial to human “mind-making” within an evolutionarily informed framework. In addition to linking to other research areas in psychology, this approach is more likely to form productive links to other disciplines within the social sciences, not least by encouraging a healthy pluralism in approach. PMID:25161633

  9. Death revisited: rethinking death and the dead donor rule.

    PubMed

    Iltis, Ana Smith; Cherry, Mark J

    2010-06-01

    Traditionally, people were recognized as being dead using cardio-respiratory criteria: individuals who had permanently stopped breathing and whose heart had permanently stopped beating were dead. Technological developments in the middle of the twentieth century and the advent of the intensive care unit made it possible to sustain cardio-respiratory and other functions in patients with severe brain injury who previously would have lost such functions permanently shortly after sustaining a brain injury. What could and should physicians caring for such patients do? Significant advances in human organ transplantation also played direct and indirect roles in discussions regarding the care of such patients. Because successful transplantation requires that organs be removed from cadavers shortly after death to avoid organ damage due to loss of oxygen, there has been keen interest in knowing precisely when people are dead so that organs could be removed. Criteria for declaring death using neurological criteria developed, and today a whole brain definition of death is widely used and recognized by all 50 states in the United States as an acceptable way to determine death. We explore the ongoing debate over definitions of death, particularly over brain death or death determined using neurological criteria, and the relationship between definitions of death and organ transplantation.

  10. Evolutionary theory and teleology.

    PubMed

    O'Grady, R T

    1984-04-21

    The order within and among living systems can be explained rationally by postulating a process of descent with modification, effected by factors which are extrinsic or intrinsic to the organisms. Because at the time Darwin proposed his theory of evolution there was no concept of intrinsic factors which could evolve, he postulated a process of extrinsic effects--natural selection. Biological order was thus seen as an imposed, rather than an emergent, property. Evolutionary change was seen as being determined by the functional efficiency (adaptedness) of the organism in its environment, rather than by spontaneous changes in intrinsically generated organizing factors. The initial incompleteness of Darwin's explanatory model, and the axiomatization of its postulates in neo-Darwinism, has resulted in a theory of functionalism, rather than structuralism. As such, it introduces an unnecessary teleology which confounds evolutionary studies and reduces the usefulness of the theory. This problem cannot be detected from within the neo-Darwinian paradigm because the different levels of end-directed activity--teleomatic, teleonomic, and teleological--are not recognized. They are, in fact, considered to influence one another. The theory of nonequilibrium evolution avoids these problems by returning to the basic principles of biological order and developing a structuralist explanation of intrinsically generated change. Extrinsic factors may affect the resultant evolutionary pattern, but they are neither necessary nor sufficient for evolution to occur.

  11. Evolutionary responses to climate change in parasitic systems.

    PubMed

    Chaianunporn, Thotsapol; Hovestadt, Thomas

    2015-08-01

    Species may respond to climate change in many ecological and evolutionary ways. In this simulation study, we focus on the concurrent evolution of three traits in response to climate change, namely dispersal probability, temperature tolerance (or niche width), and temperature preference (optimal habitat). More specifically, we consider evolutionary responses in host species involved in different types of interaction, that is parasitism or commensalism, and for low or high costs of a temperature tolerance-fertility trade-off (cost of generalization). We find that host species potentially evolve all three traits simultaneously in response to increasing temperature but that the evolutionary response interacts and may be compensatory depending on the conditions. The evolutionary adjustment of temperature preference is slower in the parasitism than in commensalism scenario. Parasitism, in turn, selects for higher temperature tolerance and increased dispersal. High costs for temperature tolerance (i.e. generalization) restrict evolution of tolerance and thus lead to a faster response in temperature preference than that observed under low costs. These results emphasize the possible role of biotic interactions and the importance of 'multidimensional' evolutionary responses to climate change. © 2015 John Wiley & Sons Ltd.

  12. [Cause of death: from primary disease to direct cause of death].

    PubMed

    Oppewal, F; Smedts, F M M; Meyboom-de Jong, B

    2005-07-23

    Following the death of a patient, the treating physician in the Netherlands is required to fill out two forms. Form A, which is the certificate of death and Form B, which is used by the Statistics Netherlands to compile data on causes ofdeath. The latter form often poses difficulty for the physician with respect to the primary cause of death. This applies particularly to cases of sudden death, which account for one third of all deaths in the Netherlands. As a result, the statistical analyses appear to lead to an incorrect representation of the distribution of causes of death. A more thorough investigation into the primary cause of death is desirable, if necessary, supported by a request for an autopsy. The primary cause of death is to be regarded as the basic disease from which the cascade of changes ultimately leading to death originated.

  13. Bursts of transposable elements as an evolutionary driving force.

    PubMed

    Belyayev, A

    2014-12-01

    A burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress-induced bursts of different TEs. The events for which bursts of TEs have been recorded include domestication, polyploidy, changes in mating systems, interspecific and intergeneric hybridization and abiotic stress. Cases involving abiotic stress, particularly bursts of TEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro- and macro-evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts of TEs and their possible consequences, with particular emphasis on the speciation process. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  14. Exploring children's understanding of death: through drawings and the Death Concept Questionnaire.

    PubMed

    Bonoti, Fotini; Leondari, Angeliki; Mastora, Adelais

    2013-01-01

    To investigate whether children's understanding of the concept of death varies as a function of death experience and age, 52 children aged 7, 9, and 11 years (26 had a personal death experience), drew a picture reflecting the meaning of the word death and completed the Death Concept Questionnaire for examination of Human and Animal Death. The results showed that the 2 methodological tools used offered complementary information and that children's understanding of death is related both to age and past experience. Children with death experience seem to have a more realistic understanding of death than their inexperienced age-mates. As regards to the effect of age, our findings support the assumption that the different components of death develop through different processes.

  15. The human dark side: evolutionary psychology and original sin.

    PubMed

    Lee, Joseph; Theol, M

    2014-04-01

    Human nature has a dark side, something important to religions. Evolutionary psychology has been used to illuminate the human shadow side, although as a discipline it has attracted criticism. This article seeks to examine the evolutionary psychology's understanding of human nature and to propose an unexpected dialog with an enduring account of human evil known as original sin. Two cases are briefly considered: murder and rape. To further the exchange, numerous theoretical and methodological criticisms and replies of evolutionary psychology are explored jointly with original sin. Evolutionary psychology can partner with original sin since they share some theoretical likenesses and together they offer insights into the nature of what it means to be human.

  16. Ancestral assumptions and the clinical uncertainty of evolutionary medicine.

    PubMed

    Cournoyea, Michael

    2013-01-01

    Evolutionary medicine is an emerging field of medical studies that uses evolutionary theory to explain the ultimate causes of health and disease. Educational tools, online courses, and medical school modules are being developed to help clinicians and students reconceptualize health and illness in light of our evolutionary past. Yet clinical guidelines based on our ancient life histories are epistemically weak, relying on the controversial assumptions of adaptationism and advocating a strictly biophysical account of health. To fulfill the interventionist goals of clinical practice, it seems that proximate explanations are all we need to develop successful diagnostic and therapeutic guidelines. Considering these epistemic concerns, this article argues that the clinical relevance of evolutionary medicine remains uncertain at best.

  17. A theoretical comparison of evolutionary algorithms and simulated annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-08-28

    This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications formore » the performance of a variety of other optimization algorithm.« less

  18. Applying evolutionary concepts to wildlife disease ecology and management

    PubMed Central

    Vander Wal, Eric; Garant, Dany; Calmé, Sophie; Chapman, Colin A; Festa-Bianchet, Marco; Millien, Virginie; Rioux-Paquette, Sébastien; Pelletier, Fanie

    2014-01-01

    Existing and emerging infectious diseases are among the most pressing global threats to biodiversity, food safety and human health. The complex interplay between host, pathogen and environment creates a challenge for conserving species, communities and ecosystem functions, while mediating the many known ecological and socio-economic negative effects of disease. Despite the clear ecological and evolutionary contexts of host–pathogen dynamics, approaches to managing wildlife disease remain predominantly reactionary, focusing on surveillance and some attempts at eradication. A few exceptional studies have heeded recent calls for better integration of ecological concepts in the study and management of wildlife disease; however, evolutionary concepts remain underused. Applied evolution consists of four principles: evolutionary history, genetic and phenotypic variation, selection and eco-evolutionary dynamics. In this article, we first update a classical framework for understanding wildlife disease to integrate better these principles. Within this framework, we explore the evolutionary implications of environment–disease interactions. Subsequently, we synthesize areas where applied evolution can be employed in wildlife disease management. Finally, we discuss some future directions and challenges. Here, we underscore that despite some evolutionary principles currently playing an important role in our understanding of disease in wild animals, considerable opportunities remain for fostering the practice of evolutionarily enlightened wildlife disease management. PMID:25469163

  19. Applying evolutionary concepts to wildlife disease ecology and management.

    PubMed

    Vander Wal, Eric; Garant, Dany; Calmé, Sophie; Chapman, Colin A; Festa-Bianchet, Marco; Millien, Virginie; Rioux-Paquette, Sébastien; Pelletier, Fanie

    2014-08-01

    Existing and emerging infectious diseases are among the most pressing global threats to biodiversity, food safety and human health. The complex interplay between host, pathogen and environment creates a challenge for conserving species, communities and ecosystem functions, while mediating the many known ecological and socio-economic negative effects of disease. Despite the clear ecological and evolutionary contexts of host-pathogen dynamics, approaches to managing wildlife disease remain predominantly reactionary, focusing on surveillance and some attempts at eradication. A few exceptional studies have heeded recent calls for better integration of ecological concepts in the study and management of wildlife disease; however, evolutionary concepts remain underused. Applied evolution consists of four principles: evolutionary history, genetic and phenotypic variation, selection and eco-evolutionary dynamics. In this article, we first update a classical framework for understanding wildlife disease to integrate better these principles. Within this framework, we explore the evolutionary implications of environment-disease interactions. Subsequently, we synthesize areas where applied evolution can be employed in wildlife disease management. Finally, we discuss some future directions and challenges. Here, we underscore that despite some evolutionary principles currently playing an important role in our understanding of disease in wild animals, considerable opportunities remain for fostering the practice of evolutionarily enlightened wildlife disease management.

  20. Revealing evolutionary pathways by fitness landscape reconstruction.

    PubMed

    Kogenaru, Manjunatha; de Vos, Marjon G J; Tans, Sander J

    2009-01-01

    The concept of epistasis has since long been used to denote non-additive fitness effects of genetic changes and has played a central role in understanding the evolution of biological systems. Owing to an array of novel experimental methodologies, it has become possible to experimentally determine epistatic interactions as well as more elaborate genotype-fitness maps. These data have opened up the investigation of a host of long-standing questions in evolutionary biology, such as the ruggedness of fitness landscapes and the accessibility of mutational trajectories, the evolution of sex, and the origin of robustness and modularity. Here we review this recent and timely marriage between systems biology and evolutionary biology, which holds the promise to understand evolutionary dynamics in a more mechanistic and predictive manner.

  1. The evolutionary psychology of hunger.

    PubMed

    Al-Shawaf, Laith

    2016-10-01

    An evolutionary psychological perspective suggests that emotions can be understood as coordinating mechanisms whose job is to regulate various psychological and physiological programs in the service of solving an adaptive problem. This paper suggests that it may also be fruitful to approach hunger from this coordinating mechanism perspective. To this end, I put forward an evolutionary task analysis of hunger, generating novel a priori hypotheses about the coordinating effects of hunger on psychological processes such as perception, attention, categorization, and memory. This approach appears empirically fruitful in that it yields a bounty of testable new hypotheses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Deep evolutionary origins of neurobiology

    PubMed Central

    Mancuso, Stefano

    2009-01-01

    It is generally assumed, both in common-sense argumentations and scientific concepts, that brains and neurons represent late evolutionary achievements which are present only in more advanced animals. Here we overview recently published data clearly revealing that our understanding of bacteria, unicellular eukaryotic organisms, plants, brains and neurons, rooted in the Aristotelian philosophy is flawed. Neural aspects of biological systems are obvious already in bacteria and unicellular biological units such as sexual gametes and diverse unicellular eukaryotic organisms. Altogether, processes and activities thought to represent evolutionary ‘recent’ specializations of the nervous system emerge rather to represent ancient and fundamental cell survival processes. PMID:19513267

  3. Exploring Children's Understanding of Death: Through Drawings and the Death Concept Questionnaire

    ERIC Educational Resources Information Center

    Bonoti, Fotini; Leondari, Angeliki; Mastora, Adelais

    2013-01-01

    To investigate whether children's understanding of the concept of death varies as a function of death experience and age, 52 children aged 7, 9, and 11 years (26 had a personal death experience), drew a picture reflecting the meaning of the word death and completed the Death Concept Questionnaire for examination of Human and Animal Death. The…

  4. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly

    PubMed Central

    Hanski, Ilkka A.

    2011-01-01

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time. PMID:21788506

  5. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    PubMed

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  6. Evolutionary Perspectives on the Development of Social Exchanges.

    ERIC Educational Resources Information Center

    Sheese, Brad E.; Graziano, William G.

    2002-01-01

    Argues that apparent incompatibilities between social exchange and developmental perspectives can be resolved by using evolutionary theories to extend the logic of social exchange. Discusses the implications of an expanded evolutionary perspective on social exchange and development, proposing that developmental context and genetic relatedness may…

  7. Evolutionary origins of the endosperm in flowering plants

    PubMed Central

    Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2002-01-01

    The evolutionary origin of double fertilization and the resultant endosperm tissue in flowering plants remains a puzzle, despite over a century of research. The recent resurgence of approaches to evolutionary developmental biology combining comparative biology with phylogenetics provides new understanding of endosperm origins. PMID:12225592

  8. Evolutionary game theory: cells as players.

    PubMed

    Hummert, Sabine; Bohl, Katrin; Basanta, David; Deutsch, Andreas; Werner, Sarah; Theissen, Günter; Schroeter, Anja; Schuster, Stefan

    2014-12-01

    In two papers we review game theory applications in biology below the level of cognitive living beings. It can be seen that evolution and natural selection replace the rationality of the actors appropriately. Even in these micro worlds, competing situations and cooperative relationships can be found and modeled by evolutionary game theory. Also those units of the lowest levels of life show different strategies for different environmental situations or different partners. We give a wide overview of evolutionary game theory applications to microscopic units. In this first review situations on the cellular level are tackled. In particular metabolic problems are discussed, such as ATP-producing pathways, secretion of public goods and cross-feeding. Further topics are cyclic competition among more than two partners, intra- and inter-cellular signalling, the struggle between pathogens and the immune system, and the interactions of cancer cells. Moreover, we introduce the theoretical basics to encourage scientists to investigate problems in cell biology and molecular biology by evolutionary game theory.

  9. From evolutionary computation to the evolution of things.

    PubMed

    Eiben, Agoston E; Smith, Jim

    2015-05-28

    Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as evolutionary algorithms that take place in hardware are developed, opening up new avenues towards autonomous machines that can adapt to their environment. We discuss how evolutionary computation compares with natural evolution and what its benefits are relative to other computing approaches, and we introduce the emerging area of artificial evolution in physical systems.

  10. [Evolutionary medicine: the future looking at the past].

    PubMed

    Carvalho, Serafim; Rosado, Margarida

    2008-01-01

    Evolutionary medicine is an emergent basic science that offers new and varied perspectives to the comprehension of the human health and disease, considering them as a result of a gap between our modern lives and the environment where human beings evolve. This work's goals are to understand the importance of the evolutionary theories on concepts of health and disease, providing a new insight on medicine investigation. This bibliography review is based on Medline and PsycINFO articles research between 1996 and 2007 about review and experimental studies published in English, using the key words evolutionary and medicine, psychiatry, psychology, behaviour, health, disease, gene. There were selected forty-five articles based on and with special interest on the authors' practice. There were also consulted some allusive books. The present human genome and phenotypes are essentially Palaeolithic ones: they are not adapted to the modern life style, thus favouring the so called diseases of civilization. Fitting evolutionary strategies, apparently protective ones, when excessive, are the core syndromes of many emotional disruptive behaviours and diseases. Having the stone age's genes, we are obliged to live in the space age. With the evolutionary approach, postmodern medicine is detecting better the vulnerabilities, restrictions, biases, adaptations and maladaptations of human body, its actual diseases and its preventions and treatment.

  11. Indoor Thermal Comfort, an Evolutionary Biology Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoops, John L.

    2006-04-15

    As is becoming increasingly clear, the human species evolvedin the East African savannah. Details of the precise evolutionary chainremain unresolved however it appears that the process lasted severalmillion years, culminating with the emergence of modern Homo sapiensroughly 200,000 years ago. Following that final evolutionary developmentmodern Homo sapiens relatively quickly populated the entire world.Clearly modern Homo sapiens is a successful, resourceful and adaptablespecies. In the developed societies, modern humans live an existence farremoved from our evolutionary ancestors. As we have learned over the lastcentury, this "new" lifestyle can often result in unintendedconsequences. Clearly, our modern access to food, shelter, transportationand healthcaremore » has resulted in greatly expanded expected lifespan butthis new lifestyle can also result in the emergence of different kinds ofdiseases and health problems. The environment in modern buildings haslittle resemblance to the environment of the savannah. We strive tocreate environments with little temperature, air movement and lightvariation. Building occupants often express great dissatisfaction withthese modern created environments and a significant fraction even developsomething akin to allergies to specific buildings (sick buildingsyndrome). Are the indoor environments we are creating fundamentallyunhealthy -- when examined from an evolutionary perspective?« less

  12. Epidemiological, evolutionary and co-evolutionary implications of context-dependent parasitism

    PubMed Central

    Vale, Pedro F.; Wilson, Alastair J.; Best, Alex; Boots, Mike; Little, Tom J.

    2013-01-01

    Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster growing parasites do not appear to cause more damage and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa we show how easily an interaction can shift from a severe interaction, i.e. when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modelling pathogen evolution and disease spread under different levels of infection severity, and find that environmental shifts that promote tolerance ultimately result in populations harbouring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus our results suggest two mechanisms that could underlie co-evolutionary hot- and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection. PMID:21460572

  13. Shaping communicative colour signals over evolutionary time

    PubMed Central

    Oyola Morales, José R.; Vital-García, Cuauhcihuatl; Hews, Diana K.; Martins, Emília P.

    2016-01-01

    Many evolutionary forces can shape the evolution of communicative signals, and the long-term impact of each force may depend on relative timing and magnitude. We use a phylogenetic analysis to infer the history of blue belly patches of Sceloporus lizards, and a detailed spectrophotometric analysis of four species to explore the specific forces shaping evolutionary change. We find that the ancestor of Sceloporus had blue patches. We then focus on four species; the first evolutionary shift (captured by comparison of S. merriami and S. siniferus) represents an ancient loss of the belly patch by S. siniferus, and the second evolutionary shift, bounded by S. undulatus and S. virgatus, represents a more recent loss of blue belly patch by S. virgatus. Conspicuousness measurements suggest that the species with the recent loss (S. virgatus) is the least conspicuous. Results for two other species (S. siniferus and S. merriami) suggest that over longer periods of evolutionary time, new signal colours have arisen which minimize absolute contrast with the habitat while maximizing conspicuousness to a lizard receiver. Specifically, males of the species representing an ancient loss of blue patch (S. siniferus) are more conspicuous than are females in the UV, whereas S. merriami males have evolved a green element that makes their belly patches highly sexually dimorphic but no more conspicuous than the white bellies of S. merriami females. Thus, our results suggest that natural selection may act more immediately to reduce conspicuousness, whereas sexual selection may have a more complex impact on communicative signals through the introduction of new colours. PMID:28018661

  14. Shaping communicative colour signals over evolutionary time.

    PubMed

    Ossip-Drahos, Alison G; Oyola Morales, José R; Vital-García, Cuauhcihuatl; Zúñiga-Vega, J Jaime; Hews, Diana K; Martins, Emília P

    2016-11-01

    Many evolutionary forces can shape the evolution of communicative signals, and the long-term impact of each force may depend on relative timing and magnitude. We use a phylogenetic analysis to infer the history of blue belly patches of Sceloporus lizards, and a detailed spectrophotometric analysis of four species to explore the specific forces shaping evolutionary change. We find that the ancestor of Sceloporus had blue patches. We then focus on four species; the first evolutionary shift (captured by comparison of S. merriami and S. siniferus ) represents an ancient loss of the belly patch by S. siniferus , and the second evolutionary shift, bounded by S. undulatus and S. virgatus , represents a more recent loss of blue belly patch by S. virgatus . Conspicuousness measurements suggest that the species with the recent loss ( S. virgatus ) is the least conspicuous. Results for two other species ( S. siniferus and S. merriami ) suggest that over longer periods of evolutionary time, new signal colours have arisen which minimize absolute contrast with the habitat while maximizing conspicuousness to a lizard receiver. Specifically, males of the species representing an ancient loss of blue patch ( S. siniferus ) are more conspicuous than are females in the UV, whereas S. merriami males have evolved a green element that makes their belly patches highly sexually dimorphic but no more conspicuous than the white bellies of S. merriami females. Thus, our results suggest that natural selection may act more immediately to reduce conspicuousness, whereas sexual selection may have a more complex impact on communicative signals through the introduction of new colours.

  15. Humanism and multiculturalism: an evolutionary alliance.

    PubMed

    Comas-Diaz, Lillian

    2012-12-01

    Humanism and multiculturalism are partners in an evolutionary alliance. Humanistic and multicultural psychotherapies have historically influenced each other. Humanism represents the third force in psychotherapy, while multiculturalism embodies the fourth developmental stage. Multiculturalism embraces humanistic values grounded in collective and social justice contexts. Examples of multicultural humanistic constructs include contextualism, holism, and liberation. Certainly, the multicultural-humanistic connection is a necessary shift in the evolution of psychotherapy. Humanism and multiculturalism participate in the development of an inclusive and evolutionary psychotherapy. (c) 2012 APA, all rights reserved.

  16. Evolutionary stability for matrix games under time constraints.

    PubMed

    Garay, József; Csiszár, Villő; Móri, Tamás F

    2017-02-21

    Game theory focuses on payoffs and typically ignores time constraints that play an important role in evolutionary processes where the repetition of games can depend on the strategies, too. We introduce a matrix game under time constraints, where each pairwise interaction has two consequences: both players receive a payoff and they cannot play the next game for a specified time duration. Thus our model is defined by two matrices: a payoff matrix and an average time duration matrix. Maynard Smith's concept of evolutionary stability is extended to this class of games. We illustrate the effect of time constraints by the well-known prisoner's dilemma game, where additional time constraints can ensure the existence of unique evolutionary stable strategies (ESS), both pure and mixed, or the coexistence of two pure ESS. Our general results may be useful in several fields of biology where evolutionary game theory is applied, principally in ecological games, where time constraints play an inevitable role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Avoiding Local Optima with Interactive Evolutionary Robotics

    DTIC Science & Technology

    2012-07-09

    the top of a flight of stairs selects for climbing ; suspending the robot and the target object above the ground and creating rungs between the two will...REPORT Avoiding Local Optimawith Interactive Evolutionary Robotics 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The main bottleneck in evolutionary... robotics has traditionally been the time required to evolve robot controllers. However with the continued acceleration in computational resources, the

  18. Evolution and the American social sciences: An evolutionary social scientist's view.

    PubMed

    Thayer, Bradley A

    2004-03-01

    American social scientists rarely ever use evolutionary concepts to explain behavior, despite the potential of such concepts to elucidate major social problems. I argue that this observation can be understood as the product of three influences: an ideologically narrowed political liberalism; a fear of ''Social Darwinism'' as a scientific idea, rather than a scientific apostasy; and a widely believed criticism of evolutionary thinking as deterministic, reductionistic, and Panglossian. I ask what is to be done to encourage social scientists to learn and to apply evolutionary lessons. I answer with four solutions. First, evolutionary social scientists should more effectively educate their non-evolutionary students and colleagues. Second, they should publicize, even popularize, accessible refutations of perennially misleading criticisms. Third, they should more credibly assure skeptics that evolutionary theory not only keeps the ''social'' in social science but better explains social behavior than can any individual-level theory, such as rational-choice theory. Fourth, they should recall that biology took generations to become Darwinian, and they must understand that the social sciences may take as long to become evolutionary.

  19. DEATH, DYING AND NEAR DEATH EXPERIENCE

    PubMed Central

    Singh, Ajai R.; Bagadia, V.N.; Pradhan, P.V.; Acharya, V.N.

    1988-01-01

    SUMMARY Psychology of deaths due to acute medical emergencies is under-researched. Most studies till now have concentrated on extended-death situations like malignancy. This open pilot study of twenty five patients examines the psychological state of patients during a life threatening acute medical illness (Group A, ten patients) and of those who survive such an experience (Group B, fifteen patients). The study finds psychological exploration both possible and necessary if carried out in a discreet manner. Salient features of the interview technique are discussed. The study finds out whether patients are aware of the possibility of terminality. The psychological disturbances manifest and nature of care expected are also discussed. Near Death Experiences of those who acknowledge their occurence are reported. Some nuances of thanatological research are high-lighted: What are the abilities needed in an interviewer? Can such exploration increase psychological distress in a patient already prone to it because of serious medical sickness? What impact such research can have on the interviewer himself? The paper answers some of these common questions while developing the method of thanatological study in acute medical death-situations. PMID:21927325

  20. Children and Death.

    ERIC Educational Resources Information Center

    Brennan, Andrew J. J.

    Health professionals and educators should develop their abilities to educate about death and to comfort the bereaved. Due to lower death rates, the lack of philosophical religious views, and distorted perceptions of death contributed by television, death has become a mystery instead of a segment of the common experience. Particularly when a child…

  1. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    PubMed

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Programmed cell death in trypanosomatids and other unicellular organisms.

    PubMed

    Debrabant, Alain; Lee, Nancy; Bertholet, Sylvie; Duncan, Robert; Nakhasi, Hira L

    2003-03-01

    In multicellular organisms, cellular growth and development can be controlled by programmed cell death (PCD), which is defined by a sequence of regulated events. However, PCD is thought to have evolved not only to regulate growth and development in multicellular organisms but also to have a functional role in the biology of unicellular organisms. In protozoan parasites and in other unicellular organisms, features of PCD similar to those in multicellular organisms have been reported, suggesting some commonality in the PCD pathway between unicellular and multicellular organisms. However, more extensive studies are needed to fully characterise the PCD pathway and to define the factors that control PCD in the unicellular organisms. The understanding of the PCD pathway in unicellular organisms could delineate the evolutionary origin of this pathway. Further characterisation of the PCD pathway in the unicellular parasites could provide information regarding their pathogenesis, which could be exploited to target new drugs to limit their growth and treat the disease they cause.

  3. Comparison of multiobjective evolutionary algorithms: empirical results.

    PubMed

    Zitzler, E; Deb, K; Thiele, L

    2000-01-01

    In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in converging to the Pareto-optimal front (e.g., multimodality and deception). By investigating these different problem features separately, it is possible to predict the kind of problems to which a certain technique is or is not well suited. However, in contrast to what was suspected beforehand, the experimental results indicate a hierarchy of the algorithms under consideration. Furthermore, the emerging effects are evidence that the suggested test functions provide sufficient complexity to compare multiobjective optimizers. Finally, elitism is shown to be an important factor for improving evolutionary multiobjective search.

  4. Religiosity and the Construction of Death in Turkish Death Announcements, 1970-2009

    ERIC Educational Resources Information Center

    Ergin, Murat

    2012-01-01

    Death and rituals performed after death reflect and reproduce social distinctions despite death's popular reputation as a great leveler. This study examines expressions of religiosity and constructions of death in Turkish death announcements, paying particular attention to gendered, ethnic, and temporal variations as well as markers of status and…

  5. Evolutionary speed of species invasions.

    PubMed

    García-Ramos, Gisela; Rodríguez, Diego

    2002-04-01

    Successful invasion may depend of the capacity of a species to adjust genetically to a spatially varying environment. This research modeled a species invasion by examining the interaction between a quantitative genetic trait and population density. It assumed: (I) a quantitative genetic trait describes the adaptation of an individual to its local ecological conditions; (2) populations far from the local optimum grow more slowly than those near the optimum; and (3) the evolution of a trait depends on local population density, because differences in local population densities cause asymmetrical gene flow. This genetics-density interaction determined the propagation speed of populations. Numerical simulations showed that populations spread by advancing as two synchronic traveling waves, one for population density and one for trait adaptation. The form of the density wave was a step front that advances homogenizing populations at their carrying capacity; the adaptation wave was a curve with finite slope that homogenizes populations at full adaptation. The largest speed of population expansion, for a dimensionless analysis, corresponded to an almost homogeneous spatial environment when this model approached an ecological description such as the Fisher-Skellam's model. A large genetic response also favored faster speeds. Evolutionary speeds, in a natural scale, showed a wide range of rates that were also slower compared to models that only consider demographics. This evolutionary speed increased with high heritability, strong stabilizing selection, and high intrinsic growth rate. It decreased for steeper environmental gradients. Also indicated was an optimal dispersal rate over which evolutionary speed declined. This is expected because dispersal moves individuals further, but homogenizes populations genetically, making them maladapted. The evolutionary speed was compared to observed data. Furthermore, a moderate increase in the speed of expansion was predicted for

  6. PA6 Death chat: engaging with dying and death.

    PubMed

    Goodhead, Andrew; Hartley, Nigel

    2015-04-01

    Talking about death continues to be a social taboo. St Christopher's has a large, welcoming social space, (The Anniversary Centre) and is committed to opening up its buildings in a number of ways. The St Christopher's social programme, of which Death Chat is part, aims to break down social taboos. Hospices have a responsibility to engage creatively with patients, family members, carers and the wider community. Death Chat, held in the hospice buildings, enables honest discussion about dying and death and topics surrounding these themes. Death Chat meets weekly and is an open meeting that takes a different subject each week as the starting point for conversation. Cheese and wine are shared and participants quickly find a place in the group. Death Chat has attracted patients, family members, bereaved relatives and the community since September 2013. Attendees have reflected that coming has broken taboos. Peter said, 'it's nowhere near as depressing as it sounds; it's a nice, friendly atmosphere - a convivial place.' Molly found Death Chat to be a welcoming, open and challenging space, 'I have learnt that death is more about my attitude to life than anything else. It has been by far the most important lesson I have learnt since dealing with bereavement.' Death Chat provides a forum in which discussion of dying and death for recognises that these are social events and reclaims them from being taboo, to being a normal part of life's experience. © 2015, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. Evolutionary Theory under Fire.

    ERIC Educational Resources Information Center

    Lewin, Roger

    1980-01-01

    Summarizes events of a conference on evolutionary biology in Chicago entitled: "Macroevolution." Reviews the theory of modern synthesis, a term used to explain Darwinism in terms of population biology and genetics. Issues presented at the conference are discussed in detail. (CS)

  8. Literary study and evolutionary theory : A review essay.

    PubMed

    Carroll, J

    1998-09-01

    Several recent books have claimed to integrate literary study with evolutionary biology. All of the books here considered, except Robert Storey's, adopt conceptions of evolutionary theory that are in some way marginal to the Darwinian adaptationist program. All the works attempt to connect evolutionary study with various other disciplines or methodologies: for example, with cultural anthropology, cognitive psychology, the psychology of emotion, neurobiology, chaos theory, or structuralist linguistics. No empirical paradigm has yet been established for this field, but important steps have been taken, especially by Storey, in formulating basic principles, identifying appropriate disciplinary connections, and marking out lines of inquiry. Reciprocal efforts are needed from biologists and social scientists.

  9. EvolQG - An R package for evolutionary quantitative genetics

    PubMed Central

    Melo, Diogo; Garcia, Guilherme; Hubbe, Alex; Assis, Ana Paula; Marroig, Gabriel

    2016-01-01

    We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the \\textbf{EvolQG} package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification. PMID:27785352

  10. Anticipatory Mechanisms in Evolutionary Living Systems

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.; Holmberg, Stig C.

    2010-11-01

    This paper deals firstly with a revisiting of Darwin's theory of Natural Selection. Darwin in his book never uses the word "evolution", but shows a clear position about mutability of species. Darwin's Natural Selection was mainly inspired by the anticipatory Artificial Selection by humans in domestication, and the Malthus struggle for existence. Darwin showed that the struggle for existence leads to the preservation of the most divergent offspring of any one species. He cited several times the canon of "Natura non facit saltum". He spoke about the origin of life from some one primordial form, into which life was first breathed. Finally, Darwin made anticipation about the future researches in psychology. This paper cites the work of Ernst Mayr who was the first, after 90 years of an intense scientific debate, to present a new and stable Darwinian paradigm as the "Evolutionary Synthesis" in 1942. To explain what is life, the Living Systems Theory (LST) by J. G. Miller is presented. It is showed that the Autopoietic Systems Theory of Varela et al is also a fundamental component of living systems. In agreement with Darwin, the natural selection is a necessary condition for transformation of biological systems, but is not a sufficient condition. Thus, in this paper we conjecture that an anticipatory evolutionary mechanism exists with the genetic code that is a self-replicating and self-modifying anticipatory program. As demonstrated by Nobel laureate McClintock, evolution in genomes is programmed. The word "program" comes from "pro-gram" meaning to write before, by anticipation, and means a plan for the programming of a mechanism, or a sequence of coded instructions that can be inserted into a mechanism, or a sequence of coded instructions, as genes of behavioural responses, that is part of an organism. For example, cell death may be programmed by what is called the apoptosis. This definitively is a great breakthrough in our understanding of biological evolution. Hence

  11. Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process

    PubMed Central

    Woese, Carl R.; Olsen, Gary J.; Ibba, Michael; Söll, Dieter

    2000-01-01

    The aminoacyl-tRNA synthetases (AARSs) and their relationship to the genetic code are examined from the evolutionary perspective. Despite a loose correlation between codon assignments and AARS evolutionary relationships, the code is far too highly structured to have been ordered merely through the evolutionary wanderings of these enzymes. Nevertheless, the AARSs are very informative about the evolutionary process. Examination of the phylogenetic trees for each of the AARSs reveals the following. (i) Their evolutionary relationships mostly conform to established organismal phylogeny: a strong distinction exists between bacterial- and archaeal-type AARSs. (ii) Although the evolutionary profiles of the individual AARSs might be expected to be similar in general respects, they are not. It is argued that these differences in profiles reflect the stages in the evolutionary process when the taxonomic distributions of the individual AARSs became fixed, not the nature of the individual enzymes. (iii) Horizontal transfer of AARS genes between Bacteria and Archaea is asymmetric: transfer of archaeal AARSs to the Bacteria is more prevalent than the reverse, which is seen only for the “gemini group.” (iv) The most far-ranging transfers of AARS genes have tended to occur in the distant evolutionary past, before or during formation of the primary organismal domains. These findings are also used to refine the theory that at the evolutionary stage represented by the root of the universal phylogenetic tree, cells were far more primitive than their modern counterparts and thus exchanged genetic material in far less restricted ways, in effect evolving in a communal sense. PMID:10704480

  12. Protein interface classification by evolutionary analysis

    PubMed Central

    2012-01-01

    Background Distinguishing biologically relevant interfaces from lattice contacts in protein crystals is a fundamental problem in structural biology. Despite efforts towards the computational prediction of interface character, many issues are still unresolved. Results We present here a protein-protein interface classifier that relies on evolutionary data to detect the biological character of interfaces. The classifier uses a simple geometric measure, number of core residues, and two evolutionary indicators based on the sequence entropy of homolog sequences. Both aim at detecting differential selection pressure between interface core and rim or rest of surface. The core residues, defined as fully buried residues (>95% burial), appear to be fundamental determinants of biological interfaces: their number is in itself a powerful discriminator of interface character and together with the evolutionary measures it is able to clearly distinguish evolved biological contacts from crystal ones. We demonstrate that this definition of core residues leads to distinctively better results than earlier definitions from the literature. The stringent selection and quality filtering of structural and sequence data was key to the success of the method. Most importantly we demonstrate that a more conservative selection of homolog sequences - with relatively high sequence identities to the query - is able to produce a clearer signal than previous attempts. Conclusions An evolutionary approach like the one presented here is key to the advancement of the field, which so far was missing an effective method exploiting the evolutionary character of protein interfaces. Its coverage and performance will only improve over time thanks to the incessant growth of sequence databases. Currently our method reaches an accuracy of 89% in classifying interfaces of the Ponstingl 2003 datasets and it lends itself to a variety of useful applications in structural biology and bioinformatics. We made the

  13. Evolutionary ecology of virus emergence.

    PubMed

    Dennehy, John J

    2017-02-01

    The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment. © 2016 New York Academy of Sciences.

  14. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    PubMed

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  15. Regulatory Evolution and Theoretical Arguments in Evolutionary Biology

    ERIC Educational Resources Information Center

    Ioannidis, Stavros

    2013-01-01

    The "cis"-regulatory hypothesis is one of the most important claims of evolutionary developmental biology. In this paper I examine the theoretical argument for "cis"-regulatory evolution and its role within evolutionary theorizing. I show that, although the argument has some weaknesses, it acts as a useful example for the importance of current…

  16. Evolutionary Optimization of a Quadrifilar Helical Antenna

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Linden, Derek S.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Automated antenna synthesis via evolutionary design has recently garnered much attention in the research literature. Evolutionary algorithms show promise because, among search algorithms, they are able to effectively search large, unknown design spaces. NASA's Mars Odyssey spacecraft is due to reach final Martian orbit insertion in January, 2002. Onboard the spacecraft is a quadrifilar helical antenna that provides telecommunications in the UHF band with landed assets, such as robotic rovers. Each helix is driven by the same signal which is phase-delayed in 90 deg increments. A small ground plane is provided at the base. It is designed to operate in the frequency band of 400-438 MHz. Based on encouraging previous results in automated antenna design using evolutionary search, we wanted to see whether such techniques could improve upon Mars Odyssey antenna design. Specifically, a co-evolutionary genetic algorithm is applied to optimize the gain and size of the quadrifilar helical antenna. The optimization was performed in-situ in the presence of a neighboring spacecraft structure. On the spacecraft, a large aluminum fuel tank is adjacent to the antenna. Since this fuel tank can dramatically affect the antenna's performance, we leave it to the evolutionary process to see if it can exploit the fuel tank's properties advantageously. Optimizing in the presence of surrounding structures would be quite difficult for human antenna designers, and thus the actual antenna was designed for free space (with a small ground plane). In fact, when flying on the spacecraft, surrounding structures that are moveable (e.g., solar panels) may be moved during the mission in order to improve the antenna's performance.

  17. Human compulsivity: A perspective from evolutionary medicine.

    PubMed

    Stein, Dan J; Hermesh, Haggai; Eilam, David; Segalas, Cosi; Zohar, Joseph; Menchon, Jose; Nesse, Randolph M

    2016-05-01

    Biological explanations address not only proximal mechanisms (for example, the underlying neurobiology of obsessive-compulsive disorder), but also distal mechanisms (that is, a consideration of how particular neurobiological mechanisms evolved). Evolutionary medicine has emphasized a series of explanations for vulnerability to disease, including constraints, mismatch, and tradeoffs. The current paper will consider compulsive symptoms in obsessive-compulsive and related disorders and behavioral addictions from this evolutionary perspective. It will argue that while obsessive-compulsive disorder (OCD) is typically best conceptualized as a dysfunction, it is theoretically and clinically valuable to understand some symptoms of obsessive-compulsive and related disorders in terms of useful defenses. The symptoms of behavioral addictions can also be conceptualized in evolutionary terms (for example, mismatch), which in turn provides a sound foundation for approaching assessment and intervention. Copyright © 2016. Published by Elsevier B.V.

  18. Evolutionary orbital period change in BH Virginis

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Y. M.; Tessema, S. B.; Berdnikov, L. N.

    2017-04-01

    The study of orbital period change of close binaries, such as BH Virginis (BH Vir), using very long time baseline is vital to understand evolutionary processes of the system. In this paper, we use photometric data to analyze the evolutionary orbital period change of the short period RS CVn-type binary system, BH Vir, with a time baseline spanning 123 years. We used the software version of the Hertzsprung method to describe the O-C curve of the system, and we found that the orbital period secularly decreases at a rate of dp/dt=-(0.0013000 ± 0.0000863) s yr^{-1}. Because BH Vir is a typical detached binary system and both components are late type (G0 V + G2 V) stars, the evolutionary period change could be caused by the angular momentum loss due to tides coupled with magnetic breaking.

  19. Infrastructure system restoration planning using evolutionary algorithms

    USGS Publications Warehouse

    Corns, Steven; Long, Suzanna K.; Shoberg, Thomas G.

    2016-01-01

    This paper presents an evolutionary algorithm to address restoration issues for supply chain interdependent critical infrastructure. Rapid restoration of infrastructure after a large-scale disaster is necessary to sustaining a nation's economy and security, but such long-term restoration has not been investigated as thoroughly as initial rescue and recovery efforts. A model of the Greater Saint Louis Missouri area was created and a disaster scenario simulated. An evolutionary algorithm is used to determine the order in which the bridges should be repaired based on indirect costs. Solutions were evaluated based on the reduction of indirect costs and the restoration of transportation capacity. When compared to a greedy algorithm, the evolutionary algorithm solution reduced indirect costs by approximately 12.4% by restoring automotive travel routes for workers and re-establishing the flow of commodities across the three rivers in the Saint Louis area.

  20. From Death to Death Certificate: What do the Dead say?

    PubMed

    Gill, James R

    2017-03-01

    This is an overview of medicolegal death investigation and death certification. Postmortem toxicological analysis, particularly for ethanol and drugs of abuse, plays a large role in the forensic investigation of natural and unnatural deaths. Postmortem drug concentrations must be interpreted in light of the autopsy findings and circumstances. Interpretations of drug and ethanol concentrations are important for death certification, but they also may be important for other stakeholders such as police, attorneys, public health practitioners, and the next-of-kin.

  1. Bell-Curve Based Evolutionary Optimization Algorithm

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Laba, K.; Kincaid, R.

    1998-01-01

    The paper presents an optimization algorithm that falls in the category of genetic, or evolutionary algorithms. While the bit exchange is the basis of most of the Genetic Algorithms (GA) in research and applications in America, some alternatives, also in the category of evolutionary algorithms, but use a direct, geometrical approach have gained popularity in Europe and Asia. The Bell-Curve Based Evolutionary Algorithm (BCB) is in this alternative category and is distinguished by the use of a combination of n-dimensional geometry and the normal distribution, the bell-curve, in the generation of the offspring. The tool for creating a child is a geometrical construct comprising a line connecting two parents and a weighted point on that line. The point that defines the child deviates from the weighted point in two directions: parallel and orthogonal to the connecting line, the deviation in each direction obeying a probabilistic distribution. Tests showed satisfactory performance of BCB. The principal advantage of BCB is its controllability via the normal distribution parameters and the geometrical construct variables.

  2. An evolutionary behaviorist perspective on orgasm

    PubMed Central

    Fleischman, Diana S.

    2016-01-01

    Evolutionary explanations for sexual behavior and orgasm most often posit facilitating reproduction as the primary function (i.e. greater rate of fertilization). Other reproductive benefits of sexual pleasure and orgasm such as improved bonding of parents have also been discussed but not thoroughly. Although sex is known to be highly reinforcing, behaviorist principles are rarely invoked alongside evolutionary psychology in order to account for human sexual and social behavior. In this paper, I will argue that intense sexual pleasure, especially orgasm, can be understood as a primary reinforcer shaped by evolution to reinforce behavior that facilitates reproductive success (i.e. conception through copulation). Next, I will describe an evolutionary account of social shaping. In particular, I will focus on how humans evolved to use orgasm and sexual arousal to shape the social behavior and emotional states of others through both classical and operant conditioning and through both reproductive and non-reproductive forms of sexual behavior. Finally, I will describe how orgasm is a signal of sensitivity to reinforcement that is itself reinforcing. PMID:27799083

  3. Evolutionary medicine: update on the relevance to family practice.

    PubMed

    Naugler, Christopher T

    2008-09-01

    To review the relevance of evolutionary medicine to family practice and family physician training. Articles were located through a MEDLINE search, using the key words evolution, Darwin, and adaptation. Most references presented level III evidence (expert opinion), while a minority provided level II evidence (epidemiologic studies). Evolutionary medicine deals with the interplay of biology and the environment in the understanding of human disease. Yet medical schools have virtually ignored the need for family physicians to have more than a cursory knowledge of this topic. A review of the main trends in this field most relevant to family practice revealed that a basic knowledge of evolutionary medicine might help in explaining the causation of diseases to patients. Evolutionary medicine has also proven key to explaining the reasons for the development of antibiotic resistance and has the potential to explain cancer pathogenesis. As an organizing principle, this field also has potential in the teaching of family medicine. Evolutionary medicine should be studied further and incorporated into medical training and practice. Its practical utility will be proven through the generation of testable hypotheses and their application in relation to disease causation and possible prevention.

  4. Computationally mapping sequence space to understand evolutionary protein engineering.

    PubMed

    Armstrong, Kathryn A; Tidor, Bruce

    2008-01-01

    Evolutionary protein engineering has been dramatically successful, producing a wide variety of new proteins with altered stability, binding affinity, and enzymatic activity. However, the success of such procedures is often unreliable, and the impact of the choice of protein, engineering goal, and evolutionary procedure is not well understood. We have created a framework for understanding aspects of the protein engineering process by computationally mapping regions of feasible sequence space for three small proteins using structure-based design protocols. We then tested the ability of different evolutionary search strategies to explore these sequence spaces. The results point to a non-intuitive relationship between the error-prone PCR mutation rate and the number of rounds of replication. The evolutionary relationships among feasible sequences reveal hub-like sequences that serve as particularly fruitful starting sequences for evolutionary search. Moreover, genetic recombination procedures were examined, and tradeoffs relating sequence diversity and search efficiency were identified. This framework allows us to consider the impact of protein structure on the allowed sequence space and therefore on the challenges that each protein presents to error-prone PCR and genetic recombination procedures.

  5. Properties of Artifact Representations for Evolutionary Design

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2004-01-01

    To achieve evolutionary design systems that scale to the levels achieved by man-made artifacts we can look to their characteristics of modularity, hierarchy and regularity to guide us. For this we focus on design representations, since they strongly determine the ability of evolutionary design systems to evolve artifacts with these characteristics. We identify three properties of design representations - combination, control-flow and abstraction - and discuss how they relate to hierarchy, modularity and regularity.

  6. Aging and Death Education.

    ERIC Educational Resources Information Center

    Pinder, Margaret M.; Hayslip, Bert, Jr.

    1980-01-01

    The elderly death rate is somewhat higher than the death rate in general. Numbers of schools with gerontological curricula and frequency of death education courses are positively related to elderly death rates. The contention that elderly deaths have less social impact is not supported. (JAC)

  7. Invisible hand effect in an evolutionary minority game model

    NASA Astrophysics Data System (ADS)

    Sysi-Aho, Marko; Saramäki, Jari; Kaski, Kimmo

    2005-03-01

    In this paper, we study the properties of a minority game with evolution realized by using genetic crossover to modify fixed-length decision-making strategies of agents. Although the agents in this evolutionary game act selfishly by trying to maximize their own performances only, it turns out that the whole society will eventually be rewarded optimally. This “invisible hand” effect is what Adam Smith over two centuries ago expected to take place in the context of free market mechanism. However, this behaviour of the society of agents is realized only under idealized conditions, where all agents are utilizing the same efficient evolutionary mechanism. If on the other hand part of the agents are adaptive, but not evolutionary, the system does not reach optimum performance, which is also the case if part of the evolutionary agents form a uniformly acting “cartel”.

  8. Treatment resistance in urothelial carcinoma: an evolutionary perspective.

    PubMed

    Vlachostergios, Panagiotis J; Faltas, Bishoy M

    2018-05-02

    The emergence of treatment-resistant clones is a critical barrier to cure in patients with urothelial carcinoma. Setting the stage for the evolution of resistance, urothelial carcinoma is characterized by extensive mutational heterogeneity, which is detectable even in patients with early stage disease. Chemotherapy and immunotherapy both act as selective pressures that shape the evolutionary trajectory of urothelial carcinoma throughout the course of the disease. A detailed understanding of the dynamics of evolutionary drivers is required for the rational development of curative therapies. Herein, we describe the molecular basis of the clonal evolution of urothelial carcinomas and the use of genomic approaches to predict treatment responses. We discuss various mechanisms of resistance to chemotherapy with a focus on the mutagenic effects of the DNA dC->dU-editing enzymes APOBEC3 family of proteins. We also review the evolutionary mechanisms underlying resistance to immunotherapy, such as the loss of clonal tumour neoantigens. By dissecting treatment resistance through an evolutionary lens, the field will advance towards true precision medicine for urothelial carcinoma.

  9. What have humans done for evolutionary biology? Contributions from genes to populations.

    PubMed

    Briga, Michael; Griffin, Robert M; Berger, Vérane; Pettay, Jenni E; Lummaa, Virpi

    2017-11-15

    Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. © 2017 The Author(s).

  10. What have humans done for evolutionary biology? Contributions from genes to populations

    PubMed Central

    Briga, Michael; Griffin, Robert M.; Berger, Vérane; Pettay, Jenni E.

    2017-01-01

    Many fundamental concepts in evolutionary biology were discovered using non-human study systems. Humans are poorly suited to key study designs used to advance this field, and are subject to cultural, technological, and medical influences often considered to restrict the pertinence of human studies to other species and general contexts. Whether studies using current and recent human populations provide insights that have broader biological relevance in evolutionary biology is, therefore, frequently questioned. We first surveyed researchers in evolutionary biology and related fields on their opinions regarding whether studies on contemporary humans can advance evolutionary biology. Almost all 442 participants agreed that humans still evolve, but fewer agreed that this occurs through natural selection. Most agreed that human studies made valuable contributions to evolutionary biology, although those less exposed to human studies expressed more negative views. With a series of examples, we discuss strengths and limitations of evolutionary studies on contemporary humans. These show that human studies provide fundamental insights into evolutionary processes, improve understanding of the biology of many other species, and will make valuable contributions to evolutionary biology in the future. PMID:29118130

  11. Buried treasure: evolutionary perspectives on microbial iron piracy

    PubMed Central

    Barber, Matthew F.; Elde, Nels C.

    2015-01-01

    Host-pathogen interactions provide valuable systems for the study of evolutionary genetics and natural selection. The sequestration of essential iron has emerged as a critical innate defense system termed nutritional immunity, leading pathogens to evolve mechanisms of `iron piracy' to scavenge this metal from host proteins. This battle for iron carries numerous consequences not only for host-pathogen evolution, but also microbial community interactions. Here we highlight recent and potential future areas of investigation on the evolutionary implications of microbial iron piracy in relation to molecular arms races, host range, competition, and virulence. Applying evolutionary genetic approaches to the study of microbial iron acquisition could also provide new inroads for understanding and combating infectious disease. PMID:26431675

  12. An evolutionary algorithm that constructs recurrent neural networks.

    PubMed

    Angeline, P J; Saunders, G M; Pollack, J B

    1994-01-01

    Standard methods for simultaneously inducing the structure and weights of recurrent neural networks limit every task to an assumed class of architectures. Such a simplification is necessary since the interactions between network structure and function are not well understood. Evolutionary computations, which include genetic algorithms and evolutionary programming, are population-based search methods that have shown promise in many similarly complex tasks. This paper argues that genetic algorithms are inappropriate for network acquisition and describes an evolutionary program, called GNARL, that simultaneously acquires both the structure and weights for recurrent networks. GNARL's empirical acquisition method allows for the emergence of complex behaviors and topologies that are potentially excluded by the artificial architectural constraints imposed in standard network induction methods.

  13. The Evolutionary History of Protein Domains Viewed by Species Phylogeny

    PubMed Central

    Yang, Song; Bourne, Philip E.

    2009-01-01

    Background Protein structural domains are evolutionary units whose relationships can be detected over long evolutionary distances. The evolutionary history of protein domains, including the origin of protein domains, the identification of domain loss, transfer, duplication and combination with other domains to form new proteins, and the formation of the entire protein domain repertoire, are of great interest. Methodology/Principal Findings A methodology is presented for providing a parsimonious domain history based on gain, loss, vertical and horizontal transfer derived from the complete genomic domain assignments of 1015 organisms across the tree of life. When mapped to species trees the evolutionary history of domains and domain combinations is revealed, and the general evolutionary trend of domain and combination is analyzed. Conclusions/Significance We show that this approach provides a powerful tool to study how new proteins and functions emerged and to study such processes as horizontal gene transfer among more distant species. PMID:20041107

  14. How conservative are evolutionary anthropologists?: a survey of political attitudes.

    PubMed

    Lyle, Henry F; Smith, Eric A

    2012-09-01

    The application of evolutionary theory to human behavior has elicited a variety of critiques, some of which charge that this approach expresses or encourages conservative or reactionary political agendas. In a survey of graduate students in psychology, Tybur, Miller, and Gangestad (Human Nature, 18, 313-328, 2007) found that the political attitudes of those who use an evolutionary approach did not differ from those of other psychology grad students. Here, we present results from a directed online survey of a broad sample of graduate students in anthropology that assays political views. We found that evolutionary anthropology graduate students were very liberal in their political beliefs, overwhelmingly voted for a liberal U.S. presidential candidate in the 2008 election, and identified with liberal political parties; in this, they were almost indistinguishable from non-evolutionary anthropology students. Our results contradict the view that evolutionary anthropologists hold conservative or reactionary political views. We discuss some possible reasons for the persistence of this view in terms of the sociology of science.

  15. On evolutionary systems.

    PubMed

    Alvarez de Lorenzana, J M; Ward, L M

    1987-01-01

    This paper develops a metatheoretical framework for understanding evolutionary systems (systems that develop in ways that increase their own variety). The framework addresses shortcomings seen in other popular systems theories. It concerns both living and nonliving systems, and proposes a metahierarchy of hierarchical systems. Thus, it potentially addresses systems at all descriptive levels. We restrict our definition of system to that of a core system whose parts have a different ontological status than the system, and characterize the core system in terms of five global properties: minimal length interval, minimal time interval, system cycle, total receptive capacity, and system potential. We propose two principles through the interaction of which evolutionary systems develop. The Principle of Combinatorial Expansion describes how a core system realizes its developmental potential through a process of progressive differentiation of the single primal state up to a limit stage. The Principle of Generative Condensation describes how the components of the last stage of combinatorial expansion condense and become the environment for and components of new, enriched systems. The early evolution of the Universe after the "big bang" is discussed in light of these ideas as an example of the application of the framework.

  16. Evolutionary trends in directional hearing

    PubMed Central

    Carr, Catherine E.; Christensen-Dalsgaard, Jakob

    2016-01-01

    Tympanic hearing is a true evolutionary novelty that arose in parallel within early tetrapods. We propose that in these tetrapods, selection for sound localization in air acted upon pre-existing directionally sensitive brainstem circuits, similar to those in fishes. Auditory circuits in birds and lizards resemble this ancestral, directionally sensitive framework. Despite this anatomically similarity, coding of sound source location differs between birds and lizards. In birds, brainstem circuits compute sound location from interaural cues. Lizards, however, have coupled ears, and do not need to compute source location in the brain. Thus their neural processing of sound direction differs, although all show mechanisms for enhancing sound source directionality. Comparisons with mammals reveal similarly complex interactions between coding strategies and evolutionary history. PMID:27448850

  17. Ultimate Realities: Deterministic and Evolutionary

    PubMed Central

    Moxley, Roy A

    2007-01-01

    References to ultimate reality commonly turn up in the behavioral literature as references to determinism. However, this determinism is often difficult to interpret. There are different kinds of determinisms as well as different kinds of ultimate realities for a behaviorist to consider. To clarify some of the issues involved, the views of ultimate realities are treated as falling along a continuum, with extreme views of complete indeterminism and complete determinism at either end and various mixes in between. Doing so brings into play evolutionary realities and the movement from indeterminism to determinism, as in Peirce's evolutionary cosmology. In addition, this framework helps to show how the views of determinism by B. F. Skinner and other behaviorists have shifted over time. PMID:22478489

  18. Why don’t you use Evolutionary Algorithms in Big Data?

    NASA Astrophysics Data System (ADS)

    Stanovov, Vladimir; Brester, Christina; Kolehmainen, Mikko; Semenkina, Olga

    2017-02-01

    In this paper we raise the question of using evolutionary algorithms in the area of Big Data processing. We show that evolutionary algorithms provide evident advantages due to their high scalability and flexibility, their ability to solve global optimization problems and optimize several criteria at the same time for feature selection, instance selection and other data reduction problems. In particular, we consider the usage of evolutionary algorithms with all kinds of machine learning tools, such as neural networks and fuzzy systems. All our examples prove that Evolutionary Machine Learning is becoming more and more important in data analysis and we expect to see the further development of this field especially in respect to Big Data.

  19. Evolutionary genetics of insect innate immunity.

    PubMed

    Viljakainen, Lumi

    2015-11-01

    Patterns of evolution in immune defense genes help to understand the evolutionary dynamics between hosts and pathogens. Multiple insect genomes have been sequenced, with many of them having annotated immune genes, which paves the way for a comparative genomic analysis of insect immunity. In this review, I summarize the current state of comparative and evolutionary genomics of insect innate immune defense. The focus is on the conserved and divergent components of immunity with an emphasis on gene family evolution and evolution at the sequence level; both population genetics and molecular evolution frameworks are considered. © The Author 2015. Published by Oxford University Press.

  20. A 'beautiful death': mortality, death, and holidays in a Mexican municipality.

    PubMed

    Wilches-Gutiérrez, José L; Arenas-Monreal, Luz; Paulo-Maya, Alfredo; Peláez-Ballestas, Ingris; Idrovo, Alvaro J

    2012-03-01

    Several studies have reported increased mortality during holidays. Using a cultural epidemiological, sequential mixed-methods approach, this study explored holiday-related trends using mortality data from Yautepec (Morelos, Mexico) collected between 1986 and 2008 (N=5027 deaths). This analysis found that mortality increased on Christmas Day and All Saints' Day. Mortality increased on Candlemas Day among women, and increased on New Year's Day among men. More deaths caused by cardiovascular disease among women and traumatic injuries among men occurred during holidays than in non-holiday periods. To ascertain the elements comprising the health/illness/death process in the context of a holiday in this municipality, we conducted semi-structured interviews in March and April 2009 with relatives of seven individuals who had died during holidays in the previous 4 years (N=11); data from these interviews were analyzed from a grounded theory perspective to ascertain common conceptual themes. The "beautiful death" emerged as the main concept in the interpretation of death; this concept was related to the expectation of a good death and the particularly special nature of death during a holiday because of the involvement of religious entities, such as God, the Virgin Mary, and/or a saint, at the moment of death. Quantitative and qualitative results provided information about the important effects of holidays, culture, and religious belief on mortality patterns within a Mexican context, and contributed to a better understanding of the relationships among mortality, the nature of death, and holidays. Our results suggest that, in the studied region, death can be interpreted as a "beautiful process". More research is needed to explore this process in other similar contexts and to address topics related to the care and attention given the dying person and the expectation of a good death. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Ecological and evolutionary consequences of niche construction for its agent.

    PubMed

    Kylafis, Grigoris; Loreau, Michel

    2008-10-01

    Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant-soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction.

  2. Evolutionary Game Theory Analysis of Tumor Progression

    NASA Astrophysics Data System (ADS)

    Wu, Amy; Liao, David; Sturm, James; Austin, Robert

    2014-03-01

    Evolutionary game theory applied to two interacting cell populations can yield quantitative prediction of the future densities of the two cell populations based on the initial interaction terms. We will discuss how in a complex ecology that evolutionary game theory successfully predicts the future densities of strains of stromal and cancer cells (multiple myeloma), and discuss the possible clinical use of such analysis for predicting cancer progression. Supported by the National Science Foundation and the National Cancer Institute.

  3. Evaluating the Impact of Genomic Data and Priors on Bayesian Estimates of the Angiosperm Evolutionary Timescale.

    PubMed

    Foster, Charles S P; Sauquet, Hervê; van der Merwe, Marlien; McPherson, Hannah; Rossetto, Maurizio; Ho, Simon Y W

    2017-05-01

    The evolutionary timescale of angiosperms has long been a key question in biology. Molecular estimates of this timescale have shown considerable variation, being influenced by differences in taxon sampling, gene sampling, fossil calibrations, evolutionary models, and choices of priors. Here, we analyze a data set comprising 76 protein-coding genes from the chloroplast genomes of 195 taxa spanning 86 families, including novel genome sequences for 11 taxa, to evaluate the impact of models, priors, and gene sampling on Bayesian estimates of the angiosperm evolutionary timescale. Using a Bayesian relaxed molecular-clock method, with a core set of 35 minimum and two maximum fossil constraints, we estimated that crown angiosperms arose 221 (251-192) Ma during the Triassic. Based on a range of additional sensitivity and subsampling analyses, we found that our date estimates were generally robust to large changes in the parameters of the birth-death tree prior and of the model of rate variation across branches. We found an exception to this when we implemented fossil calibrations in the form of highly informative gamma priors rather than as uniform priors on node ages. Under all other calibration schemes, including trials of seven maximum age constraints, we consistently found that the earliest divergences of angiosperm clades substantially predate the oldest fossils that can be assigned unequivocally to their crown group. Overall, our results and experiments with genome-scale data suggest that reliable estimates of the angiosperm crown age will require increased taxon sampling, significant methodological changes, and new information from the fossil record. [Angiospermae, chloroplast, genome, molecular dating, Triassic.]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. The one-third law of evolutionary dynamics.

    PubMed

    Ohtsuki, Hisashi; Bordalo, Pedro; Nowak, Martin A

    2007-11-21

    Evolutionary game dynamics in finite populations provide a new framework for studying selection of traits with frequency-dependent fitness. Recently, a "one-third law" of evolutionary dynamics has been described, which states that strategy A fixates in a B-population with selective advantage if the fitness of A is greater than that of B when A has a frequency 13. This relationship holds for all evolutionary processes examined so far, from the Moran process to games on graphs. However, the origin of the "number"13 is not understood. In this paper we provide an intuitive explanation by studying the underlying stochastic processes. We find that in one invasion attempt, an individual interacts on average with B-players twice as often as with A-players, which yields the one-third law. We also show that the one-third law implies that the average Malthusian fitness of A is positive.

  5. Evolutionary process of deep-sea bathymodiolus mussels.

    PubMed

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular

  6. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents.

    PubMed

    Gilbert, Scott F; Bosch, Thomas C G; Ledón-Rettig, Cristina

    2015-10-01

    The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.

  7. Sex in an Evolutionary Perspective: Just Another Reaction Norm

    PubMed Central

    Nylin, Sören

    2010-01-01

    It is common to refer to all sorts of clear-cut differences between the sexes as something that is biologically almost inevitable. Although this does not reflect the status of evolutionary theory on sex determination and sexual dimorphism, it is probably a common view among evolutionary biologists as well, because of the impact of sexual selection theory. To get away from thinking about biological sex and traits associated with a particular sex as something static, it should be recognized that in an evolutionary perspective sex can be viewed as a reaction norm, with sex attributes being phenotypically plastic. Sex determination itself is fundamentally plastic, even when it is termed “genetic”. The phenotypic expression of traits that are statistically associated with a particular sex always has a plastic component. This plasticity allows for much more variation in the expression of traits according to sex and more overlap between the sexes than is typically acknowledged. Here we review the variation and frequency of evolutionary changes in sex, sex determination and sex roles and conclude that sex in an evolutionary time-frame is extremely variable. We draw on recent findings in sex determination mechanisms, empirical findings of morphology and behaviour as well as genetic and developmental models to explore the concept of sex as a reaction norm. From this point of view, sexual differences are not expected to generally fall into neat, discrete, pre-determined classes. It is important to acknowledge this variability in order to increase objectivity in evolutionary research. PMID:21170116

  8. Death and Grief

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Death and Grief KidsHealth / For Teens / Death and Grief What's in this article? What Is ... the reaction we have in response to a death or loss. Grief can affect our body, mind, ...

  9. A Death in the Family: Death as a Zen Concept

    ERIC Educational Resources Information Center

    Black, Helen K.; Rubinstein, Robert L.

    2013-01-01

    This study is based on original research that explored family reaction to the death of an elderly husband and father. We interviewed 34 families (a family included a widow and two adult biological children) approximately 6 to 10 months after the death. In one-on-one interviews, we discussed family members' initial reaction to the death, how the…

  10. Ecological and Evolutionary Effects of Dispersal on Freshwater Zooplankton

    ERIC Educational Resources Information Center

    Allen, Michael R.

    2009-01-01

    A recent focus on contemporary evolution and the connections between communities has sought to more closely integrate ecology with evolutionary biology. Studies of coevolutionary dynamics, life history evolution, and rapid local adaptation demonstrate that ecological circumstances can dictate evolutionary trajectories. Thus, variation in species…

  11. Evaluation of Generation Alternation Models in Evolutionary Robotics

    NASA Astrophysics Data System (ADS)

    Oiso, Masashi; Matsumura, Yoshiyuki; Yasuda, Toshiyuki; Ohkura, Kazuhiro

    For efficient implementation of Evolutionary Algorithms (EA) to a desktop grid computing environment, we propose a new generation alternation model called Grid-Oriented-Deletion (GOD) based on comparison with the conventional techniques. In previous research, generation alternation models are generally evaluated by using test functions. However, their exploration performance on the real problems such as Evolutionary Robotics (ER) has not been made very clear yet. Therefore we investigate the relationship between the exploration performance of EA on an ER problem and its generation alternation model. We applied four generation alternation models to the Evolutionary Multi-Robotics (EMR), which is the package-pushing problem to investigate their exploration performance. The results show that GOD is more effective than the other conventional models.

  12. Selfish genetic elements, genetic conflict, and evolutionary innovation.

    PubMed

    Werren, John H

    2011-06-28

    Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible "evolutionary functions" of SGEs.

  13. Selfish genetic elements, genetic conflict, and evolutionary innovation

    PubMed Central

    Werren, John H.

    2011-01-01

    Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible “evolutionary functions” of SGEs. PMID:21690392

  14. Achieving sustainable plant disease management through evolutionary principles.

    PubMed

    Zhan, Jiasui; Thrall, Peter H; Burdon, Jeremy J

    2014-09-01

    Plants and their pathogens are engaged in continuous evolutionary battles and sustainable disease management requires novel systems to create environments conducive for short-term and long-term disease control. In this opinion article, we argue that knowledge of the fundamental factors that drive host-pathogen coevolution in wild systems can provide new insights into disease development in agriculture. Such evolutionary principles can be used to guide the formulation of sustainable disease management strategies which can minimize disease epidemics while simultaneously reducing pressure on pathogens to evolve increased infectivity and aggressiveness. To ensure agricultural sustainability, disease management programs that reflect the dynamism of pathogen population structure are essential and evolutionary biologists should play an increasing role in their design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The Neural Systems of Forgiveness: An Evolutionary Psychological Perspective

    PubMed Central

    Billingsley, Joseph; Losin, Elizabeth A. R.

    2017-01-01

    Evolution-minded researchers posit that the suite of human cognitive adaptations may include forgiveness systems. According to these researchers, forgiveness systems regulate interpersonal motivation toward a transgressor in the wake of harm by weighing multiple factors that influence both the potential gains of future interaction with the transgressor and the likelihood of future harm. Although behavioral research generally supports this evolutionary model of forgiveness, the model’s claims have not been examined with available neuroscience specifically in mind, nor has recent neuroscientific research on forgiveness generally considered the evolutionary literature. The current review aims to help bridge this gap by using evolutionary psychology and cognitive neuroscience to mutually inform and interrogate one another. We briefly summarize the evolutionary research on forgiveness, then review recent neuroscientific findings on forgiveness in light of the evolutionary model. We emphasize neuroscientific research that links desire for vengeance to reward-based areas of the brain, that singles out prefrontal areas likely associated with inhibition of vengeful feelings, and that correlates the activity of a theory-of-mind network with assessments of the intentions and blameworthiness of those who commit harm. In addition, we identify gaps in the existing neuroscientific literature, and propose future research directions that might address them, at least in part. PMID:28539904

  16. Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment

    PubMed Central

    Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.

    2018-01-01

    Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574

  17. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    PubMed Central

    Blackstone, Neil W.

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953

  18. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    PubMed

    Blackstone, Neil W

    2016-04-27

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  19. When the mean is not enough: Calculating fixation time distributions in birth-death processes.

    PubMed

    Ashcroft, Peter; Traulsen, Arne; Galla, Tobias

    2015-10-01

    Studies of fixation dynamics in Markov processes predominantly focus on the mean time to absorption. This may be inadequate if the distribution is broad and skewed. We compute the distribution of fixation times in one-step birth-death processes with two absorbing states. These are expressed in terms of the spectrum of the process, and we provide different representations as forward-only processes in eigenspace. These allow efficient sampling of fixation time distributions. As an application we study evolutionary game dynamics, where invading mutants can reach fixation or go extinct. We also highlight the median fixation time as a possible analog of mixing times in systems with small mutation rates and no absorbing states, whereas the mean fixation time has no such interpretation.

  20. Blood, sweat and plaster casts: Reviewing the history, composition, and scientific value of the Raymond A. Dart Collection of African Life and Death Masks.

    PubMed

    Houlton, T M R; Billings, B K

    2017-10-01

    This paper addresses the history, composition and scientific value of one of the most comprehensive facemask collections in Africa, the Raymond A. Dart Collection of African Life and Death Masks. Housed within the School of Anatomical Sciences at the University of the Witwatersrand (South Africa), it comprises 1110 masks (397 life, 487 death, 226 unknown). Life masks represent populations throughout Africa; death masks predominately southern Africa. Males preponderate by 75%. Recorded ages are error prone, but suggest most life masks are those of <35 year-olds, death masks of 36+ year-olds. A total of 241 masks have associated skeletons, 209 presenting a complete skull. Life masks date between 1927 and c.1980s, death masks 1933 and 1963. This historical collection presents uncanny associations with outmoded typological and evolutionary theories. Once perceived an essential scientific resource, performed craniofacial superimpositions identify the nose as the only stable feature maintained, with the remaining face best preserved in young individuals with minimal body fat. The facemask collection is most viable for teaching and research within the history of science, specifically physical anthropology, and presents some value to craniofacial identification. Future research will have to be conducted with appropriate ethical considerations to science and medicine. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Cell Death and Cell Death Responses in Liver Disease: Mechanisms and Clinical Relevance

    PubMed Central

    Luedde, Tom; Kaplowitz, Neil; Schwabe, Robert F.

    2015-01-01

    Summary Hepatocellular death is present in almost all types of human liver disease and is used as a sensitive parameter for the detection of acute and chronic liver disease of viral, toxic, metabolic, or autoimmune origin. Clinical data and animal models suggest that hepatocyte death is the key trigger of liver disease progression, manifested by the subsequent development of inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Modes of hepatocellular death differ substantially between liver diseases. Different modes of cell death such as apoptosis, necrosis, and necroptosis trigger specific cell death responses and promote progression of liver disease through distinct mechanisms. In this review, we first discuss molecular mechanisms by which different modes of cell death, damage-associated molecular patterns, and specific cell death responses contribute to the development of liver disease. We then review the clinical relevance of cell death, focusing on biomarkers; the contribution of cell death to drug-induced, viral, and fatty liver disease and liver cancer; and evidence for cell death pathways as therapeutic targets. PMID:25046161

  2. Cot Deaths.

    ERIC Educational Resources Information Center

    Tyrrell, Shelagh

    1985-01-01

    Addresses the tragedy of crib deaths, giving particular attention to causes, prevention, and medical research on Sudden Infant Death Syndrome (SIDS). Gives anecdotal accounts of coping strategies used by parents and families of SIDS infants. (DT)

  3. Testing for Independence between Evolutionary Processes.

    PubMed

    Behdenna, Abdelkader; Pothier, Joël; Abby, Sophie S; Lambert, Amaury; Achaz, Guillaume

    2016-09-01

    Evolutionary events co-occurring along phylogenetic trees usually point to complex adaptive phenomena, sometimes implicating epistasis. While a number of methods have been developed to account for co-occurrence of events on the same internal or external branch of an evolutionary tree, there is a need to account for the larger diversity of possible relative positions of events in a tree. Here we propose a method to quantify to what extent two or more evolutionary events are associated on a phylogenetic tree. The method is applicable to any discrete character, like substitutions within a coding sequence or gains/losses of a biological function. Our method uses a general approach to statistically test for significant associations between events along the tree, which encompasses both events inseparable on the same branch, and events genealogically ordered on different branches. It assumes that the phylogeny and themapping of branches is known without errors. We address this problem from the statistical viewpoint by a linear algebra representation of the localization of the evolutionary events on the tree.We compute the full probability distribution of the number of paired events occurring in the same branch or in different branches of the tree, under a null model of independence where each type of event occurs at a constant rate uniformly inthephylogenetic tree. The strengths andweaknesses of themethodare assessed via simulations;we then apply the method to explore the loss of cell motility in intracellular pathogens. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Evolutionary Theory as a Guide to Socioscientific Decision-Making

    ERIC Educational Resources Information Center

    Sadler, Troy D.

    2005-01-01

    Evolutionary theory serves as the fundamental cornerstone to all life science; yet students frequently possess misconceptions regarding evolution or resist learning the idea altogether. This study, which emerged from a larger project focused on informal reasoning, explores how college students' conceptions of evolutionary theory affect their…

  5. Physical characteristics and evolutionary trends of continental rifts

    NASA Technical Reports Server (NTRS)

    Ramberg, I. B.; Morgan, P.

    1984-01-01

    Rifts may be defined as zones beneath which the entire lithosphere has ruptured in extension. They are widespread and occur in a variety of tectonic settings, and range up to 2,600 m.y. in age. The object of this review is to highlight characteristic features of modern and ancient rifts, to emphasize differences and similarities in order to help characterize evolutionary trends, to identify physical conditions favorable for initiation as well as termination of rifting, and to provide constraints for future modeling studies of rifting. Rifts are characterized on the basis of their structural, geomorphic, magmatic and geophysical features and the diverse character of these features and their evolutionary trends through time are discussed. Mechanisms of rifting are critically examined in terms of the physical characteristics and evolutionary trends of rifts, and it is concluded that while simple models can give valuable insight into specific processes of rifting, individual rifts can rarely, if ever, be characterized by well defined trends predicted by these models. More data are required to clearly define evolutionary trends, and the models require development to incorporate the effects of lithospheric heterogeneities and complex geologic histories.

  6. The evolutionary origins of Syngnathidae: pipefishes and seahorses.

    PubMed

    Wilson, A B; Orr, J W

    2011-06-01

    Despite their importance as evolutionary and ecological model systems, the phylogenetic relationships among gasterosteiforms remain poorly understood, complicating efforts to understand the evolutionary origins of the exceptional morphological and behavioural diversity of this group. The present review summarizes current knowledge on the origin and evolution of syngnathids, a gasterosteiform family with a highly developed form of male parental care, combining inferences based on morphological and molecular data with paleontological evidence documenting the evolutionary history of the group. Molecular methods have provided new tools for the study of syngnathid relationships and have played an important role in recent conservation efforts. Despite recent insights into syngnathid evolution, however, a survey of the literature reveals a strong taxonomic bias towards studies on the species-rich genera Hippocampus and Syngnathus, with a lack of data for many morphologically unique members of the family. The study of the evolutionary pressures responsible for generating the high diversity of syngnathids would benefit from a wider perspective, providing a comparative framework in which to investigate the evolution of the genetic, morphological and behavioural traits of the group as a whole. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  7. Spatial evolutionary epidemiology of spreading epidemics

    PubMed Central

    2016-01-01

    Most spatial models of host–parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. PMID:27798295

  8. Spatial evolutionary epidemiology of spreading epidemics.

    PubMed

    Lion, S; Gandon, S

    2016-10-26

    Most spatial models of host-parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. © 2016 The Author(s).

  9. Expanding Evolutionary Theory beyond Darwinism with Elaborating, Self-Organizing, and Fractionating Complex Evolutionary Systems

    ERIC Educational Resources Information Center

    Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.

    2010-01-01

    Earth systems increase in complexity, diversity, and interconnectedness with time, driven by tectonic/solar energy that keeps the systems far from equilibrium. The evolution of Earth systems is facilitated by three evolutionary mechanisms: "elaboration," "fractionation," and "self-organization," that share…

  10. Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes

    PubMed Central

    Jack, Benjamin R.; Meyer, Austin G.; Echave, Julian; Wilke, Claus O.

    2016-01-01

    Functional residues in proteins tend to be highly conserved over evolutionary time. However, to what extent functional sites impose evolutionary constraints on nearby or even more distant residues is not known. Here, we report pervasive conservation gradients toward catalytic residues in a dataset of 524 distinct enzymes: evolutionary conservation decreases approximately linearly with increasing distance to the nearest catalytic residue in the protein structure. This trend encompasses, on average, 80% of the residues in any enzyme, and it is independent of known structural constraints on protein evolution such as residue packing or solvent accessibility. Further, the trend exists in both monomeric and multimeric enzymes and irrespective of enzyme size and/or location of the active site in the enzyme structure. By contrast, sites in protein–protein interfaces, unlike catalytic residues, are only weakly conserved and induce only minor rate gradients. In aggregate, these observations show that functional sites, and in particular catalytic residues, induce long-range evolutionary constraints in enzymes. PMID:27138088

  11. Inference of Evolutionary Jumps in Large Phylogenies using Lévy Processes

    PubMed Central

    Duchen, Pablo; Leuenberger, Christoph; Szilágyi, Sándor M.; Harmon, Luke; Eastman, Jonathan; Schweizer, Manuel

    2017-01-01

    Abstract Although it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition into so-called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in Anolis lizards and Loriinii parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive zones, just as postulated by Simpson’s hypothesis. [evolutionary jump; Lévy process; phenotypic evolution; punctuated equilibrium; quantitative traits. PMID:28204787

  12. Inference of Evolutionary Jumps in Large Phylogenies using Lévy Processes.

    PubMed

    Duchen, Pablo; Leuenberger, Christoph; Szilágyi, Sándor M; Harmon, Luke; Eastman, Jonathan; Schweizer, Manuel; Wegmann, Daniel

    2017-11-01

    Although it is now widely accepted that the rate of phenotypic evolution may not necessarily be constant across large phylogenies, the frequency and phylogenetic position of periods of rapid evolution remain unclear. In his highly influential view of evolution, G. G. Simpson supposed that such evolutionary jumps occur when organisms transition into so-called new adaptive zones, for instance after dispersal into a new geographic area, after rapid climatic changes, or following the appearance of an evolutionary novelty. Only recently, large, accurate and well calibrated phylogenies have become available that allow testing this hypothesis directly, yet inferring evolutionary jumps remains computationally very challenging. Here, we develop a computationally highly efficient algorithm to accurately infer the rate and strength of evolutionary jumps as well as their phylogenetic location. Following previous work we model evolutionary jumps as a compound process, but introduce a novel approach to sample jump configurations that does not require matrix inversions and thus naturally scales to large trees. We then make use of this development to infer evolutionary jumps in Anolis lizards and Loriinii parrots where we find strong signal for such jumps at the basis of clades that transitioned into new adaptive zones, just as postulated by Simpson's hypothesis. [evolutionary jump; Lévy process; phenotypic evolution; punctuated equilibrium; quantitative traits. The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  13. Learning: An Evolutionary Analysis

    ERIC Educational Resources Information Center

    Swann, Joanna

    2009-01-01

    This paper draws on the philosophy of Karl Popper to present a descriptive evolutionary epistemology that offers philosophical solutions to the following related problems: "What happens when learning takes place?" and "What happens in human learning?" It provides a detailed analysis of how learning takes place without any direct transfer of…

  14. Evolutionary stability concepts in a stochastic environment

    NASA Astrophysics Data System (ADS)

    Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi

    2017-09-01

    Over the past 30 years, evolutionary game theory and the concept of an evolutionarily stable strategy have been not only extensively developed and successfully applied to explain the evolution of animal behaviors, but also widely used in economics and social sciences. Nonetheless, the stochastic dynamical properties of evolutionary games in randomly fluctuating environments are still unclear. In this study, we investigate conditions for stochastic local stability of fixation states and constant interior equilibria in a two-phenotype model with random payoffs following pairwise interactions. Based on this model, we develop the concepts of stochastic evolutionary stability (SES) and stochastic convergence stability (SCS). We show that the condition for a pure strategy to be SES and SCS is more stringent than in a constant environment, while the condition for a constant mixed strategy to be SES is less stringent than the condition to be SCS, which is less stringent than the condition in a constant environment.

  15. Incorporating evolutionary processes into population viability models.

    PubMed

    Pierson, Jennifer C; Beissinger, Steven R; Bragg, Jason G; Coates, David J; Oostermeijer, J Gerard B; Sunnucks, Paul; Schumaker, Nathan H; Trotter, Meredith V; Young, Andrew G

    2015-06-01

    We examined how ecological and evolutionary (eco-evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco-evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco-evo PVA using individual-based models with individual-level genotype tracking and dynamic genotype-phenotype mapping to model emergent population-level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco-evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence. © 2014 Society for Conservation Biology.

  16. Evolutionary transitions towards eusociality in snapping shrimps.

    PubMed

    Chak, Solomon Tin Chi; Duffy, J Emmett; Hultgren, Kristin M; Rubenstein, Dustin R

    2017-03-20

    Animal social organization varies from complex societies where reproduction is dominated by a single individual (eusociality) to those where reproduction is more evenly distributed among group members (communal breeding). Yet, how simple groups transition evolutionarily to more complex societies remains unclear. Competing hypotheses suggest that eusociality and communal breeding are alternative evolutionary endpoints, or that communal breeding is an intermediate stage in the transition towards eusociality. We tested these alternative hypotheses in sponge-dwelling shrimps, Synalpheus spp. Although species varied continuously in reproductive skew, they clustered into pair-forming, communal and eusocial categories based on several demographic traits. Evolutionary transition models suggested that eusocial and communal species are discrete evolutionary endpoints that evolved independently from pair-forming ancestors along alternative paths. This 'family-centred' origin of eusociality parallels observations in insects and vertebrates, reinforcing the role of kin selection in the evolution of eusociality and suggesting a general model of animal social evolution.

  17. Evolutionary history and dynamics of dog rabies virus in western and central Africa.

    PubMed

    Talbi, Chiraz; Holmes, Edward C; de Benedictis, Paola; Faye, Ousmane; Nakouné, Emmanuel; Gamatié, Djibo; Diarra, Abass; Elmamy, Bezeid Ould; Sow, Adama; Adjogoua, Edgard Valery; Sangare, Oumou; Dundon, William G; Capua, Ilaria; Sall, Amadou A; Bourhy, Hervé

    2009-04-01

    The burden of rabies in Africa is estimated at 24,000 human deaths year(-1), almost all of which result from infection with dog rabies viruses (RABV). To investigate the evolutionary dynamics of RABV in western and central Africa, 92 isolates sampled from 27 African countries over 29 years were collected and sequenced. This revealed that RABV currently circulating in dogs in this region fell into a single lineage designated 'Africa 2'. A detailed analysis of the phylogeographical structure of this Africa 2 lineage revealed strong population subdivision at the country level, with only limited movement of virus among localities, including a possible east-to-west spread across Africa. In addition, Bayesian coalescent analysis suggested that the Africa 2 lineage was introduced into this region of Africa only recently (probably <200 years ago), in accordance with the timescale of expanding European colonial influence and urbanization, and then spread relatively slowly, perhaps occupying the entire region in a 100 year period.

  18. Are hotspots of evolutionary potential adequately protected in southern California?

    USGS Publications Warehouse

    Vandergast, A.G.; Bohonak, A.J.; Hathaway, S.A.; Boys, J.; Fisher, R.N.

    2008-01-01

    Reserves are often designed to protect rare habitats, or "typical" exemplars of ecoregions and geomorphic provinces. This approach focuses on current patterns of organismal and ecosystem-level biodiversity, but typically ignores the evolutionary processes that control the gain and loss of biodiversity at these and other levels (e.g., genetic, ecological). In order to include evolutionary processes in conservation planning efforts, their spatial components must first be identified and mapped. We describe a GIS-based approach for explicitly mapping patterns of genetic divergence and diversity for multiple species (a "multi-species genetic landscape"). Using this approach, we analyzed mitochondrial DNA datasets from 21 vertebrate and invertebrate species in southern California to identify areas with common phylogeographic breaks and high intrapopulation diversity. The result is an evolutionary framework for southern California within which patterns of genetic diversity can be analyzed in the context of historical processes, future evolutionary potential and current reserve design. Our multi-species genetic landscapes pinpoint six hotspots where interpopulation genetic divergence is consistently high, five evolutionary hotspots within which genetic connectivity is high, and three hotspots where intrapopulation genetic diversity is high. These 14 hotspots can be grouped into eight geographic areas, of which five largely are unprotected at this time. The multi-species genetic landscape approach may provide an avenue to readily incorporate measures of evolutionary process into GIS-based systematic conservation assessment and land-use planning.

  19. Hybrid zone studies: An interdisciplinary approach for the analysis of evolutionary processes

    USGS Publications Warehouse

    Scribner, Kim T.

    1994-01-01

    There has been considerable debate in the ecological and evolutionary literature over the relative importance and rate by which microevolutionary processes operating at the population level result in separation and differentiation of lineages and populations, and ultimately in speciation. Our understanding of evolutionary processes have need greatly enhances through the study of hybridization and hybrid zones. Indeed, hybrid zones have been described as “natural laboratories” (Barton, N. H., and G .M. Hewitt, 189. Adaptation, speciation, and hybrid zones. Nature 341:497-503) or as “windows on the evolutionary processes” (Harrison, R. G. 1990. Hybrid zones: windows on the evolutionary process. Oxford Surveys in Evolutionary Biology 7:69-128). Hybrid zones greatly facilitate analyses of evolutionary dynamics because differences in factors such as mating preference, fertility, and viability are likely to be magnified, making the consequences easier to document over short periods of time.

  20. Langley's CSI evolutionary model: Phase O

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.

  1. Can evolutionary principles explain patterns of family violence?

    PubMed

    Archer, John

    2013-03-01

    The article's aim is to evaluate the application of the evolutionary principles of kin selection, reproductive value, and resource holding power to the understanding of family violence. The principles are described in relation to specific predictions and the mechanisms underlying these. Predictions are evaluated for physical violence perpetrated by (a) parents to unrelated children, (b) parents to genetic offspring, and (c) offspring to parents and between (d) siblings and (e) sexual partners. Precise figures for risks have been calculated where possible. The major conclusions are that most of the evidence is consistent with evolutionary predictions derived from kin selection and reproductive value: There were (a) higher rates of violence to stepchildren, (b) a decline in violence with the age of offspring, and (c) an increase in violence with parental age, while (d) violence between siblings was generally at a low level and concerned resource disputes. The issue of distinguishing evolutionary from alternative explanations is addressed throughout and is problematic for predictions derived from reproductive value. The main evolutionary explanation for male partner violence, mate guarding as a result of paternity uncertainty, cannot explain Western studies where sex differences in control and violence between partners were absent, although other aspects of male partner violence are consistent with it, and it may explain sex differences in traditional cultures. Recurrent problems in evaluating the evidence were to control for possible confounds and thus to distinguish evolutionary from alternative explanations. Suggestions are outlined to address this and other issues arising from the review. © 2013 American Psychological Association

  2. Exploring Evolutionary Patterns in Genetic Sequence: A Computer Exercise

    ERIC Educational Resources Information Center

    Shumate, Alice M.; Windsor, Aaron J.

    2010-01-01

    The increase in publications presenting molecular evolutionary analyses and the availability of comparative sequence data through resources such as NCBI's GenBank underscore the necessity of providing undergraduates with hands-on sequence analysis skills in an evolutionary context. This need is particularly acute given that students have been…

  3. Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.

    PubMed

    Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej

    2016-11-01

    The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  4. Dreams of Death.

    ERIC Educational Resources Information Center

    Barrett, Deirdre

    1989-01-01

    Examined frequency and characteristics of overt dreams of dying among healthy young adults. Dreams of dying were found to be rare but distinctive content category, representing overwhelmingly pleasant dreams. Over one-half of death dreams involved lengthy afterlife sequence, remainder focused on process of death. Death dreams of these healthy…

  5. Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.

    PubMed

    Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D

    2017-10-01

    Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.

  6. A strategy with novel evolutionary features for the iterated prisoner's dilemma.

    PubMed

    Li, Jiawei; Kendall, Graham

    2009-01-01

    In recent iterated prisoner's dilemma tournaments, the most successful strategies were those that had identification mechanisms. By playing a predetermined sequence of moves and learning from their opponents' responses, these strategies managed to identify their opponents. We believe that these identification mechanisms may be very useful in evolutionary games. In this paper one such strategy, which we call collective strategy, is analyzed. Collective strategies apply a simple but efficient identification mechanism (that just distinguishes themselves from other strategies), and this mechanism allows them to only cooperate with their group members and defect against any others. In this way, collective strategies are able to maintain a stable population in evolutionary iterated prisoner's dilemma. By means of an invasion barrier, this strategy is compared with other strategies in evolutionary dynamics in order to demonstrate its evolutionary features. We also find that this collective behavior assists the evolution of cooperation in specific evolutionary environments.

  7. Evolutionary Multiobjective Design Targeting a Field Programmable Transistor Array

    NASA Technical Reports Server (NTRS)

    Aguirre, Arturo Hernandez; Zebulum, Ricardo S.; Coello, Carlos Coello

    2004-01-01

    This paper introduces the ISPAES algorithm for circuit design targeting a Field Programmable Transistor Array (FPTA). The use of evolutionary algorithms is common in circuit design problems, where a single fitness function drives the evolution process. Frequently, the design problem is subject to several goals or operating constraints, thus, designing a suitable fitness function catching all requirements becomes an issue. Such a problem is amenable for multi-objective optimization, however, evolutionary algorithms lack an inherent mechanism for constraint handling. This paper introduces ISPAES, an evolutionary optimization algorithm enhanced with a constraint handling technique. Several design problems targeting a FPTA show the potential of our approach.

  8. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains.

    PubMed

    Li, Shan; Zhang, Li; Yao, Qing; Li, Lin; Dong, Na; Rong, Jie; Gao, Wenqing; Ding, Xiaojun; Sun, Liming; Chen, Xing; Chen, She; Shao, Feng

    2013-09-12

    The tumour necrosis factor (TNF) family is crucial for immune homeostasis, cell death and inflammation. These cytokines are recognized by members of the TNF receptor (TNFR) family of death receptors, including TNFR1 and TNFR2, and FAS and TNF-related apoptosis-inducing ligand (TRAIL) receptors. Death receptor signalling requires death-domain-mediated homotypic/heterotypic interactions between the receptor and its downstream adaptors, including TNFR1-associated death domain protein (TRADD) and FAS-associated death domain protein (FADD). Here we discover that death domains in several proteins, including TRADD, FADD, RIPK1 and TNFR1, were directly inactivated by NleB, an enteropathogenic Escherichia coli (EPEC) type III secretion system effector known to inhibit host nuclear factor-κB (NF-κB) signalling. NleB contained an unprecedented N-acetylglucosamine (GlcNAc) transferase activity that specifically modified a conserved arginine in these death domains (Arg 235 in the TRADD death domain). NleB GlcNAcylation (the addition of GlcNAc onto a protein side chain) of death domains blocked homotypic/heterotypic death domain interactions and assembly of the oligomeric TNFR1 complex, thereby disrupting TNF signalling in EPEC-infected cells, including NF-κB signalling, apoptosis and necroptosis. Type-III-delivered NleB also blocked FAS ligand and TRAIL-induced cell death by preventing formation of a FADD-mediated death-inducing signalling complex (DISC). The arginine GlcNAc transferase activity of NleB was required for bacterial colonization in the mouse model of EPEC infection. The mechanism of action of NleB represents a new model by which bacteria counteract host defences, and also a previously unappreciated post-translational modification.

  9. Comparison of cause of death between anzdata and the australian national death index.

    PubMed

    Sypek, Matthew P; Dansie, Kathryn B; Clayton, Phil; Webster, Angela C; McDonald, Stephen

    2018-03-01

    To understand the differences in how cause of death for patients receiving renal replacement therapy in Australia is recorded in The Australian and New Zealand Dialysis and Transplant Registry (ANZDATA) compared to the National Death Index (NDI). Data linkage was performed between ANZDATA and NDI for all deaths in the period 1980-2013. Cause of death was classified according to ICD-10 chapter. Overall and chapter specific agreement were assessed using the Kappa statistic. Descriptive analysis was used to explore differences where there was disagreement on primary cause of death. The analysis cohort included 28,675 patients. Ninety five percent of ANZDATA reported deaths fell within +/- 3 days of the date recorded by NDI. Circulatory death was the most common cause of death in both databases (ANZDATA 48%, NDI 32%). Overall agreement at ICD chapter level of primary cause was poor (36%, kappa 0.22). Agreement was best for malignancy (kappa 0.71). When there was disagreement on primary cause of death these were most commonly coded as genitourinary (35%) and endocrine (25.0%) in NDI, and circulatory (39%) and withdrawal (24%) in ANZDATA. Sixty-nine percent of patients had a renal related cause documented as either primary or a contributing cause of death in the NDI. There is poor agreement in primary cause of death between ANZDATA and NDI which is in part explained by the absence of diabetes and renal failure as causes of death in ANZDATA and the absence of 'withdrawal' in NDI. These differences should be appreciated when interpreting epidemiological data on cause of death in the Australian end stage kidney disease population. This article is protected by copyright. All rights reserved.

  10. New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases

    PubMed Central

    Choi, C J; Berges, J A

    2013-01-01

    Metacaspases are evolutionarily distant homologs of caspases that are found outside the metazoan and are known to have key roles in programmed cell death (PCD). Two types of metacaspases (types I and II) have been defined in plants based on their domain structures; these have similarities to metazoan ‘initiator' and ‘executioner' caspases. However, we know little about metacaspases in unicellular organisms and even less about their roles in cell death. We identified a novel group of metacaspases in sequenced phytoplanktonic protists that show domain architectures distinct from either type I or II enzymes; we designate them as type III. Type III metacaspases exhibit a rearrangement of domain structures between N- and C-terminus. In addition, we found a group of metacaspase-like proteases in phytoplankton that show sequence homology with other metacaspases, but defy classification in conventional schemes. These metacaspase-like proteases exist in bacteria alongside a variant of type I metacaspases and we propose these bacterial metacaspases are the origins of eukaryotic metacaspases. Type II and III metacaspases were not detected in bacteria and they might be variants of bacterial type I metacaspases that evolved in plants and phytoplanktonic protists, respectively, during the establishment of plastids through the primary and secondary endosymbiotic events. A complete absence of metacaspases in protists that lost plastids, such as oömycetes and ciliates indicates the gene loss during the plastid-to-nucleus gene transfer. Taken together, our findings suggest endosymbiotic gene transfer (EGT) is a key mechanism resulting in the evolutionary diversity of cell death proteases. PMID:23412383

  11. Entrepreneurs and Evolutionary Biology: The Relationship between Testosterone and New Venture Creation

    ERIC Educational Resources Information Center

    White, Roderick E.; Thornhill, Stewart; Hampson, Elizabeth

    2006-01-01

    Biological evolutionary processes select for heritable behaviors providing a survival and reproductive advantage. Accordingly, how we behave is, at least in part, affected by the evolutionary history of our species. This research uses evolutionary psychology as the theoretical perspective for exploring the relationship between a heritable…

  12. Evolutionary Creation: Moving beyond the Evolution versus Creation Debate

    ERIC Educational Resources Information Center

    Lamoureux, Denis O.

    2010-01-01

    Evolutionary creation offers a conservative Christian approach to evolution. It explores biblical faith and evolutionary science through a Two Divine Books model and proposes a complementary relationship between Scripture and science. The Book of God's Words discloses the spiritual character of the world, while the Book of God's Works reveals the…

  13. Deaths from international terrorism compared with road crash deaths in OECD countries.

    PubMed

    Wilson, N; Thomson, G

    2005-12-01

    To estimate the relative number of deaths in member countries of the Organisation for Economic Co-operation and Development (OECD) from international terrorism and road crashes. Data on deaths from international terrorism (US State Department database) were collated (1994-2003) and compared to the road injury deaths (year 2000 and 2001 data) from the OECD International Road Transport Accident Database. In the 29 OECD countries for which comparable data were available, the annual average death rate from road injury was approximately 390 times that from international terrorism. The ratio of annual road to international terrorism deaths (averaged over 10 years) was lowest for the United States at 142 times. In 2001, road crash deaths in the US were equal to those from a September 11 attack every 26 days. There is a large difference in the magnitude of these two causes of deaths from injury. Policy makers need to be aware of this when allocating resources to preventing these two avoidable causes of mortality.

  14. Social traits, social networks and evolutionary biology.

    PubMed

    Fisher, D N; McAdam, A G

    2017-12-01

    The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic

  15. TARGETED CAPTURE IN EVOLUTIONARY AND ECOLOGICAL GENOMICS

    PubMed Central

    Jones, Matthew R.; Good, Jeffrey M.

    2016-01-01

    The rapid expansion of next-generation sequencing has yielded a powerful array of tools to address fundamental biological questions at a scale that was inconceivable just a few years ago. Various genome partitioning strategies to sequence select subsets of the genome have emerged as powerful alternatives to whole genome sequencing in ecological and evolutionary genomic studies. High throughput targeted capture is one such strategy that involves the parallel enrichment of pre-selected genomic regions of interest. The growing use of targeted capture demonstrates its potential power to address a range of research questions, yet these approaches have yet to expand broadly across labs focused on evolutionary and ecological genomics. In part, the use of targeted capture has been hindered by the logistics of capture design and implementation in species without established reference genomes. Here we aim to 1) increase the accessibility of targeted capture to researchers working in non-model taxa by discussing capture methods that circumvent the need of a reference genome, 2) highlight the evolutionary and ecological applications where this approach is emerging as a powerful sequencing strategy, and 3) discuss the future of targeted capture and other genome partitioning approaches in light of the increasing accessibility of whole genome sequencing. Given the practical advantages and increasing feasibility of high-throughput targeted capture, we anticipate an ongoing expansion of capture-based approaches in evolutionary and ecological research, synergistic with an expansion of whole genome sequencing. PMID:26137993

  16. Sibling death and death fear in relation to depressive symptomatology in older adults.

    PubMed

    Cicirelli, Victor G

    2009-01-01

    Previously overlooked factors in elders' depressive symptomatology were examined, including death fear, sibling death, and sibling closeness. Participants were 150 elders (61 men, 89 women) aged 65-97 years with at least one sibling. Measures were proportion of deceased siblings, sibling closeness, the Death Fear Subscale of the Death Attitude Profile-Revised, and the Center for Epidemiological Studies-Depression scale (20-item adult form). Age and education were exogenous variables in a structural equation model. Death fear, sibling closeness, and proportion of dead siblings were directly related to depression, with path coefficients of .42, -.24, and .13, respectively. Proportion of dead siblings had indirect effects on depression, as did age and education. Depressive symptomatology in old age is influenced by death fear related to sibling death as well as by poor relationships with them; it must be understood within a situational context including death fear and sibling relationships.

  17. The extended evolutionary synthesis: its structure, assumptions and predictions

    PubMed Central

    Laland, Kevin N.; Uller, Tobias; Feldman, Marcus W.; Sterelny, Kim; Müller, Gerd B.; Moczek, Armin; Jablonka, Eva; Odling-Smee, John

    2015-01-01

    Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology. PMID:26246559

  18. Evolutionary dynamics of group formation.

    PubMed

    Javarone, Marco Alberto; Marinazzo, Daniele

    2017-01-01

    Group formation is a quite ubiquitous phenomenon across different animal species, whose individuals cluster together forming communities of diverse size. Previous investigations suggest that, in general, this phenomenon might have similar underlying reasons across the interested species, despite genetic and behavioral differences. For instance improving the individual safety (e.g. from predators), and increasing the probability to get food resources. Remarkably, the group size might strongly vary from species to species, e.g. shoals of fishes and herds of lions, and sometimes even within the same species, e.g. tribes and families in human societies. Here we build on previous theories stating that the dynamics of group formation may have evolutionary roots, and we explore this fascinating hypothesis from a purely theoretical perspective, with a model using the framework of Evolutionary Game Theory. In our model we hypothesize that homogeneity constitutes a fundamental ingredient in these dynamics. Accordingly, we study a population that tries to form homogeneous groups, i.e. composed of similar agents. The formation of a group can be interpreted as a strategy. Notably, agents can form a group (receiving a 'group payoff'), or can act individually (receiving an 'individual payoff'). The phase diagram of the modeled population shows a sharp transition between the 'group phase' and the 'individual phase', characterized by a critical 'individual payoff'. Our results then support the hypothesis that the phenomenon of group formation has evolutionary roots.

  19. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    PubMed

    Galluzzi, Lorenzo; Vitale, Ilio; Aaronson, Stuart A; Abrams, John M; Adam, Dieter; Agostinis, Patrizia; Alnemri, Emad S; Altucci, Lucia; Amelio, Ivano; Andrews, David W; Annicchiarico-Petruzzelli, Margherita; Antonov, Alexey V; Arama, Eli; Baehrecke, Eric H; Barlev, Nickolai A; Bazan, Nicolas G; Bernassola, Francesca; Bertrand, Mathieu J M; Bianchi, Katiuscia; Blagosklonny, Mikhail V; Blomgren, Klas; Borner, Christoph; Boya, Patricia; Brenner, Catherine; Campanella, Michelangelo; Candi, Eleonora; Carmona-Gutierrez, Didac; Cecconi, Francesco; Chan, Francis K-M; Chandel, Navdeep S; Cheng, Emily H; Chipuk, Jerry E; Cidlowski, John A; Ciechanover, Aaron; Cohen, Gerald M; Conrad, Marcus; Cubillos-Ruiz, Juan R; Czabotar, Peter E; D'Angiolella, Vincenzo; Dawson, Ted M; Dawson, Valina L; De Laurenzi, Vincenzo; De Maria, Ruggero; Debatin, Klaus-Michael; DeBerardinis, Ralph J; Deshmukh, Mohanish; Di Daniele, Nicola; Di Virgilio, Francesco; Dixit, Vishva M; Dixon, Scott J; Duckett, Colin S; Dynlacht, Brian D; El-Deiry, Wafik S; Elrod, John W; Fimia, Gian Maria; Fulda, Simone; García-Sáez, Ana J; Garg, Abhishek D; Garrido, Carmen; Gavathiotis, Evripidis; Golstein, Pierre; Gottlieb, Eyal; Green, Douglas R; Greene, Lloyd A; Gronemeyer, Hinrich; Gross, Atan; Hajnoczky, Gyorgy; Hardwick, J Marie; Harris, Isaac S; Hengartner, Michael O; Hetz, Claudio; Ichijo, Hidenori; Jäättelä, Marja; Joseph, Bertrand; Jost, Philipp J; Juin, Philippe P; Kaiser, William J; Karin, Michael; Kaufmann, Thomas; Kepp, Oliver; Kimchi, Adi; Kitsis, Richard N; Klionsky, Daniel J; Knight, Richard A; Kumar, Sharad; Lee, Sam W; Lemasters, John J; Levine, Beth; Linkermann, Andreas; Lipton, Stuart A; Lockshin, Richard A; López-Otín, Carlos; Lowe, Scott W; Luedde, Tom; Lugli, Enrico; MacFarlane, Marion; Madeo, Frank; Malewicz, Michal; Malorni, Walter; Manic, Gwenola; Marine, Jean-Christophe; Martin, Seamus J; Martinou, Jean-Claude; Medema, Jan Paul; Mehlen, Patrick; Meier, Pascal; Melino, Sonia; Miao, Edward A; Molkentin, Jeffery D; Moll, Ute M; Muñoz-Pinedo, Cristina; Nagata, Shigekazu; Nuñez, Gabriel; Oberst, Andrew; Oren, Moshe; Overholtzer, Michael; Pagano, Michele; Panaretakis, Theocharis; Pasparakis, Manolis; Penninger, Josef M; Pereira, David M; Pervaiz, Shazib; Peter, Marcus E; Piacentini, Mauro; Pinton, Paolo; Prehn, Jochen H M; Puthalakath, Hamsa; Rabinovich, Gabriel A; Rehm, Markus; Rizzuto, Rosario; Rodrigues, Cecilia M P; Rubinsztein, David C; Rudel, Thomas; Ryan, Kevin M; Sayan, Emre; Scorrano, Luca; Shao, Feng; Shi, Yufang; Silke, John; Simon, Hans-Uwe; Sistigu, Antonella; Stockwell, Brent R; Strasser, Andreas; Szabadkai, Gyorgy; Tait, Stephen W G; Tang, Daolin; Tavernarakis, Nektarios; Thorburn, Andrew; Tsujimoto, Yoshihide; Turk, Boris; Vanden Berghe, Tom; Vandenabeele, Peter; Vander Heiden, Matthew G; Villunger, Andreas; Virgin, Herbert W; Vousden, Karen H; Vucic, Domagoj; Wagner, Erwin F; Walczak, Henning; Wallach, David; Wang, Ying; Wells, James A; Wood, Will; Yuan, Junying; Zakeri, Zahra; Zhivotovsky, Boris; Zitvogel, Laurence; Melino, Gerry; Kroemer, Guido

    2018-03-01

    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

  20. Evolutionary model of stock markets

    NASA Astrophysics Data System (ADS)

    Kaldasch, Joachim

    2014-12-01

    The paper presents an evolutionary economic model for the price evolution of stocks. Treating a stock market as a self-organized system governed by a fast purchase process and slow variations of demand and supply the model suggests that the short term price distribution has the form a logistic (Laplace) distribution. The long term return can be described by Laplace-Gaussian mixture distributions. The long term mean price evolution is governed by a Walrus equation, which can be transformed into a replicator equation. This allows quantifying the evolutionary price competition between stocks. The theory suggests that stock prices scaled by the price over all stocks can be used to investigate long-term trends in a Fisher-Pry plot. The price competition that follows from the model is illustrated by examining the empirical long-term price trends of two stocks.

  1. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-01

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  2. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process.

    PubMed

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-27

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  3. Hotspots and the conservation of evolutionary history

    PubMed Central

    Sechrest, Wes; Brooks, Thomas M.; da Fonseca, Gustavo A. B.; Konstant, William R.; Mittermeier, Russell A.; Purvis, Andy; Rylands, Anthony B.; Gittleman, John L.

    2002-01-01

    Species diversity is unevenly distributed across the globe, with terrestrial diversity concentrated in a few restricted biodiversity hotspots. These areas are associated with high losses of primary vegetation and increased human population density, resulting in growing numbers of threatened species. We show that conservation of these hotspots is critical because they harbor even greater amounts of evolutionary history than expected by species numbers alone. We used supertrees for carnivores and primates to estimate that nearly 70% of the total amount of evolutionary history represented in these groups is found in 25 biodiversity hotspots. PMID:11854502

  4. The role of selection on evolutionary rescue

    NASA Astrophysics Data System (ADS)

    Amirjanov, Adil

    The paper investigates the role of selection on evolutionary rescue of population. The statistical mechanics technique is used to model dynamics of a population experiencing a natural selection and an abrupt change in the environment. The paper assesses the selective pressure produced by two different mechanisms: by strength of resistance and by strength of selection (by intraspecific competition). It is shown that both mechanisms are capable of providing an evolutionary rescue of population in particular conditions. However, for a small level of an extinction rate, the population cannot be rescued without intraspecific competition.

  5. High evolutionary potential of marine zooplankton

    PubMed Central

    Peijnenburg, Katja T C A; Goetze, Erica

    2013-01-01

    Abstract Open ocean zooplankton often have been viewed as slowly evolving species that have limited capacity to respond adaptively to changing ocean conditions. Hence, attention has focused on the ecological responses of zooplankton to current global change, including range shifts and changing phenology. Here, we argue that zooplankton also are well poised for evolutionary responses to global change. We present theoretical arguments that suggest plankton species may respond rapidly to selection on mildly beneficial mutations due to exceptionally large population size, and consider the circumstantial evidence that supports our inference that selection may be particularly important for these species. We also review all primary population genetic studies of open ocean zooplankton and show that genetic isolation can be achieved at the scale of gyre systems in open ocean habitats (100s to 1000s of km). Furthermore, population genetic structure often varies across planktonic taxa, and appears to be linked to the particular ecological requirements of the organism. In combination, these characteristics should facilitate adaptive evolution to distinct oceanographic habitats in the plankton. We conclude that marine zooplankton may be capable of rapid evolutionary as well as ecological responses to changing ocean conditions, and discuss the implications of this view. We further suggest two priority areas for future research to test our hypothesis of high evolutionary potential in open ocean zooplankton, which will require (1) assessing how pervasive selection is in driving population divergence and (2) rigorously quantifying the spatial and temporal scales of population differentiation in the open ocean. Recent attention has focused on the ecological responses of open ocean zooplankton to current global change, including range shifts and changing phenology. Here, we argue that marine zooplankton also are well poised for evolutionary responses to global change. PMID:24567838

  6. Cell death proteomics database: consolidating proteomics data on cell death.

    PubMed

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-03

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no.

  7. Potentially preventable deaths from the five leading causes of death--United States, 2008-2010.

    PubMed

    Yoon, Paula W; Bastian, Brigham; Anderson, Robert N; Collins, Janet L; Jaffe, Harold W

    2014-05-02

    In 2010, the top five causes of death in the United States were 1) diseases of the heart, 2) cancer, 3) chronic lower respiratory diseases, 4) cerebrovascular diseases (stroke), and 5) unintentional injuries. The rates of death from each cause vary greatly across the 50 states and the District of Columbia (2). An understanding of state differences in death rates for the leading causes might help state health officials establish disease prevention goals, priorities, and strategies. States with lower death rates can be used as benchmarks for setting achievable goals and calculating the number of deaths that might be prevented in states with higher rates. To determine the number of premature annual deaths for the five leading causes of death that potentially could be prevented ("potentially preventable deaths"), CDC analyzed National Vital Statistics System mortality data from 2008-2010. The number of annual potentially preventable deaths per state before age 80 years was determined by comparing the number of expected deaths (based on average death rates for the three states with the lowest rates for each cause) with the number of observed deaths. The results of this analysis indicate that, when considered separately, 91,757 deaths from diseases of the heart, 84,443 from cancer, 28,831 from chronic lower respiratory diseases, 16,973 from cerebrovascular diseases (stroke), and 36,836 from unintentional injuries potentially could be prevented each year. In addition, states in the Southeast had the highest number of potentially preventable deaths for each of the five leading causes. The findings provide disease-specific targets that states can use to measure their progress in preventing the leading causes of deaths in their populations.

  8. The Evolutionary Histories of Antiretroviral Proteins SERINC3 and SERINC5 Do Not Support an Evolutionary Arms Race in Primates.

    PubMed

    Murrell, Ben; Vollbrecht, Thomas; Guatelli, John; Wertheim, Joel O

    2016-09-15

    Molecular evolutionary arms races between viruses and their hosts are important drivers of adaptation. These Red Queen dynamics have been frequently observed in primate retroviruses and their antagonists, host restriction factor genes, such as APOBEC3F/G, TRIM5-α, SAMHD1, and BST-2. Host restriction factors have experienced some of the most intense and pervasive adaptive evolution documented in primates. Recently, two novel host factors, SERINC3 and SERINC5, were identified as the targets of HIV-1 Nef, a protein crucial for the optimal infectivity of virus particles. Here, we compared the evolutionary fingerprints of SERINC3 and SERINC5 to those of other primate restriction factors and to a set of other genes with diverse functions. SERINC genes evolved in a manner distinct from the canonical arms race dynamics seen in the other restriction factors. Despite their antiviral activity against HIV-1 and other retroviruses, SERINC3 and SERINC5 have a relatively uneventful evolutionary history in primates. Restriction factors are host proteins that block viral infection and replication. Many viruses, like HIV-1 and related retroviruses, evolved accessory proteins to counteract these restriction factors. The importance of these interactions is evidenced by the intense adaptive selection pressures that dominate the evolutionary histories of both the host and viral genes involved in this so-called arms race. The dynamics of these arms races can point to mechanisms by which these viral infections can be prevented. Two human genes, SERINC3 and SERINC5, were recently identified as targets of an HIV-1 accessory protein important for viral infectivity. Unexpectedly, we found that these SERINC genes, unlike other host restriction factor genes, show no evidence of a recent evolutionary arms race with viral pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Evolutionary change and phylogenetic relationships in light of horizontal gene transfer.

    PubMed

    Boto, Luis

    2015-06-01

    Horizontal gene transfer has, over the past 25 years, become a part of evolutionary thinking. In the present paper I discuss horizontal gene transfer (HGT) in relation to contingency, natural selection, evolutionary change speed and the Tree-of-Life endeavour, with the aim of contributing to the understanding of the role of HGT in evolutionary processes. In addition, the challenges that HGT imposes on the current view of evolution are emphasized.

  10. The Ancient Evolutionary History of Polyomaviruses

    PubMed Central

    Buck, Christopher B.; Van Doorslaer, Koenraad; Peretti, Alberto; Geoghegan, Eileen M.; Tisza, Michael J.; An, Ping; Katz, Joshua P.; Pipas, James M.; McBride, Alison A.; Camus, Alvin C.; McDermott, Alexa J.; Dill, Jennifer A.; Delwart, Eric; Ng, Terry F. F.; Farkas, Kata; Austin, Charlotte; Kraberger, Simona; Davison, William; Pastrana, Diana V.; Varsani, Arvind

    2016-01-01

    Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae. PMID:27093155

  11. Hypersialorrhea in Wilson's Disease.

    PubMed

    Trocello, Jean-Marc; Osmani, Karima; Pernon, Michaela; Chevaillier, Gérard; de Brugière, Claire; Remy, Pascal; Wenisch, Emilie; Cousin, Catherine; Girardot-Tinant, Nadège; Woimant, France

    2015-10-01

    Hypersialorrhea, corresponding to excessive salivation is a symptom frequently reported in Wilson's disease, especially in its neurological form. The prevalence of this frequent complaint has not been often evaluated. During a 7-month period, 87 consecutive Wilson's disease patients answered to the simple question "do you have the sensation of excess saliva in your mouth?" to evaluate the frequency of this symptom. A sub-sample of 10 consecutive Wilson's disease patients with drooling was recruited to undergo quantitative and qualitative measures to evaluate the mechanism of hypersialorrhea. Excessive drooling or excess saliva was found in 46 % of patients followed at the French Reference Centre. Ninety-eight percent of them presented neurological symptoms and drooling was found in only one patient without neurological symptoms. Our study showed that patients with a complaint of excessive saliva produced significantly higher quantities of saliva at rest than controls. Endoscopic examination was abnormal in six patients. A significant decrease of swallowing frequency, longer swallow latencies, and poor swallowing capacities may partly explain the salivary stasis. Oropharyngeal sensitivity disorders were present in 50 % of our patients. The decrease of the swallowing frequency observed in all patients could be related to cognitive and behavioral abnormalities with initiation difficulties objectified by longer latencies triggered by all the ingested volumes. This study confirmed the hypothesis of a multifactorial origin of hypersialorrhea in patients who have been diagnosed in Wilson's disease. It was essential to evaluate drooling with a multidisciplinary consultation to better identify the underlying mechanisms and to implement strategies for speech therapy and therapeutic adaptation.

  12. Modernizing Evolutionary Anthropology : Introduction to the Special Issue.

    PubMed

    Mattison, Siobhán M; Sear, Rebecca

    2016-12-01

    Evolutionary anthropology has traditionally focused on the study of small-scale, largely self-sufficient societies. The increasing rarity of these societies underscores the importance of such research yet also suggests the need to understand the processes by which such societies are being lost-what we call "modernization"-and the effects of these processes on human behavior and biology. In this article, we discuss recent efforts by evolutionary anthropologists to incorporate modernization into their research and the challenges and rewards that follow. Advantages include that these studies allow for explicit testing of hypotheses that explore how behavior and biology change in conjunction with changes in social, economic, and ecological factors. In addition, modernization often provides a source of "natural experiments" since it may proceed in a piecemeal fashion through a population. Challenges arise, however, in association with reduced variability in fitness proxies such as fertility, and with the increasing use of relatively novel methodologies in evolutionary anthropology, such as the analysis of secondary data. Confronting these challenges will require careful consideration but will lead to an improved understanding of humanity. We conclude that the study of modernization offers the prospect of developing a richer evolutionary anthropology, by encompassing ultimate and proximate explanations for behavior expressed across the full range of human societies.

  13. On joint subtree distributions under two evolutionary models.

    PubMed

    Wu, Taoyang; Choi, Kwok Pui

    2016-04-01

    In population and evolutionary biology, hypotheses about micro-evolutionary and macro-evolutionary processes are commonly tested by comparing the shape indices of empirical evolutionary trees with those predicted by neutral models. A key ingredient in this approach is the ability to compute and quantify distributions of various tree shape indices under random models of interest. As a step to meet this challenge, in this paper we investigate the joint distribution of cherries and pitchforks (that is, subtrees with two and three leaves) under two widely used null models: the Yule-Harding-Kingman (YHK) model and the proportional to distinguishable arrangements (PDA) model. Based on two novel recursive formulae, we propose a dynamic approach to numerically compute the exact joint distribution (and hence the marginal distributions) for trees of any size. We also obtained insights into the statistical properties of trees generated under these two models, including a constant correlation between the cherry and the pitchfork distributions under the YHK model, and the log-concavity and unimodality of the cherry distributions under both models. In addition, we show that there exists a unique change point for the cherry distributions between these two models. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Celebration of Death: Two Folk Tales about DEath. Mini-Module.

    ERIC Educational Resources Information Center

    African-American Inst., New York, NY. School Services Div.

    This module contains two African folk tales about death, two descriptions of African funerals, a lesson plan with 11 questions exploring the finality of and customs surrounding death, and a bibliography of five books which deal with African religious beliefs. The folk tales present concepts of death and immortality of the soul. The descriptions of…

  15. Understanding Evolutionary Potential in Virtual CPU Instruction Set Architectures

    PubMed Central

    Bryson, David M.; Ofria, Charles

    2013-01-01

    We investigate fundamental decisions in the design of instruction set architectures for linear genetic programs that are used as both model systems in evolutionary biology and underlying solution representations in evolutionary computation. We subjected digital organisms with each tested architecture to seven different computational environments designed to present a range of evolutionary challenges. Our goal was to engineer a general purpose architecture that would be effective under a broad range of evolutionary conditions. We evaluated six different types of architectural features for the virtual CPUs: (1) genetic flexibility: we allowed digital organisms to more precisely modify the function of genetic instructions, (2) memory: we provided an increased number of registers in the virtual CPUs, (3) decoupled sensors and actuators: we separated input and output operations to enable greater control over data flow. We also tested a variety of methods to regulate expression: (4) explicit labels that allow programs to dynamically refer to specific genome positions, (5) position-relative search instructions, and (6) multiple new flow control instructions, including conditionals and jumps. Each of these features also adds complication to the instruction set and risks slowing evolution due to epistatic interactions. Two features (multiple argument specification and separated I/O) demonstrated substantial improvements in the majority of test environments, along with versions of each of the remaining architecture modifications that show significant improvements in multiple environments. However, some tested modifications were detrimental, though most exhibit no systematic effects on evolutionary potential, highlighting the robustness of digital evolution. Combined, these observations enhance our understanding of how instruction architecture impacts evolutionary potential, enabling the creation of architectures that support more rapid evolution of complex solutions to a

  16. Darwin in Mind: New Opportunities for Evolutionary Psychology

    PubMed Central

    Bolhuis, Johan J.; Brown, Gillian R.; Richardson, Robert C.; Laland, Kevin N.

    2011-01-01

    Evolutionary Psychology (EP) views the human mind as organized into many modules, each underpinned by psychological adaptations designed to solve problems faced by our Pleistocene ancestors. We argue that the key tenets of the established EP paradigm require modification in the light of recent findings from a number of disciplines, including human genetics, evolutionary biology, cognitive neuroscience, developmental psychology, and paleoecology. For instance, many human genes have been subject to recent selective sweeps; humans play an active, constructive role in co-directing their own development and evolution; and experimental evidence often favours a general process, rather than a modular account, of cognition. A redefined EP could use the theoretical insights of modern evolutionary biology as a rich source of hypotheses concerning the human mind, and could exploit novel methods from a variety of adjacent research fields. PMID:21811401

  17. Hybrid Co-Evolutionary Motion Planning via Visibility-Based Repair

    NASA Technical Reports Server (NTRS)

    Dozier, Gerry; McCullough, Shaun; Brown, Edward, Jr.; Homaifar, Abdollah; Bikdash, Mar-wan

    1997-01-01

    This paper introduces a hybrid co-evolutionary system for global motion planning within unstructured environments. This system combines the concept of co-evolutionary search along with a concept that we refer to as the visibility-based repair to form a hybrid which quickly transforms infeasible motions into feasible ones. Also, this system makes use of a novel representation scheme for the obstacles within an environment. Our hybrid evolutionary system differs from other evolutionary motion planners in that (1) more emphasis is placed on repairing infeasible motions to develop feasible motions rather than using simulated evolution exclusively as a means of discovering feasible motions, (2) a continuous map of the environment is used rather than a discretized map, and (3) it develops global motion plans for multiple mobile destinations by co-evolving populations of sub-global motion plans. In this paper, we demonstrate the effectiveness of this system by using it to solve two challenging motion planning problems where multiple targets try to move away from a point robot.

  18. Evolutionary characterization of the West Nile Virus complete genome.

    PubMed

    Gray, R R; Veras, N M C; Santos, L A; Salemi, M

    2010-07-01

    The spatial dynamics of the West Nile Virus epidemic in North America are largely unknown. Previous studies that investigated the evolutionary history of the virus used sequence data from the structural genes (prM and E); however, these regions may lack phylogenetic information and obscure true evolutionary relationships. This study systematically evaluated the evolutionary patterns in the eleven genes of the WNV genome in order to determine which region(s) were most phylogenetically informative. We found that while the E region lacks resolution and can potentially result in misleading conclusions, the full NS3 or NS5 regions have strong phylogenetic signal. Furthermore, we show that geographic structure of WNV infection within the US is more pronounced than previously reported in studies that used the structural genes. We conclude that future evolutionary studies should focus on NS3 and NS5 in order to maximize the available sequences while retaining maximal interpretative power to infer temporal and geographic trends among WNV strains. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Why are some people left-handed? An evolutionary perspective

    PubMed Central

    Llaurens, V.; Raymond, M.; Faurie, C.

    2008-01-01

    Since prehistoric times, left-handed individuals have been ubiquitous in human populations, exhibiting geographical frequency variations. Evolutionary explanations have been proposed for the persistence of the handedness polymorphism. Left-handedness could be favoured by negative frequency-dependent selection. Data have suggested that left-handedness, as the rare hand preference, could represent an important strategic advantage in fighting interactions. However, the fact that left-handedness occurs at a low frequency indicates that some evolutionary costs could be associated with left-handedness. Overall, the evolutionary dynamics of this polymorphism are not fully understood. Here, we review the abundant literature available regarding the possible mechanisms and consequences of left-handedness. We point out that hand preference is heritable, and report how hand preference is influenced by genetic, hormonal, developmental and cultural factors. We review the available information on potential fitness costs and benefits acting as selective forces on the proportion of left-handers. Thus, evolutionary perspectives on the persistence of this polymorphism in humans are gathered for the first time, highlighting the necessity for an assessment of fitness differences between right- and left-handers. PMID:19064347

  20. The drug target genes show higher evolutionary conservation than non-target genes.

    PubMed

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  1. 'Natural' and 'Unnatural' medical deaths and coronial law: A UK and international review of the medical literature on natural and unnatural death and how it applies to medical death certification and reporting deaths to coroners: Natural/Unnatural death: A Scientific Review.

    PubMed

    Harris, Andrew

    2017-07-01

    In the United Kingdom, when people die, either a doctor writes an acceptable natural cause of death medical certificate, or a coroner (fiscal in Scotland) investigates the case, usually with an autopsy. An inquest may or may not follow. The concept of 'natural or unnatural cause' death is not internationally standardized. This article reviews scientific evidence as to what is a natural death or unnatural death and how that relates to the international classification of deaths. Whilst there is some consensus on the definition, its application in considering whether to report to the coroner is more difficult. Depictions of deaths in terminal care, medical emergencies and post-operative care highlight these difficulties. It secondly reviews to what extent natural and unnatural are criteria for notification of deaths in England and Wales and internationally. It concludes with consideration of how medical concepts of unnatural death relate in England and Wales to coroners' legal concepts of what is unnatural. Deaths that appear natural to clinicians and pathologists may be legally unnatural and vice versa. It is argued that the natural/unnatural dichotomy is not a good criterion for reporting deaths under medical care to coroners, but the notification of a medical cause of death, using the International Classification of Disease Codes and the medical professional view as to whether it is scientifically natural, is of great value to the coroner in deciding whether it is legally unnatural.

  2. An evolutionary ecology of individual differences

    PubMed Central

    Dall, Sasha R. X.; Bell, Alison M.; Bolnick, Daniel I.; Ratnieks, Francis L. W.

    2014-01-01

    Individuals often differ in what they do. This has been recognised since antiquity. Nevertheless, the ecological and evolutionary significance of such variation is attracting widespread interest, which is burgeoning to an extent that is fragmenting the literature. As a first attempt at synthesis, we focus on individual differences in behaviour within populations that exceed the day-to-day variation in individual behaviour (i.e. behavioural specialisation). Indeed, the factors promoting ecologically relevant behavioural specialisation within natural populations are likely to have far-reaching ecological and evolutionary consequences. We discuss such individual differences from three distinct perspectives: individual niche specialisations, the division of labour within insect societies and animal personality variation. In the process, while recognising that each area has its own unique motivations, we identify a number of opportunities for productive ‘crossfertilisation’ among the (largely independent) bodies of work. We conclude that a complete understanding of evolutionarily and ecologically relevant individual differences must specify how ecological interactions impact the basic biological process (e.g. Darwinian selection, development and information processing) that underpin the organismal features determining behavioural specialisations. Moreover, there is likely to be covariation amongst behavioural specialisations. Thus, we sketch the key elements of a general framework for studying the evolutionary ecology of individual differences. PMID:22897772

  3. A Bright Future for Evolutionary Methods in Drug Design.

    PubMed

    Le, Tu C; Winkler, David A

    2015-08-01

    Most medicinal chemists understand that chemical space is extremely large, essentially infinite. Although high-throughput experimental methods allow exploration of drug-like space more rapidly, they are still insufficient to fully exploit the opportunities that such large chemical space offers. Evolutionary methods can synergistically blend automated synthesis and characterization methods with computational design to identify promising regions of chemical space more efficiently. We describe how evolutionary methods are implemented, and provide examples of published drug development research in which these methods have generated molecules with increased efficacy. We anticipate that evolutionary methods will play an important role in future drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Misrepresentations of evolutionary psychology in sex and gender textbooks.

    PubMed

    Winegard, Benjamin M; Winegard, Bo M; Deaner, Robert O

    2014-05-20

    Evolutionary psychology has provoked controversy, especially when applied to human sex differences. We hypothesize that this is partly due to misunderstandings of evolutionary psychology that are perpetuated by undergraduate sex and gender textbooks. As an initial test of this hypothesis, we develop a catalog of eight types of errors and document their occurrence in 15 widely used sex and gender textbooks. Consistent with our hypothesis, of the 12 textbooks that discussed evolutionary psychology, all contained at least one error, and the median number of errors was five. The most common types of errors were "Straw Man," "Biological Determinism," and "Species Selection." We conclude by suggesting improvements to undergraduate sex and gender textbooks.

  5. An evolutionary scenario for the origin of flowers.

    PubMed

    Frohlich, Michael W

    2003-07-01

    The Mostly Male theory is the first to use evidence from gene phylogenies, genetics, modern plant morphology and fossils to explain the evolutionary origin of flowers. It proposes that flower organization derives more from the male structures of ancestral gymnosperms than from female structures. The theory arose from a hypothesis-based study. Such studies are the most likely to generate testable evolutionary scenarios, which should be the ultimate goal of evo-devo.

  6. Surveillance for Violent Deaths - National Violent Death Reporting System, 17 States, 2013.

    PubMed

    Lyons, Bridget H; Fowler, Katherine A; Jack, Shane P D; Betz, Carter J; Blair, Janet M

    2016-08-19

    In 2013, more than 57,000 persons died in the United States as a result of violence-related injuries. This report summarizes data from CDC's National Violent Death Reporting System (NVDRS) regarding violent deaths from 17 U.S. states for 2013. Results are reported by sex, age group, race/ethnicity, marital status, location of injury, method of injury, circumstances of injury, and other selected characteristics. 2013. NVDRS collects data from participating states regarding violent deaths obtained from death certificates, coroner/medical examiner reports, law enforcement reports, and secondary sources (e.g., child fatality review team data, supplemental homicide reports, hospital data, and crime laboratory data). This report includes data from 17 states that collected statewide data for 2013 (Alaska, Colorado, Georgia, Kentucky, Maryland, Massachusetts, North Carolina, New Jersey, New Mexico, Ohio, Oklahoma, Oregon, Rhode Island, South Carolina, Utah, Virginia, and Wisconsin). NVDRS collates documents for each death and links deaths that are related (e.g., multiple homicides, a homicide followed by a suicide, or multiple suicides) from a single incident. For 2013, a total of 18,765 fatal incidents involving 19,251 deaths were captured by NVDRS in the 17 states included in this report. The majority (66.2%) of deaths were suicides, followed by homicides (23.2%), deaths of undetermined intent (8.8%), deaths involving legal intervention (1.2%) (i.e., deaths caused by law enforcement and other persons with legal authority to use deadly force, excluding legal executions), and unintentional firearm deaths (<1%). (The term legal intervention is a classification incorporated into the International Classification of Diseases, Tenth Revision [ICD-10] and does not denote the lawfulness or legality of the circumstances surrounding a death caused by law enforcement.) Suicides occurred at higher rates among males, non-Hispanic whites, American Indian/Alaska Natives, persons aged 45

  7. Endosymbiosis and its implications for evolutionary theory.

    PubMed

    O'Malley, Maureen A

    2015-08-18

    Historically, conceptualizations of symbiosis and endosymbiosis have been pitted against Darwinian or neo-Darwinian evolutionary theory. In more recent times, Lynn Margulis has argued vigorously along these lines. However, there are only shallow grounds for finding Darwinian concepts or population genetic theory incompatible with endosymbiosis. But is population genetics sufficiently explanatory of endosymbiosis and its role in evolution? Population genetics "follows" genes, is replication-centric, and is concerned with vertically consistent genetic lineages. It may also have explanatory limitations with regard to macroevolution. Even so, asking whether population genetics explains endosymbiosis may have the question the wrong way around. We should instead be asking how explanatory of evolution endosymbiosis is, and exactly which features of evolution it might be explaining. This paper will discuss how metabolic innovations associated with endosymbioses can drive evolution and thus provide an explanatory account of important episodes in the history of life. Metabolic explanations are both proximate and ultimate, in the same way genetic explanations are. Endosymbioses, therefore, point evolutionary biology toward an important dimension of evolutionary explanation.

  8. The evolutionary language game: an orthogonal approach.

    PubMed

    Lenaerts, Tom; Jansen, Bart; Tuyls, Karl; De Vylder, Bart

    2005-08-21

    Evolutionary game dynamics have been proposed as a mathematical framework for the cultural evolution of language and more specifically the evolution of vocabulary. This article discusses a model that is mutually exclusive in its underlying principals with some previously suggested models. The model describes how individuals in a population culturally acquire a vocabulary by actively participating in the acquisition process instead of passively observing and communicate through peer-to-peer interactions instead of vertical parent-offspring relations. Concretely, a notion of social/cultural learning called the naming game is first abstracted using learning theory. This abstraction defines the required cultural transmission mechanism for an evolutionary process. Second, the derived transmission system is expressed in terms of the well-known selection-mutation model defined in the context of evolutionary dynamics. In this way, the analogy between social learning and evolution at the level of meaning-word associations is made explicit. Although only horizontal and oblique transmission structures will be considered, extensions to vertical structures over different genetic generations can easily be incorporated. We provide a number of simplified experiments to clarify our reasoning.

  9. Evolutionary Dynamics and Diversity in Microbial Populations

    NASA Astrophysics Data System (ADS)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  10. The Evolution of Different Forms of Sociality: Behavioral Mechanisms and Eco-Evolutionary Feedback

    PubMed Central

    van der Post, Daniel J.; Verbrugge, Rineke; Hemelrijk, Charlotte K.

    2015-01-01

    Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from “leader-follower” societies to “fission-fusion” societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality. PMID:25629313

  11. The evolution of different forms of sociality: behavioral mechanisms and eco-evolutionary feedback.

    PubMed

    van der Post, Daniel J; Verbrugge, Rineke; Hemelrijk, Charlotte K

    2015-01-01

    Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from "leader-follower" societies to "fission-fusion" societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality.

  12. How Much Can Evolutionary Psychology Inform the Educational Sciences?

    ERIC Educational Resources Information Center

    Halpern, Diane F.

    2008-01-01

    In response to a stimulating article by David C. Geary on the value of understanding the evolutionary basis of learning as a guide to instruction, I raise several objections. When evolutionary theory is used to explain everything from sex differences in math and reading to why children are bored in school, it loses its explanatory power. There is…

  13. Death and consciousness--an overview of the mental and cognitive experience of death.

    PubMed

    Parnia, Sam

    2014-11-01

    Advances in resuscitation science have indicated that, contrary to perception, death by cardiorespiratory criteria can no longer be considered a specific moment but rather a potentially reversible process that occurs after any severe illness or accident causes the heart, lungs, and brain to stop functioning. The resultant loss of vital signs of life (and life processes) is used to declare a specific time of death by physicians globally. When medical attempts are made to reverse this process, it is commonly referred to as cardiac arrest; however, when these attempts do not succeed or when attempts are not made, it is called death by cardiorespiratory criteria. Thus, biologically speaking, cardiac arrest and death by cardiorespiratory criteria are synonymous. While resuscitation science has provided novel opportunities to reverse death by cardiorespiratory criteria and treat the potentially devastating consequences of the resultant postresuscitation syndrome, it has also inadvertently provided intriguing insights into the likely mental and cognitive experience of death. Recollections reported by millions of people in relation to death, so-called out-of-body experiences (OBEs) or near-death experiences (NDEs), are often-discussed phenomena that are frequently considered hallucinatory or illusory in nature; however, objective studies on these experiences are limited. To date, many consistent themes corresponding to the likely experience of death have emerged, and studies have indicated that the scientifically imprecise terms of NDE and OBE may not be sufficient to describe the actual experience of death. While much remains to be discovered, the recalled experience surrounding death merits a genuine scientific investigation without prejudice. © 2014 New York Academy of Sciences.

  14. Evolutionary dynamics of enzymes.

    PubMed

    Demetrius, L

    1995-08-01

    This paper codifies and rationalizes the large diversity in reaction rates and substrate specificity of enzymes in terms of a model which postulates that the kinetic properties of present-day enzymes are the consequence of the evolutionary force of mutation and selection acting on a class of primordial enzymes with poor catalytic activity and broad substrate specificity. Enzymes are classified in terms of their thermodynamic parameters, activation enthalpy delta H* and activation entropy delta S*, in their kinetically significant transition states as follows: type 1, delta H* > 0, delta S* < 0; type 2, delta H* < or = 0, delta S* < or = 0; type 3, delta H* > 0, delta S* > 0. We study the evolutionary dynamics of these three classes of enzymes subject to mutation, which acts at the level of the gene which codes for the enzyme and selection, which acts on the organism that contains the enzyme. Our model predicts the following evolutionary trends in the reaction rate and binding specificity for the three classes of molecules. In type 1 enzymes, evolution results in random, non-directional changes in the reaction rate and binding specificity. In type 2 and 3 enzymes, evolution results in a unidirectional increase in both the reaction rate and binding specificity. We exploit these results in order to codify the diversity in functional properties of present-day enzymes. Type 1 molecules will be described by intermediate reaction rates and broad substrate specificity. Type 2 enzymes will be characterized by diffusion-controlled rates and absolute substrate specificity. The type 3 catalysts can be further subdivided in terms of their activation enthalpy into two classes: type 3a (delta H* small) and type 3b (delta H* large). We show that type 3a will be represented by the same functional properties that identify type 2, namely, diffusion-controlled rates and absolute substrate specificity, whereas type 3b will be characterized by non-diffusion-controlled rates and absolute

  15. Children's Experience with Death.

    ERIC Educational Resources Information Center

    Zeligs, Rose

    Children's concepts of death grow with their age and development The three-year-old begins to notice that living things move and make sounds. The five-year-old thinks that life and death are reversable, but the six-year-old knows that death is final and brings sorrow. Children from eight through ten are interested in the causes of death and what…

  16. phyloXML: XML for evolutionary biology and comparative genomics

    PubMed Central

    Han, Mira V; Zmasek, Christian M

    2009-01-01

    Background Evolutionary trees are central to a wide range of biological studies. In many of these studies, tree nodes and branches need to be associated (or annotated) with various attributes. For example, in studies concerned with organismal relationships, tree nodes are associated with taxonomic names, whereas tree branches have lengths and oftentimes support values. Gene trees used in comparative genomics or phylogenomics are usually annotated with taxonomic information, genome-related data, such as gene names and functional annotations, as well as events such as gene duplications, speciations, or exon shufflings, combined with information related to the evolutionary tree itself. The data standards currently used for evolutionary trees have limited capacities to incorporate such annotations of different data types. Results We developed a XML language, named phyloXML, for describing evolutionary trees, as well as various associated data items. PhyloXML provides elements for commonly used items, such as branch lengths, support values, taxonomic names, and gene names and identifiers. By using "property" elements, phyloXML can be adapted to novel and unforeseen use cases. We also developed various software tools for reading, writing, conversion, and visualization of phyloXML formatted data. Conclusion PhyloXML is an XML language defined by a complete schema in XSD that allows storing and exchanging the structures of evolutionary trees as well as associated data. More information about phyloXML itself, the XSD schema, as well as tools implementing and supporting phyloXML, is available at . PMID:19860910

  17. Developmental and Evolutionary History Affect Survival in Stressful Environments

    PubMed Central

    Hopkins, Gareth R.; Brodie, Edmund D.; French, Susannah S.

    2014-01-01

    The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history. PMID:24748021

  18. Antibiotic resistance in the wild: an eco-evolutionary perspective.

    PubMed

    Hiltunen, Teppo; Virta, Marko; Laine, Anna-Liisa

    2017-01-19

    The legacy of the use and misuse of antibiotics in recent decades has left us with a global public health crisis: antibiotic-resistant bacteria are on the rise, making it harder to treat infections. At the same time, evolution of antibiotic resistance is probably the best-documented case of contemporary evolution. To date, research on antibiotic resistance has largely ignored the complexity of interactions that bacteria engage in. However, in natural populations, bacteria interact with other species; for example, competition and grazing are import interactions influencing bacterial population dynamics. Furthermore, antibiotic leakage to natural environments can radically alter bacterial communities. Overall, we argue that eco-evolutionary feedback loops in microbial communities can be modified by residual antibiotics and evolution of antibiotic resistance. The aim of this review is to connect some of the well-established key concepts in evolutionary biology and recent advances in the study of eco-evolutionary dynamics to research on antibiotic resistance. We also identify some key knowledge gaps related to eco-evolutionary dynamics of antibiotic resistance, and review some of the recent technical advantages in molecular microbiology that offer new opportunities for tackling these questions. Finally, we argue that using the full potential of evolutionary theory and active communication across the different fields is needed for solving this global crisis more efficiently.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Authors.

  19. Antibiotic resistance in the wild: an eco-evolutionary perspective

    PubMed Central

    Virta, Marko

    2017-01-01

    The legacy of the use and misuse of antibiotics in recent decades has left us with a global public health crisis: antibiotic-resistant bacteria are on the rise, making it harder to treat infections. At the same time, evolution of antibiotic resistance is probably the best-documented case of contemporary evolution. To date, research on antibiotic resistance has largely ignored the complexity of interactions that bacteria engage in. However, in natural populations, bacteria interact with other species; for example, competition and grazing are import interactions influencing bacterial population dynamics. Furthermore, antibiotic leakage to natural environments can radically alter bacterial communities. Overall, we argue that eco-evolutionary feedback loops in microbial communities can be modified by residual antibiotics and evolution of antibiotic resistance. The aim of this review is to connect some of the well-established key concepts in evolutionary biology and recent advances in the study of eco-evolutionary dynamics to research on antibiotic resistance. We also identify some key knowledge gaps related to eco-evolutionary dynamics of antibiotic resistance, and review some of the recent technical advantages in molecular microbiology that offer new opportunities for tackling these questions. Finally, we argue that using the full potential of evolutionary theory and active communication across the different fields is needed for solving this global crisis more efficiently. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences'. PMID:27920384

  20. Deaths from international terrorism compared with road crash deaths in OECD countries

    PubMed Central

    Wilson, N; Thomson, G

    2005-01-01

    Methods: Data on deaths from international terrorism (US State Department database) were collated (1994–2003) and compared to the road injury deaths (year 2000 and 2001 data) from the OECD International Road Transport Accident Database. Results: In the 29 OECD countries for which comparable data were available, the annual average death rate from road injury was approximately 390 times that from international terrorism. The ratio of annual road to international terrorism deaths (averaged over 10 years) was lowest for the United States at 142 times. In 2001, road crash deaths in the US were equal to those from a September 11 attack every 26 days. Conclusions: There is a large difference in the magnitude of these two causes of deaths from injury. Policy makers need to be aware of this when allocating resources to preventing these two avoidable causes of mortality. PMID:16326764

  1. Sudden unexpected death in infancy: place and time of death.

    PubMed

    Glasgow, J F T; Thompson, A J; Ingram, P J

    2006-01-01

    In recent years, many babies who die of Sudden Unexpected Death in Infancy (SUDI) in Northern Ireland are found dead in bed--i.e. co-sleeping--with an adult. In order to assess its frequency autopsy reports between April 1996 and August 2001 were reviewed and linked to temporal factors. The day and month of death, and the place where the baby was found were compared to a reference population of infant deaths between one week of age and the second birthday. Although the rate of SUDI was lower than the UK average, 43 cases of SUDI were identified, and two additional deaths with virtually identical autopsy findings that were attributed to asphyxia caused by suffocation due to overlaying. Thirty-two of the 45 (71%) were less than four months of age. In 30 of the 45 cases (67%) the history stated that the baby was bed sharing with others; 19 died sleeping in an adult bed, and 11 on a sofa or armchair. In 16 of the 30 (53%) there were at least two other people sharing the sleeping surface, and in one case, three. SUDI was twice as frequent at weekends (found dead Saturday-Monday mornings) compared to weekdays (p<0.02), and significantly more common compared to reference deaths (p<0.002). Co-sleeping deaths were also more frequent at weekends. Almost half of all SUDI (49%) occurred in the summer months--more than twice the frequency of reference deaths. While sharing a place of sleep per se may not increase the risk of death, our findings may be linked to factors such as habitual smoking, consumption of alcohol or illicit drugs as reported in case-control studies. In advising parents on safer childcare practices, health professionals must be knowledgeable of current research and when, for example, giving advice on co-sleeping this needs to be person-specific cognisant of the risks within a household. New and better means of targeting such information needs to be researched if those with higher risk life-styles are to be positively influenced.

  2. Brain Death and Islam

    PubMed Central

    Ziad-Miller, Amna; Elamin, Elamin M.

    2014-01-01

    How one defines death may vary. It is important for clinicians to recognize those aspects of a patient’s religious beliefs that may directly influence medical care and how such practices may interface with local laws governing the determination of death. Debate continues about the validity and certainty of brain death criteria within Islamic traditions. A search of PubMed, Scopus, EMBASE, Web of Science, PsycNet, Sociological Abstracts, DIALOGUE ProQuest, Lexus Nexus, Google, and applicable religious texts was conducted to address the question of whether brain death is accepted as true death among Islamic scholars and clinicians and to discuss how divergent opinions may affect clinical care. The results of the literature review inform this discussion. Brain death has been acknowledged as representing true death by many Muslim scholars and medical organizations, including the Islamic Fiqh Academies of the Organization of the Islamic Conference and the Muslim World League, the Islamic Medical Association of North America, and other faith-based medical organizations as well as legal rulings by multiple Islamic nations. However, consensus in the Muslim world is not unanimous, and a sizable minority accepts death by cardiopulmonary criteria only. PMID:25287999

  3. Unintentional asphyxia, SIDS, and medically explained deaths: a descriptive study of outcomes of child death review (CDR) investigations following sudden unexpected death in infancy.

    PubMed

    Garstang, Joanna; Ellis, Catherine; Griffiths, Frances; Sidebotham, Peter

    2016-12-01

    A comprehensive child death review (CDR) program was introduced in England and Wales in 2008, but as yet data have only been analyzed at a local level, limiting the learning from deaths. The aim of this study is to describe the profile of causes and risk factors for sudden unexpected death in infancy (SUDI) as determined by the new CDR program. This was a descriptive outcome study using data from child death overview panel Form C for SUDI cases dying during 2010-2012 in the West Midlands region of England. The main outcome measures were: cause of death, risk factors and potential preventability of death, and determination of deaths probably due to unintentional asphyxia. Data were obtained for 65/70 (93 %) SUDI cases. 20/65 (31 %) deaths were initially categorized as due to medical causes; 21/65 (32 %) as SIDS; and 24/65 (37 %) as undetermined. Reanalysis suggested that 2/21 SIDS and 7/24 undetermined deaths were probably due to unintentional asphyxia, with 6 of these involving co-sleeping and excessive parental alcohol consumption. Deaths classified as "undetermined" had significantly higher total family and environmental risk factor scores (mean 2.6, 95 % CI 2.0-3.3) compared to those classified as SIDS (mean 1.6, 95 % CI 1.2-1.9), or medical causes for death (mean 1.1, 95 % CI 0.8-1.3). 9/20 (47 %) of medical deaths, 19/21 (90 %) SIDS, and 23/24 (96 %) undetermined deaths were considered to be potentially preventable. There were inadequacies in medical provision identified in 5/20 (25 %) of medically explained deaths. The CDR program results in detailed information about risk factors for SUDI cases but failed to recognize deaths probably due to unintentional asphyxia. The misclassification of probable unintentional asphyxial deaths and SIDS as "undetermined deaths" is likely to limit learning from these deaths and inhibit prevention strategies. Many SUDI occurred in families with mental illness, substance misuse and chaotic lifestyles and most in

  4. Osteomyelitis in a Paleozoic reptile: ancient evidence for bacterial infection and its evolutionary significance

    NASA Astrophysics Data System (ADS)

    Reisz, Robert R.; Scott, Diane M.; Pynn, Bruce R.; Modesto, Sean P.

    2011-06-01

    We report on dental and mandibular pathology in Labidosaurus hamatus, a 275 million-year-old terrestrial reptile from North America and associate it with bacterial infection in an organism that is characterized by reduced tooth replacement. Analysis of the surface and internal mandibular structure using mechanical and CT-scanning techniques permits the reconstruction of events that led to the pathology and the possible death of the individual. The infection probably occurred as a result of prolonged exposure of the dental pulp cavity to oral bacteria, and this exposure was caused by injury to the tooth in an animal that is characterized by reduced tooth replacement cycles. In these early reptiles, the reduction in tooth replacement is an evolutionary innovation associated with strong implantation and increased oral processing. The dental abscess observed in L. hamatus, the oldest known infection in a terrestrial vertebrate, provides clear evidence of the ancient association between terrestrial vertebrates and their oral bacteria.

  5. Genome-wide investigation reveals high evolutionary rates in annual model plants.

    PubMed

    Yue, Jia-Xing; Li, Jinpeng; Wang, Dan; Araki, Hitoshi; Tian, Dacheng; Yang, Sihai

    2010-11-09

    Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those

  6. Evolutionary Study of Interethnic Cooperation

    NASA Astrophysics Data System (ADS)

    Kvasnicka, Vladimir; Pospichal, Jiri

    The purpose of this communication is to present an evolutionary study of cooperation between two ethnic groups. The used model is stimulated by the seminal paper of J. D. Fearon and D. D. Laitin (Explaining Interethnic Cooperation, American Political Science Review, 90 (1996), pp. 715-735), where the iterated prisoner's dilemma was used to model intra- and interethnic interactions. We reformulated their approach in a form of evolutionary prisoner's dilemma method, where a population of strategies is evolved by applying simple reproduction process with a Darwin metaphor of natural selection (a probability of selection to the reproduction is proportional to a fitness). Our computer simulations show that an application of a principle of collective guilt does not lead to an emergence of an interethnic cooperation. When an administrator is introduced, then an emergence of interethnic cooperation may be observed. Furthermore, if the ethnic groups are of very different sizes, then the principle of collective guilt may be very devastating for smaller group so that intraethnic cooperation is destroyed. The second strategy of cooperation is called the personal responsibility, where agents that defected within interethnic interactions are punished inside of their ethnic groups. It means, unlikely to the principle of collective guilt, that there exists only one type of punishment, loosely speaking, agents are punished "personally." All the substantial computational results were checked and interpreted analytically within the theory of evolutionary stable strategies. Moreover, this theoretical approach offers mechanisms of simple scenarios explaining why some particular strategies are stable or not.

  7. Evolutionary plasticity of insect immunity.

    PubMed

    Vilcinskas, Andreas

    2013-02-01

    Many insect genomes have been sequenced and the innate immune responses of several species have been studied by transcriptomics, inviting the comparative analysis of immunity-related genes. Such studies have demonstrated significant evolutionary plasticity, with the emergence of novel proteins and protein domains correlated with insects adapting to both abiotic and biotic environmental stresses. This review article focuses on effector molecules such as antimicrobial peptides (AMPs) and proteinase inhibitors, which display greater evolutionary dynamism than conserved components such as immunity-related signaling molecules. There is increasing evidence to support an extended role for insect AMPs beyond defense against pathogens, including the management of beneficial endosymbionts. The total number of AMPs varies among insects with completed genome sequences, providing intriguing examples of immunity gene expansion and loss. This plasticity is discussed in the context of recent developments in evolutionary ecology suggesting that the maintenance and deployment of immune responses reallocates resources from other fitness-related traits thus requiring fitness trade-offs. Based on our recent studies using both model and non-model insects, I propose that insect immunity genes can be lost when alternative defense strategies with a lower fitness penalty have evolved, such as the so-called social immunity in bees, the chemical sanitation of the microenvironment by some beetles, and the release of antimicrobial secondary metabolites in the hemolymph. Conversely, recent studies provide evidence for the expansion and functional diversification of insect AMPs and proteinase inhibitors to reflect coevolution with a changing pathosphere and/or adaptations to habitats or food associated with microbial contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. An evolutionary medicine approach to understanding factors that contribute to chronic obstructive pulmonary disease.

    PubMed

    Aoshiba, Kazutetsu; Tsuji, Takao; Itoh, Masayuki; Yamaguchi, Kazuhiro; Nakamura, Hiroyuki

    2015-01-01

    Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work.

  9. Procedures in child deaths in The Netherlands: a comparison with child death review.

    PubMed

    Gijzen, Sandra; Petter, Jessica; L'Hoir, Monique P; Boere-Boonekamp, Magda M; Need, Ariana

    2017-01-01

    Child Death Review (CDR) is a method in which every child death is systematically and multidisciplinary examined to (1) improve death statistics, (2) identify factors that give direction for prevention, (3) translate the results into possible interventions, and (4) support families. The aim of this study was to determine to what extent procedures of organizations involved in the (health) care for children in The Netherlands cover these four objectives of CDR. Organizations in the Eastern part of The Netherlands and Dutch umbrella organizations involved in child (health) care were asked to provide their protocols, guidelines or other working agreements that describe their activities and responsibilities in case of a child's death. Eighteen documents and nine interview reports were made available. For the analyses we used scorecards for each CDR objective. The procedures of Perined, the National Cot Death Study Group, Dutch Cot Death Foundation and Child Protection Service cover the largest part of the objectives of CDR. Organizations pay most attention to the translation of results into possible interventions. Family support gets the least attention in protocols, guidelines and other working agreements. Dutch organizations separately cover parts of CDR. When the procedures of organizations are combined, all CDR objectives are covered in the response to only specific groups of child deaths, i.e., perinatal deaths, Sudden Unexpected Deaths in Infants and fatal child abuse cases. Further research into the conditions that are needed for an optimal implementation of CDR in The Netherlands is necessary. This research should also evaluate the recently implemented NODOK procedure (Further Examination of the Causes of death in Children), directed to investigate unexplained deaths in minors 0-18 years old.

  10. Hunter-gatherer genomics: Evolutionary insights and ethical considerations

    PubMed Central

    Bankoff, Richard J.; Perry, George H.

    2016-01-01

    Hunting and gathering societies currently comprise only a small proportion of all human populations. However, the geographic and environmental diversity of modern hunter-gatherer groups, their inherent dependence on ecological resources, and their connection to patterns of behavior and subsistence that represent the vast majority of human history provide opportunities for scientific research to deliver major insights into the evolutionary history of our species. We review recent evolutionary genomic studies of hunter-gatherers, focusing especially on those that identify and functionally characterize phenotypic adaptations to local environments. We also call attention to specific ethical issues that scientists conducting hunter-gatherer genomics research ought to consider, including potential social and economic tensions between traditionally mobile hunter-gatherers and the land ownership-based nation-states by which they are governed, and the implications of genomic-based evidence of long-term evolutionary associations with particular habitats. PMID:27400119

  11. Evolutionary biology: a basic science for medicine in the 21st century.

    PubMed

    Perlman, Robert L

    2011-01-01

    Evolutionary biology was a poorly developed discipline at the time of the Flexner Report and was not included in Flexner's recommendations for premedical or medical education. Since that time, however, the value of an evolutionary approach to medicine has become increasingly recognized. There are several ways in which an evolutionary perspective can enrich medical education and improve medical practice. Evolutionary considerations rationalize our continued susceptibility or vulnerability to disease; they call attention to the idea that the signs and symptoms of disease may be adaptations that prevent or limit the severity of disease; they help us understand the ways in which our interventions may affect the evolution of microbial pathogens and of cancer cells; and they provide a framework for thinking about population variation and risk factors for disease. Evolutionary biology should become a foundational science for the medical education of the future.

  12. Death with dignity

    PubMed Central

    Allmark, P.

    2002-01-01

    The purpose of this article is to develop a conception of death with dignity and to examine whether it is vulnerable to the sort of criticisms that have been made of other conceptions. In this conception "death" is taken to apply to the process of dying; "dignity" is taken to be something that attaches to people because of their personal qualities. In particular, someone lives with dignity if they live well (in accordance with reason, as Aristotle would see it). It follows that health care professionals cannot confer on patients either dignity or death with dignity. They can, however, attempt to ensure that the patient dies without indignity. Indignities are affronts to human dignity, and include such things as serious pain and the exclusion of patients from involvement in decisions about their lives and deaths. This fairly modest conception of death with dignity avoids the traps of being overly subjective or of viewing the sick and helpless as "undignified". PMID:12161582

  13. Potentially Preventable Deaths Among the Five Leading Causes of Death - United States, 2010 and 2014.

    PubMed

    García, Macarena C; Bastian, Brigham; Rossen, Lauren M; Anderson, Robert; Miniño, Arialdi; Yoon, Paula W; Faul, Mark; Massetti, Greta; Thomas, Cheryll C; Hong, Yuling; Iademarco, Michael F

    2016-11-18

    Death rates by specific causes vary across the 50 states and the District of Columbia.* Information on differences in rates for the leading causes of death among states might help state health officials determine prevention goals, priorities, and strategies. CDC analyzed National Vital Statistics System data to provide national and state-specific estimates of potentially preventable deaths among the five leading causes of death in 2014 and compared these estimates with estimates previously published for 2010. Compared with 2010, the estimated number of potentially preventable deaths changed (supplemental material at https://stacks.cdc.gov/view/cdc/42472); cancer deaths decreased 25% (from 84,443 to 63,209), stroke deaths decreased 11% (from 16,973 to 15,175), heart disease deaths decreased 4% (from 91,757 to 87,950), chronic lower respiratory disease (CLRD) (e.g., asthma, bronchitis, and emphysema) deaths increased 1% (from 28,831 to 29,232), and deaths from unintentional injuries increased 23% (from 36,836 to 45,331). A better understanding of progress made in reducing potentially preventable deaths in the United States might inform state and regional efforts targeting the prevention of premature deaths from the five leading causes in the United States.

  14. Comparing the National Death Index and the Social Security Administration's Death Master File to ascertain death in HIV surveillance.

    PubMed

    Hanna, David B; Pfeiffer, Melissa R; Sackoff, Judith E; Selik, Richard M; Begier, Elizabeth M; Torian, Lucia V

    2009-01-01

    New York City (NYC) maintains a population-based registry of people with human immunodeficiency virus (HIV) infection to monitor the epidemic and inform resource allocation. We evaluated record linkages with the National Death Index (NDI) and the Social Security Administration's Death Master File (SSDMF) to find deaths occurring from 2000 through 2004. We linked records from 32,837 people reported with HIV and not previously known to be dead with deaths reported in the NDI and the SSDMF. We calculated the kappa statistic to assess agreement between data sources. We performed subgroup analyses to assess differences within demographic and transmission risk subpopulations. We quantified the benefit of linkages with each data source beyond prior death ascertainment from local vital statistics data. We discovered 1,926 (5.87%) deaths, which reduced the HIV prevalence estimate in NYC by 2.03%, from 1.19% to 1.16%. Of these, 458 (23.78%) were identified only from NDI, and 305 (15.84%) only from SSDMF. Agreement in ascertainment between sources was substantial (kappa = [K] 0.74, 95% confidence interval [CI] 0.72, 0.76); agreement was lower among Hispanic people (K = 0.65, 95% CI 0.62, 0.69) and people born outside the U.S. (K = 0.60, 95% CI 0.52, 0.68). We identified an additional 13.62% of deaths to people reported with HIV in NYC; white people and men who have sex with men were disproportionately likely to be underascertained without these linkages (p < 0.0001). Record linkages with national databases are essential for accurate prevalence estimates from disease registries, and the SSDMF is an inexpensive means to supplement linkages with the NDI to maximize death ascertainment.

  15. Phylomemetics—Evolutionary Analysis beyond the Gene

    PubMed Central

    Howe, Christopher J.; Windram, Heather F.

    2011-01-01

    Genes are propagated by error-prone copying, and the resulting variation provides the basis for phylogenetic reconstruction of evolutionary relationships. Horizontal gene transfer may be superimposed on a tree-like evolutionary pattern, with some relationships better depicted as networks. The copying of manuscripts by scribes is very similar to the replication of genes, and phylogenetic inference programs can be used directly for reconstructing the copying history of different versions of a manuscript text. Phylogenetic methods have also been used for some time to analyse the evolution of languages and the development of physical cultural artefacts. These studies can help to answer a range of anthropological questions. We propose the adoption of the term “phylomemetics” for phylogenetic analysis of reproducing non-genetic elements. PMID:21655311

  16. Current Issues in Evolutionary Paleontology.

    ERIC Educational Resources Information Center

    Scully, Erik Paul

    1987-01-01

    Describes some of the contributions made by the field of paleontology to theories in geology and biology. Suggests that the two best examples of modern evolutionary paleontology relate to the theory of punctuated equilibria, and the possibility that mass extinctions may be cyclic. (TW)

  17. [Evolutionary medicine: A new look on health and disease].

    PubMed

    Bauduer, F

    2017-03-01

    Evolutionary medicine represents an innovative approach deriving from evolutionary biology. It includes the initial Darwin's view, its actualization in the light of progresses in genetics and also dissident theories (i.e. non gene-based) particularly epigenetics. This approach enables us to reconsider the pathophysiology of numerous diseases, as for instance, infection, and our so-called diseases of civilization especially obesity, type 2 diabetes, allergy or cancer. Evolutionary medicine may also improve our knowledge regarding inter-individual variation in susceptibility to disease or drugs. Furthermore, it points out the impact of our behaviors and environment on the genesis of a series of diseases. Copyright © 2016 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  18. The Evolutionary Basis of Risky Adolescent Behavior: Implications for Science, Policy, and Practice

    ERIC Educational Resources Information Center

    Ellis, Bruce J.; Del Giudice, Marco; Dishion, Thomas J.; Figueredo, Aurelio Jose; Gray, Peter; Griskevicius, Vladas; Hawley, Patricia H.; Jacobs, W. Jake; James, Jenee; Volk, Anthony A.; Wilson, David Sloan

    2012-01-01

    This article proposes an evolutionary model of risky behavior in adolescence and contrasts it with the prevailing developmental psychopathology model. The evolutionary model contends that understanding the evolutionary functions of adolescence is critical to explaining why adolescents engage in risky behavior and that successful intervention…

  19. Dictyostelium cell death

    PubMed Central

    Levraud, Jean-Pierre; Adam, Myriam; Luciani, Marie-Françoise; de Chastellier, Chantal; Blanton, Richard L.; Golstein, Pierre

    2003-01-01

    Cell death in the stalk of Dictyostelium discoideum, a prototypic vacuolar cell death, can be studied in vitro using cells differentiating as a monolayer. To identify early events, we examined potentially dying cells at a time when the classical signs of Dictyostelium cell death, such as heavy vacuolization and membrane lesions, were not yet apparent. We observed that most cells proceeded through a stereotyped series of differentiation stages, including the emergence of “paddle” cells showing high motility and strikingly marked subcellular compartmentalization with actin segregation. Paddle cell emergence and subsequent demise with paddle-to-round cell transition may be critical to the cell death process, as they were contemporary with irreversibility assessed through time-lapse videos and clonogenicity tests. Paddle cell demise was not related to formation of the cellulose shell because cells where the cellulose-synthase gene had been inactivated underwent death indistinguishable from that of parental cells. A major subcellular alteration at the paddle-to-round cell transition was the disappearance of F-actin. The Dictyostelium vacuolar cell death pathway thus does not require cellulose synthesis and includes early actin rearrangements (F-actin segregation, then depolymerization), contemporary with irreversibility, corresponding to the emergence and demise of highly polarized paddle cells. PMID:12654899

  20. Social inequality and death as illustrated in late-medieval death dances.

    PubMed Central

    Mackenbach, J P

    1995-01-01

    Late-medieval murals and books of the then-popular "dances of death" usually represented the living according to their social standing. These works of art thus provide an interesting opportunity to study the relationship between social inequality and death as it was perceived by the works' commissioners or executers. The social hierarchy in these dances of death is mostly based on the scheme of the three orders of the feudal society; variations relate to the inclusion of female characters, new occupations, and non-Christian characters. Many dances of death contain severe judgments on highplaced persons and thus seem to be expressions of a desire for greater social equality. However, a more thorough analysis reveals that the equality of all before death that these dances of death proclaimed held nothing for the poor but only threatened the rich. Because of a lack of reliable data, it is not yet completely clear whether during the late Middle Ages all were indeed equally at risk for premature mortality. Available evidence, however, suggests that the clergy and nobility actually had a higher life expectancy than people placed lower in the social hierarchy. Despite modern changes in the perception of, and knowledge about, social inequality and mortality, these dances of death still capture the imagination, and they suggest that the phenomenon of socioeconomic inequalities in mortality could be used more to emphasize contemporary moral messages on social inequality. PMID:7661241

  1. Evolutionary trade-offs in kidney injury and repair.

    PubMed

    Lei, Yutian; Anders, Hans-Joachim

    2017-11-01

    Evolutionary medicine has proven helpful to understand the origin of human disease, e.g. in identifying causal roles of recent environmental changes impacting on human physiology (environment-phenotype mismatch). In contrast, diseases affecting only a limited number of members of a species often originate from evolutionary trade-offs for usually physiologic adaptations assuring reproductive success in the context of extrinsic threats. For example, the G1 and G2 variants of the APOL1 gene supporting control of Trypanosoma infection come with the trade-off that they promote the progression of kidney disease. In this review we extend the concept of evolutionary nephrology by discussing how the physiologic adaptations (danger responses) to tissue injury create evolutionary trade-offs that drive histopathological changes underlying acute and chronic kidney diseases. The evolution of multicellular organisms positively selected a number of danger response programs for their overwhelming benefits in assuring survival such as clotting, inflammation, epithelial healing and mesenchymal healing, i.e. fibrosis and sclerosis. Upon kidney injury these danger programs often present as pathomechanisms driving persistent nephron loss and renal failure. We explore how classic kidney disease entities involve insufficient or overshooting activation of these danger response programs for which the underlying genetic basis remains largely to be defined. Dissecting the causative and hierarchical relationships between danger programs should help to identify molecular targets to control kidney injury and to improve disease outcomes.

  2. Children's Death Concepts and Ethnicity.

    ERIC Educational Resources Information Center

    Wass, Hannelore; Towry, Betty J.

    1980-01-01

    Relationships between death concepts of Black and White children and their racial status were examined. Lower-middle-class elementary children completed a four-item questionnaire on death. Most children defined death as the end of living and listed physical causes as the explanation of death. In general, children's death concepts were similar.…

  3. Experimental results in evolutionary fault-recovery for field programmable analog devices

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo S.; Keymeulen, Didier; Duong, Vu; Guo, Xin; Ferguson, M. I.; Stoica, Adrian

    2003-01-01

    This paper presents experimental results of fast intrinsic evolutionary design and evolutionary fault recovery of a 4-bit Digital to Analog Converter (DAC) using the JPL stand-alone board-level evolvable system (SABLES).

  4. Sudden infant death syndrome

    MedlinePlus

    Crib death; SIDS ... However, SIDS is still a major cause of death in infants under 1 year old. Thousands of ... affects boys more often than girls. Most SIDS deaths occur in the winter. The following may increase ...

  5. Making death 'good': instructional tales for dying in newspaper accounts of Jade Goody's death.

    PubMed

    Frith, Hannah; Raisborough, Jayne; Klein, Orly

    2013-03-01

    Facilitating a 'good' death is a central goal for hospices and palliative care organisations. The key features of such a death include an acceptance of death, an open awareness of and communication about death, the settling of practical and interpersonal business, the reduction of suffering and pain, and the enhancement of autonomy, choice and control. Yet deaths are inherently neither good nor bad; they require cultural labour to be 'made over' as good. Drawing on media accounts of the controversial death of UK reality television star Jade Goody, and building on existing analyses of her death, we examine how cultural discourses actively work to construct deaths as good or bad and to position the dying and those witnessing their death as morally accountable. By constructing Goody as bravely breaking social taboos by openly acknowledging death, by contextualising her dying as occurring at the end of a life well lived and by emphasising biographical continuity and agency, newspaper accounts serve to position themselves as educative rather than exploitative, and readers as information-seekers rather than ghoulishly voyeuristic. We argue that popular culture offers moral instruction in dying well which resonates with the messages from palliative care. © 2012 The Authors. Sociology of Health & Illness © 2012 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  6. Strengths and weaknesses of McNamara's evolutionary psychological model of dreaming.

    PubMed

    Olliges, Sandra

    2010-10-07

    This article includes a brief overview of McNamara's (2004) evolutionary model of dreaming. The strengths and weaknesses of this model are then evaluated in terms of its consonance with measurable neurological and biological properties of dreaming, its fit within the tenets of evolutionary theories of dreams, and its alignment with evolutionary concepts of cooperation and spirituality. McNamara's model focuses primarily on dreaming that occurs during rapid eye movement (REM) sleep; therefore this article also focuses on REM dreaming.

  7. 32 CFR 700.815 - Deaths.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Deaths. 700.815 Section 700.815 National Defense... § 700.815 Deaths. The commanding officer, in the event of the death of any person within his or her command, shall ensure that the cause of death and the circumstances under which death occurred are...

  8. 38 CFR 3.211 - Death.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Death. 3.211 Section 3..., Compensation, and Dependency and Indemnity Compensation Evidence Requirements § 3.211 Death. Death should be... community where death occurred. (2) A copy of a coroner's report of death or a verdict of a coroner's jury...

  9. 38 CFR 3.211 - Death.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Death. 3.211 Section 3..., Compensation, and Dependency and Indemnity Compensation Evidence Requirements § 3.211 Death. Death should be... community where death occurred. (2) A copy of a coroner's report of death or a verdict of a coroner's jury...

  10. 38 CFR 3.211 - Death.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Death. 3.211 Section 3..., Compensation, and Dependency and Indemnity Compensation Evidence Requirements § 3.211 Death. Death should be... community where death occurred. (2) A copy of a coroner's report of death or a verdict of a coroner's jury...

  11. 32 CFR 700.815 - Deaths.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Deaths. 700.815 Section 700.815 National Defense... § 700.815 Deaths. The commanding officer, in the event of the death of any person within his or her command, shall ensure that the cause of death and the circumstances under which death occurred are...

  12. 32 CFR 700.815 - Deaths.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Deaths. 700.815 Section 700.815 National Defense... § 700.815 Deaths. The commanding officer, in the event of the death of any person within his or her command, shall ensure that the cause of death and the circumstances under which death occurred are...

  13. 38 CFR 3.211 - Death.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Death. 3.211 Section 3..., Compensation, and Dependency and Indemnity Compensation Evidence Requirements § 3.211 Death. Death should be... community where death occurred. (2) A copy of a coroner's report of death or a verdict of a coroner's jury...

  14. 32 CFR 700.815 - Deaths.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Deaths. 700.815 Section 700.815 National Defense... § 700.815 Deaths. The commanding officer, in the event of the death of any person within his or her command, shall ensure that the cause of death and the circumstances under which death occurred are...

  15. 38 CFR 3.211 - Death.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Death. 3.211 Section 3..., Compensation, and Dependency and Indemnity Compensation Evidence Requirements § 3.211 Death. Death should be... community where death occurred. (2) A copy of a coroner's report of death or a verdict of a coroner's jury...

  16. 32 CFR 700.815 - Deaths.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Deaths. 700.815 Section 700.815 National Defense... § 700.815 Deaths. The commanding officer, in the event of the death of any person within his or her command, shall ensure that the cause of death and the circumstances under which death occurred are...

  17. Likelihood-based inference for discretely observed birth-death-shift processes, with applications to evolution of mobile genetic elements.

    PubMed

    Xu, Jason; Guttorp, Peter; Kato-Maeda, Midori; Minin, Vladimir N

    2015-12-01

    Continuous-time birth-death-shift (BDS) processes are frequently used in stochastic modeling, with many applications in ecology and epidemiology. In particular, such processes can model evolutionary dynamics of transposable elements-important genetic markers in molecular epidemiology. Estimation of the effects of individual covariates on the birth, death, and shift rates of the process can be accomplished by analyzing patient data, but inferring these rates in a discretely and unevenly observed setting presents computational challenges. We propose a multi-type branching process approximation to BDS processes and develop a corresponding expectation maximization algorithm, where we use spectral techniques to reduce calculation of expected sufficient statistics to low-dimensional integration. These techniques yield an efficient and robust optimization routine for inferring the rates of the BDS process, and apply broadly to multi-type branching processes whose rates can depend on many covariates. After rigorously testing our methodology in simulation studies, we apply our method to study intrapatient time evolution of IS6110 transposable element, a genetic marker frequently used during estimation of epidemiological clusters of Mycobacterium tuberculosis infections. © 2015, The International Biometric Society.

  18. Evolutionary Psychology and Intelligence Research

    ERIC Educational Resources Information Center

    Kanazawa, Satoshi

    2010-01-01

    This article seeks to unify two subfields of psychology that have hitherto stood separately: evolutionary psychology and intelligence research/differential psychology. I suggest that general intelligence may simultaneously be an evolved adaptation and an individual-difference variable. Tooby and Cosmides's (1990a) notion of random quantitative…

  19. Evolutionary hotspots in the Mojave Desert

    USGS Publications Warehouse

    Vandergast, Amy G.; Inman, Richard D.; Barr, Kelly R.; Nussear, Kenneth E.; Esque, Todd C.; Hathaway, Stacie A.; Wood, Dustin A.; Medica, Philip A.; Breinholt, Jesse W.; Stephen, Catherine L.; Gottscho, Andrew D.; Marks, Sharyn B.; Jennings, W. Bryan; Fisher, Robert N.

    2013-01-01

    Genetic diversity within species provides the raw material for adaptation and evolution. Just as regions of high species diversity are conservation targets, identifying regions containing high genetic diversity and divergence within and among populations may be important to protect future evolutionary potential. When multiple co-distributed species show spatial overlap in high genetic diversity and divergence, these regions can be considered evolutionary hotspots. We mapped spatial population genetic structure for 17 animal species across the Mojave Desert, USA. We analyzed these in concurrence and located 10 regions of high genetic diversity, divergence or both among species. These were mainly concentrated along the western and southern boundaries where ecotones between mountain, grassland and desert habitat are prevalent, and along the Colorado River. We evaluated the extent to which these hotspots overlapped protected lands and utility-scale renewable energy development projects of the Bureau of Land Management. While 30–40% of the total hotspot area was categorized as protected, between 3–7% overlapped with proposed renewable energy project footprints, and up to 17% overlapped with project footprints combined with transmission corridors. Overlap of evolutionary hotspots with renewable energy development mainly occurred in 6 of the 10 identified hotspots. Resulting GIS-based maps can be incorporated into ongoing landscape planning efforts and highlight specific regions where further investigation of impacts to population persistence and genetic connectivity may be warranted.

  20. Multiscale structure in eco-evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  1. Preventive evolutionary medicine of cancers.

    PubMed

    Hochberg, Michael E; Thomas, Frédéric; Assenat, Eric; Hibner, Urszula

    2013-01-01

    Evolutionary theory predicts that once an individual reaches an age of sufficiently low Darwinian fitness, (s)he will have reduced chances of keeping cancerous lesions in check. While we clearly need to better understand the emergence of precursor states and early malignancies as well as their mitigation by the microenvironment and tissue architecture, we argue that lifestyle changes and preventive therapies based in an evolutionary framework, applied to identified high-risk populations before incipient neoplasms become clinically detectable and chemoresistant lineages emerge, are currently the most reliable way to control or eliminate early tumours. Specifically, the relatively low levels of (epi)genetic heterogeneity characteristic of many if not most incipient lesions will mean a relatively limited set of possible adaptive traits and associated costs compared to more advanced cancers, and thus a more complete and predictable understanding of treatment options and outcomes. We propose a conceptual model for preventive treatments and discuss the many associated challenges.

  2. Kramers problem in evolutionary strategies

    NASA Astrophysics Data System (ADS)

    Dunkel, J.; Ebeling, W.; Schimansky-Geier, L.; Hänggi, P.

    2003-06-01

    We calculate the escape rates of different dynamical processes for the case of a one-dimensional symmetric double-well potential. In particular, we compare the escape rates of a Smoluchowski process, i.e., a corresponding overdamped Brownian motion dynamics in a metastable potential landscape, with the escape rates obtained for a biologically motivated model known as the Fisher-Eigen process. The main difference between the two models is that the dynamics of the Smoluchowski process is determined by local quantities, whereas the Fisher-Eigen process is based on a global coupling (nonlocal interaction). If considered in the context of numerical optimization algorithms, both processes can be interpreted as archetypes of physically or biologically inspired evolutionary strategies. In this sense, the results discussed in this work are utile in order to evaluate the efficiency of such strategies with regard to the problem of surmounting various barriers. We find that a combination of both scenarios, starting with the Fisher-Eigen strategy, provides a most effective evolutionary strategy.

  3. Divergent evolutionary processes associated with colonization of offshore islands.

    PubMed

    Martínková, Natália; Barnett, Ross; Cucchi, Thomas; Struchen, Rahel; Pascal, Marine; Pascal, Michel; Fischer, Martin C; Higham, Thomas; Brace, Selina; Ho, Simon Y W; Quéré, Jean-Pierre; O'Higgins, Paul; Excoffier, Laurent; Heckel, Gerald; Hoelzel, A Rus; Dobney, Keith M; Searle, Jeremy B

    2013-10-01

    Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic 'ark'. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land-use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island. © 2013 John Wiley & Sons Ltd.

  4. Stationary stability for evolutionary dynamics in finite populations

    DOE PAGES

    Harper, Marc; Fryer, Dashiell

    2016-08-25

    Here, we demonstrate a vast expansion of the theory of evolutionary stability to finite populations with mutation, connecting the theory of the stationary distribution of the Moran process with the Lyapunov theory of evolutionary stability. We define the notion of stationary stability for the Moran process with mutation and generalizations, as well as a generalized notion of evolutionary stability that includes mutation called an incentive stable state (ISS) candidate. For sufficiently large populations, extrema of the stationary distribution are ISS candidates and we give a family of Lyapunov quantities that are locally minimized at the stationary extrema and at ISSmore » candidates. In various examples, including for the Moran andWright–Fisher processes, we show that the local maxima of the stationary distribution capture the traditionally-defined evolutionarily stable states. The classical stability theory of the replicator dynamic is recovered in the large population limit. Finally we include descriptions of possible extensions to populations of variable size and populations evolving on graphs.« less

  5. Replaying evolutionary transitions from the dental fossil record

    PubMed Central

    Harjunmaa, Enni; Seidel, Kerstin; Häkkinen, Teemu; Renvoisé, Elodie; Corfe, Ian J.; Kallonen, Aki; Zhang, Zhao-Qun; Evans, Alistair R.; Mikkola, Marja L.; Salazar-Ciudad, Isaac; Klein, Ophir D.; Jernvall, Jukka

    2014-01-01

    The evolutionary relationships of extinct species are ascertained primarily through the analysis of morphological characters. Character inter-dependencies can have a substantial effect on evolutionary interpretations, but the developmental underpinnings of character inter-dependence remain obscure because experiments frequently do not provide detailed resolution of morphological characters. Here we show experimentally and computationally how gradual modification of development differentially affects characters in the mouse dentition. We found that intermediate phenotypes could be produced by gradually adding ectodysplasin A (EDA) protein in culture to tooth explants carrying a null mutation in the tooth-patterning gene Eda. By identifying development-based character interdependencies, we show how to predict morphological patterns of teeth among mammalian species. Finally, in vivo inhibition of sonic hedgehog signalling in Eda null teeth enabled us to reproduce characters deep in the rodent ancestry. Taken together, evolutionarily informative transitions can be experimentally reproduced, thereby providing development-based expectations for character state transitions used in evolutionary studies. PMID:25079326

  6. When Reputation Enforces Evolutionary Cooperation in Unreliable MANETs.

    PubMed

    Tang, Changbing; Li, Ang; Li, Xiang

    2015-10-01

    In self-organized mobile ad hoc networks (MANETs), network functions rely on cooperation of self-interested nodes, where a challenge is to enforce their mutual cooperation. In this paper, we study cooperative packet forwarding in a one-hop unreliable channel which results from loss of packets and noisy observation of transmissions. We propose an indirect reciprocity framework based on evolutionary game theory, and enforce cooperation of packet forwarding strategies in both structured and unstructured MANETs. Furthermore, we analyze the evolutionary dynamics of cooperative strategies and derive the threshold of benefit-to-cost ratio to guarantee the convergence of cooperation. The numerical simulations verify that the proposed evolutionary game theoretic solution enforces cooperation when the benefit-to-cost ratio of the altruistic exceeds the critical condition. In addition, the network throughput performance of our proposed strategy in structured MANETs is measured, which is in close agreement with that of the full cooperative strategy.

  7. Individual-based modeling of ecological and evolutionary processes

    USGS Publications Warehouse

    DeAngelis, Donald L.; Mooij, Wolf M.

    2005-01-01

    Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.

  8. Analytical model for minority games with evolutionary learning

    NASA Astrophysics Data System (ADS)

    Campos, Daniel; Méndez, Vicenç; Llebot, Josep E.; Hernández, Germán A.

    2010-06-01

    In a recent work [D. Campos, J.E. Llebot, V. Méndez, Theor. Popul. Biol. 74 (2009) 16] we have introduced a biological version of the Evolutionary Minority Game that tries to reproduce the intraspecific competition for limited resources in an ecosystem. In comparison with the complex decision-making mechanisms used in standard Minority Games, only two extremely simple strategies ( juveniles and adults) are accessible to the agents. Complexity is introduced instead through an evolutionary learning rule that allows younger agents to learn taking better decisions. We find that this game shows many of the typical properties found for Evolutionary Minority Games, like self-segregation behavior or the existence of an oscillation phase for a certain range of the parameter values. However, an analytical treatment becomes much easier in our case, taking advantage of the simple strategies considered. Using a model consisting of a simple dynamical system, the phase diagram of the game (which differentiates three phases: adults crowd, juveniles crowd and oscillations) is reproduced.

  9. Sex Differences in Social Behavior: Are the Social Role and Evolutionary Explanations Compatible?

    ERIC Educational Resources Information Center

    Archer, John

    1996-01-01

    Examines competing claims of two explanations of sex differences in social behavior, social role theory, and evolutionary psychology. Findings associated with social role theory are weighed against evolutionary explanations. It is suggested that evolutionary theory better accounts for the overall pattern of sex differences and for their origins.…

  10. Getting comfortable with death & near-death experiences. Near-death experiences: an essay in medicine & philosophy.

    PubMed

    Moody, Raymond A

    2013-01-01

    Near-death experiences are an ancient and very common phenomenon that spans from ancient philosophy, religion and healing to the most modern clinical practice of medicine. Probably we are not much closer to an ultimate explanation of NDEs than were early thinkers like Plato and Democritus. Puzzling cases of near-death experiences continue to come to light and the ancient debate about what they mean continues unabated.

  11. Biology Needs Evolutionary Software Tools: Let’s Build Them Right

    PubMed Central

    Team, Galaxy; Goecks, Jeremy; Taylor, James

    2018-01-01

    Abstract Research in population genetics and evolutionary biology has always provided a computational backbone for life sciences as a whole. Today evolutionary and population biology reasoning are essential for interpretation of large complex datasets that are characteristic of all domains of today’s life sciences ranging from cancer biology to microbial ecology. This situation makes algorithms and software tools developed by our community more important than ever before. This means that we, developers of software tool for molecular evolutionary analyses, now have a shared responsibility to make these tools accessible using modern technological developments as well as provide adequate documentation and training. PMID:29688462

  12. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.

    PubMed

    Jiménez, Fernando; Sánchez, Gracia; Juárez, José M

    2014-03-01

    This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case

  13. Resistance and relatedness on an evolutionary graph

    PubMed Central

    Maciejewski, Wes

    2012-01-01

    When investigating evolution in structured populations, it is often convenient to consider the population as an evolutionary graph—individuals as nodes, and whom they may act with as edges. There has, in recent years, been a surge of interest in evolutionary graphs, especially in the study of the evolution of social behaviours. An inclusive fitness framework is best suited for this type of study. A central requirement for an inclusive fitness analysis is an expression for the genetic similarity between individuals residing on the graph. This has been a major hindrance for work in this area as highly technical mathematics are often required. Here, I derive a result that links genetic relatedness between haploid individuals on an evolutionary graph to the resistance between vertices on a corresponding electrical network. An example that demonstrates the potential computational advantage of this result over contemporary approaches is provided. This result offers more, however, to the study of population genetics than strictly computationally efficient methods. By establishing a link between gene transfer and electric circuit theory, conceptualizations of the latter can enhance understanding of the former. PMID:21849384

  14. Evolutionary game theory using agent-based methods.

    PubMed

    Adami, Christoph; Schossau, Jory; Hintze, Arend

    2016-12-01

    Evolutionary game theory is a successful mathematical framework geared towards understanding the selective pressures that affect the evolution of the strategies of agents engaged in interactions with potential conflicts. While a mathematical treatment of the costs and benefits of decisions can predict the optimal strategy in simple settings, more realistic settings such as finite populations, non-vanishing mutations rates, stochastic decisions, communication between agents, and spatial interactions, require agent-based methods where each agent is modeled as an individual, carries its own genes that determine its decisions, and where the evolutionary outcome can only be ascertained by evolving the population of agents forward in time. While highlighting standard mathematical results, we compare those to agent-based methods that can go beyond the limitations of equations and simulate the complexity of heterogeneous populations and an ever-changing set of interactors. We conclude that agent-based methods can predict evolutionary outcomes where purely mathematical treatments cannot tread (for example in the weak selection-strong mutation limit), but that mathematics is crucial to validate the computational simulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Brain death revisited: it is not 'complete death' according to Islamic sources.

    PubMed

    Bedir, Ahmet; Aksoy, Sahin

    2011-05-01

    Concepts, such as death, life and spirit cannot be known in their quintessential nature, but can be defined in accordance with their effects. In fact, those who think within the mode of pragmatism and Cartesian logic have ignored the metaphysical aspects of these terms. According to Islam, the entity that moves the body is named the soul. And the aliment of the soul is air. Cessation of breathing means leaving of the soul from the body. Those who agree on the diagnosis of brain death may not able to agree unanimously on the rules that lay down such diagnosis. That is to say, there are a heap of suspicions regarding the diagnosis of brain death, and these suspicions are on the increase. In fact, Islamic jurisprudence does not put provisions, decisions on suspicious grounds. By virtue of these facts, it can be asserted that brain death is not absolute death according to Islamic sources; for in the patients diagnosed with brain death the soul still has not abandoned the body. Therefore, these patients suffer in every operation performed on them.

  16. Traits and Trade-offs Are Insufficient for Evolutionary Personality Psychology

    ERIC Educational Resources Information Center

    Sheldon, Kennon M.; Sheldon, Melanie S.; Nichols, Charles P.

    2007-01-01

    Comments on the article by D. Nettle, who has clearly shown that evolutionary psychologists need to focus more attention on individual differences, not just species-typical universals. Such differences are not mere "noise," and evolutionary theory will gain by understanding how they are produced and maintained. However, by focusing on personality…

  17. An emerging synthesis between community ecology and evolutionary biology.

    PubMed

    Johnson, Marc T J; Stinchcombe, John R

    2007-05-01

    A synthesis between community ecology and evolutionary biology is emerging that identifies how genetic variation and evolution within one species can shape the ecological properties of entire communities and, in turn, how community context can govern evolutionary processes and patterns. This synthesis incorporates research on the ecology and evolution within communities over short timescales (community genetics and diffuse coevolution), as well as macroevolutionary timescales (community phylogenetics and co-diversification of communities). As we discuss here, preliminary evidence supports the hypothesis that there is a dynamic interplay between ecology and evolution within communities, yet researchers have not yet demonstrated convincingly whether, and under what circumstances, it is important for biologists to bridge community ecology and evolutionary biology. Answering this question will have important implications for both basic and applied problems in biology.

  18. How evolutionary crystal structure prediction works--and why.

    PubMed

    Oganov, Artem R; Lyakhov, Andriy O; Valle, Mario

    2011-03-15

    Once the crystal structure of a chemical substance is known, many properties can be predicted reliably and routinely. Therefore if researchers could predict the crystal structure of a material before it is synthesized, they could significantly accelerate the discovery of new materials. In addition, the ability to predict crystal structures at arbitrary conditions of pressure and temperature is invaluable for the study of matter at extreme conditions, where experiments are difficult. Crystal structure prediction (CSP), the problem of finding the most stable arrangement of atoms given only the chemical composition, has long remained a major unsolved scientific problem. Two problems are entangled here: search, the efficient exploration of the multidimensional energy landscape, and ranking, the correct calculation of relative energies. For organic crystals, which contain a few molecules in the unit cell, search can be quite simple as long as a researcher does not need to include many possible isomers or conformations of the molecules; therefore ranking becomes the main challenge. For inorganic crystals, quantum mechanical methods often provide correct relative energies, making search the most critical problem. Recent developments provide useful practical methods for solving the search problem to a considerable extent. One can use simulated annealing, metadynamics, random sampling, basin hopping, minima hopping, and data mining. Genetic algorithms have been applied to crystals since 1995, but with limited success, which necessitated the development of a very different evolutionary algorithm. This Account reviews CSP using one of the major techniques, the hybrid evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography). Using recent developments in the theory of energy landscapes, we unravel the reasons evolutionary techniques work for CSP and point out their limitations. We demonstrate that the energy landscapes of chemical systems have an

  19. Unnatural sudden infant death

    PubMed Central

    Meadow, R.

    1999-01-01

    AIM—To identify features to help paediatricians differentiate between natural and unnatural infant deaths.
METHOD—Clinical features of 81 children judged by criminal and family courts to have been killed by their parents were studied. Health and social service records, court documents, and records from meetings with parents, relatives, and social workers were studied.
RESULTS—Initially, 42 children had been certified as dying from sudden infant death syndrome (SIDS), and 29 were given another cause of natural death. In 24 families, more than one child died; 58died before the age of 6 months and most died in the afternoon or evening. Seventy per cent had experienced unexplained illnesses; over half were admitted to hospital within the previous month, and 15 had been discharged within 24 hours of death. The mother, father, or both were responsible for death in 43, five, and two families, respectively. Most homes were disadvantaged—no regular income, receiving income support—and mothers smoked. Half the perpetrators had a history of somatising or factitious disorder. Death was usually by smothering and 43% of children had bruises, petechiae, or blood on the face.
CONCLUSIONS—Although certain features are indicative of unnatural infant death, some are also associated with SIDS. Despite the recent reduction in numbers of infants dying suddenly, inadequacies in the assessment of their deaths exist. Until a thorough postmortem examination is combined with evaluation of the history and circumstances of death by an experienced paediatrician, most cases of covert fatal abuse will go undetected. The term SIDS requires revision or abandonment.

 PMID:10325752

  20. Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time.

    PubMed

    Pinsky, Malin L; Saenz-Agudelo, Pablo; Salles, Océane C; Almany, Glenn R; Bode, Michael; Berumen, Michael L; Andréfouët, Serge; Thorrold, Simon R; Jones, Geoffrey P; Planes, Serge

    2017-01-09

    The degree to which offspring remain near their parents or disperse widely is critical for understanding population dynamics, evolution, and biogeography, and for designing conservation actions. In the ocean, most estimates suggesting short-distance dispersal are based on direct ecological observations of dispersing individuals, while indirect evolutionary estimates often suggest substantially greater homogeneity among populations. Reconciling these two approaches and their seemingly competing perspectives on dispersal has been a major challenge. Here we show for the first time that evolutionary and ecological measures of larval dispersal can closely agree by using both to estimate the distribution of dispersal distances. In orange clownfish (Amphiprion percula) populations in Kimbe Bay, Papua New Guinea, we found that evolutionary dispersal kernels were 17 km (95% confidence interval: 12-24 km) wide, while an exhaustive set of direct larval dispersal observations suggested kernel widths of 27 km (19-36 km) or 19 km (15-27 km) across two years. The similarity between these two approaches suggests that ecological and evolutionary dispersal kernels can be equivalent, and that the apparent disagreement between direct and indirect measurements can be overcome. Our results suggest that carefully applied evolutionary methods, which are often less expensive, can be broadly relevant for understanding ecological dispersal across the tree of life. Copyright © 2017 Elsevier Ltd. All rights reserved.