Science.gov

Sample records for debris disks exozodiacal

  1. The Kuiper Belt, Exozodiacal Dust, Debris Disks: It's All About Collisions

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2010-01-01

    Debris disks around other stars, like the disks around Fomalhaut, Vega, and Epsilon Eridani, are often described as more massive versions of the Kuiper Belt. But for a long time, it's been hard to test this notion, because grain-grain collisions dominate the grain lifetimes and we lacked the tools to model the effect of collisions on the appearance of the disks. I'll describe a new breakthrough that has allowed us to make 3-D models of collisions in debris disks and exozodiacal clouds for the first time, and I'll show the latest supercomputer simulations of these systems, illustrating the effects of planets and collisions in sculpting these disks. These models will be the key to interpreting debris disk images from HST, Herschel, SOFIA, JWST, and ALMA, as well as understanding the exozodiacal dust backgrounds for direct imaging of exo-Earths.

  2. An interferometric study of the Fomalhaut inner debris disk. III. Detailed models of the exozodiacal disk and its origin

    NASA Astrophysics Data System (ADS)

    Lebreton, J.; van Lieshout, R.; Augereau, J.-C.; Absil, O.; Mennesson, B.; Kama, M.; Dominik, C.; Bonsor, A.; Vandeportal, J.; Beust, H.; Defrère, D.; Ertel, S.; Faramaz, V.; Hinz, P.; Kral, Q.; Lagrange, A.-M.; Liu, W.; Thébault, P.

    2013-07-01

    Context. Debris disks are thought to be extrasolar analogs to the solar system planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140 AU comparable to the Edgeworth-Kuiper belt, as well as evidence of a warm dust component, unresolved by single-dish telescopes, which is suspected of being a bright analog to the solar system's zodiacal dust. Aims: Interferometric observations obtained with the VLTI/VINCI instrument and the Keck Interferometer Nuller have identified near- and mid-infrared excesses attributed respectively to hot and warm exozodiacal dust residing in the inner few AU of the Fomalhaut environment. We aim to characterize the properties of this double inner dust belt and to unveil its origin. Methods: We performed parametric modeling of the exozodiacal disk ("exozodi") using the GRaTeR radiative transfer code to reproduce the interferometric data, complemented by mid- to far-infrared photometric measurements from Spitzer and Herschel. A detailed treatment of sublimation temperatures was introduced to explore the hot population at the size-dependent sublimation rim. We then used an analytical approach to successively testing several source mechanisms for the dust and suspected parent bodies. Results: A good fit to the multiwavelength data is found by two distinct dust populations: (1) a population of very small (0.01 to 0.5 μm), hence unbound, hot dust grains confined in a narrow region (~0.1-0.3 AU) at the sublimation rim of carbonaceous material; (2) a population of bound grains at ~2 AU that is protected from sublimation and has a higher mass despite its fainter flux level. We propose that the hot dust is produced by the release of small carbon grains following the disruption of dust aggregates that originate in the warm component. A mechanism, such as gas braking, is required to further confine the small grains for a long enough time. In situ dust production could hardly be ensured for the age of the star, so we conclude that the

  3. Directly detecting exozodiacal dust and disk variability

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas J.

    2015-01-01

    Dust is common throughout stellar systems. The architecture of stellar systems may be typically comprised of a distant cold debris disk, a warm exozodiacal disk, and a hot inner disk. Dust in this exozodiacal region confounds exoplanet detections by scattering light or mimicking planetary emission. This environment must be well-modelled in order to find Earth-sized exoplanets. Interferometry at the Center for High Resolution Astronomy (CHARA) Array provides the angular resolution to directly detect near-infrared (NIR) excesses originating from warm and hot dust close to the host star. The recently upgraded Fiber-Linked Unit for Optical Recombination (JouFLU) is capable of measuring interferometric visibility contrasts to a precision of <0.1% and dust disk fluxes equal to 1% of the host star. There is likely a connection between these hot interferometrically detected dust disks and the harder-to-detect warm zodiacal dust analogues. In this way interferometric studies can observe the tip-of-the-iceberg of stellar system dust, providing details such as composition and grain size of dust, as well as statistics on the correlation of dust populations and stellar properties. These inner dust regions may exhibit a high degree of variability which should also be characterized and may give hint to the dust origin and replenishment mechanisms. JouFLU is currently involved in a large survey of exozodiacal dust stars of spectral types A through K with the aim to provide statistics about dust disk occurrence in relation to their host stars and the presence of cold dust reservoirs. Complementing this survey is a project of re-observing the earliest excess detections in order to determine their variability. In addition, NASA's InfraRed Telescope Facility (IRTF) provides a method for spectrophotometric detections of excess stellar flux corresponding to the presence of hot/warm exozodiacal dust. Multiple NIR interferometric instruments as well as medium resolution spectroscopy are a

  4. Infrared Detection and Characterization of Debris Disks, Exozodiacal Dust, and Exoplanets: The FKSI Mission Concept

    NASA Astrophysics Data System (ADS)

    Danchi, W. C.; Barry, R. K.; Lopez, B.; Rinehart, S. A.; Absil, O.; Augereau, J.; Beust, H.; Bonfils, X.; Bordé, P.; Defrère, D.; Kern, P.; Lawson, P. R.; Léger, A.; Monin, J.; Mourard, D.; Ollivier, M.; Petrov, R.; Traub, W. A.; Unwin, S. C.; Vakili, F.

    2010-10-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a nulling interferometer for the near-to-mid-infrared spectral region. FKSI is conceived as a mid-sized strategic or Probe class mission. FKSI has been endorsed by the Exoplanet Community Forum 2008 as such a mission and has been costed to be within the expected budget. The current design of FKSI is a two-element nulling interferometer. The two telescopes, separated by 12.5m, are precisely pointed (by small steering mirrors) on the target star. The two path lengths are accurately controlled to be the same to within a few nanometers. A phase shifter/beam combiner (Mach-Zehnder interferometer) produces an output beam consisting of the nulled sum of the target planet’s light and the host star’s light. When properly oriented, the starlight is nulled by a factor of 10-4, and the planet light is undiminished. Accurate modeling of the signal is used to subtract the residual starlight, permitting the detection of planets much fainter than the host star. The current version of FKSI with 0.5-m apertures and waveband 3-8 μm has the following main capabilities: (1) detect exozodiacal emission levels to that of our own solar system (Solar System Zodi) around nearby F, G, and K stars; (2) characterize spectroscopically the atmospheres of a large number of known non-transiting planets; (3) survey and characterize nearby stars for planets down to 2 Rearth from just inside the habitable zone and inward. An enhanced version of FKSI with 1-m apertures separated by 20 m and cooled to 40 K, with science waveband 5-15 μm, allows for the detection and characterization of 2 Rearth super-Earths and smaller planets in the habitable zone around stars within about 30 pc.

  5. Hot Exozodiacal Dust Disks, their Detection and Variability, as Measured with Long-Baseline Optical Interferometry.

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas Jon

    2016-01-01

    Near-infrared long-baseline optical interferometry has provided the first unambiguous resolved detections of hot dust around main sequence stars (Absil et al. 2006). This showed that an unexpectedly dense population of (sub)micrometer dust grains close exists to their sublimation temperature of approximately 1400K. A later survey (Absil et al. 2013) revealed that these "hot exozodiacal disks" are relatively common around spectral type A-K stars. Current models of circumstellar debris disks suggest that in the inner region, within 1 AU, of the disk the timescale for complete removal of submicron dust is on the order of a few years (Wyatt 2008). The presence of dust close to the star is surprising because most cold debris belts detected are collisionally dominated. Mutual collisions grind the dust down to the size where radiation pressure pushes the dust out before Poynting-Robertson drag has a chance to pull the dust inward. Competing models exist to explain the persistence of this dust; some of which suggest that dust production is a punctuated and chaotic process fueled by asteroid collisions and comet infall that would show variability on timescales of a few years.High precision long-baseline interferometry observations in the K-band with the FLUOR (Fiber Linked Unit for Optical Recombination) beam combiner at the CHARA (Center for High Angular Resolution Astronomy) Array provided the data for these exozodiacal dust detections. This original instrument has undergone upgrades as part of JouFLU (Jouvence of FLUOR) project. The new instrument has been used to expand the original survey and to re-observe stars from the previous exozodiacal disk survey to search for predicted variations in the detected disks. We have found evidence that for some systems the amount of circumstellar flux from these previously detected exozodiacal disks, or exozodis, has varied greatly. The flux from some exozodis has increased, others decreased, and for a few the amount has remained

  6. The exo-zodiacal disk mapper

    NASA Technical Reports Server (NTRS)

    Petro, Larry; Bely, P.; Burg, R.; Wade, L.; Beichman, C.; Gay, J.; Baudoz, P.; Rabbia, Y.; Perrin, J. M.

    1998-01-01

    Zodiacal dust around neighboring stars could obscure the signal of terrestrial planets observed with the Terrestrial Planet Finder (TPF) if that dust is similar to that in the Solar System. Unfortunately, little is known about the presence, or frequency of occurrence of zodiacal dust around stars and so the relevance of zodiacal dust to the design of the TPF, or to the TPF mission, is unknown. It is likely that direct observation of zodiacal dust disks will be necessary to confidently determine the characteristics of individual systems. A survey of a large number of stars in the solar neighborhood that could be candidates for observation with TPF should be undertaken. We present a concept for a space mission to undertake a sensitive, large-scale survey capable of characterizing solar-system-like zodiacal dust around 400 stars within 20 pc of the Sun.

  7. DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS

    SciTech Connect

    Hahn, Joseph M.

    2010-08-20

    A numerical model of a circumstellar debris disk is developed and applied to observations of the circumstellar dust orbiting {beta} Pictoris. The model accounts for the rates at which dust is produced by collisions among unseen planetesimals, and the rate at which dust grains are destroyed due to collisions. The model also accounts for the effects of radiation pressure, which is the dominant perturbation on the disk's smaller but abundant dust grains. Solving the resulting system of rate equations then provides the dust abundances versus grain size and dust abundances over time. Those solutions also provide the dust grains' collisional lifetime versus grain size, and the debris disk's optical depth and surface brightness versus distance from the star. Comparison to observations then yields estimates of the unseen planetesimal disk's radius, and the rate at which the disk sheds mass due to planetesimal grinding. The model can also be used to measure or else constrain the dust grain's physical and optical properties, such as the dust grains' strength, their light-scattering asymmetry parameter, and the grains' efficiency of light scattering Q{sub s}. The model is then applied to optical observations of the edge-on dust disk orbiting {beta} Pictoris, and good agreement is achieved when the unseen planetesimal disk is broad, with 75 {approx}< r {approx}< 150 AU. If it is assumed that the dust grains are bright like Saturn's icy rings (Q{sub s} = 0.7), then the cross section of dust in the disk is A{sub d} {approx_equal} 2 x 10{sup 20} km{sup 2} and its mass is M{sub d} {approx_equal} 11 lunar masses. In this case, the planetesimal disk's dust-production rate is quite heavy, M-dot {sub d{approx}}9 M {sub +} Myr{sup -1}, implying that there is or was a substantial amount of planetesimal mass there, at least 110 Earth masses. If the dust grains are darker than assumed, then the planetesimal disk's mass-loss rate and its total mass are heavier. In fact, the apparent dearth

  8. Probing the terrestrial regions of planetary systems: warm debris disks with emission features

    SciTech Connect

    Ballering, Nicholas P.; Rieke, George H.; Gáspár, András

    2014-09-20

    Observations of debris disks allow for the study of planetary systems, even where planets have not been detected. However, debris disks are often only characterized by unresolved infrared excesses that resemble featureless blackbodies, and the location of the emitting dust is uncertain due to a degeneracy with the dust grain properties. Here, we characterize the Spitzer Infrared Spectrograph spectra of 22 debris disks exhibiting 10 μm silicate emission features. Such features arise from small warm dust grains, and their presence can significantly constrain the orbital location of the emitting debris. We find that these features can be explained by the presence of an additional dust component in the terrestrial zones of the planetary systems, i.e., an exozodiacal belt. Aside from possessing exozodiacal dust, these debris disks are not particularly unique; their minimum grain sizes are consistent with the blowout sizes of their systems, and their brightnesses are comparable to those of featureless warm debris disks. These disks are in systems of a range of ages, though the older systems with features are found only around A-type stars. The features in young systems may be signatures of terrestrial planet formation. Analyzing the spectra of unresolved debris disks with emission features may be one of the simplest and most accessible ways to study the terrestrial regions of planetary systems.

  9. Recognizing Patterns in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably many other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. I will describe the latest 3-D models of debris dish dynamics / models that include planets, grain-grain collisions and even ISM-disk interactions. I will show why all these ingredients are needed to explain disk images--and what the images are telling us about planet formation.

  10. BINARIES AMONG DEBRIS DISK STARS

    SciTech Connect

    Rodriguez, David R.; Zuckerman, B.

    2012-02-01

    We have gathered a sample of 112 main-sequence stars with known debris disks. We collected published information and performed adaptive optics observations at Lick Observatory to determine if these debris disks are associated with binary or multiple stars. We discovered a previously unknown M-star companion to HD 1051 at a projected separation of 628 AU. We found that 25% {+-} 4% of our debris disk systems are binary or triple star systems, substantially less than the expected {approx}50%. The period distribution for these suggests a relative lack of systems with 1-100 AU separations. Only a few systems have blackbody disk radii comparable to the binary/triple separation. Together, these two characteristics suggest that binaries with intermediate separations of 1-100 AU readily clear out their disks. We find that the fractional disk luminosity, as a proxy for disk mass, is generally lower for multiple systems than for single stars at any given age. Hence, for a binary to possess a disk (or form planets) it must either be a very widely separated binary with disk particles orbiting a single star or it must be a small separation binary with a circumbinary disk.

  11. Imaging the inner regions of debris disks with near-infrared interferometry

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; Augereau, J. C.; di Folco, E.; Coudé du Foresto, V.; Le Bouquin, J. B.; Mérand, A.; Mollier, B.

    2011-10-01

    Most debris disks resolved so far show extended structures located at tens to hundreds AU from the host star, and are more analogous to our solar system's dusty Kuiper belt than to the ˜AU-scale zodiacal disk inside our solar system's asteroid belt. Over the last few years however, a few hot debris disks have been detected around a handful of main sequence stars thanks to the advance of infrared interferometry. The grain populations derived from these observations are quite intriguing, as they point towards very high dust replenishment rates, high cometary activity or major collisional events. In this talk, we review the ongoing efforts to detect bright exozodiacal disks with precision near-infrared interferometry in both hemispheres with CHARA/FLUOR and VLTI/PIONIER. We discuss preliminary statistical trends on the occurrence of bright exozodi around nearby main sequence stars and show how this information could be used to constrain the global architecture and evolution of debris disks.

  12. Debris Disks and Hidden Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2008-01-01

    When a planet orbits inside a debris disk like the disk around Vega or Beta Pictoris, the planet may be invisible, but the patterns it creates in the disk may give it away. Observing and decoding these patterns may be the only way we can detect exo-Neptunes orbiting more than 20 AU from their stars, and the only way we can spot planets in systems undergoing the late stages of planet formation. Fortunately, every few months, a new image of a debris disk appears with curious structures begging for explanation. I'll describe some new ideas in the theory of these planet-disk interactions and provide a buyers guide to the latest models (and the planets they predict).

  13. Near Infrared Characterization of Hot Exo-Zodiacal Disks around Nearby Stars

    NASA Astrophysics Data System (ADS)

    Mennesson, Bertrand

    Debris disks found around main sequence stars are the remnants of planetary formation. The outer colder parts of these disks, analogous to our solar system Kuiper belt, were first detected via their mid/far infrared excess emission, and then abundantly imaged at visible to sub-millimeter wavelengths. Structures and asymmetries in spatially resolved debris disks have been used to infer the presence of yet unseen planets. The power of this technique was recently demonstrated with the direct imaging of massive planets at the inner edge of warped extended dust disks previously detected around Fomalhaut and beta Pic. Conversely, very little is known about the warmer dust component of debris disks, similar to the zodiacal dust of the inner solar system. A few hot disks have been found by Spitzer around mature stars via excess emission at 24 microns. But surprisingly, the majority of hot debris disk detections has come from the ground, where near infrared interferometric observations have recently revealed small (~1%) resolved excesses around a dozen nearby main sequence stars. The dust grains forming in these bright "exozodi disks" or dust belts are located within a few AU of their parent star. They are thought to be produced by the evaporation of comets or by collisions between larger rocky bodies, as in the solar zodiacal disk. Many of the detected disks are however much hotter (1000-1500K) and more massive than the zodiacal cloud. Their grain populations should be rapidly expelled from the inner planetary system by radiation pressure, which indicates inordinate replenishment rates. In practice, the steady state collisional grinding of a massive asteroid belt cannot be at the origin of these dust populations. They are most likely produced by isolated catastrophic events (e.g., major asteroid collision, break-up of a massive comet), or by major dynamical perturbations such as the Falling Evaporating Bodies (FEB) phenomenon in the beta Pic inner disk or the Late Heavy

  14. Lightcurves of Extreme Debris Disks

    NASA Astrophysics Data System (ADS)

    Rieke, George; Meng, Huan; Su, Kate

    2012-12-01

    We have recently discovered that some planetary debris disks with extreme fractional luminosities are variable on the timescale of a few years. This behavior opens a new possibility to understand planet building. Two of the known variable disks are around solar-like stars in the age range of 30 to 100+ Myr, which is the expected era of the final stages of terrestrial planet building. Such variability can be attributed to violent collisions (up to ones on the scale of the Moon-forming event between the proto-Earth and another proto-planet). The collisional cascades that are the aftermaths of these events can produce large clouds of tiny dust grains, possibly even condensed from silica vapor. A Spitzer pilot program has obtained the lightcurve of such a debris disk and caught two minor outbursts. Here we propose to continue the lightcurve monitoring with higher sampling rates and to expand it to more disks. The proposed time domain observations are a new dimension of debris disk studies that can bring unique insight to their evolution, providing important constraints on the collisional and dynamical models of terrestrial planet formation.

  15. Protoplanetary and Debris Disk Morphologies

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Wisniewski, John P.; Grady, Carol A.; McElwain, Michael W.; Hashimoto, Jun; Donaldson, Jessica; Debes, John H.; Malumuth, Eliot; Roberge, Aki; Weinberger, Alycia J.; SEEDS Team

    2016-01-01

    The types of planets that form around other stars are highly dependent on their natal disk conditions. Therefore, the composition, morphology, and distribution of material in protoplanetary and debris disks are important for planet formation. Here we present the results of studies of two disk systems: AB Aur and AU Mic.The circumstellar disk around the Herbig Ae star AB Aur has many interesting features, including spirals, asymmetries, and non-uniformities. However, comparatively little is known about the envelope surrounding the system. Recent work by Tang et al (2012) has suggested that the observed spiral armss may not in fact be in the disk, but instead are due to areas of increased density in the envelope and projection effects. Using Monte Carlo modeling, we find that it is unlikely that the envelope holds enough material to be responsible for such features and that it is more plausible that they form from disk material. Given the likelihood that gravitational perturbations from planets cause the observed spiral morphology, we use archival H band observations of AB Aur with a baseline of 5.5 years to determine the locations of possible planets.The AU Mic debris disk also has many interesting morphological features. Because its disk is edge on, the system is an ideal candidate for color studies using coronagraphic spectroscopy. Spectra of the system were taken by placing a HST/STIS long slit parallel to and overlapping the disk while blocking out the central star with an occulting fiducial bar. Color gradients may reveal the chemical processing that is occuring within the disk. In addition, it may trace the potential composition and architecture of any planetary bodies in the system because collisional break up of planetesimals produces the observed dust in the system. We present the resulting optical reflected spectra (5200 to 10,200 angstroms) from this procedure at several disk locations. We find that the disk is bluest at the innermost locations of the

  16. Warm Debris Disks from WISE

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah L.

    2011-01-01

    "The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages < 1 Gyr. Nearly a hundred new warm debris disk candidates are detected among FGK stars and a similar number of A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates. "

  17. Debris Disk Science Enabled by a Probe-scale Space Coronagraph Mission

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, Karl R.; Trauger, J. T.; Krist, J. E.

    2010-01-01

    Debris disks are the signposts of planetary systems: collisions between rocky/icy parent bodies maintain debris dust around main sequence stars against losses to radiation pressure and P-R drag. Debris disk structures show the location of asteroid/Kuiper belts around nearby stars, and reflect dynamical interactions with local extrasolar planets. Only 17 debris disks with high optical depth have been spatially resolved to date in scattered light images made with the Hubble Space Telescope and ground-based adaptive optics. Hundreds more with lower optical depth have been identified among nearby stars through far-IR photometry with the Spitzer Space Telescope, and more should follow in the next few years from Herschel. The most capable means for imaging this larger disk population is a next-generation coronagraphic instrument on a 1.5m class optical space telescope. Utilizing high-contrasat imaging simulations validated by laboratory demonstrations on the JPL High Contrast Imaging Testbed, we show that such a mission will be capable of imaging Kuiper disk structures down to the 10 zodi level, and exozodiacal dust down to the 1 zodi level, around a major sample of nearby stars. This performance goes well beyond what is about to be achieved with upcoming extreme adaptive optics systems or the ALMA array, and thus provides the best path for imaging exploration of planetary systems in the solar neighborhood.

  18. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.

    2016-07-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  19. Warm Debris Disks with WISE and HST

    NASA Astrophysics Data System (ADS)

    Padgett, Deborah; Stapelfeldt, Karl

    2016-01-01

    Using 22 μm data from the Wide Field Infrared Survey Explorer (WISE), we have completed a sensitive all-sky survey for debris disks in Hipparcos and Tycho catalog stars within 120 pc. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets. Several hundred previously unknown debris disk candidates were identified. We are currently performing follow-up observations to characterize the stars, companions, and circumstellar material in these systems with a variety of facilities including Keck, Herschel, and HST. Thirteen WISE debris disks have been observed to date using HST/STIS coronagraphy. Five of these disks have been detected in scattered light. One is a large and highly asymmetric edge-on disk which appears to be both warped and bifurcated.

  20. The Spitzer IRS Debris Disk Catalog

    NASA Astrophysics Data System (ADS)

    Chen, C.

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and MIPS debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. We carried out two separate SED analyses. (1) For all targets, we modeled the IRS and MIPS 70 micron data (where available) assuming that the SEDs were well-described using, zero, one or two temperature black bodies. We calculated the probability for each model and computed the average probability to select among models. (2) For a subset of 120 targets with 10 and/or 20 micron silicate features, we modeled the data using spherical silicate (olivine, pyroxene, forsterite, and enstatite) grains located either in a continuous disk with power-law size and surface density distributions or two thin rings that are well-characterized using two separate dust grain temperatures. We present a demographic analysis of the disk properties. For example, we find that the majority of debris disks are better fit using two dust components, suggesting that planetary systems are common in debris disks and that the size distribution of dust grains is consistent with a collisional cascade.

  1. The Debris Disk Explorer: A Balloon-Borne Coronagraph for Observing Debris Disks

    NASA Technical Reports Server (NTRS)

    Roberts, Lewis C. Jr; Bryden, Geoffrey; Traub, Wesley; Unwin, Stephen; Trauger, John; Krist, John; Aldrich, Jack; Brugarolas, Paul; Stapelfeldt, Karl; Wyatt, Mark; Stuchlik, David; Lanzi, James

    2013-01-01

    The Debris Disk Explorer (DDX) is a proposed balloon-borne investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. DDX will measure the size, shape, brightness, and color of tens of disks. These measurements will enable us to place the Solar System in context. By imaging debris disks around nearby stars, DDX will reveal the presence of perturbing planets via their influence on disk structure, and explore the physics and history of debris disks by characterizing the size and composition of disk dust. The DDX instrument is a 0.75-m diameter off-axis telescope and a coronagraph carried by a stratospheric balloon. DDX will take high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Two flights are planned; an overnight test flight within the United States followed by a month-long science flight launched from New Zealand. The long flight will fully explore the set of known debris disks accessible only to DDX. It will achieve a raw contrast of 10(exp -7), with a processed contrast of 10(exp -8). A technology benefit of DDX is that operation in the near-space environment will raise the Technology Readiness Level of internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  2. Patterns In Debris Disks: No Planets Required?

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2012-01-01

    Debris disks like those around Fomalhaut and Beta Pictoris show striking dust patterns often attributed to hidden exoplanets. These patterns have been crucial for constraining the masses and orbits of these planets. But adding a bit of gas to our models of debris disks--too little gas to detect--seems to alter this interpretation. Small amounts of gas lead to new dynamical instabilities that may mimic the narrow eccentric rings and other structures planets would create in a gas-free disk. Can we still use dust patterns to find hidden exoplanets?

  3. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    SciTech Connect

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-10-10

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old ({approx}>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  4. Molecular Gas in Young Debris Disks

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  5. Structure in the eps Eridani Debris Disk

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith; Maddison, Sarah; Wilner, David; Lestrade, Jean-Francois; Thilliez, Elodie; Andrews, Sean

    2014-04-01

    The nearby (3.22 pc) star epsilon Eridani hosts the closest debris disk to the Sun and is a key template for understanding debris disk phenomena. The dusty debris originates from the collisional erosion of planetesimals, analogous to comets and asteroids, and can persist only in dynamically stable regions like belts and resonances. The distribution of the dust producing planetesimals is best traced by millimetre emission, since the large grains that dominate at these wavelengths are minimally affected by stellar radiation and winds. Previous single dish observations show that the basic millimetre morphology of the epsilon Eridani debris disk is a ring of radius 60 AU. We propose to use the ATCA H75 and H168 configurations at 43 GHz to obtain higher resolution information that will allow us to discriminate amongst differing models for the debris disk structure and origin. In particular, we will derive new quantitative estimates of the ring width, any offset of the disk centroid from the stellar position, and the location and size of any resonant clumps (as well as background sources).

  6. The Collisional Evolution of Debris Disks

    NASA Astrophysics Data System (ADS)

    Gáspár, A.; Rieke, G. H.; Psaltis, D.; Özel, F.; Balog, Z.

    2014-03-01

    With their discovery, debris disks gave the first proof of existence of extrasolar planetary systems (Aumann et al. 1984, Smith & Terrile 1984). Although extrasolar planets are now readily detected, the importance of debris disks in characterizing their host systems is not diminished. Debris disks are relatively easy to detect at infrared wavelengths, independent of their viewing angle; they enable the study of the dynamical evolution of their host systems; they are able to reveal the outer regions of the systems where planets are difficult to detect; and coronagraphic scattered light images show the active sites of major dust production within the systems. During their operational lifetime, the Spitzer Space Telescope and the Herschel Space Observatory have observed many hundreds of resolved and unresolved debris disks. These detections have helped us characterize the thermal emission and also location of the disks. The observations have also shown a general decay in the observed infrared luminosity of the debris disks as a function of system age and disk location. This evolution must be understood thoroughly before probing other parameters, such as their dependence on stellar metallicity or binarity. A second critical parameter is the shape of the particle size distribution, which can strongly influence conclusions from spectral energy distribution models. I will describe results obtained with our collisional cascade code, which has been optimized to study the time evolution of debris disk dust. I will show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a value of Lir(t)~-0.6. This is slower than the ~-1 decay given by traditional analytic models. I will show how our numerical code can reproduce the fraction of detected debris disk sources within an extensive catalog of Spitzer and Herschel 24, 70, and 100 µm observations (Gaspar et al. 2013). I will also

  7. Stellar Multiplicity in the DEBRIS disk sample

    NASA Astrophysics Data System (ADS)

    Rodriguez, David R.; Duchene, Gaspard; Tom, Henry; Kennedy, Grant; Matthews, Brenda C.; Butner, Harold M.

    2015-01-01

    Circumstellar disks around young stars serve as the sites of planet formation. A common outcome of the star formation process is that of stellar binary systems. How does the presence of multiple stars affect the properties of disks, and thus of planet formation? To examine the frequency of disks around stellar binaries we carried out a multiplicity survey on stars in the DEBRIS sample. This sample consists of 451 stars of spectral types A-M observed with the Herschel Space Telescope. We have examined the stellar multiplicity of this sample by gathering information from the literature and performing an adaptive optics imaging survey at Lick Observatory. We identify 189 (42%) binary or multiple star systems.In our sample, we find that debris disks are less common around binaries than single stars, though the disk detection frequency is comparable among A stars regardless of multiplicity. Nevertheless, the period distribution of disk-bearing binaries is consistent with that of non-disk binaries and with comparison field samples. Although the frequency of disk-bearing binaries may be lower than in single star systems, the processes behind disk formation are comparable among both single and multiple-star populations.This work is supported in part by a Chile Fondecy grant #3130520.

  8. Near-infrared Emission from Sublimating Dust in Collisionally Active Debris Disks

    NASA Astrophysics Data System (ADS)

    van Lieshout, Rik; Dominik, Carsten; Kama, Mihkel; Michiel, Min

    2013-07-01

    Hot exozodiacal dust is thought to be responsible for excess near-infrared (NIR) emission emanating from the innermost parts of some debris disks. The origin of this dust, however, is still a matter of debate. We test whether hot exozodiacal dust can be supplied from an exterior parent belt by Poynting-Robertson (P-R) drag, paying special attention to the pile-up of dust that occurs due to the interplay of P-R drag and dust sublimation. Specifically, we investigate whether pile-ups still occur when collisions are taken into account, and if they can explain the observed NIR excess. We compute the steady-state distribution of dust in the inner disk by solving the continuity equation. First, we derive an analytic solution under a number of simplifying assumptions. Second, we develop a numerical debris disk model that for the first time treats the complex interaction of collisions, P-R drag, and sublimation in a self-consistent way. From the resulting dust distributions we generate simple emission spectra and compare these to observed excess NIR fluxes. We confirm that P-R drag always supplies a small amount of dust to the sublimation zone, but find that a fully consistent treatment yields a maximum amount of dust that is about 7 times lower than that given by analytical estimates. The NIR excess due this material is much smaller (<10^-3 for A-type stars with parent belts at >1 AU) than the values derived from interferometric observations (~10^-2). Furthermore, the pile-up of dust still occurs when collisions are considered, but its effect on the NIR flux is insignificant. Finally, the cross-section in the innermost regions is clearly dominated by barely bound grains.

  9. Near-infrared emission from sublimating dust in collisionally active debris disks

    NASA Astrophysics Data System (ADS)

    van Lieshout, R.; Dominik, C.; Kama, M.; Min, M.

    2014-11-01

    Context. Hot exozodiacal dust is thought to be responsible for excess near-infrared (NIR) emission emanating from the innermost parts of some debris disks. The origin of this dust, however, is still a matter of debate. Aims: We test whether hot exozodiacal dust can be supplied from an exterior parent belt by Poynting-Robertson (P-R) drag, paying special attention to the pile-up of dust that occurs owing to the interplay of P-R drag and dust sublimation. Specifically, we investigate whether pile-ups still occur when collisions are taken into account, and if they can explain the observed NIR excess. Methods: We computed the steady-state distribution of dust in the inner disk by solving the continuity equation. First, we derived an analytical solution under a number of simplifying assumptions. Second, we developed a numerical debris disk model that for the first time treats the complex interaction of collisions, P-R drag, and sublimation in a self-consistent way. From the resulting dust distributions, we generated thermal emission spectra and compare these to observed excess NIR fluxes. Results: We confirm that P-R drag always supplies a small amount of dust to the sublimation zone, but find that a fully consistent treatment yields a maximum amount of dust that is about 7 times lower than that given by analytical estimates. The NIR excess due to this material is much less (≲10-3 for A-type stars with parent belts at ≳1 AU) than the values derived from interferometric observations (~10-2). Pile-up of dust still occurs when collisions are considered, but its effect on the NIR flux is insignificant. Finally, the cross-section in the innermost regions is clearly dominated by barely bound grains. Appendices are available in electronic form at http://www.aanda.org

  10. Searching For Planets in "Holey Debris Disks"

    NASA Astrophysics Data System (ADS)

    Meshkat, Tiffany; Bailey, Vanessa P.; Su, Kate Y. L.; Kenworthy, Matthew A.; Mamajek, Eric E.; Hinz, Philip; Smith, Paul S.

    2015-01-01

    Directly imaging planets provides a unique opportunity to study young planets in the context of their formation and evolution. It examines the underlying semi-major axis exoplanet distribution and enables the characterization of the planet itself with spectroscopic examination of its emergent flux. However, only a handful of planets have been directly imaged, and thus the stars best suited for planet imaging are still a subject of debate. The "Holey Debris Disk" project was created in order to help determine if debris disks with gaps are signposts for planets. These gaps may be dynamically caused by planets accreting the debris material as they form. We present the results from our survey with VLT/NACO and the apodized phase plate coronagraph. We demonstrate that these disks with holes are good targets for directly detecting planets with the discovery of a planet around two of our targets, HD 95086 and HD 106906, at L'-band. Our non-detection of HD 95086 b in H-band demonstrates the importance of thermal infrared observations. The detected planets shepherd the outer cool debris belt. The relatively dust-free gap in these disks implies the presence of one or more closer-in planets. We discuss our new constraints on planets around other targets in our survey as well as disk properties of these targets and describe how future instruments will find the inner planets.

  11. Modeling collisions in circumstellar debris disks

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  12. A Primer on Unifying Debris Disk Morphologies

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Chiang, Eugene

    2016-08-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  13. Exozodiacal dust

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc Jason

    Besides the sun, the most luminous feature of the solar system is a cloud of "zodiacal" dust released by asteroids and comets that pervades the region interior to the asteroid belt. Similar clouds of dust around other stars---exozodiacal clouds---may be the best tracers of the habitable zones of extra-solar planetary systems. This thesis discusses three searches for exozodiacal dust: (1) We observed six nearby main-sequence stars with the Keck telescope at 11.6 microns, correcting for atmosphere-induced wavefront aberrations and deconvolving the point spread function via classical speckle analysis. We compare our data to a simple model of the zodiacal dust in our own system based on COBE DIRBE observations and place upper limits on the density of exozodiacal dust in these systems. (2) We observed Sirius, Altair, and Procyon with the NICMOS Coronagraph on the Hubble Space Telescope to look for scattered light from exozodiacal dust and faint companions within 10 AU from these stars. (3) The planned nulling capability of the Keck Interferometer should allow it to probe the region <200 milliarcsecond from a bright star and to suppress on-axis starlight by factors of 10 -3 to reveal faint circumstellar material. We model the response of the Keck Interferometer to hypothetical exozodiacal clouds to derive detection limits that account for the effects of stellar leakage, photon noise, noise from null depth fluctuations, and the fact that the cloud's shape is not known a priori. We also discuss the interaction of dust with planets. We used the COBE DIRBE Sky and Zodi Atlas and the IRAS Sky Survey Atlas to search for dynamical signatures of three different planets in the solar system dust complex: (1) We searched the COBE DIRBE Sky and Zodi Atlas for a wake of dust trailing Mars. We compare the DIRBE images to a model Mars wake based on the empirical model of the Earth's wake as seen by the DIRBE. (2) We searched the COBE DIRRE Sky and Zodi Atlas for Tiojan dust near

  14. The connection between inner and outer debris disks probed by infrared interferometry

    NASA Astrophysics Data System (ADS)

    Absil, O.; Defrère, D.; Mollier, B.; Di Folco, E.; Augereau, J.-C.; Coudé du Foresto, V.; Le Bouquin, J.-B.; Mérand, A.

    2012-03-01

    The far-infrared surveys of nearby main sequence stars performed since the launch of IRAS have shown that a significant fraction of main sequence stars are surrounded by cold dust populations. These surveys are now culminating with the the DUNES and DEBRIS key projects of the Herschel Space Observatory, which is more sensitive than ever and is able to detect cold dust populations with densities similar to that of the solar system Kuiper belt. However, little is known about the occurence of warm dust populations, the equivalent of our zodiacal cloud. Since 2005, high-precision infrared interferometers have opened a new way to directly resolve these exozodiacal dust populations. Interferometric observations enable to reach dynamic ranges (larger than 100:1) that are generally not achievable with classical spectro-photometric observations. We are currently carrying out a survey to characterise the hot dust populations around main sequence stars. The first results of this survey, performed on the CHARA array with the FLUOR instrument, will be presented in this talk. The results are based on a magnitude-limited sample of stars surrounded by cold dust and on an equivalent sample of stars showing no cold dust emission. The statistics for the occurence of bright exozodiacal disks will be presented, and compared with the Spitzer and Herschel results. The possible (dynamical) connections between the two populations will be discussed. We will also review the results obtained by other interferometers and discuss the on-going projects.

  15. Reading the Signatures of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  16. Zodiac II: Debris Disk Imaging Potential

    NASA Technical Reports Server (NTRS)

    Traub Wesley; Bryden, Geoff; Stapelfeldt, Karl; Chen, Pin; Trauger, John

    2011-01-01

    Zodiac II is a proposed coronagraph on a balloon-borne platform, for the purpose of observing debris disks around nearby stars. Zodiac II will have a 1.2-m diameter telescope mounted in a balloon-borne gondola capable of arcsecond quality pointing, and with the capability to make long-duration (several week) flights. Zodiac II will have a coronagraph able to make images of debris disks, meaning that its scattered light speckles will be at or below an average contrast level of about 10(exp -7) in three narrow (7 percent) bands centered on the V band, and one broad (20%) one at I band. We will discuss the potential science to be done with Zodiac II.

  17. Warm Debris Disk Candidates from WISE

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah; Stapelfeldt, Karl; Liu, Wilson; Leisawitz, David

    2011-01-01

    The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages < 1 Gyr. Nearly a hundred new warm debris disk candidates are detected among FGK stars and 150 A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates.

  18. Herschel Observations of Debris Disks from WISE

    NASA Technical Reports Server (NTRS)

    Padgett, D. L.; Stapelfeldt, K. R.; Liu, W.; Leisawitz, D. T.; Fajardo-Acosta, S.

    2012-01-01

    The \\Vide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6,12 and 22 microns. We report on a study of main sequence Hipparcos and Tycho catalog stars within 120 pc with WISE 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages < 1 Gyr. Nearly a hundred of the WISE new warm debris disk candidates detected among FGK stars are being observed by Herschel/PACS to characterize circumstellar dust. Preliminary results indicate 70 micron detection rates in excess of 80% for these targets, suggesting that most of these systems have both warm and cool dust in analogy to our asteroid and Kuiper belts. In this contribution, we will discuss the WISE debris disk survey and latest results from Herschel observations of these sources.

  19. THE DEBRIS DISK AROUND HR 8799

    SciTech Connect

    Su, K. Y. L.; Rieke, G. H.; Smith, P. S.; Misselt, K. A.; Stapelfeldt, K. R.; Bryden, G.; Moro-Martin, A.; Williams, J. P.

    2009-11-01

    We have obtained a full suite of Spitzer observations to characterize the debris disk around HR 8799 and to explore how its properties are related to the recently discovered set of three massive planets orbiting the star. We distinguish three components to the debris system: (1) warm dust (T approx 150 K) orbiting within the innermost planet; (2) a broad zone of cold dust (T approx 45 K) with a sharp inner edge orbiting just outside the outermost planet and presumably sculpted by it; and (3) a dramatic halo of small grains originating in the cold dust component. The high level of dynamical activity implied by this halo may arise due to enhanced gravitational stirring by the massive planets. The relatively young age of HR 8799 places it in an important early stage of development and may provide some help in understanding the interaction of planets and planetary debris, an important process in the evolution of our own solar system.

  20. Cometary grains in the HD 32297 debris disk

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Li, Aigen

    2016-07-01

    HD 32297 is a young A-type star with a bright edge-on debris disk. The dust thermal emission spectral energy distribution and scattered starlight spectrum are simultaneously modeled in terms of porous cometary grains. Our modeling suggests that, similar to the solar system, the debris disk around HD 32297 may have an inner warm ring and an outer cold disk which are seen in other young debris disks as well.

  1. A near-infrared interferometric survey of debris-disk stars. IV. An unbiased sample of 92 southern stars observed in H band with VLTI/PIONIER

    NASA Astrophysics Data System (ADS)

    Ertel, S.; Absil, O.; Defrère, D.; Le Bouquin, J.-B.; Augereau, J.-C.; Marion, L.; Blind, N.; Bonsor, A.; Bryden, G.; Lebreton, J.; Milli, J.

    2014-10-01

    Context. Detecting and characterizing circumstellar dust is a way to study the architecture and evolution of planetary systems. Cold dust in debris disks only traces the outer regions. Warm and hot exozodiacal dust needs to be studied in order to trace regions close to the habitable zone. Aims: We aim to determine the prevalence and to constrain the properties of hot exozodiacal dust around nearby main-sequence stars. Methods: We searched a magnitude-limited (H ≤ 5) sample of 92 stars for bright exozodiacal dust using our VLTI visitor instrument PIONIER in the H band. We derived statistics of the detection rate with respect to parameters, such as the stellar spectral type and age or the presence of a debris disk in the outer regions of the systems. We derived more robust statistics by combining our sample with the results from our CHARA/FLUOR survey in the K band. In addition, our spectrally dispersed data allowed us to put constraints on the emission mechanism and the dust properties in the detected systems. Results: We find an overall detection rate of bright exozodiacal dust in the H band of 11% (9 out of 85 targets) and three tentative detections. The detection rate decreases from early type to late type stars and increases with the age of the host star. We do not confirm the tentative correlation between the presence of cold and hot dust found in our earlier analysis of the FLUOR sample alone. Our spectrally dispersed data suggest that either the dust is extremely hot or the emission is dominated by the scattered light in most cases. The implications of our results for the target selection of future terrestrial planet-finding missions using direct imaging are discussed. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 089.C-0365 and 090.C-0526.Appendix A and Table 1 are available in electronic form at http://www.aanda.org

  2. THE TRANSIT LIGHT CURVE OF AN EXOZODIACAL DUST CLOUD

    SciTech Connect

    Stark, Christopher C.

    2011-10-15

    Planets embedded within debris disks gravitationally perturb nearby dust and can create clumpy, azimuthally asymmetric circumstellar ring structures that rotate in lock with the planet. The Earth creates one such structure in the solar zodiacal dust cloud. In an edge-on system, the dust 'clumps' periodically pass in front of the star as the planet orbits, occulting and forward-scattering starlight. In this paper, we predict the shape and magnitude of the corresponding transit signal. To do so, we model the dust distributions of collisional, steady-state exozodiacal clouds perturbed by planetary companions. We examine disks with dusty ring structures formed by the planet's resonant trapping of in-spiraling dust for a range of planet masses and semi-major axes, dust properties, and disk masses. We synthesize edge-on images of these models and calculate the transit signatures of the resonant ring structures. The transit light curves created by dusty resonant ring structures typically exhibit two broad transit minima that lead and trail the planetary transit. We find that Jupiter-mass planets embedded within disks hundreds of times denser than our zodiacal cloud can create resonant ring structures with transit depths up to {approx}10{sup -4}, possibly detectable with Kepler. Resonant rings produced by planets more or less massive than Jupiter produce smaller transit depths. Observations of these transit signals may provide upper limits on the degree of asymmetry in exozodiacal clouds.

  3. From IRAS Excesses to Debris Disks

    NASA Astrophysics Data System (ADS)

    Backman, D.; Lagrange, A.-M.

    2014-09-01

    Noted only as a shell star prior to 1984, beta Pictoris was originally observed in the first months of the IRAS mission as a comparison object for Vega. When Fred Gillett presented spectral energy distributions of Vega, Fomalhaut, beta Pictoris, and epsilon Eridani at the Protostars and Planets II conference, the news was relayed quickly to Brad Smith and Rich Terrile who were observing at Las Campanas with a coronagraph. Our understanding that beta Pictoris and other debris disks are clear evidence of maturing planetary systems solidified over the following 15 years with analyses of IRAS & ISO data coupled with spectroscopic observations of Falling Evaporating Bodies.

  4. THE COLLISIONAL EVOLUTION OF DEBRIS DISKS

    SciTech Connect

    Gaspar, Andras; Rieke, George H.; Balog, Zoltan E-mail: grieke@as.arizona.edu

    2013-05-01

    We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off {proportional_to}t {sup -0.35} at its fastest point (where t is time) for our reference model, while the dust mass and its proxy-the infrared excess emission-fades significantly faster ({proportional_to}t {sup -0.8}). These later level off to a decay rate of M{sub tot}(t){proportional_to}t {sup -0.08} and M{sub dust}(t) or L{sub ir}(t){proportional_to}t {sup -0.6}. This is slower than the {proportional_to}t {sup -1} decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100 {mu}m observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of stars harboring debris disks detected at 24 {mu}m. We also model the distribution of measured excesses at the far-IR wavelengths (70-100 {mu}m) at certain age regimes. We show general agreement at 24 {mu}m between the decay of our numerical collisional population synthesis model and observations up to a Gyr. We associate offsets above a Gyr to stochastic events in a few select systems. We cannot fit the decay in the far-infrared convincingly with grain strength properties appropriate for silicates, but those of water ice give fits more consistent with the observations (other relatively weak grain materials would presumably also be successful). The oldest disks have a higher incidence of large excesses than predicted by the model; again, a plausible explanation is very late phases of high dynamical activity around a small number of stars. Finally, we constrain the variables of our numerical model by comparing the evolutionary trends generated from the exploration

  5. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  6. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rahman, Zahidul; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  7. Constraints on Exoplanet System Architectures from Debris Disks

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah; Chen, Christine H.; Mittal, Tushar; Nesvold, Erika; Kuchner, Marc J.; Manoj, P.; Watson, Dan; Lisse, Carey M.

    2015-12-01

    Debris disks are dusty disks around main sequence stars. Terrestrial planets may be forming in young debris disks with ages <100 Myr. Planets in debris disks dynamically sculpt the dust in these systems. Thus, the spatial structure of debris disks could be an indicator of where planets have formed. We present an analysis of several members of the Scorpius-Centaurus OB Association (Sco Cen) that host both debris disks and planets, including HD 95086, HD 106906, and HD 133803. These objects are about 15-17 Myr old. The thermal emission from the debris disks constrains the locations of the dust. The dust is typically interior to the directly imaged planets in the systems. If additional planets reside in these systems, their locations are constrained by the positions of the dust belts. Many debris disk systems in Sco Cen appear to be two-belt systems. The gap between the belts in each system is a likely location for additional planets. The detection of planets in debris disk systems provide clues about the planet formation process, giving insights into where, when and how planets form.

  8. Meta Analysis on Debris Disks Surveys

    NASA Astrophysics Data System (ADS)

    Tytler, David; Beichman, Charles; Bryden, Geoffrey; Kirkman, David

    2005-06-01

    We will conduct a comprehensive statistical appraisal of debris dust disks around normal stars. We will work with Spitzer MIPS 24 and 70 micron fluxes for 946 stars from 10 programs. For each star we compare the observed fluxes with those expected from a model stellar atmosphere. Approximately 15% of stars will show excess emission at 70 microns, from dust in debris disks 10 -- 100 AU from the stars. We will apply survival statistics to estimate the distribution of the number of stars with a given flux excess. We will estimate these distributions separately for stars of different spectral type, different metallicity and for those with and without planets. Survival statistics are ideal for this problem because they make full use of all the information in both the numerous upper limits and the occasional detections of excess flux. We will also sum MIPS images of various groups of 10 -- 100 stars of specific types. These sums average over the varying background which is a major source of error at 70 microns. For stars with low S/N detections or no detections of the stellar photospheres at 70 microns, the sums will promote non-detections into composite detections, with approximately 3 -- 10 times more sensitivity than individual images.

  9. Testing the correlation between low mass planets and debris disks

    NASA Astrophysics Data System (ADS)

    Kalas, Paul

    2014-10-01

    The number of dusty debris disks has increased across all spectral types through recent infrared surveys. This has provided greater overlap with stars known to host extrasolar planets via RV surveys. New studies have therefore investigated how the different properties of host stars, exoplanets, and debris disks may be correlated, with the objective of giving empirical support to competing theories of planet formation and evolution. One such emerging correlation is that stars with only low mass planets are more likely to host prominent debris disks than stars that have at least one giant planet. If true, then M dwarfs should have abundant debris disks given that they more frequently have low mass planetary systems. However, the information needed to critically test these ideas is lacking. For most systems, the presence of an outer planet with >30 Earth masses has not been observationally tested, nor are there many M dwarf debris disks available for detailed scrutiny. Here we propose to use STIS coronagraphy to image for the first time the debris disks around three nearby stars in optical scattered light. Searching for sharp dust belt structures indirectly tests for the existence of outer planets that are otherwise undetectable by RV or adaptive optics planet searches. Moreover, two of our target stars are the most recently discovered M dwarf debris disks, both closer to the Sun than AU Mic. The scattered light observations of these two targets would present a major advance in characterizing how M dwarf debris disks co-evolve with planets under different stellar environments.

  10. Sharp Eccentric Rings in Planetless Hydrodynamical Models of Debris Disks

    NASA Technical Reports Server (NTRS)

    Lyra, W.; Kuchner, M. J.

    2013-01-01

    Exoplanets are often associated with disks of dust and debris, analogs of the Kuiper Belt in our solar system. These "debris disks" show a variety of non-trivial structures attributed to planetary perturbations and utilized to constrain the properties of the planets. However, analyses of these systems have largely ignored the fact that, increasingly, debris disks are found to contain small quantities of gas, a component all debris disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio around unity where the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report that dust-gas interactions can produce some of the key patterns seen in debris disks that were previously attributed to planets. Through linear and nonlinear modeling of the hydrodynamical problem, we find that a robust clumping instability exists in this configuration, organizing the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The hypothesis that these disks might contain planets, though thrilling, is not necessarily required to explain these systems.

  11. A Debris Disk Case Study: 49 Ceti with Herschel

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2011-01-01

    Gas-poor debris disks represent a fundamentally different class of circumstellar disk than gas-rich protoplanetary disks. Their gas probably originates from the same source as the dust, i.e. planetesimal destruction, but the low gas densities make it difficult to detect. So far, Herschel has detected far-IR gas emission from one debris disk, Beta Pictoris. Here I discuss a well-known debris disk system in the GASPS survey, 49 Ceti. It serves as a case study for modeling low-density gas in optically thin disks. The dust disk appears to be spatially resolved at 70 um. Most interestingly, there appears to be a hint of ClI 158 urn emission at the roughly 2 sigma level. Preliminary modeling suggests that reconciling the sub-mm CO emission from this system with the weak or non-existent far-IR atomic lines may require an unusual chemical composition in the gas of this disk.

  12. Tracking debris disks within the Beta Pictoris Moving Group

    NASA Astrophysics Data System (ADS)

    Debes, J.

    2014-09-01

    Beta Pictoris represents a stunning example of a young planetary system with a debris disk, moving through local space with a host of other co-eval companion stars. These fellow travelers provide additional understanding for placing the Beta Pictoris disk into a proper context with regards to planet formation throughout the galaxy and our own Solar System. I will review the members of the Beta Pictoris moving group and catalog the latest results regarding the presence and understanding of debris disks around these other systems. Since these stars are close and very young, they represent an excellent opportunity for understanding the structure, composition, and grain properties of debris disks.

  13. Detecting Exoplanets with the New Worlds Observer: The Problem of Exozodiacal Dust

    NASA Technical Reports Server (NTRS)

    Roberge, A.; Noecker, M. C.; Glassman, T. M.; Oakley, P.; Turnbull, M. C.

    2009-01-01

    Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.

  14. Comprehensive Census and Analysis of Nearby Debris Disk Stars

    NASA Astrophysics Data System (ADS)

    Cotten, Tara H.

    2016-01-01

    Debris disks are intimately linked to planetary system evolution since the rocky material surrounding the star is believed to originate in collisions between planetesimals, asteroids and comets. With the conclusion of all major space infrared missions and lack of future large-scale infrared excess survey missions, it is time to make a complete list of all debris disk systems and search for trends in the population. A thorough search of the literature for infrared excess stars has been combined with a large-scale survey for excess stars in the Tycho-2 catalog that makes use of all available infrared photometry. The result is a list of ~580 unique high fidelity debris disk stars. This project seeks a comprehensive analysis of debris disk stars not yet completed on this large scale. A summary of the creation of the high fidelity debris disk census and the multi-facility endeavor to obtain various stellar and disk parameters for each debris disk will be presented. I will offer an exploration into the relationships between host stars and their debris disks through properties such as metallicity, age, and rotation.

  15. DEBRIS DISKS IN KEPLER EXOPLANET SYSTEMS

    SciTech Connect

    Lawler, S. M.; Gladman, B.

    2012-06-10

    The Kepler mission recently identified 997 systems hosting candidate extrasolar planets, many of which are super-Earths. Realizing these planetary systems are candidates to host extrasolar asteroid belts, we use mid-infrared data from the Wide-field Infrared Survey Explorer (WISE) to search for emission from dust in these systems. We find excesses around eight stars, indicating the presence of warm to hot dust ({approx}100-500 K), corresponding to orbital distances of 0.1-10 AU for these solar-type stars. The strongest detection, KOI 1099, demands {approx}500 K dust interior to the orbit of its exoplanet candidate. One star, KOI 904, may host very hot dust ({approx}1200 K, corresponding to 0.02 AU). Although the fraction of these exoplanet-bearing stars with detectable warm excesses ({approx}3%) is similar to that found by Spitzer surveys of solar-type field stars, the excesses detectable in the WISE data have much higher fractional luminosities (L{sub dust}/L{sub *}) than most known debris disks, implying that the fraction with debris disks of comparable luminosity may actually be significantly higher. It is difficult to explain the presence of dust so close to the host stars, generally corresponding to dust rings at radii <0.3 AU; both the collisional and Poynting-Robertson drag timescales to remove dust from the system are hundreds of years or less at these distances. Assuming a steady state for these systems implies large mass consumption rates with these short removal timescales, meaning that the dust production mechanism in these systems must almost certainly be episodic in nature.

  16. Optical polarization of solar type stars with debris disks

    NASA Astrophysics Data System (ADS)

    García, L.; Gómez, M.

    2015-04-01

    We report optical aperture polarimetry for 34 southern hemisphere main-sequence stars with debris disks, in addition to 54 stars without evidence of disk. These sets of stars are combined with another set of 109 stars from the northern hemisphere, obtained from the literature, to build two samples of 51 and 97 solar-type stars with and without debris disks. The distributions of polarization values for the samples with and without disks show no significant statistical difference, within the precision of our observations. However, we identify a sub-sample of 9 stars (d≲ 50 pc) with disks that have polarization levels above the median for the sample with disk, and that are not appropriately reproduced by Serkowski's interstellar law. These stars are candidates to have intrinsic polarization. In this case the debris disks in these stars may be populated by small dust with sizes of ≍0.1μm.

  17. ON THE RELATIONSHIP BETWEEN DEBRIS DISKS AND PLANETS

    SciTech Connect

    Kospal, Agnes; Ardila, David R.; Moor, Attila; Abraham, Peter

    2009-08-01

    Dust in debris disks is generated by collisions among planetesimals. The existence of these planetesimals is a consequence of the planet formation process, but the relationship between debris disks and planets has not been clearly established. Here we analyze Spitzer/MIPS 24 and 70 {mu}m data for 150 planet-bearing stars, and compare the incidence of debris disks around these stars with a sample of 118 stars around which planets have been searched for, but not found. Together they comprise the largest sample ever assembled to deal with this question. The use of survival analysis techniques allows us to account for the large number of nondetections at 70 {mu}m. We discovered 10 new debris disks around stars with planets and one around a star without known planets. We found that the incidence of debris disks is marginally higher among stars with planets, than among those without, and that the brightness of the average debris disk is not significantly different in the two samples. We conclude that the presence of a planet that has been detected via current radial velocity techniques is not a good predictor of the presence of a debris disk detected at infrared wavelengths.

  18. DUSTY DISKS AROUND WHITE DWARFS. I. ORIGIN OF DEBRIS DISKS

    SciTech Connect

    Dong Ruobing; Wang Yan; Lin, D. N. C.; Liu, X.-W. E-mail: yuw123@psu.ed E-mail: liuxw@bac.pku.edu.c

    2010-06-01

    A significant fraction of the mature FGK stars have cool dusty disks at least an order of magnitude brighter than the solar system's outer zodiacal light. Since such dusts must be continually replenished, they are generally assumed to be the collisional fragments of residual planetesimals analogous to the Kuiper-Belt objects. At least 10% of solar-type stars also bear gas giant planets. The fraction of stars with known gas giants or detectable debris disks (or both) appears to increase with the stellar mass. Here, we examine the dynamical evolution of systems of long-period gas giant planets and residual planetesimals as their host stars evolve off the main sequence, lose mass, and form planetary nebula around remnant white dwarf cores. The orbits of distant gas giant planets and super-km-size planetesimals expand adiabatically. During the most intense asymptotic giant branch mass-loss phase, sub-meter-size particles migrate toward their host stars due to the strong hydrodynamical drag by the intense stellar wind. Along their migration paths, gas giant planets capture and sweep up sub-km-size planetesimals onto their mean-motion resonances. These planetesimals also acquire modest eccentricities which are determined by the mass of the perturbing planets, and the rate and speed of stellar mass loss. The swept-up planetesimals undergo disruptive collisions which lead to the production of grains with an extended size range. The radiation drag on these particles is ineffective against the planets' resonant barrier and they form 30-50 AU size rings which can effectively reprocess the stellar irradiation in the form of FIR continuum. We identify the recently discovered dust ring around the white dwarf WD 2226-210 at the center of the Helix nebula as a prototype of such disks and suggest such rings may be common.

  19. Debris disks: seeing dust, thinking of planetesimals and planets

    NASA Astrophysics Data System (ADS)

    Krivov, Alexander V.

    2010-05-01

    Debris disks are optically thin, almost gas-free dusty disks observed around a significant fraction of main-sequence stars older than about 10 Myr. Since the circumstellar dust is short-lived, the very existence of these disks is considered as evidence that dust-producing planetesimals are still present in mature systems, in which planets have formed - or failed to form - a long time ago. It is inferred that these planetesimals orbit their host stars at asteroid to Kuiper-belt distances and continually supply fresh dust through mutual collisions. This review outlines observational techniques and results on debris disks, summarizes their essential physics and theoretical models, and then places them into the general context of planetary systems, uncovering interrelations between the disks, dust parent bodies, and planets. It is shown that debris disks can serve as tracers of planetesimals and planets and shed light on the planetesimal and planet formation processes that operated in these systems in the past.

  20. Tracing Planetary System Architecture with Debris Disk Imaging

    NASA Astrophysics Data System (ADS)

    Bryden, Geoffrey

    2014-06-01

    Planetary systems can be imaged indirectly via their debris disks - the remnants left over after planets form. Ongoing destruction of asteroids and comets in these disks creates a continual supply of orbiting dust around most Sun-like stars, including our own. In the Solar System such dust is bright enough to be seen with the naked eye - the Zodiacal light. Far-infrared observations by the Spitzer Space Telescope and the Herschel Space Observatory have identified many nearby stars with even brighter orbiting debris, orders of magnitude more than in the Solar System. Because they are so bright, optical imaging of debris disks is much easier than detecting their embedded planets. Such planets can be inferred from disk structure - the inner warp of beta Pic and the sharply defined eccentric rings of Fomalhaut and HD 202628, for example. Resolving individual belts of debris, meanwhile, infers the location of intermediate planets (as in the HR 8799 planetary system) and allows for comparison with the 2-belt architecture of Solar System. Debris disk imaging is particularly well suited toward exploring the outer regions of planetary systems (>10 AU), where mature (cold) planets cannot otherwise be detected. Overall, images of debris disks probe their underlying planetary systems both generally, by mapping the system architecture, and specifically, by determining the location of individual planets.

  1. The Correlation between Metallicity and Debris Disk Mass

    NASA Astrophysics Data System (ADS)

    Gáspár, András; Rieke, George H.; Ballering, Nicholas

    2016-08-01

    We find that the initial dust masses in planetary debris disks are correlated with the metallicities of their central stars. We compiled a large sample of systems, including Spitzer, the Herschel DUNES and DEBRIS surveys, and WISE debris disk candidates. We also merged 33 metallicity catalogs to provide homogeneous [Fe/H] and {σ }[{Fe/{{H}}]} values. We analyzed this merged sample, including 222 detected disks (74 warm and 148 cold) around a total of 187 systems (some with multiple components) and 440 disks with only upper limits (125 warm and 315 cold) around a total of 360 systems. The disk dust masses at a common early evolutionary point in time were determined using our numerical disk evolutionary code, evolving a unique model for each of the 662 disks backward to an age of 1 Myr. We find that disk-bearing stars seldom have metallicities less than {{[Fe/H]}}=-0.2 and that the distribution of warm component masses lacks examples with large mass around stars of low metallicity ({{[Fe/H]}}\\lt -0.085). Previous efforts to find a correlation have been largely unsuccessful; the primary improvements supporting our result are (1) basing the study on dust masses, not just infrared excess detections; (2) including upper limits on dust mass in a quantitative way; (3) accounting for the evolution of debris disk excesses as systems age; (4) accounting fully for the range of uncertainties in metallicity measurements; and (5) having a statistically large enough sample.

  2. Millimeter Resolved Observations of the HD 181327 Debris Disk

    NASA Astrophysics Data System (ADS)

    Steele, Amy

    2016-01-01

    The presence of debris disks around young main sequence stars hints at the structure of hidden planetary systems, with any deviations from axisymmetry pointing toward interactions among planetesimals. HD 181327 is a ~24 Myr old F5.5 member of the Beta Pic Moving Group that hosts an extremely bright debris disk (L_IR/L_\\star = 0.25%) of dust continuously generated through the collisional erosion of a circumstellar ring of planetesimals at 90 AU. An HST STIS observation of the HD 181327 disk provided tentative evidence for the recent collisional destruction of a Pluto mass object. Spatially resolved millimeter wavelength observations are crucial to investigate this scenario, characterize the structure of the dust disk, and characterize the gravitationally interacting grains. We present ALMA observations at ~1 arcsec resolution and investigate the azimuthal variations in the HD 181327 debris disk at 1.25 mm.

  3. Probing Nearby Planetary Systems by Debris Disk Imaging

    NASA Technical Reports Server (NTRS)

    Stapelfeldt, Karl

    2011-01-01

    Many main-sequence stars possess tenuous circumstellar dust clouds believed to trace extrasolar analogs of the Sun's asteroidand Kuiper Belts. While most of these "debris disks" are known only from far-infrared photometry, a growing number of them are now spatially resolved. In this talk, I'll review what is currently known about the structure of debris disks. Using images from the Hubble, Spitzer, and Herschel Space Telescopes, I will show how modeling of these resolved systems can place strong constraints on dust particle properties in the disks. Some of the disks show disturbed structures suggestive of planetary perturbations: specific cases will be discussed where directly-imaged exoplanets are clearly affecting debris disk structure. I'll conclude with thoughts on the future of high contrast exoplanet imaging.

  4. Gas in Protoplanetary and Debris Disks: Insights from UV Spectroscopy

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Over the last two decades, observations of protoplanetary and debris disks have played an important role in the new field of extrasolar planetary studies. Many are familiar with the extensive work on the cold circumstellar dust present in these disks done using infrared and sub-millimeter photometry and spectroscopy. However. UV spectroscopy has made some unique contributions by probing the elusive but vital gas component in protoplanetary and debris disks. In this talk, I will outline our picture of the evolution of protoplanetary disks and discuss the importance of the gas component. New insights obtained from UV spectroscopy will be highlighted, as well as some new puzzles. Finally, I will touch on upcoming studies of gas in protoplanetary and debris disks, some at UV wavelengths, some at far-IR and sub-mm wavelengths.

  5. Debris disk radiative transfer simulation tool (DDS)

    NASA Astrophysics Data System (ADS)

    Wolf, S.; Hillenbrand, L. A.

    2005-10-01

    A WWW interface for the simulation of spectral energy distributions of optically thin dust configurations with an embedded radiative source is presented. The density distribution, radiative source, and dust parameters can be selected either from an internal database or defined by the user. This tool is optimized for studying circumstellar debris disks where large grains (a ≫1 μm) are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. The tool is available at http://aida28.mpia-hd.mpg.de/~swolf/dds. Catalogue identifier:ADVV Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computers:PC with Intel(R) XEON(TM) 2.80 GHz processor Operating systems or monitors under which the program has been tested:SUSE Linux 9.1 Programming language used:Fortran 90 (for the main program; furthermore Perl, CGI and HTML) Memory required to execute with typical data:108 words No. of bits in a word:8 No. of lines in distributed program, including test data, etc.:44 636 No. of bytes in distributed program, including test data, etc.: 4 806 280 Distribution format:tar.gz Nature of the physical problem:Simulation of scattered light and thermal reemission in arbitrary optically dust distributions with spherical, homogeneous grains where the dust parameters (optical properties, sublimation temperature, grain size) and SED of the illuminating/heating radiative source can be arbitrarily defined (example application: [S. Wolf, L.A. Hillenbrand, Astrophys. J. 596 (2003) 603]). The program is optimized for studying circumstellar debris disks where large grains (i.e. with large size parameters) are expected to determine the far-infrared through millimeter dust reemission spectral energy distribution. Method of solution:Calculation of the dust temperature distribution and dust reemission and scattering spectrum in the

  6. The Evolutionary State of Anemic Circumstellar Disks in IC 348: Transitions Disks, The Earliest Debris Disks, and Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Currie, Thayne M.

    2008-05-01

    I investigate the evolution of 3 Myr-old MIPS-detected circumstellar disks in IC 348 that may be in an intermediate stage between primordial, optically-thick disks of gas/dust and debris disks characteristic of the final stages of planet formation. I demonstrate that these anemic disks are not a homogenous class of objects corresponding to a unique evolutionary state. Analysis of their mid-IR colors, accretion signatures (or lack thereof), and SED modeling suggest that such disks around early spectral type stars are most likely warm debris disks indicative of terrestrial planet formation: perhaps the youngest yet known. MIPS-detected anemic disks around later (M) stars are likely evolved primordial disks such as transition disks. Anemic disks surrounding G and K stars contain both populations. IC 348 also contains a small number of non-accreting sources with weak 24 micron emission characteristic of cold debris disks. The difference in evolutionary states between anemic disks surrounding early type vs. late-type stars is consistent with a mass-dependent evolution of circumstellar disks from the primordial disk phase through the debris disk phase similar to that found for 5 Myr-old Upper Scorpius.

  7. Observed & Predicted Debris Disks Structures Beyond the Reach of Kepler

    NASA Astrophysics Data System (ADS)

    Stark, Christopher C.

    2014-06-01

    Over the last several years our theoretical understanding of debris disks has evolved significantly. A number of new computational advances, in the realms of disk modeling and data analysis, have deepened our knowledge of structures in debris disks. More than ever, we are acutely aware of the many sources of structures--be they gravitational perturbations by planets, other external perturbations, or more subtle non-perturbative sources. At the same time, new observatories, instruments, and observation strategies have provided a rich data set for debris disk theorists to test and constrain their models. I will discuss our current understanding of structures in debris disks. I will show the wide array of structures that planets can dynamically sculpt and comment on how imaging of these structures with future missions may constrain the underlying planetary system. I will also present a cautionary tale of interpreting debris disk structures as planetary perturbations, show how our appreciation of alternative sources of structures has grown, and present new methods for disentangling true density structures from projection and scattering effects.

  8. Debris Disks as Tracers of Nearby Planetary Systems

    NASA Technical Reports Server (NTRS)

    Stapelfeldt, Karl

    2012-01-01

    Many main-sequence stars possess tenuous circumstellar dust clouds believed to trace extrasolar analogs of the Sun's asteroid and Kuiper Belts. While most of these "debris disks" are known only from far-infrared photometry, dozens are now spatially resolved. In this talk, I'll review the observed structural properties of debris disks as revealed by imaging with the Hubble, Spitzer, and Herschel Space Telescopes. I will show how modeling of the far-infrared spectral energy distributions of resolved disks can be used to constrain their dust particle sizes and albedos. I will review cases of disks whose substructures suggest planetary perturbations, including a newly-discovered eccentric ring system. I'll conclude with thoughts on the potential of upcoming and proposed facilities to resolve similar structures around a greatly expanded sample of nearby debris systems.

  9. Five steps in the evolution from protoplanetary to debris disk

    NASA Astrophysics Data System (ADS)

    Wyatt, M. C.; Panić, O.; Kennedy, G. M.; Matrà, L.

    2015-06-01

    The protoplanetary disks seen around Herbig Ae stars eventually dissipate leaving just a tenuous debris disk, comprised of planetesimals and the dust derived from them, as well as possibly gas and planets. This paper uses the properties of the youngest (10-20 Myr) A star debris disks to consider the transition from protoplanetary to debris disk. It is argued that the physical distinction between these two classes should rest on the presence of primordial gas in sufficient quantities to dominate the motion of small dust grains (rather than on the secondary nature of the dust or its level of stirring). This motivates an observational classification based on the dust emission spectrum which is empirically defined so that A star debris disks require fractional excesses <3 at 12 μm and <2000 at 70 μm. We also propose that a useful hypothesis to test is that the planet and planetesimal systems seen on the main sequence are already in place during the protoplanetary disk phase, but are obscured or overwhelmed by the rest of the disk. This may be only weakly true if the architecture of the planetary system continues to change until frozen at the epoch of disk dispersal, or completely false if planets and planetesimals form during the relatively short dispersal phase. Five steps in the transition are discussed: (i) the well-known carving of an inner hole to form a transition disk; (ii) depletion of mm-sized dust in the outer disk, where it is noted that it is of critical importance to ascertain whether this mass ends up in larger planetesimals or is collisionally depleted; (iii) final clearing of inner regions, where it is noted that multiple debris-like mechanisms exist to replenish moderate levels of hot dust at later phases, and that these likely also operate in protoplanetary disks; (iv) disappearance of the gas, noting the recent discoveries of both primordial and secondary gas in debris disks which highlight our ignorance in this area and its impending enlightenment

  10. A Collisional Algorithm for Modeling Circumstellar Debris Disks

    NASA Technical Reports Server (NTRS)

    Nesvold, Erika; Kuchner, Marc

    2011-01-01

    Many planetary systems harbor circumstellar disks of dust and planetesimals thought to be debris left over from planet formation. These debris disks exhibit a range of morphological features which can arise from the gravitational perturbations of planets. Accurate models of these features, accounting for the interactions of the particles in a disk with each other and with whatever planets they contain, can act as signposts for planets in debris disks that otherwise could not be detected. Such models can also constrain the planet's mass and orbital parameters. Current models for many disks consider the gravitational and radiative effects of the star and planets on the disk, but neglect the morphological consequences of collisional interactions between the planetesimals. Many observed disk features are not satisfactorily explained by the current generation of models. I am developing a new kind of debris disk model that considers both the gravitational shaping of the disk by planets and the inelastic collisions between particles. I will use a hybrid N-body integrator to numerically solve the equations of motion for the particles and planets in the disk. To include the collisional effects, I begin with an algorithm that tests for collisions at each step of the orbit integration and readjusts the velocities of colliding particles. I am adapting this algorithm to the problem at hand by allowing each particle to represent a "swarm" of planetesimals with a range of masses. When the algorithm detects an encounter between swarms, two or three swarms are produced to approximate the range of possible trajectories of the daughter planetesimals. Here I present preliminary results from my collisional algorithm.

  11. Detection Of Exocomets Within Edge-on Debris Disks

    NASA Astrophysics Data System (ADS)

    Montgomery, Sharon Lynn; Welsh, B.

    2011-01-01

    The youngest circumstellar debris disks in orbit around main sequence stars are thought to represent the last stage in the formation of a planetary system. Dust and gas continues to be replenished in these systems when planetesimals reach sizes of around 2000 km. Dynamical instabilities can "stir" the population of smaller planetesimals such that they undergo violent dust-generating collisions with each other. The same instabilities may send comets on highly eccentric orbits toward the star in these debris disk systems. Four stars, including the protypical debris disk star Beta Pic, have already been shown to exhibit short-term (i.e., night-to-night) variability in Ca II, which is widely believed to be due to infalling evaporating bodies (FEBs or exocomets). We have collected moderately high-resolution spectra of ten young, A-type, rapidly-rotating stars with excess infrared continuum emission using the Cassegrain-Echelle spectrograph of the 2.1m Otto Struve Telescope. Here, we report the detection of two new gas disk systems with short-term variability in CaII: 5 Vul and 49 Cet. While the circumstellar disks of both stars have been previously described in the literature, this is the first report of night-to-night variability within the debris disk gas. Velocity arguments have allowed us to place some constraints on the dynamics of the absorbing gas.

  12. New Debris Disks in Nearby Young Moving Groups

    NASA Astrophysics Data System (ADS)

    Moór, A.; Kóspál, Á.; Ábrahám, P.; Balog, Z.; Csengeri, T.; Henning, Th.; Juhász, A.; Kiss, Cs.

    2016-08-01

    A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160 μm observations of 31 systems in the β Pic moving group, and in the Tucana–Horologium, Columba, Carina, and Argus associations, using the Herschel Space Observatory. None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70 μm Photodetector Array Camera and Spectrograph images, the estimated radius of these disks is ∼90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient solar system.

  13. New Debris Disks in Nearby Young Moving Groups

    NASA Astrophysics Data System (ADS)

    Moór, A.; Kóspál, Á.; Ábrahám, P.; Balog, Z.; Csengeri, T.; Henning, Th.; Juhász, A.; Kiss, Cs.

    2016-08-01

    A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160 μm observations of 31 systems in the β Pic moving group, and in the Tucana–Horologium, Columba, Carina, and Argus associations, using the Herschel Space Observatory. None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70 μm Photodetector Array Camera and Spectrograph images, the estimated radius of these disks is ˜90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient solar system.

  14. PLANETESIMALS IN DEBRIS DISKS OF SUN-LIKE STARS

    SciTech Connect

    Shannon, Andrew; Wu Yanqin

    2011-09-20

    Observations of dusty debris disks can be used to test theories of planetesimal coagulation. Planetesimals of sizes up to a couple of thousand kilometers are embedded in these disks and their mutual collisions generate the small dust grains that are observed. The dust luminosities, when combined with information on the dust spatial extent and the system age, can be used to infer initial masses in the planetesimal belts. Carrying out such a procedure for a sample of debris disks around Sun-like stars, we reach the following two conclusions. First, if we assume that colliding planetesimals satisfy a primordial size spectrum of the form dn/ds{proportional_to}s{sup -q}, observed disks strongly favor a value of q between 3.5 and 4, while both current theoretical expectations and statistics of Kuiper belt objects favor a somewhat larger value. Second, number densities of planetesimals are two to three orders of magnitude higher in detected disks than in the Kuiper belt, for comparably sized objects. This is a surprise for the coagulation models. It would require a similar increase in the disk surface density over that of the Minimum Mass Solar Nebula, which is unreasonable. Both of our conclusions are driven by the need to explain the presence of bright debris disks at a few gigayears of age.

  15. VARIABILITY OF THE INFRARED EXCESS OF EXTREME DEBRIS DISKS

    SciTech Connect

    Meng, Huan Y. A.; Rieke, George H.; Su, Kate Y. L.; Rujopakarn, Wiphu; Ivanov, Valentin D.; Vanzi, Leonardo

    2012-05-20

    Debris disks with extremely large infrared excesses (fractional luminosities >10{sup -2}) are rare. Those with ages between 30 and 130 Myr are of interest because their evolution has progressed well beyond that of protoplanetary disks (which dissipate with a timescale of order 3 Myr), yet they represent a period when dynamical models suggest that terrestrial planet building may still be progressing through large, violent collisions that could yield large amounts of debris and large infrared excesses. For example, our Moon was formed through a violent collision of two large protoplanets during this age range. We report two disks around the solar-like stars ID8 and HD 23514 in this age range where the 24 {mu}m infrared excesses vary on timescales of a few years, even though the stars are not variable in the optical. Variations this rapid are difficult to understand if the debris is produced by collisional cascades, as it is for most debris disks. It is possible that the debris in these two systems arises in part from condensates from silicate-rich vapor produced in a series of violent collisions among relatively large bodies. If their evolution is rapid, the rate of detection of extreme excesses would indicate that major collisions may be relatively common in this age range.

  16. The Geometry of Resonant Signatures in Debris Disks with Planets

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc J.; Holman, Matthew J.

    2003-05-01

    Using simple geometrical arguments, we paint an overview of the variety of resonant structures a single planet with moderate eccentricity (e<~0.6) can create in a dynamically cold, optically thin dust disk. This overview may serve as a key for interpreting images of perturbed debris disks and inferring the dynamical properties of the planets responsible for the perturbations. We compare the resonant geometries found in the solar system dust cloud with observations of dust clouds around Vega, ɛ Eridani, and Fomalhaut.

  17. The Dynamical Structure of HR 8799's Inner Debris Disk.

    PubMed

    Contro, B; Wittenmyer, Robert A; Horner, J; Marshall, Jonathan P

    2015-06-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system. PMID:25862330

  18. The Dynamical Structure of HR 8799's Inner Debris Disk

    NASA Astrophysics Data System (ADS)

    Contro, B.; Wittenmyer, Robert A.; Horner, J.; Marshall, Jonathan P.

    2015-06-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system.

  19. Constraining Collisional Models of Planetesimals in Debris Disks

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith A.; Wilner, David J.; Hughes, A. Meredith; Steele, Amy; Ricci, Luca; Andrews, Sean M.; Chandler, Claire J.; Tahli Maddison, Sarah

    2016-01-01

    Debris disks around main-sequence stars are produced by the ongoing collisional erosion of planetesimals, analogous to Kuiper Belt Objects (KBOs) or comets in our own Solar System. Observations of these dusty belts offer a window into the physical and dynamical properties of planetesimals in extrasolar systems through the size distribution of dust grains. In particular, the millimeter/radio spectral index of thermal dust emission encodes information on the grain size distribution that can be used to test proposed collisional models of planetesimals. We have made sensitive Jansky Very Large Array (JVLA) observations of a sample of 7 nearby debris disks at 9 mm and combine these with archival Australia Telescope Compact Array (ATCA) observations of 8 additional debris disks at 7 mm. Using measurements at (sub)millimeter wavelengths from the literature, we place tight constraints on the millimeter spectral indices and thus grain size distributions of this sample of debris disks. Our analysis gives a weighted mean for the slope of the power-law grain distribution that is close to the classical prediction for a steady-state collisional cascade (q=3.5), but not consistent with the steeper distributions predicted by recent models that include more complex fragmentation processes. To interpret this result, we explore the effects of material strengths, velocity distributions, and small-size cutoffs on the steady-state grain size distribution.

  20. Gas Debris Disks: A New Way to Produce Dust Patterns

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2012-01-01

    Debris disks like those around Fomalhaut and Beta Pictoris show striking dust patterns often attributed to planets. But adding a bit of gas to our models of these disks--too little to detect-could alter this interpretation. Small amounts of gas lead to new dynamical instabilities that may mimic the narrow eccentric rings and other structures planets would create in a gas-free disk. rll discuss these phenomena and whether or not we can still use dust patterns as indicators of hidden exoplanets.

  1. Study of Scattered Light from Known Debris Disks

    NASA Technical Reports Server (NTRS)

    Rodriguez, Joseph E.; Weinberger, Alycia J.; Roberge, Aki

    2011-01-01

    Using the Spitzer Space Telescope, a group of edge on debris disks, surrounding main-sequence shell stars have been discovered in the infrared. These disks are of high interest because they not only have dust, but an observed amount of circumstellar gas. HD158352 was an ideal target to try and image the disk because it was one of the closest stars in this group. Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph (STIS), we attempted to take a direct image of the light scattered from the known disk in a broad optical bandpass. Studying these particular type of disks in high detail will allow us to learn more about gas-dust interactions. In particular, this will allow us to learn how the circumstellar gas evolves during the planet-forming phase. Even though it was predicted that the disk should have a magnitude of 20.5 at 3", no disk was seen in any of the optical images. This suggests that the parameters used to predict the brightness of the disk are not what we first anticipated and adjustments to the model must be performed. We also present the blue visible light spectrum of the scattered light from the debris disk surrounding Beta Pictoris. We are analyzing archival observations taken by Heap, using Hubble Space Telescope's STIS instrument. A long slit with a bar was used to occult Beta Pictoris as well as the PSF star. This was done because it is necessary to subtract a PSF observed the same way at the target to detect the disk. It appears that we have detected light from the disk but the work was in progress at the time of the abstract deadline.

  2. Resolved imaging of the HR 8799 Debris disk with Herschel

    SciTech Connect

    Matthews, Brenda; Booth, Mark; Broekhoven-Fiene, Hannah; Marois, Christian; Kennedy, Grant; Wyatt, Mark; Sibthorpe, Bruce; Macintosh, Bruce

    2014-01-01

    We present Herschel far-infrared and submillimeter maps of the debris disk associated with the HR 8799 planetary system. We resolve the outer disk emission at 70, 100, 160, and 250 μm and detect the disk at 350 and 500 μm. A smooth model explains the observed disk emission well. We observe no obvious clumps or asymmetries associated with the trapping of planetesimals that is a potential consequence of planetary migration in the system. We estimate that the disk eccentricity must be <0.1. As in previous work by Su et al., we find a disk with three components: a warm inner component and two outer components, a planetesimal belt extending from 100 to 310 AU, with some flexibility (±10 AU) on the inner edge, and the external halo that extends to ∼2000 AU. We measure the disk inclination to be 26° ± 3° from face-on at a position angle of 64° E of N, establishing that the disk is coplanar with the star and planets. The spectral energy distribution of the disk is well fit by blackbody grains whose semi-major axes lie within the planetesimal belt, suggesting an absence of small grains. The wavelength at which the spectrum steepens from blackbody, 47 ± 30 μm, however, is short compared with other A star debris disks, suggesting that there are atypically small grains likely populating the halo. The PACS longer wavelength data yield a lower disk color temperature than do MIPS data (24 and 70 μm), implying two distinct halo dust-grain populations.

  3. Debris disks as seen by Herschel/DUNES

    NASA Astrophysics Data System (ADS)

    Löhne, T.; Eiroa, C.; Augereau, J.-C.; Ertel, S.; Marshall, J. P.; Mora, A.; Absil, O.; Stapelfeldt, K.; Thébault, P.; Bayo, A.; del Burgo, C.; Danchi, W.; Krivov, A. V.; Lebreton, J.; Letawe, G.; Magain, P.; Maldonado, J.; Montesinos, B.; Pilbratt, G. L.; White, G. J.; Wolf, S.

    2012-06-01

    The far-infrared excesses produced by debris disks are common features of stellar systems. These disks are thought to contain solids ranging from micron-sized dust to planetesimals. Naturally, their formation and evolution are linked to those of potential planets. With this motivation, the Herschel open time key programme DUNES (DUst around NEarby Stars) aims at further characterising known debris disks and discovering new ones in the regime explored by the Herschel space observatory. On the one hand, in their survey of 133 nearby FGK stars, DUNES discovered a class of extremely cold and faint debris disks, different from well-known disks such as the one around Vega in that their inferred typical grain sizes are rather large, indicating low dynamical excitation and low collision rates. On the other hand, for the more massive disk around the sun-like star HD 207129, well-resolved PACS images confirmed the ring-liked structure seen in HST images and provided valuable information for an in-depth study and benchmark for models. Employing both models for power-law fitting and collisional evolution we found the disk around HD 207129 to feature low collision rates and large grains, as well. Transport by means of Poynting-Robertson drag likely plays a role in replenishing the dust seen closer to the star, inside of the ring. The inner edge is therefore rather smooth and the contribution from the extended halo of barely bound grains is small. Both slowly self-stirring and planetary perturbations could potentially have formed and shaped this disk. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  4. Two-temperature Debris Disks: Signposts for Directly Imaged Planets?

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.; Wyatt, Mark C.

    2016-01-01

    This work considers debris disks whose spectra can be modelled by dust emission at two different temperatures. These disks are typically assumed to be a sign of multiple belts, but only a few cases have been confirmed via high resolution observations. We derive the properties of a sample of two-temperature disks, and explore whether this emission can arise from dust in a single narrow belt. While some two-temperature disks arise from single belts, it is probable that most have multiple spatial components. These disks are plausibly similar to the outer Solar System's configuration of Asteroid and Edgeworth-Kuiper belts separated by giant planets. Alternatively, the inner component could arise from inward scattering of material from the outer belt, again due to intervening planets. For either scenario, the ratio of warm/cool component temperatures is indicative of the scale of outer planetary systems, which typically span a factor of about ten in radius.

  5. Zodiac: A Balloon Facility for Exoplanet Debris Disk Observations

    NASA Astrophysics Data System (ADS)

    Unwin, Stephen C.; Traub, W.; Bryden, G.

    2011-01-01

    Zodiac is a telescope-coronagraph system, operating at visible wavelengths, mounted on a balloon-borne gondola in the stratosphere. The science objective is to image debris disks around nearby stars. Debris disks, usually found in the outer reaches of a planetary system, are significant for exoplanet science because (a) they tell us that planet formation did actually get started around a star, (b) they are a contributing source of potentially obscuring dust to the inner part of the disk where we will someday start searching for terrestrial planets, and (c) for a disk with an inner edge, this feature is a signpost for a shepherding planet and thus a sign that planet formation did indeed proceed to completion around that star. The telescope has a 1-m diameter, clear-aperture primary mirror, designed to operate in the cold stratospheric environment. The coronagraph is designed to suppress starlight, including its diffracted and scattered components, and allow a faint surrounding debris disk to be imaged. We will control the speckle background to be about 7 orders of magnitude fainter than the star, with detection sensitivity about one more order of magnitude fainter, in order to comfortably image the expected brightness of typical debris disks. Zodiac will be designed to make scientifically useful measurements on a conventional overnight balloon flight, but would also be fully compatible with future Ultra Long Duration Balloon flights. Zodiac has a technical objective of advancing the technology levels of future mission components from the lab to near-space flight status. These components include deformable mirrors, wavefront sensors, coronagraph masks, lightweight mirrors, precision pointing, and speckle rejection by wavefront control. The research described in this talk was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged.

  6. Zodiac: A Balloon Facility for Exoplanet Debris Disk Observations

    NASA Astrophysics Data System (ADS)

    Unwin, S.; Traub, W.

    2010-10-01

    Zodiac is a telescope-coronagraph system, operating at visible wavelengths, mounted on a balloon-borne gondola in the stratosphere. The science objective is to image debris disks around nearby stars. Debris disks, usually found in the outer reaches of a planetary system, are significant for exoplanet science because (a) they tell us that planet formation did actually get started around a star, (b) they are a contributing source of potentially obscuring dust to the inner part of the disk where we will someday start searching for terrestrial planets, and (c) for a disk with an inner edge, this feature is a signpost for a shepherding planet and thus a sign that planet formation did indeed proceed to completion around that star. The telescope has a 1-m diameter, clear-aperture primary mirror, designed to operate in the cold stratospheric environment. The coronagraph is designed to suppress starlight, including its diffracted and scattered components, and allow a faint surrounding debris disk to be imaged. We will control the speckle background to be about 7 orders of magnitude fainter than the star, with detection sensitivity about one more order of magnitude fainter, in order to comfortably image the expected brightness of typical debris disks. Zodiac will be designed to make scientifically useful measurements on a conventional overnight balloon flight, but would also be fully compatible with future Ultra Long Duration Balloon flights. Zodiac has a technical objective of advancing the technology levels of future mission components from the lab to near-space flight status. These components include deformable mirrors, wavefront sensors, coronagraph masks, lightweight mirrors, precision pointing, and speckle rejection by wavefront control.

  7. Resolving the Dusty Debris Disk of 49 Ceti

    NASA Astrophysics Data System (ADS)

    Lieman-Sifry, Jesse; Hughes, A. Meredith

    2015-01-01

    Understanding the dispersal of primordial gas and dust from circumstellar disks is necessary for determining the timeline for giant planet formation. While the current assumption is that the gas and dust evolve simultaneously, there are a few systems that defy this paradigm. The nearby A star 49 Ceti, at a distance of 61 pc, hosts one of only a few known circumstellar disks that exhibits the dust qualities of an older debris disk but still displays a substantial mass of molecular gas, a characteristic normally associated with youth. We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations at 850μm and a spatial resolution of 0.47x0.39 arcsec that resolve emission from the dust disk for the first time. To investigate the properties of the dust grains and the morphology of the disk, we simultaneously model the high-resolution ALMA data and the unresolved spectral energy distribution (SED). The detected emission reveals a disk that extends from 1.16±0.12AU to 286±7AU with an increase in surface density at 113±2AU that is viewed at an inclination of 79.6±.4°. The increase in surface density corresponds to the inner radius of the gas disk, hinting that similar mechanisms may be responsible for sculpting the gas and dust disks at this late stage of disk evolution.

  8. Comprehensive Census and Complete Characterization of Nearby Debris Disk Stars

    NASA Astrophysics Data System (ADS)

    Cotten, Tara H.; Song, Inseok

    2016-01-01

    Debris disks are intimately linked to planetary system evolution since the rocky material surrounding the host stars is believed to be due to secondary generation from the collisions of planetesimals. With the conclusion and lack of future large scale infrared excess survey missions, it is time to summarize the history of using excess emission in the infrared as a tracer of debris and exploit all available data as well as provide a comprehensive study of the parameters of these important objects. We have compiled a catalog of infrared excess stars from peer-reviewed articles and performed an extensive search for new debris disks by cross-correlating the Tycho-2 and AllWISE catalogs. This study will conclude following the thorough examination of each debris disk star's parameters obtained through high-resolution spectroscopy at various facilities which is currently ongoing. We will maintain a webpage (www.debrisdisks.org) devoted to these infrared excess sources and provide various resources related to our catalog creation, SED fitting, and data reduction.

  9. GAS EMISSION FROM DEBRIS DISKS AROUND A AND F STARS

    SciTech Connect

    Zagorovsky, Kyryl; Brandeker, Alexis; Wu Yanqin E-mail: alexis@astro.su.s

    2010-09-01

    Gas has been detected in a number of debris disk systems. This gas may have arisen from grain sublimation or grain photodesorption. It interacts with the surrounding dust grains through a number of charge and heat exchanges. Studying the chemical composition and physical state of this gas can therefore reveal much about the dust component in these debris disks. We have produced a new code, ONTARIO, to address gas emission from dusty gas-poor disks around A-F stars. This code computes the gas ionization and thermal balance self-consistently, with particular care taken of heating/cooling mechanisms. Line emission spectra are then produced for each species (up to zinc) by statistical equilibrium calculations of the atomic/ionic energy levels. For parameters that resemble the observed {beta} Pictoris gas disk, we find that the gas is primarily heated by photoelectric emission from dust grains, and primarily cooled through the C II 157.7 {mu}m line emission. The gas can be heated to a temperature that is warmer than that of the dust and may in some cases reach temperature for thermal escape. The dominant cooling line, C II 157.7 {mu}m, should be detectable by Herschel in these disks, while the O I 63.2 {mu}m line will be too faint. We also study the dependence of the cooling line fluxes on a variety of disk parameters, in light of the much improved sensitivity to thermal line emission in the mid/far-infrared and at submillimeter wavelengths provided by, in particular, Herschel, SOFIA, and ALMA. These new instruments will yield much new information about dusty debris disks.

  10. Studying planetary debris disks around isolated, hot white dwarfs

    NASA Astrophysics Data System (ADS)

    Brinkworth, Carolyn; Gaensicke, Boris; Marsh, Tom; Hoard, Donald; Girven, Jonathan

    2010-06-01

    While more than 440 extrasolar planets orbiting main sequence stars have been discovered, the destiny of planetary systems through the late stages of the evolution of their host stars is very uncertain. We identified metal-rich (CaII and MgII emission) gas disks around 5 relatively young, hot white dwarfs, three of which were the subject of a previous Spitzer program in Cycle-5. The Cycle-5 data revealed a large, dusty extension to the gaseous debris disks, likely originating with the tidal breakup of an asteroid left over from an ancient planetary system. Our recent intensive studies of the three original systems have now turned up variability in the line profiles of the gaseous disks, suggesting the exciting possibility that we are witnessing the real-time dynamical evolution of planetary debris around these white dwarfs. We propose to extend this study to two newly-discovered, cooler members of this small sample of objects, to determine whether dust and gas can also coexist around cooler stars. Since these stars should be too cool to produce the observed CaII emission, we suspect that there is additional mechanical heating in these systems, caused by the recent impacts of asteroids. If so, CaII emission would likely be the signature of the youngest, freshest debris disks around these stars.

  11. HIGH SPATIAL RESOLUTION IMAGING OF THERMAL EMISSION FROM DEBRIS DISKS

    SciTech Connect

    Moerchen, Margaret M.; Telesco, Charles M.; Packham, Christopher

    2010-11-10

    We have obtained subarcsecond mid-IR images of a sample of debris disks within 100 pc. For our sample of 19 A-type debris disk candidates chosen for their IR excess, we have resolved, for the first time, five sources plus the previously resolved disk around HD 141569. Two other sources in our sample have been ruled out as debris disks since the time of sample selection. Three of the six resolved sources have inferred radii of 1-4 AU (HD 38678, HD 71155, and HD 181869), and one source has an inferred radius {approx}10-30 AU (HD 141569). Among the resolved sources with detections of excess IR emission, HD 71155 appears to be comparable in size (r {approx} 2 AU) to the solar system's asteroid belt, thus joining {zeta} Lep (HD 38678, reported previously) to comprise the only two resolved sources of that class. Two additional sources (HD 95418 and HD 139006) show spatial extents that imply disk radii of {approx}1-3 AU, although the excess IR fluxes are not formally detected with better than 2{sigma} significance. For the unresolved sources, the upper limits on the maximum radii of mid-IR disk emission are in the range {approx}1-20 AU, four of which are comparable in radius to the asteroid belt. We have compared the global color temperatures of the dust to that expected for the dust in radiative equilibrium at the distances corresponding to the observed sizes or limits on the sizes. In most cases, the temperatures estimated via these two methods are comparable, and therefore, we see a generally consistent picture of the inferred morphology and the global mid-IR emission. Finally, while our sample size is not statistically significant, we note that the older sources (>200 Myr) host much warmer dust (T {approx}> 400 K) than younger sources (in the tens of Myr).

  12. Does the debris disk around HD 32297 contain cometary grains?

    SciTech Connect

    Rodigas, Timothy J.; Hinz, Philip M.; Bailey, Vanessa; Defrere, Denis; Leisenring, Jarron; Schneider, Glenn; Skemer, Andrew J.; Vaitheeswaran, Vidhya; Debes, John H.; Mamajek, Eric E.; Pecaut, Mark J.; Currie, Thayne; De Rosa, Robert J.; Ward-Duong, Kimberly; Hill, John M.; Skrutskie, Michael

    2014-03-01

    We present an adaptive optics imaging detection of the HD 32297 debris disk at L' (3.8 μm) obtained with the LBTI/LMIRcam infrared instrument at the Large Binocular Telescope. The disk is detected at signal-to-noise ratio per resolution element ∼3-7.5 from ∼0.''3 to 1.''1 (30-120 AU). The disk at L' is bowed, as was seen at shorter wavelengths. This likely indicates that the disk is not perfectly edge-on and contains highly forward-scattering grains. Interior to ∼50 AU, the surface brightness at L' rises sharply on both sides of the disk, which was also previously seen at Ks band. This evidence together points to the disk containing a second inner component located at ≲50 AU. Comparing the color of the outer (50 disk at L' with archival Hubble Space Telescope/NICMOS images of the disk at 1-2 μm allows us to test the recently proposed cometary grains model of Donaldson et al. We find that the model fails to match this disk's surface brightness and spectrum simultaneously (reduced chi-square = 17.9). When we modify the density distribution of the model disk, we obtain a better overall fit (reduced chi-square = 2.87). The best fit to all of the data is a pure water ice model (reduced chi-square = 1.06), but additional resolved imaging at 3.1 μm is necessary to constrain how much (if any) water ice exists in the disk, which can then help refine the originally proposed cometary grains model.

  13. Gap Clearing by Planets in a Collisional Debris Disk

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Kuchner, Marc J.

    2015-01-01

    We apply our 3D debris disk model, SMACK, to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (α = 2/7). We find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index α of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by α = 0.32(t/t coll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. We investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. Finally, we find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ~1-10 M Jup. We apply our model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and β Pictoris.

  14. GAP CLEARING BY PLANETS IN A COLLISIONAL DEBRIS DISK

    SciTech Connect

    Nesvold, Erika R.; Kuchner, Marc J. E-mail: Marc.Kuchner@nasa.gov

    2015-01-10

    We apply our 3D debris disk model, SMACK, to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (α = 2/7). We find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index α of the power law depends on the age of the system t relative to the collisional timescale t {sub coll} of the disk by α = 0.32(t/t {sub coll}){sup –0.04}, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. We investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. Finally, we find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ∼1-10 M {sub Jup}. We apply our model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and β Pictoris.

  15. Searching for debris disks around seven radio pulsars

    SciTech Connect

    Wang, Zhongxiang; Wang, Xuebing; Ng, C.-Y.; Li, Aigen; Kaplan, David L.

    2014-10-01

    We report on our searches for debris disks around seven relatively nearby radio pulsars, which are isolated sources that were carefully selected as targets on the basis of our deep K{sub s} -band imaging survey. The K{sub s} images obtained with the 6.5 m Baade Magellan Telescope at Las Campanas Observatory are analyzed together with the Spitzer/IRAC images at 4.5 and 8.0 μm and the WISE images at 3.4, 4.6, 12, and 22 μm. No infrared counterparts of these pulsars are found, with flux upper limits of ∼μJy at near-infrared (λ < 10 μm) and ∼10-1000 μJy at mid-infrared wavelengths (λ > 10 μm). The results of this search are discussed in terms of the efficiency of converting the pulsar spin-down energy to thermal energy and X-ray heating of debris disks, with a comparison made of the two magnetars 4U 0142+61 and 1E 2259+586, which are suggested to harbor a debris disk.

  16. Disk radii and grain sizes in Herschel-resolved debris disks

    SciTech Connect

    Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.; Montesinos, Benjamin; Ábrahám, Péter; Moór, Attila; Bryden, Geoffrey; Eiroa, Carlos

    2014-09-01

    The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focus our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s {sub blow} that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s {sub blow} at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s {sub blow}, appear to decrease

  17. Hole-y Debris Disks, Batman! Where are the planets?

    NASA Astrophysics Data System (ADS)

    Bailey, V.; Meshkat, T.; Hinz, P.; Kenworthy, M.; Su, K. Y. L.

    2014-03-01

    Giant planets at wide separations are rare and direct imaging surveys are resource-intensive, so a cheaper marker for the presence of giant planets is desirable. One intriguing possibility is to use the effect of planets on their host stars' debris disks. Theoretical studies indicate giant planets can gravitationally carve sharp boundaries and gaps in their disks; this has been seen for HR 8799, β Pic, and tentatively for HD 95086 (Su et al. 2009, Lagrange et al. 2010, Moor et al. 2013). If more broadly demonstrated, this link could help guide target selection for next generation direct imaging surveys. Using Spitzer MIPS/IRS spectral energy distributions (SEDs), we identify several dozen systems with two-component and/or large inner cavity disks (aka Hole-y Debris Disks). With LBT/LBTI, VLT/NaCo, GeminiS/NICI, MMT/Clio and Magellan/Clio, we survey a subset these SEDselected targets (~20). In contrast to previous disk-selected planet surveys (e.g.: Janson et al. 2013, Wahhaj et al. 2013) we image primarily in the thermal IR (L'-band), where planet-to-star contrast is more favorable and background contaminants less numerous. Thus far, two of our survey targets host planet-mass companions, both of which were discovered in L'-band after they were unrecognized or undetectable in H-band. For each system in our sample set, we will investigate whether the known companions and/or companions below our detection threshold could be responsible for the disk architecture. Ultimately, we will increase our effective sample size by incorporating detection limits from surveys that have independently targeted some of our systems of interest. In this way we will refine the conditions under which disk SED-based target selection is likely to be useful and valid.

  18. Constraints on Planetesimal Collision Models in Debris Disks

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith A.; Wilner, David J.; Chandler, Claire; Ricci, Luca; Maddison, Sarah T.; Cranmer, Steven R.; Andrews, Sean M.; Hughes, A. Meredith; Steele, Amy

    2016-06-01

    Observations of debris disks offer a window into the physical and dynamical properties of planetesimals in extrasolar systems through the size distribution of dust grains. In particular, the millimeter spectral index of thermal dust emission encodes information on the grain size distribution. We have made new VLA observations of a sample of seven nearby debris disks at 9 mm, with 3\\prime\\prime resolution and ∼5 μJy beam‑1rms. We combine these with archival ATCA observations of eight additional debris disks observed at 7 mm, together with up-to-date observations of all disks at (sub)millimeter wavelengths from the literature, to place tight constraints on the millimeter spectral indices and thus grain size distributions. The analysis gives a weighted mean for the slope of the power-law grain size distribution, n(a)\\propto {a}-q, of < q> =3.36+/- 0.02, with a possible trend of decreasing q for later spectral type stars. We compare our results to a range of theoretical models of collisional cascades, from the standard self-similar, steady-state size distribution (q = 3.5) to solutions that incorporate more realistic physics such as alternative velocity distributions and material strengths, the possibility of a cutoff at small dust sizes from radiation pressure, and results from detailed dynamical calculations of specific disks. Such effects can lead to size distributions consistent with the data, and plausibly the observed scatter in spectral indices. For the AU Mic system, the VLA observations show clear evidence of a highly variable stellar emission component; this stellar activity obviates the need to invoke the presence of an asteroid belt to explain the previously reported compact millimeter source in this system.

  19. Debris Disks Among the Shell Stars: Insights from Spitzer

    NASA Technical Reports Server (NTRS)

    Roberge, Aki; Weinberger, Alycia; Teske, Johanna

    2008-01-01

    Shell stars are a class of early-type stars that show narrow absorption lines in their spectra that appear to arise from circumstellar class. This observationally defined class contains a variety of objects, including evolved stars and classical Be stars. However, some of the main sequence shell stars harbor debris disks and younger protoplanetary disks, though this aspect of the class has been largely overlooked. We surveyed a set of main sequence stars for cool dust using Spitzer MIPS and found four additional systems with IR excesses at both 24 and 70 microns. This indicates that the stars have both circumstellar gas and dust, and are likely to be edge-on debris disks. Our estimate of the disk fraction among nearby main sequence shell stars is 48% +/- 14%. We discuss here the nature of the shell stars and present preliminary results from ground-based optical spectra of the survey target stars. We will also outline our planned studies aimed at further characterization of the shell star class.

  20. Drag-o-llision Models of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2009-01-01

    An extrasolar planet sculpts the famous debris disk around Fomalhaut; probably many other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks---difficult processes to model simultaneously. The author describes new 3-D models of debris disk dynamics, Drag-o-llision models, that incorporate both collisions and resonant trapping of dust for the first time. The author also discusses the implications of these models for coronagraphic imaging with Gemini and other telescopes.

  1. The Geometry of Resonant Signatures in Debris Disks with Planets

    NASA Astrophysics Data System (ADS)

    Kuchner, M. J.; Holman, M. J.

    2002-09-01

    Using simple geometrical arguments, we paint an overview of the variety of resonant structures a single planet with moderate eccentricity (e < 0.6) can create in a dynamically cold, optically thin dust disk. This overview may serve as a key for interpreting images of perturbed debris disks and inferring the dynamical properties of the planets responsible for the perturbations. We compare the resonant structures found in the solar system with observations of planetary systems around Vega and other stars and we offer a new model for the asymmetries in the Epsilon Eridani disk. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) through the Michelson Fellowship program funded by NASA as an element of the Planet Finder Program.

  2. SOLAR SYSTEM ANALOGS AROUND IRAS-DISCOVERED DEBRIS DISKS

    SciTech Connect

    Chen, Christine H.; Sheehan, Patrick; Watson, Dan M.; Manoj, P.; Najita, Joan R.

    2009-08-20

    We have rereduced Spitzer IRS spectra and reanalyzed the spectral energy distributions (SEDs) of three nearby debris disks: {lambda} Boo, HD 139664, and HR 8799. We find that the thermal emission from these objects is well modeled using two single temperature black body components. For HR 8799 - with no silicate emission features despite a relatively hot inner dust component (T{sub gr} = 150 K) - we infer the presence of an asteroid belt interior to and a Kuiper Belt exterior to the recently discovered orbiting planets. For HD 139664, which has been imaged in scattered light, we infer the presence of strongly forward scattering grains, consistent with porous grains, if the cold, outer disk component generates both the observed scattered light and thermal emission. Finally, careful analysis of the {lambda} Boo SED suggests that this system possesses a central clearing, indicating that selective accretion of solids onto the central star does not occur from a dusty disk.

  3. IMAGING DISCOVERY OF THE DEBRIS DISK AROUND HIP 79977

    SciTech Connect

    Thalmann, C.; Dominik, C.; Janson, M.; Brandt, T. D.; Knapp, G. R.; Buenzli, E.; Wisniewski, J. P.; Carson, J.; McElwain, M. W.; Currie, T.; Moro-Martin, A.; Abe, L.; Brandner, W.; Feldt, M.; Goto, M.; Hashimoto, J.; and others

    2013-02-01

    We present Subaru/HiCIAO H-band high-contrast images of the debris disk around HIP 79977, whose presence was recently inferred from an infrared excess. Our images resolve the disk for the first time, allowing characterization of its shape, size, and dust grain properties. We use angular differential imaging (ADI) to reveal the disk geometry in unpolarized light out to a radius of {approx}2'', as well as polarized differential imaging to measure the degree of scattering polarization out to {approx}1.''5. In order to strike a favorable balance between suppression of the stellar halo and conservation of disk flux, we explore the application of principal component analysis to both ADI and reference star subtraction. This allows accurate forward modeling of the effects of data reduction on simulated disk images, and thus direct comparison with the imaged disk. The resulting best-fit values and well-fitting intervals for the model parameters are a surface brightness power-law slope of S{sub out} = -3.2[ - 3.6, -2.9], an inclination of i = 84 Degree-Sign [81 Degree-Sign , 86 Degree-Sign ], a high Henyey-Greenstein forward-scattering parameter of g = 0.45[0.35, 0.60], and a non-significant disk-star offset of u = 3.0[ - 1.5, 7.5] AU = 24[ - 13, 61] mas along the line of nodes. Furthermore, the tangential linear polarization along the disk rises from {approx}10% at 0.''5 to {approx}45% at 1.''5. These measurements paint a consistent picture of a disk of dust grains produced by collisional cascades and blown out to larger radii by stellar radiation pressure.

  4. Hubble Space Telescope Observations of the HD 202628 Debris Disk

    NASA Technical Reports Server (NTRS)

    Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Plavchan, Peter

    2012-01-01

    A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by approx.64deg from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along PA = 130deg. It has inner and outer radii (> 50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast ((Delta)r/r approx. = 0.4). The maximum visible radial extent is approx. 254 AU. With a mean surface brightnesses of V approx. = 24 mag arcsec.(sup -2), this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by approx.28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).

  5. HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE HD 202628 DEBRIS DISK

    SciTech Connect

    Krist, John E.; Bryden, Geoffrey; Stapelfeldt, Karl R.; Plavchan, Peter

    2012-08-15

    A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by {approx}64 Degree-Sign from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along P.A. = 130 Degree-Sign . It has inner and outer radii (>50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast ({Delta}r/r Almost-Equal-To 0.4). The maximum visible radial extent is {approx}254 AU. With mean surface brightness of V Almost-Equal-To 24 mag arcsec{sup -2}, this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by {approx}28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).

  6. Debris Disks in Aggregate: Using Hubble Space Telescope Coronagraphic Imagery to Understand the Scattered-Light Disk Detection Rate

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    2011-01-01

    Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.

  7. NEW DEBRIS DISK CANDIDATES AROUND 49 NEARBY STARS

    SciTech Connect

    Koerner, D. W.; Kim, S.; Trilling, D. E.; Larson, H.; Cotera, A.; Stapelfeldt, K. R.; Wahhaj, Z.; Fajardo-Acosta, S.; Padgett, D.; Backman, D.

    2010-02-10

    We present 49 new candidate debris disks that were detected around nearby stars with the Spitzer Space Telescope using the Multiband Imaging Photometer (MIPS) at 24 {mu}m (MIPS24) and 70 {mu}m (MIPS70). The survey sample was composed of stars within 25 pc of the Sun that were not previously observed by any other MIPS survey. Only stars with V < 9 were selected, corresponding to spectral types earlier than M0. MIPS24 integration times were chosen to detect the stellar photosphere at 10{sigma} levels or better. MIPS70 observations were designed to detect excess infrared emission from any star in the MIPS70 sample with a disk as luminous at that around {epsilon} Eridani. The resulting sample included over 436 nearby stars that were observed with both MIPS24 and MIPS70, plus an additional 198 observed only with MIPS24. Debris disk candidates were defined as targets where excess emission was detected at 3{sigma} levels or greater, and the ratio of observed flux density to expected photosphere emission was three standard deviations or more above the mean value for the sample. The detection rate implied by the resulting 29 MIPS24 candidates is 4.6%. A detection rate of 4.8% is implied by 21 MIPS70 candidates. The distribution of spectral types for stars identified as candidates resembles that of the general sample and yields strong evidence that debris-disk occurrence does not decrease for K dwarfs. Modeling of non-uniform sensitivity in the sample is required to interpret quantitative estimates of the overall detection frequency and will be presented in a future work.

  8. THE STRUCTURE OF THE {beta} LEONIS DEBRIS DISK

    SciTech Connect

    Stock, Nathan D.; Su, Kate Y. L.; Hinz, Phil M.; Rieke, George H.; Liu, Wilson; Marengo, Massimo; Stapelfeldt, Karl R.; Trilling, David E.

    2010-12-01

    We combine nulling interferometry at 10 {mu}m using the MMT and Keck Telescopes with spectroscopy, imaging, and photometry from 3 to 100 {mu}m using Spitzer to study the debris disk around {beta} Leo over a broad range of spatial scales, corresponding to radii of 0.1 to {approx}100 AU. We have also measured the close binary star o Leo with both Keck and MMT interferometers to verify our procedures with these instruments. The {beta} Leo debris system has a complex structure: (1) relatively little material within 1 AU; (2) an inner component with a color temperature of {approx}600 K, fitted by a dusty ring from about 2-3 AU; and (3) a second component with a color temperature of {approx}120 K fitted by a broad dusty emission zone extending from about {approx}5 AU to {approx}55 AU. Unlike many other A-type stars with debris disks, {beta} Leo lacks a dominant outer belt near 100 AU.

  9. THE DEBRIS DISK AROUND {gamma} DORADUS RESOLVED WITH HERSCHEL

    SciTech Connect

    Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Booth, Mark; Kavelaars, J. J.; Koning, Alice; Kennedy, Grant M.; Wyatt, Mark C.; Sibthorpe, Bruce; Lawler, Samantha M.; Qi, Chenruo; Su, Kate Y. L.; Rieke, George H.; Wilner, David J.; Greaves, Jane S.

    2013-01-01

    We present observations of the debris disk around {gamma} Doradus, an F1V star, from the Herschel Key Programme DEBRIS (Disc Emission via Bias-free Reconnaissance in the Infrared/Submillimetre). The disk is well resolved at 70, 100, and 160 {mu}m, resolved along its major axis at 250 {mu}m, detected but not resolved at 350 {mu}m, and confused with a background source at 500 {mu}m. It is one of our best resolved targets and we find it to have a radially broad dust distribution. The modeling of the resolved images cannot distinguish between two configurations: an arrangement of a warm inner ring at several AU (best fit 4 AU) and a cool outer belt extending from {approx}55 to 400 AU or an arrangement of two cool, narrow rings at {approx}70 AU and {approx}190 AU. This suggests that any configuration between these two is also possible. Both models have a total fractional luminosity of {approx}10{sup -5} and are consistent with the disk being aligned with the stellar equator. The inner edge of either possible configuration suggests that the most likely region to find planets in this system would be within {approx}55 AU of the star. A transient event is not needed to explain the warm dust's fractional luminosity.

  10. The dynamical structure of the HR8799 inner debris disk

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Contro de Godoy, Bruna; Horner, Jonathan; Marshall, Jonathan P.

    2014-11-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar System where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanet dynamics and debris disc-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disc remains unknown, leaving a question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using University of New South Wales's Katana supercomputing facility to follow the dynamical evolution of a model inner disc comprising 250,000 particles for a period of 100 million years. These simulations will (1) characterise the extent and structure of the inner disk in detail and (2) provide the first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet(s) in the inner system.

  11. The Vega Debris Disk: A Surprise from Spitzer

    NASA Astrophysics Data System (ADS)

    Su, K. Y. L.; Rieke, G. H.; Misselt, K. A.; Stansberry, J. A.; Moro-Martin, A.; Stapelfeldt, K. R.; Werner, M. W.; Trilling, D. E.; Bendo, G. J.; Gordon, K. D.; Hines, D. C.; Wyatt, M. C.; Holland, W. S.; Marengo, M.; Megeath, S. T.; Fazio, G. G.

    2005-07-01

    We present high spatial resolution mid- and far-infrared images of the Vega debris disk obtained with the Multiband Imaging Photometer for Spitzer (MIPS). The disk is well resolved, and its angular size is much larger than found previously. The radius of the disk is at least 43" (330 AU), 70" (543 AU), and 105" (815 AU) in extent at 24, 70, and 160 μm, respectively. The disk images are circular, smooth, and without clumpiness at all three wavelengths. The radial surface brightness profiles follow radial power laws of r-3 or r-4 and imply an inner boundary at a radius of 11''+/-2'' (86 AU). Assuming an amalgam of amorphous silicate and carbonaceous grains, the disk can be modeled as an axially symmetric and geometrically thin disk, viewed face-on, with the surface particle number density following an inverse radial power law. The disk radiometric properties are consistent with a range of models using grains of sizes ~1 to ~50 μm. The exact minimum and maximum grain size limits depend on the adopted grain composition. However, all of these models require an r-1 surface number density profile and a total mass of (3+/-1.5)×10-3M⊕ in grains. We find that a ring, containing grains larger than 180 μm and at radii of 86-200 AU from the star, can reproduce the observed 850 μm flux, while its emission does not violate the observed MIPS profiles. This ring could be associated with a population of larger asteroidal bodies analogous to our own Kuiper Belt. Cascades of collisions starting with encounters among these large bodies in the ring produce the small debris that is blown outward by radiation pressure to much larger distances, where we detect its thermal emission. The relatively short lifetime (<1000 yr) of these small grains and the observed total mass, ~3×10-3M⊕, set a lower limit on the dust production rate, ~1015 g s-1. This rate would require a very massive asteroidal reservoir for the dust to be produced in a steady state throughout Vega's life. Instead

  12. Does the Debris Disk around HD 32297 Contain Cometary Grains?

    NASA Astrophysics Data System (ADS)

    Rodigas, Timothy J.; Debes, John H.; Hinz, Philip M.; Mamajek, Eric E.; Pecaut, Mark J.; Currie, Thayne; Bailey, Vanessa; Defrere, Denis; De Rosa, Robert J.; Hill, John M.; Leisenring, Jarron; Schneider, Glenn; Skemer, Andrew J.; Skrutskie, Michael; Vaitheeswaran, Vidhya; Ward-Duong, Kimberly

    2014-03-01

    We present an adaptive optics imaging detection of the HD 32297 debris disk at L' (3.8 μm) obtained with the LBTI/LMIRcam infrared instrument at the Large Binocular Telescope. The disk is detected at signal-to-noise ratio per resolution element ~3-7.5 from ~0.''3 to 1.''1 (30-120 AU). The disk at L' is bowed, as was seen at shorter wavelengths. This likely indicates that the disk is not perfectly edge-on and contains highly forward-scattering grains. Interior to ~50 AU, the surface brightness at L' rises sharply on both sides of the disk, which was also previously seen at Ks band. This evidence together points to the disk containing a second inner component located at lsim50 AU. Comparing the color of the outer (50 disk at L' with archival Hubble Space Telescope/NICMOS images of the disk at 1-2 μm allows us to test the recently proposed cometary grains model of Donaldson et al. We find that the model fails to match this disk's surface brightness and spectrum simultaneously (reduced chi-square = 17.9). When we modify the density distribution of the model disk, we obtain a better overall fit (reduced chi-square = 2.87). The best fit to all of the data is a pure water ice model (reduced chi-square = 1.06), but additional resolved imaging at 3.1 μm is necessary to constrain how much (if any) water ice exists in the disk, which can then help refine the originally proposed cometary grains model. Based on observations made at the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: the University of Arizona on behalf of the Arizona University system; Istituto Nazionale di Astrosica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; the Ohio State University, and the Research Corporation, on behalf of the University of Notre Dame

  13. Fomalhaut's Debris Disk and Planet: Constraining the Mass of Formalhaut B from Disk Morphology

    NASA Technical Reports Server (NTRS)

    Chiang, E.; Kite, E.; Kalas, P.; Graham, J. R.; Clampin, M.

    2008-01-01

    Following the optical imaging of exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. If Fom b is the dominant perturber of the belt, then to produce the observed disk morphology it must have a mass M(sub pl) < 3M(sub J), an orbital semimajor axis a(sub pl) > 101.5AU, and an orbital eccentricity e(sub pl) = 0.11 - 0.13. These conclusions are independent of Fom b's photometry. To not disrupt the disk, a greater mass for Fom b demands a smaller orbit farther removed from the disk; thus, future astrometric measurement of Fom b's orbit, combined with our model of planet-disk interaction, can be used to determine the mass more precisely. The inner edge of the debris disk at a approximately equals 133AU lies at the periphery of Fom b's chaotic zone, and the mean disk eccentricity of e approximately equals 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom b. However, previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of approximately 100 Myr, and model them separately from their dust grain progeny; the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to approximately 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Fomalhaut b's nominal space velocity does not bear this out, but the astrometric uncertainties are difficult to quantify. Even if the apsidal misalignment proves real, our calculated upper mass limit of 3 M(sub J) still

  14. THE FREQUENCY OF DEBRIS DISKS AT WHITE DWARFS

    SciTech Connect

    Barber, Sara D.; Patterson, Adam J.; Kilic, Mukremin; Leggett, S. K.; Dufour, P.; Bloom, J. S.; Starr, D. L.

    2012-11-20

    We present near- and mid-infrared photometry and spectroscopy from PAIRITEL, IRTF, and Spitzer of a metallicity-unbiased sample of 117 cool, hydrogen-atmosphere white dwarfs (WDs) from the Palomar-Green survey and find five with excess radiation in the infrared, translating to a 4.3{sup +2.7} {sub -1.2}% frequency of debris disks. This is slightly higher than, but consistent with the results of previous surveys. Using an initial-final mass relation, we apply this result to the progenitor stars of our sample and conclude that 1-7 M {sub Sun} stars have at least a 4.3% chance of hosting planets; an indirect probe of the intermediate-mass regime eluding conventional exoplanetary detection methods. Alternatively, we interpret this result as a limit on accretion timescales as a fraction of WD cooling ages; WDs accrete debris from several generations of disks for {approx}10 Myr. The average total mass accreted by these stars ranges from that of 200 km asteroids to Ceres-sized objects, indicating that WDs accrete moons and dwarf planets as well as solar system asteroid analogs.

  15. DEBRIS DISKS OF MEMBERS OF THE BLANCO 1 OPEN CLUSTER

    SciTech Connect

    Stauffer, John R.; Noriega-Crespo, Alberto; Rebull, Luisa M.; James, David; Strom, Steven; Wolk, Scott; Carpenter, John M.; Barrado y Navascues, David; Backman, Dana; Cargile, P. A.

    2010-08-20

    We have used the Spitzer Space Telescope to obtain Multiband Imaging Photometer for Spitzer (MIPS) 24 {mu}m photometry for 37 members of the {approx}100 Myr old open cluster Blanco 1. For the brightest 25 of these stars (where we have 3{sigma} uncertainties less than 15%), we find significant mid-IR excesses for eight stars, corresponding to a debris disk detection frequency of about 32%. The stars with excesses include two A stars, four F dwarfs, and two G dwarfs. The most significant linkage between 24 {mu}m excess and any other stellar property for our Blanco 1 sample of stars is with binarity. Blanco 1 members that are photometric binaries show few or no detected 24 {mu}m excesses whereas a quarter of the apparently single Blanco 1 members do have excesses. We have examined the MIPS data for two other clusters of similar age to Blanco 1-NGC 2547 and the Pleiades. The AFGK photometric binary star members of both of these clusters also show a much lower frequency of 24 {mu}m excesses compared to stars that lie near the single-star main sequence. We provide a new determination of the relation between the V - K {sub s} color and K {sub s} - [24] color for main sequence photospheres based on Hyades members observed with MIPS. As a result of our analysis of the Hyades data, we identify three low mass Hyades members as candidates for having debris disks near the MIPS detection limit.

  16. Probing for Exoplanets Hiding in Dusty Debris Disks: Inner (<10 AU) Disk Imaging, Characterization, and Exploration

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn; HST GO 12228 Team

    2011-01-01

    We are obtaining HST/STIS observations of a well-selected sample of eleven circumstellar (CS) debris disks, all with HST pedigree, using PSF-subtracted multi-roll coronagraphic imaging. Our observations are probing the interior CS regions of these debris systems (inner working distances < approximately 8 AU for half the sample), corresponding to the giant planet and Kuiper belt regions within our own solar system. These images will enable us to: (a) directly inter-compare the architectures of these exoplanetary debris systems in the context of our own Solar System, (b) characterize the material in these regions at high spatial resolution and, (c) look for sub-structures within the disks that are sign posts of planetary formation and evolution; in particular, asymmetries and non-uniform debris structures signaling the presence of co-orbiting perturbing planets. All of our objects were previously observed at longer wavelengths (with lower spatial resolution and imaging efficacy) with NICMOS, but with an inner working angle comparable to STIS multi-roll coronagraphy. The combination of new optical and existing near-IR imaging will strongly constrain the dust properties enabling an assessment of grain processing and planetesimal populations. These results will directly inform upon the posited planet formation mechanisms that occur after the approximately 10 My epoch of gas depletion (a time in our solar system when giant planets were migrating and the terrestrial planets were forming) and directly test theoretical models of these processes. The outer reaches (only) of most of these systems were previously observed with a much larger ( 6x on average), spatially limiting, effective inner working angle of the ACS coronagraph and do not reveal the inner structures of these CS disks. Our investigation will uniquely probe into the interior regions of these systems for the first time with spatial resolution comparable to ACS and with augmenting NICMOS near-IR disk photometry

  17. The decay of debris disks around solar-type stars

    SciTech Connect

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Gáspár, Andras

    2014-04-10

    We present a Spitzer MIPS study of the decay of debris disk excesses at 24 and 70 μm for 255 stars of types F4-K2. We have used multiple tests, including consistency between chromospheric and X-ray activity and placement on the H-R diagram, to assign accurate stellar ages. Within this spectral type range, at 24 μm, 13.6% ± 2.8% of the stars younger than 1 Gyr have excesses at the 3σ level or more, whereas none of the older stars do, confirming previous work. At 70 μm, 22.5% ± 3.6% of the younger stars have excesses at ≥3σ significance, whereas only 4.7{sub −2.2}{sup +3.7}% of the older stars do. To characterize the far-infrared behavior of debris disks more robustly, we doubled the sample by including stars from the DEBRIS and DUNES surveys. For the F4-K4 stars in this combined sample, there is only a weak (statistically not significant) trend in the incidence of far-infrared excess with spectral type (detected fractions of 21.9{sub −4.3}{sup +4.8}%, late F; 16.5{sub −3.3}{sup +3.9}%, G; and 16.9{sub −5.0}{sup +6.3}%, early K). Taking this spectral type range together, there is a significant decline between 3 and 4.5 Gyr in the incidence of excesses, with fractional luminosities just under 10{sup –5}. There is an indication that the timescale for decay of infrared excesses varies roughly inversely with the fractional luminosity. This behavior is consistent with theoretical expectations for passive evolution. However, more excesses are detected around the oldest stars than are expected from passive evolution, suggesting that there is late-phase dynamical activity around these stars.

  18. Thirty years of beta Pic and debris disks studies

    NASA Astrophysics Data System (ADS)

    Lagrange, Anne-Marie; Boccaletti, Anthony

    2015-01-01

    In the last 30 years, our knowledge of planetary systems has considerably evolved, in particular thanks to the development of observational techniques and computer simulations for modeling. From the observational point of view, emblematic discoveries thirty years ago have opened a way to dedicated studies, among which the IRAS detections of IR excess associated to dust surrounding main-sequence stars. Shortly after these discoveries, the first image of a debris disk around the star beta Pictoris in 1984 was made, followed in the 90's by the indirect detection of extrasolar planets and, a decade later, by the direct imaging of young giant planets. Beta Pictoris is a ground-breaking object for the study of formation and evolution of planetary systems. It is a unique system in many regards, as it is made of dust, planetesimals, comets and at least one giant planet. Observations with various techniques (imaging, spectroscopy, interferometry) at multiple wavelengths (from the UV to radio waves) have allowed significant progress in the understanding of this system. Yet, many questions are still open, and more results are expected in the coming decade thanks to the next generation of instruments like for instance ALMA, JWST, SPHERE and many others. To celebrate the thirtieth anniversary of the first debris disk image, we propose to gather experts on the analysis of beta Pictoris and interested colleagues to review and discuss the observational knowledge on this archetypal system (including the latest results), as well as its current understanding and related open questions to be addressed in the next decade, such as the history of the disk and planet formation, dynamical evolution, etc. Similar, well-studied debris disks systems with significant amount of observational data that allow in-depth modeling will be also presented and discussed. Second, in a two-days dedicated workshop, we will gather to define an action plan for the typically 3-5 next years to achieve a full

  19. Formation of sharp eccentric rings in debris disks with gas but without planets.

    PubMed

    Lyra, W; Kuchner, M

    2013-07-11

    'Debris disks' around young stars (analogues of the Kuiper Belt in our Solar System) show a variety of non-trivial structures attributed to planetary perturbations and used to constrain the properties of those planets. However, these analyses have largely ignored the fact that some debris disks are found to contain small quantities of gas, a component that all such disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio of about unity, at which the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report linear and nonlinear modelling that shows that dust-gas interactions can produce some of the key patterns attributed to planets. We find a robust clumping instability that organizes the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The conclusion that such disks might contain planets is not necessarily required to explain these systems. PMID:23846656

  20. Formation of Sharp Eccentric Rings in Debris Disks with Gas but Without Planets

    NASA Technical Reports Server (NTRS)

    Lyra, W.; Kuchner, M.

    2013-01-01

    'Debris disks' around young stars (analogues of the Kuiper Belt in our Solar System) show a variety of non-trivial structures attributed to planetary perturbations and used to constrain the properties of those planets. However, these analyses have largely ignored the fact that some debris disks are found to contain small quantities of gas, a component that all such disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio of about unity, at which the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report linear and nonlinear modelling that shows that dust-gas interactions can produce some of the key patterns attributed to planets. We find a robust clumping instability that organizes the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The conclusion that such disks might contain planets is not necessarily required to explain these systems.

  1. Herschel detects oxygen in the β Pictoris debris disk

    NASA Astrophysics Data System (ADS)

    Brandeker, A.; Cataldi, G.; Olofsson, G.; Vandenbussche, B.; Acke, B.; Barlow, M. J.; Blommaert, J. A. D. L.; Cohen, M.; Dent, W. R. F.; Dominik, C.; Di Francesco, J.; Fridlund, M.; Gear, W. K.; Glauser, A. M.; Greaves, J. S.; Harvey, P. M.; Heras, A. M.; Hogerheijde, M. R.; Holland, W. S.; Huygen, R.; Ivison, R. J.; Leeks, S. J.; Lim, T. L.; Liseau, R.; Matthews, B. C.; Pantin, E.; Pilbratt, G. L.; Royer, P.; Sibthorpe, B.; Waelkens, C.; Walker, H. J.

    2016-06-01

    The young star β Pictoris is well known for its dusty debris disk produced through collisional grinding of planetesimals, kilometre-sized bodies in orbit around the star. In addition to dust, small amounts of gas are also known to orbit the star; this gas is likely the result of vaporisation of violently colliding dust grains. The disk is seen edge on and from previous absorption spectroscopy we know that the gas is very rich in carbon relative to other elements. The oxygen content has been more difficult to assess, however, with early estimates finding very little oxygen in the gas at a C/O ratio that is 20 × higher than the cosmic value. A C/O ratio that high is difficult to explain and would have far-reaching consequences for planet formation. Here we report on observations by the far-infrared space telescope Herschel, using PACS, of emission lines from ionised carbon and neutral oxygen. The detected emission from C+ is consistent withthat previously reported observed by the HIFI instrument on Herschel, while the emission from O is hard to explain without assuming a higher density region in the disk, perhaps in the shape of a clump or a dense torus required to sufficiently excite the O atoms. A possible scenario is that the C/O gas is produced by the same process responsible for the CO clump recently observed by the Atacama Large Millimeter/submillimeter Array in the disk and that the redistribution of the gas takes longer than previously assumed. A more detailed estimate of the C/O ratio and the mass of O will have to await better constraints on the C/O gas spatial distribution. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  2. MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: THE NUMERICAL METHOD

    SciTech Connect

    Gaspar, Andras; Psaltis, Dimitrios; Oezel, Feryal; Rieke, George H.; Cooney, Alan E-mail: dpsaltis@as.arizona.edu E-mail: grieke@as.arizona.edu

    2012-04-10

    We develop a new numerical algorithm to model collisional cascades in debris disks. Because of the large dynamical range in particle masses, we solve the integro-differential equations describing erosive and catastrophic collisions in a particle-in-a-box approach, while treating the orbital dynamics of the particles in an approximate fashion. We employ a new scheme for describing erosive (cratering) collisions that yields a continuous set of outcomes as a function of colliding masses. We demonstrate the stability and convergence characteristics of our algorithm and compare it with other treatments. We show that incorporating the effects of erosive collisions results in a decay of the particle distribution that is significantly faster than with purely catastrophic collisions.

  3. Predictions for shepherding planets in scattered light images of debris disks

    SciTech Connect

    Rodigas, Timothy J.; Hinz, Philip M.; Malhotra, Renu

    2014-01-01

    Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and an exterior disk of parent bodies and dust grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use our empirically derived equation as a guide for future direct imaging searches for planets in debris disk systems. In the fortuitous case of an imaged planet orbiting interior to an imaged disk, the planet's maximum mass can be estimated independent of atmospheric models.

  4. A Study on the Characteristics of the Structure of Vega's Debris Disk

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Ji, Jiang-hui

    2013-10-01

    The clumpy structure in the Vega's debris disk was reported at millimeter wavelengths previously, and attributed to the concentration of dust grains trapped in resonances with a potential high-eccentricity planet. However, current imaging at multi-wavelengths with higher sensitivity indicates that the Vega's debris disk has a smooth structure. But a planet orbiting Vega could not be neglected, and the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize the modi- fied MERCURY codes to numerically simulate the Vega system, which consists of a debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80 AU and 120 AU, respectively. The dust grains in the disk have the sizes from 10 μm to 100 μm, and the nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e = 0.6), the planet's semi- major axis cannot be larger than 60 AU, otherwise, an aggregation phenomenon will occur in the debris disk due to the existence of the postulated planet. In addition, the 2:1 mean motion resonances may play a significant role in forming the structure of debris disk.

  5. Asteroid Belts in Debris Disk Twins: Vega and Fomalhaut

    NASA Technical Reports Server (NTRS)

    Su, Kate Y. L.; Rieke, George H.; Malhortra, Renu; Stapelfeldt, Karl R.; Hughes, A. Meredith; Bonsor, Amy; Wilner, David J.; Balog, Zoltan; Watson, Dan M.; Werner, Michael W.; Misselt, Karl A.

    2013-01-01

    Vega and Fomalhaut are similar in terms of mass, ages, and global debris disk properties; therefore, they are often referred to as debris disk twins. We present Spitzer 10-35 micrometers spectroscopic data centered at both stars and identify warm, unresolved excess emission in the close vicinity of Vega for the first time. The properties of the warm excess in Vega are further characterized with ancillary photometry in the mid-infrared and resolved images in the far-infrared and submillimeter wavelengths. The Vega warm excess shares many similar properties with the one found around Fomalhaut. The emission shortward of approximately 30 micrometers from both warm components is well described as a blackbody emission of approximately 170 K. Interestingly, two other systems, Eri and HR 8799, also show such an unresolved warm dust using the same approach. These warm components may be analogous to the solar system s zodiacal dust cloud, but of far greater mass (fractional luminosity of approximately 10(exp-5) to 10(exp-6) compared to 10(exp-8) to 10(exp-7). The dust temperature and tentative detections in the submillimeter suggest that the warm excess arises from dust associated with a planetesimal ring located near the water-frost line and presumably created by processes occurring at similar locations in other debris systems as well. We also review the properties of the 2 micrometers hot excess around Vega and Fomalhaut, showing that the dust responsible for the hot excess is not spatially associated with the dust we detected in the warm belt.We suggest it may arise from hot nano grains trapped in the magnetic field of the star. Finally, the separation between the warm and cold belt is rather large with an orbital ratio greater than or approximately 10 in all four systems. In light of the current upper limits on the masses of planetary objects and the large gap, we discuss the possible implications for their underlying planetary architecture and suggest that multiple, low

  6. ASTEROID BELTS IN DEBRIS DISK TWINS: VEGA AND FOMALHAUT

    SciTech Connect

    Su, Kate Y. L.; Rieke, George H.; Misselt, Karl A.; Malhotra, Renu; Stapelfeldt, Karl R.; Hughes, A. Meredith; Bonsor, Amy; Balog, Zoltan; Watson, Dan M.; Werner, Michael W.

    2013-02-15

    Vega and Fomalhaut are similar in terms of mass, ages, and global debris disk properties; therefore, they are often referred to as 'debris disk twins'. We present Spitzer 10-35 {mu}m spectroscopic data centered at both stars and identify warm, unresolved excess emission in the close vicinity of Vega for the first time. The properties of the warm excess in Vega are further characterized with ancillary photometry in the mid-infrared and resolved images in the far-infrared and submillimeter wavelengths. The Vega warm excess shares many similar properties with the one found around Fomalhaut. The emission shortward of {approx}30 {mu}m from both warm components is well described as a blackbody emission of {approx}170 K. Interestingly, two other systems, {epsilon} Eri and HR 8799, also show such an unresolved warm dust using the same approach. These warm components may be analogous to the solar system's zodiacal dust cloud, but of far greater mass (fractional luminosity of {approx}10{sup -5} to 10{sup -6} compared to 10{sup -8} to 10{sup -7}). The dust temperature and tentative detections in the submillimeter suggest that the warm excess arises from dust associated with a planetesimal ring located near the water-frost line and presumably created by processes occurring at similar locations in other debris systems as well. We also review the properties of the 2 {mu}m hot excess around Vega and Fomalhaut, showing that the dust responsible for the hot excess is not spatially associated with the dust we detected in the warm belt. We suggest it may arise from hot nano grains trapped in the magnetic field of the star. Finally, the separation between the warm and cold belt is rather large with an orbital ratio {approx}>10 in all four systems. In light of the current upper limits on the masses of planetary objects and the large gap, we discuss the possible implications for their underlying planetary architecture and suggest that multiple, low-mass planets likely reside between the

  7. Debris Disks in Nearby Young Moving Groups in the ALMA Era

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Moór, A.

    2016-01-01

    Many members of nearby young moving groups exhibit infrared excess attributed to circumstellar debris dust, formed via erosion of planetesimals. With their proximity and well-dated ages, these groups are excellent laboratories for studying the early evolution of debris dust and of planetesimal belts. ALMA can spatially resolve the disk emission, revealing the location and extent of these belts, putting constraints on planetesimal evolution models, and allowing us to study planet-disk interactions. While the main trends of dust evolution in debris disks are well-known, there is almost no information on the evolution of gas. During the transition from protoplanetary to debris state, even the origin of gas is dubious. Here we review the exciting new results ALMA provided by observing young debris disks, and discuss possible future research directions.

  8. Probing for Exoplanets Hiding in Dusty Debris Disks: Inner {<10 AU} Disk Imaging, Characterization, and Exploration

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn

    2010-09-01

    We propose new visible-light observations of a well-selected sample of circumstellar {CS} debris disks, all with HST pedigree, using STIS PSF-subtracted multi-roll coronagraphic imaging. Our new observations will probe the interior CS regions of these debris systems {with inner working distances of < approximately 8 AU for half the stars in this sample}, corresponding to the giant planet and Kuiper belt regions within our own solar system. These new images will enable us to directly inter-compare the architectures of these exoplanetary debris systems in the context of our own Solar System. These observations will also permit us, for the first time, to characterize the material in these regions at high spatial resolution and to look for sub-structures within the disks that are the sign posts of planetary formation and evolution; in particular, asymmetries and non-uniform debris structures signal the presence of co-orbiting perturbing planets. Additionally, all of our objects have been observed previously at longer wavelengths {but much lower spatial resolution and imaging efficacy} with NICMOS, but with an inner working angle comparable to STIS multi-roll coronagraphy. The combination of new optical and existing near-IR imaging will strongly constrain the dust properties, thus enabling an assessment of grain processing and planetesimal populations. These results will directly inform upon the posited planet formation mechanisms that occur after the 10 My epoch of gas depletion, at a time in our solar system when giant planets were migrating and the terrestrial planets were forming, and directly test theoretical models of these processes. The outer reaches {only} of most of these systems were previously observed with a much larger { 6x on average}, spatially limiting, effective inner working angle of the ACS coronagraph. The previous ACS images are therefore completely inadequate to address our science goals of imaging the inner structures of these CS disks. Our

  9. Peering into Terrestrial Planet Formation: New Studies of Young Debris Disks

    NASA Astrophysics Data System (ADS)

    Donaldson, Jessica; Roberge, A.; Herschel GASPS Team

    2014-01-01

    Young debris disks are an excellent tool for studying last stages of terrestrial planet formation. During this stage, planetesimals in the disk might deliver volatiles such as water to the still-forming terrestrial planets. Though these planetesimals are undetectable, the dust in the disk provides clues to the location and composition of their parent bodies. I will discuss my work studying dust in young debris disks (10-30 Myrs-old) in the infrared and sub-millimeter with the Herschel Space Observatory as part of the Herschel GASPS team. We found that there is a lot of scatter in disk properties between disks of the same age, but there appears to be a trend between the stellar and disk temperatures. I will also discuss our detailed modeling of one well-studied debris disk, HD32297. Spectral energy distribution modeling indicates the presence of comet-like grains in the outer disk of HD32297, suggesting the presence of water rich planetesimals that can deliver water to terrestrial planets. HST STIS spectra of this disk show a red color that may be indicative of organic material. Together, these studies help paint a more complete picture of the last stages of terrestrial planet formation in young debris disks.

  10. A Unique Gas-Rich Debris Disk: Herschel Imaging and Spectroscopy of 49 Ceti

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2012-01-01

    Gas-poor debris disks represent a fundamentally different class of circumstellar disk than gas-rich protoplanetary disks. Their gas probably originates from the same source as the dust, i.e. planetesimal destruction, but the low gas densities make it difficult to detect. So far, Herschel has detected far-IR gas emission from only one or two debris disks, Beta Pictoris being one of them. Here we present Herschel GASPS observations of a well-known debris disk system, 49 Ceti. The dust disk is spatially resolved in thermal emission at 70 _m. Most interestingly, weak far-IR gas emission is detected. Preliminary modeling suggests that reconciling the sub-mm CO emission seen from this system with the far-IR gas detection and upper limits requires a low gas-to-dust ratio and possibly an unusual gas composition.

  11. Silica Debris Disk Evidence for Giant Planet Forming Impacts

    NASA Astrophysics Data System (ADS)

    Lisse, C.

    2014-04-01

    Giant impacts are major formation events in the history of our solar system. The final assembly of the planets, as we understand it, had to include massive fast collision events as the planets grew to objects with large escape velocities or in regions of high Keplerian velocities (Chambers 2004; Kenyon & Bromley 2004a,b, 2006; Fegley & Schaefer 2005). These massive impact events should create large amounts of glassy silica material derived from the rapid melting, vaporization, and refreezing of normal silicate rich primitive rocky material. We report here the detection of 4 bright silica-rich debris disks in the Spitzer IRS spectral archive, and the possible identification of 7 others. The stellar types of the system primaries span from A5V to G0V, their ages are 10 - 100 Myr, and the dust is warm, 280 - 480 K, and is located between 1.5 and 6 AU, well inside the systems' terrestrial planet regions. The minimum amount of detected 0.1 - 20 dust mass ranges from 10^21 - 10^23 kg; assuming < 10% dust formation efficiency (Benz 2009, 2011) this implies collisions involving impactors massing at least 10^22 - 10^24 kg, i.e. from Moon to Earth mass. We find possible trends in the mineralogy of the silica, with predominantly amorphous silica found in the 2 younger systems, and crystalline silica in the older systems. We speculate this is due higher velocity impacts found in younger, hotter systems, coupled with the effects of energetic photon annealing of small amorphous silica grains. All of these measures are consistent with the creation of silica rich rubble, or construction debris, during the terrestrial planet formation era of giant impacts.

  12. The Epsilon Eridani Debris Disk Resolved by Millimeter Interferometry

    NASA Astrophysics Data System (ADS)

    Wilner, David J.; MacGregor, Meredith A.; Andrews, Sean M.; Jean-Francois, Lestrade; Tahli Maddison, Sarah

    2016-01-01

    At a distance of only 3.22 pc, epsilon Eridani hosts the closest debris disk to the Sun. We present the first millimeter interferometric observations of this system, using the Submillimeter Array (SMA) at 1.3 mm and the Australia Telescope Compact Array (ATCA) at 7 mm, reaching 4 arcsec (13 AU) resolution. These observations reveal two distinct emission components: (1) the well-known outer dust belt, which is resolved in the radial direction, and (2) a compact source coincident with the position of the star. Model-fitting the visibilities constrains the basic properties of these components. The outer belt is located at 64 +/- 3 AU with fractional width 0.3, wider than the classical Kuiper Belt. This belt shows no significant azimuthal structure, or stellocentric offset, that might result from the presence of unseen giant planets on wide orbits in the system. The flux density of the unresolved central component exceeds predictions for thestellar photosphere; this excess may arise from a stellar chromosphere.

  13. Coronagraphic Imaging of Debris Disks from a High-Altitude Balloon Platform

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.; Traub, Wesley A.; Trauger, John T.; Bryden, Geoffrey; Krist, John; Stuchlik, David W.; Lillie, Charles F.

    2012-01-01

    Debris disks are rings of micron-size dust orbiting in the outer regions of planetary systems. Asteroid and comet collisions are the probable sources of the dust. Radiation pressure and Poynting-Robertson drag. Planets shepherd and sculpt the dust into a ring. The dust ring is bright enough to be imaged, brighter than the planets themselves. So debris disk images are our connection to as-yet unseen planets, comets, and asteroids.

  14. Debris Disks in the Scorpius–Centaurus OB Association Resolved by ALMA

    NASA Astrophysics Data System (ADS)

    Lieman-Sifry, Jesse; Hughes, A. Meredith; Carpenter, John M.; Gorti, Uma; Hales, Antonio; Flaherty, Kevin M.

    2016-09-01

    We present a CO(2-1) and 1240 μm continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.″5–1″ with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ∼10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3σ) CO detections. Twenty disks were detected in the continuum at the >3σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independent analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.

  15. Debris Disks in the Scorpius–Centaurus OB Association Resolved by ALMA

    NASA Astrophysics Data System (ADS)

    Lieman-Sifry, Jesse; Hughes, A. Meredith; Carpenter, John M.; Gorti, Uma; Hales, Antonio; Flaherty, Kevin M.

    2016-09-01

    We present a CO(2-1) and 1240 μm continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.″5–1″ with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ˜10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3σ) CO detections. Twenty disks were detected in the continuum at the >3σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independent analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.

  16. OT2_amoor_4: A census of debris disks in nearby young moving groups with Herschel.

    NASA Astrophysics Data System (ADS)

    Moór, A.

    2011-09-01

    Nearly all young stars harbour circumstellar disks, that serve as the reservoir for mass accretion onto the star, and later become the birthplace of planetary systems. After the disappearance of the gas component from the disk a dusty debris disk is formed that is believed to mark the location of the planetesimal belt as well. For outlining the evolution of such debris disks traditionally open clusters and field stars were studied, however we argue that the recently discovered young moving groups are more suitable objects for such analyses, due to their proximity and good coverage of the first 50 Myr period of the planetary system evolution. In this proposal we request 70/160 um Herschel/PACS photometric observations for so-far unobserved moving group members. These observations will provide a complete coverage of all known members within 80 pc of five nearby young moving groups (beta Pic Moving Group, Tucana-Horologium, Carina, Columba, and Argus), in the A to K spectral range. Based on the new observations we will identify new debris disks, characterize the disk population within individual moving groups, and study disk evolution by comparing the groups of different ages. The results will be used to verify predictions of the self-stirring model of the evolution of planetesimal disks. We will also compare the properties of debris disks in groups of the same age, looking for additional 'environmental' parameters that affect disk structure over a whole moving group. Our study will be a significant contribution to the census of debris disks in young moving groups, increasing the number of observed sources by a factor of 1.5. Since Spitzer could perform only a limited census and the so-far approved Herschel programs added very few additional moving group obervations, our programme is expected to have a high legacy value.

  17. Coronagraphic Imaging of Debris Disks from a High Altitude Balloon Platform

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen; Traub, Wesley; Bryden, Geoffrey; Brugarolas, Paul; Chen, Pin; Guyon, Olivier; Hillenbrand, Lynne; Kasdin, Jeremy; Krist, John; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Roberts, Lewis C. Jr; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2012-01-01

    Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the formation and evolution of extrasolar planetary systems. With multi-color images of a significant number of disks, we can probe important questions: can we learn about planetary system evolution; what materials are the disks made of; and can they reveal the presence of planets? Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images measured by Herschel. The brightest, most extended disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densities as low as the disk associated with the asteroid belt and Edgeworth-Kuiper belt in our own Solar System. Direct imaging of disks is a major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology, mitigating the technical risks of a space-based coronagrap, and performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper we present a balloon-borne telescope experiment based on the Zodiac II design that would undertake compelling studies of a sample of debris disks.

  18. Coronagraphic Imaging of Debris Disks from a High Altitude Balloon Platform

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen; Traub, Wesley; Bryden, Geoffrey; Brugarolas, Paul; Chen, Pin; Guyon, Olivier; Hillenbrand, Lynne; Krist, John; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Roberts, Lewis C., Jr.; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2012-01-01

    Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the formation and evolution of extrasolar planetary systems. With multi-color images of a significant number of disks, we can probe important questions: can we learn about planetary system evolution; what materials are the disks made of; and can they reveal the presence of planets? Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images measaured by Herschel. The brightest, most extended disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densities as low as the disk associated with the asteroid belt and Edgeworth-Kuiper belt in our own Solar System. Direct imaging of disks is major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology, mitigating the technical risks of a space-based coronagraph, and performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper we present a balloon-borne telescope concept based on the Zodiac II design that could undertake compelling studies of a sample of debris disks.

  19. An Inventory of Gas in a Debris Disk: Far-UV Spectroscopy of 49 Ceti

    NASA Astrophysics Data System (ADS)

    Roberge, Aki

    2012-10-01

    Debris disks stand between gas-rich protoplanetary disks and mature planetary systems, shedding light on the late stages of planetary system formation. Their dust component has been extensively studied, yet has provided little information about disk chemical composition. More information can be provided by their gas content, but astonishingly little is known about it. Only one debris disk has a fairly complete inventory of its gas, which is surprisingly carbon-rich {Beta Pictoris; Roberge et al. 2006}. Basic questions remain unanswered. What are the typical gas-to-dust mass ratios in debris disks? What is the chemical composition of debris gas and its parent material? The answers to these questions have profound implications for terrestrial planet assembly and the origins of planetary atmospheres.Most detections of debris gas were achieved with line-of-sight UV/optical absorption spectroscopy of edge-on disks, using the central star as the background source. This technique is far more sensitive to small amounts of gas than current emission line studies. The far-UV bandpass is particularly important, since strong transitions of abundant atomic, ionic, and molecular species lie there. We propose extending our intriguing studies of the Beta Pic gas with STIS far-UV spectroscopy of a highly promising debris disk system, 49 Ceti. This well-known disk is edge-on and contains CO gas {e.g. Hughes et al. 2008}. We plan to measure column densities of the most important gas species {CI, CII, OI, CO, SiII, and FeII}, find the relative elemental gas abundances, and determine the total gas mass using a powerful gas disk modeling code {ProDiMo; Woitke, Kamp, & Thi 2009}.

  20. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS

    SciTech Connect

    Chen, Christine H.; Mittal, Tushar; Kuchner, Marc; Forrest, William J.; Watson, Dan M.; Lisse, Carey M.; Manoj, P.; Sargent, Benjamin A.

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-described using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.

  1. Gas in Debris Disks and the Volatiles of Terrestrial Planet Formation

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2010-01-01

    Debris disks are a kind of protoplanetary disk that likely corresponds to the epoch of terrestrial planet and outer planet formation. Previously pictured to be gas-free, some debris disks are now revealing gas components, sometimes with strikingly non-solar abundance patterns. Understanding the nature and distribution of this gas may eventually help us understand the origin of volatiles on the Earth, the carbon depletion of the asteroids, and even the origin of life. I'll describe what we know about these systems observationally, some of the leading hypotheses about the sources and sinks of the gas, and how these new astronomical discoveries may bear on solar-system science.

  2. Gas and Dustin Debris Disks: Clues to the Late Stages of Planet Formation

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2010-01-01

    The basic character of debris disks was established soon after their discovery in the mid- 1980's. These disks around nearby main sequence stars are composed of material (mostly dust) produced by collisions and/or evaporation of extrasolar asteroids and comets. However, fundamental observational questions about debris disks remain unanswered. How much material do debris disks typically contain and how does it evolve with time? What is the composition of their dust and gas? Are planets present or forming in the disks? Answers to these questions will provide insights into the late-stages of planetary system formation and the origins of terrestrial planet atmospheres. In this talk, I will explain our current understanding of the place of debris disks in the planet formation process. Progress toward addressing the questions given above will be discussed, with emphasis on recent studies of the small but important gas component. Finally, I will outline the implications of debris dust for future efforts to directly image and characterize extrasolar terrestrial planets.

  3. Gas and Dust in Debris Disks: Clues to the Late Stages of Planet Formation

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2012-01-01

    The basic character of debris disks was established soon after their discovery in the mid- 1980's. These disks around nearby main sequence stars are composed of material (mostly dust) produced by collisions and/or evaporation of extrasolar asteroids and comets. However, fundamental observational questions about debris disks remain unanswered. How much material do debris disks typically contain and how does it evolve with time? What is the composition of their dust and gas? Are planets present or forming in the disks? Answers to these questions will provide insights into the late stages of planetary system formation and the origins of terrestrial planet atmospheres. In this talk, I will explain our current understanding of the place of debris disks in the planet formation process. Progress toward addressing the questions given above will be discussed, with emphasis on recent studies of the small but important gas component. Finally, I will outline the implications of debris dust for future efforts to directly image and characterize extrasolar terrestrial planets.

  4. What Children Tell Us about Their Parents: From Visible Dust to Invisible Planetesimals in Debris Disks

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian; Krivov, A. V.; Loehne, T.; Mutschke, H.

    2008-09-01

    Various small body families in the solar system, together with dust they produce through mutual collisions and cometary activity, exemplify a non-planetary component of a planetary system, usually referred to as a "debris disk". Debris disks have been found to be a common phenomenon for main-sequence stars and, similar to the solar system, are believed to comprise planetesimal populations that have accreted at early epochs and survived possible planet formation. However, in contrast to the solar system, observations of extrasolar debris disks only show their dusty portion, whereas the dust-producing planetesimals remain invisible. We show how collisional models of debris disks can be used to "climb up" the ladder of the collisional cascade, from dust towards parent bodies, representing the main mass reservoir of the disks. Applying our approach to five sun-like stars known to harbor dust, we find that the observed excess emission in far-IR to sub-mm is compatible with debris disks collisionally sustained by "large Kuiper belts" of 0.2-50 earth masses (in the bodies up to 100 km in size) with radii of 100-200 AU, larger than thought before. This research has been funded by the Deutsche Forschungsgemeinschaft (DFG), projects Kr 2164/5-1 and Mu 1164/6-1, by the Deutscher Akademischer Austauschdienst (DAAD), project D/0707543, and by the International Space Science Institute (Bern).

  5. Discovery of an Edge-on Debris Disk with a Dust Ring and an Outer Disk Wing-tilt Asymmetry

    NASA Astrophysics Data System (ADS)

    Kasper, Markus; Apai, Dániel; Wagner, Kevin; Robberto, Massimo

    2015-10-01

    Using Very Large Telescope/SPHERE near-infrared dual-band imaging and integral field spectroscopy, we discovered an edge-on debris disk around the 17 Myr old A-type member of the Scorpius-Centaurus OB association HD 110058. The edge-on disk can be traced to about 0.″6 or 65 AU projected separation. In its northern and southern wings, the disk shows at all wavelengths two prominent, bright, and symmetrically placed knots at 0.″3 or 32 AU from the star. We interpret these knots as a ring of planetesimals whose collisions may produce most of the dust observed in the disk. We find no evidence for a bow in the disk, but we identify a pair of symmetric, hooklike features in both wings. Based on similar features in the Beta Pictoris disk, we propose that this wing-tilt asymmetry traces either an outer planetesimal belt that is inclined with respect to the disk midplane or radiation-pressure-driven dust blown out from a yet unseen inner belt that is inclined with respect to the disk midplane. The misaligned inner or outer disk may be a result of interaction with a yet unseen planet. Overall, the disk geometry resembles the nearby disk around Beta Pictoris, albeit seen at smaller radial scales.

  6. Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties

    NASA Astrophysics Data System (ADS)

    Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.

    2012-05-01

    We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of

  7. The Detectability of Exo-Earths and Super-Earths via Resonant Signatures in Exozodiacal Clouds

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Kuchner, Marc

    2008-01-01

    Directly imaging extrasolar terrestrial planets necessarily means contending with the astrophysical noise of exozodiacal dust and the resonant structures created by these planets in exozodiacal clouds. Using a custom tailored hybrid symplectic integrator we have constructed 120 models of resonant structures created by exo-Earths and super-Earths on circular orbits interacting with collisionless steady-state dust clouds around a Sun-like star. Our models include enough particles to overcome the limitations of previous simulations that were often dominated by a handful of long-lived particles, allowing us to quantitatively study the contrast of the resulting ring structures. We found that in the case of a planet on a circular orbit, for a given star and dust source distribution, the morphology and contrast of the resonant structures depend on only two parameters: planet mass and (square root)ap/Beta, where ap is the planet's semi-major axis and Beta is the ratio of radiation pressure force to gravitational force on a grain. We constructed multiple-grain-size models of 25,000 particles each and showed that in a collisionless cloud, a Dohnanyi crushing law yields a resonant ring whose optical depth is dominated by the largest grains in the distribution, not the smallest. We used these models to estimate the mass of the lowest-mass planet that can be detected through observations of a resonant ring for a variety of assumptions about the dust cloud and the planet's orbit. Our simulations suggest that planets with mass as small as a few times Mars' mass may produce detectable signatures in debris disks at ap greater than or approximately equal to 10 AU.

  8. The Contribution of Small Body Disruptions to Debris Disks

    NASA Astrophysics Data System (ADS)

    Espy Kehoe, Ashley J.; Kehoe, Thomas James Joseph; Colwell, Joshua E.

    2016-01-01

    We have performed detailed dynamical modeling of the structure of a faint dust band observed in coadded InfraRed Astronomical Satellite data at an ecliptic latitude of 17° that convincingly demonstrates that it is the result of a relatively recent (significantly less than 1 Ma) disruption of an asteroid and is still in the process of forming. We show that young dust bands retain information on the size distribution and cross-sectional area of dust released in the original asteroid disruption, before it is lost to orbital and collisional decay. We find that the Emilkowalski cluster is the source of this partial band and that the dust released in the disruption would correspond to a regolith layer ˜3 m deep on the ˜10 km diameter source body's surface. The dust in this band is described by a cumulative size-distribution inverse power-law index with a lower bound of 2.1 (implying domination of cross- sectional area by small particles) for dust particles with diameters ranging from a few μm up to a few cm. The coadded observations show that the thermal emission of the dust band structure is dominated by large (mm-cm size) particles. We find that dust particle ejection velocities need to be a few times the escape velocity of the Emilkowalski cluster source body to provide a good fit to the inclination dispersion of the observations. We discuss the implications that such a significant release of material, during the disruption of an asteroid, has for the temporal evolution of the structure, composition, and magnitude of the zodiacal cloud. Using the highly sensitive Wide-field Infrared Survey Explorer (WISE) dataset, we can now search for more of these faint signatures of very recent small body disruptions. Starting with the constraints on the amount and size distribution of the dust released in an asteroid catastrophic disruption, we can extrapolate to determine how small body disruptions would appear in extra solar debris disk systems.

  9. NEAR-ULTRAVIOLET AND OPTICAL EFFECTS OF DEBRIS DISKS AROUND WHITE DWARFS

    SciTech Connect

    Zabot, A.; Kanaan, A.; Cid Fernandes, R.

    2009-10-20

    Studies of debris disks around white dwarfs (WDs) have focused on infrared wavelengths because debris disks are much colder than the star and are believed to contribute to the spectrum only at longer wavelengths. Nevertheless, these disks are made of dust grains that absorb and scatter near-UV and optical photons from the WD, leaving a fingerprint that can be used to further constrain disk properties. Our goal is to show that it is possible to detect near-UV and optical effects of debris disks in the star + disk integrated spectrum. We make theoretical calculations and discuss the necessary observational conditions to detect the near-UV and optical effects. We show how these effects can be used to infer the disk mass, composition, optical depth, and inclination relative to the line of sight. If the IR excess is due to a disk, then near-UV and optical effects should be observed in only some systems, not all of them, while for dust shells the effects should be observed in all systems.

  10. Direct Imaging of an Asymmetric Debris Disk in the HD 106906 Planetary System

    NASA Astrophysics Data System (ADS)

    Kalas, Paul G.; Rajan, Abhijith; Wang, Jason J.; Millar-Blanchaer, Maxwell A.; Duchene, Gaspard; Chen, Christine; Fitzgerald, Michael P.; Dong, Ruobing; Graham, James R.; Patience, Jennifer; Macintosh, Bruce; Murray-Clay, Ruth; Matthews, Brenda; Rameau, Julien; Marois, Christian; Chilcote, Jeffrey; De Rosa, Robert J.; Doyon, René; Draper, Zachary H.; Lawler, Samantha; Ammons, S. Mark; Arriaga, Pauline; Bulger, Joanna; Cotten, Tara; Follette, Katherine B.; Goodsell, Stephen; Greenbaum, Alexandra; Hibon, Pascale; Hinkley, Sasha; Hung, Li-Wei; Ingraham, Patrick; Konapacky, Quinn; Lafreniere, David; Larkin, James E.; Long, Douglas; Maire, Jérôme; Marchis, Franck; Metchev, Stan; Morzinski, Katie M.; Nielsen, Eric L.; Oppenheimer, Rebecca; Perrin, Marshall D.; Pueyo, Laurent; Rantakyrö, Fredrik T.; Ruffio, Jean-Baptiste; Saddlemyer, Leslie; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Soummer, Rémi; Song, Inseok; Thomas, Sandrine; Vasisht, Gautam; Ward-Duong, Kimberly; Wiktorowicz, Sloane J.; Wolff, Schuyler G.

    2015-11-01

    We present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco-Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ˜50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the “needle” morphology seen for the HD 15115 debris disk. The planet candidate is oriented ˜21° away from the position angle of the primary’s debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary’s disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.

  11. SMACK: A New Algorithm for Modeling Collisions and Dynamics of Planetesimals in Debris Disks

    NASA Technical Reports Server (NTRS)

    Nesvold, Erika Rose; Kuchner, Marc J.; Rein, Hanno; Pan, Margaret

    2013-01-01

    We present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. We show that SMACK is stable to numerical viscosity and numerical heating over 10(exp 7) yr, and that it can reproduce analytic models of disk evolution. We use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit. Differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring.

  12. SMACK: A NEW ALGORITHM FOR MODELING COLLISIONS AND DYNAMICS OF PLANETESIMALS IN DEBRIS DISKS

    SciTech Connect

    Nesvold, Erika R.; Kuchner, Marc J.; Pan, Margaret; Rein, Hanno E-mail: Marc.Kuchner@nasa.gov E-mail: rein@ias.edu

    2013-11-10

    We present the Superparticle-Method/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in three dimensions, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. We show that SMACK is stable to numerical viscosity and numerical heating over 10{sup 7} yr and that it can reproduce analytic models of disk evolution. We use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit. Differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring.

  13. Warm Debris Disks Produced by Giant Impacts during Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Genda, H.; Kobayashi, H.; Kokubo, E.

    2015-09-01

    In our solar system, Mars-sized protoplanets frequently collided with each other during the last stage of terrestrial planet formation, called the giant impact stage. Giant impacts eject a large amount of material from the colliding protoplanets into the terrestrial planet region, which may form debris disks with observable infrared excesses. Indeed, tens of warm debris disks around young solar-type stars have been observed. Here we quantitatively estimate the total mass of ejected materials during the giant impact stages. We found that ∼0.4 times the Earth’s mass is ejected in total throughout the giant impact stage. Ejected materials are ground down by collisional cascade until micron-sized grains are blown out by radiation pressure. The depletion timescale of these ejected materials is determined primarily by the mass of the largest body among them. We conducted high-resolution simulations of giant impacts to accurately obtain the mass of the largest ejected body. We then calculated the evolution of the debris disks produced by a series of giant impacts and depleted by collisional cascades to obtain the infrared excess evolution of the debris disks. We found that the infrared excess is almost always higher than the stellar infrared flux throughout the giant impact stage (∼100 Myr) and is sometimes ∼10 times higher immediately after a giant impact. Therefore, giant impact stages would explain the infrared excess from most observed warm debris disks. The observed fraction of stars with warm debris disks indicates that the formation probability of our solar-system-like terrestrial planets is approximately 10%.

  14. METAL ACCRETION ONTO WHITE DWARFS CAUSED BY POYNTING-ROBERTSON DRAG ON THEIR DEBRIS DISKS

    SciTech Connect

    Rafikov, Roman R.

    2011-05-01

    Recent discoveries of compact (sizes {approx}debris disks around more than a dozen metal-rich white dwarfs (WDs) suggest that pollution of these stars with metals may be caused by accretion of high-Z material from the disk. But the mechanism responsible for efficient transfer of mass from a particulate disk to the WD atmosphere has not yet been identified. Here we demonstrate that radiation of the WD can effectively drive accretion of matter through the disk toward the sublimation radius (located at several tens of WD radii), where particles evaporate, feeding a disk of metal gas accreting onto the WD. We show that, contrary to some previous claims, Poynting-Robertson (PR) drag on the debris disk is effective at providing metal accretion rate M-dot{sub PR}{approx}10{sup 8} g s{sup -1} and higher, scaling quadratically with WD effective temperature. We compare our results with observations and show that, as expected, no WD hosting a particulate debris disk shows evidence of metal accretion rate below that produced by the PR drag. Existence of WDs accreting metals at rates significantly higher than M-dot{sub PR} suggests that another mechanism in addition to the PR drag drives accretion of high-Z elements in these systems.

  15. THE SEEDS DIRECT IMAGING SURVEY FOR PLANETS AND SCATTERED DUST EMISSION IN DEBRIS DISK SYSTEMS

    SciTech Connect

    Janson, Markus; Brandt, Timothy D.; Moro-Martin, Amaya; Usuda, Tomonori; Kudo, Tomoyuki; Egner, Sebastian; Thalmann, Christian; Carson, Joseph C.; Goto, Miwa; Currie, Thayne; McElwain, M. W.; Itoh, Yoichi; Fukagawa, Misato; Crepp, Justin; Kuzuhara, Masayuki; Hashimoto, Jun; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Feldt, Markus; and others

    2013-08-10

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris-disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here, we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that {beta} Pic b-like planets ({approx}10 M{sub jup} planets around G-A-type stars) near the gap edges are less frequent than 15%-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than {beta} Pic b.

  16. The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems

    NASA Technical Reports Server (NTRS)

    Janson, Markus; Brandt, Timothy; Moro-Martin, Amaya; Usuda, Tomonori; Thalmann, Christian; Carson, Joseph C.; Goto, Miwa; Currie, Thayne; McElwain, M. W.; Itoh, Yoichi; Fukagawa, Misato; Crepp, Justin; Kuzuhara, Masayuki; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Egner, Sebastian; Fedlt, Markus; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiro; Hayashi, Saeko

    2013-01-01

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that beta Pic b-like planets (approximately 10M(sub jup) planets around G-A-type stars) near the gap edges are less frequent than 15-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than beta Pic b.

  17. Azimuthal asymmetries in the debris disk around HD 61005. A massive collision of planetesimals?

    NASA Astrophysics Data System (ADS)

    Olofsson, J.; Samland, M.; Avenhaus, H.; Caceres, C.; Henning, Th.; Moór, A.; Milli, J.; Canovas, H.; Quanz, S. P.; Schreiber, M. R.; Augereau, J.-C.; Bayo, A.; Bazzon, A.; Beuzit, J.-L.; Boccaletti, A.; Buenzli, E.; Casassus, S.; Chauvin, G.; Dominik, C.; Desidera, S.; Feldt, M.; Gratton, R.; Janson, M.; Lagrange, A.-M.; Langlois, M.; Lannier, J.; Maire, A.-L.; Mesa, D.; Pinte, C.; Rouan, D.; Salter, G.; Thalmann, C.; Vigan, A.

    2016-06-01

    Context. Debris disks offer valuable insights into the latest stages of circumstellar disk evolution, and can possibly help us to trace the outcomes of planetary formation processes. In the age range 10 to 100 Myr, most of the gas is expected to have been removed from the system, giant planets (if any) must have already been formed, and the formation of terrestrial planets may be on-going. Pluto-sized planetesimals, and their debris released in a collisional cascade, are under their mutual gravitational influence, which may result into non-axisymmetric structures in the debris disk. Aims: High angular resolution observations are required to investigate these effects and constrain the dynamical evolution of debris disks. Furthermore, multi-wavelength observations can provide information about the dust dynamics by probing different grain sizes. Methods: Here we present new VLT/SPHERE and ALMA observations of the debris disk around the 40 Myr-old solar-type star HD 61005. We resolve the disk at unprecedented resolution both in the near-infrared (in scattered and polarized light) and at millimeter wavelengths. We perform a detailed modeling of these observations, including the spectral energy distribution. Results: Thanks to the new observations, we propose a solution for both the radial and azimuthal distribution of the dust grains in the debris disk. We find that the disk has a moderate eccentricity (e ~ 0.1) and that the dust density is two times larger at the pericenter compared to the apocenter. Conclusions: With no giant planets detected in our observations, we investigate alternative explanations besides planet-disk interactions to interpret the inferred disk morphology. We postulate that the morphology of the disk could be the consequence of a massive collision between ~1000 km-sized bodies at ~61 au. If this interpretation holds, it would put stringent constraints on the formation of massive planetesimals at large distances from the star. Based on observations

  18. A debris disk around an isolated young neutron star.

    PubMed

    Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L

    2006-04-01

    Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars. PMID:16598251

  19. The Herschel cold debris disks: Confusion with the extragalactic background at 160 μm

    SciTech Connect

    Gáspár, András; Rieke, George H.

    2014-03-20

    The Herschel 'DUst around NEarby Stars' (DUNES) survey has found a number of debris disk candidates that are apparently very cold, with temperatures near 22 K. It has proven difficult to fit their spectral energy distributions with conventional models for debris disks. Given this issue, we carefully examine the alternative explanation that the detections arise from confusion with infrared cirrus and/or background galaxies that are not physically associated with the foreground stars. We find that such an explanation is consistent with all of these detections.

  20. Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Merin, Bruno; Ribas, Alvaro; Bouy, Herve; Bryden, Geoffrey; Stapelfeldt, Karl R.; Padgett, Deborah

    2015-01-01

    Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in beta Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around eta Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission.

  1. SEARCHING FOR PLANETS IN HOLEY DEBRIS DISKS WITH THE APODIZING PHASE PLATE

    SciTech Connect

    Meshkat, Tiffany; Kenworthy, Matthew A.; Bailey, Vanessa P.; Su, Kate Y. L.; Hinz, Philip M.; Smith, Paul S.; Mamajek, Eric E.

    2015-02-10

    We present our first results from a high-contrast imaging search for planetary mass companions around stars with gapped debris disks, as inferred from the stars' bright infrared excesses. For the six considered stars, we model the disks' unresolved infrared spectral energy distributions in order to derive the temperature and location of the disk components. With VLT/NaCo Apodizing Phase Plate coronagraphic L'-band imaging, we search for planetary mass companions that may be sculpting the disks. We detect neither disks nor companions in this sample, confirmed by comparing plausible point sources with archival data. In order to calculate our mass sensitivity limit, we revisit the stellar age estimates. One target, HD 17848, at 540 ± 100 Myr old is significantly older than previously estimated. We then discuss our high-contrast imaging results with respect to the disk properties.

  2. MODELING THE HD 32297 DEBRIS DISK WITH FAR-INFRARED HERSCHEL DATA

    SciTech Connect

    Donaldson, J. K.; Lebreton, J.; Augereau, J.-C.; Krivov, A. V.

    2013-07-20

    HD 32297 is a young A-star ({approx}30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 {mu}m. We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains >2 {mu}m consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7{sigma} detection of [C II] emission at 158 {mu}m with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected.

  3. Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data

    NASA Technical Reports Server (NTRS)

    Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.

    2013-01-01

    HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected

  4. INNER EDGES OF COMPACT DEBRIS DISKS AROUND METAL-RICH WHITE DWARFS

    SciTech Connect

    Rafikov, Roman R.; Garmilla, Jose A. E-mail: garmilla@astro.princeton.edu

    2012-12-01

    A number of metal-rich white dwarfs (WDs) are known to host compact, dense particle disks, which are thought to be responsible for metal pollution of these stars. In many such systems, the inner radii of disks inferred from their spectra are so close to the WD that particles directly exposed to starlight must be heated above 1500 K and are expected to be unstable against sublimation. To reconcile this expectation with observations, we explore particle sublimation in H-poor debris disks around WDs. We show that because of the high metal vapor pressure the characteristic sublimation temperature in these disks is 300-400 K higher than in their protoplanetary analogs, allowing particles to survive at higher temperatures. We then look at the structure of the inner edges of debris disks and show that they should generically feature superheated inner rims directly exposed to starlight with temperatures reaching 2500-3500 K. Particles migrating through the rim toward the WD (and rapidly sublimating) shield the disk behind them from strong stellar heating, making the survival of solids possible close to the WD. Our model agrees well with observations of WD+disk systems provided that disk particles are composed of Si-rich material such as olivine, and have sizes in the range {approx}0.03-30 cm.

  5. ALMA CONTINUUM OBSERVATIONS OF A 30 Myr OLD GASEOUS DEBRIS DISK AROUND HD 21997

    SciTech Connect

    Moór, A.; Ábrahám, P.; Kiss, Cs.; Gabányi, K.; Juhász, A.; Schmalzl, M.; Kóspál, Á.; Apai, D.; Pascucci, I.; Csengeri, T.; Grady, C.; Henning, Th.; Hughes, A. M.

    2013-11-10

    Circumstellar disks around stars older than 10 Myr are expected to be gas-poor. There are, however, two examples of old (30-40 Myr) debris-like disks containing a detectable amount of cold CO gas. Here we present Atacama Large Millimeter/Submillimeter Array (ALMA) and Herschel Space Observatory observations of one of these disks, around HD 21997, and study the distribution and origin of the dust and its connection to the gas. Our ALMA continuum images at 886 μm clearly resolve a broad ring of emission within a diameter of ∼4.''5, adding HD 21997 to the dozen debris disks resolved at (sub)millimeter wavelengths. Modeling the morphology of the ALMA image with a radiative transfer code suggests inner and outer radii of ∼55 and ∼150 AU, and a dust mass of 0.09 M {sub ⊕}. Our data and modeling hints at an extended cold outskirt of the ring. Comparison with the morphology of the CO gas in the disk reveals an inner dust-free hole where gas nevertheless can be detected. Based on dust grain lifetimes, we propose that the dust content of this gaseous disk is of secondary origin and is produced by planetesimals. Since the gas component is probably primordial, HD 21997 is one of the first known examples of a hybrid circumstellar disk, a thus-far little studied late phase of circumstellar disk evolution.

  6. Coronagraphic Polarimetry of HST-Resolved Circumstellar T Tauri and Debris Disks.

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn; Hines, D. C.; 10852, HST/GO; 10847 Teams

    2007-12-01

    The formation of planetary systems is intimately linked to the dust population in circumstellar disks, thus understanding dust grain evolution is essential to advancing our understanding of how planets form. While it is well established that stars form in ISM-like protostellar environments, the connection to now observable light-scattering circumstellar disks and the processes of planet formation is still very uncertain. Mid-IR spectral studies suggest that disk grains are growing in the environments of young stellar objects during the putative planet-formation epoch. Structures revealed in well resolved images of older circumstellar debris disks suggest gravitational influences on the disks from putative co-orbital bodies of planetary mass. To further elucidate the dust and systemic properties in potentially planet-forming systems, we have undertaken two symbiotic HST imaging programs that exploit the recently commission capabilities of coronagraphic polarimetry with the Near Infrared Camera and Multi-Object Spectrometer, probing dust structures in T Tauri circumstellar disks during the early epochs of planet formation, and debris disks around older stars. We present the first observational results from these two programs in light of earlier commission observations of TW Hya, focusing on the scattered light disks around the T Tauri star GM Aur and the debris disk associated with HR 32297, along with optical (ACS) coronagraphic polarimetry of the unusual dust structure around HD 61005. Support for this work was provided by NASA through grant numbers GO-9768. 10847 and 10852 from the Space Telescope Science Institute, which is operated by Association of Universities for Research in Astronomy Incorporated, under NASA contract NAS5-26555.

  7. Other Debris Disks: Description and Similarities/Differences with Beta Pictoris Through Scattered-Light Imaging

    NASA Astrophysics Data System (ADS)

    Schneider, G.

    2014-09-01

    Though circumstellar orbiting debris has been inferred from thermal IR excesses around many stars since the initial discovery (from IRAS) and then scattered-light imaging of the Beta Pictoris disk thirty years ago, resolved images that directly inform on the spatial distribution of the disk material have historically proven extremely challenging to obtain. A dozen years lapsed between the Beta Pic disk discovery imaging and that of the second such system then revealed (HR 4796A). To date, two-dozen well-resolved images of circumstellar debris systems have emerged (mostly with space-based coronagraphy) and map their small-particle populations. They allow us to break degeneracies that otherwise conflate disk geometries and grain properties when attempting to model unresolved spatial energy distributions alone. They also provides a wealth of information crucial to better arbitrate between possible particle compositions, and optical/physical properties. They enable discrimination between the architectures of such systems that may contain co-orbiting planets, and between dynamical effects that may influence disk evolution from environmental (extrinsic and intrinsic) forces. Such images have provided unique insights into both the genesis and outcomes of the processes of planetary system formation. Individually, these images have been powerful diagnostically, and insightful interpretively. Collectively they exhibit remarkable diversity in morphologies, architectures, sub-structures and properties that allowed us to inter-compare these systems in the context of our own solar systems debris disk and in light of the benchmark, best studied, exoplanet-hosting debris system: Beta Pic. Herein we briefly review the state of the field regarding these ÓotherÓ disks today, with illustrative examples of today's menagerie, and of what the future may unfold.

  8. HERSCHEL's ''COLD DEBRIS DISKS'': BACKGROUND GALAXIES OR QUIESCENT RIMS OF PLANETARY SYSTEMS?

    SciTech Connect

    Krivov, A. V.; Loehne, T.; Mutschke, H.; Neuhaeuser, R.; Eiroa, C.; Marshall, J. P.; Mustill, A. J.; Montesinos, B.; Del Burgo, C.; Absil, O.; Ardila, D.; Augereau, J.-C.; Ertel, S.; Lebreton, J.; Bryden, G.; Danchi, W.; Liseau, R.; Mora, A.; Pilbratt, G. L. [ESA Astrophysics and Fundamental Physics Missions Division, ESTEC and others

    2013-07-20

    Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around {approx}100 {mu}m or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant-and in some cases extended-excess emission at 160 {mu}m, which is larger than the 100 {mu}m excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than {approx}100 {mu}m, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller

  9. MILLIMETER IMAGING OF THE {beta} PICTORIS DEBRIS DISK: EVIDENCE FOR A PLANETESIMAL BELT

    SciTech Connect

    Wilner, David J.; Andrews, Sean M.; Hughes, A. Meredith

    2011-02-01

    We present observations at 1.3 mm wavelength of the {beta} Pictoris debris disk with beam size 4.''3 x 2.''6 (83 x 50 AU) from the Submillimeter Array. The emission shows two peaks separated by {approx}7'' along the disk plane, which we interpret as a highly inclined dust ring or belt. A simple model constrains the belt center to 94 {+-} 8 AU, close to the prominent break in slope of the optical scattered light. We identify this region as the location of the main reservoir of dust-producing planetesimals in the disk.

  10. Herschel's "Cold Debris Disks": Background Galaxies or Quiescent Rims of Planetary Systems?

    NASA Technical Reports Server (NTRS)

    Krivov, A. V.; Eiroa, C.; Loehne, T.; Marshall, J. P.; Montesinos, B.; DelBurgo, C.; Absil, O.; Ardila, D.; Augereau, J.-C.; Bayo, A.; Bryden, G.; Danchi, W.; Ertel, S.; Lebreton, J.; Liseau, R.; Mora, A.; Mustill, A. J.; Mutschke, H.; Neuhaeuser, R.; Pilbratt, G. L.; Roberge, A.; Schmidt, T. O. B.; Stapelfeldt, K. R.; Thebault, Ph.; Vitense, Ch.; White, G. J.; Wolf, S.

    2013-01-01

    Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around approx, 100 micron or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant-and in some cases extended-excess emission at 160 micron, which is larger than the 100 micron excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than approx. 100 micron, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but

  11. High-Contrast Near-Infrared Imaging and Modeling of Planets and Debris Disks

    NASA Astrophysics Data System (ADS)

    Rodigas, Timothy; Hinz, P.; Weinberger, A. J.; Close, L. M.; Debes, J. H.

    2014-01-01

    Planets are thought to form in circumstellar disks, leaving behind planetesimals that collide to produce dusty debris disks. Characterizing the architectures of planetary systems, along with the structures and compositions of debris disks, can therefore help answer questions about how planets form. In this talk, I will present the results of five papers concerning the properties of extrasolar planetary systems and their circumstellar environments. First I will discuss bias affecting radial velocity (RV) orbital eccentricity. For years astronomers have been puzzled about the large number of RV-detected planets that have eccentric orbits (e > 0.1). I will show that this problem can partially be explained by showing that two circular-orbit planets can masquerade as a single planet on an eccentric orbit. I use this finding to predict that planets with mildly eccentric orbits are the most likely to have massive companions on wide orbits, potentially detectable by future direct imaging observations. Next I will present recent high-contrast 2-4 μm imaging studies of the edge-on debris disks around HD 15115 and HD 32297. HD 15115’s color is found to be gray, implying large grains 1-10 μm in size reside in stable orbits in the disk. HD 32297’s disk color is red from 1-4 μm. Cometary material (carbon, silicates, and porous water ice) are a good match at 1-2 μm but not at L‧. Tholins, organic material that is found in outer solar system bodies, or small silicates can explain the disk’s red color but not the short wavelength data. I will then present my work on the dynamics of dust grains in the presence of massive planets. I will show that the width of a debris disk increases proportionally with the mass of its shepherding planet. I use this result to make predictions for the masses and orbits of putative planets in five well-known disks. Finally, I will present recent MagAO/Clio near-infrared imaging results on the debris disk around HR4796A spanning the 0.5-4 um

  12. Molecular Gas Clumps from the Destruction of Icy Bodies in the beta Pictoris Debris Disk

    NASA Technical Reports Server (NTRS)

    Dent, W. R. F.; Wyatt, M. C.; Roberge, A.; Augereau, J. -C.; Casassus, S.; Corder, S.; Greaves, J. S.; DeGregorio-Monsalvo, I.; Hales, A.; Jackson, A. P.; Hughes, A. Meredith; Lagrange, A. -M.; Matthews, B.; Wilner, D.

    2014-01-01

    Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets and dwarf planets. But is gas also released in such events? Observations at sub-mm wavelengths of the archetypal debris disk around ß Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 AU from the star, in a plane closely aligned with the orbit of the inner planet, beta Pic b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet, or from the remnants of a collision of Mars-mass planets.

  13. Molecular gas clumps from the destruction of icy bodies in the β Pictoris debris disk.

    PubMed

    Dent, W R F; Wyatt, M C; Roberge, A; Augereau, J-C; Casassus, S; Corder, S; Greaves, J S; de Gregorio-Monsalvo, I; Hales, A; Jackson, A P; Hughes, A Meredith; Lagrange, A-M; Matthews, B; Wilner, D

    2014-03-28

    Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets, and dwarf planets, but is gas also released in such events? Observations at submillimeter wavelengths of the archetypal debris disk around β Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 astronomical units from the star, in a plane closely aligned with the orbit of the inner planet, β Pictoris b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet or from the remnants of a collision of Mars-mass planets. PMID:24603151

  14. What Debris Disks Can Tell Us about the Masses, Orbits, and Compositions of Planets

    NASA Astrophysics Data System (ADS)

    Rodigas, T.

    2014-09-01

    Our solar system contains four gas giant planets that have interacted and shaped the Kuiper Belt since their formation. They have affected its structure and shape and in the process have flung comets and small rocky bodies towards the inner terrestrial planets. Many of these bodies contain organic materials and water ice, the main ingredients required for Earth-like life. Therefore the Kuiper Belt holds clues to the properties of the solar system's planets. In the same way, it is thought that extrasolar debris disks, analogous to the solar system's Kuiper Belt, contain information on nearby planets. In this talk, I will discuss several recent results that relate the properties of debris disks to masses, orbits, and compositions of as-yet undetected planets. First, I will present 3.8 micron LBTI high-contrast adaptive optics (AO) imaging on the bright, edge-on debris disk around HD 32297 (Rodigas et al. 2014b). Combing our high signal-to-noise (S/N) detection with archival images at 1-2 microns, we constrain the composition of the dust grains in the disk. In particular, we test a recently proposed cometary grains model. We find that pure water ice is a better overall fit, suggesting at least one of the key ingredients for life may be present in this system. Second, I will present Magellan AO (MagAO) imaging results on the debris ring around HR 4796A at seven wavelengths from 0.7-4 microns (Rodigas et al. 2014c, in prep.). With such complete wavelength coverage and high S/N detections, we are able to obtain accurate photometry and constrain the composition of the dustÑin particular with regard to organic materials. Finally, I will present a new tool designed specifically for observers and planet hunters. Using a simple equation that depends solely on the width of a debris disk in scattered light, observers can estimate the maximum mass of an interior planet shepherding the disk (Rodigas et al. 2014a). This provides an independent, dynamical check on an imaged planet

  15. Revealing Asymmetries in the HD 181327 Debris Disk: A Recent Massive Collision or Interstellar Medium Warping

    NASA Astrophysics Data System (ADS)

    Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.

    2014-07-01

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  16. Revealing asymmetries in the HD 181327 debris disk: A recent massive collision or interstellar medium warping

    SciTech Connect

    Stark, Christopher C.; Kuchner, Marc J.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah

    2014-07-01

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  17. Revealing Asymmetries in the HD181327 Debris Disk: A Recent Massive Collision or Interstellar Medium Warping

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.

    2014-01-01

    New multi-roll coronagraphic images of the HD181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/ deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain.We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass greater than 1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  18. A RESOLVED MILLIMETER EMISSION BELT IN THE AU Mic DEBRIS DISK

    SciTech Connect

    Wilner, David J.; Andrews, Sean M.; MacGregor, Meredith A.; Meredith Hughes, A.

    2012-04-20

    We present imaging observations at 1.3 mm of the debris disk surrounding the nearby M-type flare star AU Mic with beam size 3'' (30 AU) from the Submillimeter Array. These data reveal a belt of thermal dust emission surrounding the star with the same edge-on geometry as the more extended scattered light disk detected at optical wavelengths. Simple modeling indicates a central radius of {approx}35 AU for the emission belt. This location is consistent with the reservoir of planetesimals previously invoked to explain the shape of the scattered light surface brightness profile through size-dependent dust dynamics. The identification of this belt further strengthens the kinship between the debris disks around AU Mic and its more massive sister star {beta} Pic, members of the same {approx}10 Myr old moving group.

  19. DDT_gkennedy_3: HIP 80946: A rare warm debris disk?

    NASA Astrophysics Data System (ADS)

    Kennedy, G.

    2012-10-01

    We propose to observe a nearby candidate warm dust system, HIP 89046, that we have recently identified with WISE. Such debris disk systems are extremely rare, and therefore characterising each individual is extremely important to understand their origin and evolution. This object shows mid-IR emission from several instruments that is most likely associated with the star. There is also significant far-IR emission, which AKARI-FIS suggests is associated with a nearby object rather than HIP 89046, but may mask emission from HIP 89046 itself. There is therefore an ambiguity as to whether HIP 89046 is a protoplanetary disk, or a bona fide warm dust source. These observations will resolve this ambiguity, and possibly result in confirmation of a new record holder as the "dustiest" warm debris disk.

  20. Signatures of Exo-Solar Planets in Dust Debris Disks

    NASA Technical Reports Server (NTRS)

    Ozernoy, Leonid M.; Gorkavyi, Nick N.; Mather, John C.; Taidakova, Tanya A.

    1999-01-01

    We have developed a new numerical approach to the dynamics of minor bodies and dust particles, which enables us to increase, without using a supercomputer, the number of employed particle positions in each model up to 10(exp 10) - 10(exp 11), a factor of 10(exp 6) - 10(exp 7) higher than existing numerical simulations. We apply this powerful approach to the high-resolution modeling of the structure and emission of circumstellar dust disks, incorporating all relevant physical processes. In this Letter, we examine the resonant structure of a dusty disk induced by the presence of one planet of mass in the range of (5 x 10(exp -5) - 5 x 10(exp -3))M. It is shown that the planet, via resonances and gravitational scattering, produces (i) a central cavity void of dust; (ii) a trailing (sometimes leading) off-center cavity; and (iii) an asymmetric resonant dust belt with one, two, or more clumps. These features can serve as indicators of planet(s) embedded in the circumstellar dust disk and, moreover, can be used to determine the mass of the planet and even some of its orbital parameters. The results of our study reveal a remarkable similarity with various types of highly asymmetric circumstellar disks observed with the JCMT around Epsilon Eridani and Vega.

  1. Probing Terrestrial Planet Formation by Witnessing Large Collisions in Extreme Debris Disks

    NASA Astrophysics Data System (ADS)

    Su, Kate

    2015-12-01

    The Kepler results indicate that many young planetary systems build terrestrial planets. The most dramatic phases of this process are thought to be oligarchic and chaotic growth, roughly up to ages of 200 million years, when violent collisions occur between bodies of sizes up to proto-planets. Such events should be marked by the production of huge amounts of debris, including clouds of dust, as has been observed in some of the extreme debris disks (young stars with high fractional dust luminosity and prominent solid-state features in the mid-infrared). The newly discovered variable emission from extreme debris disks provides a unique opportunity to learn about asteroid-sized bodies in young exoplanetary systems and to explore planetesimal collisions and their aftermaths during the era of terrestrial- planet-building.We have a on-going Spitzer program to monitor a dozen of young, dusty debris systems to investigate the incidence, nature, and evolution of these impacts through time-domain observations. I will highlight recent results from time-series monitoring of a 35 Myr-old disk around ID8 in NGC 2547, and discuss future directions for the study of the detailed process of large impacts in the era of terrestrial planet formation using space facilities.

  2. Fast-moving features in the debris disk around AU Microscopii.

    PubMed

    Boccaletti, Anthony; Thalmann, Christian; Lagrange, Anne-Marie; Janson, Markus; Augereau, Jean-Charles; Schneider, Glenn; Milli, Julien; Grady, Carol; Debes, John; Langlois, Maud; Mouillet, David; Henning, Thomas; Dominik, Carsten; Maire, Anne-Lise; Beuzit, Jean-Luc; Carson, Joseph; Dohlen, Kjetil; Engler, Natalia; Feldt, Markus; Fusco, Thierry; Ginski, Christian; Girard, Julien H; Hines, Dean; Kasper, Markus; Mawet, Dimitri; Ménard, François; Meyer, Michael R; Moutou, Claire; Olofsson, Johan; Rodigas, Timothy; Sauvage, Jean-Francois; Schlieder, Joshua; Schmid, Hans Martin; Turatto, Massimo; Udry, Stephane; Vakili, Farrokh; Vigan, Arthur; Wahhaj, Zahed; Wisniewski, John

    2015-10-01

    In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories. PMID:26450055

  3. Fast-moving features in the debris disk around AU Microscopii

    NASA Astrophysics Data System (ADS)

    Boccaletti, Anthony; Thalmann, Christian; Lagrange, Anne-Marie; Janson, Markus; Augereau, Jean-Charles; Schneider, Glenn; Milli, Julien; Grady, Carol; Debes, John; Langlois, Maud; Mouillet, David; Henning, Thomas; Dominik, Carsten; Maire, Anne-Lise; Beuzit, Jean-Luc; Carson, Joseph; Dohlen, Kjetil; Engler, Natalia; Feldt, Markus; Fusco, Thierry; Ginski, Christian; Girard, Julien H.; Hines, Dean; Kasper, Markus; Mawet, Dimitri; Ménard, François; Meyer, Michael R.; Moutou, Claire; Olofsson, Johan; Rodigas, Timothy; Sauvage, Jean-Francois; Schlieder, Joshua; Schmid, Hans Martin; Turatto, Massimo; Udry, Stephane; Vakili, Farrokh; Vigan, Arthur; Wahhaj, Zahed; Wisniewski, John

    2015-10-01

    In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These `debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.

  4. HERSCHEL PACS OBSERVATIONS AND MODELING OF DEBRIS DISKS IN THE TUCANA-HOROLOGIUM ASSOCIATION

    SciTech Connect

    Donaldson, J. K.; Roberge, A.; Chen, C. H.; Augereau, J.-C.; Menard, F.; Eiroa, C.; Meeus, G.; Krivov, A. V.; Mathews, G. S.; Riviere-Marichalar, P.; Sandell, G.

    2012-07-10

    We present Herschel PACS photometry of 17 B- to M-type stars in the 30 Myr old Tucana-Horologium Association. This work is part of the Herschel Open Time Key Programme 'Gas in Protoplanetary Systems'. 6 of the 17 targets were found to have infrared excesses significantly greater than the expected stellar IR fluxes, including a previously unknown disk around HD30051. These six debris disks were fitted with single-temperature blackbody models to estimate the temperatures and abundances of the dust in the systems. For the five stars that show excess emission in the Herschel PACS photometry and also have Spitzer IRS spectra, we fit the data with models of optically thin debris disks with realistic grain properties in order to better estimate the disk parameters. The model is determined by a set of six parameters: surface density index, grain size distribution index, minimum and maximum grain sizes, and the inner and outer radii of the disk. The best-fitting parameters give us constraints on the geometry of the dust in these systems, as well as lower limits to the total dust masses. The HD105 disk was further constrained by fitting marginally resolved PACS 70 {mu}m imaging.

  5. GT1_vgeers_1: Tracing Remnant Gas in Planet Forming Debris Disk Systems

    NASA Astrophysics Data System (ADS)

    Geers, V.

    2010-03-01

    Recent studies of gas emission lines with Spitzer and sub-millimeter telescopes have shown that 10-100 Myr old stars with debris disks have too little gas left to form Jupiter like gas giant planets. Whether enough gas remains in these systems to form ice giant planets is still unanswered. The [OI] emission line at 63 micron is one of the most sensitive tracers of gas mass in the ice-giant region of 10-50 AU in disks, and Herschel PACS is therefore uniquely suited to trace the remnant gas in planet-forming disks. We propose to obtain PACS line spectroscopy of [OI] (63 micron) for two nearby young stars, HR 8799 and HD 15115, which are two systems with detected giant planets or signs of planet formation, while still harbouring prominent debris disks that could be in the process of forming ice giants such as Neptune and Uranus. The proposed observations will probe down to gas masses of 0.01 Earth masses, and allow us to constrain prospects for ice giant formation, measure gas-to-dust ratios in evolved disks to compare with planet formation / disk evolution models, and put constraints on whether the dust dynamics in these systems is driven by the remnant gas or by the radiation. Note: this proposal is submitted under the Swiss part of the HIFI Guaranteed Time program; HIFI PI: Frank Helmich, HIFI Swiss Lead CoI: Arnold Benz.

  6. The Spitzer Infrared Spectrograph Debris Disk Catalog. II. Silicate Feature Analysis of Unresolved Targets

    NASA Astrophysics Data System (ADS)

    Mittal, Tushar; Chen, Christine H.; Jang-Condell, Hannah; Manoj, P.; Sargent, Benjamin A.; Watson, Dan M.; Lisse, Carey M.

    2015-01-01

    During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a min, increases with stellar luminosity, L *, but the dependence of a min on L * is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.

  7. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. II. SILICATE FEATURE ANALYSIS OF UNRESOLVED TARGETS

    SciTech Connect

    Mittal, Tushar; Chen, Christine H.; Jang-Condell, Hannah; Manoj, P.; Sargent, Benjamin A.; Watson, Dan M.; Lisse, Carey M.

    2015-01-10

    During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures. For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a {sub min}, increases with stellar luminosity, L {sub *}, but the dependence of a {sub min} on L {sub *} is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.

  8. VARIATIONS ON DEBRIS DISKS. II. ICY PLANET FORMATION AS A FUNCTION OF THE BULK PROPERTIES AND INITIAL SIZES OF PLANETESIMALS

    SciTech Connect

    Kenyon, Scott J.; Bromley, Benjamin C. E-mail: bromley@physics.utah.ed

    2010-05-15

    We describe comprehensive calculations of the formation of icy planets and debris disks at 30-150 AU around 1-3 M {sub sun} stars. Disks composed of large, strong planetesimals produce more massive planets than disks composed of small, weak planetesimals. The maximum radius of icy planets ranges from {approx}1500 km to 11,500 km. The formation rate of 1000 km objects-{sup P}lutos{sup -}is a useful proxy for the efficiency of icy planet formation. Plutos form more efficiently in massive disks, in disks with small planetesimals, and in disks with a range of planetesimal sizes. Although Plutos form throughout massive disks, Pluto production is usually concentrated in the inner disk. Despite the large number of Plutos produced in many calculations, icy planet formation is inefficient. At the end of the main sequence lifetime of the central star, Plutos contain less than 10% of the initial mass in solid material. This conclusion is independent of the initial mass in the disk or the properties of the planetesimals. Debris disk formation coincides with the formation of planetary systems containing Plutos. As Plutos form, they stir leftover planetesimals to large velocities. A cascade of collisions then grinds the leftovers to dust, forming an observable debris disk. In disks with small ({approx}<1-10 km) planetesimals, collisional cascades produce luminous debris disks with maximum luminosity {approx}10{sup -2} times the stellar luminosity. Disks with larger planetesimals produce debris disks with maximum luminosity {approx}5 x 10{sup -4} (10 km) to 5 x 10{sup -5} (100 km) times the stellar luminosity. Following peak luminosity, the evolution of the debris disk emission is roughly a power law, f {proportional_to} t {sup -n} with n{approx} 0.6-0.8. Observations of debris disks around A-type and G-type stars strongly favor models with small planetesimals. In these models, our predictions for the time evolution and detection frequency of debris disks agree with published

  9. THE DEBRIS DISK OF VEGA: A STEADY-STATE COLLISIONAL CASCADE, NATURALLY

    SciTech Connect

    Mueller, S.; Loehne, T.; Krivov, A. V.

    2010-01-10

    The archetypical debris disk around Vega has been observed intensively over the past 25 years. It has been argued that the resulting photometric data and images may be in contradiction with a standard, steady-state collisional scenario of the disk evolution. In particular, the emission in the mid-infrared (mid-IR) appears to be in excess of what is expected from a 'Kuiper belt' at approx100 AU, which is evident in the submillimeter images and inferred from the majority of photometric points. Here we re-address the question of whether or not the Vega disk observations are compatible with a continuous dust production through a collisional cascade. Instead of seeking a size and spatial distribution of dust that provide the best fit to observations, our approach involves physical modeling of the debris disk 'from the sources'. We assume that dust is maintained by a belt of parent planetesimals, and employ our collisional and radiative transfer codes to consistently model the size and radial distribution of the disk material and then thermal emission of dust. In doing so, we vary a broad set of parameters, including the stellar properties, the exact location, extension, and dynamical excitation of the planetesimal belt, chemical composition of solids, and the collisional prescription. We are able to reproduce the spectral energy distribution in the entire wavelength range from the near-IR to millimeter, as well as the mid-IR and submillimeter radial brightness profiles of the Vega disk. Thus, our results suggest that the Vega disk observations are not in contradiction with a steady-state collisional dust production, and we put important constraints on the disk parameters and physical processes that sustain it. The total disk mass in approx<100 km-sized bodies is estimated to be approx10 Earth masses. Provided that collisional cascade has been operating over much of the Vega age of approx350 Myr, the disk must have lost a few Earth masses of solids during that time. We

  10. The Debris Disk of Vega: A Steady-state Collisional Cascade, Naturally

    NASA Astrophysics Data System (ADS)

    Müller, S.; Löhne, T.; Krivov, A. V.

    2010-01-01

    The archetypical debris disk around Vega has been observed intensively over the past 25 years. It has been argued that the resulting photometric data and images may be in contradiction with a standard, steady-state collisional scenario of the disk evolution. In particular, the emission in the mid-infrared (mid-IR) appears to be in excess of what is expected from a "Kuiper belt" at ~100 AU, which is evident in the submillimeter images and inferred from the majority of photometric points. Here we re-address the question of whether or not the Vega disk observations are compatible with a continuous dust production through a collisional cascade. Instead of seeking a size and spatial distribution of dust that provide the best fit to observations, our approach involves physical modeling of the debris disk "from the sources." We assume that dust is maintained by a belt of parent planetesimals, and employ our collisional and radiative transfer codes to consistently model the size and radial distribution of the disk material and then thermal emission of dust. In doing so, we vary a broad set of parameters, including the stellar properties, the exact location, extension, and dynamical excitation of the planetesimal belt, chemical composition of solids, and the collisional prescription. We are able to reproduce the spectral energy distribution in the entire wavelength range from the near-IR to millimeter, as well as the mid-IR and submillimeter radial brightness profiles of the Vega disk. Thus, our results suggest that the Vega disk observations are not in contradiction with a steady-state collisional dust production, and we put important constraints on the disk parameters and physical processes that sustain it. The total disk mass in lsim100 km-sized bodies is estimated to be ~10 Earth masses. Provided that collisional cascade has been operating over much of the Vega age of ~350 Myr, the disk must have lost a few Earth masses of solids during that time. We also demonstrate

  11. Deep MIPS Observations of the IC 348 Nebula: Constraints on the Evolutionary State of Anemic Circumstellar Disks and the Primordial-to-Debris Disk Transition

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Kenyon, Scott J.

    2009-09-01

    We describe new, deep MIPS photometry and new high signal-to-noise optical spectroscopy of the 2.5 Myr old IC 348 Nebula. To probe the properties of the IC 348 disk population, we combine these data with previous optical/infrared photometry and spectroscopy to identify stars with gas accretion, to examine their mid-IR colors, and to model their spectral energy distributions. IC 348 contains many sources in different evolutionary states, including protostars and stars surrounded by primordial disks, two kinds of transitional disks, and debris disks. Most disks surrounding early/intermediate spectral-type stars (>1.4 M sun at 2.5 Myr) are debris disks; most disks surrounding solar and subsolar-mass stars are primordial disks. At the 1-2 σ level, more massive stars also have a smaller frequency of gas accretion and smaller mid-IR luminosities than lower-mass stars. These trends are suggestive of a stellar mass-dependent evolution of disks, where most disks around high/intermediate-mass stars shed their primordial disks on rapid, 2.5 Myr timescales. The frequency of MIPS-detected transitional disks is ≈15%-35% for stars plausibly more massive than 0.5 M sun. The relative frequency of transitional disks in IC 348 compared to that for 1 Myr old Taurus and 5 Myr old NGC 2362 is consistent with a transition timescale that is a significant fraction of the total primordial disk lifetime.

  12. Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks

    NASA Astrophysics Data System (ADS)

    Merín, Bruno; Ardila, David R.; Ribas, Álvaro; Bouy, Hervé; Bryden, Geoffrey; Stapelfeldt, Karl; Padgett, Deborah

    2014-09-01

    Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in β Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around η Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important

  13. Does the Collapse of a Supramassive Neutron Star Leave a Debris Disk?

    PubMed

    Margalit, Ben; Metzger, Brian D; Beloborodov, Andrei M

    2015-10-23

    One possible channel for black hole formation is the collapse of a rigidly rotating massive neutron star as it loses its angular momentum or gains excessive mass through accretion. It was proposed that part of the neutron star may form a debris disk around the black hole. Such short-lived massive disks could be the sources of powerful jets emitting cosmological gamma-ray bursts. Whether the collapse creates a disk depends on the equation of state of the neutron star. We survey a wide range of equations of states allowed by observations and find that disk formation is unfeasible. We conclude that this channel of black hole formation is incapable of producing powerful jets, and discuss implications for models of gamma-ray bursts. PMID:26551095

  14. Resolved Millimeter-wavelength Observations of Debris Disks around Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Steele, Amy; Hughes, A. Meredith; Carpenter, John; Ricarte, Angelo; Andrews, Sean M.; Wilner, David J.; Chiang, Eugene

    2016-01-01

    The presence of debris disks around young main-sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The Formation and Evolution of Planetary Systems Spitzer Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at ∼2″ resolution that spatially resolve the debris disks around these nearby (d ∼ 50 pc) stars. Two of the five disks (HD 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array data to enable a uniform analysis of the full five-object sample. We simultaneously model the broadband photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform a Markov Chain Monte Carlo analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-up versions of the Solar System's Kuiper Belt. All the disks exhibit characteristic grain sizes comparable to the blowout size, and all the resolved observations of emission from large dust grains are consistent with an axisymmetric dust distribution to within the uncertainties. These results are consistent with comparable studies carried out at infrared wavelengths.

  15. Gemini Planet Imager Observations of the AU Microscopii Debris Disk: Asymmetries within One Arcsecond

    NASA Astrophysics Data System (ADS)

    Wang, Jason J.; Graham, James R.; Pueyo, Laurent; Nielsen, Eric L.; Millar-Blanchaer, Max; De Rosa, Robert J.; Kalas, Paul; Ammons, S. Mark; Bulger, Joanna; Cardwell, Andrew; Chen, Christine; Chiang, Eugene; Chilcote, Jeffrey K.; Doyon, René; Draper, Zachary H.; Duchêne, Gaspard; Esposito, Thomas M.; Fitzgerald, Michael P.; Goodsell, Stephen J.; Greenbaum, Alexandra Z.; Hartung, Markus; Hibon, Pascale; Hinkley, Sasha; Hung, Li-Wei; Ingraham, Patrick; Larkin, James E.; Macintosh, Bruce; Maire, Jerome; Marchis, Franck; Marois, Christian; Matthews, Brenda C.; Morzinski, Katie M.; Oppenheimer, Rebecca; Patience, Jenny; Perrin, Marshall D.; Rajan, Abhijith; Rantakyrö, Fredrik T.; Sadakuni, Naru; Serio, Andrew; Sivaramakrishnan, Anand; Soummer, Rémi; Thomas, Sandrine; Ward-Duong, Kimberly; Wiktorowicz, Sloane J.; Wolff, Schuyler G.

    2015-10-01

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1″ (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side at similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1″ when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ∼50 mas between 0.″4 and 1.″2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ∼4 MJup planets at 4 AU. We detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.

  16. Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang-Condell, Hannah; Wilner, David; Andrews, Sean; Kraus, Adam; Dahm, Scott; Robitaille, Thomas

    2012-01-01

    We present Keck/NIRC2 Ks band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3-2.5 arcse (approx 35-280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model for a single dust belt including a phase function with two components and a 5-10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry. Although there may be alternate explanations, agreement between the SW disk brightness peak and disk's peak mm emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1-1 mm-sized grains at approx 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.

  17. Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang, Condell, Hannah; Wilner, David; Andrews, Sean; Dahm, Scott; Robitaille,Thomas

    2012-01-01

    We present Keck/NIRC2 K(sub s) band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3 - 2.5" (approx equals 35 - 280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx equals 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model fur a single dust belt including a phase function with two components and a 5 - 10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry and the profile at wider separations (r > 110 AU). Although there may be a1ternate explanations, agreement between the SW disk brightness peak and disk's peak rom emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1 - 1 mm-sized grains at approx equal 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.

  18. Revealing the structure and dust content of debris disks on solar systems scales with GPI

    NASA Astrophysics Data System (ADS)

    Duchene, Gaspard; Fitzgerald, Michael P.; Kalas, Paul; Graham, James R.; Arriaga, Pauline; Bruzzone, Sebastian; Chen, Christine; Dawson, Rebekah Ilene; Dong, Ruobing; Draper, Zachary; Esposito, Thomas; Follette, Katherine; Hung, Li-Wei; Lawler, Samantha; Metchev, Stanimir; Millar-Blanchaer, Max; Murray-Clay, Ruth; Perrin, Marshall D.; Rameau, Julien; Wang, Jason; Wolff, Schuyler; Macintosh, Bruce; GPIES Team

    2016-01-01

    High contrast scattered light images offer the best prospect to assess the detailed geometry and structure of dusty debris disks. In turn, such images can yield profound insight on the architecture of the underlying planetary system as dust grains respond to the gravitational pull of planetary bodies. A new generation of extreme adaptive optics systems now enables an unprecedented exploration of circumstellar disks on solar system scales. Here we review the new science derived from over a dozen debris disks imaged with the Gemini Planet Imager (GPI) as part of the GPI Exoplanet Survey (GPIES). In addition to its exquisite imaging capability, GPI's polarimetric mode provides invaluable insight on the dust content of each disk, in most cases for the very first time. These early results typically reveal narrow belts of material with evacuated regions roughly 50-100 AU in radius, subtle asymmetries in structure and high degree of linear polarization. We will provide an overview of the disk observations made during the GPIES campaign to date and will discuss in more detail some of the most remarkable systems.This work is supported by grants NSF AST-0909188, -1411868, -1413718; NASA NNX-15AD95G, -14AJ80G, -11AD21G; and the NExSS research network.

  19. The Peculiar Debris Disk of HD 111520 as Resolved by the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Draper, Zachary H.; Duchêne, Gaspard; Millar-Blanchaer, Maxwell A.; Matthews, Brenda C.; Wang, Jason J.; Kalas, Paul; Graham, James R.; Padgett, Deborah; Ammons, S. Mark; Bulger, Joanna; Chen, Christine; Chilcote, Jeffrey K.; Doyon, René; Fitzgerald, Michael P.; Follette, Kate B.; Gerard, Benjamin; Greenbaum, Alexandra Z.; Hibon, Pascale; Hinkley, Sasha; Macintosh, Bruce; Ingraham, Patrick; Lafrenière, David; Marchis, Franck; Marois, Christian; Nielsen, Eric L.; Oppenheimer, Rebecca; Patel, Rahul; Patience, Jenny; Perrin, Marshall; Pueyo, Laurent; Rajan, Abhijith; Rameau, Julien; Sivaramakrishnan, Anand; Vega, David; Ward-Duong, Kimberly; Wolff, Schuyler G.

    2016-08-01

    Using the Gemini Planet Imager, we have resolved the circumstellar debris disk around HD 111520 at a projected range of ∼30–100 AU in both total and polarized H-band intensity. The disk is seen edge-on at a position angle of 165° along the spine of emission. A slight inclination and asymmetric warp are covariant and alter the interpretation of the observed disk emission. We employ three point-spread function subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 the most extreme example of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ∼40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10% to 40% from 0.″5 to 0.″8 from the star. The combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.

  20. Searching for Outer Planet Debris Disks/Rings with WISE

    NASA Astrophysics Data System (ADS)

    Skrutskie, M. F.; Masci, F.; Fowler, J.; Cutri, R. M.; Verbiscer, A.; Wright, E. L.

    2011-10-01

    The NASA Wide-Field Infrared Survey Explorer (WISE) imaged the entire celestial sphere at 3.4, 4.6, 12, and 22μm during its 9 month cryogenic survey mission with typical 5-sigma sensitivity for point source detection near the ecliptic of 0.08, 0.11, 1, and 6 mJy (Wright et al. 2010). In addition to the detection of hundreds of millions of stars and galaxies as well as a vast number of known and new asteroids (Mainzer et al. 2011), WISE was sensitive to extended emission from warm dust in the Solar System, for example from zodiacal dust bands and comet debris trails. WISE also scanned all of the superior planets during its mission, encountering them serendipitously during normal Survey operations. This paper presents the result of searches for dust emission originating from irregular satellite impact debris or activity around Jupiter, Saturn, Uranus and Neptune, primarily in the longest wavelength band at 22μm. WISE delivered angular resolution of 6 arcseconds in the three shorterwavelength bands and 12 arcseconds in the band most suited for outer Solar System dust detection at 22μm. Jupiter and Saturn heavily saturate the detectors and scattered light limits the inner radius for analysis. Since WISE acquired its observations over many days, and in some cases weeks, we have constructed deep coadds in the frame of the moving planet rather than using standard WISE Atlas Image Coadds. WISE typically dedicated about 70 sec of observation to each point on the sky near the ecliptic plane, so WISE observations are not nearly as sensitive as those possible with the Spitzer Space Telescope during its cryogenic mission. All of the giant planets were located in a region of the sky scanned in the second half of WISE's all-sky coverage. As a result none of these fields was included in the 57% of the sky covered in the April 2011 WISE Preliminary Data Release. At the time of the WISE Final Data Release, planned for Spring 2012, the individual calibrated "Level 1" frames

  1. Ultraviolet Spectroscopic Census of the Edge-on Debris Disk HD32297

    NASA Astrophysics Data System (ADS)

    Fusco, Michael; Redfield, S.; Roberge, A.; Stapelfeldt, K. R.; Jensen, A. G.

    2013-01-01

    Edge-on, optically thin, debris disks provide the unique opportunity to probe the intrinsic physical properties of gas in a disk at the late stages of planet formation. Using the host star as a background source, trace atomic and molecular disk species can be detected in absorption. Beta Pictoris, at a distance of ~19.3 parsecs, is the canonical edge-on debris disk. A comprehensive chemical inventory of a debris disk to date indicates that carbon is surprisingly overabundant in the disk (Roberge et al. 2006). Redfield (2007) found that the recently discovered edge-on system HD 32297 has the strongest NaI absorption of any known debris disk (five times that of beta Pic). We present new high resolution spectra of HD32297 obtained by the Space Telescope Imaging Spectrograph (STIS) onboard the Hubble Space Telescope (HST). These observations enable a comparative study by compiling a comprehensive gas inventory of the HD 32297 disk. The ultraviolet contains a sizeable number of strong transitions, many of which are located only in this waveband. We present line profile analysis of the strongest of these transitions (e.g., MgI, MgII, MnII, ZnII, FeI, and FeII). Results indicate circumstellar absorption at a radial velocity of ~19 km/s and interstellar absorption at ~23 km/s. Also notable in FeII and MgII was a component at ~26 km/s. The observed flux of HD32297 shortward of 1800 Angstroms is much lower than anticipated, and indicates a discrepancy between the spectral type determined in the optical (A0V) than that determined in the ultraviolet. We present evidence for a significantly cooler spectral type between A7V and F0V. We acknowledge support for this project through NASA HST Grant GO-11569 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555, and a student research fellowship from the Keck Northeast Astronomy Consortium (KNAC) Research Experience

  2. Far-IR Observations of Solar System and Debris Disk Targets Using SIRTF

    NASA Astrophysics Data System (ADS)

    Stansberry, J.; Rieke, G.; Su, K.; Cruikshank, D.; Beichman, C.; Gautier, N.; Stapelfeldt, K.; Werner, M.; Grundy, W.; Fernandez, Y.; SIRTF/MIPS Team

    2002-09-01

    MIPS, the Multiband Imaging Photometer for SIRTF (Space InfraRed Telescope Facility), offers imaging at 24, 70, and 160 μ m, and low resolution spectroscopy (R=20) from 55-95 μ m. The sensitivity and resolution will be significantly better than anything available so far. Launch is scheduled for January 2003, with science observations beginning 3 months after launch. Other instruments on SIRTF are the Infrared Array Camera (IRAC), a 3.5 - 10 μ m imager, and the Infrared Spectrograph (IRS), a 5 -- 40 μ m spectrometer. One goal of the MIPS Team guaranteed time program is to study the properties of objects in the Kuiper Belt, and discover and measure the properties of debris disks around nearby stars. We summarize the nature of our planned observations of ~= 50 KBOs and Centaurs, and >200 debris disks, and discuss some quirks of planning observations with MIPS.

  3. Analysis of the Chemical Composition of the Atmospheres of Stars with Debris Disks and Planetary Systems

    NASA Astrophysics Data System (ADS)

    Rojas, M.; Drake, N. A.; Chavero, C.; Pereira, C. B.; Kholtygin, A. F.; Solovyov, D. I.

    2013-12-01

    Spectroscopic studies of seven low mass stars in spectral classes F, G, and K are presented. Four of these (HD 1581, HD 10700, HD 17925, and HD 22484) have debris disks and for two of them (HD 22049 and HD 222582(A + B)) planets are observed. Neither a debris disk nor planets have been observed for one the program stars (HD 20766). High resolution spectral observations of the program stars were made at the 2.2-m telescope of the European Southern Observatory (ESO) during 2008 with the FEROS spectrograph (R = 48000, spectral range 3800-9200 Å). The fundamental parameters of the stars are determined, including effective temperature, acceleration of gravity at the stars' surface, microturbulence velocity, metallicity, and the abundances of volatile and refractory elements in their atmospheres. The positions of all these stars are indicated on a Hertzsprung-Russell diagram.

  4. Modeling self-subtraction in angular differential imaging: Application to the HD 32297 debris disk

    SciTech Connect

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; Kalas, Paul

    2014-01-01

    We present a new technique for forward-modeling self-subtraction of spatially extended emission in observations processed with angular differential imaging (ADI) algorithms. High-contrast direct imaging of circumstellar disks is limited by quasi-static speckle noise, and ADI is commonly used to suppress those speckles. However, the application of ADI can result in self-subtraction of the disk signal due to the disk's finite spatial extent. This signal attenuation varies with radial separation and biases measurements of the disk's surface brightness, thereby compromising inferences regarding the physical processes responsible for the dust distribution. To compensate for this attenuation, we forward model the disk structure and compute the form of the self-subtraction function at each separation. As a proof of concept, we apply our method to 1.6 and 2.2 μm Keck adaptive optics NIRC2 scattered-light observations of the HD 32297 debris disk reduced using a variant of the 'locally optimized combination of images' algorithm. We are able to recover disk surface brightness that was otherwise lost to self-subtraction and produce simplified models of the brightness distribution as it appears with and without self-subtraction. From the latter models, we extract radial profiles for the disk's brightness, width, midplane position, and color that are unbiased by self-subtraction. Our analysis of these measurements indicates a break in the brightness profile power law at r ≈ 110 AU and a disk width that increases with separation from the star. We also verify disk curvature that displaces the midplane by up to 30 AU toward the northwest relative to a straight fiducial midplane.

  5. Modeling Self-subtraction in Angular Differential Imaging: Application to the HD 32297 Debris Disk

    NASA Astrophysics Data System (ADS)

    Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; Kalas, Paul

    2014-01-01

    We present a new technique for forward-modeling self-subtraction of spatially extended emission in observations processed with angular differential imaging (ADI) algorithms. High-contrast direct imaging of circumstellar disks is limited by quasi-static speckle noise, and ADI is commonly used to suppress those speckles. However, the application of ADI can result in self-subtraction of the disk signal due to the disk's finite spatial extent. This signal attenuation varies with radial separation and biases measurements of the disk's surface brightness, thereby compromising inferences regarding the physical processes responsible for the dust distribution. To compensate for this attenuation, we forward model the disk structure and compute the form of the self-subtraction function at each separation. As a proof of concept, we apply our method to 1.6 and 2.2 μm Keck adaptive optics NIRC2 scattered-light observations of the HD 32297 debris disk reduced using a variant of the "locally optimized combination of images" algorithm. We are able to recover disk surface brightness that was otherwise lost to self-subtraction and produce simplified models of the brightness distribution as it appears with and without self-subtraction. From the latter models, we extract radial profiles for the disk's brightness, width, midplane position, and color that are unbiased by self-subtraction. Our analysis of these measurements indicates a break in the brightness profile power law at r ≈ 110 AU and a disk width that increases with separation from the star. We also verify disk curvature that displaces the midplane by up to 30 AU toward the northwest relative to a straight fiducial midplane.

  6. FIVE DEBRIS DISKS NEWLY REVEALED IN SCATTERED LIGHT FROM THE HUBBLE SPACE TELESCOPE NICMOS ARCHIVE

    SciTech Connect

    Soummer, Rémi; Perrin, Marshall D.; Pueyo, Laurent; Choquet, Élodie; Chen, Christine; Golimowski, David A.; Brendan Hagan, J.; Moerchen, Margaret; N'Diaye, Mamadou; Wolff, Schuyler; Debes, John; Hines, Dean C.; Mittal, Tushar; Rajan, Abhijith; Schneider, Glenn

    2014-05-10

    We have spatially resolved five debris disks (HD 30447, HD 35841, HD 141943, HD 191089, and HD 202917) for the first time in near-infrared scattered light by reanalyzing archival Hubble Space Telescope (HST)/NICMOS coronagraphic images obtained between 1999 and 2006. One of these disks (HD 202917) was previously resolved at visible wavelengths using the HST/Advanced Camera for Surveys. To obtain these new disk images, we performed advanced point-spread function subtraction based on the Karhunen-Loève Image Projection algorithm on recently reprocessed NICMOS data with improved detector artifact removal (Legacy Archive PSF Library And Circumstellar Environments (LAPLACE) Legacy program). Three of the disks (HD 30447, HD 35841, and HD 141943) appear edge-on, while the other two (HD 191089 and HD 202917) appear inclined. The inclined disks have been sculpted into rings; in particular, the disk around HD 202917 exhibits strong asymmetries. All five host stars are young (8-40 Myr), nearby (40-100 pc) F and G stars, and one (HD 141943) is a close analog to the young Sun during the epoch of terrestrial planet formation. Our discoveries increase the number of debris disks resolved in scattered light from 19 to 23 (a 21% increase). Given their youth, proximity, and brightness (V = 7.2-8.5), these targets are excellent candidates for follow-up investigations of planet formation at visible wavelengths using the HST/Space Telescope Imaging Spectrograph coronagraph, at near-infrared wavelengths with the Gemini Planet Imager and Very Large Telescope/SPHERE, and at thermal infrared wavelengths with the James Webb Space Telescope NIRCam and MIRI coronagraphs.

  7. CHEMISTRY OF IMPACT-GENERATED SILICATE MELT-VAPOR DEBRIS DISKS

    SciTech Connect

    Visscher, Channon; Fegley, Bruce Jr.

    2013-04-10

    In the giant impact theory for lunar origin, the Moon forms from material ejected by the impact into an Earth-orbiting disk. Here we report the initial results from a silicate melt-vapor equilibrium chemistry model for such impact-generated planetary debris disks. In order to simulate the chemical behavior of a two-phase (melt+vapor) disk, we calculate the temperature-dependent pressure and chemical composition of vapor in equilibrium with molten silicate from 2000 to 4000 K. We consider the elements O, Na, K, Fe, Si, Mg, Ca, Al, Ti, and Zn for a range of bulk silicate compositions (Earth, Moon, Mars, eucrite parent body, angrites, and ureilites). In general, the disk atmosphere is dominated by Na, Zn, and O{sub 2} at lower temperatures (<3000 K) and SiO, O{sub 2}, and O at higher temperatures. The high-temperature chemistry is consistent for any silicate melt composition, and we thus expect abundant SiO, O{sub 2}, and O to be a common feature of hot, impact-generated debris disks. In addition, the saturated silicate vapor is highly oxidizing, with oxygen fugacity (f{sub O{sub 2}}) values (and hence H{sub 2}O/H{sub 2} and CO{sub 2}/CO ratios) several orders of magnitude higher than those in a solar-composition gas. High f{sub O{sub 2}} values in the disk atmosphere are found for any silicate composition because oxygen is the most abundant element in rock. We thus expect high oxygen fugacity to be a ubiquitous feature of any silicate melt-vapor disk produced via collisions between rocky planets.

  8. Chemistry of Impact-generated Silicate Melt-vapor Debris Disks

    NASA Astrophysics Data System (ADS)

    Visscher, Channon; Fegley, Bruce, Jr.

    2013-04-01

    In the giant impact theory for lunar origin, the Moon forms from material ejected by the impact into an Earth-orbiting disk. Here we report the initial results from a silicate melt-vapor equilibrium chemistry model for such impact-generated planetary debris disks. In order to simulate the chemical behavior of a two-phase (melt+vapor) disk, we calculate the temperature-dependent pressure and chemical composition of vapor in equilibrium with molten silicate from 2000 to 4000 K. We consider the elements O, Na, K, Fe, Si, Mg, Ca, Al, Ti, and Zn for a range of bulk silicate compositions (Earth, Moon, Mars, eucrite parent body, angrites, and ureilites). In general, the disk atmosphere is dominated by Na, Zn, and O2 at lower temperatures (<3000 K) and SiO, O2, and O at higher temperatures. The high-temperature chemistry is consistent for any silicate melt composition, and we thus expect abundant SiO, O2, and O to be a common feature of hot, impact-generated debris disks. In addition, the saturated silicate vapor is highly oxidizing, with oxygen fugacity (f_O_2) values (and hence H2O/H2 and CO2/CO ratios) several orders of magnitude higher than those in a solar-composition gas. High f_O_2 values in the disk atmosphere are found for any silicate composition because oxygen is the most abundant element in rock. We thus expect high oxygen fugacity to be a ubiquitous feature of any silicate melt-vapor disk produced via collisions between rocky planets.

  9. THE INCIDENCE OF DEBRIS DISKS AT 24 {mu}m AND 670 Myr

    SciTech Connect

    Urban, Laurie E.; Trilling, David E.; Rieke, George; Su, Kate

    2012-05-10

    We use Spitzer Space Telescope 24 {mu}m data to search for debris disks among 122 AFGKM stars from the {approx}670 Myr clusters Hyades, Coma Ber, and Praesepe, utilizing a number of advances in data reduction and determining the intrinsic colors of main-sequence stars. For our sample, the 1{sigma} dispersion about the main-sequence V-K{sub S} , K{sub S} -[24] locus is approximately 3.1%. We identify seven debris disks at 10% or more ({>=}3{sigma} confidence level) above the expected K{sub S} -[24] for purely photospheric emission. The incidence of excesses of 10% or greater in our sample at this age is 5.7{sup +3.1} {sub -1.7}%. Combining with results from the literature, the rate is 7.8{sup +4.2}{sub -2.1}% for early-type (B9-F4) stars and 2.7{sup +3.3}{sub -1.7}% for solar-like (F5-K9) stars. Our primary sample has strict criteria for inclusion to allow comparison with other work; when we relax these criteria, three additional debris disks are detected. They are all around stars of solar-like type and hence reinforce our conclusion that disks around such stars are still relatively common at 670 Myr and are similar to the rate around early-type stars. The apparently small difference in decay rates between early-type and solar-like stars is inconsistent with the first-order theoretical predictions that the later type stellar disks would decay an order of magnitude more quickly than the earlier type ones.

  10. CONFIRMING THE PRIMARILY SMOOTH STRUCTURE OF THE VEGA DEBRIS DISK AT MILLIMETER WAVELENGTHS

    SciTech Connect

    Hughes, A. Meredith; Plambeck, Richard; Chiang, Eugene; Wilner, David J.; Andrews, Sean M.; Mason, Brian; Carpenter, John M.; Chiang, Hsin-Fang; Williams, Jonathan P.; Hales, Antonio; Su, Kate; Dicker, Simon; Korngut, Phil; Devlin, Mark

    2012-05-01

    Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with higher sensitivity has disputed the observed structure. We present three new millimeter-wavelength observations that help to resolve the puzzling and contradictory observations. We have observed the Vega system with the Submillimeter Array (SMA) at a wavelength of 880 {mu}m and an angular resolution of 5''; with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at a wavelength of 1.3 mm and an angular resolution of 5''; and with the Green Bank Telescope (GBT) at a wavelength of 3.3 mm and angular resolution of 10''. Despite high sensitivity and short baselines, we do not detect the Vega debris disk in either of the interferometric data sets (SMA and CARMA), which should be sensitive at high significance to clumpy structure based on previously reported observations. We obtain a marginal (3{sigma}) detection of disk emission in the GBT data; the spatial distribution of the emission is not well constrained. We analyze the observations in the context of several different models, demonstrating that the observations are consistent with a smooth, broad, axisymmetric disk with inner radius 20-100 AU and width {approx}> 50 AU. The interferometric data require that at least half of the 860 {mu}m emission detected by previous single-dish observations with the James Clerk Maxwell Telescope be distributed axisymmetrically, ruling out strong contributions from flux concentrations on spatial scales of {approx}<100 AU. These observations support recent results from the Plateau de Bure Interferometer indicating that previous detections of clumpy structure in the Vega debris disk were spurious.

  11. Discovery of Molecular Gas around HD 131835 in an APEX Molecular Line Survey of Bright Debris Disks

    NASA Astrophysics Data System (ADS)

    Moór, A.; Henning, Th.; Juhász, A.; Ábrahám, P.; Balog, Z.; Kóspál, Á.; Pascucci, I.; Szabó, Gy. M.; Vavrek, R.; Curé, M.; Csengeri, T.; Grady, C.; Güsten, R.; Kiss, Cs.

    2015-11-01

    Debris disks are considered to be gas-poor, but recent observations revealed molecular or atomic gas in several 10-40 Myr old systems. We used the APEX and IRAM 30 m radio telescopes to search for CO gas in 20 bright debris disks. In one case, around the 16 Myr old A-type star HD 131835, we discovered a new gas-bearing debris disk, where the CO 3-2 transition was successfully detected. No other individual system exhibited a measurable CO signal. Our Herschel Space Observatory far-infrared images of HD 131835 marginally resolved the disk at both 70 and 100 μm, with a characteristic radius of ˜170 AU. While in stellar properties HD 131835 resembles β Pic, its dust disk properties are similar to those of the most massive young debris disks. With the detection of gas in HD 131835 the number of known debris disks with CO content has increased to four, all of them encircling young (≤40 Myr) A-type stars. Based on statistics within 125 pc, we suggest that the presence of a detectable amount of gas in the most massive debris disks around young A-type stars is a common phenomenon. Our current data cannot conclude on the origin of gas in HD 131835. If the gas is secondary, arising from the disruption of planetesimals, then HD 131835 is a comparably young, and in terms of its disk, more massive analog of the β Pic system. However, it is also possible that this system, similar to HD 21997, possesses a hybrid disk, where the gas material is predominantly primordial, while the dust grains are mostly derived from planetesimals.

  12. Bright Debris Disk Candidates Detected with the AKARI/Far-infrared Surveyor

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Wang, Tinggui; Jiang, Peng

    2014-07-01

    We cross-correlate the Hipparcos main-sequence star catalog with the AKARI/FIS catalog and identify 136 stars (at >90% reliability) with far-infrared detections in at least one band. After rejecting 57 stars classified as young stellar objects, Be stars and other type stars with known dust disks or with potential contaminations, and 4 stars without infrared excess emission, we obtain a sample of 75 candidate stars with debris disks. Stars in our sample cover spectral types from B to K with most being early types. This represents a unique sample of luminous debris disks that derived uniformly from an all-sky survey with a spatial resolution factor of four better than the previous such survey by IRAS. Moreover, by collecting the infrared photometric data from other public archives, almost three-quarters of them have infrared excesses in more than one band, allowing an estimate of the dust temperatures. We fit the blackbody model to the broadband spectral energy distribution of these stars to derive the statistical distribution of the disk parameters. Four B stars with excesses in four or more bands require a double blackbody model, with the high one around 100 or 200 K and the low one around 40-50 K.

  13. Substantial reservoirs of molecular hydrogen in the debris disks around young stars

    NASA Technical Reports Server (NTRS)

    Thi, W. F.; Blake, G. A.; van Dishoeck, E. F.; van Zadelhoff, G. J.; Horn, J. M.; Becklin, E. E.; Mannings, V.; Sargent, A. I.; van Den Ancker, M. E.; Natta, A.

    2001-01-01

    Circumstellar accretion disks transfer matter from molecular clouds to young stars and to the sites of planet formation. The disks observed around pre-main-sequence stars have properties consistent with those expected for the pre-solar nebula from which our own Solar System formed 4.5 Gyr ago. But the 'debris' disks that encircle more than 15% of nearby main-sequence stars appear to have very small amounts of gas, based on observations of the tracer molecule carbon monoxide: these observations have yielded gas/dust ratios much less than 0.1, whereas the interstellar value is about 100 (ref. 9). Here we report observations of the lowest rotational transitions of molecular hydrogen (H2) that reveal large quantities of gas in the debris disks around the stars beta Pictoris, 49 Ceti and HD135344. The gas masses calculated from the data are several hundreds to a thousand times greater than those estimated from the CO observations, and yield gas/dust ratios of the same order as the interstellar value.

  14. UV Spectroscopy of Star-grazing Comets Within the 49 Ceti Debris Disk

    NASA Astrophysics Data System (ADS)

    Miles, Brittany E.; Roberge, Aki; Welsh, Barry

    2016-06-01

    We present the analysis of time-variable Doppler-shifted absorption features in far-UV spectra of the unusual 49 Ceti debris disk. This nearly edge-on disk is one of the brightest known and is one of the very few containing detectable amounts of circumstellar (CS) gas as well as dust. In our two visits of Hubble Space Telescope STIS spectra, variable absorption features are seen on the wings of lines arising from Cii and Civ but not for any of the other CS absorption lines. Similar variable features have long been seen in spectra of the well-studied β Pictoris debris disk and attributed to the transits of star-grazing comets. We calculated the velocity ranges and apparent column densities of the 49 Cet variable gas, which appears to have been moving at velocities of tens to hundreds of km s‑1 relative to the central star. The velocities in the redshifted variable event seen in the second visit show that the maximum distances of the infalling gas at the time of transit were about 0.05–0.2 au from the central star. A preliminary attempt at a composition analysis of the redshifted event suggests that the C/O ratio in the infalling gas is super-solar, as it is in the bulk of the stable disk gas.

  15. Near-infrared imaging of white dwarfs with candidate debris disks

    SciTech Connect

    Wang, Zhongxiang; Tziamtzis, Anestis; Wang, Xuebing

    2014-02-10

    We have carried out JHK{sub s} imaging of 12 white dwarf debris disk candidates from the WIRED Sloan Digital Sky Survey Data Release 7 catalog, aiming to confirm or rule out disks among these sources. On the basis of positional identification and the flux density spectra, we find that seven white dwarfs have excess infrared emission, but mostly at Wide-field Infrared Survey Explorer W1 and W2 bands. Four are due to nearby red objects consistent with background galaxies or very low mass dwarfs, and one exhibits excess emission at JHK{sub s} consistent with an unresolved L0 companion at the correct distance. While our photometry is not inconsistent with all seven excesses arising from disks, the stellar properties are distinct from the known population of debris disk white dwarfs, making the possibility questionable. In order to further investigate the nature of these infrared sources, warm Spitzer imaging is needed, which may help resolve galaxies from the white dwarfs and provide more accurate flux measurements.

  16. Bright debris disk candidates detected with the AKARI/FAR-infrared surveyor

    SciTech Connect

    Liu, Qiong; Wang, Tinggui; Jiang, Peng E-mail: twang@ustc.edu.cn

    2014-07-01

    We cross-correlate the Hipparcos main-sequence star catalog with the AKARI/FIS catalog and identify 136 stars (at >90% reliability) with far-infrared detections in at least one band. After rejecting 57 stars classified as young stellar objects, Be stars and other type stars with known dust disks or with potential contaminations, and 4 stars without infrared excess emission, we obtain a sample of 75 candidate stars with debris disks. Stars in our sample cover spectral types from B to K with most being early types. This represents a unique sample of luminous debris disks that derived uniformly from an all-sky survey with a spatial resolution factor of four better than the previous such survey by IRAS. Moreover, by collecting the infrared photometric data from other public archives, almost three-quarters of them have infrared excesses in more than one band, allowing an estimate of the dust temperatures. We fit the blackbody model to the broadband spectral energy distribution of these stars to derive the statistical distribution of the disk parameters. Four B stars with excesses in four or more bands require a double blackbody model, with the high one around 100 or 200 K and the low one around 40-50 K.

  17. Insights into Planet Formation from Debris Disks - II. Giant Impacts in Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Wyatt, Mark C.; Jackson, Alan P.

    2016-03-01

    Giant impacts refer to collisions between two objects each of which is massive enough to be considered at least a planetary embryo. The putative collision suffered by the proto-Earth that created the Moon is a prime example, though most Solar System bodies bear signatures of such collisions. Current planet formation models predict that an epoch of giant impacts may be inevitable, and observations of debris around other stars are providing mounting evidence that giant impacts feature in the evolution of many planetary systems. This chapter reviews giant impacts, focussing on what we can learn about planet formation by studying debris around other stars. Giant impact debris evolves through mutual collisions and dynamical interactions with planets. General aspects of this evolution are outlined, noting the importance of the collision-point geometry. The detectability of the debris is discussed using the example of the Moon-forming impact. Such debris could be detectable around another star up to 10 Myr post-impact, but model uncertainties could reduce detectability to a few 100 yr window. Nevertheless the 3 % of young stars with debris at levels expected during terrestrial planet formation provide valuable constraints on formation models; implications for super-Earth formation are also discussed. Variability recently observed in some bright disks promises to illuminate the evolution during the earliest phases when vapour condensates may be optically thick and acutely affected by the collision-point geometry. The outer reaches of planetary systems may also exhibit signatures of giant impacts, such as the clumpy debris structures seen around some stars.

  18. HST STIS & NICMOS Coronagraphy of Four Debris Disks around Young Solar Analogs

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall D.; Choquet, Elodie; Greenbaum, Alexandra; Ren, Bin; Debes, John H.; Mazoyer, Johan; Ygouf, Marie; Pueyo, Laurent; Aguilar, Jonathan; Chen, Christine; Golimowski, David A.; Hines, Dean C.; N'Diaye, Mamadou; Schneider, Glenn; Soummer, Remi; Stark, Chris; Wolff, Schuyler

    2016-01-01

    We present new deep Hubble Space Telescope STIS coronagraphy of four debris disks around nearby young solar type stars (<40 Myr, G2-F3), corresponding to the age at which terrestrial planet formation was being completed in our own solar system. The four disks were first seen by our team in a reprocessing of the NICMOS archive using modern principal component analysis PSF subtraction algorithms. Our new STIS observations surpass the earlier NICMOS imagery in angular resolution, contrast, and sensitivity to extended diffuse scattered light, enabling a much clearer view of the diverse disk structures and asymmetries. Careful forward modeling of the PSF-subtraction process allows us to accurately assess the surface brightnesses in scattered light. Visible to near-infrared colors from HST STIS and NICMOS can constrain the dust particle properties. Analysis and modeling of these young planetary systems are ongoing.

  19. VOLATILE-RICH CIRCUMSTELLAR GAS IN THE UNUSUAL 49 CETI DEBRIS DISK

    SciTech Connect

    Roberge, Aki; Grady, Carol A.; Welsh, Barry Y.; Kamp, Inga; Weinberger, Alycia J.

    2014-11-20

    We present Hubble Space Telescope Space Telescope Imaging Spectrograph far-UV spectra of the edge-on disk around 49 Ceti, one of the very few debris disks showing submillimeter CO emission. Many atomic absorption lines are present in the spectra, most of which arise from circumstellar gas lying along the line-of-sight to the central star. We determined the line-of-sight C I column density, estimated the total carbon column density, and set limits on the O I column density. Surprisingly, no line-of-sight CO absorption was seen. We discuss possible explanations for this non-detection, and present preliminary estimates of the carbon abundances in the line-of-sight gas. The C/Fe ratio is much greater than the solar value, suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of β Pictoris.

  20. Volatile-rich Circumstellar Gas in the Unusual 49 Ceti Debris Disk

    NASA Astrophysics Data System (ADS)

    Roberge, Aki; Welsh, Barry Y.; Kamp, Inga; Weinberger, Alycia J.; Grady, Carol A.

    2014-11-01

    We present Hubble Space Telescope Space Telescope Imaging Spectrograph far-UV spectra of the edge-on disk around 49 Ceti, one of the very few debris disks showing submillimeter CO emission. Many atomic absorption lines are present in the spectra, most of which arise from circumstellar gas lying along the line-of-sight to the central star. We determined the line-of-sight C I column density, estimated the total carbon column density, and set limits on the O I column density. Surprisingly, no line-of-sight CO absorption was seen. We discuss possible explanations for this non-detection, and present preliminary estimates of the carbon abundances in the line-of-sight gas. The C/Fe ratio is much greater than the solar value, suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of β Pictoris.

  1. HERSCHEL OBSERVATIONS OF GAS AND DUST IN THE UNUSUAL 49 Ceti DEBRIS DISK

    SciTech Connect

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Eiroa, C.; Donaldson, J. K.; Olofsson, J.; Moor, A.; Augereau, J.-C.; Thi, W.-F.; Ardila, D. R.; Woitke, P.

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the ''Gas in Protoplanetary Systems'' (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 {mu}m; 49 Cet is significantly extended in the 70 {mu}m image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 {mu}m and [C II] 158 {mu}m. The C II line was detected at the 5{sigma} level-the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  2. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    NASA Technical Reports Server (NTRS)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moor, A.; Augereau, J.-C.; Howard, C.; Eiroa, C.; Thi, W.-F.; Ardila, D. R.; Sandell, G.; Woitke, P.

    2013-01-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the “Gas in Protoplanetary Systems” (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 micron; 49 Cet is significantly extended in the 70 micron image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O i] 63 micron and [C ii] 158 micron. The C ii line was detected at the 5 sigma level—the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the Oi line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C ii emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  3. THE GEMINI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF GIANT PLANETS AROUND DEBRIS DISK STARS

    SciTech Connect

    Wahhaj, Zahed; Liu, Michael C.; Nielsen, Eric L.; Ftaclas, Christ; Chun, Mark; Biller, Beth A.; Hayward, Thomas L.; Thatte, Niranjan; Tecza, Matthias; Shkolnik, Evgenya L.; Kuchner, Marc; Reid, I. Neill; De Gouveia Dal Pino, Elisabete M.; Gregorio-Hetem, Jane; Boss, Alan; Lin, Douglas N. C.; and others

    2013-08-20

    We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known {beta} Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a {>=}5 M{sub Jup} planet beyond 80 AU, and <21% of debris disk stars have a {>=}3 M{sub Jup} planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d {sup 2} N/dMda{proportional_to}m {sup {alpha}} a {sup {beta}}, where m is planet mass and a is orbital semi-major axis (with a maximum value of a{sub max}). We find that {beta} < -0.8 and/or {alpha} > 1.7. Likewise, we find that {beta} < -0.8 and/or a{sub max} < 200 AU. For the case where the planet frequency rises sharply with mass ({alpha} > 1.7), this occurs because all the planets detected to date have masses above 5 M{sub Jup}, but planets of lower mass could easily have been detected by our search. If we ignore the {beta} Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a {>=}3 M{sub Jup} planet beyond 10 AU, and {beta} < -0.8 and/or {alpha} < -1.5. Likewise, {beta} < -0.8 and/or a{sub max} < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet

  4. Searching for Planets in Holey Debris Disks with the Apodizing Phase Plate

    NASA Astrophysics Data System (ADS)

    Meshkat, Tiffany; Bailey, Vanessa P.; Su, Kate Y. L.; Kenworthy, Matthew A.; Mamajek, Eric E.; Hinz, Philip M.; Smith, Paul S.

    2015-02-01

    We present our first results from a high-contrast imaging search for planetary mass companions around stars with gapped debris disks, as inferred from the stars' bright infrared excesses. For the six considered stars, we model the disks' unresolved infrared spectral energy distributions in order to derive the temperature and location of the disk components. With VLT/NaCo Apodizing Phase Plate coronagraphic L'-band imaging, we search for planetary mass companions that may be sculpting the disks. We detect neither disks nor companions in this sample, confirmed by comparing plausible point sources with archival data. In order to calculate our mass sensitivity limit, we revisit the stellar age estimates. One target, HD 17848, at 540 ± 100 Myr old is significantly older than previously estimated. We then discuss our high-contrast imaging results with respect to the disk properties. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, ESO under program numbers 090.C-0148(A) and 091.C-0457(A)

  5. Herschel/HIFI observations of ionised carbon in the β Pictoris debris disk

    NASA Astrophysics Data System (ADS)

    Cataldi, G.; Brandeker, A.; Olofsson, G.; Larsson, B.; Liseau, R.; Blommaert, J.; Fridlund, M.; Ivison, R.; Pantin, E.; Sibthorpe, B.; Vandenbussche, B.; Wu, Y.

    2014-03-01

    Context. The dusty debris disk around the ~20 Myr old main-sequence A-star β Pictoris is known to contain gas. Evidence points towards a secondary origin of the gas as opposed to being a direct remnant from the initial protoplanetary disk, although the dominant gas production mechanism is so far not identified. The origin of the observed overabundance of C and O compared with solar abundances of metallic elements such as Na and Fe is also unclear. Aims: Our goal is to constrain the spatial distribution of C in the disk, and thereby the gas origin and its abundance pattern. Methods: We used the HIFI instrument on board the Herschel Space Observatory to observe and spectrally resolve C ii emission at 158 μm from the β Pic debris disk. Assuming a disk in Keplerian rotation and a model for the line emission from the disk, we used the spectrally resolved line profile to constrain the spatial distribution of the gas. Results: We detect the C ii 158 μm emission. Modelling the shape of the emission line shows that most of the gas is located at about ~100 AU or beyond. We estimate a total C gas mass of 1.3-0.5+1.3 × 10-2 M⊕ (central 90% confidence interval). The data suggest that more gas is located on the south-west side of the disk than on the north-east side. The shape of the emission line is consistent with the hypothesis of a well mixed gas (constant C/Fe ratio throughout the disk). Assuming instead a spatial profile expected from a simplified accretion disk model, we found it to give a significantly poorer fit to the observations. Conclusions: Since the bulk of the gas is found outside 30 AU, we argue that the cometary objects known as "falling evaporating bodies" are probably not the dominant source of gas; production from grain-grain collisions or photodesorption seems more likely. The incompatibility of the observations with a simplified accretion disk model might favour a preferential depletion explanation for the overabundance of C and O, although it is

  6. ALMA OBSERVATIONS OF THE DEBRIS DISK AROUND THE YOUNG SOLAR ANALOG HD 107146

    SciTech Connect

    Ricci, L.; Carpenter, J. M.; Fu, B.; Hughes, A. M.; Corder, S.; Isella, A.

    2015-01-10

    We present the Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at a wavelength of 1.25 mm of the debris disk surrounding the ∼100 Myr old solar analog HD 107146. The continuum emission extends from about 30 to 150 AU from the central star with a decrease in the surface brightness at intermediate radii. We analyze the ALMA interferometric visibilities using debris disk models with radial profiles for the dust surface density parameterized as (1) a single power law, (2) a single power law with a gap, and (3) a double power law. We find that models with a gap of radial width ∼8 AU at a distance of ∼80 AU from the central star, as well as double power-law models with a dip in the dust surface density at ∼70 AU provide significantly better fits to the ALMA data than single power-law models. We discuss possible scenarios for the origin of the HD 107146 debris disk using models of planetesimal belts in which the formation of Pluto-sized objects trigger disruptive collisions of large bodies, as well as models that consider the interaction of a planetary system with a planetesimal belt and spatial variation of the dust opacity across the disk. If future observations with higher angular resolution and sensitivity confirm the fully depleted gap structure discussed here, a planet with a mass of approximately a few Earth masses in a nearly circular orbit at ∼80 AU from the central star would be a possible explanation for the presence of the gap.

  7. ALMA Observations of the Debris Disk around the Young Solar Analog HD 107146

    NASA Astrophysics Data System (ADS)

    Ricci, L.; Carpenter, J. M.; Fu, B.; Hughes, A. M.; Corder, S.; Isella, A.

    2015-01-01

    We present the Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at a wavelength of 1.25 mm of the debris disk surrounding the ~100 Myr old solar analog HD 107146. The continuum emission extends from about 30 to 150 AU from the central star with a decrease in the surface brightness at intermediate radii. We analyze the ALMA interferometric visibilities using debris disk models with radial profiles for the dust surface density parameterized as (1) a single power law, (2) a single power law with a gap, and (3) a double power law. We find that models with a gap of radial width ~8 AU at a distance of ~80 AU from the central star, as well as double power-law models with a dip in the dust surface density at ~70 AU provide significantly better fits to the ALMA data than single power-law models. We discuss possible scenarios for the origin of the HD 107146 debris disk using models of planetesimal belts in which the formation of Pluto-sized objects trigger disruptive collisions of large bodies, as well as models that consider the interaction of a planetary system with a planetesimal belt and spatial variation of the dust opacity across the disk. If future observations with higher angular resolution and sensitivity confirm the fully depleted gap structure discussed here, a planet with a mass of approximately a few Earth masses in a nearly circular orbit at ~80 AU from the central star would be a possible explanation for the presence of the gap.

  8. Unraveling the mystery of exozodiacal dust

    NASA Astrophysics Data System (ADS)

    Ertel, Steve; Augereau, Jean-Charles; Thebault, Philippe; Absil, Olivier; Bonsor, Amy; Defrere, Denis; Kral, Quentin; Le Bouquin, Jean-Baptiste; Lebreton, Jeremy; Coude du Foresto, Vincent

    2013-07-01

    Exozodiacal dust clouds are thought to be the extrasolar analogs of the Solar System's zodiacal dust. Studying these systems provides insights in the architecture of the innermost regions of planetary systems, including the habitable zone. Furthermore, the mere presence of the dust may result in major obstacles for direct imaging of earth-like planets. Our EXOZODI project aims to detect and study exozodiacal dust and to explain its origin. We are carrying out the first large, near-infrared interferometric survey in the northern (CHARA/FLUOR) and southern (VLTI/PIONIER) hemisphere. Preliminary results suggest a detection rate of up to 30% around A to K type stars and interesting trends with spectral type and age. In addition to the statistical analysis of our survey results, detailed modeling studies of single systems, modeling of possible dust creation mechanisms and the development of next-generation modeling tools dedicated to address the mystery of exozodiacal dust are main tasks of our project.

  9. HUBBLE SPACE TELESCOPE OPTICAL IMAGING OF THE ERODING DEBRIS DISK HD 61005

    SciTech Connect

    Maness, H. L.; Kalas, P.; Peek, K. M. G.; Chiang, E. I.; Graham, James R.; Scherer, K.; Fitzgerald, M. P.; Hines, D. C.; Schneider, G.; Metchev, S. A.

    2009-12-20

    We present Hubble Space Telescope optical coronagraphic polarization imaging observations of the dusty debris disk HD 61005. The scattered light intensity image and polarization structure reveal a highly inclined disk with a clear asymmetric, swept back component, suggestive of significant interaction with the ambient interstellar medium (ISM). The combination of our new data with the published 1.1 mum discovery image shows that the grains are blue scattering with no strong color gradient as a function of radius, implying predominantly submicron-sized grains. We investigate possible explanations that could account for the observed swept back, asymmetric morphology. Previous work has suggested that HD 61005 may be interacting with a cold, unusually dense interstellar cloud. However, limits on the intervening interstellar gas column density from an optical spectrum of HD 61005 in the Na I D lines render this possibility unlikely. Instead, HD 61005 may be embedded in a more typical warm, low-density cloud that introduces secular perturbations to dust grain orbits. This mechanism can significantly distort the ensemble disk structure within a typical cloud crossing time. For a counterintuitive relative flow direction-parallel to the disk midplane-we find that the structures generated by these distortions can very roughly approximate the HD 61005 morphology. Future observational studies constraining the direction of the relative ISM flow will thus provide an important constraint for future modeling. Independent of the interpretation for HD 61005, we expect that interstellar gas drag likely plays a role in producing asymmetries observed in other debris disk systems, such as HD 15115 and delta Velorum.

  10. An HST/NICMOS Coronagraphic Imaging Survey of Protoplanetary and Debris Disks Through the Epochs of Planet-Building.

    NASA Astrophysics Data System (ADS)

    Schneider, G.; HST/GO 10177 Team

    2005-12-01

    During HST Cycle 13 we conducted a highly sensitive 52-target NICMOS coronagraphic circumstellar disk imaging survey. Our survey provides: (a) critically needed high resolution scattered-light imagery of protoplanetary and debris disks to assist in discriminating between proposed evolutionary scenarios in the epochs of planet-building, (b) a legacy of cataloged disk morphologies for interpreting mid- and far-IR SEDs (e.g., Spitzer) and (c) reliable, spatially resolved, photometry and flux density limits for non-detections. Our high-contrast scattered-light imagery yields, directly, the spatial distribution of the grains for disks detected within the sensitivity limits of our survey and which cannot be uniquely inferred from (longer-wavelength) spectral energy distributions alone. Asymmetries (e.g., warps, gaps, arc, spirals, rings, axial anisotropies, etc.) in the spatial distributions of dusty debris in evolved disks provide evidence for unseen co-orbital planetary-mass companions through their dynamical interactions with the disk grains. Spatially resolved flux-density limits for non-detections provide constraints to break degeneracies in possible disk geometries and compositions which are otherwise coupled in SED models of thermally emissive disks. We provide an overview of our survey, highlighted with results from both our YSO and debris disk targets. Support for this work was provided by NASA through grant number GO-10177 from STScI, operated by the Association of Universities for Research in Astronomy Incorporated, under NASA contract NAS5-26555.

  11. RESOLVED SUBMILLIMETER OBSERVATIONS OF THE HR 8799 AND HD 107146 DEBRIS DISKS

    SciTech Connect

    Hughes, A. Meredith; Wilner, David J.; Andrews, Sean M.; Murray-Clay, Ruth A.; Qi Chunhua; Williams, Jonathan P.; Su, Kate Y. L.

    2011-10-10

    We present 880 {mu}m Submillimeter Array observations of the debris disks around the young solar analog HD 107146 and the multiple-planet host star HR 8799, at an angular resolution of 3'' and 6'', respectively. We spatially resolve the inner edge of the disk around HR 8799 for the first time. While the data are not sensitive enough (with rms noise of 1 mJy) to constrain the system geometry, we demonstrate that a model by Su et al. based on the spectral energy distribution (SED) with an inner radius of 150 AU predicts the spatially resolved data well. Furthermore, by modeling simultaneously the SED and visibilities, we demonstrate that the dust is distributed in a broad (of order 100 AU) annulus rather than a narrow ring. We also model the observed SED and visibilities for the HD 107146 debris disk and generate a model of the dust emission that extends in a broad band between 50 and 170 AU from the star. We perform an a posteriori comparison with existing 1.3 mm CARMA observations and demonstrate that a smooth, axisymmetric model reproduces all of the available millimeter-wavelength data well.

  12. Hot exozodiacal dust resolved around Vega with IOTA/IONIC

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; Augereau, J.-C.; di Folco, E.; Berger, J.-P.; Coudé du Foresto, V.; Kervella, P.; Le Bouquin, J.-B.; Lebreton, J.; Millan-Gabet, R.; Monnier, J. D.; Olofsson, J.; Traub, W.

    2011-10-01

    Context. Although debris discs have been detected around a significant number of main-sequence stars, only a few of them are known to harbour hot dust in their inner part where terrestrial planets may have formed. Thanks to infrared interferometric observations, it is possible to obtain a direct measurement of these regions, which are of prime importance for preparing future exo-Earth characterisation missions. Aims: We resolve the exozodiacal dust disc around Vega with the help of infrared stellar interferometry and estimate the integrated H-band flux originating from the first few AUs of the debris disc. Methods: Precise H-band interferometric measurements were obtained on Vega with the 3-telescope IOTA/IONIC interferometer (Mount Hopkins, Arizona). Thorough modelling of both interferometric data (squared visibility and closure phase) and spectral energy distribution was performed to constrain the nature of the near-infrared excess emission. Results: Resolved circumstellar emission within ~6 AU from Vega is identified at the 3-σ level. The most straightforward scenario consists in a compact dust disc producing a thermal emission that is largely dominated by small grains located between 0.1 and 0.3 AU from Vega and accounting for 1.23 ± 0.45% of the near-infrared stellar flux for our best-fit model. This flux ratio is shown to vary slightly with the geometry of the model used to fit our interferometric data (variations within ± 0.19%). Conclusions: The presence of hot exozodiacal dust in the vicinity of Vega, initially revealed by K-band CHARA/FLUOR observations, is confirmed by our H-band IOTA/IONIC measurements. Whereas the origin of the dust is still uncertain, its presence and the possible connection with the outer disc suggest that the Vega system is currently undergoing major dynamical perturbations.

  13. A RESOLVED DEBRIS DISK AROUND THE CANDIDATE PLANET-HOSTING STAR HD 95086

    SciTech Connect

    Moór, A.; Ábrahám, P.; Szabó, Gy. M.; Kiss, Cs.; Kóspál, Á.; Apai, D.; Pascucci, I.; Balog, Z.; Henning, Th.; Csengeri, T.; Grady, C.; Juhász, A.; Szulágyi, J.; Vavrek, R.

    2013-10-01

    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, β Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of ∼6.''0 × 5.''4 (540 × 490 AU) and disk inclination of ∼25°. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist.

  14. A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Kospal, A.; Szabo, Gy. M.; Apai, D.; Balog, Z.; Csengeri, T.; Grady, C.; Henning, Th.; Juhasz, J.; Kiss, Cs.; Pasucci, I.; Szulagyi, J.; Vavrek, R.

    2013-01-01

    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 × 5.4 (540 × 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist.

  15. Searching for the HR 8799 Debris Disk with HST/STIS

    NASA Astrophysics Data System (ADS)

    Gerard, B.; Lawler, S.; Marois, C.; Tannock, M.; Matthews, B.; Venn, K.

    2016-06-01

    We present a new algorithm for space telescope high contrast imaging of close-to-face-on planetary disks called Optimized Spatially Filtered (OSFi) normalization. This algorithm is used on HR 8799 Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) coronagraphic archival data, showing an over-luminosity after reference star point-spread function (PSF) subtraction that may be from the inner disk and/or planetesimal belt components of this system. The PSF-subtracted radial profiles in two separate epochs from 2011 and 2012 are consistent with one another, and self-subtraction shows no residual in both epochs. We explore a number of possible false-positive scenarios that could explain this residual flux, including telescope breathing, spectral differences between HR 8799 and the reference star, imaging of the known warm inner disk component, OSFi algorithm throughput and consistency with the standard spider normalization HST PSF subtraction technique, and coronagraph misalignment from pointing accuracy. In comparison to another similar STIS data set, we find that the over-luminosity is likely a result of telescope breathing and spectral difference between HR 8799 and the reference star. Thus, assuming a non-detection, we derive upper limits on the HR 8799 dust belt mass in small grains. In this scenario, we find that the flux of these micron-sized dust grains leaving the system due to radiation pressure is small enough to be consistent with measurements of other debris disk halos.

  16. Dust and Polycyclic Aromatic Hydrocarbon in the HD 34700 Debris Disk

    NASA Astrophysics Data System (ADS)

    Seok, Ji Yeon; Li, Aigen

    2015-08-01

    The debris disk around the Vega-type star HD 34700 is detected in dust thermal emission from the near-infrared (IR) to millimeter (mm) and submm wavelength range. Also detected is a distinct set of emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ {{m}}, which are commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules. We model the observed dust IR spectral energy distribution (SED) and PAH emission features of the HD 34700 disk in terms of porous dust and astronomical-PAHs. Porous dust together with a mixture of neutral and ionized PAHs closely explains the dust IR SED and PAH emission features observed in the HD 34700 disk. Due to the stellar radiation pressure and Poynting–Robertson drag together with the photodissociation of PAHs, substantial removal of dust and PAHs has occurred in the disk, and continuous replenishment of these materials is required to maintain their current abundances. This implies that these materials are not primitive but secondary products probably originating from mutual collisions among planetesimals, asteroids, and comets.

  17. The AU Mic Debris Disk: Far-infrared and Submillimeter Resolved Imaging

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda C.; Kennedy, Grant; Sibthorpe, Bruce; Holland, Wayne; Booth, Mark; Kalas, Paul; MacGregor, Meredith; Wilner, David; Vandenbussche, Bart; Olofsson, Göran; Blommaert, Joris; Brandeker, Alexis; Dent, W. R. F.; de Vries, Bernard L.; Di Francesco, James; Fridlund, Malcolm; Graham, James R.; Greaves, Jane; Heras, Ana M.; Hogerheijde, Michiel; Ivison, R. J.; Pantin, Eric; Pilbratt, Göran L.

    2015-10-01

    We present far-infrared and submillimeter maps from the Herschel Space Observatory and the James Clerk Maxwell Telescope of the debris disk host star AU Microscopii. Disk emission is detected at 70, 160, 250, 350, 450, 500, and 850 μm. The disk is resolved at 70, 160, and 450 μm. In addition to the planetesimal belt, we detect thermal emission from AU Mic’s halo for the first time. In contrast to the scattered light images, no asymmetries are evident in the disk. The fractional luminosity of the disk is 3.9× {10}-4 and its milimeter-grain dust mass is 0.01 {M}\\oplus (±20%). We create a simple spatial model that reconciles the disk spectral energy distribution as a blackbody of 53 ± 2 K (a composite of 39 and 50 K components) and the presence of small (non-blackbody) grains which populate the extended halo. The best-fit model is consistent with the “birth ring” model explored in earlier works, i.e., an edge-on dust belt extending from 8.8 to 40 AU, but with an additional halo component with an {r}-1.5 surface density profile extending to the limits of sensitivity (140 AU). We confirm that AU Mic does not exert enough radiation force to blow out grains. For stellar mass-loss rates of 10–100 times solar, compact (zero porosity) grains can only be removed if they are very small; consistently with previous work, if the porosity is 0.9, then grains approaching 0.1 μm can be removed via corpuscular forces (i.e., the stellar wind).

  18. The AU Mic Debris Disk: Far-infrared and Submillimeter Resolved Imaging

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda C.; Kennedy, Grant; Sibthorpe, Bruce; Holland, Wayne; Booth, Mark; Kalas, Paul; MacGregor, Meredith; Wilner, David; Vandenbussche, Bart; Olofsson, Göran; Blommaert, Joris; Brandeker, Alexis; Dent, W. R. F.; de Vries, Bernard L.; Di Francesco, James; Fridlund, Malcolm; Graham, James R.; Greaves, Jane; Heras, Ana M.; Hogerheijde, Michiel; Ivison, R. J.; Pantin, Eric; Pilbratt, Göran L.

    2015-10-01

    We present far-infrared and submillimeter maps from the Herschel Space Observatory and the James Clerk Maxwell Telescope of the debris disk host star AU Microscopii. Disk emission is detected at 70, 160, 250, 350, 450, 500, and 850 μm. The disk is resolved at 70, 160, and 450 μm. In addition to the planetesimal belt, we detect thermal emission from AU Mic’s halo for the first time. In contrast to the scattered light images, no asymmetries are evident in the disk. The fractional luminosity of the disk is 3.9× {10}-4 and its milimeter-grain dust mass is 0.01 {M}\\oplus (±20%). We create a simple spatial model that reconciles the disk spectral energy distribution as a blackbody of 53 ± 2 K (a composite of 39 and 50 K components) and the presence of small (non-blackbody) grains which populate the extended halo. The best-fit model is consistent with the “birth ring” model explored in earlier works, i.e., an edge-on dust belt extending from 8.8 to 40 AU, but with an additional halo component with an {r}-1.5 surface density profile extending to the limits of sensitivity (140 AU). We confirm that AU Mic does not exert enough radiation force to blow out grains. For stellar mass-loss rates of 10-100 times solar, compact (zero porosity) grains can only be removed if they are very small; consistently with previous work, if the porosity is 0.9, then grains approaching 0.1 μm can be removed via corpuscular forces (i.e., the stellar wind).

  19. Can Eccentric Debris Disks Be Long-lived? A First Numerical Investigation and Application to Zeta(exp 2) Reticuli

    NASA Technical Reports Server (NTRS)

    Faramaz, V.; Beust, H.; Thebault, P.; Augereau, J.-C.; Bonsor, A.; delBurgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.; Mora, A.; Bryden, G.; Danchi, William C.; Eiroa, C.; White, G. J.; Wolf, S.

    2014-01-01

    Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions

  20. Spitzer IRS Spectra of Debris Disks in the Scorpius–Centaurus OB Association

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah; Chen, Christine H.; Mittal, Tushar; Manoj, P.; Watson, Dan; Lisse, Carey M.; Nesvold, Erika; Kuchner, Marc

    2015-08-01

    We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius–Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

  1. THE TUCANA/HOROLOGIUM, COLUMBA, AB DORADUS, AND ARGUS ASSOCIATIONS: NEW MEMBERS AND DUSTY DEBRIS DISKS

    SciTech Connect

    Zuckerman, B.; Rhee, Joseph H.; Song, Inseok; Bessell, M. S. E-mail: rhee@astro.ucla.edu E-mail: bessell@mso.anu.edu.au

    2011-05-10

    We propose 35 star systems within {approx}70 pc of Earth as newly identified members of nearby young stellar kinematic groups; these identifications include the first A- and late-B-type members of the AB Doradus moving group and field Argus Association. All but one of the 35 systems contain a bright solar- or earlier-type star that should make an excellent target for the next generation of adaptive optics (AO) imaging systems on large telescopes. AO imaging has revealed four massive planets in orbit around the {lambda} Boo star HR 8799. Initially, the planets were of uncertain mass due in large part to the uncertain age of the star. We find that HR 8799 is a likely member of the {approx}30 Myr old Columba Association, implying planet masses {approx}6 times that of Jupiter. We consider Spitzer Space Telescope MIPS photometry of stars in the {approx}30 Myr old Tucana/Horologium and Columba Associations, the {approx}40 Myr old field Argus Association, and the {approx}70 Myr old AB Doradus moving group. The percentage of stars in these young stellar groups that display excess emission above the stellar photosphere at 24 and 70 {mu}m wavelengths-indicative of the presence of a dusty debris disk-is compared with corresponding percentages for members of 11 open clusters and stellar associations with ages between 8 and 750 Myr, thus elucidating the decay of debris disks with time.

  2. MODELING COLLISIONAL CASCADES IN DEBRIS DISKS: STEEP DUST-SIZE DISTRIBUTIONS

    SciTech Connect

    Gaspar, Andras; Psaltis, Dimitrios; Rieke, George H.; Oezel, Feryal E-mail: dpsaltis@as.arizona.edu E-mail: fozel@as.arizona.edu

    2012-07-20

    We explore the evolution of the mass distribution of dust in collision-dominated debris disks, using the collisional code introduced in our previous paper. We analyze the equilibrium distribution and its dependence on model parameters by evolving over 100 models to 10 Gyr. With our numerical models, we confirm that systems reach collisional equilibrium with a mass distribution that is steeper than the traditional solution by Dohnanyi. Our model yields a quasi-steady-state slope of n(m) {approx} m{sup -1.88} [n(a) {approx} a{sup -3.65}] as a robust solution for a wide range of possible model parameters. We also show that a simple power-law function can be an appropriate approximation for the mass distribution of particles in certain regimes. The steeper solution has observable effects in the submillimeter and millimeter wavelength regimes of the electromagnetic spectrum. We assemble data for nine debris disks that have been observed at these wavelengths and, using a simplified absorption efficiency model, show that the predicted slope of the particle-mass distribution generates spectral energy distributions that are in agreement with the observed ones.

  3. Fomalhaut b is Probably Not a Planet: Frequent Collisions within the Fomalhaut Debris Disk

    NASA Astrophysics Data System (ADS)

    Lawler, Samantha; Greenstreet, Sarah; Gladman, Brett

    2015-12-01

    Fomalhaut hosts a beautiful debris disk ring and a directly imaged planet candidate, Fomalhaut b, which seems to continually defy expectations. Originally thought to be a Jovian-mass planet constraining the ring, its unexpected spectral properties and highly eccentric, possibly ring-crossing orbit have completely ruled out that possibility. Many theories have been proposed to explain the weird properties of Fomalhaut b, including a large circumplanetary ring, a system of irregular satellites, and a recent small body collision. We expand on the last theory, discussing our collisional probability simulations of the Fomalhaut debris disk, based on the structure of our Kuiper belt, which show the catastrophic disruption rate of d~100 km bodies in the high-eccentricity scattering component is several per decade. This model paints a picture of the Fomalhaut system as having recently (with ~10-100 Myr) experienced a dynamical instability within its planetary system, which scattered a massive number of planetesimals onto large, high-eccentricity orbits similar to that of Fom b. If Fomalhaut b is indeed a dust cloud produced by such a collision, we should soon see another appear, while Fomalhaut b will expand until it is either resolved or becomes too faint to be seen.

  4. Dynamical Heating Induced by Dwarf Planets on Cold Kuiper Belt–like Debris Disks

    NASA Astrophysics Data System (ADS)

    Muñoz-Gutiérrez, M. A.; Pichardo, B.; Reyes-Ruiz, M.; Peimbert, A.

    2015-10-01

    With the use of long-term numerical simulations, we study the evolution and orbital behavior of cometary nuclei in cold Kuiper belt–like debris disks under the gravitational influence of dwarf planets (DPs); we carry out these simulations with and without the presence of a Neptune-like giant planet. This exploratory study shows that in the absence of a giant planet, 10 DPs are enough to induce strong radial and vertical heating on the orbits of belt particles. On the other hand, the presence of a giant planet close to the debris disk, acts as a stability agent reducing the radial and vertical heating. With enough DPs, even in the presence of a Neptune-like giant planet some radial heating remains; this heating grows steadily, re-filling resonances otherwise empty of cometary nuclei. Specifically for the solar system, this secular process seems to be able to provide material that, through resonant chaotic diffusion, increase the rate of new comets spiraling into the inner planetary system, but only if more than the ∼10 known DP sized objects exist in the trans-Neptunian region.

  5. Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution

    NASA Astrophysics Data System (ADS)

    Matthews, Brenda C.; Kavelaars, JJ

    2016-05-01

    Circumstellar disks have long been regarded as windows into planetary systems. The advent of high sensitivity, high resolution imaging in the submillimeter where both the solid and gas components of disks can be detected opens up new possibilities for understanding the dynamical histories of these systems and therefore, a better ability to place our own solar system, which hosts a highly evolved debris disk, in context. Comparisons of dust masses from protoplanetary and debris disks have revealed a stark downturn in mass in millimeter-sized grains around a stellar age of 10 Myr, ostensibly in the "transition disk" phase, suggesting a period of rapid accretion of such grains onto planetesimals. This rapid formation phase is in keeping with radionucleide studies of Kuiper Belt Objects in the solar system. Importantly, this suggests that any thermal gradients in the gas of disks of this era will be "frozen in" to the planetesimals as they rapidly accrete from the solids and ices in their vicinity. Measurements of radial gradients in thermal tracers such as DHO, DCN and other tracers can therefore provide insight into the nascent solar system's abundances. In studies of dynamical evolution of the solar system, it is tacitly assumed that such abundances can reveal the location of formation for bodies now found in the asteroid belt and Kuiper belt. Similarly, evidence of gas detected from collisional evolution in young debris disks could potentially reveal how rapidly objects have dynamically evolved in those systems, most of which will be significantly younger than the solar system.

  6. Temperature condensation trend in the debris-disk binary system ζ2 Reticuli

    NASA Astrophysics Data System (ADS)

    Saffe, C.; Flores, M.; Jaque Arancibia, M.; Buccino, A.; Jofré, E.

    2016-04-01

    Context. Detailed abundance studies have reported different trends between samples of stars with and without planets, possibly related to the planet formation process. Whether these differences are still present between samples of stars with and without debris disk is still unclear. Aims: We explore condensation temperature Tc trends in the unique binary system ζ1 Ret -ζ2 Ret to determine whether there is a depletion of refractories that could be related to the planet formation process. The star ζ2 Ret hosts a debris disk which was detected by an IR excess and confirmed by direct imaging and numerical simulations, while ζ1 Ret does not present IR excess or planets. These characteristics convert ζ2 Ret in a remarkable system where their binary nature together with the strong similarity of both components allow us, for the first time, to achieve the highest possible abundance precision in this system. Methods: We carried out a high-precision abundance determination in both components of the binary system via a line-by-line, strictly differential approach. First we used the Sun as a reference and then we used ζ2 Ret. The stellar parameters Teff, log g, [Fe/H], and vturb were determined by imposing differential ionization and excitation equilibrium of Fe I and Fe II lines, with an updated version of the program FUNDPAR, together with plane-parallel local thermodynamic equilibrium ATLAS9 model atmospheres and the MOOG code. We then derived detailed abundances of 24 different species with equivalent widths and spectral synthesis with the MOOG program. The chemical patterns were compared with a recently calculated solar-twins Tc trend, and then mutually between both stars of the binary system. The rocky mass of depleted refractory material was estimated according to recent data. Results: The star ζ1 Ret is found to be slightly more metal rich than ζ2 Ret by ~0.02 dex. In the differential calculation of ζ1 Ret using ζ2 Ret as reference, the abundances of the

  7. Probing the Atomic and Molecular Inventory of a Beta-Pic Analog, the Young, Edge-On Debris Disk of HD32297

    NASA Astrophysics Data System (ADS)

    Redfield, Seth

    2009-07-01

    Edge-on, optically thin, debris disks provide unique opportunities to probe physical properties of the disk itself. Using the host star as the background source, trace atomic and molecular disk species can be detected in absorption. Redfield {2007} found that the recently discovered edge-on system, HD32297, has the strongest NaI absorption feature of any known debris disk, 5 times the level observed toward beta Pic, the canonical edge-on debris disk. Roberge et al. {2006} compiled the only comprehensive chemical inventory of a debris disk, using beta Pic, and found that carbon was surprisingly overabundant, which has important implications for the physical structure and support of a stable gas disk. What is severely lacking are comparison observations to determine if such an abundance pattern is typical of debris disk systems. HD32297 represents the best opportunity to make such a comparative study and perform a comprehensive gas inventory of a debris disk, due to its high NaI column density. The UV is critical for this work due to the large number of strong transitions {almost 50 ions and molecules are accessible} that are located in, and often only in, the UV. These observations will provide a much needed comparison dataset for addressing the gas chemistry of debris disk systems that are at the critical stage, near the end of planet formation, and in the process of clearing their interplanetary environments.

  8. The Gemini Planet-finding Campaign: The Frequency Of Giant Planets around Debris Disk Stars

    NASA Astrophysics Data System (ADS)

    Wahhaj, Zahed; Liu, Michael C.; Nielsen, Eric L.; Biller, Beth A.; Hayward, Thomas L.; Close, Laird M.; Males, Jared R.; Skemer, Andrew; Ftaclas, Christ; Chun, Mark; Thatte, Niranjan; Tecza, Matthias; Shkolnik, Evgenya L.; Kuchner, Marc; Reid, I. Neill; de Gouveia Dal Pino, Elisabete M.; Alencar, Silvia H. P.; Gregorio-Hetem, Jane; Boss, Alan; Lin, Douglas N. C.; Toomey, Douglas W.

    2013-08-01

    We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known β Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a >=5 M Jup planet beyond 80 AU, and <21% of debris disk stars have a >=3 M Jup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d 2 N/dMdavpropm α a β, where m is planet mass and a is orbital semi-major axis (with a maximum value of a max). We find that β < -0.8 and/or α > 1.7. Likewise, we find that β < -0.8 and/or a max < 200 AU. For the case where the planet frequency rises sharply with mass (α > 1.7), this occurs because all the planets detected to date have masses above 5 M Jup, but planets of lower mass could easily have been detected by our search. If we ignore the β Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a >=3 M Jup planet beyond 10 AU, and β < -0.8 and/or α < -1.5. Likewise, β < -0.8 and/or a max < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet

  9. The Dust Properties of the Beta Pictoris Debris Disk from an Analysis of its Thermal Emission and Scattered Light

    NASA Astrophysics Data System (ADS)

    Ballering, Nicholas; Rieke, George; Su, Kate Y. L.; Gaspar, Andras

    2016-01-01

    Although hundreds of debris disks have been characterized from their infrared spectral energy distributions, the composition of the dust comprising these disks has, in general, not been determined because it is degenerate with the size of the dust grains and their orbital location. Spatially resolved images at multiple wavelengths—including both scattered light and thermal emission—are required to break this degeneracy. The relatively nearby A6 star Beta Pictoris hosts a large, bright, edge-on debris disk that is amenable to a detailed characterization of its composition. We constrain the optical properties (and thus composition) of the dust in this system by simultaneously modelling images in the visible (HST/STIS), near-infrared (HST/WFC3), mid-infrared (Spitzer/MIPS), far-infrared (Herschel/PACS), and sub-mm (ALMA). The HST/WFC3 and Spitzer/MIPS data that we present have not been previously published. We find that a mixture of silicates and organic refractory material can fit this suite of data well. High amounts of water ice and highly porous grains are not favored, which is in agreement with a recent study of the debris disk around HR4796A that also combined thermal and scattered light constraints, but is in contrast with studies of other debris disks that did not include scattered light data. We also find that a model disk composed entirely of silicates will over-predict the scattered light brightness when fit to the thermal data—a discrepancy seen in the modelling attempts of other debris disks that assumed a purely silicate composition.

  10. Probing for Exoplanets Hiding in Dusty Debris Disks: Disk Imaging, Characterization, and Exploration with HST/STIS Multi-roll Coronagraphy

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn; Grady, Carol A.; Hines, Dean C.; Stark, Christopher C.; Debes, John H.; Carson, Joe; Kuchner, Marc J.; Perrin, Marshall D.; Weinberger, Alycia J.; Wisniewski, John P.; Silverstone, Murray D.; Jang-Condell, Hannah; Henning, Thomas; Woodgate, Bruce E.; Serabyn, Eugene; Moro-Martin, Amaya; Tamura, Motohide; Hinz, Phillip M.; Rodigas, Timothy J.

    2014-10-01

    Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of 10 circumstellar debris systems and 1 "mature" protoplanetrary disk, all with HST pedigree, using point-spread-function-subtracted multi-roll coronagraphy. These observations probe stellocentric distances >=5 AU for the nearest systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper Belt regions within our own solar system. They also disclose diffuse very low-surface-brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD 92945 (F disk/F star = 5 × 10-5), confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like substructures and significant asymmetries and complex morphologies include HD 181327, for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper Belt; HD 61005, suggested to be interacting with the local interstellar medium; and HD 15115 and HD 32297, also discussed in the context of putative environmental interactions. These disks and HD 15745 suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk, we find out-of-plane surface brightness asymmetries at >=5 AU that may implicate the existence of one or more planetary perturbers. Time-resolved images of the MP Mus protoplanetary disk provide spatially resolved temporal variability in the disk