Sample records for decapods

  1. Community Structure of Decapod Inhabit Dead Coral Pocillopora sp. in Pemuteran, Bali

    NASA Astrophysics Data System (ADS)

    Pertiwi, N. P. D.; Malik, M. D. A.; Kholilah, N.; Kurniasih, E. M.; Sembiring, A.; Anggoro, A. W.; Ambariyanto; Meyer, C.

    2018-02-01

    Decapod is one of the cryptic fauna associated with coral reefs, which play an important role and accounts for a major part of the biodiversity in the reef ecosystem. However, this biodiversity is largely overlooked and assessment regarding this biodiversity has not been conducted thoroughly due to lack of resources and the difficulties of sample collection. This research used semi-quantitative sampling methods to assess the community structure of decapod species inhabit dead Pocillopora sp. in Pemuteran, Bali. Two dead coral head of Pocillopora sp. were used as pilot study and sampled at the 8-12 m depth. All decapod found were collected and identify into family level. The result showed 214 decapods found consisting 12 families, with Xanthidae as the most abundant family. Community Index which consisting diversity, uniformity, and dominancy, indicated medium diversity, stable uniformity, and low dominancy of decapod community. This result also indicated no dominancy between families of decapod. Meanwhile, Species Density Index showed the value of 84.58 ± 2.04 individual per m3, with mean diversity of 7.05 ± 2.04 individual per m3 for each family.

  2. Paleocene decapod Crustacea from northeastern Mexico: Additions to biostratigraphy and diversity

    NASA Astrophysics Data System (ADS)

    Martínez-Díaz, José Luis; Aguillón-Martínez, Martha Carolina; Luque, Javier; Vega, Francisco J.

    2017-03-01

    New decapod specimens from mid-Paleocene shallow marine deposits of NE Mexico represents an important addition to the diversity, paleobiogeography and evolution of the Crustacea record. In this work, we describe additions to the decapod assemblage from the Paleocene (Selandian) Rancho Nuevo Formation (Difunta Group, Parras Basin, Coahuila). Due to the evident size differences with other decapod assemblages, we compare the new assemblage with those from the Lower Paleocene (Danian) Mexia Clay Member of the Wills Point Formation, Texas, and the Lower Eocene (Ypresian) El Bosque Formation in Chiapas. Species reported from the mid-Paleocene (Selandian) assemblage of the Porters Creek Formation (Alabama), are correlatable to the decapod species from NE Mexico in age, size and systematic composition. The erymid lobster Enoploclytia gardnerae (Rathbun, 1935) is represented by several carapaces and chelae remains. One isolated palm of Callianassidae is included. Numerous carapaces of Linuparus wilcoxensis Rathbun, 1935 are described, representing the most abundant lobster. A new record for the raninid Notopoides sp., and presence of Quasilaeviranina sp. cf. arzignagnensis and Quasilaeviranina ovalis are here reported. New raninids, Claudioranina latacantha sp. nov. and Claudioranina sp. (Cyrtorhininae) are also part of this assemblage. Paraverrucoides alabamensis (Rathbun, 1935), and Tehuacana americana (Rathbun, 1935) are represented by several carapaces exhibiting intraspecific morphological variation. Different sizes among the Early and Middle Paleocene and Early Eocene decapod populations suggests a possible effect of variation in seawater temperatures and/or a Lilliput effect after the K/Pg event.

  3. Biodiversity of Cryptofauna (Decapods) and Their Correlation with Dead Coral Pocillopora sp. Volume at Bunaken Island, North Sulawesi

    NASA Astrophysics Data System (ADS)

    Malik, Muhammad Danie Al; Kholilah, Nenik; Kurniasih, Eka Maya; Sembiring, Andrianus; Pertiwi, Ni Putu Dian; Ambariyanto, Ambariyanto; Munasik, Munasik; Meyer, Christopher

    2018-02-01

    Decapod is known as cryptofauna which is also important component of coral reef biodiversity. Dead corals are one of the area which usually used by decapods to live. This research aims to observe the diversity of cryptofauna (decapods) and the correlation between the number of decapods with the volume of dead corals. Ten dead corals, Pocillopora sp., were collected at 5 m depth at Bunaken Island. These dead corals were measured their volume and all decapods found were counted and identified up to family level. The richness and abundance were analyzed using ACE (Abundance-Based Coverage Estimates) and Chao 1. The results show that there were in total 474 decapods from 13 families found within all ten dead corals. Xanthidae was showed as the most abundance family among all, with 161 individual. Diversity index of decapods was found at medium category with value of 2.01. Rarefaction curve based on richness and abundance showed an estimation of 13 families. The result also indicated that the asymptote stage was reached on the 10th dead coral samples. The correlation between decapod with the volume of dead coral were showed significant positive correlation (r = 0.673, p<0.05). This result provides benefits to basic knowledge about diversity of decapod which one of cryptofauna as component fauna have a habitat on coral reef ecosystem.

  4. Decapod larvae distribution and species composition off the southern Portuguese coast

    NASA Astrophysics Data System (ADS)

    Pochelon, Patricia N.; Pires, Rita F. T.; Dubert, Jesús; Nolasco, Rita; Santos, A. Miguel P.; Queiroga, Henrique; dos Santos, Antonina

    2017-12-01

    For decapod crustaceans, the larval phase is the main responsible for dispersal, given the direct emission from adult habitats into the water column. Circulation patterns and behavioural mechanisms control the dispersal distance and connectivity between different areas. Information on larval distribution and abundance is required to predict the size and location of breeding populations, and correctly manage marine resources. Spatial distribution and abundance data of decapod larvae, and environmental parameters were assessed in winter surveys off the southern Portuguese coast. To better understand the oceanic structures driving larval distribution patterns, in situ physical parameters were measured and a hydrodynamical model used. Inter-annual, cross-shore and alongshore differences on decapod larvae distribution were found. Brachyuran crabs dominated the samples and similar taxa composition was observed in the most dynamic areas. Coastal taxa dominated the nearshore survey and were almost absent in the more offshore one, that registered much lower abundances. An upwelling front allowed a clear cross-shore species separation, also evident in the abundance values and number of taxa. Hydrodynamical conditions and adult habitats were the main factors explaining the observed patterns. Important missing information to understand the distribution patterns of decapod larval communities and the mechanisms behind them is given for the region.

  5. Distribution and abundance of freshwater decapods in an Atlantic rainforest catchment with a dammed future.

    PubMed

    Silva-Junior, E F; Silva-Araújo, M; Moulton, T P

    2017-11-01

    Variations in physical characteristics along the course of a river influence habitat availability which reflects in species distribution. Knowledge of ecology and diversity of lotic species is important for evaluating how river ecosystems will respond to environmental impacts. Freshwater decapods are a group of high ecological and economic importance, but the knowledge about factors influencing their distribution is scarce in Brazil. We performed a survey of decapods to describe their abundance and distribution as well as to study their relationships with stream physical variables and especially their association with different substrates types. We studied 23 sites located in 15 tributaries of Guapiaçú River, RJ, where we collected decapods in different substrates types and measured a set of physical variables. We found five decapods species, including amphidromous and non-amphidromous shrimps and crabs. Decapods were strongly associated with leaf-litter substrates and their abundance was related to a multivariate axis describing longitudinal changes in stream characteristics. We concluded that decapods occurring in the Guapiaçú catchment inhabit mainly small streams with preserved riparian forests where they find shelter and potential prey of invertebrates. The ongoing project to build a dam on the Guapiaçú River will have negative consequences to migrating shrimps and we strongly recommend that mitigating actions, such the construction of structures to allow the passage of migrating fauna, should be taken.

  6. VITELLOGENISIS AND IT'S ENDOCRINE CONTROL IN DECAPOD CRUSTACEANS

    EPA Science Inventory

    Vitellogenesis, the production of vitellin (major yolk protein), is controlled in decapod crustaceans by several hormones. With increasing efforts world-wide to successfully culture economically important crustaceans, such as shrimp, there is growing interest in attaining a bette...

  7. Diversity and distribution patterns of the Oligocene and Miocene decapod crustaceans (Crustacea: Malacostraca) of the Western and Central Paratethys.

    PubMed

    Hyžný, Matúš

    2016-10-01

    Decapod associations have been significant components of marine habitats throughout the Cenozoic when the major diversification of the group occurred. In this respect, the circum-Mediterranean area is of particular interest due to its complex palaeogeographic history. During the Oligo-Miocene, it was divided in two major areas, Mediterranean and Paratethys. Decapod crustaceans from the Paratethys Sea have been reported in the literature since the 19 th century, but only recent research advances allow evaluation of the diversity and distribution patterns of the group. Altogether 176 species-level taxa have been identified from the Oligocene and Miocene of the Western and Central Paratethys. Using the three-dimensional NMDS analysis, the composition of decapod crustacean faunas of the Paratethys shows significant differences through time. The Ottnangian and Karpatian decapod associations were similar to each other both taxonomically and in the mode of preservation, and they differed taxonomically from the Badenian ones. The Early Badenian assemblages also differed taxonomically from the Late Badenian ones. The time factor, including speciation, immigration from other provinces and/or (local or global) extinction, can explain temporal differences among assemblages within the same environment. High decapod diversity during the Badenian was correlated with the presence of reefal settings. The Badenian was the time with the highest decapod diversity, which can, however, be a consequence of undersampling of other time slices. Whereas the Ottnangian and Karpatian decapod assemblages are preserved virtually exclusively in the siliciclastic "Schlier"-type facies that originated in non-reefal offshore environments, carbonate sedimentation and the presence of reefal environments during the Badenian in the Central Paratethys promoted thriving of more diverse reef-associated assemblages. In general, Paratethyan decapods exhibited homogeneous distribution during the Oligo

  8. Diversity and distribution patterns of the Oligocene and Miocene decapod crustaceans (Crustacea: Malacostraca) of the Western and Central Paratethys

    PubMed Central

    Hyžný, Matúš

    2017-01-01

    Decapod associations have been significant components of marine habitats throughout the Cenozoic when the major diversification of the group occurred. In this respect, the circum-Mediterranean area is of particular interest due to its complex palaeogeographic history. During the Oligo-Miocene, it was divided in two major areas, Mediterranean and Paratethys. Decapod crustaceans from the Paratethys Sea have been reported in the literature since the 19th century, but only recent research advances allow evaluation of the diversity and distribution patterns of the group. Altogether 176 species-level taxa have been identified from the Oligocene and Miocene of the Western and Central Paratethys. Using the three-dimensional NMDS analysis, the composition of decapod crustacean faunas of the Paratethys shows significant differences through time. The Ottnangian and Karpatian decapod associations were similar to each other both taxonomically and in the mode of preservation, and they differed taxonomically from the Badenian ones. The Early Badenian assemblages also differed taxonomically from the Late Badenian ones. The time factor, including speciation, immigration from other provinces and/or (local or global) extinction, can explain temporal differences among assemblages within the same environment. High decapod diversity during the Badenian was correlated with the presence of reefal settings. The Badenian was the time with the highest decapod diversity, which can, however, be a consequence of undersampling of other time slices. Whereas the Ottnangian and Karpatian decapod assemblages are preserved virtually exclusively in the siliciclastic “Schlier”-type facies that originated in non-reefal offshore environments, carbonate sedimentation and the presence of reefal environments during the Badenian in the Central Paratethys promoted thriving of more diverse reef-associated assemblages. In general, Paratethyan decapods exhibited homogeneous distribution during the Oligo

  9. Diversity and distribution patterns of the Oligocene and Miocene decapod crustaceans (Crustacea: Malacostraca) of the Western and Central Paratethys

    NASA Astrophysics Data System (ADS)

    Hyžný, Matúš

    2016-10-01

    Decapod associations have been significant components of marine habitats throughout the Cenozoic when the major diversification of the group occurred. In this respect, the circum-Mediterranean area is of particular interest due to its complex palaeogeographic history. During the Oligo-Miocene, it was divided in two major areas, Mediterranean and Paratethys. Decapod crustaceans from the Paratethys Sea have been reported in the literature since the 19th century, but only recent research advances allow evaluation of the diversity and distribution patterns of the group. Altogether 176 species-level taxa have been identified from the Oligocene and Miocene of the Western and Central Paratethys. Using the three-dimensional NMDS analysis, the composition of decapod crustacean faunas of the Paratethys shows significant differences through time. The Ottnangian and Karpatian decapod associations were similar to each other both taxonomically and in the mode of preservation, and they differed taxonomically from the Badenian ones. The Early Badenian assemblages also differed taxonomically from the Late Badenian ones. The time factor, including speciation, immigration from other provinces and/or (local or global) extinction, can explain temporal differences among assemblages within the same environment. High decapod diversity during the Badenian was correlated with the presence of reefal settings. The Badenian was the time with the highest decapod diversity, which can, however, be a consequence of undersampling of other time slices. Whereas the Ottnangian and Karpatian decapod assemblages are preserved virtually exclusively in the siliciclastic "Schlier"-type facies that originated in non-reefal offshore environments, carbonate sedimentation and the presence of reefal environments during the Badenian in the Central Paratethys promoted thriving of more diverse reef-associated assemblages. In general, Paratethyan decapods exhibited homogeneous distribution during the Oligo

  10. [In life determination of the physiological status of decapod crustaceans (Crustacea: Decapoda) by hematological characteristics].

    PubMed

    Aleksandrova, E N; Kovacheva, N P

    2010-01-01

    The application of hematological analysis techniques to detecting the physiological status of the economically valued decapods during their culturing, and in monitoring of the condition of their natural populations, is restrained by the incomplete knowledge of these invertebrates circulatory system and its properties. Scarce data on the use of hematological indicators for determining the physiological status of decapods may be found sporadically in published sources; there is shortage of basic standards needed for interpretation of the analytical results. In this regard the paper considers some data on the major properties of hemolymph and its cellular elements; on methods of their examination; and on the results of application of hematological characteristics to assessing the physiological condition of various species of decapods. The hematological indicators suitable for the analysis of live decapods include: time of coagulation and buffer characteristic of hemolymph; concentration of total proteins, copper, calcium, glucose and lactates in it; total number of hemocytes with the consideration of granulocytes share.

  11. Is digestive cathepsin D the rule in decapod crustaceans?

    PubMed

    Martínez-Alarcón, Diana; Saborowski, Reinhard; Rojo-Arreola, Liliana; García-Carreño, Fernando

    2018-01-01

    Cathepsin D is an aspartic endopetidase with typical characteristics of lysosomal enzymes. Cathepsin D activity has been reported in the gastric fluid of clawed lobsters where it acts as an extracellular digestive enzyme. Here we investigate whether cathepsin D is unique in clawed lobsters or, instead, common in decapod crustaceans. Eleven species of decapods belonging to six infraorders were tested for cathepsin D activity in the midgut gland, the muscle tissue, the gills, and when technically possible, in the gastric fluid. Cathepsin D activity was present in the midgut gland of all 11 species and in the gastric fluid from the seven species from which samples could be taken. All sampled species showed higher activities in the midgut glands than in non-digestive organs and the activity was highest in the clawed lobster. Cathepsin D mRNA was obtained from tissue samples of midgut gland, muscle, and gills. Analyses of deduced amino acid sequence confirmed molecular features of lysosomal cathepsin D and revealed high similarity between the enzymes from Astacidea and Caridea on one side, and the enzymes from Penaeoidea, Anomura, and Brachyura on the other side. Our results support the presence of cathepsin D activity in the midgut glands and in the gastric fluids of several decapod species suggesting an extracellular function of this lysosomal enzyme. We discuss whether cathepsin D may derive from the lysosomal-like vacuoles of the midgut gland B-cells and is released into the gastric lumen upon secretion by these cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian Oceans.

    PubMed

    Yang, Jin-Shu; Lu, Bo; Chen, Dian-Fu; Yu, Yan-Qin; Yang, Fan; Nagasawa, Hiromichi; Tsuchida, Shinji; Fujiwara, Yoshihiro; Yang, Wei-Jun

    2013-02-01

    Hydrothermal vents are typically located in midocean ridges and back-arc basins and are usually generated by the movement of tectonic plates. Life thrives in these environments despite the extreme conditions. In addition to chemoautotrophic bacteria, decapod crustaceans are dominant in many of the hydrothermal vents discovered to date. Contrary to the hypothesis that these species are remnants of relic fauna, increasing evidence supports the notion that hydrothermal vent decapods have diversified in more recent times with previous research attributing the origin of alvinocarid shrimps to the Miocene. This study investigated seven representative decapod species from four hydrothermal vents throughout the Western Pacific and Indian Oceans. A partitioned mix-model phylogenomic analysis of mitochondrial DNA produced a consistent phylogenetic topology of these vent-endemic species. Additionally, molecular dating analysis calibrated using multiple fossils suggested that both bythograeid crabs and alvinocarid shrimps originated in the late Mesozoic and early Cenozoic. Although of limited sampling, our estimates support the extinction/repopulation hypothesis, which postulates recent diversification times for most hydrothermal vent species due to their mass extinction by global deep-water anoxic/dysoxic events during the Late Cretaceous and Early Tertiary. The continental-derived property of the West Pacific province is compatible with the possibility that vent decapods diversified from ancestors from shallow-water regions such as cold seeps. Our results move us a step closer toward understanding the evolutionary origin of hydrothermal vent species and their distribution in the Western Pacific-Indian Ocean Region.

  13. Seasonal distribution and abundance of fishes and decapod crustaceans in a Cape Cod estuary

    USGS Publications Warehouse

    Able, K.W.; Fahay, M.P.; Heck, K.L.; Roman, C.T.; Lazzari, M.A.; Kaiser, S.C.

    2002-01-01

    Sampling in several habitat types (sand/mud, eelgrass, sand, gravel, macroalgae/mud) during all seasons with a variety of gears in Nauset Marsh, Massachusetts during 1985-1987 found a fauna consisting of 35 fish and 10 decapod crustacean species. Although most of the abundant species were found in several habitat types, species richness and habitat use appeared to be highest for vegetated habitats (eelgrass, macroalgae). The fishes and decapods were numerically dominated by cold-water taxa; however, numerous fish species, represented by rare individuals of predominantly southern forms, enriched the fauna. Species composition of Nauset Marsh could be distinguished from estuaries south of Cape Cod and even from the south shore of the cape. Both fishes and decapods were most abundant during the summer, apparently due to the contributions from spring and summer spawning in the estuary and the adjacent Atlantic Ocean. The location of Nauset Marsh and other estuaries on Cape Cod provide a unique opportunity to evaluate the importance of this region as a faunal boundary to estuarine species.

  14. Conditions of Decapods Infraorders in Dead Coral Pocillopora sp. at Pemuteran, Bali: Study Case 2011 and 2016

    NASA Astrophysics Data System (ADS)

    Kholilah, Nenik; Malik, Muhammad Danie Al; Kurniasih, Eka Maya; Sembiring, Andrianus; Ambariyanto, Ambariyanto; Mayer, Christopher

    2018-02-01

    Decapods are marine organism which have burrowing-life characteristic and tend to live in the hard coral, such as Pocillopora sp. Pemuteran district is located in West Bali with high marine biodiversity. In 2016 almost all of the coral reefs in this area have bleached. This research investigates the condition of decapods before and after coral bleaching in Pemuteran. Dead corals, Pocillopora sp., were taken from 8-12 meters depth in 2016. All organisms within those corals were collected and identified until infraorder and family level. Comparison was done with data collected in 2011. This study found 12 families with a total of 5 infraorder which are equal to the previous data. The number of individual has increased from 88 into 214 individual. The mean presence increased from 6.2875 ind/fam to 15.2875 ind/fam. While the density also increased from 23.68 ind/L to 42.09 ind/L. Uniformity and dominance indices for all infraorder is low. These results show that there is an increase of the density of decapods after coral bleaching event, but the diversity of decapods was slightly changed.

  15. EFFECTS OF GAMMA RADIATION ON TWO DECAPOD CRUSTACEANS, PALAEMONETES PUGIO AND UCA PUGNAX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rees, G.H.

    1962-03-01

    Experiments are described that were undertaken with the objective of determining the lethal dosages of gamma radiation, particularly the doses at which 50% succumb (LD/sub 50/), for 2 decapod crustaceans. (Pub. Health Eng. Abstr.)

  16. DNA sequence database as a tool to identify decapod crustaceans on the São Paulo coastline.

    PubMed

    Mantelatto, Fernando L; Terossi, Mariana; Negri, Mariana; Buranelli, Raquel C; Robles, Rafael; Magalhães, Tatiana; Tamburus, Ana Francisca; Rossi, Natália; Miyazaki, Mayara J

    2017-09-05

    DNA barcoding has emerged as an efficient tool for taxonomy and other biodiversity fields. The vast and speciose group of decapod crustaceans is not an exception in the current scenario and comparing short DNA fragments has enabled researchers to overcome some taxonomic impediments to help broadening knowledge on the diversity of this group of crustaceans. Brazil is considered as an important area in terms of global marine biodiversity and some regions stand out in terms of decapod fauna, such as the São Paulo coastline. Thus, the aim of this study is to obtain sequences of the mitochondrial markers (COI and 16S) for decapod crustaceans distributed at the São Paulo coastline and to test the accuracy of these markers for species identification from this region by comparing our sequences to those already present in the GenBank database. We sampled along almost the 300 km of the São Paulo coastline from estuaries to offshore islands during the development of a multidisciplinary research project that took place for 5 years. All the species were processed to obtain the DNA sequences. The diversity of the decapod fauna on the São Paulo coastline comprises at least 404 species. We were able to collect 256 of those species and sequence of at least one of the target genes from 221. By testing the accuracy of these two DNA markers as a tool for identification, we were able to check our own identifications, including new records in GenBank, spot potential mistakes in GenBank, and detect potential new species.

  17. Chronobiology of deep-water decapod crustaceans on continental margins.

    PubMed

    Aguzzi, Jacopo; Company, Joan B

    2010-01-01

    Species have evolved biological rhythms in behaviour and physiology with a 24-h periodicity in order to increase their fitness, anticipating the onset of unfavourable habitat conditions. In marine organisms inhabiting deep-water continental margins (i.e. the submerged outer edges of continents), day-night activity rhythms are often referred to in three ways: vertical water column migrations (i.e. pelagic), horizontal displacements within benthic boundary layer of the continental margin, along bathymetric gradients (i.e. nektobenthic), and endobenthic movements (i.e. rhythmic emergence from the substrate). Many studies have been conducted on crustacean decapods that migrate vertically in the water column, but much less information is available for other endobenthic and nektobenthic species. Also, the types of displacement and major life habits of most marine species are still largely unknown, especially in deep-water continental margins, where steep clines in habitat factors (i.e. light intensity and its spectral quality, sediment characteristics, and hydrography) take place. This is the result of technical difficulties in performing temporally scheduled sampling and laboratory testing on living specimens. According to this scenario, there are several major issues that still need extensive research in deep-water crustacean decapods. First, the regulation of their behaviour and physiology by a biological clock is almost unknown compared to data for coastal species that are easily accessible to direct observation and sampling. Second, biological rhythms may change at different life stages (i.e. size-related variations) or at different moments of the reproductive cycle (e.g. at egg-bearing) based on different intra- and interspecific interactions. Third, there is still a major lack of knowledge on the links that exist among the observed bathymetric distributions of species and selected autoecological traits that are controlled by their biological clock, such as the

  18. Topographical and typological comparison of the rodlike setae of ambulatory dactylopodites in decapod crustaceans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, K.A.

    1983-01-01

    The arrangement and external morphology of the rodlike setae and associated structures located on the dactylopodites of the walking legs of six species of decapod crustaceans are compared. The dactyls of littoral species, represented by the rock crab, Cancer antennarius, and the spiny lobster, Panulirus interruptus, have dense tufts and bands of rodlike setae, as is typical of many decapods, and additionally only a few small plumed setae. The arrangement of setae on the dactyls of the recently discovered Galapagos vent crab. Bythograea thermydron, closely resembles that of C. antennarius. Rodlike and long plumed setae occur in about equal numbersmore » on the dactyls of the pelagic anomuran, Pleuroncodes planipes. The dactyls having the fewest rodlike setae are those of the terrestrial hermit crab, Coenobita perlatus, and those of the kelp crab, Pugettia producta, where flat setae typical of Majidae have replace most rodlike setae. The presence and structures of the terminal pores in rodlike setae vary intra- and interspecifically, possibly as a function of molt stage. Variations in some features of rodlike setae, such as tip acuity and presence of microsetae and surface sculpting, appear to be related to development. Serrated setae occur on the dactyls of megalopal P. producta but not in later stages. The topography and typolgy of setae located on the ambulatory dactyls of decapod crustaceans are considered in light of recent interest in using seta characteristics to determine the sensory functions of sensilla and to clarify the phylogeny of arthropod groups.« less

  19. Decapod assemblages associated with shallow macroalgal communities in the northwestern Alboran Sea: Microhabitat use and temporal variability

    NASA Astrophysics Data System (ADS)

    Mateo-Ramírez, Á.; Urra, J.; Rueda, J. L.; Marina, P.; García Raso, J. E.

    2018-05-01

    Decapod assemblages associated with algal fronds and the underlying substratum in two different photophilous macroalgal beds dominated by the brown algae Halopteris scoparia were studied in the northwestern Alboran Sea, between July 2007 and April 2008. A total of 35 decapod species were found in the macroalgal beds, most of them inhabiting both strata and with Hippolyte leptocerus, Pilumnus hirtellus, Sirpus zariquieyi, Acanthonyx lunulatus, Athanas nitescens and Achaeus gracilis as the dominant species. Assemblages on algal fronds and sediment displayed significant variations mainly due to differences in the abundance values of some dominant species (e.g. H. leptocerus) and/or the presence of certain species exclusively in one strata (e.g. Pisa nodipes in algal fronds, Atelecyclus rotundatus and Sicyonia carinata on the sediment stratum). Higher abundance, species richness and Shannon-Wiener diversity index values were registered in the sediment stratum, with a higher contribution of adults-large individuals than of juvenile-small individuals. The temporal variability of the studied assemblages showed maximum abundance values in November, when algal development is minimal. This decoupling between temporal patterns of decapod assemblages and macroalgal dynamic could be related to the lifestyles (recruitment events, movements of species between adjacent habitats and microhabitats) and trophic guilds of dominant species, fish predation pressure and the structural complexity of the habitat. A similar trophic structure was observed for both strata, however there was a predominance of grazers in the algae stratum and of predators and scavengers in the sediment stratum. The high diversity and abundance of predator decapods, the relatively balanced distribution of most trophic groups, and the overall high values of species richness and evenness, could indicate a healthy status of at least two of the eleven "Good Environmental Status" indicators (biodiversity and food

  20. Energy reserves mobilization: Strategies of three decapod species.

    PubMed

    Sacristán, Hernán Javier; Rodríguez, Yamila Eliana; De Los Angeles Pereira, Nair; López Greco, Laura Susana; Lovrich, Gustavo Alejandro; Fernández Gimenez, Analía Verónica

    2017-01-01

    In food deprivation assays, several different responses have been observed in crustaceans. However, studying energy reserves utilization among more than one species during the same starvation period has not yet been performed, particularly to discern whether the responses are due to intrinsic and/or environmental factors. We hypothesize that decapod species with similar feeding habits have the same strategies in the use of energetic reserves during starvation, even though they inhabit different environments. The aim of this study was to compare the energy reserves mobilization of three decapods species (Cherax quadricarinatus, Palaemon argentinus and Munida gregaria) with similar feeding habits, exposed to similar food deprivation conditions. The crayfish, shrimp and squat-lobster were experimentally kept at continuous feeding or continuous starvation throughout 15 days. Every 3rd day, the midgut gland index (MGI), and the glycogen, lipid and protein contents were measured in the midgut gland (MG) and pleon muscle. Palaemon argentinus mobilized more reserves during starvation, followed by C. quadricarinatus, and the last M. gregaria. The starved shrimps presented low MGI, whereas MG showed a reduction in glycogen (from day 6 to 15), lipid (from day 3 to 15), and protein levels (at day 9 and 15) while in their muscle, lipid reserves decreased at days 3 and 6. In C. quadricarinatus, the most affected parameters in the MG were MGI, glycogen (from day 6 to 15), and lipids (at day 12 and 15). In the MG of M. gregaria only the glycogen was reduced during fasting from 3 to 15 days. Even though the three studied species have similar feeding habitats, we found that their energetic profile utilization is different and it could be explained by the habitat, life span, temperature, organ/tissue, and metabolism of the species. Our results may be useful to understand the several different responses of crustaceans during starvation.

  1. Energy reserves mobilization: Strategies of three decapod species

    PubMed Central

    Rodríguez, Yamila Eliana; De los Angeles Pereira, Nair; López Greco, Laura Susana; Lovrich, Gustavo Alejandro; Fernández Gimenez, Analía Verónica

    2017-01-01

    In food deprivation assays, several different responses have been observed in crustaceans. However, studying energy reserves utilization among more than one species during the same starvation period has not yet been performed, particularly to discern whether the responses are due to intrinsic and/or environmental factors. We hypothesize that decapod species with similar feeding habits have the same strategies in the use of energetic reserves during starvation, even though they inhabit different environments. The aim of this study was to compare the energy reserves mobilization of three decapods species (Cherax quadricarinatus, Palaemon argentinus and Munida gregaria) with similar feeding habits, exposed to similar food deprivation conditions. The crayfish, shrimp and squat-lobster were experimentally kept at continuous feeding or continuous starvation throughout 15 days. Every 3rd day, the midgut gland index (MGI), and the glycogen, lipid and protein contents were measured in the midgut gland (MG) and pleon muscle. Palaemon argentinus mobilized more reserves during starvation, followed by C. quadricarinatus, and the last M. gregaria. The starved shrimps presented low MGI, whereas MG showed a reduction in glycogen (from day 6 to 15), lipid (from day 3 to 15), and protein levels (at day 9 and 15) while in their muscle, lipid reserves decreased at days 3 and 6. In C. quadricarinatus, the most affected parameters in the MG were MGI, glycogen (from day 6 to 15), and lipids (at day 12 and 15). In the MG of M. gregaria only the glycogen was reduced during fasting from 3 to 15 days. Even though the three studied species have similar feeding habitats, we found that their energetic profile utilization is different and it could be explained by the habitat, life span, temperature, organ/tissue, and metabolism of the species. Our results may be useful to understand the several different responses of crustaceans during starvation. PMID:28886062

  2. Freshwater decapod crustaceans (Palaemonidae, Cambaridae) of the Savannah River Plant, South Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, H.H. III; Thorp, J.H.; Anderson, G.E.

    Decapod crustaceans (specifically crayfishes and freshwater shrimps) are quite numerous in the drainages of the southeastern United States and occupy an extremely important niche in aquatic systems. As predators they act as disturbance components on benthic freshwater communities and may serve an integral position in the early stages of detrital decomposition. They constitute an important prey item in the diets of a wide variety of terrestrial and aquatic vertebrate predators, including game fishes, such as Micropterus salmoides (La Crepede) and other centrarchids. Researchers at the Savannah River Plant (SRP) employ these crustaceans in studies of the effects of thermal andmore » heavy metal pollution on survival and behavior, as well as in investigations of the fates of heavy metals and radioactive pollution in freshwater environments. A common problem to these studies is the uncertainty of species determinations, and it is our intent to present an illustrated dichotomous key to the decapod crustaceans found in the aquatic habitats of the SRP. In addition, each species is treated separately with reference to specific taxonomic characters, ecology, life history, color patterns, etc. A brief discussion of collecting techniques, preservation and preparation and equipment needed for identification also is presented.« less

  3. The oculomotor system of decapod cephalopods: eye muscles, eye muscle nerves, and the oculomotor neurons in the central nervous system.

    PubMed

    Budelmann, B U; Young, J Z

    1993-04-29

    Fourteen extraocular eye muscles are described in the decapods Loligo and Sepioteuthis, and thirteen in Sepia; they are supplied by four eye muscle nerves. The main action of most of the muscles is a linear movement of the eyeball, only three muscles produce strong rotations. The arrangement, innervation and action of the decapod eye muscles are compared with those of the seven eye muscles and seven eye muscle nerves in Octopus. The extra muscles in decapods are attached to the anterior and superior faces of the eyes. At least, the anterior muscles, and presumably also the superior muscles, are concerned with convergent eye movements for binocular vision during fixation and capture of prey by the tentacles. The remaining muscles are rather similar in the two cephalopod groups. In decapods, the anterior muscles include conjunctive muscles; these cross the midline and each presumably moves both eyes at the same time during fixation. In the squids Loligo and Sepioteuthis there is an additional superior conjunctive muscle of perhaps similar function. Some of the anterior muscles are associated with a narrow moveable plate, the trochlear cartilage; it is attached to the eyeball by trochlear membranes. Centripetal cobalt fillings showed that all four eye muscle nerves have fibres that originate from somata in the ipsilateral anterior lateral pedal lobe, which is the oculomotor centre. The somata of the individual nerves show different but overlapping distributions. Bundles of small presumably afferent fibres were seen in two of the four nerves. They do not enter the anterior lateral pedal lobe but run to the ventral magnocellular lobe; some afferent fibres enter the brachio-palliovisceral connective and run perhaps as far as the palliovisceral lobe.

  4. Ontogeny of decapod crustacean hemocyanin: effects of temperature and nutrition.

    PubMed

    Terwilliger, N; Dumler, K

    2001-03-01

    Hemocyanin is present throughout the decapod crustacean's life, usually as one-hexamer and two-hexamer oligomers. Hemocyanins of some decapod crustaceans undergo changes in subunit composition and oxygen affinity during development. Maternal hemocyanin is taken up from the hemolymph via endocytosis by the oocyte. Embryo hemocyanin differs in subunit composition from hemocyanin of oocyte and adult crab and may represent the onset of hemocyanin synthesis. Complex changes in expression of hemocyanin subunits occur through megalopa and early juvenile stages of the crab Cancer magister, culminating in the pattern of adult hemocyanin. The influences of food availability and temperature on development, growth and hemocyanin ontogeny in early juvenile C. magister have been studied. Crabs were raised in warm or cold sea water and fed high or low levels of food for 6 months. While intermolt period was shorter in crabs fed high food levels, especially those raised in warm water, crabs reared in cold water with high food levels attained the largest sizes. Thus increased food availability affects growth more than increased temperature. Adult hemocyanin appeared at about the same number of weeks after the start of the experiment for crabs in the warm water/high food, warm water/low food and cold water/high food groups, even though warm water/low food crabs had molted fewer times. Crabs in the cold water/low food group expressed adult hemocyanin much later than the other groups. Molt stage and maturation from juvenile to adult are not absolutely coupled, and food availability has a greater influence than temperature on hemocyanin ontogeny.

  5. USE OF OYSTER HABITAT BY REEF-RESIDENT FISHES AND DECAPOD CRUSTACEANS IN THE CALOOSAHATCHEE ESTUARY, FLORIDA

    EPA Science Inventory

    Habitat suitability of oyster reefs for fishes and decapod crustaceans was examined monthly at three sites in the lower Caloosahatchee Estuary. At each site, 1-m2 lift nets containing approximately 5 liters (volume displacement) of oyster clumps were deployed for a period of two ...

  6. Adult neurogenesis in the central olfactory pathway of dendrobranchiate and caridean shrimps: New insights into the evolution of the deutocerebral proliferative system in reptant decapods.

    PubMed

    Wittfoth, Christin; Harzsch, Steffen

    2018-04-16

    Persistent neurogenesis in the central olfactory pathway characterizes many reptant decapods such as lobsters, crayfish and crabs. In these animals, the deutocerebral proliferative system generates new neurons which integrate into the neuronal network of the first order processing neuropil of the olfactory system, the deutocerebral chemosensory lobes (also called olfactory lobes). However, differences concerning the phenotype and the mechanisms that drive adult neurogenesis were reported in crayfish versus spiny lobsters. While numerous studies have focussed on these mechanisms and regulation of adult neurogenesis, investigations about the phylogenetic distribution are missing. To contribute an evolutionary perspective on adult neurogenesis in decapods, we investigated two representatives of basally diverging lineages, the dendrobranchiate Penaeus vannamei and the caridean Crangon crangon using the thymidine analogue Bromodeoxyuridine (BrdU) as marker for the S phase of cycling cells. Compared to reptant decapods, our results suggest a simpler mechanism of neurogenesis in the adult brain of dendrobranchiate and caridean shrimps. Observed differences in the rate of proliferation and spatial dimensions are suggested to correlate with the complexity of the olfactory system. We assume that a more complex and mitotically more active proliferative system in reptant decapods evolved with the emergence of another processing neuropil, the accessory lobes. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  7. Recent progress toward the identification of anti-viral immune mechanisms in decapod crustaceans.

    PubMed

    Hauton, Chris

    2017-07-01

    The sustainable intensification of crustacean aquaculture, which is dominated by the farming of penaeid shrimp species, continues to be beset by viral disease outbreaks. Despite this, reports exist of differential susceptibility to viral infection between different shrimp species and populations, and between shrimp and other decapod crustaceans. These reports have, in part, provided the motivation to identify key mechanisms of antiviral resistance, or refractivity, in commercially-important species. Within the last decade these studies have created significant advances in our understanding of host virus interactions in decapod models. However, at the same time, the complexity of host virus interactions has presented significant challenges for interpretation of anti-viral immune responses. In this short review, recent progress in our understanding of the complexity of host virus interactions are considered, and challenges to the unequivocal identification of anti-viral immunity are highlighted. Special consideration is given to the advances in understanding being created by the use of RNA interference approaches. Based on the 'state of the art', it is concluded that the identification of effective intervention strategies for application at farm scale currently presents an unrealistic target for the aquaculture industry. Future technical developments necessary to support continued progress are also considered. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. From the Palaeontological Collection of the Universalmuseum Joanneum - The Cenozoic Decapod Crustaceans (Crustacea: Malacostraca: Decapoda).

    PubMed

    Hyžný, Matúš; Gross, Martin

    2016-01-01

    Cenozoic decapod crustaceans housed in the collections of the Universalmuseum Joanneum (Graz, Austria) are reviewed. Previous descriptions, geographic and stratigraphic provenance and collection history are discussed. Altogether 72 specimens are figured, including five holotypes. Taxonomic affinity of previously unpublished material is addressed. Gebiacantha sp. from the middle Miocene of Wetzelsdorf is the first fossil record of the genus from the Paratethys.

  9. From the Palaeontological Collection of the Universalmuseum Joanneum – The Cenozoic Decapod Crustaceans (Crustacea: Malacostraca: Decapoda)

    PubMed Central

    Hyžný, Matúš; Gross, Martin

    2017-01-01

    Cenozoic decapod crustaceans housed in the collections of the Universalmuseum Joanneum (Graz, Austria) are reviewed. Previous descriptions, geographic and stratigraphic provenance and collection history are discussed. Altogether 72 specimens are figured, including five holotypes. Taxonomic affinity of previously unpublished material is addressed. Gebiacantha sp. from the middle Miocene of Wetzelsdorf is the first fossil record of the genus from the Paratethys. PMID:28239309

  10. Effects of latitudinal changes in the oxygen minimum zone of the northeast Pacific on the distribution of bathyal benthic decapod crustaceans

    NASA Astrophysics Data System (ADS)

    Papiol, Vanesa; Hendrickx, Michel E.; Serrano, David

    2017-03-01

    The presence of an Oxygen Minimum Zone (OMZ) is one of the major characteristics of the eastern Pacific. The OMZ changes strongly adjacent to Mexico in its thickness and intensity. The ecological impacts of those changes were studied by examining the community structures of bathyal benthic and bentho-pelagic decapod crustaceans, and their oceanographic contexts, on the Mexican Pacific slope along a wide latitudinal range (16-32°N). Decapod crustaceans were collected with a benthic sledge from 48 stations between 865 and 2165 m in three main areas: offshore of northern Baja California (NBC), off southern Baja California (SBC) and in the southern Mexican Pacific (SMP). Physical-chemical parameters were measured in the water column, and sediment composition was analyzed for each station. The narrowing and weakening of the OMZ north of ca. 26°N was confirmed. Water with dissolved oxygen <0.5 ml l-1 occupied a stratum of 1231 m in the SMP vs. only 664 m off NBC. The strongest changes coincided with a region of surface, subsurface and intermediate water mass transitions, where less saline waters from the north extended to depths of ca. 1000 m. Sand proportions were higher in sediments to the south, whereas silt dominated offshore of NBC. A strong latitudinal shift in decapod community composition and bathymetric distribution occurred from off SBC to off NBC, coinciding with changes in oceanographic conditions. The dominant genera of decapod crustaceans at slope depths were cognate to those dominating slope areas in other tropical and subtropical regions of the world. In the SMP and off SBC, large aggregations of organisms were observed at 900-1300 m, with a sharp decrease in abundance at greater depth. Off NBC, the density of organisms was intermediate at all depths. The combined effects of dissolved oxygen concentration and characteristics of water masses affected the distribution of organisms. The faunal patterns were also related with sediment grain size.

  11. INFLUENCE OF SALINITY ON HABITAT UTILIZATION OF OYSTER REEFS BY RESIDENT FISHES AND DECAPOD CRUSTACEANS IN THE CALOOSAHATCHEE ESTUARY, FLORIDA.

    EPA Science Inventory

    A spatiotemporal comparison of habitat suitability of oyster reefs for fishes and decapod crustaceans was conducted for the lower Caloosahatchee Estuary, Florida. Lift nets (1-m2) containing 5 liters (volume displacement) of oyster clusters were deployed monthly at three sites al...

  12. Barremian decapod crustaceans from Serre de Bleyton (Drôme, SE France)

    PubMed Central

    Hyžný, Matúš; Kroh, Andreas

    2015-01-01

    Based on mostly small-sized isolated cheliped fingers, a new decapod crustacean assemblage is described from the Barremian of Serre de Bleyton (Drôme, SE France). The assemblage is composed mostly of representatives of the crab family Dynomenidae. In addition, remains of astacidean lobsters, axiidean shrimps, paguroid hermit crabs and brachyurous crabs of the families Necrocarcinidae and ?Cenomanocarcinidae occur in low numbers. Graptocarcinus moosleitneri (Dynomenidae) and ?Paranecrocarcinus schloegli (Necrocarcinidae) are introduced as new species. They both exhibit presence of multi-setal pores on dactyli that are interpreted as parts of a sieving mechanism used in feeding. The stratigraphic range of Graptocarcinus is extended herein to the Barremian. PMID:26097276

  13. Do Decapod Crustaceans Have Nociceptors for Extreme pH?

    PubMed Central

    Puri, Sakshi; Faulkes, Zen

    2010-01-01

    Background Nociception is the physiological detection of noxious stimuli. Because of its obvious importance, nociception is expected to be widespread across animal taxa and to trigger robust behaviours reliably. Nociception in invertebrates, such as crustaceans, is poorly studied. Methodology/Principal Findings Three decapod crustacean species were tested for nociceptive behaviour: Louisiana red swamp crayfish (Procambarus clarkii), white shrimp (Litopenaeus setiferus), and grass shrimp (Palaemonetes sp.). Applying sodium hydroxide, hydrochloric acid, or benzocaine to the antennae caused no change in behaviour in the three species compared to controls. Animals did not groom the stimulated antenna, and there was no difference in movement of treated individuals and controls. Extracellular recordings of antennal nerves in P. clarkii revealed continual spontaneous activity, but no neurons that were reliably excited by the application of concentrated sodium hydroxide or hydrochloric acid. Conclusions/Significance Previously reported responses to extreme pH are either not consistently evoked across species or were mischaracterized as nociception. There was no behavioural or physiological evidence that the antennae contained specialized nociceptors that responded to pH. PMID:20422026

  14. A catalogue of the type and figured fossil decapod crustaceans in the collections of the Geological Survey of Austria in Vienna

    PubMed Central

    Hyžný, Matúš; Zorn, Irene

    2017-01-01

    The present catalogue lists and figures the type and figured material of fossil decapod crustaceans housed in the collections of the Geological Survey of Austria in Vienna. Specimens previously believed to be lost were relocated. Lectotypes and paralectotypes are chosen herein for 11 species. Taxonomic affinity of taxa originally described in open nomenclature is discussed. PMID:28255177

  15. Euryhaline preferences of the decapod crab Mioplax socialis enabled it to survive during the Badenian/Sarmatian extinction (Miocene) in the Central Paratethys

    PubMed Central

    Mandic, Oleg; Harzhauser, Mathias; Ledvák, Peter

    2017-01-01

    Although decapod crustaceans of the Central Paratethys were diverse during the Badenian (Langhian–Early Serravallian), a dramatic drop in their diversity occurred at the boundary with the Sarmatian. A crab Mioplax socialis is one of the few decapods reported from the Lower Sarmatian (Mohrensternia Zone) of the Paratethys. Until now, this species has been known from only a handful of specimens from Austria, Croatia and Bulgaria (Central Paratethys), and its systematics and ecology remain poorly known. Here, on the basis of new specimens from the Sarmatian tuffitic clays of the Stretava Formation (Skároš, Eastern Slovakia) we confirm that this species belongs to the subfamily Chasmocarcininae. The diagnostic characters of the male sternum that allow this classification are reported for the first time. The molluscan assemblage co-occurring with M. socialis demonstrate that this species tolerated conditions with variable salinity. Its tolerance of a broad range of salinity regimes may thus explain its survival across the Badenian–Sarmatian extinction event. Preservation of near-complete and fully articulated individuals of M. socialis suggests calm conditions and short residence times on the sediment-water interface. PMID:28239258

  16. Annotated checklist of the decapod crustaceans of the Gulf of Oman, northwestern Indian Ocean.

    PubMed

    Naderloo, Reza; Ebrahimnezhad, Saeed; Sari, Alireza

    2015-10-09

    The decapod crustaceans of the Gulf of Oman have been documented based on the published literature and new sampling along the Iranian coast between 2005 and 2015. A total of 121 species were collected along the Iranian coast, of which 43 are new records for the Gulf of Oman. The Decapoda of the Gulf is currently represented by 258 species belonging to five infraorders: Axiidea, Achelata, Anomura, Brachyura, and Caridea. Brachyura, with 176 species, are the best represented group, followed by Anomura and Caridea with 42 and 17 species, respectively. The least diverse groups are Achelata, with five species, and Axiidea, with three. On the basis of the available information, the northern (Iranian) coast with 189 species is more diverse than the southern (United Arab Emirates and Oman) coast with 134 species.

  17. Larval dispersal in three coral reef decapod species: Influence of larval duration on the metapopulation structure.

    PubMed

    Sanvicente-Añorve, Laura; Zavala-Hidalgo, Jorge; Allende-Arandía, Eugenia; Hermoso-Salazar, Margarita

    2018-01-01

    Most coral-associated decapod species have non-migratory adult populations and depend on their planktonic larvae for dispersal. This study examined the metapopulation structure of three decapod species with different pelagic larval duration (PLD) from twelve coral reef complexes of the Gulf of Mexico. The dispersion of larvae was analyzed through the use of a realistic numerical simulation of the Gulf of Mexico with the Hybrid Coordinate Ocean Model. To study the transport and dispersion of particles in near-surface waters, a particle-tracking subroutine was run using as input the currents from the model. The simulation consisted of the launch of 100 passive particles (virtual larvae) every 24 hours from each reef throughout five years, and tracked for as long as 210 days. Results indicated that species with a short PLD, Mithraculus sculptus (PLD 8‒13 days), had a weak connection among the reefs, but higher self-recruitment, especially on the narrow western shelf. The species with a longer PLD, Dromia erythropus (28‒30 days), had a stronger connection among neighboring reefs (< 300 km). Finally, the species with an even longer PLD, Stenopus hispidus (123‒210 days), had a wider potential distribution than the other species. Circulation on synoptic, seasonal and interannual scales had differential effects on the larval dispersal of each species. The metapopulation structure of M. sculptus and D. erythropus seemed to combine features of the non-equilibrium and the patchy models, whereas that of S. hispidus presumably fit to a patchy model. These findings support previous observations that indicate that species with longer PLD tend to occupy larger areas than species with short PLD, although recruitment of juveniles to the adult populations will also depend on other factors, such as the availability of suitable habitats and the ability to colonize them.

  18. Larval dispersal in three coral reef decapod species: Influence of larval duration on the metapopulation structure

    PubMed Central

    Zavala-Hidalgo, Jorge; Allende-Arandía, Eugenia; Hermoso-Salazar, Margarita

    2018-01-01

    Most coral-associated decapod species have non-migratory adult populations and depend on their planktonic larvae for dispersal. This study examined the metapopulation structure of three decapod species with different pelagic larval duration (PLD) from twelve coral reef complexes of the Gulf of Mexico. The dispersion of larvae was analyzed through the use of a realistic numerical simulation of the Gulf of Mexico with the Hybrid Coordinate Ocean Model. To study the transport and dispersion of particles in near-surface waters, a particle-tracking subroutine was run using as input the currents from the model. The simulation consisted of the launch of 100 passive particles (virtual larvae) every 24 hours from each reef throughout five years, and tracked for as long as 210 days. Results indicated that species with a short PLD, Mithraculus sculptus (PLD 8‒13 days), had a weak connection among the reefs, but higher self-recruitment, especially on the narrow western shelf. The species with a longer PLD, Dromia erythropus (28‒30 days), had a stronger connection among neighboring reefs (< 300 km). Finally, the species with an even longer PLD, Stenopus hispidus (123‒210 days), had a wider potential distribution than the other species. Circulation on synoptic, seasonal and interannual scales had differential effects on the larval dispersal of each species. The metapopulation structure of M. sculptus and D. erythropus seemed to combine features of the non-equilibrium and the patchy models, whereas that of S. hispidus presumably fit to a patchy model. These findings support previous observations that indicate that species with longer PLD tend to occupy larger areas than species with short PLD, although recruitment of juveniles to the adult populations will also depend on other factors, such as the availability of suitable habitats and the ability to colonize them. PMID:29558478

  19. Distribution and abundance of decapod crustacean larvae in the southeastern Bering Sea with emphasis on commercial species. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, D.A.; Incze, L.S.; Wencker, D.L.

    1981-01-01

    Contents include: Distribution and abundance of king crab larvae, Paralithodes camtschatica and P. platypus in the southeast Bering Sea; Distribution and abundance of the larvae of tanner crabs in the southeastern Bering Sea; Distribution and abundance of other brachyuran larvae in the southeastern Bering Sea with emphasis on Erimacrus isenbeckii; Distribution and abundance of shrimp larvae in the southeastern Bering Sea with emphasis on pandalid species; Distribution and abundance of hermit crabs (Paguridae) in the southeasternBering Sea; Possible oil impacts on decapod larbae in the southeastern Bering Sea with emphesis on the St. George Basin.

  20. Convergent Evolution of the Osmoregulation System in Decapod Shrimps.

    PubMed

    Yuan, Jianbo; Zhang, Xiaojun; Liu, Chengzhang; Duan, Hu; Li, Fuhua; Xiang, Jianhai

    2017-02-01

    In adaptating to different aquatic environments, seawater (SW) and freshwater (FW) shrimps have exploited different adaptation strategies, which should generate clusters of genes with different adaptive features. However, little is known about the genetic basis of these physiological adaptations. Thus, in this study, we performed comparative transcriptomics and adaptive evolution analyses on SW and FW shrimps and found that convergent evolution may have happened on osmoregulation system of shrimps. We identified 275 and 234 positively selected genes in SW and FW shrimps, respectively, which enriched in the functions of ion-binding and membrane-bounded organelles. Among them, five (CaCC, BEST2, GPDH, NKA, and Integrin) and four (RasGAP, RhoGDI, CNK3, and ODC) osmoregulation-related genes were detected in SW and FW shrimps, respectively. All five genes in SW shrimps have been reported to have positive effects on ion transportation, whereas RasGAP and RhoGDI in FW shrimps are associated with negative control of ion transportation, and CNK3 and ODC play central roles in cation homeostasis. Besides, the phylogenetic tree reconstructed from the positively selected sites separated the SW and FW shrimps into two groups. Distinct subsets of parallel substitutions also have been found in these osmoregulation-related genes in SW and FW shrimps. Therefore, our results suggest that distinct convergent evolution may have occurred in the osmoregulation systems of SW and FW shrimps. Furthermore, positive selection of osmoregulation-related genes may be beneficial for the regulation of water and salt balance in decapod shrimps.

  1. Trophic transfer of trace metals from the polychaete worm Nereis diversicolor to the polychaete N. virens and the decapod crustacean Palaemonetes varians

    USGS Publications Warehouse

    Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.

    2006-01-01

    Diet is an important exposure route for the uptake of trace metals by aquatic invertebrates, with trace metal trophic transfer depending on 2 stages - assimilation and subsequent accumulation by the predator. This study investigated the trophic transfer of trace metals from the sediment-dwelling polychaete worm Nereis diversicolor from metal-rich estuarine sediments in southwestern UK to 2 predators - another polychaete N. virens (Cu, Zn, Pb, Cd, Fe) and the decapod crustacean Palaemonetes varians (Cu, Zn, Pb, Cd, Fe, Ag, As, Mn). N. virens showed net accumulation of Cu, Zn, Pb and Cd from the prey; accumulation increased with increasing prey concentration, but a coefficient of trophic transfer decreased with increasing prey concentration, probably because a higher proportion of accumulated metal in the prey is bound in less trophically available (insoluble) detoxified forms. The trace metal accumulation patterns of P. varians apparently restricted significant net accumulation of metals from the diet of N. diversicolor to just Cd. There was significant mortality of the decapods fed on the diets of metal-rich worms. Metal-rich invertebrates that have accumulated metals from the rich historical store in the sediments of particular SW England estuaries can potentially pass these metals along food chains, with accumulation and total food chain transfer depending on the metal assimilation efficiencies and accumulation patterns of the animal at each trophic level. This trophic transfer may be significant enough to have ecotoxicological effects. ?? Inter-Research 2006.

  2. Parasites in the Fossil Record: A Cretaceous Fauna with Isopod-Infested Decapod Crustaceans, Infestation Patterns through Time, and a New Ichnotaxon

    PubMed Central

    Klompmaker, Adiël A.; Artal, Pedro; van Bakel, Barry W. M.; Fraaije, René H. B.; Jagt, John W. M.

    2014-01-01

    Parasites are common in modern ecosystems and are also known from the fossil record. One of the best preserved and easily recognisable examples of parasitism in the fossil record concerns isopod-induced swellings in the branchial chamber of marine decapod crustaceans. However, very limited quantitative data on the variability of infestation percentages at the species, genus, and family levels are available. Here we provide this type of data for a mid-Cretaceous (upper Lower Cretaceous, upper Albian) reef setting at Koskobilo, northern Spain, on the basis of 874 specimens of anomurans and brachyurans. Thirty-seven specimens (4.2%), arranged in ten species, are infested. Anomurans are more heavily infested than brachyurans, variability can be high within genera, and a relationship may exist between the number of specimens and infestation percentage per taxon, possibly suggesting host-specificity. We have also investigated quantitative patterns of infestation through geological time based on 88 infested species (25 anomurans, 55 brachyurans, seven lobsters, and one shrimp), to show that the highest number of infested species can be found in the Late Jurassic, also when corrected for the unequal duration of epochs. The same Late Jurassic peak is observed for the percentage of infested decapod species per epoch. This acme is caused entirely by infested anomurans and brachyurans. Biases (taphonomic and otherwise) and causes of variability with regard to the Koskobilo assemblage and infestation patterns through time are discussed. Finally, a new ichnogenus and -species, Kanthyloma crusta, are erected to accommodate such swellings or embedment structures (bioclaustrations). PMID:24667587

  3. Diversity of cytosolic HSP70 Heat Shock Protein from decapods and their phylogenetic placement within Arthropoda.

    PubMed

    Baringou, Stephane; Rouault, Jacques-Deric; Koken, Marcel; Hardivillier, Yann; Hurtado, Luis; Leignel, Vincent

    2016-10-10

    The 70kDa heat shock proteins (HSP70) are considered the most conserved members of the HSP family. These proteins are primordial to the cell, because of their implications in many cellular pathways (e. g., development, immunity) and also because they minimize the effects of multiple stresses (e. g., temperature, pollutants, salinity, radiations). In the cytosol, two ubiquitous HSP70s with either a constitutive (HSC70) or an inducible (HSP70) expression pattern are found in all metazoan species, encoded by 5 or 6 genes (Drosophila melanogaster or yeast and human respectively). The cytosolic HSP70 protein family is considered a major actor in environmental adaptation, and widely used in ecology as an important biomarker of environmental stress. Nevertheless, the diversity of cytosolic HSP70 remains unclear amongst the Athropoda phylum, especially within decapods. Using 122 new and 311 available sequences, we carried out analyses of the overall cytosolic HSP70 diversity in arthropods (with a focus on decapods) and inferred molecular phylogenies. Overall structural and phylogenetic analyses showed a surprisingly high diversity in cytosolic HSP70 and revealed the existence of several unrecognised groups. All crustacean HSP70 sequences present signature motifs and molecular weights characteristic of non-organellar HSP70, with multiple specific substitutions in the protein sequence. The cytosolic HSP70 family in arthropods appears to be constituted of at least three distinct groups (annotated as A, B and C), which comprise several subdivisions, including both constitutive and inducible forms. Group A is constituted by several classes of Arthropods, while group B and C seem to be specific to Malacostraca and Hexapoda/Chelicerata, respectively. The HSP70 organization appeared much more complex than previously suggested, and far beyond a simple differentiation according to their expression pattern (HSC70 versus HSP70). This study proposes a new classification of cytosolic

  4. Tracking living decapod larvae: mass staining of eggs with neutral red prior to hatching.

    PubMed

    Øresland, V; Horobin, R W

    2012-04-01

    Mass staining of decapod females carrying eggs, with subsequent identification of hatched larvae in the environment, is a research tool with great potential for field ecologists wishing to track the movements of larvae. For this to be achieved, however, numerous requirements must be met. These include adequate dye solubility, short staining time, dye penetration through different tissues, dye retention within the organism, absence of toxic and behavioral effects, low visibility to predators of stained larvae, no loss of staining owing to preservatives and low cost. The dye, neutral red, appears to meet most of these requirements. This dye was used in aliquots of 0.7 g/770 ml seawater applied to the females of Norway lobster (Nephrops norvegicus) and European lobster (Homarus gammarus) for 10 min. This procedure stained lobster eggs and embryos so that hatched larvae could be distinguished easily by fluorescence microscopy from larvae that hatched from unstained eggs. Stained larvae that were preserved in 4% formaldehyde in seawater were still stained after 1 year. Larvae should not come in contact with ethanol, because it extracts the dye rapidly.

  5. On some interesting marine decapod crustaceans (Alpheidae, Laomediidae, Strahlaxiidae) from Lombok, Indonesia.

    PubMed

    Anker, Arthur; Pratama, Idham Sumarto; Firdaus, Muhammad; Rahayu, Dwi Listyo

    2015-01-20

    Several rare or uncommon, mostly infaunal decapod crustaceans are reported from intertidal and shallow subtidal habitats of Lombok, Indonesia. The alpheid shrimps Alpheus angustilineatus Nomura & Anker, 2005, Athanas shawnsmithi Anker, 2011, Jengalpheops rufus Anker & Dworschak, 2007, Salmoneus alpheophilus Anker & Marin, 2006, Salmoneus colinorum De Grave, 2004, and the laomediid mud-shrimp Naushonia carinata Dworschak, Marin & Anker, 2006, are reported for the first time since their original descriptions and represent new records for the marine fauna of Indonesia. The alpheid shrimps Alpheus macellarius Chace, 1988, Alpheus platyunguiculatus (Banner, 1953), Athanas japonicus Kubo, 1936, Athanas polymorphus Kemp, 1915, Leptalpheus denticulatus Anker & Marin, 2009, Richalpheus palmeri Anker & Jeng, 2006, Salmoneus gracilipes Miya, 1972, Salmoneus tricristatus Banner, 1959 and the laomediid mudshrimps Laomedia astacina De Haan, 1841 and Naushonia lactoalbida Berggren, 1992 are new records for Indonesian waters. The remaining alpheid shrimps, namely Alpheopsis yaldwyni Banner & Banner, 1973, Alpheus savuensis De Man, 1908, Automate anacanthopus De Man, 1910, Automate dolichognatha De Man, 1888, Salmoneus serratidigitus (Coutière, 1896), and the strahlaxiid mud-shrimp Neaxius glyptocercus (von Martens, 1869), all previously known from Indonesia, are recorded for the first time from Lombok. Colour photographs are provided for all species reported, some shown in colour for the first time. 

  6. Community shelter use in response to two benthic decapod predators in the Long Island Sound.

    PubMed

    Hudson, David M; Reagan, Dugan; Crivello, Joseph F

    2016-01-01

    To investigate community shelter effects of two invasive decapod species, Hemigrapsus sanguineus and Carcinus maenas, in the Long Island Sound (LIS), we deployed artificial shelters in the intertidal and immediate subtidal zones. These consisted of five groups during the summer: a control, a resident H. sanguineus male or female group, and a resident C. maenas male or female group. We quantified utilization of the shelters at 24 h by counting crabs and fish present. We found significant avoidance of H. sanguineus in the field by benthic hermit crabs (Pagurus spp.) and significant avoidance of C. maenas by the seaboard goby (Gobiosoma ginsburgi). The grubby (Myoxocephalus aenaeus) avoided neither treatment, probably since it tends to be a predator of invertebrates. H. sanguineus avoided C. maenas treatments, whereas C. maenas did not avoid any treatment. Seasonal deployments in the subtidal indicated cohabitation of a number of benthic species in the LIS, with peak shelter use corresponding with increased predation and likely reproductive activity in spring and summer for green crabs (C. maenas), hermit crabs (Pagurus spp.), seaboard gobies (G. ginsburgi), and grubbies (Myoxocephalus aenaeus).

  7. The decapod fauna (Axiidea, Anomura, Brachyura) from the Late Pleistocene of Trumbacà, Reggio Calabria (Calabria, southern Italy).

    PubMed

    Garassino, Alessandro; Pasini, Giovanni; De Angeli, Antonio; Hyžný, Matúš

    We report a rich faunal assemblage from the Tyrrhenian (Late Pleistocene) of Trumbacà, located in the southern area of Reggio Calabria (Calabria, southern Italy). The only brachyuran reported to date from this locality is Ranilia constricta (A. Milne Edwards, 1880) by Vazzana (2008). The studied specimens have been assigned, as follows: ? Corallianassa sp., Dardanus arrosor (Herbst, 1796), Dardanus substriatus (A. Milne Edwards, 1861), Paguristes cf. P. syrtensis de Saint Laurent 1970, Anapagurus sp., Ranilia constricta (A. Milne Edwards, 1880), Ranina propinqua Ristori, 1891, Ebalia cf. E. deshayesi Lucas, 1846, Ilia nucleus (Linnaeus, 1758), Medorippe lanata (Linnaeus, 1767), Calappa granulata (Linnaeus, 1758), Pisa armata (Latreille, 1803), Derilambrus cf. D. angulifrons (Latreille, 1825), Atelecyclus undecimdentatus (Herbst, 1783), Carcinus sp., Pilumnus hirtellus (Linnaeus, 1761), and Xantho cf. X. incisus (Leach, 1814). The studied assemblage enlarges our knowledge on the evolution of the Mediterranean decapod faunas.

  8. Hatching rhythms and dispersion of decapod crustacean larvae in a brackish coastal lagoon in Argentina

    NASA Astrophysics Data System (ADS)

    Anger, K.; Spivak, E.; Bas, C.; Ismael, D.; Luppi, T.

    1994-12-01

    Mar Chiquita, a brackish coastal lagoon in central Argentina, is inhabited by dense populations of two intertidal grapsid crab species, Cyrtograpsus angulatus and Chasmagnathus granulata. During a preliminary one-year study and a subsequent intensive sampling programme (November December 1992), the physical properties and the occurrence of decapod crustacean larvae in the surface water of the lagoon were investigated. The lagoon is characterized by highly variable physical conditions, with oligohaline waters frequently predominating over extended periods. The adjacent coastal waters show a complex pattern of semidiurnal tides that often do not influence the lagoon, due to the existence of a sandbar across its entrance. Besides frequently occurring larvae (exclusively freshly hatched zoeae and a few megalopae) of the two dominating crab species, those of three other brachyurans ( Plathyxanthus crenulatus, Uca uruguayensis, Pinnixa patagonica) and of one anomuran (the porcellanid Pachycheles haigae) were also found occasionally. Caridean shrimp ( Palaemonetes argentinus) larvae occurred in a moderate number of samples, with a maximum density of 800·m-3. The highest larval abundance was recorded in C. angulatus, with almost 8000°m-3. Significantly more C. angulatus and C. granulata zoeae occurred at night than during daylight conditions, and more larvae (statistically significant only in the former species) during ebb (outflowing) than during flood (inflowing) tides. In consequence, most crab zoeae were observed during nocturnal ebb, the least with diurnal flood tides. Our data suggest that crab larvae do not develop in the lagoon, where the adult populations live, but exhibit an export strategy, probably based upon exogenously coordinated egg hatching rhythms. Zoeal development must take place in coastal marine waters, from where the megalopa eventually returns for settlement and metamorphosis in the lagoon. Significantly higher larval frequency of C. granulata in

  9. The decapod fauna (Axiidea, Anomura, Brachyura) from the Late Pleistocene of Trumbacà, Reggio Calabria (Calabria, southern Italy)

    PubMed Central

    Garassino, Alessandro; Pasini, Giovanni; De Angeli, Antonio; Hyžný, Matúš

    2015-01-01

    We report a rich faunal assemblage from the Tyrrhenian (Late Pleistocene) of Trumbacà, located in the southern area of Reggio Calabria (Calabria, southern Italy). The only brachyuran reported to date from this locality is Ranilia constricta (A. Milne Edwards, 1880) by Vazzana (2008). The studied specimens have been assigned, as follows: ?Corallianassa sp., Dardanus arrosor (Herbst, 1796), Dardanus substriatus (A. Milne Edwards, 1861), Paguristes cf. P. syrtensis de Saint Laurent 1970, Anapagurus sp., Ranilia constricta (A. Milne Edwards, 1880), Ranina propinqua Ristori, 1891, Ebalia cf. E. deshayesi Lucas, 1846, Ilia nucleus (Linnaeus, 1758), Medorippe lanata (Linnaeus, 1767), Calappa granulata (Linnaeus, 1758), Pisa armata (Latreille, 1803), Derilambrus cf. D. angulifrons (Latreille, 1825), Atelecyclus undecimdentatus (Herbst, 1783), Carcinus sp., Pilumnus hirtellus (Linnaeus, 1761), and Xantho cf. X. incisus (Leach, 1814). The studied assemblage enlarges our knowledge on the evolution of the Mediterranean decapod faunas. PMID:26689358

  10. Community shelter use in response to two benthic decapod predators in the Long Island Sound

    PubMed Central

    Reagan, Dugan; Crivello, Joseph F.

    2016-01-01

    To investigate community shelter effects of two invasive decapod species, Hemigrapsus sanguineus and Carcinus maenas, in the Long Island Sound (LIS), we deployed artificial shelters in the intertidal and immediate subtidal zones. These consisted of five groups during the summer: a control, a resident H. sanguineus male or female group, and a resident C. maenas male or female group. We quantified utilization of the shelters at 24 h by counting crabs and fish present. We found significant avoidance of H. sanguineus in the field by benthic hermit crabs (Pagurus spp.) and significant avoidance of C. maenas by the seaboard goby (Gobiosoma ginsburgi). The grubby (Myoxocephalus aenaeus) avoided neither treatment, probably since it tends to be a predator of invertebrates. H. sanguineus avoided C. maenas treatments, whereas C. maenas did not avoid any treatment. Seasonal deployments in the subtidal indicated cohabitation of a number of benthic species in the LIS, with peak shelter use corresponding with increased predation and likely reproductive activity in spring and summer for green crabs (C. maenas), hermit crabs (Pagurus spp.), seaboard gobies (G. ginsburgi), and grubbies (Myoxocephalus aenaeus). PMID:27547570

  11. Effect of meal size and body size on specific dynamic action and gastric processing in decapod crustaceans.

    PubMed

    McGaw, Iain J; Curtis, Daniel L

    2013-11-01

    Meal size and animal size are important factors affecting the characteristics of the specific dynamic action (SDA) response across a variety of taxa. The effects of these two variables on the SDA of decapod crustaceans are based on just a couple of articles, and are not wholly consistent with the responses reported for other aquatic ectotherms. Therefore, the effects of meal size and animal size on the characteristics of SDA response were investigated in a variety of decapod crustaceans from different families. A 6 fold increase in meal size (0.5%-3% body mass) resulted a pronounced increase in the duration of increased oxygen consumption, resulting in an increase in the SDA of Callinectes sapidus, Cancer gracilis, Hemigrapsus nudus, Homarus americanus, Pugettia producta and Procambarus clarkii. Unlike many other aquatic ectotherms a substantial increase between meal sizes was required, with meal size close to their upper feeding limit (3% body mass), before changes were evident. In many organisms increases in both duration and scope contribute to the overall SDA, here changes in scope as a function of meal size were weak, suggesting that a similar amount of energy is required to upregulate gastric processes, regardless of meal size. The SDA characteristics were less likely to be influenced by the size of the animal, and there was no difference in the SDA (kJ) as a function of size in H. americanus or Cancer irroratus when analysed as mass specific values. In several fish species characteristics of the SDA response are more closely related to the transit times of food, rather than the size of a meal. To determine if a similar trend occurred in crustaceans, the transit rates of different sized meals were followed through the digestive system using a fluoroscope. Although there was a trend towards larger meals taking longer to pass through the gut, this was only statistically significant for P. clarkii. There were some changes in transit times as a function of animal

  12. Effects of chlordecone on 20-hydroxyecdysone concentration and chitobiase activity in a decapod crustacean, Macrobrachium rosenbergii.

    PubMed

    Lafontaine, Anne; Gismondi, Eric; Boulangé-Lecomte, Céline; Geraudie, Perrine; Dodet, Nathalie; Caupos, Fanny; Lemoine, Soazig; Lagadic, Laurent; Thomé, Jean-Pierre; Forget-Leray, Joëlle

    2016-07-01

    Chlordecone (CLD) is an organochlorine insecticide abundant in aquatic environment of the French West Indies. However, few studies have investigated its impact on freshwater invertebrates. Whereas CLD is suspected of inducing endocrine disruption, this work aimed to study the effects of environmentally relevant concentrations of CLD on the 20-hydroxyecdysone (20-HE) hormone concentration and on the chitobiase activity, both having key roles in the molting process of crustaceans. In addition, the bioaccumulation of CLD was measured in the muscle tissue of Macrobrachium rosenbergii to underline potential dose-response relationship. The results have shown that CLD was bioaccumulated in exposed organisms according to a trend to a dose-response relationship. Moreover, it was observed that CLD decreased the 20-HE concentration in exposed prawns when compared to control, whatever the duration of exposure, as well as it inhibited the chitobiase activity after 30days of exposure. The present study indicates that CLD could interfere with molting process of M. rosenbergii by disturbing the 20-HE concentration and the activity of chitobiase, suggesting consequences at the long term on the shrimp development. This study also confirmed that CLD could be an endocrine disruptor in decapod crustaceans, as it was already observed in vertebrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A successful crayfish invader is capable of facultative parthenogenesis: a novel reproductive mode in decapod crustaceans.

    PubMed

    Buřič, Miloš; Hulák, Martin; Kouba, Antonín; Petrusek, Adam; Kozák, Pavel

    2011-01-01

    Biological invasions are impacting biota worldwide, and explaining why some taxa tend to become invasive is of major scientific interest. North American crayfish species, particularly of the family Cambaridae, are prominent invaders in freshwaters, defying the "tens rule" which states that only a minority of species introduced to new regions become established, and only a minority of those become invasive and pests. So far, success of cambarid invaders has largely been attributed to rapid maturation, high reproductive output, aggressiveness, and tolerance to pollution. We provide experimental evidence that females of one cambarid species particularly widespread in Europe, the spiny-cheek crayfish Orconectes limosus, are capable of facultative parthenogenesis. Such reproductive mode has never before been recognized in decapods, the most diverse crustacean order. As shown by analysis of seven microsatellite loci, crayfish females kept physically separated from males produced genetically homogeneous offspring identical with maternal individuals; this suggests they reproduced by apomixis, unlike those females which mated with males and had a diverse offspring. Further research is needed to clarify what environmental conditions are necessary for a switch to parthenogenesis in O. limosus, and what role it plays in natural crayfish populations. However, if such reproductive plasticity is present in other cambarid crayfish species, it may contribute to the overwhelming invasive success of this group.

  14. The asian decapod Hemigrapsus penicillatus (de Haan, 1835) (Grapsidae, Decapoda) introduced in European waters: status quo and future perspective

    NASA Astrophysics Data System (ADS)

    Gollasch, S.

    1998-09-01

    The Asian decapod Hemigrapsus penicillatus (de Haan, 1835) was first recorded in European waters in 1994. The first specimens were collected in the estuary of Charente Maritime on the west coast of France close to La Rochelle. The current range in Europe covers Spanish shallow water habitats of the Bay of Biscay to areas north of La Rochelle (France). Densities of up to 20 specimens per square metre occur. This species has a high temperature and salinity tolerace and will expand its distribution in European waters. It is not clear whether this crab was introduced by shipping in ballast water or as a fouling organism. Based on a study of ship hull fouling in German dry docks this account provides evidence that hull fouling is a likely vector for the introduction of this crab. In August 1993, six juvenile specimens of H. penicillatus were removed from the hull of a car-carrier. After its journey from Japan into European waters this vessel docked in the port of Bremerhaven (Germany) for a routine inspection and coating with antifouling paint.

  15. Deep-Sea decapod crustaceans (Caridea, Polychelida, Anomura and Brachyura) collected from the Nikko Seamounts, Mariana Arc, using a remotely operated vehicle "Hyper-Dolphin".

    PubMed

    Komai, Tomoyuki; Tsuchida, Shinji

    2014-02-11

    Samples and images of deep-water benthic decapod crustaceans were collected from the Nikko Seamounts, Mariana Arc, at depths of 520-680 m, by using the remotely operate vehicle "Hyper-Dolphin", equipped with a high definition camera, digital camera, manipulators and slurp gun (suction sampler). The following seven species were collected, of which three are new to science: Plesionika unicolor n. sp. (Caridea: Pandalidae), Homeryon armarium Galil, 2000 (Polychelida: Polychelidae), Eumunida nikko n. sp. (Anomura: Eumunididae), Michelopagurus limatulus (Henderson, 1888) (Anomura: Paguridae), Galilia petricola n. sp. (Brachyura: Leucosiidae), Cyrtomaia micronesica Richer de Forges & Ng, 2007 (Brachyura: Inachidae), and Progeryon mus Ng & Guinot, 1999 (Brachyura: Progeryonidae). Affinities of these three new species are discussed. All but H. armarium are recorded from the Japanese Exclusive Economic Zone for the first time. Brief notes on ecology and/or behavior are given for each species.

  16. Metabolic rates of benthic deep-sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature

    NASA Astrophysics Data System (ADS)

    Childress, J. J.; Cowles, D. L.; Favuzzi, J. A.; Mickel, T. J.

    1990-06-01

    The oxygen consumption rates of 11 species of benthic deep-sea decapod crustaceans were measured at a variety of temperatures to test the hypothesis that the metabolic rates of benthic crustaceans decline with increasing depth of occurrence only to the extent explained by the decline in temperature with depth. The species were captured at depths between 150 and 2000m off Southern California using an epibenthic beam trawl equipped with a thermally protecting cod-end to bring the animals to the surface uncontaminated by sediment and at the depth temperature. The data, combined with those for six species of shallower-living crustaceans from California waters, showed a significant decline in oxygen consumption rate with increased species' depths of occurrence, when the measurements were made at temperatures appropriate to each species' depth range. There was no significant relation between wet weight and depth of occurrence in these species. When the data were adjusted to 10°C using a moderate temperature effect factor (corresponding to Q10 values of 2-2.3 depending on the species and temperature range), the significant relationship between oxygen consumption rate and depth was lost, indicating that the observed decline with depth was due to the decline in temperature with depth. When the relationship between metabolic rate and depth of occurrence for the most active (carideans and penaeid) species were compared (ANCOVA) with that for the rest of the species, the active species had significantly higher rates. By combining this data set with data from the literature for a wide variety of shallow-living benthic decapod crustaceans, it was possible to create a data set of 35 species in which the effects of temperature, minimum depth of occurrence and body mass could be separated by multiple linear regression. This demonstrated highly significant effects of size and temperature, but no significant effect of depth for the entire data set and for the data set excluding

  17. The impact of coastal defence structures (tetrapods) on decapod crustaceans in the southern North Sea.

    PubMed

    Wehkamp, Stephanie; Fischer, Philipp

    2013-12-01

    Although the use of coastal defence structures is expected to increase, little is known about the ecological impact of such structures on the natural environment. In particular, the temporal and spatial patterns of communities in association with artificial substrate are still poorly understood. This study examined possible effects of experimental tetrapod fields on the decapod crustacean community in a subtidal hard-bottom area in the southern North Sea. We performed in situ studies in the fields and along transects oriented away from the tetrapod fields. Species composition and abundances were assessed before and after the introduction of the artificial material. The study revealed a significant decrease of smaller, less vagile species (Pisidia longicornis, Pilumnus hirtellus, Galathea squamifera) over the entire study area in the years following the tetrapod introduction. For 2 species, Hyas araneus and Homarus gammarus, the tetrapods appeared to be highly attractive as habitat and shelter because their abundance increased over time. No distinct spatial or temporal effects were observed for mobile predatory crabs, such as Cancer pagurus and Liocarcinus spp. The results of the study demonstrate that possible effects of artificial structures on macro-invertebrates in temperate hard-bottom areas are highly species-specific and depend on the size, lifestyle and ecological requirements of the species. This work highlights the importance of long-term studies. Our findings clearly indicate that more time is needed to distinguish between natural and anthropogenic influences on species distributions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A Successful Crayfish Invader Is Capable of Facultative Parthenogenesis: A Novel Reproductive Mode in Decapod Crustaceans

    PubMed Central

    Buřič, Miloš; Hulák, Martin; Kouba, Antonín

    2011-01-01

    Biological invasions are impacting biota worldwide, and explaining why some taxa tend to become invasive is of major scientific interest. North American crayfish species, particularly of the family Cambaridae, are prominent invaders in freshwaters, defying the “tens rule” which states that only a minority of species introduced to new regions become established, and only a minority of those become invasive and pests. So far, success of cambarid invaders has largely been attributed to rapid maturation, high reproductive output, aggressiveness, and tolerance to pollution. We provide experimental evidence that females of one cambarid species particularly widespread in Europe, the spiny-cheek crayfish Orconectes limosus, are capable of facultative parthenogenesis. Such reproductive mode has never before been recognized in decapods, the most diverse crustacean order. As shown by analysis of seven microsatellite loci, crayfish females kept physically separated from males produced genetically homogeneous offspring identical with maternal individuals; this suggests they reproduced by apomixis, unlike those females which mated with males and had a diverse offspring. Further research is needed to clarify what environmental conditions are necessary for a switch to parthenogenesis in O. limosus, and what role it plays in natural crayfish populations. However, if such reproductive plasticity is present in other cambarid crayfish species, it may contribute to the overwhelming invasive success of this group. PMID:21655282

  19. The deep scattering layer micronektonic fish faunas of the Atlantic mesopelagic ecoregions with comparison of the corresponding decapod shrimp faunas

    NASA Astrophysics Data System (ADS)

    Judkins, David C.; Haedrich, Richard L.

    2018-06-01

    Three hundred and twenty-nine species of micronektonic fishes were identified in 1040 midwater trawl collections taken between 1963 and 1974 from the North and South Atlantic, the Mediterranean, the Caribbean and the Gulf of Mexico. The target of most tows was the deep scattering layer, and consequently the dominant species in the material were those that were concentrated in the layer. The results only generally confirm the 11 Atlantic mesopelagic ecoregions previously recognized. The geometric mean of the proportion of joint occurrences (GMPJO) of species with tows within each ecoregion was used to characterize the faunas of the ecoregions. The ecoregion affinities of fishes were compared to those of decapod shrimp in the same collections. The fish and shrimp faunas of ecoregions could be distinguished by GMPJO values, but the ranges of species favoring each ecoregion varied widely in extent and did not conform well to ecoregion boundaries or features of circulation. This suggests that co-occurring species respond differently to the physical properties and resulting biological factors defining mesopelagic ecoregions.

  20. Distribution, abundance, and feeding ecology of decapods in the Arabian Sea, with implications for vertical flux

    NASA Astrophysics Data System (ADS)

    Mincks, Sarah L.; Bollens, Stephen M.; Madin, Laurence P.; Horgan, Erich; Butler, Mari; Kremer, Patricia M.; Craddock, James E.

    Macrozooplankton and micronekton samples were collected on two cruises in the Arabian Sea conducted during the Spring Intermonsoon period (May) and the SW Monsoon period (August) of 1995. Discrete depth samples were collected down to depths of 1000-1500 m. Quantitative gut content analyses were performed on four species of decapod shrimps, Gennadas sordidus, Sergia filictum, Sergia creber, and Eupasiphae gilesii, as well as on the pelagic crab Charybdis smithii. Of the shrimps, only S. filictum and S. creber increased significantly in abundance between the Spring Intermonsoon and SW Monsoon seasons. These four species were found at all depths sampled, and most did not appear to be strong vertical migrators. G. sordidus and S. filictum did appear to spread upward at night, especially during the SW Monsoon, but this movement did not include the entire population. S. creber showed signs of diel vertical migration only in some areas. All four shrimp species except, to some degree, S. creber lived almost exclusively within the oxygen minimum zone (150-1000 m), and are likely to have respiratory adaptations that allow them to persist under such conditions. Feeding occurred at all depths throughout these species' ranges, but only modest feeding occurred in the surface layer (0-150 m). G. sordidus appeared to feed continuously throughout the day and night. Estimated contribution of fecal material to vertical flux ranged from <0.01-2.1% of particulate flux at 1000 m for the shrimps and 1.8-3.0% for C. smithii.

  1. Trophic transfer of trace metals: Subcellular compartmentalization in a polychaete and assimilation by a decapod crustacean

    USGS Publications Warehouse

    Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.

    2006-01-01

    The chemical form of accumulated trace metal in prey is important in controlling the bioavailataility of dietary metal to a predator. This study investigated the trophic transfer of radiolabelled Ag, Cd and Zn from the polychaete worm Nereis diversicolor to the decapod crustacean Palaemonetes varians. We used 2 populations of worms with different proportions of accumulated metals in different subcellular fractions as prey, and loaded the worms with radiolabelled metals either from sediment or from solution. Accumulated radiolabelled metals were fractionated into 5 components : metal-rich granules (MRG), cellular debris, organelles, metallothionein-like proteins (MTLP), and other (heat-sensitive) proteins (HSP). Assimilation efficiencies (AE) of the metals by P. varians were measured from the 4 categories of prey (i.e. 2 populations, radiolabelled from sediment or solution). There were significant differences for each metal between the AEs from the different prey categories, confirming that origin of prey and route of uptake of accumulated trace metal will cause intraspecific differences in subsequent metal assimilation. Correlations were sought between AEs and selected fractions or combinations of fractions of metals in the prey-MRG, Trophically Available Metal (TAM = MTLP + HSP + organelles) and total protein (MTLP + HSP). TAM explained 28% of the variance in AEs for Ag, but no consistent relationships emerged between AEs and TAM or total protein when the metals were considered separately. AEs did, however, show significant positive regressions with both TAM and total protein when the 3 metals were considered together, explaining only about 21 % of the variance in each case. A significant negative relationship was observed between MRG and AE for all metals combined. The predator (P. varians) can assimilate dietary metal from a range of the fractions binding metals in the prey (N. diversicolor), with different assimilation efficiencies summated across these

  2. Distribution of decapod larvae in the surface layer of an isolated equatorial oceanic archipelago: the cases of benthic Grapsus grapsus (Brachyura: Grapsidae) and pelagic Sergestes edwardsi (Dendrobranchiata: Sergestidae)

    NASA Astrophysics Data System (ADS)

    Brandão, Manoela Costa; Koettker, Andréa Green; Freire, Andrea Santarosa

    2013-03-01

    Two different decapod larval assemblages inhabit the marine environment of Saint Paul's Rocks, differentiating the inlet from the surrounding oceanic waters. Larvae of the crab Grapsus grapsus and of the holopelagic shrimp Sergestes edwardsi are abundant in superficial waters of the archipelago and have previously been shown to be good indicators of the inlet and adjacent oceanic waters, respectively. We investigated the horizontal, diel and temporal distribution of these species at Saint Paul's Rocks. Horizontal surface hauls were conducted from 2003 to 2005, in the inlet and at four increasing distances from the archipelago, in the morning and at night, using a 200-μm mesh net. Larvae of G. grapsus were identified in samples from all expeditions and abundance was found significantly higher at night in the inlet site. Only larvae in the first zoeal stage were found in samples, highlighting the importance of the area for this species reproduction. On the contrary, the distribution of larvae of S. edwardsi was typical of a holopelagic species, which are permanent residents of the water column and spawn in oceanic areas, indicating that the islands are of little influence to them.

  3. Checklist of decapods (Crustacea) from the coast of the São Paulo state (Brazil) supported by integrative molecular and morphological data: I. Infraorder Caridea: families Hippolytidae, Lysmatidae, Ogyrididae, Processidae and Thoridae.

    PubMed

    Terossi, Mariana; Almeida, Alexandre O; Buranelli, Raquel C; Castilho, Antonio L; Costa, RogÉrio C; Zara, Fernando J; Mantelatto, Fernando L

    2018-01-09

    The current checklist is the result of a long-term multidisciplinary project which combined molecular techniques (mitochondrial DNA markers) and morphological analyses of adult specimens for an accurate and detailed identification of the total biodiversity of decapod crustaceans from marine and coastal (including estuaries) environments of São Paulo State (Brazil). This is the first of a series of reports and providing a checklist of caridean shrimps of the families Hippolytidae (5 spp.), Lysmatidae (6 spp.), Ogyrididae (2 spp.), Processidae (5 spp.) and Thoridae (1 sp.). We collected material of 13 species out of 19 recorded, with sequences of cytochrome oxidase subunit I - barcode region and 16S generated from 10 species. The previous record of Lysmata cf. intermedia for São Paulo is actually L. jundalini, as the first record in São Paulo/South Atlantic waters. The molecular data were helpful to confirm the identification of some species, as the occurrence of L. wurdemanni which is confirmed in the South Atlantic Ocean based on morphological, color pattern and molecular data.

  4. Trophic relationships at intrannual spatial and temporal scales of macro and megafauna around a submarine canyon off the Catalonian coast (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Cartes, Joan E.; Fanelli, Emanuela; Papiol, Vanesa; Maynou, Francesc

    2010-04-01

    The spatial and temporal changes of near-bottom macrofauna (suprabenthos and macroplankton) and the trophic relationships of megabenthic decapod crustaceans were analyzed off the Catalonian coasts (western Mediterranean) around Berenguera submarine canyon in four periods (April and December 1991, March and July 1992) and four zones (within Berenguera Canyon at ca. 450 m, and on adjacent slope at ca. 400, 600 m and 1200 m). In March 1992, we found the highest macrofauna abundance and the smallest sizes in the canyon, suggesting a positive effect of river discharges on suprabenthos recruitment. By contrast, macroplankton (decapods, fishes and euphausiids) did not show higher recruitment into canyons. After analyzing the diet of 23 decapod crustaceans, we found a significant segregation between guilds feeding on zooplankton and on benthos. Zooplankton (euphausiids and Pasiphaeidae) and infauna (polychaetes, Calocaris macandreae and ophiuoroids) were consistently the main prey exploited by decapod crustaceans around Berenguera Canyon. We also found some macrophyte ( Posidonia oceanica) consumption, which was higher in periods of water column homogeneity (winter-spring and late autumn). Positive correlations between decapods' gut fullness ( F) and decapod abundance indicate feeding aggregations, while positive correlations were also found between F and Llobregat River (situated ca. 18 km from Berenguera head) flow 1 to 2 months before sampling. Increases in F were delayed only 1 month when zooplankton feeders were analyzed alone, while benthos feeders did not show significant relationships with any environmental variables. That indicates that the response of megabenthic decapods feeding on benthos to environmental shifts is slower than that of zooplankton feeders. The importance of river flows in enhancing food supply of macro- and megabenthos dwelling close to submarine canyons was apparent, with a delay in the fauna response of 0-2 months after river flow peaks.

  5. Monthly variation in crustacean assemblage (decapod and stomatopod) and its relationships with environmental variables in Laizhou Bay, China

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Wang, Jun; Zhang, Bo; Chen, Ruisheng; Jin, Xianshi

    2016-04-01

    In this study, we investigated the community structure of crustaceans (decapod and stomatopod) inhabiting the sandy mud bottoms of Laizhou Bay (northeastern China) monthly from May 2011 to April 2012. Investigation was stopped from December 2011 to February 2012 because of the extreme weather and sea ice. A total of 205,057 specimens belonging to 31 species (shrimp, 15; crab, 15; and stomatopod, 1) were collected in 148 hauls. From 2011 to 2012, Oratosquilla oratoria was the dominant biomass species (47.80%), followed by Charybdis japonica (15.49%), Alpheus japonicas (12.61%), Portunus trituberculatus (6.46%), and Crangon spp. (4.19%). Crangon spp. was the most dominant species by individual (32.55%). O. oratoria was the most-frequently encountered species (81.76%), followed by Palaemon gravieri (70.95%), C. japonica (65.54%), A. japonicas (62.16%), and P. trituberculatus (54.73%). The biomass density increased from August to September 2011 and decreased from March 2012 to April 2012. The dynamics of the ecological indices evolve in a similar manner, with high values of diversity and evenness and rich species from May to June 2011 and low values from September to October 2011. O. oratoria, C. japonica, and P. trituberculatus differed by biomass data between groups I (samples obtained from September to October 2011) and II (samples in other months). These species contributed more than 70% to the similarity of the crustacean community structure. Furthermore, the subsets of environmental variables that best matched the crustacean-assemblage structure were as follows: water depth (WD) in summer (June to August); sea surface temperature (SST), dissolved oxygen (DO), and WD in autumn (September to November); and DO, salinity, and WD in spring (March to May). The calculated correlation coefficients and significance level were higher in the period of July to August 2011 than in other months. Comparing 2011 to 2012 with 1982 to 1983, the species composition remained stable

  6. Understanding Insulin Endocrinology in Decapod Crustacea: Molecular Modelling Characterization of an Insulin-Binding Protein and Insulin-Like Peptides in the Eastern Spiny Lobster, Sagmariasus verreauxi.

    PubMed

    Chandler, Jennifer C; Gandhi, Neha S; Mancera, Ricardo L; Smith, Greg; Elizur, Abigail; Ventura, Tomer

    2017-08-23

    The insulin signalling system is one of the most conserved endocrine systems of Animalia from mollusc to man. In decapod Crustacea , such as the Eastern spiny lobster, Sagmariasus verreauxi (Sv) and the red-claw crayfish, Cherax quadricarinatus (Cq), insulin endocrinology governs male sexual differentiation through the action of a male-specific, insulin-like androgenic gland peptide (IAG). To understand the bioactivity of IAG it is necessary to consider its bio-regulators such as the insulin-like growth factor binding protein (IGFBP). This work has employed various molecular modelling approaches to represent S. verreauxi IGFBP and IAG, along with additional Sv-ILP ligands, in order to characterise their binding interactions. Firstly, we present Sv- and Cq-ILP2: neuroendocrine factors that share closest homology with Drosophila ILP8 (Dilp8). We then describe the binding interaction of the N-terminal domain of Sv-IGFBP and each ILP through a synergy of computational analyses. In-depth interaction mapping and computational alanine scanning of IGFBP_N' highlight the conserved involvement of the hotspot residues Q 67 , G 70 , D 71 , S 72 , G 91 , G 92 , T 93 and D 94 . The significance of the negatively charged residues D 71 and D 94 was then further exemplified by structural electrostatics. The functional importance of the negative surface charge of IGFBP is exemplified in the complementary electropositive charge on the reciprocal binding interface of all three ILP ligands. When examined, this electrostatic complementarity is the inverse of vertebrate homologues; such physicochemical divergences elucidate towards ligand-binding specificity between Phyla.

  7. Evolution of body size, vision, and biodiversity of coral-associated organisms: evidence from fossil crustaceans in cold-water coral and tropical coral ecosystems.

    PubMed

    Klompmaker, Adiël A; Jakobsen, Sten L; Lauridsen, Bodil W

    2016-06-16

    Modern cold-water coral and tropical coral environments harbor a highly diverse and ecologically important macrofauna of crustaceans that face elevated extinction risks due to reef decline. The effect of environmental conditions acting on decapod crustaceans comparing these two habitats is poorly understood today and in deep time. Here, we compare the biodiversity, eye socket height as a proxy for eye size, and body size of decapods in fossil cold-water and tropical reefs that formed prior to human disturbance. We show that decapod biodiversity is higher in fossil tropical reefs from The Netherlands, Italy, and Spain compared to that of the exceptionally well-preserved Paleocene (Danian) cold-water reef/mound ecosystem from Faxe (Denmark), where decapod diversity is highest in a more heterogeneous, mixed bryozoan-coral habitat instead of in coral and bryozoan-dominated facies. The relatively low diversity at Faxe was not influenced substantially by the preceding Cretaceous/Paleogene extinction event that is not apparent in the standing diversity of decapods in our analyses, or by sampling, preservation, and/or a latitudinal diversity gradient. Instead, the lower availability of food and fewer hiding places for decapods may explain this low diversity. Furthermore, decapods from Faxe are larger than those from tropical waters for half of the comparisons, which may be caused by a lower number of predators, the delayed maturity, and the increased life span of crustaceans in deeper, colder waters. Finally, deep-water specimens of the benthic crab Caloxanthus from Faxe exhibit a larger eye socket size compared to congeneric specimens from tropical reefs, suggesting that dim light conditions favored the evolution of relatively large eyes. The results suggest a strong habitat control on the biodiversity of crustaceans in coral-associated environments and that the diversity difference between deep, cold-water reefs and tropical reefs evolved at least ~63 million years ago

  8. Influence of trophic variables on the depth-range distributions and zonation rates of deep-sea megafauna: the case of the Western Mediterranean assemblages

    NASA Astrophysics Data System (ADS)

    Cartes, Joan E.; Carrassón, Maite

    2004-02-01

    We studied in a deep-sea megafaunal community the relationship of different trophic variables to the depth ranges inhabited by and depth zonation of species, after the ordination of fish and decapod crustaceans in feeding guilds. The variables studied included trophic level of species, food sources exploited, mean weight of predators and prey, feeding intensity and dietary diversity of species. We compiled data on the diets of 18 species of fish and 14 species of decapod crustaceans distributed between 862 and 2261 m in the Catalano-Balearic Basin (Western Mediterranean). Feeding guilds were identified for fish and decapods separately and at two depth strata (862-1400 and 1400-2261 m). The zonation rates (degree of depth overlap) between species within each trophic guild differed by guild and taxon (fish and decapods). The three guilds (G1, G2 and G3) of decapod crustaceans showed quite significantly distinct overlap. G1 (plankton feeders) showed the widest overlap (1326-1381 m) and G3 (benthos feeders) the narrowest (330-476 m). Among the four guilds established for fish, G1, comprising larger predators such as sharks, showed the lowest overlap (between 194 and 382 m). Macrourids overlap ranged between 122 and 553 m, the rest of benthopelagic feeders ranged between 423 and 970 m, and G3 (benthos feeders) gave overlaps between 867 and 1067 m. Significant differences were detected between the depth overlap of most feeding guilds excluding the paired comparisons between G1/macrourids, and G2/G3. Among decapods higher zonation rates (=lower depth overlap) were identified in those guilds occupying higher trophic levels (TL), with a similar, though not as general, trend among fish. In the ordination of species in feeding guilds, TL as indicated by δ15N measurements, was significantly correlated with Dimension 1 (D1) of ordination—MDS-analysis, both in fish and decapods at 862-1400 m. However, deeper (at 1400-2261 m), D1 was not significantly correlated with TL but

  9. Long-term annual and monthly changes in mysids and caridean decapods in a macrotidal estuarine environment in relation to climate change and pollution

    NASA Astrophysics Data System (ADS)

    Plenty, Shaun J.; Tweedley, James R.; Bird, David J.; Newton, Lyn; Warwick, Richard M.; Henderson, Peter A.; Hall, Norm G.; Potter, Ian C.

    2018-07-01

    A 26-year time series of monthly samples from the water intake of a power station has been used to analyse the trends exhibited by number of species, total abundance, and composition of the mysids and caridean decapods in the inner Bristol Channel. During this period, annual water temperatures, salinities and the North Atlantic Oscillation Index (NAOI) in winter did not change significantly, whereas annual NAOI declined. Annual mean monthly values for the number of species and total abundance both increased over the 26 years, but these changes were not correlated with any of the measured physico-chemical/climatic factors. As previous studies demonstrated that, during a similar period, metal concentrations in the Severn Estuary and Bristol Channel (into which that estuary discharges) declined and water quality increased, it is proposed that the above changes are due to an improved environment. The fauna was dominated by the mysids Mesopodopsis slabberi and Schistomysis spiritus, which collectively contributed 94% to total abundance. Both species, which were represented by juveniles, males, non-brooding females and brooding females, underwent statistically-indistinguishable patterns of change in abundance over the 26 years. When analysis was based on the abundances of the various species, the overall species composition differed significantly among years and changed serially with year. When abundances were converted to percentage compositions, this pattern of seriation broke down, demonstrating that changes in abundance and not percentage composition were responsible for the seriation. As with the number and abundance of species, changes in composition over the 26 years were not related to any of the physico-chemical/climatic factors tested. Species composition changed monthly in a pronounced cyclical manner throughout the year, due to statistically different time-staggered changes in the abundance of each species. This cyclicity was related most strongly to salinity.

  10. Dynamics of the bathyal Benthic Boundary Layer in the northwestern Mediterranean: depth and temporal variations in macrofaunal megafaunal communities and their possible connections within deep-sea trophic webs

    NASA Astrophysics Data System (ADS)

    Cartes, Joan E.

    1998-01-01

    The distribution patterns of benthopelagic fauna and the macrofauna-megafauna trophic relationships in the Benthic Boundary Layer (BBL) were studied. The study is based on data collected during 6 sampling cruises off the Catalan coast (western Mediterranean) during 1991-1995 at depths ranging from 389-1355 m. Crustaceans were the dominant benthopelagic macrofauna in the BBL level closest to the sea bed (~0-1.5 m above bottom) on the Catalan Sea slope. Copepods and peracarid crustaceans (mysids, amphipods, isopods, and cumaceans) were dominant, whereas euphausiids and natantian decapods, some taxa of gelatinous plankton (siphonophores, medusae, and chaetognaths), and benthopelagic fishes were also well represented groups. Seasonal changes in megafaunal decapod crustaceans abundance seem to be linked to changes in the density and the biological cycle of BBL macrofauna, which constitute an important part of the available food exploited by megafauna. Both the advective and the vertical flow of organic matter in the north-western Mediterranean should simultaneously influence peaks of available food (BBL macrofauna) for bathyal-megafaunal decapods. Recruitment of macrofaunal (suprabenthos and infauna) species at the level of canyons and neighbouring slope zones mainly occurred between late autumn-late winter and would probably be mainly induced by an advective component. However, the macrofaunal sizes consumed by megafaunal decapods are found more abundantly represented in spring and summer populations. In parallel, the vertical fluxes seem to determine maxima in the abundance of planktonic organisms (especially copepods) which also occur in late spring-summer. Size, natatory capability, and energetic value are important factors in the selection of food-resources by megafaunal decapods, which would have a greater availability of food in late spring-summer. This would explain both the seasonal maxima of decapod abundance in summer, and maxima in the catches of some

  11. Zinc uptake and regulation by the sublittoral prawn Pandalus montagui (Crustacea: Decapoda)

    NASA Astrophysics Data System (ADS)

    Nugegoda, D.; Rainbow, P. S.

    1988-06-01

    The sublittoral decapod crustacean Pandalus montagui Leach in artificial seawater at 10°C regulates the total body zinc concentration to a constant level in dissolved zinc concentrations up to ca. 22 μg Zn l -1, beyond which there is net accumulation of body zinc. This threshold of zinc regulation breakdown is lower than that in the littoral decapods Palaemon elegans (ca. 93 μg Zn l -1) and Palaemonetes varians (ca. 190 μg Zn l -1) under the same physico-chemical conditions. Correspondingly, zinc uptake rates of the three species of decapods decrease in the order P. montagui > P. elegans > P. varians. It is concluded that regulation of total body zinc concentration is more efficient in decapods adapted to the fluctuating environments of littoral habitats, possibly as a result of changes in permeability of uptake surfaces in combination with improved zinc excretion systems. The moult cycle is important in determining the ability of an individual prawn to regulate zinc. Body zinc in Pandalus montagui consists of at least two pools of zinc exchanging at different rates which the environment. Zinc and copper are not evenly distributed in the tissues of P. montagui.

  12. Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca)

    PubMed Central

    Matzen da Silva, Joana; Creer, Simon; dos Santos, Antonina; Costa, Ana C.; Cunha, Marina R.; Costa, Filipe O.; Carvalho, Gary R.

    2011-01-01

    Background Decapods are the most recognizable of all crustaceans and comprise a dominant group of benthic invertebrates of the continental shelf and slope, including many species of economic importance. Of the 17635 morphologically described Decapoda species, only 5.4% are represented by COI barcode region sequences. It therefore remains a challenge to compile regional databases that identify and analyse the extent and patterns of decapod diversity throughout the world. Methodology/Principal Findings We contributed 101 decapod species from the North East Atlantic, the Gulf of Cadiz and the Mediterranean Sea, of which 81 species represent novel COI records. Within the newly-generated dataset, 3.6% of the species barcodes conflicted with the assigned morphological taxonomic identification, highlighting both the apparent taxonomic ambiguity among certain groups, and the need for an accelerated and independent taxonomic approach. Using the combined COI barcode projects from the Barcode of Life Database, we provide the most comprehensive COI data set so far examined for the Order (1572 sequences of 528 species, 213 genera, and 67 families). Patterns within families show a general predicted molecular hierarchy, but the scale of divergence at each taxonomic level appears to vary extensively between families. The range values of mean K2P distance observed were: within species 0.285% to 1.375%, within genus 6.376% to 20.924% and within family 11.392% to 25.617%. Nucleotide composition varied greatly across decapods, ranging from 30.8 % to 49.4 % GC content. Conclusions/Significance Decapod biological diversity was quantified by identifying putative cryptic species allowing a rapid assessment of taxon diversity in groups that have until now received limited morphological and systematic examination. We highlight taxonomic groups or species with unusual nucleotide composition or evolutionary rates. Such data are relevant to strategies for conservation of existing decapod

  13. Crabs grab strongly depending on mechanical advantages of pinching and disarticulation of chela.

    PubMed

    Fujiwara, Shin-Ichi; Kawai, Hiroki

    2016-10-01

    A small morphological variation of an organ may cause a major change of its function in animal evolution. The function of decapod chela varies considerably among taxa, between sex, and even within an individual, but also retains a simple mechanism of motion. Therefore, the decapod chela is a suitable structure to study the evolutionary process of functional diversifications, although the relationship of form and function is inadequately understood, yet. We estimated the mechanical advantages of pinching and passive disarticulation resistance, and chela size relative to the carapace in 317 chelae of 168 decapod specimens, and compared these indices with the functions of each chela. Our study revealed that mechanical advantages of pinching efficiency and passive disarticulation resistance were greatest in shell-crushing chelae, followed by gripping and pinching chelae, whereas the chela size relative to the carapace was not related to differences among these functions. We also found that the chelae are designed to retain the ratio between depth and width of the proximal dactylus. In the evolutionary process of decapods, the diversifications of chela functions were accompanied by the diversifications of the mechanical advantages, and played an essential role in their ecological diversification. J. Morphol. 277:1259-1272, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an assessment of Macaronesian and Cape Verde biogeographic marine ecoregions.

    PubMed

    GonzÁlez, JosÉ A

    2018-04-23

    The complete list of Canarian marine decapods (last update by González Quiles 2003, popular book) currently comprises 374 species/subspecies, grouped in 198 genera and 82 families; whereas the Cape Verdean marine decapods (now fully listed for the first time) are represented by 343 species/subspecies with 201 genera and 80 families. Due to changing environmental conditions, in the last decades many subtropical/tropical taxa have reached the coasts of the Canary Islands. Comparing the carcinofaunal composition and their biogeographic components between the Canary and Cape Verde archipelagos would aid in: validating the appropriateness in separating both archipelagos into different ecoregions (Spalding et al. 2007), and understanding faunal movements between areas of benthic habitat. The consistency of both ecoregions is here compared and validated by assembling their decapod crustacean checklists, analysing their taxa composition, gathering their bathymetric data, and comparing their biogeographic patterns. Four main evidences (i.e. different taxa; divergent taxa composition; different composition of biogeographic patterns; different endemicity rates) support that separation, especially in coastal benthic decapods; and these parametres combined would be used as a valuable tool at comparing biotas from oceanic archipelagos. To understand/predict south-north faunal movements in a scenario of regional tropicalization, special attention is paid to species having at the Canaries their southernmost occurrence, and also to tropical African warm-affinity species.

  15. Biomagnification profiles of polycyclic aromatic hydrocarbons, alkylphenols and polychlorinated biphenyls in Tokyo Bay elucidated by delta13C and delta15N isotope ratios as guides to trophic web structure.

    PubMed

    Takeuchi, Ichiro; Miyoshi, Noriko; Mizukawa, Kaoruko; Takada, Hideshige; Ikemoto, Tokutaka; Omori, Koji; Tsuchiya, Kotaro

    2009-05-01

    Biomagnification profiles of polycyclic aromatic hydrocarbons (PAHs), alkylphenols, and polychlorinated biphenyls (PCBs) from the innermost part of Tokyo Bay, Japan were analyzed using stable carbon (delta(13)C) and nitrogen (delta(15)N) isotope ratios as guides to trophic web structure. delta(15)N analysis indicated that all species of mollusks tested were primary consumers, while decapods and fish were secondary consumers. Higher concentrations of PCBs occurred in decapods and fish than in mollusks. In contrast, concentrations of PAHs and alkylphenols were lower in decapods and fish than in mollusks. Unlike PCBs, whose concentrations largely increased with increasing delta(15)N (i.e. increasing trophic level), all PAHs and alkylphenols analyzed followed a reverse trend. Molecular weights of PAHs are lower than those of PCBs, therefore low membrane permeability caused by large molecular size is an unlikely factor in the "biodilution" of PAHs. Organisms at higher trophic levels may rapidly metabolize PAHs or they may assimilate less of them.

  16. Decapoda from Antipatharia, Gorgonaria and Bivalvia at the Cape Verde Islands

    NASA Astrophysics Data System (ADS)

    Wirtz, Peter; d'Udekem-d'Acoz, Cédric

    2001-07-01

    The shrimps Balssia gasti, Palaemonella atlantica, Periclimenes platalea, Periclimenes wirtzi, Pontonia manningi, Pontonia pinnophylax, Pontonia sp. nov., Pseudocoutierea wirtzi and the crabs Galathea intermedia and Micropisa ovata were collected from Antipatharia, Gorgonaria and Bivalvia at São Tiago Island, Republic of Cape Verde. Most of the associations between decapods and invertebrate hosts are reported here for the first time. This is also the first record of B. gasti and of P. wirtzi for the Cape Verde Islands. We briefly review the literature on littoral decapod crustaceans of the Cape Verde Islands.

  17. Roles of crustacean hyperglycaemic hormone in ionic and metabolic homeostasis in the Christmas Island blue crab, Discoplax celeste.

    PubMed

    Turner, Lucy M; Webster, Simon G; Morris, Stephen

    2013-04-01

    There is a growing body of evidence implicating the involvement of crustacean hyperglycaemic hormone (CHH) in ionic homeostasis in decapod crustaceans. However, little is known regarding hormonally influenced osmoregulatory processes in terrestrial decapods. As many terrestrial decapods experience opposing seasonal demands upon ionoregulatory physiologies, we reasoned that these would make interesting models in which to study the effect of CHH upon these phenomena. In particular, those (tropical) species that also undergo seasonal migrations might be especially informative, as we know relatively little regarding the nature of CHHs in terrestrial decapods, and hormonally mediated responses to seasonal changes in metabolic demands might also be superimposed or otherwise integrated with those associated with ionic homeostasis. Using Discoplax celeste as a model crab that experiences seasonal extremes in water availability, and exhibits diurnal and migratory activity patterns, we identified two CHHs in the sinus gland. We biochemically characterised (cDNA cloning) one CHH and functionally characterised (in terms of dose-dependent hyperglycaemic responses and glucose-dependent negative feedback loops) both CHHs. Whole-animal in situ branchial chamber (22)NaCl perfusion experiments showed that injection of both CHHs increased gill Na(+) uptake in a seasonally dependent manner, and (51)Cr-EDTA clearance experiments demonstrated that CHH increased urine production by the antennal gland. Seasonal and salinity-dependent differences in haemolymph CHH titre further implicated CHH in osmoregulatory processes. Intriguingly, CHH appeared to have no effect on gill Na(+)/K(+)-ATPase or V-ATPase activity, suggesting unknown mechanisms of this hormone's action on Na(+) transport across gill epithelia.

  18. In silico prediction of the G-protein coupled receptors expressed during the metamorphic molt of Sagmariasus verreauxi (Crustacea: Decapoda) by mining transcriptomic data: RNA-seq to repertoire.

    PubMed

    Buckley, Sean J; Fitzgibbon, Quinn P; Smith, Gregory G; Ventura, Tomer

    2016-03-01

    Against a backdrop of food insecurity, the farming of decapod crustaceans is a rapidly expanding and globally significant source of food protein. Sagmariasus verreauxi spiny lobster, the subject of this study, are decapods of underdeveloped aquaculture potential. Crustacean neuropeptide G-protein coupled receptors (GPCRs) mediate endocrine pathways that are integral to animal fecundity, growth and survival. The potential use of novel biotechnologies to enhance GPCR-mediated physiology may assist in improving the health and productivity of farmed decapod populations. This study catalogues the GPCRs expressed in the early developmental stages, as well as adult tissues, with a view to illuminating key neuropeptide receptors. De novo assembled contiguous sequences generated from transcriptomic reads of metamorphic and post metamorphic S. verreauxi were filtered for seven transmembrane domains, and used as a reference for iterative re-mapping. Subsequent putative GPCR open reading frames (ORFs) were BLAST annotated, categorised, and compared to published orthologues based on phylogenetic analysis. A total of 85 GPCRs were digitally predicted, that represented each of the four arthropod subfamilies. They generally displayed low-level and non-differential metamorphic expression with few exceptions that we examined using RT-PCR and qPCR. Two putative CHH-like neuropeptide receptors were annotated. Three dimensional structural modelling suggests that these receptors exhibit a conserved extracellular ligand binding pocket, providing support to the notion that these receptors co-evolved with their ligands across Decapoda. This perhaps narrows the search for means to increase productivity of farmed decapod populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Comparison between ROV video and Agassiz trawl methods for sampling deep water fauna of submarine canyons in the Northwestern Mediterranean Sea with observations on behavioural reactions of target species

    NASA Astrophysics Data System (ADS)

    Ayma, A.; Aguzzi, J.; Canals, M.; Lastras, G.; Bahamon, N.; Mecho, A.; Company, J. B.

    2016-08-01

    In this paper we present a comparison between Remotely Operated Vehicle (ROV) and Agassiz trawling methods for sampling deep-water fauna in three submarine canyons of the Northwestern Mediterranean Sea and describe the behavioural reactions of fishes and crustacean decapods to ROV approach. 10 ROV dives, where 3583 individuals were observed and identified to species level, and 8 Agassiz trawls were carried out in a depth range of 750-1500 m. As noticed in previous studies, abundances of fishes and decapod crustaceans were much higher in the ROV videos than in Agassiz trawl samples, as the latter are designed for the retrieval of benthic, less motile species in permanent contact with the bottom. In our observations fish abundance was one order of magnitude higher with ROV (4110.22 ind/km2) than with Agassiz trawl (350.88 ind/km2), whereas decapod crustaceans were six times more abundant in ROV videos (6362.40 ind/km2) than in Agassiz samples (1364.52 ind/km2). The behaviour of highly motile fishes was analysed in terms of stationary positioning over the seafloor and avoidance or attraction to ROV approach. The most frequently occurring fish species Coelorinchus mediterraneus, Nezumia aequalis, Bathypterois dubius, Lepidion lepidion, Trachyrincuss scabrus and Polyacanthonotus rissoanus did not react to the presence of the ROV in most cases (>50%). Only B. dubius (11%), Lepidion lepidion (14.8%), P. rissoanus (41%) and T. scabrus (14.3%) reacted to ROV approach. More than 60% of less motile species, such as crustacean decapods, did not respond to ROV presence either. Only 33.3% of Geryon longipes, 36.2% of Munida spp. and 29.79% of Pagurus spp. were observed avoiding or defensively reacting to the ROV. The comparison of results obtained with ROV and trawl sampling is of ecological relevance since ROV can report observations in areas where trawling is technically unfeasible. The lack of reaction by most fish and crustacean decapod specimens further confirms that ROV

  20. Trophic relationships, feeding habits and seasonal dietary changes in an intertidal rockpool fish assemblage in the Gulf of Cadiz (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Compaire, Jesus C.; Cabrera, Remedios; Gómez-Cama, Carmen; Soriguer, Milagrosa C.

    2016-06-01

    This paper describes the use of resources and diet of nine resident fish species in the rocky intertidal zone of the Gulf of Cadiz and examines whether their populations are affected by trophic competition. A stomach content analysis of the nine species revealed that only one was herbivorous (Parablennius sanguinolentus), while the rest were mainly carnivorous (Gobius bucchichi, Gobius cobitis, Gobius paganellus, Zebrus zebrus, Salaria pavo, Lepadogaster lepadogaster, Scorpaena porcus and Tripterygion tripteronotum). The most frequently consumed prey were amphipods, isopods, polychaetes, decapods, chironomids, tanaidaceans, gastropods, copepods, cumaceans and ostracods. In most species, the occurrence of polychaetes and molluscs was higher in the cold season, whereas that of isopods, decapods, chironomids and fish increased in the warm season. In general, larger specimens consumed larger prey, with an increase in the occurrence of isopods, decapods and fish. An analysis of trophic niche breadth defined G. cobitis as generalist, G. bucchichi as opportunist and S. porcus as specialist, whereas the values obtained for the other species did not indicate a clearly defined strategy. Low diet overlap values and the segregation observed in several analyses indicated an adequate distribution of resources.

  1. Copper toxicity in the crab, Scylla serrata, copper levels in tissues and regulation after exposure to a copper-rich medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, M.; Ravindranath, M.H.

    1987-10-01

    In the decapod crustaceans copper is distributed in various tissues. In these animals the tissue copper generally exists in four forms; ionic, bound to proteins, lipids and membrane. In the estuarine crab Scylla serrata, the haemolymph copper exists only in association with proteins, whereas in the hepatopancreas it exists in all the four forms and in gills it exists in all the forms except in combination with lipids. Although food is the major source of copper in decapod crustaceans evidence indicate that copper may be directly obtained from the environment. It was postulated earlier that in Scylla serrata the haemolymphmore » and hepatopancreas may be involved in copper regulation. In the present work the authors have studied the nature and levels of copper in different tissues after exposing the crabs to copper-rich medium. The results indicate the relative importance of various tissues in accumulation an the possible mechanisms of regulation of the environmental copper. Besides, as a pre-requisite for studies of this kind, the toxic levels for different forms of copper were estimated since the form of toxicant is known to influence the toxicity to the decapod crustaceans.« less

  2. The crustaceans and pycnogonids of the Mariana Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulay, Gustav; Kropp, Roy K.; Ng, Peter K.

    2003-09-01

    The crustacean and pycnogonid fauna of the Mariana Islands is reviewed, and 829 crustacean and 15 pycnogonid species are documented from the archipelago based on literature records and new collections, including 272 new records. Voucher specimens are listed for 605 and photographic records for 356 species. The bulk of the fauna is marine, including 12 terrestrial and 11 freshwater decapods with marine larvae. Five cladocerans comprise the known freshwater fauna, and 25 peracarids and one copepod are currently documented on land. Coverage reflects a taxonomically uneven effort, and is strongly biased toward macrocrustaceans, with decapods accounting for 80%, and crabsmore » for 50% of the recorded crustacean diversity.« less

  3. Brain architecture of the Pacific White Shrimp Penaeus vannamei Boone, 1931 (Malacostraca, Dendrobranchiata): correspondence of brain structure and sensory input?

    PubMed

    Meth, Rebecca; Wittfoth, Christin; Harzsch, Steffen

    2017-08-01

    Penaeus vannamei (Dendrobranchiata, Decapoda) is best known as the "Pacific White Shrimp" and is currently the most important crustacean in commercial aquaculture worldwide. Although the neuroanatomy of crustaceans has been well examined in representatives of reptant decapods ("ground-dwelling decapods"), there are only a few studies focusing on shrimps and prawns. In order to obtain insights into the architecture of the brain of P. vannamei, we use neuroanatomical methods including X-ray micro-computed tomography, 3D reconstruction and immunohistochemical staining combined with confocal laser-scanning microscopy and serial sectioning. The brain of P. vannamei exhibits all the prominent neuropils and tracts that characterize the ground pattern of decapod crustaceans. However, the size proportion of some neuropils is salient. The large lateral protocerebrum that comprises the visual neuropils as well as the hemiellipsoid body and medulla terminalis is remarkable. This observation corresponds with the large size of the compound eyes of these animals. In contrast, the remaining median part of the brain is relatively small. It is dominated by the paired antenna 2 neuropils, while the deutocerebral chemosensory lobes play a minor role. Our findings suggest that visual input from the compound eyes and mechanosensory input from the second pair of antennae are major sensory modalities, which this brain processes.

  4. Environmental and scale-dependent evolutionary trends in the body size of crustaceans

    PubMed Central

    Klompmaker, Adiël A.; Schweitzer, Carrie E.; Feldmann, Rodney M.; Kowalewski, Michał

    2015-01-01

    The ecological and physiological significance of body size is well recognized. However, key macroevolutionary questions regarding the dependency of body size trends on the taxonomic scale of analysis and the role of environment in controlling long-term evolution of body size are largely unknown. Here, we evaluate these issues for decapod crustaceans, a group that diversified in the Mesozoic. A compilation of body size data for 792 brachyuran crab and lobster species reveals that their maximum, mean and median body size increased, but no increase in minimum size was observed. This increase is not expressed within lineages, but is rather a product of the appearance and/or diversification of new clades of larger, primarily burrowing to shelter-seeking decapods. This argues against directional selective pressures within lineages. Rather, the trend is a macroevolutionary consequence of species sorting: preferential origination of new decapod clades with intrinsically larger body sizes. Furthermore, body size evolution appears to have been habitat-controlled. In the Cretaceous, reef-associated crabs became markedly smaller than those in other habitats, a pattern that persists today. The long-term increase in body size of crabs and lobsters, coupled with their increased diversity and abundance, suggests that their ecological impact may have increased over evolutionary time. PMID:26156761

  5. Nervous systems in 3D: a comparison of Caridean, anomuran, and brachyuran zoea-I (Decapoda).

    PubMed

    Geiselbrecht, Hannes; Melzer, Roland R

    2013-12-01

    Using serial semi-thin sections and digital 3D-reconstructions we studied the nervous systems of zoea-I larvae in three decapod species, Hippolyte inermis (Leach, 1815), Porcellana platycheles (Pennant, 1777), and Pachygrapsus marmoratus (Fabricius, 1787). These taxa represent three decapod lineages, that is, Caridea, Anomura, and Brachyura, each characterized by specific zoea-I morphology. Special attention was paid to development of ganglia, neuropil composition, and segmental nerves. In all zoeae studied, the overall elements, for example, the segmental ganglia, their neuropils and most of the nerves of the adult decapod nervous system are present. Ongoing differentiation processes are observable as well, most obvious in segments with well-developed limbs the ganglia are in a more advanced stage of differentiation and more voluminous compared to segments with only limb buds or without externally visible limb anlagen. Intra- and interspecific comparisons indicate that neuromere differentiation thus deviates from a simple anterior-posterior gradient as, for example, posterior thoracic neuromeres are less developed than those of the pleon. In addition, the differences in the progress of the development of ganglia between the studied taxa can best be attributed to heterochronic mechanisms. Taxon and stage-specific morphologies indicate that neuronal architecture reflects both, morphogenesis to the adult stage and specific larval adaptions, and provides sets of characters relevant to understanding the corresponding phylogeny. © 2013 Wiley Periodicals, Inc.

  6. Late Cretaceous marine arthropods relied on terrestrial organic matter as a food source: Geochemical evidence from the Coon Creek Lagerstätte in the Mississippi Embayment.

    PubMed

    Vrazo, M B; Diefendorf, A F; Crowley, B E; Czaja, A D

    2018-03-01

    The Upper Cretaceous Coon Creek Lagerstätte of Tennessee, USA, is known for its extremely well-preserved mollusks and decapod crustaceans. However, the depositional environment of this unit, particularly its distance to the shoreline, has long been equivocal. To better constrain the coastal proximity of the Coon Creek Formation, we carried out a multiproxy geochemical analysis of fossil decapod (crab, mud shrimp) cuticle and associated sediment from the type section. Elemental analysis and Raman spectroscopy confirmed the presence of kerogenized carbon in the crabs and mud shrimp; carbon isotope (δ 13 C) analysis of bulk decapod cuticle yielded similar mean δ 13 C values for both taxa (-25.1‰ and -26‰, respectively). Sedimentary biomarkers were composed of n-alkanes from C 16 to C 36 , with the short-chain n-alkanes dominating, as well as other biomarkers (pristane, phytane, hopanes). Raman spectra and biomarker thermal maturity indices suggest that the Coon Creek Formation sediments are immature, which supports retention of unaltered, biogenic isotopic signals in the fossil organic carbon remains. Using our isotopic results and published calcium carbonate δ 13 C values, we modeled carbon isotope values of carbon sources in the Coon Creek Formation, including potential marine (phytoplankton) and terrestrial (plant) dietary sources. Coon Creek Formation decapod δ 13 C values fall closer to those estimated for terrigenous plants than marine phytoplankton, indicating that these organisms were feeding primarily on terrigenous organic matter. From this model, we infer that the Coon Creek Formation experienced significant terrigenous organic matter input via a freshwater source and thus was deposited in a shallow, nearshore marine environment proximal to the shoreline. This study helps refine the paleoecology of nearshore settings in the Mississippi Embayment during the global climatic shift in the late Campanian-early Maastrichtian and demonstrates for the

  7. Feeding ecology of the deep-water blue-red shrimp Aristeus antennatus (Decapoda: Aristeidae) in the Greek Ionian Sea (E. Mediterranean)

    NASA Astrophysics Data System (ADS)

    Kapiris, Kostas; Thessalou-Legaki, Maria

    2011-01-01

    The feeding habits of the deep-sea blue-red shrimp Aristeus antennatus were determined based on the analysis of 1047 stomach contents, sampled in the Greek Ionian Sea (E. Mediterranean). The diet of this economically and biologically important decapod was studied in relation to the season, size class and sex. The diet of A. antennatus consisted of 54 different prey categories, and belonged mainly to smaller crustaceans (e.g. natantian decapods, euphausiids, tanaidaceans), molluscs, polychaetes, chaetognaths and, to a lesser extent, fishes. The above prey categories consisted of 71-82% of the relative abundance and total occurrence for males and 61-81% for females. Females seemed to be better fed than males (stomach fullness, food quality). A. antennatus displayed a highly diversified diet and the different feeding patterns were discussed. Diet composition showed slight seasonal fluctuations. The observed slight differences on A. antennatus diet among the western, central and eastern Mediterranean could be attributed to the more oligotrophic character of the eastern part of the basin. The principal factors driving the changes in the feeding strategy of this decapod among the seasons are the increased energy demands related to sexual requirements and the food availability in the marine environment. The ontogenetic changes in the shrimp's diet were relatively clear. Larger individuals exhibited selecting prey with a good swimming capacity (e.g. fishes), while the smaller individuals consumed prey with low mobility (e.g. copepods, ostracods).

  8. Resolution of fine biological structure including small narcomedusae across a front in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    McClatchie, Sam; Cowen, Robert; Nieto, Karen; Greer, Adam; Luo, Jessica Y.; Guigand, Cedric; Demer, David; Griffith, David; Rudnick, Daniel

    2012-04-01

    We sampled a front detected by SST gradient, ocean color imagery, and a Spray glider south of San Nicolas Island in the Southern California Bight between 14 and 18 October 2010. We sampled the front with an unusually extensive array of instrumentation, including the Continuous Underway Fish Egg Sampler (CUFES), the undulating In Situ Ichthyoplankton Imaging System (ISIIS) (fitted with temperature, salinity, oxygen, and fluorescence sensors), multifrequency acoustics, a surface pelagic trawl, a bongo net, and a neuston net. We found higher fluorescence and greater cladoceran, decapod, and euphausiid densities in the front, indicating increased primary and secondary production. Mesopelagic fish were most abundant in oceanic waters to the west of the front, market squid were abundant in the front associated with higher krill and decapod densities, and jack mackerel were most common in the front and on the shoreward side of the front. Egg densities peaked to either side of the front, consistent with both offshore (for oceanic squid and mesopelagic fish) and shelf origins (for white croaker and California halibut). We discovered unusually high concentrations of predatory narcomedusae in the surface layer of the frontal zone. Potential ichthyoplankton predators were more abundant either in the front (decapods, euphausiids, and squid) or shoreward of the front (medusae, chaetognaths, and jack mackerel). For pelagic fish like sardine, which can thrive in less productive waters, the safest place to spawn would be offshore because there are fewer potential predators.

  9. INFLUENCE OF FRESHWATER INPUT ON THE HABITAT VALUE OF OYSTER REEFS IN THREE SOUTHWEST FLORIDA ESTUARIES.

    EPA Science Inventory

    In order to examine the influence of freshwater input on the habitat value of oyster reefs, a spatiotemporal comparison of reef-resident fishes and decapod crustaceans was conducted during three seasonally dry and three seasonally wet months in three Southwest Florida estuaries: ...

  10. Acute toxicity and synergism of cadmium and zinc in white shrimp, Penaeus setiferus, Juveniles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanegas, C.; Espina, S.; Botello, A.V.

    1997-01-01

    Toxic effects of individual heavy metals on decapod crustaceans have been reported frequently, but little information exists concerning interactions. Among the non-essential heavy metals, cadmium is one of the most hazardous elements in the aquatic environment; on the other hand, zinc is an essential element, but toxic when present in greater than trace amounts. Biological effects of cadmium in aquatic organisms are complex due to the interactions with both environmental variables and other toxic agents. In decapod crustaceans, the toxicity of cadmium and zinc is modified by salinity, temperature, hypoxia, calcium ion concentrations and life-cycle stage. Heavy metal pollution hasmore » increased in the coastal waters of the Gulf of Mexico, particularly in shrimp habitat. This study examined the toxicity of cadmium and zinc to white shrimp juveniles and looked at the interaction of the metals. 16 refs., 2 tabs.« less

  11. GROWTH AND VARIATIONS IN LIPID CLASS AND FATTY ACID COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986

    EPA Science Inventory

    Larval development in decapod crustaceans is marked by variable growth patterns and changes in weight and biochemical composition. Larvae of the stone crab, Menippe adina, were mass-reared under laboratory conditions (28|C; 20o/ooS) from hatching to the megalopal stage. Growth in...

  12. GROWTH AND VARIATIONS IN LIPID CLASS AND FATTY ACID COMPOSITION DURING LARVAL DEVELOPMENT OF THE STONE CRAB, MENIPPE ADINA WILLIAMS AND FELDER, 1986.

    EPA Science Inventory

    Larval development in decapod crustaceans is marked by variable growth patterns and changes in weight and biochemical composition. Larvae of the stone crab, Menippe adina, were mass-reared under laboratory conditions (28?C; 20o/ooS) from hatching to the megalopa stage. Growth in...

  13. Olfactory projection neuron pathways in two species of marine Isopoda (Peracarida, Malacostraca, Crustacea).

    PubMed

    Stemme, Torben; Eickhoff, René; Bicker, Gerd

    2014-08-01

    The neuroanatomy of the olfactory pathway has been intensely studied in many representatives of Malacostraca. Nevertheless, the knowledge about bilateral olfactory integration pathways is mainly based on Decapoda. Here, we investigated the olfactory projection neuron pathway of two marine isopod species, Saduria entomon and Idotea emarginata, by lipophilic dye injections into the olfactory neuropil. We show that both arms of the olfactory globular tract form a chiasm in the center of the brain, as known from several other crustaceans. Furthermore, the olfactory projection neurons innervate both the medulla terminalis and the hemiellipsoid body of the ipsi- and the contralateral hemisphere. Both protocerebral neuropils are innervated to a comparable extent. This is reminiscent of the situation in the basal decapod taxon Dendrobranchiata. Thus, we propose that an innervation by the olfactory globular tract of both the medulla terminalis and the hemiellipsoid body is characteristic of the decapod ground pattern, but also of the ground pattern of Caridoida. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Molecular evolution of the crustacean hyperglycemic hormone family in ecdysozoans

    PubMed Central

    2010-01-01

    Background Crustacean Hyperglycemic Hormone (CHH) family peptides are neurohormones known to regulate several important functions in decapod crustaceans such as ionic and energetic metabolism, molting and reproduction. The structural conservation of these peptides, together with the variety of functions they display, led us to investigate their evolutionary history. CHH family peptides exist in insects (Ion Transport Peptides) and may be present in all ecdysozoans as well. In order to extend the evolutionary study to the entire family, CHH family peptides were thus searched in taxa outside decapods, where they have been, to date, poorly investigated. Results CHH family peptides were characterized by molecular cloning in a branchiopod crustacean, Daphnia magna, and in a collembolan, Folsomia candida. Genes encoding such peptides were also rebuilt in silico from genomic sequences of another branchiopod, a chelicerate and two nematodes. These sequences were included in updated datasets to build phylogenies of the CHH family in pancrustaceans. These phylogenies suggest that peptides found in Branchiopoda and Collembola are more closely related to insect ITPs than to crustacean CHHs. Datasets were also used to support a phylogenetic hypothesis about pancrustacean relationships, which, in addition to gene structures, allowed us to propose two evolutionary scenarios of this multigenic family in ecdysozoans. Conclusions Evolutionary scenarios suggest that CHH family genes of ecdysozoans originate from an ancestral two-exon gene, and genes of arthropods from a three-exon one. In malacostracans, the evolution of the CHH family has involved several duplication, insertion or deletion events, leading to neuropeptides with a wide variety of functions, as observed in decapods. This family could thus constitute a promising model to investigate the links between gene duplications and functional divergence. PMID:20184761

  15. Prediction of the neuropeptidomes of members of the Astacidea (Crustacea, Decapoda) using publicly accessible transcriptome shotgun assembly (TSA) sequence data.

    PubMed

    Christie, Andrew E; Chi, Megan

    2015-12-01

    The decapod infraorder Astacidea is comprised of clawed lobsters and freshwater crayfish. Due to their economic importance and their use as models for investigating neurochemical signaling, much work has focused on elucidating their neurochemistry, particularly their peptidergic systems. Interestingly, no astacidean has been the subject of large-scale peptidomic analysis via in silico transcriptome mining, this despite growing transcriptomic resources for members of this taxon. Here, the publicly accessible astacidean transcriptome shotgun assembly data were mined for putative peptide-encoding transcripts; these sequences were used to predict the structures of mature neuropeptides. One hundred seventy-six distinct peptides were predicted for Procambarus clarkii, including isoforms of adipokinetic hormone-corazonin-like peptide (ACP), allatostatin A (AST-A), allatostatin B, allatostatin C (AST-C) bursicon α, bursicon β, CCHamide, crustacean hyperglycemic hormone (CHH)/ion transport peptide (ITP), diuretic hormone 31 (DH31), eclosion hormone (EH), FMRFamide-like peptide, GSEFLamide, intocin, leucokinin, neuroparsin, neuropeptide F, pigment dispersing hormone, pyrokinin, RYamide, short neuropeptide F (sNPF), SIFamide, sulfakinin and tachykinin-related peptide (TRP). Forty-six distinct peptides, including isoforms of AST-A, AST-C, bursicon α, CCHamide, CHH/ITP, DH31, EH, intocin, myosuppressin, neuroparsin, red pigment concentrating hormone, sNPF and TRP, were predicted for Pontastacus leptodactylus, with a bursicon β and a neuroparsin predicted for Cherax quadricarinatus. The identification of ACP is the first from a decapod, while the predictions of CCHamide, EH, GSEFLamide, intocin, neuroparsin and RYamide are firsts for the Astacidea. Collectively, these data greatly expand the catalog of known astacidean neuropeptides and provide a foundation for functional studies of peptidergic signaling in members of this decapod infraorder. Copyright © 2015 Elsevier Inc

  16. Instream-Flow Analysis for the Luquillo Experimental Forest, Puerto Rico: Methods and Analysis

    Treesearch

    F.N. Scatena; S.L. Johnson

    2001-01-01

    This study develops two habitat-based approaches for evaluating instream-flow requirements within the Luquillo Experimental Forest in northeastern Puerto Rico. The analysis is restricted to instream-flow requirements in upland streams dominated by the common communities of freshwater decapods. In headwater streams, pool volume was the most consistent factor...

  17. Phylogeography of an island endemic: the Puerto Rican freshwater crab, Epilobocera sinuatifrons

    Treesearch

    Benjamin D. Cook; Catherine M. Pringle; Jane M. Hughes

    2008-01-01

    The endemic Puerto Rican crab, Epilobocera sinuatifrons (Pseudothelphusidae), has a freshwater-dependant life-history strategy, although the species has some capabilities for terrestrial movement as adults. In contrast to all other freshwater decapods on the island (e.g., caridean shrimp), E. sinuatifrons does not undertake amphidromous migration, and is restricted to...

  18. Transcriptome and Peptidome Characterisation of the Main Neuropeptides and Peptidic Hormones of a Euphausiid: The Ice Krill, Euphausia crystallorophias

    PubMed Central

    Toullec, Jean-Yves; Corre, Erwan; Bernay, Benoît; Thorne, Michael A. S.; Cascella, Kévin; Ollivaux, Céline; Henry, Joël; Clark, Melody S.

    2013-01-01

    Background The Ice krill, Euphausia crystallorophias is one of the species at the base of the Southern Ocean food chain. Given their significant contribution to the biomass of the Southern Ocean, it is vitally important to gain a better understanding of their physiology and, in particular, anticipate their responses to climate change effects in the warming seas around Antarctica. Methodology/Principal Findings Illumina sequencing was used to produce a transcriptome of the ice krill. Analysis of the assembled contigs via two different methods, produced 36 new pre-pro-peptides, coding for 61 neuropeptides or peptide hormones belonging to the following families: Allatostatins (A, B et C), Bursicon (α and β), Crustacean Hyperglycemic Hormones (CHH and MIH/VIHs), Crustacean Cardioactive Peptide (CCAP), Corazonin, Diuretic Hormones (DH), the Eclosion Hormone (EH), Neuroparsin, Neuropeptide F (NPF), small Neuropeptide F (sNPF), Pigment Dispersing Hormone (PDH), Red Pigment Concentrating Hormone (RPCH) and finally Tachykinin. LC/MS/MS proteomics was also carried out on eyestalk extracts, which are the major site of neuropeptide synthesis in decapod crustaceans. Results confirmed the presence of six neuropeptides and six precursor-related peptides previously identified in the transcriptome analyses. Conclusions This study represents the first comprehensive analysis of neuropeptide hormones in a Eucarida non-decapod Malacostraca, several of which are described for the first time in a non-decapod crustacean. Additionally, there is a potential expansion of PDH and Neuropeptide F family members, which may reflect certain life history traits such as circadian rhythms associated with diurnal migrations and also the confirmation via mass spectrometry of several novel pre-pro-peptides, of unknown function. Knowledge of these essential hormones provides a vital framework for understanding the physiological response of this key Southern Ocean species to climate change and provides

  19. The effects of fipronil and the photodegradation product fipronil desulfinyl on growth and gene expression in juvenile blue crabs, Callinectes sapidus, at different salinities

    USGS Publications Warehouse

    Goff, Andrew D.; Saranjampour, Parichehr; Ryan, Lauren M.; Hladik, Michelle; Covi, Joseph A.; Armbrust, Kevin L.; Brander, Susanne M.

    2017-01-01

    Endocrine disrupting compounds (EDCs) are now widely established to be present in the environment at concentrations capable of affecting wild organisms. Although many studies have been conducted in fish, less is known about effects in invertebrates such as decapod crustaceans. Decapods are exposed to low concentrations of EDCs that may cause infertility, decreased growth, and developmental abnormalities. The objective herein was to evaluate effects of fipronil and its photodegradation product fipronil desulfinyl. Fipronil desulfinyl was detected in the eggs of the decapod Callinectes sapidus sampled off the coast of South Carolina. As such, to examine specific effects on C. sapidus exposed in early life, we exposed laboratory-reared juveniles to fipronil and fipronil desulfinyl for 96 hours at three nominal concentrations (0.01, 0.1, 0.5 μg/L) and two different salinities (10, 30 ppt). The size of individual crabs (weight, carapace width) and the expression of several genes critical to growth and reproduction were evaluated. Exposure to fipronil and fipronil desulfinyl resulted in significant size increases in all treatments compared to controls. Levels of expression for vitellogenin (Vtg), an egg yolk precursor, and the ecdysone receptor (EcR), which binds to ecdysteroids that control molting, were inversely correlated with increasing fipronil and fipronil desulfinyl concentrations. Effects on overall growth and on the expression of EcR and Vtg differ depending on the exposure salinity. The solubility of fipronil is demonstrated to decrease considerably at higher salinities. This suggests that fipronil and its photodegradation products may be more bioavailable to benthic organisms as salinity increases, as more chemical would partition to tissues. Our findings suggest that endocrine disruption is occurring through alterations to gene expression in C. sapidus populations exposed to environmental levels of fipronil, and that effects may be dependent upon the

  20. Biodiversity, Community and Trophic Structure of the Suprabenthos of the Gulf of Cádiz-Guadalquivir Estuary Coupled System: Linking Pelagic-Benthic and Terrestrial-Marine Ecosystems.

    NASA Astrophysics Data System (ADS)

    Vilas, C.

    2016-02-01

    Suprabenthos biodiversity and species densities on both offshore and coastal systems are largely unknown. Main components like mysids, euphasiids or amphipods are omnivorous and constitute a major dietary component for many benthic and pelagic fishes, mammals, cephalopods and decapods. Despite their relevant ecological role linking pelagic-benthic food webs, suprabenthos have been chronically undersampled and their components underrepresented and underestimated in food web models. Many pelagic and demersal species of high commercial and ecological interest at the Gulf of Cádiz (GoC) feed at a bottom scattering layer identified from 0 to 200 m depth and up to 50 km from coast, related to the Guadalquivir Estuary (GE) influence coastal area, and present life history cycles based on a sequential use of habitats from GoC to GE nursery area, may be adapted to match the horizontal migrations of key suprabenthos prey species. In order to understand the ecological mechanisms through which the GE-GoC coupled ecosystem would influence the recruitment of these fishery resources, the suprabenthos was sampled by suprabenthic sldege (200 μm) from the shallow estuary to 75 m depth during June, August and November of 2013. We identified up to 300 species (H index 0.4-2-9 and Beta diversity 0.55), being copepods, molluscs, cumacea, cladocera, poliquets, decapods, mysids and amphipods the most important groups by biomass (mg/m3), finding densities up to 32.9 mg/m3 for copepods, 6 for mysids and up to 100 mg/m3 for decapods. Multivariate analysis determines depth as the most important variable explaining community structure, decreasing biodiversity with depth, while for sites at depths < 30 m the community changes seasonal. Fatty acid analysis of different group sizes is revealing interesting trophic links. Some prey copepods and mysid species show seasonal horizontal migrations between GoC and GE, connecting terrestrial and marine ecosystems.

  1. A molecular method for the detection of sally lightfoot crab larvae (Grapsus grapsus, Brachyura, Grapsidae) in plankton samples

    PubMed Central

    Ströher, Patrícia R.; Firkowski, Carina R.; Freire, Andrea S.; Pie, Marcio R.

    2011-01-01

    The decapod Grapsus grapsus is commonly found on oceanic islands of the Pacific and Atlantic coasts of the Americas. In this study, a simple, quick and reliable method for detecting its larvae in plankton samples is described, which makes it ideal for large-scale studies of larval dispersal patterns in the species. PMID:21931530

  2. An Assessment of the Effect of Rotenone on Selected Non-Target Aquatic Fauna

    PubMed Central

    Dalu, Tatenda; Wasserman, Ryan J.; Jordaan, Martine; Froneman, William P.; Weyl, Olaf L. F.

    2015-01-01

    Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplankton would be more susceptible to rotenone than Decapods, Belostomatids and snails. Experimental results supported this hypothesis and mortality and behaviour effects varied considerably between taxa, ranging from no effect (crab Potamonuates sidneyi) to 100% mortality (Daphnia pulex and Paradiaptomus lamellatus). Planktonic invertebrates were particularly sensitive to rotenone even at very low concentrations. Future research should investigate the recovery time of invertebrate communities after the application of rotenone and conduct field assessments assessing the longer term effects of rotenone exposure on the population dynamics of those less sensitive organisms. PMID:26540301

  3. Abundance, seasonal patterns and diet of the non-native jellyfish Blackfordia virginica in a Portuguese estuary

    NASA Astrophysics Data System (ADS)

    Marques, F.; Chainho, P.; Costa, J. L.; Domingos, I.; Angélico, M. M.

    2015-12-01

    Blackfordia virginica, a non-indigenous hydrozoan introduced in many systems around the world, has been observed in the Mira estuary, southwest of Portugal, since 1984. Monthly sampling (January 2013-January 2014) at a fixed location with high abundance of the medusae confirmed the occurrence of a seasonal cycle associated with temperature and photoperiod. The beginning of the medusa cycle occurred in May immediately after the spring zooplankton bloom during April. Examination of the gut contents of B. virginica medusae revealed that copepods, the most abundant group in the zooplankton community, were highly predated. Barnacle nauplii, decapod crustacean larvae and anchovy eggs were also identified in the guts. The medusae showed positive selection for copepods, and negative selection for barnacle nauplii, decapod crustacean larvae and anchovy eggs. The mortality rate of copepods (used as a model prey group) induced by medusae predation was estimated and showed the potential impact of this species in the ecosystem, ranging between 2.34 d-1 and 0.02 d-1, with a minimum copepod half-life of 0.30 days.

  4. Idiosyncratic species effects confound size-based predictions of responses to climate change.

    PubMed

    Twomey, Marion; Brodte, Eva; Jacob, Ute; Brose, Ulrich; Crowe, Tasman P; Emmerson, Mark C

    2012-11-05

    Understanding and predicting the consequences of warming for complex ecosystems and indeed individual species remains a major ecological challenge. Here, we investigated the effect of increased seawater temperatures on the metabolic and consumption rates of five distinct marine species. The experimental species reflected different trophic positions within a typical benthic East Atlantic food web, and included a herbivorous gastropod, a scavenging decapod, a predatory echinoderm, a decapod and a benthic-feeding fish. We examined the metabolism-body mass and consumption-body mass scaling for each species, and assessed changes in their consumption efficiencies. Our results indicate that body mass and temperature effects on metabolism were inconsistent across species and that some species were unable to meet metabolic demand at higher temperatures, thus highlighting the vulnerability of individual species to warming. While body size explains a large proportion of the variation in species' physiological responses to warming, it is clear that idiosyncratic species responses, irrespective of body size, complicate predictions of population and ecosystem level response to future scenarios of climate change.

  5. Biomimetics and astronomical X-ray optics

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Remisova, K.

    2017-07-01

    Some sea and water animals have strange mirror eyes which have (or might have) potential application in science and technology in general and in X—ray astrophysics in particular. While the principles of mirror eyes of decapods (lobsters, crayfishes) are already applied in space and ground—based imaging experiments, the mirror eyes of specific fishes are still very little investigated.

  6. CYP450s analysis across spiny lobster metamorphosis identifies a long sought missing link in crustacean development.

    PubMed

    Ventura, Tomer; Bose, Utpal; Fitzgibbon, Quinn P; Smith, Gregory G; Shaw, P Nicholas; Cummins, Scott F; Elizur, Abigail

    2017-07-01

    Cytochrome P450s (CYP450s) are a rapidly evolving family of enzymes, making it difficult to identify bona fide orthologs with notable lineage-specific exceptions. In ecdysozoans, a small number of the most conserved orthologs include enzymes which metabolize ecdysteroids. Ecdysone pathway components were recently shown in a decapod crustacean but with a notable absence of shade, which is important for converting ecdysone to its active form, 20-hydroxyecdysone (20HE), suggesting that another CYP450 performs a similar function in crustaceans. A CYPome temporal expression analysis throughout metamorphosis performed in this research highlights several un-annotated CYP450s displaying differential expression and provides information into expression patterns of annotated CYP450s. Using the expression patterns in the Eastern spiny lobster Sagmariasus verreauxi, followed by 3D modelling and finally activity assays in vitro, we were able to conclude that a group of CYP450s, conserved across decapod crustaceans, function as the insect shade. To emphasize the fact that these genes share the function with shade but are phylogenetically distinct, we name this enzyme system Shed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Genome Sequences of Marine Shrimp Exopalaemon carinicauda Holthuis Provide Insights into Genome Size Evolution of Caridea.

    PubMed

    Yuan, Jianbo; Gao, Yi; Zhang, Xiaojun; Wei, Jiankai; Liu, Chengzhang; Li, Fuhua; Xiang, Jianhai

    2017-07-05

    Crustacea, particularly Decapoda, contains many economically important species, such as shrimps and crabs. Crustaceans exhibit enormous (nearly 500-fold) variability in genome size. However, limited genome resources are available for investigating these species. Exopalaemon carinicauda Holthuis, an economical caridean shrimp, is a potential ideal experimental animal for research on crustaceans. In this study, we performed low-coverage sequencing and de novo assembly of the E. carinicauda genome. The assembly covers more than 95% of coding regions. E. carinicauda possesses a large complex genome (5.73 Gb), with size twice higher than those of many decapod shrimps. As such, comparative genomic analyses were implied to investigate factors affecting genome size evolution of decapods. However, clues associated with genome duplication were not identified, and few horizontally transferred sequences were detected. Ultimately, the burst of transposable elements, especially retrotransposons, was determined as the major factor influencing genome expansion. A total of 2 Gb repeats were identified, and RTE-BovB, Jockey, Gypsy, and DIRS were the four major retrotransposons that significantly expanded. Both recent (Jockey and Gypsy) and ancestral (DIRS) originated retrotransposons responsible for the genome evolution. The E. carinicauda genome also exhibited potential for the genomic and experimental research of shrimps.

  8. Filtering out parasites: sand crabs (Lepidopa benedicti) are infected by more parasites than sympatric mole crabs (Emerita benedicti)

    PubMed Central

    2017-01-01

    Two digging decapod crustaceans, the sand crab species Lepidopa benedicti and the mole crab species Emerita benedicti, both live in the swash zone of fine sand beaches. They were examined for two parasites that infect decapod crustaceans in the region, an unidentified nematode previously shown to infect L. benedicti, and cestode tapeworm larvae, Polypocephalus sp., previously shown to infect shrimp (Litopenaeus setiferus). Lepidopa benedicti were almost always infected with both parasite species, while E. benedicti were rarely infected with either parasite species. This difference in infection pattern suggests that tapeworms are ingested during sediment feeding in L. benedicti, which E. benedicti avoid by filter feeding. Larger L. benedicti had more Polypocephalus sp. larvae. The thoracic ganglia, which make up the largest proportion of neural tissue, contained the largest numbers of Polypocephalus sp. larvae. Intensity of Polypocephalus sp. infection was not correlated with how long L. benedicti remained above sand in behavioural tests, suggesting that Polypocephalus sp. do not manipulate the sand crabs in a way that facilitates trophic transmission of the parasite. Litopenaeus setiferus may be a primary host for Polypocephalus sp., and L. benedict may be a secondary, auxiliary host. PMID:28951818

  9. The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (decapoda: achelata, astacidea, glypheidea, polychelida).

    PubMed

    Bracken-Grissom, Heather D; Ahyong, Shane T; Wilkinson, Richard D; Feldmann, Rodney M; Schweitzer, Carrie E; Breinholt, Jesse W; Bendall, Matthew; Palero, Ferran; Chan, Tin-Yam; Felder, Darryl L; Robles, Rafael; Chu, Ka-Hou; Tsang, Ling-Ming; Kim, Dohyup; Martin, Joel W; Crandall, Keith A

    2014-07-01

    Lobsters are a ubiquitous and economically important group of decapod crustaceans that include the infraorders Polychelida, Glypheidea, Astacidea and Achelata. They include familiar forms such as the spiny, slipper, clawed lobsters and crayfish and unfamiliar forms such as the deep-sea and "living fossil" species. The high degree of morphological diversity among these infraorders has led to a dynamic classification and conflicting hypotheses of evolutionary relationships. In this study, we estimated phylogenetic relationships among the major groups of all lobster families and 94% of the genera using six genes (mitochondrial and nuclear) and 195 morphological characters across 173 species of lobsters for the most comprehensive sampling to date. Lobsters were recovered as a non-monophyletic assemblage in the combined (molecular + morphology) analysis. All families were monophyletic, with the exception of Cambaridae, and 7 of 79 genera were recovered as poly- or paraphyletic. A rich fossil history coupled with dense taxon coverage allowed us to estimate and compare divergence times and origins of major lineages using two drastically different approaches. Age priors were constructed and/or included based on fossil age information or fossil discovery, age, and extant species count data. Results from the two approaches were largely congruent across deep to shallow taxonomic divergences across major lineages. The origin of the first lobster-like decapod (Polychelida) was estimated in the Devonian (∼409-372 Ma) with all infraorders present in the Carboniferous (∼353-318 Ma). Fossil calibration subsampling studies examined the influence of sampling density (number of fossils) and placement (deep, middle, and shallow) on divergence time estimates. Results from our study suggest including at least 1 fossil per 10 operational taxonomic units (OTUs) in divergence dating analyses. [Dating; decapods; divergence; lobsters; molecular; morphology; phylogenetics.]. © The

  10. Three cDNAs encoding vitellogenin homologs from Antarctic copepod, Tigriopus kingsejongensis: Cloning and transcriptional analysis in different maturation stages, temperatures, and putative reproductive hormones.

    PubMed

    Lee, Soo Rin; Lee, Ji-Hyun; Kim, Ah Ran; Kim, Sanghee; Park, Hyun; Baek, Hea Ja; Kim, Hyun-Woo

    2016-02-01

    Three full-length cDNAs encoding lipoprotein homologs were identified in Tigriopus kingsejongensis, a newly identified copepod from Antarctica. Structural and transcriptional analyses revealed homology with two vitellogenin-like proteins, Tik-Vg1 and Tik-Vg2, which were 1855 and 1795 amino acids in length, respectively, along with a third protein, Tik-MEP, which produced a 1517-residue protein with similarity to a melanin engaging protein (MEP) in insects Phylogenetic analysis showed that Vgs in Maxillopods including two Tik-Vgs belong to the arthropod vitellogenin-like clade, which includes clottable proteins (CPs) in decapod crustaceans and vitellogenins in insects. Tik-MEP clustered together with insect MEPs, which appear to have evolved before the apoB-like and arthropod Vg-like clades. Interestingly, no genes orthologous to those found in the apoB clade were identified in Maxillopoda, suggesting that functions of large lipid transfer proteins (LLTPs) in reproduction and lipid metabolism may be different from those in insect and decapod crustaceans. As suggested by phylogenetic analyses, the two Tik-Vgs belonging to the arthropod Vg-like clade appear to play major roles in oocyte maturation, while Vgs belonging to the apoB clade function primarily in the reproduction of decapod crustaceans. Transcriptional analysis of Tik-Vg expression revealed a 24-fold increase in mature and ovigerous females compared with immature female, whereas expression of Tik-MEP remained low through all reproductive stages. Acute temperature changes did not affect the transcription of Tik-Vg genes, whereas Tik-MEP appeared to be affected by temperature change. Among the three hormones thought to be involved in molting and reproduction in arthropods, only farnesoic acid (FA) induced transcription of the two Tik-Vg genes. Regardless of developmental stage and hormone treatment, Tik-Vg1 and Tik-Vg2 exhibited a strong positive correlation in expression, suggesting that expression of these

  11. Food web structure and seasonality of slope megafauna in the NW Mediterranean elucidated by stable isotopes: Relationship with available food sources

    NASA Astrophysics Data System (ADS)

    Papiol, V.; Cartes, J. E.; Fanelli, E.; Rumolo, P.

    2013-03-01

    The food-web structure and seasonality of the dominant taxa of benthopelagic megafauna (fishes and decapods) on the middle slope of the Catalan Sea (Balearic Basin, NW Mediterranean) were investigated using the carbon and nitrogen stable isotope ratios of 29 species. Macrofauna (infauna, suprabenthos and zooplankton) were also analysed as potential prey. Samples were collected on a seasonal basis from 600 to 1000 m depth between February 2007 and February 2008. The fishes and decapods were classified into feeding groups based on the literature: benthic feeders (including suprabenthos) and zooplankton feeders, the latter further separated into migratory and non-migratory species. Decapods exhibited depleted δ15N and enriched δ13C compared to fishes. Annual mean δ13C of fishes ranged from - 19.15‰ (Arctozenus risso) to - 16.65‰ (Phycis blennoides) and of δ15N from 7.27‰ (Lampanyctus crocodilus) to 11.31‰ (Nezumia aequalis). Annual mean values of δ13C of decapods were from - 18.94‰ (Sergestes arcticus) to - 14.78‰ (Pontophilus norvegicus), and of δ15N from 6.36‰ (Sergia robusta) to 9.72‰ (Paromola cuvieri). Stable isotopes distinguished well amongst the 3 feeding guilds established a priori, pointing to high levels of resource partitioning in deep-sea communities. The trophic structure of the community was a function of the position of predators along the benthic-pelagic gradient, with benthic feeders isotopically enriched relative to pelagic feeders. This difference allowed the identification of two food webs based on pelagic versus benthic consumption. Prey and predator sizes were also important in structuring the community. The most generalised seasonal pattern was δ13C depletion from winter to spring and summer, especially amongst migratory macroplankton feeders. This suggests greater consumption of pelagic prey, likely related with increases in pelagic production or with ontogenic migrations of organisms from mid-water to the Benthic

  12. Salinity affects behavioral thermoregulation in a marine decapod crustacean

    NASA Astrophysics Data System (ADS)

    Reiser, Stefan; Mues, Annika; Herrmann, Jens-Peter; Eckhardt, André; Hufnagl, Marc; Temming, Axel

    2017-10-01

    Thermoregulation in aquatic ectotherms is a complex behavioral pattern that is affected by various biotic and abiotic factors with one being salinity. Especially in coastal and estuarine habitats, altering levels of salinity involve osmoregulatory adjustments that affect total energy budgets and may influence behavioral responses towards temperature. To examine the effect of salinity on behavioral thermoregulation in a marine evertebrate ectotherm, we acclimated juvenile and sub-adult common brown shrimp (Crangon crangon, L.) to salinities of 10, 20 and 30 PSU and investigated their thermal preference in an annular chamber system using the gravitational method for temperature preference determination. Thermal preference of individual brown shrimp was considerably variable and brown shrimp selected a wide range of temperatures in each level of salinity as well as within individual experimental trials. However, salinity significantly affected thermal preference with the shrimp selecting higher temperatures at 10 and 20 PSU when compared to 30 PSU of salinity. Body size had no effect on thermal selection and did not interact with salinity. Temperature preference differed by sex and male shrimp selected significantly higher temperatures at 10 PSU when compared to females. The results show that salinity strongly affects thermal selection in brown shrimp and confirms the strong interrelation of temperature and salinity on seasonal migratory movements that has been previously derived from observations in the field. In the field, however, it remains unclear whether salinity drives thermal selection or whether changes in temperature modify salinity preference.

  13. Analysis of food habits of skate Rioraja agassizii (Elasmobranchii, Rajidae) from southern Brazil.

    PubMed

    Motta, N S; Della-Fina, N; Souza, C C A; Rodrigues, E S; Amorim, A F

    2016-06-01

    Catches and exports of skate Rioraja agassizii place this species as "vulnerable to extinction" on the IUCN Red List; therefore, biological and ecological knowledge becomes an important instrument for its conservation control. This study described and quantified the diet composition of R. agassizii by means of stomach analysis contents in the periods 2005-2006 and 2012-2013. We analyzed and quantified stomach contents in terms of abundance (%N), weight (%M), frequency of occurrence (% FO), and index of relative importance (IRI). The results showed differences in the food rates between the periods. However, the groups of food items were the same: Teleostei fish, decapods, and mollusks. In 2005-2006, the diet consisted mainly of shrimp, however, in 2012-2013 it consisted of fish, followed by decapods, especially shrimps. The differences in diets may be attributed to shrimp abundance, which do not characterize a change in the eating habits in 2012-2013, because, in addition to fish, shrimps were also important food sources. The presence of a certain prey is more related to its availability rather than the feeding preference of skate. The amount of ingested items is associated to biological and environmental factors, so that further studies relating diet with capture area, seasonality, depth, and other factors should be conducted.

  14. Diet and scavenging habits of the smooth skate Dipturus innominatus.

    PubMed

    Forman, J S; Dunn, M R

    2012-04-01

    The diet of smooth skate Dipturus innominatus was determined from examination of stomach contents of 321 specimens of 29·3-152·0 cm pelvic length, sampled from research and commercial trawlers at depths of 231-789 m on Chatham Rise, New Zealand. The diet was dominated by the benthic decapods Metanephrops challengeri and Munida gracilis, the natant decapod Campylonotus rathbunae and fishes from 17 families, of which hoki Macruronus novaezelandiae, sea perch Helicolenus barathri, various Macrouridae and a variety of discarded fishes were the most important. Multivariate analyses indicated the best predictors of diet variability were D. innominatus length and a spatial model. The diet of small D. innominatus was predominantly small crustaceans, with larger crustaceans, fishes and then scavenged discarded fishes increasing in importance as D. innominatus got larger. Scavenged discards were obvious as fish heads or tails only, or skeletal remains after filleting, often from pelagic species. Demersal fish prey were most frequent on the south and west Chatham Rise, in areas where commercial fishing was most active. Dipturus innominatus are highly vulnerable to overfishing, but discarding practices by commercial fishing vessels may provide a positive feedback to populations through improved scavenging opportunities. © 2012 NIWA. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  15. Host partitioning by parasites in an intertidal crustacean community.

    PubMed

    Koehler, Anson V; Poulin, Robert

    2010-10-01

    Patterns of host use by parasites throughout a guild community of intermediate hosts can depend on several biological and ecological factors, including physiology, morphology, immunology, and behavior. We looked at parasite transmission in the intertidal crustacean community of Lower Portobello Bay, Dunedin, New Zealand, with the intent of: (1) mapping the flow of parasites throughout the major crustacean species, (2) identifying hosts that play the most important transmission role for each parasite, and (3) assessing the impact of parasitism on host populations. The most prevalent parasites found in 14 species of crustaceans (635 specimens) examined were the trematodes Maritrema novaezealandensis and Microphallus sp., the acanthocephalans Profilicollis spp., the nematode Ascarophis sp., and an acuariid nematode. Decapods were compatible hosts for M. novaezealandensis, while other crustaceans demonstrated lower host suitability as shown by high levels of melanized and immature parasite stages. Carapace thickness, gill morphology, and breathing style may contribute to the differential infection success of M. novaezealandensis and Microphallus sp. in the decapod species. Parasite-induced host mortality appears likely with M. novaezealandensis in the crabs Austrohelice crassa, Halicarcinus varius, Hemigrapsus sexdentatus, and Macrophthalmus hirtipes, and also with Microphallus sp. in A. crassa. Overall, the different parasite species make different use of available crustacean intermediate hosts and possibly contribute to intertidal community structure.

  16. Etisus evamuellerae, a new xanthid crab (Decapoda, Brachyura) from the Middle Miocene of Austria and Hungary

    PubMed Central

    Hyžný, M.; van Bakel, B.W.M.; Guinot, D.

    2015-01-01

    On the basis of several carapaces, a new species of xanthid crab, Etisus evamuellerae, is described from the Middle Miocene of the Vienna (Austria) and Great Hungarian basins. It differs from the coeval xanthids, Xantho moldavicus and Pilodius vulgaris, in having a distinctly protruding front and comparatively longer carapace. Contrary to those two species, the new one makes up for just a small percentage in the decapod crustacean assemblages studied. PMID:25983383

  17. Metapopulation Dynamics of the Softshell Clam, Mya arenaria

    DTIC Science & Technology

    2008-06-01

    LA-ICP-MS. J. Anal. At. Spectrom. 17:8-14. ing of gastropod statoliths to study larval dispersal trajecto- Jones, C. M., and Z. Chen. 2003. New...have expanded the use of elemental tags to inver- tebrates including decapods (DiBacco and Levin, 2000), gastropods (Zacherl et al., 2003a), bivalves...shell uptake has been examined only in one gastropod (Zacherl et al., 2003b) and in no bivalves. We explored the relationships between temperature

  18. Balancing tissue perfusion demands: cardiovascular dynamics of Cancer magister during exposure to low salinity and hypoxia.

    PubMed

    McGaw, Iain J; McMahon, Brian R

    2003-01-01

    Decapod crustaceans inhabit aquatic environments that are frequently subjected to changes in salinity and oxygen content. The physiological responses of decapod crustaceans to either salinity or hypoxia are well documented; however, there are many fewer reports on the physiological responses during exposure to these parameters in combination. We investigated the effects of simultaneous and sequential combinations of low salinity and hypoxia on the cardiovascular physiology of the Dungeness crab, Cancer magister. Heart rate, as well as haemolymph flow rates through the anterolateral, hepatic, sternal and posterior arteries were measured using a pulsed-Doppler flowmeter. Summation of flows allowed calculation of cardiac output and division of this by heart rate yielded stroke volume. When hypoxia and low salinity were encountered simultaneously, the observed changes in cardiac properties tended to be a mix of both factors. Hypoxia caused a bradycardia, whereas exposure to low salinity was associated with a tachycardia. However, the hypoxic conditions had the dominant effect on heart rate. Although hypoxia caused an increase in stroke volume of the heart, the low salinity had a more pronounced effect, causing an overall decrease in stroke volume. The patterns of haemolymph flow through the arterial system also varied when hypoxia and low salinity were offered together. The resulting responses were a mix of those resulting from exposure to either parameter alone. When low salinity and hypoxia were offered sequentially, the parameter experienced first tended to have the dominant effect on cardiac function and haemolymph flows. Low salinity exposure was associated with an increase in heart rate, a decrease in stroke volume and cardiac output, and a concomitant decrease in haemolymph flow rates. Subsequent exposure to hypoxic conditions caused a slight decrease in rate, but other cardiovascular variables were largely unaffected. In contrast, when low salinity followed

  19. Ecological Functions of Shallow, Unvegetated Esturaine Habitats and Potential Dredging Impacts (With Emphasis on Chesapeake Bay)

    DTIC Science & Technology

    2005-12-01

    than seagrass , Seitz et al. (2005) has recently shown that growth of juvenile blue crabs was greater in unvegetated mud and sand flats of the upper...York River than the same habitats or seagrass beds in the lower river. In a companion study Lipcius et al. (2005) report that survival and overall...that decapod fauna of oyster shell habitats are distinct from that of either seagrass or marsh-edge habitats. Posey et al. (1999) have experimentally

  20. Ultrastructural and functional characterization of circulating hemocytes from the freshwater crayfish Astacus leptodactylus: cell types and their role after in vivo artificial non-self challenge.

    PubMed

    Giulianini, Piero Giulio; Bierti, Manuel; Lorenzon, Simonetta; Battistella, Silvia; Ferrero, Enrico Antonio

    2007-01-01

    The freshwater crayfish Astacus leptodactylus (Eschscholtz, 1823) is an important aquacultured decapod species as well as an invasive species in some European countries. In the current investigation we characterized the different classes of circulating blood cells in A. leptodactylus by means of light and electron microscopy analysis and we explored their reaction to different latex beads particles in vivo by total and differential cell counts at 0.5, 1, 2 and 4h after injections. We identified hemocytes by granule size morphometry as hyaline hemocytes with no or rare tiny granules, small granule hemocytes, unimodal medium diameter granule hemocytes and both small and large granule containing hemocytes. The latter granular hemocytes showed the strongest phenoloxidase l-DOPA reactivity both in granules and cytoplasm. A. leptodactylus respond to foreign particles with strong cellular immune responses. All treatments elicited a total hemocyte increase with a conspicuous recruitment of large granule containing hemocytes. All hemocyte types mounted some phagocytic response but the small granule hemocytes were the only ones involved in phagocytic response to all foreign particles with the highest percentages. These results (1) depict the variability in decapod hemocyte functional morphology; (2) identify the small granule hemocyte as the major phagocytic cell; (3) suggest that the rather rapid recruitment of large granule hemocyte in all treatments plays a relevant role by this hemocyte type in defense against foreign particles, probably in nodule formation.

  1. Spatio-temporal variations in the diversity and abundance of commercially important Decapoda and Stomatopoda in subtropical Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Lui, Karen K. Y.; Ng, Jasmine S. S.; Leung, Kenneth M. Y.

    2007-05-01

    In subtropical Hong Kong, western waters (WW) are strongly influenced by the freshwater input from the Pearl River estuary, especially during summer monsoon, whereas eastern waters (EW) are predominantly influenced by oceanic currents throughout the year. Such hydrographical differences may lead to spatio-temporal differences in biodiversity of benthic communities. This study investigated the diversity and abundance of commercially important decapods and stomatopods in EW (i.e. Tolo Harbour and Channel) and WW (i.e. Tuen Mun and Lantau Island) of Hong Kong using monthly trawl surveys (August 2003-May 2005). In total, 22 decapod and nine stomatopod species were recorded. The penaeid Metapenaeopsis sp. and stomatopod Oratosquillina interrupta were the most abundant and dominant crustaceans in EW and WW, respectively. Both univariate and multivariate analyses showed that WW supported significantly higher abundance, biomass and diversity of crustaceans than EW, although there were significant between-site and within-site variations in community structure. Higher abundance and biomass of crustaceans were recorded in summer than winter. Such spatio-temporal variations could be explained by differences in the hydrography, environmental conditions and anthropogenic impacts between the two areas. Temporal patterns in the abundance-biomass comparison curves and negative W-statistics suggest that the communities have been highly disturbed in both areas, probably due to anthropogenic activities such as bottom trawling and marine pollution.

  2. Environmental drivers of megafaunal assemblage composition and biomass distribution over mainland and insular slopes of the Balearic Basin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Fanelli, E.; Cartes, J. E.; Papiol, V.; López-Pérez, C.

    2013-08-01

    The influence of mesoscale physical and trophic variables on deep-sea megafauna, a scale of variation often neglected in deep-sea studies, is crucial for understanding their role in the ecosystem. Drivers of megafaunal assemblage composition and biomass distribution have been investigated in two contrasting areas of the Balearic basin in the NW Mediterranean: on the mainland slope (Catalonian coasts) and on the insular slope (North of Mallorca, Balearic Islands). An experimental bottom trawl survey was carried out during summer 2010, at stations in both sub-areas located between 450 and 2200 m water depth. Environmental data were collected simultaneously: near-bottom physical parameters, and the elemental and isotopic composition of sediments. Initially, data were analysed along the whole depth gradient, and then assemblages from the two areas were compared. Analysis of the trawls showed the existence of one group associated with the upper slope (US=450-690 m), another with the middle slope (MS=1000-1300 m) and a third with the lower slope (LS=1400-2200 m). Also, significant differences in the assemblage composition were found between mainland and insular slopes at MS. Dominance by different species was evident when the two areas were compared by SIMPER analysis. The greatest fish biomass was recorded in both areas at 1000-1300 m, a zone linked to minimum temperature and maximum O2 concentration on the bottom. Near the mainland, fish assemblages were best explained (43% of total variance, DISTLM analysis) by prey availability (gelatinous zooplankton biomass). On the insular slope, trophic webs seemed less complex and were based on vertical input of surface primary production. Decapods, which reached their highest biomass values on the upper slope, were correlated with salinity and temperature in both the areas. However, while hydrographic conditions (temperature and salinity) seemed to be the most important variables over the insular slope, resource availability

  3. Resources and Recommendations for Using Transcriptomics to Address Grand Challenges in Comparative Biology

    PubMed Central

    Mykles, Donald L.; Burnett, Karen G.; Durica, David S.; Joyce, Blake L.; McCarthy, Fiona M.; Schmidt, Carl J.; Stillman, Jonathon H.

    2016-01-01

    High-throughput RNA sequencing (RNA-seq) technology has become an important tool for studying physiological responses of organisms to changes in their environment. De novo assembly of RNA-seq data has allowed researchers to create a comprehensive catalog of genes expressed in a tissue and to quantify their expression without a complete genome sequence. The contributions from the “Tapping the Power of Crustacean Transcriptomics to Address Grand Challenges in Comparative Biology” symposium in this issue show the successes and limitations of using RNA-seq in the study of crustaceans. In conjunction with the symposium, the Animal Genome to Phenome Research Coordination Network collated comments from participants at the meeting regarding the challenges encountered when using transcriptomics in their research. Input came from novices and experts ranging from graduate students to principal investigators. Many were unaware of the bioinformatics analysis resources currently available on the CyVerse platform. Our analysis of community responses led to three recommendations for advancing the field: (1) integration of genomic and RNA-seq sequence assemblies for crustacean gene annotation and comparative expression; (2) development of methodologies for the functional analysis of genes; and (3) information and training exchange among laboratories for transmission of best practices. The field lacks the methods for manipulating tissue-specific gene expression. The decapod crustacean research community should consider the cherry shrimp, Neocaridina denticulata, as a decapod model for the application of transgenic tools for functional genomics. This would require a multi-investigator effort. PMID:27639274

  4. Material Structure of a Graded Refractive Index Lens in Decapod Squid

    NASA Astrophysics Data System (ADS)

    Cai, Jing; Heiney, Paul; Sweeney, Alison

    2013-03-01

    Underwater vision with a camera-type eye that is simultaneously acute and sensitive requires a spherical lens with a graded distribution of refractive index. Squids have this type of lens, and our previous work has shown that its optical properties are likely achieved with radially variable densities of a single protein with multiple isoforms. Here we measure the spatial organization of this novel protein material in concentric layers of the lens and use these data to suggest possible mechanisms of self-assembly of the proteins into a graded refractive index structure. First, we performed small angle x-ray scattering (SAXS) to study how the protein is spatially organized. Then, molecular dynamic simulation allowed us to correlate structure to the possible dynamics of the system in different regions of the lens. The combination of simulation and SAXS data in this system revealed the likely protein-protein interactions, resulting material structure and its relationship to the observed and variable optical properties of this graded index system. We believe insights into the material properties of the squid lens system will inform the invention of self-assembling graded index devices.

  5. Axonal inclusions in the crab Hemigrapsus nudus.

    PubMed

    Smith, R S

    1978-10-01

    Light microscopic examination of living giant axons from the walking legs of Hemigrapsus nudus revealed intra-axonal inclusions which were usually several tens of micrometers long and about 5 micron wide. The inclusions were filled with small light-scattering particles. The inclusions were shown, by thin section electron microscopy, to be composed largely 68% by volume) of mitochondria. Each inclusion was surrounded by membrane bounded spaces which are presumed to represent a part of the smooth endoplasmic reticulum. Similar inclusions were not found in the leg axons of a variety of other decapod crustaceans.

  6. Ecological structure and function in a restored versus natural salt marsh

    PubMed Central

    Rezek, Ryan J.; Lebreton, Benoit; Sterba-Boatwright, Blair

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions. PMID:29261795

  7. Feeding ecology of elasmobranch fishes in coastal waters of the Colombian Eastern Tropical Pacific

    PubMed Central

    Navia, Andrés F; Mejía-Falla, Paola A; Giraldo, Alan

    2007-01-01

    Background Stomach contents of 131 specimens of five elasmobranch species (Mustelus lunulatus, Dasyatis longa, Rhinobatos leucorhynchus, Raja velezi and Zapteryx xyster) caught in the central fishing zone in the Pacific Ocean of Colombia were counted and weighed to describe feeding habits and dietary overlaps. Results Twenty-one prey items belonging to four major groups (stomatopods, decapods, mollusks and fish) were identified. Decapod crustaceans were the most abundant prey found in stomachs. The mantis shrimp Squilla panamensis was the main prey item in the diet of M. lunulatus; tiger shrimp Trachypenaeus sp. was the main prey item in the diet of Rhinobatos leucorhynchus and Raja velezi, and Penaeidae shrimp were the main prey items in the diet of Z. xyster. Furthermore, fish were important in the diet of Raja velezi, Z. xyster and D. longa. The greatest diet breadth corresponded to Z. xyster whereas M. lunulatus was the most specialized predator. Finally, four significant diet overlaps between the five species were found, attributable mainly to Squillidae, Penaeidae and Fish. Conclusion Shrimps (Penaeidae and stomatopods) and benthic fishes were the most important food types in the diet of the elasmobranch species studied. Diet breadth and overlap were relatively low. Determination of food resource partitioning among the batoid species studied was not possible. However, we identified partitions in other niche axes (time of feeding activity and habitat utilization). It is possible to assume that diffuse competition could be exceeding the biunivocal competition among the studied species. Therefore, this assemblage would have a strong tendency to trophic guild formation. PMID:17877796

  8. Salinity-induced changes in gene expression from anterior and posterior gills of Callinectes sapidus (Crustacea: Portunidae) with implications for crustacean ecological genomics

    PubMed Central

    Havird, Justin C.; Mitchell, Reed T.; Henry, Raymond P.; Santos, Scott R.

    2016-01-01

    Decapods represent one of the most ecologically diverse taxonomic groups within crustaceans, making them ideal to study physiological processes like osmoregulation. However, prior studies have failed to consider the entire transcriptomic response of the gill – the primary organ responsible for ion transport – to changing salinity. Moreover, the molecular genetic differences between non-osmoregulatory and osmoregulatory gill types, as well as the hormonal basis of osmoregulation, remain underexplored. Here, we identified and characterized differentially expressed genes (DEGs) via RNA-Seq in anterior (non-osmoregulatory) and posterior (osmoregulatory) gills during high to low salinity transfer in the blue crab Callinectes sapidus, a well-studied model for crustacean osmoregulation. Overall, we confirmed previous expression patterns for individual ion transport genes and identified novel ones with salinity-mediated expression. Notable, novel DEGs among salinities and gill types for C. sapidus included anterior gills having higher expression of structural genes such as actin and cuticle proteins while posterior gills exhibit elevated expression of ion transport and energy-related genes, with the latter likely linked to ion transport. Potential targets among recovered DEGs for hormonal regulation of ion transport between salinities and gill types included neuropeptide Y and a KCTD16-like protein. Using publically available sequence data, constituents for a “core” gill transcriptome among decapods are presented, comprising genes involved in ion transport and energy conversion and consistent with salinity transfer experiments. Lastly, rarefication analyses lead us to recommend a modest number of sequence reads (~10–15 M), but with increased biological replication, be utilized in future DEG analyses of crustaceans. PMID:27337176

  9. Animal behavior frozen in time: gregarious behavior of Early Jurassic lobsters within an ammonoid body chamber.

    PubMed

    Klompmaker, Adiël A; Fraaije, René H B

    2012-01-01

    Direct animal behavior can be inferred from the fossil record only in exceptional circumstances. The exceptional mode of preservation of ammonoid shells in the Posidonia Shale (Lower Jurassic, lower Toarcian) of Dotternhausen in southern Germany, with only the organic periostracum preserved, provides an excellent opportunity to observe the contents of the ammonoid body chamber because this periostracum is translucent. Here, we report upon three delicate lobsters preserved within a compressed ammonoid specimen of Harpoceras falciferum. We attempt to explain this gregarious behavior. The three lobsters were studied using standard microscopy under low angle light. The lobsters belong to the extinct family of the Eryonidae; further identification was not possible. The organic material of the three small lobsters is preserved more than halfway into the ammonoid body chamber. The lobsters are closely spaced and are positioned with their tails oriented toward each other. The specimens are interpreted to represent corpses rather than molts. The lobsters probably sought shelter in preparation for molting or against predators such as fish that were present in Dotternhausen. Alternatively, the soft tissue of the ammonoid may have been a source of food that attracted the lobsters, or it may have served as a long-term residency for the lobsters (inquilinism). The lobsters represent the oldest known example of gregariousness amongst lobsters and decapods in the fossil record. Gregarious behavior in lobsters, also known for extant lobsters, thus developed earlier in earth's history than previously known. Moreover, this is one of the oldest known examples of decapod crustaceans preserved within cephalopod shells.

  10. Animal Behavior Frozen in Time: Gregarious Behavior of Early Jurassic Lobsters within an Ammonoid Body Chamber

    PubMed Central

    Klompmaker, Adiël A.; Fraaije, René H. B.

    2012-01-01

    Direct animal behavior can be inferred from the fossil record only in exceptional circumstances. The exceptional mode of preservation of ammonoid shells in the Posidonia Shale (Lower Jurassic, lower Toarcian) of Dotternhausen in southern Germany, with only the organic periostracum preserved, provides an excellent opportunity to observe the contents of the ammonoid body chamber because this periostracum is translucent. Here, we report upon three delicate lobsters preserved within a compressed ammonoid specimen of Harpoceras falciferum. We attempt to explain this gregarious behavior. The three lobsters were studied using standard microscopy under low angle light. The lobsters belong to the extinct family of the Eryonidae; further identification was not possible. The organic material of the three small lobsters is preserved more than halfway into the ammonoid body chamber. The lobsters are closely spaced and are positioned with their tails oriented toward each other. The specimens are interpreted to represent corpses rather than molts. The lobsters probably sought shelter in preparation for molting or against predators such as fish that were present in Dotternhausen. Alternatively, the soft tissue of the ammonoid may have been a source of food that attracted the lobsters, or it may have served as a long-term residency for the lobsters (inquilinism). The lobsters represent the oldest known example of gregariousness amongst lobsters and decapods in the fossil record. Gregarious behavior in lobsters, also known for extant lobsters, thus developed earlier in earth's history than previously known. Moreover, this is one of the oldest known examples of decapod crustaceans preserved within cephalopod shells. PMID:22412846

  11. Spider crabs of the Western Atlantic with special reference to fossil and some modern Mithracidae

    PubMed Central

    Portell, Roger W.; Klier, Aaron T.; Prueter, Vanessa; Tucker, Alyssa L.

    2015-01-01

    Spider crabs (Majoidea) are well-known from modern oceans and are also common in the western part of the Atlantic Ocean. When spider crabs appeared in the Western Atlantic in deep time, and when they became diverse, hinges on their fossil record. By reviewing their fossil record, we show that (1) spider crabs first appeared in the Western Atlantic in the Late Cretaceous, (2) they became common since the Miocene, and (3) most species and genera are found in the Caribbean region from the Miocene onwards. Furthermore, taxonomic work on some modern and fossil Mithracidae, a family that might have originated in the Western Atlantic, was conducted. Specifically, Maguimithrax gen. nov. is erected to accommodate the extant species Damithrax spinosissimus, while Damithrax cf. pleuracanthus is recognized for the first time from the fossil record (late Pliocene–early Pleistocene, Florida, USA). Furthermore, two new species are described from the lower Miocene coral-associated limestones of Jamaica (Mithrax arawakum sp. nov. and Nemausa windsorae sp. nov.). Spurred by a recent revision of the subfamily, two known species from the same deposits are refigured and transferred to new genera: Mithrax donovani to Nemausa, and Mithrax unguis to Damithrax. The diverse assemblage of decapods from these coral-associated limestones underlines the importance of reefs for the abundance and diversity of decapods in deep time. Finally, we quantitatively show that these crabs possess allometric growth in that length/width ratios drop as specimens grow, a factor that is not always taken into account while describing and comparing among taxa. PMID:26557432

  12. Regulation of essential heavy metals (Cu, Cr, and Zn) by the freshwater prawn macrobrachium malcolmsonii (Milne Edwards)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayram, K.; Geraldine, P.

    1996-02-01

    Despite the low concentrations of heavy metals in the surrounding medium, aquatic organisms take them up and accumulate them in their soft tissues to concentrations several fold higher than those of ambient levels. Knowledge of accumulation patterns of a particular trace metal is a prerequisite for understanding the significance of an observed metal concentration in a particular animal, especially from the aspect of biomonitoring. Many marine invertebrates accumulate heavy metals without any regulation and the accumulation necessarily being associated with mechanisms to store the metals in a detoxified form. Two detoxification mechanisms have been described, both of which may occurmore » in one specimen. Heavy metals can either be bound up in insoluble metalliferous {open_quote}granules{close_quote}, or are bound to soluble metal-binding ligands, such as metallothioneins. Some marine decapod crustaceans have an innate ability to regulate the internal concentrations of essential but potentially toxic metals within a constant level, presumably to meet their metabolic demands. However, at present, there is no such information relating to freshwater decapod crustaceans, especially shrimps which occupy a totally different environment. Macrobrachium malcolmsonii, a potential aquaculture species for freshwater is found in abundance in one of the major Indian rivers, the Cauvery. In the present study, an attempt was made to determine whether the freshwater prawn, M. malcolmsonlii, is able to regulate the three essential elements, copper, chromium and zinc, over a wide range of dissolved concentrations. These three metals were chosen because the Cauvery River receives pollutants containing these metals.« less

  13. Ecological structure and function in a restored versus natural salt marsh.

    PubMed

    Rezek, Ryan J; Lebreton, Benoit; Sterba-Boatwright, Blair; Beseres Pollack, Jennifer

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions.

  14. [COMPARATIVE CHARACTERISTICS OF uNOS-POSITIVE STRUCTURES IN THE CNS OF SOME SPECIES OF CRUSTACEANS].

    PubMed

    Chertok, V M; Kotsyuba, E P

    2015-01-01

    We conducted a comparative study of NO-ergic system in the CNS of 10 species of crustaceans subclass Malacostraca, belonging to orders Stomatopoda and Decapoda, with a common habitat in Ussuri Bay (Sea of Japan). Both similar characteristics and differences in content and distribution of universal NO-synthase (uNOS) were revealed in homologous parts of the brain and ventral nerve cord of the investigated species of crustaceans. We discuss the involvement of nitric oxide in the regulation of physiological functions of decapod crustaceans and its role in the processes of adaptation to the environmental conditions.

  15. New data on the taxonomy, ecology, and conservation of the rediscovered Louisea edeaensis (Bott, 1969) (Brachyura: Potamoidea: Potamonautidae), an endangered freshwater crab from Cameroon.

    PubMed

    Ndongo, Pierre A Mvogo; Rintelen, Thomas VON; Schubart, Christoph D; Albrecht, Christian; Tamesse, Joseph L; Cumberlidge, Neil

    2017-02-09

    The rare and endangered Cameroonian potamonautid freshwater crab Louisea edeaensis (Bott, 1969) was recently rediscovered during a biological inventory of the freshwater decapods of southern Cameroon. The previous record dated back more than 100 years. The new specimens allow an updated diagnosis of the species based on comparisons of important taxonomic characters. Photographs of the carapace, gonopods, third maxillipeds, and chelipeds of the largest adult male specimen from Lake Ossa, Cameroon are provided, as are the first photographs of living specimens. The conservation implications of the new data on habitat, population structure, distribution, and threats for this rare and endangered species are discussed.

  16. PHYSIOLOGICAL DYSFUNCTION IN ESTUARINE MYSIDS AND LARVAL DECAPODS WITH CHRONIC PESTICIDE EXPOSURE

    EPA Science Inventory

    A variety of physiological functions was examined in an estuarine mysid (Mysidopsis bahia) during life-cycle exposures to four classes of pesticides. Pesticide exposure initially elevated respiration rates of juveniles. These increased metabolic requirements reduced the amount of...

  17. Central projections of antennular chemosensory and mechanosensory afferents in the brain of the terrestrial hermit crab (Coenobita clypeatus; Coenobitidae, Anomura)

    PubMed Central

    Tuchina, Oksana; Koczan, Stefan; Harzsch, Steffen; Rybak, Jürgen; Wolff, Gabriella; Strausfeld, Nicholas J.; Hansson, Bill S.

    2015-01-01

    The Coenobitidae (Decapoda, Anomura, Paguroidea) is a taxon of hermit crabs that includes two genera with a fully terrestrial life style as adults. Previous studies have shown that Coenobitidae have evolved a sense of spatial odor localization that is behaviorally highly relevant. Here, we examined the central olfactory pathway of these animals by analyzing central projections of the antennular nerve of Coenobita clypeatus, combining backfilling of the nerve with dextran-coupled dye, Golgi impregnations and three-dimensional reconstruction of the primary olfactory center, the antennular lobe. The principal pattern of putative olfactory sensory afferents in C. clypeatus is in many aspects similar to what have been established for aquatic decapod crustaceans, such as the spiny lobster Panulirus argus. However, there are also obvious differences that may, or may not represent adaptations related to a terrestrial lifestyle. In C. clypeatus, the antennular lobe dominates the deutocerebrum, having more than one thousand allantoid-shaped subunits. We observed two distinct patterns of sensory neuron innervation: putative olfactory afferents from the aesthetascs either supply the cap/subcap region of the subunits or they extend through its full depth. Our data also demonstrate that any one sensory axon can supply input to several subunits. Putative chemosensory (non-aesthetasc) and mechanosensory axons represent a different pathway and innervate the lateral and median antennular neuropils. Hence, we suggest that the chemosensory input in C. clypeatus might be represented via a dual pathway: aesthetascs target the antennular lobe, and bimodal sensilla target the lateral antennular neuropil and median antennular neuropil. The present data is compared to related findings in other decapod crustaceans. PMID:26236202

  18. Resources and Recommendations for Using Transcriptomics to Address Grand Challenges in Comparative Biology.

    PubMed

    Mykles, Donald L; Burnett, Karen G; Durica, David S; Joyce, Blake L; McCarthy, Fiona M; Schmidt, Carl J; Stillman, Jonathon H

    2016-12-01

    High-throughput RNA sequencing (RNA-seq) technology has become an important tool for studying physiological responses of organisms to changes in their environment. De novo assembly of RNA-seq data has allowed researchers to create a comprehensive catalog of genes expressed in a tissue and to quantify their expression without a complete genome sequence. The contributions from the "Tapping the Power of Crustacean Transcriptomics to Address Grand Challenges in Comparative Biology" symposium in this issue show the successes and limitations of using RNA-seq in the study of crustaceans. In conjunction with the symposium, the Animal Genome to Phenome Research Coordination Network collated comments from participants at the meeting regarding the challenges encountered when using transcriptomics in their research. Input came from novices and experts ranging from graduate students to principal investigators. Many were unaware of the bioinformatics analysis resources currently available on the CyVerse platform. Our analysis of community responses led to three recommendations for advancing the field: (1) integration of genomic and RNA-seq sequence assemblies for crustacean gene annotation and comparative expression; (2) development of methodologies for the functional analysis of genes; and (3) information and training exchange among laboratories for transmission of best practices. The field lacks the methods for manipulating tissue-specific gene expression. The decapod crustacean research community should consider the cherry shrimp, Neocaridina denticulata, as a decapod model for the application of transgenic tools for functional genomics. This would require a multi-investigator effort. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  19. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans.

    PubMed

    Morris, S

    2001-03-01

    Gills are the primary organ for salt transport, but in land crabs they are removed from water and thus ion exchanges, as well as CO(2) and ammonia excretion, are compromised. Urinary salt loss is minimised in land crabs by redirecting the urine across the gills where salt reabsorption occurs. Euryhaline marine crabs utilise apical membrane branchial Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange powered by a basal membrane Na(+)/K(+)-ATPase, but in freshwater crustaceans an apical V-ATPase provides for electrogenic uptake of Cl(-) in exchange for HCO(3)(-). The HCO(3)(-) is provided by carbonic anhydrase facilitating CO(2) excretion while NH(4)(+) can substitute for K(+) in the basal ATPase and for H(+) in the apical exchange. Gecarcinid land crabs and the terrestrial anomuran Birgus latro can lower the NaCl concentration of the urine to 5 % of that of the haemolymph as it passes across the gills. This provides a filtration-reabsorption system analogous to the vertebrate kidney. Crabs exercise hormonal control over branchial transport processes. Aquatic hyper-regulators release neuroamines from the pericardial organs, including dopamine and 5-hydroxytryptamine (5-HT), which via a cAMP-mediated phosphorylation stimulate Na(+)/K(+)-ATPase activity and NaCl uptake. Freshwater species utilise a V-ATPase, and additional mechanisms of control have been suggested. Crustacean hyperglycaemic hormone (CHH) has now also been confirmed to have effects on hydromineral regulation, and a putative role for neuropeptides in salt and water balance suggests that current models for salt regulation are probably incomplete. In a terrestrial crabs there may be controls on both active uptake and diffusive loss. The land crab Gecarcoidea natalis drinking saline water for 3 weeks reduced net branchial Na(+) uptake but not Na(+)/K(+)-ATPase activity, thus implying a reduction in diffusive Na(+) loss. Further, in G. natalis Na(+) uptake and Na(+)/K(+)-ATPase were stimulated by 5-HT independently of cAMP. Conversely, in the anomuran B. latro, branchial Na(+) and Cl(-) uptake and Na(+)/K(+)-ATPase are inhibited by dopamine, mediated by cAMP. There has been a multiple evolution of a kidney-type system in terrestrial crabs capable of managing salt, CO(2) and NH(3) movements.

  20. Methodical aspects of rearing decapod larvae, Pagurus bernhardus (Paguridae) and Carcinus maenas (Portunidae)

    NASA Astrophysics Data System (ADS)

    Dawirs, R. R.

    1982-12-01

    Improved methods for experimental rearing of Pagurus bernhardus and Carcinus maenas larvae are presented. Isolated maintenance was found essential for reliable statistical evaluation of results obtained from stages older than zoea-1. Only by isolated rearing is it possible to calculate mean values ±95% confidence intervals of stage duration. Mean values (without confidence intervals) can only be given for group-reared larvae if mortality is zero. Compared to group rearing, isolated rearing led to better survival, shorter periods of development and stimulated growth. Due to different swimming behavior P. bernhardus zoeae needed larger water volumes than Carcinus maenas larvae. P. bernhardus zoeae were reared with best results when isolated in Petri dishes (ca. 50 ml). They fed on newly hatched brine shrimp nauplii ( Artemia spp.). P. bernhardus megalopa did not require any gastropod shell or substratum; it developed best in glass vials without any food. C. maenas larvae could be reared most sucessfully in glass vials (ca 20 ml) under a simulated day-night regime (LD 16:8); constant darkness had a detrimental effect on development, leading to prolonged stage-duration times. C. maenas larvae were fed a mixture of newly hatched brine shrimp naupli and rotifers ( Brachionus plicatilis).

  1. High sequence variability among hemocyte-specific Kazal-type proteinase inhibitors in decapod crustaceans.

    PubMed

    Cerenius, Lage; Liu, Haipeng; Zhang, Yanjiao; Rimphanitchayakit, Vichien; Tassanakajon, Anchalee; Gunnar Andersson, M; Söderhäll, Kenneth; Söderhäll, Irene

    2010-01-01

    Crustacean hemocytes were found to produce a large number of transcripts coding for Kazal-type proteinase inhibitors (KPIs). A detailed study performed with the crayfish Pacifastacus leniusculus and the shrimp Penaeus monodon revealed the presence of at least 26 and 20 different Kazal domains from the hemocyte KPIs, respectively. Comparisons with KPIs from other taxa indicate that the sequences of these domains evolve rapidly. A few conserved positions, e.g. six invariant cysteines were present in all domain sequences whereas the position of P1 amino acid, a determinant for substrate specificity, varied highly. A study with a single crayfish animal suggested that even at the individual level considerable sequence variability among hemocyte KPIs produced exist. Expression analysis of four crayfish KPI transcripts in hematopoietic tissue cells and different hemocyte types suggest that some of these KPIs are likely to be involved in hematopoiesis or hemocyte release as they were produced in particular hemocyte types or maturation stages only.

  2. Genomic Sequence and Experimental Tractability of a New Decapod Shrimp Model, Neocaridina denticulata

    PubMed Central

    Kenny, Nathan J.; Sin, Yung Wa; Shen, Xin; Zhe, Qu; Wang, Wei; Chan, Ting Fung; Tobe, Stephen S.; Shimeld, Sebastian M.; Chu, Ka Hou; Hui, Jerome H. L.

    2014-01-01

    The speciose Crustacea is the largest subphylum of arthropods on the planet after the Insecta. To date, however, the only publically available sequenced crustacean genome is that of the water flea, Daphnia pulex, a member of the Branchiopoda. While Daphnia is a well-established ecotoxicological model, previous study showed that one-third of genes contained in its genome are lineage-specific and could not be identified in any other metazoan genomes. To better understand the genomic evolution of crustaceans and arthropods, we have sequenced the genome of a novel shrimp model, Neocaridina denticulata, and tested its experimental malleability. A library of 170-bp nominal fragment size was constructed from DNA of a starved single adult and sequenced using the Illumina HiSeq2000 platform. Core eukaryotic genes, the mitochondrial genome, developmental patterning genes (such as Hox) and microRNA processing pathway genes are all present in this animal, suggesting it has not undergone massive genomic loss. Comparison with the published genome of Daphnia pulex has allowed us to reveal 3750 genes that are indeed specific to the lineage containing malacostracans and branchiopods, rather than Daphnia-specific (E-value: 10−6). We also show the experimental tractability of N. denticulata, which, together with the genomic resources presented here, make it an ideal model for a wide range of further aquacultural, developmental, ecotoxicological, food safety, genetic, hormonal, physiological and reproductive research, allowing better understanding of the evolution of crustaceans and other arthropods. PMID:24619275

  3. Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record

    PubMed Central

    Klompmaker, Adiël A.

    2016-01-01

    Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Furthermore, numerous taxa are incorrectly classified within the catch-all taxon Callianassa. To show the historical patterns in describing fossil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein. More than half of these taxa (160 species, 58.4%) are known only from distal cheliped elements, i.e., dactylus and / or propodus, due to the more calcified cuticle locally. Rarely, ghost shrimps are preserved in situ in burrows or in direct association with them, and several previously unpublished occurrences are reported herein. For generic assignment, fossil material should be compared to living species because many of them have modern relatives. Heterochely, intraspecific variation, ontogenetic changes and sexual dimorphism are all factors that have to be taken into account when working with fossil ghost shrimps. Distal elements are usually more variable than proximal ones. Preliminary results suggest that the ghost shrimp clade emerged not before the Hauterivian (~ 133 Ma). The divergence of Ctenochelidae and Paracalliacinae is estimated to occur within the interval of Hauterivian to Albian (133–100 Ma). Callichirinae and Eucalliacinae likely diverged later during the Late Cretaceous (100–66 Ma

  4. Vertical distribution, composition and migratory patterns of acoustic scattering layers in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Ariza, A.; Landeira, J. M.; Escánez, A.; Wienerroither, R.; Aguilar de Soto, N.; Røstad, A.; Kaartvedt, S.; Hernández-León, S.

    2016-05-01

    Diel vertical migration (DVM) facilitates biogeochemical exchanges between shallow waters and the deep ocean. An effective way of monitoring the migrant biota is by acoustic observations although the interpretation of the scattering layers poses challenges. Here we combine results from acoustic observations at 18 and 38 kHz with limited net sampling in order to unveil the origin of acoustic phenomena around the Canary Islands, subtropical northeast Atlantic Ocean. Trawling data revealed a high diversity of fishes, decapods and cephalopods (152 species), although few dominant species likely were responsible for most of the sound scattering in the region. We identified four different acoustic scattering layers in the mesopelagic realm: (1) at 400-500 m depth, a swimbladder resonance phenomenon at 18 kHz produced by gas-bearing migrant fish such as Vinciguerria spp. and Lobianchia dofleini, (2) at 500-600 m depth, a dense 38 kHz layer resulting primarily from the gas-bearing and non-migrant fish Cyclothone braueri, and to a lesser extent, from fluid-like migrant fauna also inhabiting these depths, (3) between 600 and 800 m depth, a weak signal at both 18 and 38 kHz ascribed either to migrant fish or decapods, and (4) below 800 m depth, a weak non-migrant layer at 18 kHz which was not sampled. All the dielly migrating layers reached the epipelagic zone at night, with the shorter-range migrations moving at 4.6 ± 2.6 cm s - 1 and the long-range ones at 11.5 ± 3.8 cm s - 1. This work reduces uncertainties interpreting standard frequencies in mesopelagic studies, while enhances the potential of acoustics for future research and monitoring of the deep pelagic fauna in the Canary Islands.

  5. Quantifying vegetation and nekton response to tidal restoration of a New England salt marsh

    USGS Publications Warehouse

    Roman, C.T.; Raposa, K.B.; Adamowicz, S.C.; James-Pirri, M.J.; Catena, J.G.

    2002-01-01

    Tidal flow to salt marshes throughout the northeastern United States is often restricted by roads, dikes, impoundments, and inadequately sized culverts or bridge openings, resulting in altered ecological structure and function. In this study we evaluated the response of vegetation and nekton (fishes and decapod crustaceans) to restoration of full tidal flow to a portion of the Sachuest Point salt marsh, Middletown, Rhode Island. A before, after, control, impact study design was used, including evaluations of the tide-restricted marsh, the same marsh after reintroduction of tidal flow (i.e., tide-restored marsh), and an unrestricted control marsh. Before tidal restoration vegetation of the 3.7-ha tide-restricted marsh was dominated by Phragmites australis and was significantly different from the adjacent 6.3-ha Spartina -dominated unrestricted control marsh (analysis of similarities randomization test, p < 0.001). After one growing season vegetation of the tide-restored marsh had changed from its pre-restoration condition (analysis of similarities randomization test, p < 0.005). Although not similar to the unrestricted control marsh, Spartina patens and S. alterniflora abundance increased and abundance and height of Phragmites significantly declined, suggesting a convergence toward typical New England salt marsh vegetation. Before restoration shallow water habitat (creeks and pools) of the unrestricted control marsh supported a greater density of nekton compared with the tide-restricted marsh (analysis of variance, p < 0.001), but after one season of restored tidal flow nekton density was equivalent. A similar trend was documented for nekton species richness. Nekton density and species richness from marsh surface samples were similar between the tide-restored marsh and unrestricted control marsh. Fundulus heteroclitus and Palaemonetes pugio were the numerically dominant fish and decapod species in all sampled habitats. This study provides an example of a

  6. US-Canada Monitoring Network Reveals Biodiversity Patterns in Data-poor Marine Cobble-Boulder Habitats of the Coastal Northwest Atlantic

    NASA Astrophysics Data System (ADS)

    Wahle, R.; Hunt, H.; Tremblay, J.; Comeau, M.; Silva, A.; Rochette, R.

    2016-02-01

    In the Northeast US and Atlantic Canada a regional collaborative of marine resource agencies, academics, and fishing industry participants monitor more than 100 coastal sites with subtidal cobble-boulder habitat, a prime nursery of commercially important lobsters and crabs. The survey's prime motivation is to quantify annual recruitment of early juvenile stages of these crustaceans. Quantifying faunal abundance in subtidal cobble-boulder habitats is logistically challenging, defying trawl, core and camera. Until recently surveys of cobble habitats were solely conducted by divers using airlift suction samplers in natural cobble beds. In 2005 we developed standardized cobble-filled collectors that considerably expand the survey's reach to greater depths and offshore areas. In addition to their value in monitoring commercial crustaceans, these vessel-deployed collectors have proven to be especially useful in biodiversity studies. Here we describe patterns of species richness and abundance of decapod crustaceans and small demersal fishes colonizing 800 cobble-filled collectors deployed yearly in 2008 and 2009 at near-shore sites across the steep thermal and biogeographic gradient from Rhode Island, USA to Newfoundland, Canada to 76 m depth. At least 17 decapod and 24 fish genera were represented, including cryptic fish taxa not readily detected with other sampling gear. Species richness at shallow sites (5-10 m) was greatest in the south, but did not follow a simple latitudinal cline; rather, it correlated strongly with the complex geography of summer bottom temperature, thereby setting a baseline for climate change studies. Given the world-wide prevalence of this coastal habitat, broader monitoring will reveal new insights on biodiversity patterns and ecosystem services it provides. We seek wider collaboration with the scientific community and stakeholders toward a broader understanding of this poorly studied marine habitat.

  7. Identification, Characterization, and Diel Pattern of Expression of Canonical Clock Genes in Nephrops norvegicus (Crustacea: Decapoda) Eyestalk

    PubMed Central

    Sbragaglia, Valerio; Lamanna, Francesco; M. Mat, Audrey; Rotllant, Guiomar; Joly, Silvia; Ketmaier, Valerio; de la Iglesia, Horacio O.; Aguzzi, Jacopo

    2015-01-01

    The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h) governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12–12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions) obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50) was equal to 1796 (light) and 2055 (darkness). We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI) with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79%) and Macrobrachium rosenbergii (clock: 100%). We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster. PMID:26524198

  8. Susceptibility of juvenile European lobster Homarus gammarus to shrimp products infected with high and low doses of white spot syndrome virus.

    PubMed

    Bateman, K S; Munro, J; Uglow, B; Small, H J; Stentiford, G D

    2012-08-27

    White spot syndrome virus (WSSV) is the most important pathogen known to affect the sustainability and growth of the global penaeid shrimp farming industry. Although most commonly associated with penaeid shrimp farmed in warm waters, WSSV is also able to infect, cause disease in and kill a wide range of other decapod crustaceans, including lobsters, from temperate regions. In 2005, the European Union imported US$500 million worth of raw frozen or cooked frozen commodity products, much of which originated in regions positive for white spot disease (WSD). The presence of WSSV within the UK food market was verified by means of nested PCR performed on samples collected from a small-scale survey of supermarket commodity shrimp. Passage trials using inoculum derived from commodity shrimp from supermarkets and delivered by injection to specific pathogen-free Pacific white shrimp Litopenaeus vannamei led to rapid mortality and pathognomonic signs of WSD in the shrimp, demonstrating that WSSV present within commodity shrimp was viable. We exposed a representative European decapod crustacean, the European lobster Homarus gammarus, to a single feeding of WSSV-positive, supermarket-derived commodity shrimp, and to positive control material (L. vannamei infected with a high dose of WSSV). These trials demonstrated that lobsters fed positive control (high dose) frozen raw products succumbed to WSD and displayed pathognomonic signs associated with the disease as determined by means of histology and transmission electron microscopy. Lobsters fed WSSV-positive, supermarket-derived commodity shrimp (low dose) did not succumb to WSD (no mortality or pathognomonic signs of WSD) but demonstrated a low level or latent infection via PCR. This study confirms susceptibility of H. gammarus to WSSV via single feedings of previously frozen raw shrimp products obtained directly from supermarkets.

  9. A comparative study on mesozooplankton abundance and diversity between a protected and an unprotected coastal area of Andaman Islands.

    PubMed

    Pillai, Honey U K; Jayalakshmy, K V; Biju, A; Jayalakshmi, K J; Paulinose, V T; Devi, C B L; Nair, V R; Revichandran, C; Menon, N R; Achuthankutty, C T; Panampunnayil, S U

    2014-06-01

    The study was carried out to understand the variability in phytoplankton production (Chlorophyll a) and mesozooplankton diversity from two different shallow coastal regions of south Andaman viz. Port Blair Bay (PBB), the only real urban area among the islands and Mahatma Gandhi Marine National Park, a Marine Protected Area (MPA) at Wandoor. Seasonal sampling was carried out during the Northeast monsoon (NEM--November 2005), Intermonsoon (IM--April 2006), and Southwest monsoon (SWM--August 2006). Significant (P < 0.05) seasonal variation was observed in the environmental variables at both the regions. Higher average chlorophyll a (Chl. a) and mesozooplankton standing stock were observed at PBB compared to MPA, but the seasonal variation observed was marginal at both the study areas. Chl. a showed a steep increasing gradient from outer to the inner regions of the PBB. The number of zooplankton taxa recorded at both areas was quite similar, but marked differences were noticed in their relative contribution to the total abundance. Eventhough the Copepoda dominated at both the areas, the non-copepod taxa differed significantly between the regions. Dominance of carnivores such as siphonophores and chaetognaths were noticed at PBB, while filter feeders such as appendicularians and decapod larvae were more abundant at MPA. A total of 20 and 21 copepod families was recorded from PBB and MPA, respectively. Eleven species of chaetognaths were observed as common at both areas. Larval decapods were found to be predominant at MPA with 20 families; whereas, at PBB, only 12 families were recorded. In the light of the recent reports on various changes occurring in the coastal waters of the Andaman Islands, it is suspected that the difference in Chl. a as well as the mesozooplankton standing stock and community structure observed between the two study areas may be related to the various anthropogenic events influencing the coastal waters.

  10. Biorecovery of gold

    USGS Publications Warehouse

    Eisler, R.

    2003-01-01

    Recovery of ionic and metallic gold (Au) from a wide variety of solutions by selected species of bacteria, yeasts, fungi, algae, and higher plants is documented. Gold accumulations were up to 7.0 g/kg dry weight (DW) in various species of bacteria, 25.0 g/kg DW in freshwater algae, 84.0 g/kg DW in peat, and 100.0 g/kg DW in dried fungus mixed with keratinous material. Mechanisms of accumulation include oxidation, dissolution, reduction, leaching, and sorption. Uptake patterns are significantly modified by the physicochemical milieu. Crab exoskeletons accumulate up to 4.9 g Au/kg DW; however, gold accumulations in various tissues of living teleosts, decapod crustaceans, and bivalve molluscs are negligible.

  11. Extending the southern range of four shrimps (Crustacea: Decapoda: Stenopodidae, Hippolytidae and Alpheidae) in southwestern Atlantic (27o S) and confirming the presence of Mediterranean Stenopus spinosus Risso, 1827 in Brazil.

    PubMed

    Giraldes, Bruno Welter; Freire, Andrea Santarosa

    2015-06-12

    In subtidal zones, certain shrimp species with cryptic behaviour represent a gap in the biodiversity description in many places in the world. This study extends the southern limit of Stenopus hispidus (Oliver, 1811), Alpheus formosus Gibbes, 1850, Alpheus cf. packardii Kingsley, 1880 and Lysmata ankeri Rhyne & Lin, 2006 to Santa Catarina State-Brazil, 27oS. The results also confirm the new occurrence of Stenopus spinosus Risso, 1827 in Brazilian waters. All specimens were collected by scuba diving from rocky islands between 3 and 25 meters depth. We present for each species certain taxonomic features in colour images that will help to identify these decapods in situ in further monitoring programs.

  12. Feeding Behavior of a Crab According to Cheliped Number

    PubMed Central

    de Oliveira, Diogo Nunes; Christofoletti, Ronaldo Adriano; Barreto, Rodrigo Egydio

    2015-01-01

    Cheliped loss through autotomy is a common reflexive response in decapod crustaceans. Cheliped loss has direct and indirect effects on feeding behavior which can affect population dynamics and the role of species in the community. In this study, we assessed the impact of autotomy (0, 1, or 2 cheliped loss) on feeding behavior in the crab Pachygrapsus transversus, an omnivorous and abundant species that inhabits subtropical intertidal rocky shores along the South Atlantic Ocean. Autotomy altered crab feeding patterns and foraging behavior; however, the time spent foraging on animal prey or algae was not affected. These results indicate a plasticity of feeding behavior in P. transversus, allowing them to maintain feeding when injured. PMID:26682546

  13. First record of Naushonia sp. (Decapoda: Laomediidae) larva from the Equatorial Atlantic.

    PubMed

    De Albuquerque Lira, Simone Maria; De Santana, Claudeilton Severino; Schwamborn, Ralf

    2018-02-26

    The first zoeal-stage larva of a possibly new species of mud shrimp Naushonia (Decapoda: Gebiidea: Laomediidae) was described from plankton samples taken off the Fernando de Noronha Archipelago, being the first occurrence at the oceanic islands of the Equatorial Atlantic. Five zoea I larvae were obtained and dissected for observation of mouthparts. This zoea I of Naushonia sp. is well distinguished from the first larvae of N. portoricensis (Rathbun 1901) from the Caribbean and N. cangronoides (Kingsley 1897) from the Northwest Atlantic in terms of development and setation of appendages, and possibly belongs to a new, undescribed species. The present study widens the knowledge on tropical oceanic decapod larvae and provides detailed drawings and new photographic illustrations with extended depth of field of these organisms.

  14. Acute toxicity of cadmium to eight species of marine amphipod and isopod crustaceans from southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, J.S.; Reish, D.J.

    1987-11-01

    Amphipods and isopods are important components of the marine intertidal and subtidal fauna where they are found on or in the substrate or among spaces between larger, attached organisms. However, in spite of their abundance and importance, the use of these two endemic marine groups has been limited in comparison to decapods in marine toxicological research. The purpose of this study was to investigate the effect of a single metallic salt, CdCl/sub 2/, on six species of amphipods and two species of isopods under similar experimental conditions. Cadmium was selected as the toxicant in this comparative study since this metalmore » is an important constituent in municipal wastes discharged into southern California marine waters.« less

  15. Impact of dam-building on marine life

    NASA Astrophysics Data System (ADS)

    Pandian, T. J.

    1980-03-01

    Dam-building across naturally flowing rivers tends to decrease discharge of surplus water into the sea, reduce nutrient concentration in estuaries and coastal waters, and diminish plankton blooms as well as fish landings. Depletion of nutrients and organic matter along with reduced mud and silt deposition affect benthic life on the continental shelf. Reduced mud and silt deposition leads to coastal retreat. Dams, especially those constructed for hydro-electric purposes, hinder migration of fishes and decapods. Discharge from dams can create barriers at high or low flows, cause delays, disrupt normal behavioural routine and change the travel speed of migratory animals. Where all spawners of a given population are frequently kept away from the breeding site, the population faces extinction.

  16. Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form.

    PubMed Central

    Morrison, C L; Harvey, A W; Lavery, S; Tieu, K; Huang, Y; Cunningham, C W

    2002-01-01

    The repeated appearance of strikingly similar crab-like forms in independent decapod crustacean lineages represents a remarkable case of parallel evolution. Uncertainty surrounding the phylogenetic relationships among crab-like lineages has hampered evolutionary studies. As is often the case, aligned DNA sequences by themselves were unable to fully resolve these relationships. Four nested mitochondrial gene rearrangements--including one of the few reported movements of an arthropod protein-coding gene--are congruent with the DNA phylogeny and help to resolve a crucial node. A phylogenetic analysis of DNA sequences, and gene rearrangements, supported five independent origins of the crab-like form, and suggests that the evolution of the crab-like form may be irreversible. This result supports the utility of mitochondrial gene rearrangements in phylogenetic reconstruction. PMID:11886621

  17. Joint effects of salinity and the antidepressant sertraline on the estuarine decapod Carcinus maenas.

    PubMed

    Rodrigues, Aurélie P; Santos, Lúcia H M L M; Oliva-Teles, Maria Teresa; Delerue-Matos, Cristina; Guimarães, Laura

    2014-11-01

    Concurrent exposure of estuarine organisms to man-made and natural stressors has become a common occurrence. Numerous interactions of multiple stressors causing synergistic or antagonistic effects have been described. However, limited information is available on combined effects of emerging pharmaceuticals and natural stressors. This study investigated the joint effects of the antidepressant sertraline and salinity on Carcinus maenas. To improve knowledge about interactive effects and potential vulnerability, experiments were performed with organisms from two estuaries with differing histories of exposure to environmental contamination. Biomarkers related to mode of action of sertraline were employed to assess effects of environmentally realistic concentrations of sertraline at two salinity levels. Synergism and antagonism were identified for biomarkers of cholinergic neurotransmission, energy production, anti-oxidant defences and oxidative damage. Different interactions were found for the two study sites highlighting the need to account for differences in tolerance of local ecological receptors in risk evaluations. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Larvae of uncommon caridean decapods in the German Bight: Species composition, distribution and abundance

    NASA Astrophysics Data System (ADS)

    Wehrtmann, I. S.; Greve, W.

    1995-03-01

    Typically, the most abundant group of shrimp larvae in the German Bight is formed by representatives of the family Crangonidae. Larvae of the remaining species have been largely ignored, and only scarce information concerning their ecology is available. Thus, the purpose of the present study was to determine the species composition, distribution and abundance of noncrangonid shrimp larvae in the German Bight in July 1990, after the mildest winter of the century. The material is based upon plankton samples collected at 77 stations, covering the entire German Bight. Eight species were identified, as well as larvae of Palaemonidae and Processa-juveniles. Processa nouveli holthuisi (53.0%) and P. modica (31.3%) were predominant in the collection. The distribution of the two species was clearly separated: the main concentration of P. nouveli holthuisi (peak concentration of 1.94 larvae per m3) was confined to the northwest corner of the German Bight, while a majority of P. modica larvae (peak concentration of 0.54 larvae per m3) occurred at the southwesterly stations. The spatial distribution of Caridion steveni and Eualus occultus around Helgoland indicates the presence of an adult population at the only rocky island in the study area. Other taxa, such as larvae of Palaemonidae and juvenile Pandalina brevirostris were collected exclusively in estuarine habitats. Based upon both the results of the present study and comparable data, we conclude that developmental stages of ten non-crangonid species, as well as representatives of Palaemonidae, can be expected to occur in the plankton of the German Bight. The extremely mild temperatures of the preceding winter may have been, in part, responsible for the relatively high densities of some taxa encountered during our plankton survey. We assume that warm winter temperatures favour the immigration, reproduction and survival of cold-sensitive species.

  19. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes.

    PubMed

    Lin, Feng-Jiau; Liu, Yuan; Sha, Zhongli; Tsang, Ling Ming; Chu, Ka Hou; Chan, Tin-Yam; Liu, Ruiyu; Cui, Zhaoxia

    2012-11-16

    The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further

  20. Tapping the Power of Crustacean Transcriptomics to Address Grand Challenges in Comparative Biology: An Introduction to the Symposium.

    PubMed

    Mykles, Donald L; Burnett, Karen G; Durica, David S; Stillman, Jonathon H

    2016-12-01

    Crustaceans, and decapods in particular (i.e., crabs, shrimp, and lobsters), are a diverse and ecologically and commercially important group of organisms. Understanding responses to abiotic and biotic factors is critical for developing best practices in aquaculture and assessing the effects of changing environments on the biology of these important animals. A relatively small number of decapod crustacean species have been intensively studied at the molecular level; the availability, experimental tractability, and economic relevance factor into the selection of a particular species as a model. Transcriptomics, using high-throughput next generation sequencing (NGS, coupled with RNA sequencing or RNA-seq) is revolutionizing crustacean biology. The 11 symposium papers in this volume illustrate how RNA-seq is being used to study stress response, molting and limb regeneration, immunity and disease, reproduction and development, neurobiology, and ecology and evolution. This symposium occurred on the 10th anniversary of the symposium, "Genomic and Proteomic Approaches to Crustacean Biology", held at the Society for Integrative and Comparative Biology 2006 meeting. Two participants in the 2006 symposium, the late Paul Gross and David Towle, were recognized as leaders who pioneered the use of molecular techniques that would ultimately foster the transcriptomics research reviewed in this volume. RNA-seq is a powerful tool for hypothesis-driven research, as well as an engine for discovery. It has eclipsed the technologies available in 2006, such as microarrays, expressed sequence tags, and subtractive hybridization screening, as the millions of "reads" from NGS enable researchers to de novo assemble a comprehensive transcriptome without a complete genome sequence. The symposium series concludes with a policy paper that gives an overview of the resources available and makes recommendations for developing better tools for functional annotation and pathway and network analysis in

  1. Material properties of zooplankton and nekton from the California current

    NASA Astrophysics Data System (ADS)

    Becker, Kaylyn

    This study measured the material properties of zooplankton, Pacific hake (Merluccius productus), Humboldt squid (Dosidicus gigas), and two species of myctophids (Symbolophorus californiensis and Diaphus theta) collected from the California Current ecosystem. The density contrast (g) was measured for euphausiids, decapods (Sergestes similis), amphipods (Primno macropa, Phronima sp., and Hyperiid spp.), siphonophore bracts, chaetognaths, larval fish, crab megalopae, larval squid, and medusae. Morphometric data (length, width, and height) were collected for these taxa. Density contrasts varied within and between zooplankton taxa. The mean and standard deviation for euphausiid density contrast were 1.059 +/- 0.009. Relationships between zooplankton density contrast and morphometric measurements, geographic location, and environmental conditions were investigated. Site had a significant effect on euphausiid density contrast. Density contrasts of euphausiids collected in the same geographic area approximately 4-10 days apart were significantly higher (p < 0.001). Sound speed contrast (h) was measured for euphausiids and pelagic decapods (S. similis) and it varied between taxa. The mean and standard deviation for euphausiid sound speed were 1.019 +/- 0.009. Euphausiid mass was calculated from density measurements and volume, and a relationship between euphausiid mass and length was produced. We determined that euphausiid from volumes could be accurately estimated two dimensional measurements of animal body shape, and that biomass (or biovolume) could be accurately calculated from digital photographs of animals. Density contrast (g) was measured for zooplankton, pieces of hake flesh, myctophid flesh, and of the following Humboldt squid body parts: mantle, arms, tentacle, braincase, eyes, pen, and beak. The density contrasts varied within and between fish taxa, as well as among squid body parts. Effects of animal length and environmental conditions on nekton density

  2. The ‘Ventral Organs’ of Pycnogonida (Arthropoda) Are Neurogenic Niches of Late Embryonic and Post-Embryonic Nervous System Development

    PubMed Central

    Brenneis, Georg; Scholtz, Gerhard

    2014-01-01

    Early neurogenesis in arthropods has been in the focus of numerous studies, its cellular basis, spatio-temporal dynamics and underlying genetic network being by now comparably well characterized for representatives of chelicerates, myriapods, hexapods and crustaceans. By contrast, neurogenesis during late embryonic and/or post-embryonic development has received less attention, especially in myriapods and chelicerates. Here, we apply (i) immunolabeling, (ii) histology and (iii) scanning electron microscopy to study post-embryonic ventral nerve cord development in Pseudopallene sp., a representative of the sea spiders (Pycnogonida), the presumable sister group of the remaining chelicerates. During early post-embryonic development, large neural stem cells give rise to additional ganglion cell material in segmentally paired invaginations in the ventral ectoderm. These ectodermal cell regions – traditionally designated as ‘ventral organs’ – detach from the surface into the interior and persist as apical cell clusters on the ventral ganglion side. Each cluster is a post-embryonic neurogenic niche that features a tiny central cavity and initially still houses larger neural stem cells. The cluster stays connected to the underlying ganglionic somata cortex via an anterior and a posterior cell stream. Cell proliferation remains restricted to the cluster and streams, and migration of newly produced cells along the streams seems to account for increasing ganglion cell numbers in the cortex. The pycnogonid cluster-stream-systems show striking similarities to the life-long neurogenic system of decapod crustaceans, and due to their close vicinity to glomerulus-like neuropils, we consider their possible involvement in post-embryonic (perhaps even adult) replenishment of olfactory neurons – as in decapods. An instance of a potentially similar post-embryonic/adult neurogenic system in the arthropod outgroup Onychophora is discussed. Additionally, we document two transient

  3. Identifying zooplankton community changes between shallow and upper-mesophotic reefs on the Mesoamerican Barrier Reef, Caribbean.

    PubMed

    Andradi-Brown, Dominic A; Head, Catherine E I; Exton, Dan A; Hunt, Christina L; Hendrix, Alicia; Gress, Erika; Rogers, Alex D

    2017-01-01

    Mesophotic coral ecosystems (MCEs, reefs 30-150 m) are understudied, yet the limited research conducted has been biased towards large sessile taxa, such as scleractinian corals and sponges, or mobile taxa such as fishes. Here we investigate zooplankton communities on shallow reefs and MCEs around Utila on the southern Mesoamerican Barrier Reef using planktonic light traps. Zooplankton samples were sorted into broad taxonomic groups. Our results indicate similar taxonomic zooplankton richness and overall biomass between shallow reefs and MCEs. However, the abundance of larger bodied (>2 mm) zooplanktonic groups, including decapod crab zoea, mysid shrimps and peracarid crustaceans, was higher on MCEs than shallow reefs. Our findings highlight the importance of considering zooplankton when identifying broader reef community shifts across the shallow reef to MCE depth gradient.

  4. Echinobothrium chisholmae n. sp. (Cestoda, Diphyllidea) from the giant shovel-nose ray Rhinobatos typus from Australia, with observations on the ultrastructure of its scolex musculature and peduncular spines.

    PubMed

    Jones, M K; Beveridge, I

    2001-09-01

    Echinobothrium chisholmae n. sp. is described from Rhinobatos typus Bennett (Rhinobatidae), collected from Heron Island, Great Barrier Reef, Australia. E. chisholmae differs from all congeners in possessing 11 hooks in each dorsal and ventral group on the rostellum and groups of 3-6 hooklets on either side of the hooks. A single metacestode of E. chisholmae was collected from the decapod crustacean Penaeus longistylus Kubo. Yellow pigmentation of the cephalic peduncle in immature adults is caused by the accumulation of large vesicles in the distal cytoplasm of the tegument. The vesicles probably provide materials for spine formation. Ultrastructural examination of the rostellar musculature revealed that the muscles are stratified (striated-like), consisting of a periodic repetition of sarcomeres separated by perforated Z-like lines that are oblique to the long axes of the myofilaments.

  5. Malaclemys terrapin rhizophorarum (mangrove diamond-backed terrapin)

    USGS Publications Warehouse

    Denton, Mathew J.; Hart, Kristen M.; Oelinik, Anton; Wood, Roger; Baldwin, John N.

    2015-01-01

    MALACLEMYS TERRAPIN RHIZOPHORARUM (Mangrove Diamond-backed Terrapin). DIET. Malaclemys terrapin rhizophorarum, one of seven subspecies of M. terrapin, inhabits subtropical mangrove habitats in South Florida, USA. In temperate climates M. terrapin is largely carnivorous, feeding primarily on gastropods, bivalves, and decapod crustaceans (Tucker et. al. 1995. Herpetologica 51:167–181; Butler et. al. 2012. Chelon. Conserv. Biol. 11:124–128). In addition to its preferred prey, M. t. rhizophorarum has also been reported to consume barnacles, fish, and vegetation (Tucker et. al. 1995, op. cit.; Butler et. al. 2012, op. cit.; Tulipani 2013. Ph.D. Dissertation. The College of William and Mary, Williamsburg, Virginia. 224 pp.). Herein, we report observations regarding the diet of M. t. rhizophorarum from the southernmost extent of their range in the Florida Keys, USA.

  6. Megafaunal responses to strong oxygen gradients on the Pakistan margin of the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Murty, Sarah J.; Bett, Brian J.; Gooday, Andrew J.

    2009-03-01

    The Arabian Sea oxygen minimum zone (OMZ), which intersects the continental margin between approximately 100 and 1200 m, is one of the world's largest deep-water oxygen-deficient water masses. We analysed megafaunal organisms seen in images obtained using a wide-angle survey photographic (WASP) system at nine sites (140-1850 m water depth) across the OMZ on the Pakistan Margin during the late-monsoon period (August-September 2003). The visible megafauna comprised: (1) the megabenthos sensu strictu ( s.s.), (2) large polychaetes and (3) the benthopelagic megafauna (fish, natant decapods and octopods). Large protozoans, mainly the foraminiferan Pelosina sp., were counted but not included in the megafauna. The megabenthos s.s. were rare at the seasonally hypoxic 140-m site (O 2=0.11 ml l -1), entirely absent in the OMZ core and most of the lower transition zone (300-900 m; O 2=0.12-0.15 ml l -1), but peaked in abundance (27.94 indiv. m -2) at 1000 m (O 2=0.16 ml l -1). Densities were much lower at 1100 and 1200 m (0.52-0.69 indiv. m -2; O 2=0.25-0.38 ml l -1), and declined to minimal values (0.01 indiv. m -2) at 1850 m (O 2=1.68 ml l -1). There was no correlation with depth, dissolved-oxygen concentration or sediment organic chemistry variables (%C org, %Total N, C:N, δ13C, δ15N). Pelosina sp. was the only strictly benthic organism visible at 400 and 700 m. Fish and natant decapods were fairly common at 300 m, and fish were the only metazoans seen in photographs from 700 m. Large polychaetes, almost certainly Linopherus sp., were very abundant in photographs from 900 m, where megabenthos s.s. were absent, and somewhat less abundant at 1000 m. Suspension-feeding cnidarians and tunicates were abundant at 1100 and 1200 m, respectively. The number of megabenthos s.s. species visible at each site ranged from six (1000 and 1850 m) to 11 (1100 and 1200 m). Diversity ( H'(log e)) was the lowest at 1000 and 1850 m and the highest at 1100 m, with intermediate values at 140

  7. Odors influencing foraging behavior of the California spiny lobster, Panulirus interruptus, and other decapod crustacea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmer-Faust, R.K.; Case, J.F.

    1982-01-01

    Trapping experiments were conducted in the More Mesa coastal area of Santa Barbara, California, 4 km east of the U.C. Santa Barbara campus. Live intact and injured prey and excised tissues were placed in traps, in containers allowing odor release but preventing contacts with entering animals. Individuals of six prey species failed to attract lobsters when alive and intact, but some became attractive once injured. Excised tissues were the most effective baits. Abalone and mackerel muscle were attractive to lobsters but relatively nonattractive to crabs, while angel shark muscle was attractive to crabs but not to lobsters. Shrimp cephalothoraces weremore » repellant to lobsters. Naturally occurring attractant and repellent tissues are thus identified and chemosensory abilities of lobsters and sympatric crabs are demonstrated to differ. Abalone muscle increased in attractivity following 1-2 days field exposure. Molecular weights of stimulants released by both weathered and fresh abalone were < 10,000 daltons with evidence suggesting that the 1000-10,000 dalton fraction may contribute significantly to attraction. Concentrations of total primary amines released from abalone muscle failed to differ from background levels, following an initial three (0-3h) period. Primary amines thus appear not to contribute directly to captures of lobsters, since animals were usually caught greater than or equal to 7 h after baits were positioned. Amino acids were the dominant contributors to present measurements of total primary amines, suggesting that these molecules may not direct lobster foraging behavior in the present experiments. 41 references, 4 figures, 8 tables.« less

  8. Food of freshwater drum in western Lake Erie

    USGS Publications Warehouse

    Bur, Michael T.

    1982-01-01

    The abundance of freshwater drum (Aplodinotus grunniens) suggests they play an important role in the Lake Erie ecosystem. Our analysis of freshwater drum digestive tracts and macrobenthic samples collected from western Lake Erie indicates that drum were selective feeders. Planktonic cladocerans and larval midges (Chironomidae) were the primary prey organisms eaten by drum. Young-of-the-year fed mostly on cladocerans, while yearling and older drum ate both cladocerans and midge larvae. Decapods, pelecypods, and fish were found only in the digestive tracts of drum longer than 250 mm. While the most abundant organisms in benthic samples were cladocerans (ephippial) and oligochaetes (89.5% by number), they constituted less than 1% of the diet. An evaluation of food selectivity, using Ivlev's index of electivity for benthic organisms, indicated that adult drum preferred midges to any other benthic food.

  9. North Sea ecosystem change from swimming crabs to seagulls

    PubMed Central

    Luczak, C.; Beaugrand, G.; Lindley, J. A.; Dewarumez, J-M.; Dubois, P. J.; Kirby, R. R.

    2012-01-01

    A recent increase in sea temperature has established a new ecosystem dynamic regime in the North Sea. Climate-induced changes in decapods have played an important role. Here, we reveal a coincident increase in the abundance of swimming crabs and lesser black-backed gull colonies in the North Sea, both in time and in space. Swimming crabs are an important food source for lesser black-backed gulls during the breeding season. Inhabiting the land, but feeding mainly at sea, lesser black-backed gulls provide a link between marine and terrestrial ecosystems, since the bottom-up influence of allochthonous nutrient input from seabirds to coastal soils can structure the terrestrial food web. We, therefore, suggest that climate-driven changes in trophic interactions in the marine food web may also have ensuing ramifications for the coastal ecology of the North Sea. PMID:22764111

  10. North Sea ecosystem change from swimming crabs to seagulls.

    PubMed

    Luczak, C; Beaugrand, G; Lindley, J A; Dewarumez, J-M; Dubois, P J; Kirby, R R

    2012-10-23

    A recent increase in sea temperature has established a new ecosystem dynamic regime in the North Sea. Climate-induced changes in decapods have played an important role. Here, we reveal a coincident increase in the abundance of swimming crabs and lesser black-backed gull colonies in the North Sea, both in time and in space. Swimming crabs are an important food source for lesser black-backed gulls during the breeding season. Inhabiting the land, but feeding mainly at sea, lesser black-backed gulls provide a link between marine and terrestrial ecosystems, since the bottom-up influence of allochthonous nutrient input from seabirds to coastal soils can structure the terrestrial food web. We, therefore, suggest that climate-driven changes in trophic interactions in the marine food web may also have ensuing ramifications for the coastal ecology of the North Sea.

  11. Sex identification in female crayfish is bimodal

    NASA Astrophysics Data System (ADS)

    Aquiloni, Laura; Massolo, Alessandro; Gherardi, Francesca

    2009-01-01

    Sex identification has been studied in several species of crustacean decapods but only seldom was the role of multimodality investigated in a systematic fashion. Here, we analyse the effect of single/combined chemical and visual stimuli on the ability of the crayfish Procambarus clarkii to identify the sex of a conspecific during mating interactions. Our results show that crayfish respond to the offered stimuli depending on their sex. While males rely on olfaction alone for sex identification, females require the combination of olfaction and vision to do so. In the latter, chemical and visual stimuli act as non-redundant signal components that possibly enhance the female ability to discriminate potential mates in the crowded social context experienced during mating period. This is one of the few clear examples in invertebrates of non-redundancy in a bimodal communication system.

  12. Molecular evidence for sequential colonization and taxon cycling in freshwater decapod shrimps on a Caribbean island

    Treesearch

    Benjamin D. Cook; Catherine M. Pringle; Jane M. Hughes

    2008-01-01

    Taxon cycling, i.e. sequential phases of expansions and contractions in species’ distributions associated with ecological or morphological shifts, are postulated to characterize dynamic biogeographic histories in various island faunas. The Caribbean freshwater shrimp assemblage is mostly widespread and sympatric throughout the region, although one species (Atyidae:...

  13. HORMONAL PROCESSES IN DECAPOD CRUSTACEAN LARVAE AS BIOMARKERS OF ENDOCRINE DISRUPTING CHEMICALS IN THE MARINE ENVIRONMENT

    EPA Science Inventory

    Knowledge of endocrine control of the complex larval developmental processes in insects (metamorphosis) has led to the introduction of insect hormones and their analogues as insecticides known as insect growth regulators (IGRs) with the largest group being juvenile hormone analog...

  14. Changes in deep-sea fish and crustacean communities at 1000-2200 m in the Western Mediterranean after 25 years: Relation to hydro-climatic conditions

    NASA Astrophysics Data System (ADS)

    Cartes, J. E.; Maynou, F.; Fanelli, E.; López-Pérez, C.; Papiol, V.

    2015-03-01

    Long-term changes in the biomass, diversity and composition of deep-living fish and decapods from the Balearic Basin (western Mediterranean) have been compared between two periods, 1985-1992 vs. 2007-2012, based on 106 bottom trawls performed at 1000-2250 m. Relationships have been identified between the changes in community composition and the hydroclimatic conditions (e.g. NAO, temperature, salinity and dissolved O2) of the area. We found a generalized deepening of middle-slope communities (950-1250 m), especially among decapods, which is suggested (from GLM results) to have been a response to the long-term increase in salinity of the Levantine Intermediate Waters (LIW), located above the level sampled to ca. 700 m. Even more pronounced was the shallowing of all of the lower slope species (1600-2250 m), accompanied by a significant decrease of biomass from 1985-1992 to 2007-2012. This last tendency would be done to a combination of factors: long-term decrease of O2 in the bottom-boundary layer, greater degradation of POM arriving on the bottom due to temperature increase in the Western Mediterranean Deep Waters (WMDW) and probably a decrease of Chl a at the surface and, thus, of production. The influence of climatic oscillations (NAO) on differences found between 1985-1992 and 2007-2012 seems secondary, likely because the NAO did not show significant differences between the two periods. Some plankton-feeding species showed an increase of density during high/positive NAO (e.g. Alepocephalus rostratus), while some benthos feeders increased during low/negative NAO (e.g. Aristeus antennatus, mainly juveniles). The increase of rainfall and advective fluxes under low/negative NAO (i.e., in 2007-2012) may increase the formation of the nepheloid layer identified over 1200-1400 m in the area (Cartes et al., 2013a), linked to zooplankton aggregation in that depth range. Greater food availability could explain the generalized migration by both middle and lower slope species

  15. DIRS1-like retrotransposons are widely distributed among Decapoda and are particularly present in hydrothermal vent organisms

    PubMed Central

    Piednoël, Mathieu; Bonnivard, Eric

    2009-01-01

    Background Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. Considering their mutational abilities, TEs can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. DIRS1-like retrotransposons are a particular group of retrotransposons according to their mode of transposition that implies a tyrosine recombinase. To date, they have been described in a restricted number of species in comparison with the LTR retrotransposons. In this paper, we determine the distribution of DIRS1-like elements among 25 decapod species, 10 of them living in hydrothermal vents that correspond to particularly unstable environments. Results Using PCR approaches, we have identified 15 new DIRS1-like families in 15 diverse decapod species (shrimps, lobsters, crabs and galatheid crabs). Hydrothermal organisms show a particularly great diversity of DIRS1-like elements with 5 families characterized among Alvinocarididae shrimps and 3 in the galatheid crab Munidopsis recta. Phylogenic analyses show that these elements are divergent toward the DIRS1-like families previously described in other crustaceans and arthropods and form a new clade called AlDIRS1. At larger scale, the distribution of DIRS1-like retrotransposons appears more or less patchy depending on the taxa considered. Indeed, a scattered distribution can be observed in the infraorder Brachyura whereas all the species tested in infraorders Caridea and Astacidea harbor some DIRS1-like elements. Conclusion Our results lead to nearly double both the number of DIRS1-like elements described to date, and the number of species known to harbor these ones. In this study, we provide the first degenerate primers designed to look specifically for DIRS1-like retrotransposons. They allowed for revealing for

  16. DIRS1-like retrotransposons are widely distributed among Decapoda and are particularly present in hydrothermal vent organisms.

    PubMed

    Piednoël, Mathieu; Bonnivard, Eric

    2009-04-28

    Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. Considering their mutational abilities, TEs can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. DIRS1-like retrotransposons are a particular group of retrotransposons according to their mode of transposition that implies a tyrosine recombinase. To date, they have been described in a restricted number of species in comparison with the LTR retrotransposons. In this paper, we determine the distribution of DIRS1-like elements among 25 decapod species, 10 of them living in hydrothermal vents that correspond to particularly unstable environments. Using PCR approaches, we have identified 15 new DIRS1-like families in 15 diverse decapod species (shrimps, lobsters, crabs and galatheid crabs). Hydrothermal organisms show a particularly great diversity of DIRS1-like elements with 5 families characterized among Alvinocarididae shrimps and 3 in the galatheid crab Munidopsis recta. Phylogenic analyses show that these elements are divergent toward the DIRS1-like families previously described in other crustaceans and arthropods and form a new clade called AlDIRS1. At larger scale, the distribution of DIRS1-like retrotransposons appears more or less patchy depending on the taxa considered. Indeed, a scattered distribution can be observed in the infraorder Brachyura whereas all the species tested in infraorders Caridea and Astacidea harbor some DIRS1-like elements. Our results lead to nearly double both the number of DIRS1-like elements described to date, and the number of species known to harbor these ones. In this study, we provide the first degenerate primers designed to look specifically for DIRS1-like retrotransposons. They allowed for revealing for the first time a widespread

  17. On the sighted ancestry of blindness - exceptionally preserved eyes of Mesozoic polychelidan lobsters.

    PubMed

    Audo, Denis; Haug, Joachim T; Haug, Carolin; Charbonnier, Sylvain; Schweigert, Günter; Müller, Carsten H G; Harzsch, Steffen

    2016-01-01

    Modern representatives of Polychelida (Polychelidae) are considered to be entirely blind and have largely reduced eyes, possibly as an adaptation to deep-sea environments. Fossil species of Polychelida, however, appear to have well-developed compound eyes preserved as anterior bulges with distinct sculpturation. We documented the shapes and sizes of eyes and ommatidia based upon exceptionally preserved fossil polychelidans from Binton (Hettangian, United-Kingdom), Osteno (Sinemurian, Italy), Posidonia Shale (Toarcian, Germany), La Voulte-sur-Rhône (Callovian, France), and Solnhofen-type plattenkalks (Kimmeridgian-Tithonian, Germany). For purposes of comparison, sizes of the eyes of several other polychelidans without preserved ommatidia were documented. Sizes of ommatidia and eyes were statistically compared against carapace length, taxonomic group, and outcrop. Nine species possess eyes with square facets; Rosenfeldia oppeli (Woodward, 1866), however, displays hexagonal facets. The sizes of eyes and ommatidia are a function of carapace length. No significant differences were discerned between polychelidans from different outcrops; Eryonidae, however, have significantly smaller eyes than other groups. Fossil eyes bearing square facets are similar to the reflective superposition eyes found in many extant decapods. As such, they are the earliest example of superposition eyes. As reflective superposition is considered plesiomorphic for Reptantia, this optic type was probably retained in Polychelida. The two smallest specimens, a Palaeopentacheles roettenbacheri (Münster, 1839) and a Hellerocaris falloti (Van Straelen, 1923), are interpreted as juveniles. Both possess square-shaped facets, a typical post-larval feature. The eye morphology of these small specimens, which are far smaller than many extant eryoneicus larvae, suggests that Jurassic polychelidans did not develop via giant eryoneicus larvae. In contrast, another species we examined, Rosenfeldia oppeli

  18. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes

    PubMed Central

    2012-01-01

    Background The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. Results We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Conclusions Phylogenetic analyses on the mt genome sequences and the

  19. Prey Capture, Ingestion, and Digestion Dynamics of Octopus vulgaris Paralarvae Fed Live Zooplankton

    PubMed Central

    Nande, Manuel; Presa, Pablo; Roura, Álvaro; Andrews, Paul L. R.; Pérez, Montse

    2017-01-01

    Octopus vulgaris is a species of great interest in research areas such as neurobiology, ethology, and ecology but also a candidate species for aquaculture as a food resource and for alleviating the fishing pressure on its wild populations. This study aimed to characterize the predatory behavior of O. vulgaris paralarvae and to quantify their digestive activity. Those processes were affordable using the video-recording analysis of 3 days post-hatching (dph), mantle-transparent paralarvae feeding on 18 types of live zooplanktonic prey. We show for the first time in a live cephalopod that octopus paralarvae attack, immobilize, drill, and ingest live cladocerans and copepods with 100% efficiency, which decreases dramatically to 60% on decapod prey (Pisidia longicornis). The majority (85%) of successful attacks targeted the prey cephalothorax while unsuccessful attacks either targeted the dorsal cephalothorax or involved prey defensive strategies (e.g., juvenile crab megalopae) or prey protected by thick carapaces (e.g., gammaridae amphipods). After immobilization, the beak, the buccal mass and the radula were involved in exoskeleton penetration and content ingestion. Ingestion time of prey content was rapid for copepods and cladocerans (73.13 ± 23.34 s) but much slower for decapod zoeae and euphausiids (152.49 ± 29.40 s). Total contact time with prey was always <5 min. Contrary to the conventional view of crop filling dynamics observed in adult O. vulgaris, food accumulated first in the stomach of paralarvae and the crop filled after the stomach volume plateaued. Peristaltic crop contractions (~18/min) moved food into the stomach (contractions ~30/min) from where it passed to the caecum. Pigmented food particles were seen to enter the digestive gland, 312 ± 32 s after the crop reached its maximum volume. Digestive tract contents passed into the terminal intestine by peristalsis (contraction frequency ~50/min) and defaecation was accompanied by an increased frequency

  20. Novel transcriptome assembly and improved annotation of the whiteleg shrimp (Litopenaeus vannamei), a dominant crustacean in global seafood mariculture.

    PubMed

    Ghaffari, Noushin; Sanchez-Flores, Alejandro; Doan, Ryan; Garcia-Orozco, Karina D; Chen, Patricia L; Ochoa-Leyva, Adrian; Lopez-Zavala, Alonso A; Carrasco, J Salvador; Hong, Chris; Brieba, Luis G; Rudiño-Piñera, Enrique; Blood, Philip D; Sawyer, Jason E; Johnson, Charles D; Dindot, Scott V; Sotelo-Mundo, Rogerio R; Criscitiello, Michael F

    2014-11-25

    We present a new transcriptome assembly of the Pacific whiteleg shrimp (Litopenaeus vannamei), the species most farmed for human consumption. Its functional annotation, a substantial improvement over previous ones, is provided freely. RNA-Seq with Illumina HiSeq technology was used to analyze samples extracted from shrimp abdominal muscle, hepatopancreas, gills and pleopods. We used the Trinity and Trinotate software suites for transcriptome assembly and annotation, respectively. The quality of this assembly and the affiliated targeted homology searches greatly enrich the curated transcripts currently available in public databases for this species. Comparison with the model arthropod Daphnia allows some insights into defining characteristics of decapod crustaceans. This large-scale gene discovery gives the broadest depth yet to the annotated transcriptome of this important species and should be of value to ongoing genomics and immunogenetic resistance studies in this shrimp of paramount global economic importance.

  1. Cognitive ability and sentience: which aquatic animals should be protected?

    PubMed

    Broom, D M

    2007-05-04

    It is of scientific and practical interest to consider the levels of cognitive ability in animals, which animals are sentient, which animals have feelings such as pain and which animals should be protected. A sentient being is one that has some ability to evaluate the actions of others in relation to itself and third parties, to remember some of its own actions and their consequences, to assess risk, to have some feelings and to have some degree of awareness. These abilities can be taken into account when evaluating welfare. There is evidence from some species of fish, cephalopods and decapod crustaceans of substantial perceptual ability, pain and adrenal systems, emotional responses, long- and short-term memory, complex cognition, individual differences, deception, tool use, and social learning. The case for protecting these animals would appear to be substantial. A range of causes of poor welfare in farmed aquatic animals is summarised.

  2. Antimicrobial proteins: From old proteins, new tricks.

    PubMed

    Smith, Valerie J; Dyrynda, Elisabeth A

    2015-12-01

    This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. The review further considers proteins or protein fragments from crustaceans that have antimicrobial properties but are more usually associated with other biological functions, or are derived from such proteins. It discusses how these unconventional AMPs might be generated at, or delivered to, sites of infection and how they might contribute to crustacean host defence in vivo. It also highlights recent work that is starting to reveal the extent of multi-functionality displayed by some decapod AMPs, particularly their participation in other aspects of host protection. Examples of such activities include proteinase inhibition, phagocytosis, antiviral activity and haematopoiesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Understanding the effects of electromagnetic field emissions from Marine Renewable Energy Devices (MREDs) on the commercially important edible crab, Cancer pagurus (L.).

    PubMed

    Scott, Kevin; Harsanyi, Petra; Lyndon, Alastair R

    2018-06-01

    The effects of simulated electromagnetic fields (EMF), emitted from sub-sea power cables, on the commercially important decapod, edible crab (Cancer pagurus), were assessed. Stress related parameters were measured (l-Lactate, d-Glucose, Haemocyanin and respiration rate) along with behavioural and response parameters (antennular flicking, activity level, attraction/avoidance, shelter preference and time spent resting/roaming) during 24-h periods. Exposure to EMF had no effect on Haemocyanin concentrations, respiration rate, activity level or antennular flicking rate. EMF exposure significantly disrupted haemolymph l-Lactate and d-Glucose natural circadian rhythms. Crabs showed a clear attraction to EMF exposed shelter (69%) compared to control shelter (9%) and significantly reduced their time spent roaming by 21%. Consequently, EMF emitted from Marine Renewable Energy Devices (MREDs) will likely affect edible crabs both behaviourally and physiologically, suggesting that the impact of EMF on crustaceans must be considered when planning MREDs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. External morphology of eyes and Nebenaugen of caridean decapods–ecological and systematic considerations

    PubMed Central

    Dobson, Nicola; De Grave, Sammy

    2015-01-01

    Most caridean decapods have compound eyes of the reflecting superposition kind, and additionally some possess an accessory eye-like organ of unknown function, also referred to as the nebenauge. We examined 308 caridean genera to assess the general morphology of the eye, rostrum length, eye diameter and the presence or absence and, when present, the diameter of the nebenauge. We have attempted to relate these data to ecological and taxonomic considerations. We consider there to be 6 distinct eye types based on the margin between the eyestalk and cornea. The presence of nebenaugen appears to be generally linked to an active lifestyle, as evidenced by the fact that species that have nebenaugen tend to have larger eyes and are more likely to have a distinct rostrum. We suggest that the inconsistencies in its presence/absence under both systematic and ecological lenses may indicate that when present it has various roles relating to behavioural and physiological rhythms. PMID:26312177

  5. Visual observations of the vertical distribution of plankton throughout the water column above Broken Spur vent field, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Vereshchaka, A. L.; Vinogradov, G. M.

    1999-09-01

    Visual observations were made in September 1997 during the 39 cruise of R/V "Akademik Mstislav Keldysh" with 2 deep-sea manned submersibles "Mir" aboard. During 4 dives the following plankton countings were made: 3 vertical throughout the water column during the day, 2 vertical in the upper 1000 m at night, and 1 oblique in the plume area during the day. Biomass profiles are represented for each dive for all abundant animal groups: copepods, euphausiids+decapods+mysids, chaetognaths, medusae, ctenophores, siphonophores, cyclothones, myctophides, radiolarians, and the total zooplankton. Plankton distribution shows 2 aggregations, one within the main pycnocline and the other near the plume; Gelatinous animals and radiolarians dominate in both aggregations by biomass and make a significant contribution to the plankton biomass throughout the water column. Oblique counting indicates the presence of aggregations of animals near the upper and lower borders of the plume and biomass depletion within the plume core.

  6. Floating marine litter as a raft for drifting voyages for Planes minutus (Crustacea: Decapoda: Grapsidae) and Liocarcinus navigator (Crustacea: Decapoda: Polybiidae).

    PubMed

    Tutman, P; Kapiris, K; Kirinčić, M; Pallaoro, A

    2017-07-15

    The Columbus crab Planes minutus and Arch-fronted swimming crab Liocarcinus navigator, within their distribution ranges in the Mediterranean, were found rafted on plastic macro-litter floating on the open south Adriatic. While P. minutus was recorded from inanimate flotsam outside of the Mediterranean, L. navigator is herein reported for the first time on floating marine litter. The role of floating litter as habitat or as a dispersal agent for marine invertebrates has received quite attention however, records of decapod crabs drifting on litter has been relatively sparse. Our results suggests that vast quantities of floating debris, comprised primarily of non-biodegradable plastic polymers, probably will augment natural floating substrates in the marine environment, potentially facilitating the spread of invasive species. The dispersion of rafting crabs through floating debris should be investigated given the high potential ecological risk of invasion by exotic species due to the increase in waste production (ecological risk assessment). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Testing the effect of habitat structure and complexity on nekton assemblages using experimental oyster reefs

    USGS Publications Warehouse

    Humphries, Austin T.; LaPeyre, Megan K.; Kimball, Matthew E.; Rozas, Lawrence P.

    2011-01-01

    Structurally complex habitats are often associated with more diverse and abundant species assemblages in both aquatic and terrestrial ecosystems. Biogenic reefs formed by the eastern oyster (Crassostrea virginica) are complex in nature and are recognized for their potential habitat value in estuarine systems along the US Atlantic and Gulf of Mexico coasts. Few studies, however, have examined the response of nekton to structural complexity within oyster reefs. We used a quantitative sampling technique to examine how the presence and complexity of experimental oyster reefs influence the abundance, biomass, and distribution of nekton by sampling reefs 4 months and 16 months post-construction. Experimental oyster reefs were colonized immediately by resident fishes and decapod crustaceans, and reefs supported a distinct nekton assemblage compared to mud-bottom habitat. Neither increased reef complexity, nor age of the experimental reef resulted in further changes in nekton assemblages or increases in nekton abundance or diversity. The presence of oyster reefs per se was the most important factor determining nekton usage.

  8. Disease effects on lobster fisheries, ecology, and culture: overview of DAO Special 6.

    PubMed

    Behringer, Donald C; Butler, Mark J; Stentiford, Grant D

    2012-08-27

    Lobsters are prized by commercial and recreational fishermen worldwide, and their populations are therefore buffeted by fishery practices. But lobsters also remain integral members of their benthic communities where predator-prey relationships, competitive interactions, and host-pathogen dynamics push and pull at their population dynamics. Although lobsters have few reported pathogens and parasites relative to other decapod crustaceans, the rise of diseases with consequences for lobster fisheries and aquaculture has spotlighted the importance of disease for lobster biology, population dynamics and ecology. Researchers, managers, and fishers thus increasingly recognize the need to understand lobster pathogens and parasites so they can be managed proactively and their impacts minimized where possible. At the 2011 International Conference and Workshop on Lobster Biology and Management a special session on lobster diseases was convened and this special issue of Diseases of Aquatic Organisms highlights those proceedings with a suite of articles focused on diseases discussed during that session.

  9. Food web structure of deep-sea macrozooplankton and micronekton off the Catalan slope: Insight from stable isotopes

    NASA Astrophysics Data System (ADS)

    Fanelli, E.; Cartes, J. E.; Papiol, V.

    2011-07-01

    Food web structure of the macroplankton/micronekton fauna on the continental slope of the Catalan Sea (Balearic basin, NW Mediterranean) was investigated using carbon and nitrogen stable isotope tracers on a total of 34 taxa. Samples were collected close to Barcelona, Spain, on the middle slope, at a seasonal scale. Mean δ 13C values ranged from - 22.1‰ ( Salpa maxima) to - 16.9‰ (the mysid Eucopia hanseni). Values of δ 15N ranged from 2.5‰ (the hyperiid Vibilia armata) to 9.8‰ (the pelagic polychaete Tomopteris sp.). The stable isotope ratios of this fauna displayed a continuum of values over the δ 15N range of 7‰, confirming a wide spectrum of feeding strategies (from filter feeders to predators). High annual mean δ 15N values were found among carnivorous large zooplankton and micronekton, including species that prey on gelatinous plankton (i.e. salps, siphonophores), euphausiids, natantian decapod crustaceans and fish (i.e. myctophids and stomiiformes). In agreement with the available information on diets of planktonic taxa, the lowest isotope ratios were found for filter feeders ( V. armata, S. maxima, the pteropods Cymbulia peroni and Cavolinia inflexa, ostracods and the thaliacean Pyrosoma atlanticum), all of which feed on particulate organic matter. We found three trophic levels in macroplankton/micronekton food webs based on a 15N-enrichment factor of ~ 2.5‰ per level. The range of δ 13C was particularly wide among carnivores (- 20.7‰ to - 16.6‰), suggesting predation on a variety of prey from gelatinous zooplankton (which displayed more depleted δ 13C signatures) to small fishes and decapods. Correlation between δ 13C-δ 15N was generally weak, likely due to the consumption of different kinds of sinking particles (e.g. marine snow, phytodetritus), some constituted of multiply recycled particulate organic matter (POM). However, higher δ 13C-δ 15N correlations were observed during winter and spring, periods of water column

  10. The bigger, the better? Volume measurements of parasites and hosts: Parasitic barnacles (Cirripedia, Rhizocephala) and their decapod hosts

    PubMed Central

    Hörnig, Marie K.; Haug, Joachim T.; Noever, Christoph; Høeg, Jens T.; Glenner, Henrik

    2017-01-01

    Rhizocephala, a group of parasitic castrators of other crustaceans, shows remarkable morphological adaptations to their lifestyle. The adult female parasite consists of a body that can be differentiated into two distinct regions: a sac-like structure containing the reproductive organs (the externa), and a trophic, root like system situated inside the hosts body (the interna). Parasitism results in the castration of their hosts, achieved by absorbing the entire reproductive energy of the host. Thus, the ratio of the host and parasite sizes is crucial for the understanding of the parasite’s energetic cost. Using advanced imaging methods (micro-CT in conjunction with 3D modeling), we measured the volume of parasitic structures (externa, interna, egg mass, egg number, visceral mass) and the volume of the entire host. Our results show positive correlations between the volume of (1) entire rhizocephalan (externa + interna) and host body, (2) rhizocephalan externa and host body, (3) rhizocephalan visceral mass and rhizocephalan body, (4) egg mass and rhizocephalan externa, (5) rhizocephalan egg mass and their egg number. Comparing the rhizocephalan Sylon hippolytes, a parasite of caridean shrimps, and representatives of Peltogaster, parasites of hermit crabs, we could match their different traits on a reconstructed relationship. With this study we add new and significant information to our global understanding of the evolution of parasitic castrators, of interactions between a parasitic castrator and its host and of different parasitic strategies within parasitic castrators exemplified by rhizocephalans. PMID:28678878

  11. Transport and retention of vertically migrating adult mysid and decapod shrimp in the tidal front on Georges Bank

    USGS Publications Warehouse

    Lough, R. Gregory; Aretxabaleta, Alfredo L.

    2014-01-01

    Vertical profiles of the adult epibenthic shrimp Neomysis americana and Crangon septemspinosus obtained during June 1985 were used to simulate possible rates of ascent from bottom (40 to 50 m) to near surface at night and return by day, and the consequence of these rates on their horizontal distribution. Numerical particles were released at the sampling site using archived model current fields with specified vertical rates (from no swim behavior to 20 mm s(-1)) and tracked for up to 30 d. The best match between observed and modeled vertical profiles was with a vertical swimming speed of 10 mm s(-1) for N. americana and 2 mm s(-1) for C. septemspinosus. Whereas N. americana rapidly swims towards the surface at dusk and descends to bottom by dawn, C. septemspinosus tends to only swim up to the middle of the water column at night. After 16 d, the simulation with 10 mm s(-1) swim speed showed most particles were concentrated in an area centered around the 60 m isobath, where the tidal front was located. At 2 mm s(-1) swim speed particles were concentrated more shoalward onto the western end of Georges Bank. N. americana are expected to be more closely associated with the tidal front, since they spend more time near the front surface convergence, but are more likely to be transported off the bank due to the south-westward-flowing surface tidal jet, whereas C. septemspinosus would be retained primarily on the bank, since they are found deeper in the water column during both day and night.

  12. Biochemical composition of deep-sea decapod crustaceans with two different benthic life strategies off the Portuguese south coast

    NASA Astrophysics Data System (ADS)

    Rosa, R.; Nunes, M. L.

    2003-01-01

    The objectives of the present study were to characterize the benthic life strategies of Aristeus antennatus (Crustacea: Penaeidea), Parapenaeus longirostris (Crustacea: Penaeidea) and Nephrops norvegicus (Crustacea: Astacidea) on the basis of biochemical composition (proximate chemical composition, total lipids, glycogen and cholesterol contents), and its response to biological and environmental factors (sex, maturation, reproduction, food availability and depth) into account. The specimens were collected at depths between 200 and 600 m off the Portuguese south coast (Algarve). The nektobenthic species ( A. antennatus and P. longirostris) showed higher protein, lipid, cholesterol and glycogen contents, and lower moisture content in the muscle than the benthic-endobenthic species ( N. norvegicus). Consequently, the energy content of the nektobenthic species was also higher. Principal component analyses were used to assess the relationship between the different biochemical contents and to relate them to the biotic and abiotic factors. Depth seems to have the most important role in the observed trends of the biochemical composition. The increase of the ovarian lipid levels occurs as a result of the maturation process. The highest values were obtained in mature N. norvegicus females. The differences can be due to maternal investment (lipid metabolism of the female is geared to the provision of egg lipid), since N. norvegicus produce large lecithotrophic eggs. The biochemical differences observed in the three species did not seem to be due to distinct trophic strategies, but instead were a consequence of depth, which may have a significant interspecific effect on food intake. It was also evident that reproductive cycle has profound effects upon the biochemistry of the three species. Gonadal maturation has large associated energy costs due to the increase in biosynthetic work. Moreover, the biochemical composition would be influenced by or synchronized with seasonal feeding activity or food availability.

  13. Neuropeptide action in insects and crustaceans.

    PubMed

    Mykles, Donald L; Adams, Michael E; Gäde, Gerd; Lange, Angela B; Marco, Heather G; Orchard, Ian

    2010-01-01

    Physiological processes are regulated by a diverse array of neuropeptides that coordinate organ systems. The neuropeptides, many of which act through G protein-coupled receptors, affect the levels of cyclic nucleotides (cAMP and cGMP) and Ca(2+) in target tissues. In this perspective, their roles in molting, osmoregulation, metabolite utilization, and cardiovascular function are highlighted. In decapod crustaceans, inhibitory neuropeptides (molt-inhibiting hormone and crustacean hyperglycemic hormone) suppress the molting gland through cAMP- and cGMP-mediated signaling. In insects, the complex movements during ecdysis are controlled by ecdysis-triggering hormone and a cascade of downstream neuropeptides. Adipokinetic/hypertrehalosemic/hyperprolinemic hormones mobilize energy stores in response to increased locomotory activity. Crustacean cardioacceleratory (cardioactive) peptide, proctolin, and FMRFamide-related peptides act on the heart, accessory pulsatile organs, and excurrent ostia to control hemolymph distribution to tissues. The osmoregulatory challenge of blood gorging in Rhodnius prolixus requires the coordinated release of serotonin and diuretic and antidiuretic hormones acting on the midgut and Malpighian tubules. These studies illustrate how multiple neuropeptides allow for flexibility in response to physiological challenges.

  14. Ecology of irregularly flooded salt marshes of the northeastern Gulf of Mexico: a community profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stout, J.P.

    1984-12-01

    The salt marshes of the northeastern Gulf of Mexico are distinguished by irregular flooding, low energy wave and tidal action, and long periods of exposure. The plant community is most often dominated by black needlerush (Juncus roemerianus), the species of focus in this synthesis. Distinct marsh zones include those dominated by Juncus and Spartina alterniflora at low elevations, sparsely vegetated salt flats, and higher elevation salt meadows of Juncus and Spartina patens. A diverse microbial and algal assemblage is also present. A diverse fauna has adapted to the physical rigors of these marshes. Zooplankton are dominated by the larvae ofmore » fiddler crabs and other decapods. The meiofauna consist primarily of nematodes and harpacticoid copepods. Macroinvertebrates are represented by crustaceans (especially mollusks and crabs), annelids, and insects. Grass shrimp, blue crabs, and other crustaceans are seasonally abundant in marsh creeks, as are a number of resident and migratory fish species. Birds comprise one of the larger herbivore groups and are also significant at higher tropic levels as top carnivores. Muskrat and nutria are important mammals. 43 figs., 38 tabs.« less

  15. [Feeding changes for three Sphoeroides species (Tetraodontiformes: Tetraodontidae) after Isidore hurricane impact in Carbonera Inlet, Southeastern Gulf of Mexico].

    PubMed

    Palacios-Sánchez, Sonia Eugenia; Vega-Cendejas, María Eugenia

    2010-12-01

    The coexistence of ecologically similar species may occur because of resources distribution, such as prey and habitat type and segregation time, that minimizes the interspecific competition. The changes brought about by Hurricane Isidore in the distribution of food resources by three coexisting fish species of the family Tetraodontidae (Sphoeroides nephelus, S. spengleri and S testudineus), were analyzed at the Carbonera Inlet. Sphoeroides spp. based their food on benthic organisms; principally, they consume mussels (Brachidontes sp.), barnacles (Balanus sp.) and gastropods (Crepidula sp). Before hurricane impact, the three species share the available food resources in different proportions (bivalves, gastropods, barnacles and decapods), according to different strategies that enabled them to coexist and reduce interspecific competition. After the impact, the abundance of available prey decreased and the interespecific competition for food increased, leading to S. testudines and S. nephelus change their trophic spectrum (xiphosurans, amphipods, isopods and detritus) and displacing S. splengleri of the inlet. The distribution of food resources was conditioned by the abundance and diversity of prey, as well as the adaptive response of each species.

  16. Lecithotrophic behaviour in zoea and megalopa larvae of the ghost shrimp Lepidophthalmus siriboia Felder and Rodrigues, 1993 (Decapoda: Callianassidae).

    PubMed

    Abrunhosa, Fernando A; Simith, Darlan J B; Palmeira, Carlos A M; Arruda, Danielle C B

    2008-12-01

    Food supply is considered critical for a successful culturing of decapod larvae. However, some species may present yolk reserve sufficient to complete their larval development without external food supply (known as lecithotrophic larval development). In the present study, two experiments were carried out in order to verify whether the callianassid Lepidophthalmus siriboia have lecithotrophic behaviour or, if they need external food for their larval development: Experiment 1, larvae submitted to an initial feeding period and Experiment 2, larvae submitted to an initial starvation period. High survival rate was observed in both experiments, in which only 2 megalopae and 1 zoea III died. These results strongly suggest that larvae of L. siriboia are lecithotrophic as they have sufficiently large yolk reserve to complete their larval development, while the megalopa stage shows facultative lecithotrophy. The larval periods of each stage of the treatments were quite similar and, despite some significant differences in some larval periods, these can be related probably to larval rearing conditions, abiotic factors or, individual variability of larval health, as well as stress caused to the ovigerous females during embryogenesis.

  17. Exposure of the eggs to 17alpha-methyl testosterone reduced hatching success and growth and elicited teratogenic effects in postembryonic life stages of crayfish.

    PubMed

    Vogt, Günter

    2007-12-30

    Testosterone is regularly found in the tissues of decapod crustaceans. Although this vertebrate-type sex hormone is not the principal factor of sex differentiation in crustaceans, it was shown to be capable of acting on the reproductive organs of shrimps and crabs. In the present study I have exposed developing eggs and stage 5 juveniles of the parthenogenetic all female marbled crayfish to 17alpha-methyl testosterone in order to test whether in freshwater crayfish sex can be changed from female to male by this androgen. MT did not elicit sex change, neither when administered during embryonic development nor during juvenile stage 5, the main period of proliferation of the oocytes. However, exposure to 100 microg/L MT from 64% to 84% embryonic development resulted in prolonged embryonic development, reduced hatching success, reduced growth of the juveniles, and severe malformations of the appendages in the juveniles. The marbled crayfish is recommended to be considered for toxicity tests due to its easy culture in the laboratory and its genotypical uniformity.

  18. High genetic diversity and absence of founder effects in a worldwide aquatic invader.

    PubMed

    Lejeusne, Christophe; Saunier, Alice; Petit, Nicolas; Béguer, Mélanie; Otani, Michio; Carlton, James T; Rico, Ciro; Green, Andy J

    2014-07-24

    The introduced oriental shrimp Palaemon macrodactylus has recently become widespread in temperate estuaries worldwide. However, this recent worldwide spread outside of its native range arises after a previous introduction to the US Pacific coast, where it was restricted for more than 30 years. Using a phylogeographic approach, the present work investigates the genetic history of the invasion of this decapod worldwide. Japan acted as the main native source area for worldwide introduced populations, but other native areas (likely South Korea and China) may act as source populations as well. The recently introduced European and NW Atlantic populations result from colonization from both Japan and an unknown area of the native range, although colonization from the NE Pacific could not be ruled out. Most introduced populations had higher haplotypic diversity than most native populations. P. macrodactylus has a strong potential to become one of the most widespread introduced species and may become the dominant estuarine shrimp in Europe. The ecological and economic consequences of this invasion remain to be thoroughly evaluated.

  19. Kinematics of walking in the hermit crab, Pagurus pollicarus.

    PubMed

    Chapple, William

    2012-03-01

    Hermit crabs are decapod crustaceans that have adapted to life in gastropod shells. Among their adaptations are modifications to their thoracic appendages or pereopods. The 4th and 5th pairs are adapted for shell support; walking is performed with the 2nd and 3rd pereopods, with an alternation of diagonal pairs. During stance, the walking legs are rotated backwards in the pitch plane. Two patterns of walking were studied to compare them with walking patterns described for other decapods, a lateral gait, similar to that in many brachyurans, and a forward gait resembling macruran walking. Video sequences of free walking and restrained animals were used to obtain leg segment positions from which joint angles were calculated. Leading legs in a lateral walk generated a power stroke by flexion of MC and PD joints; CB angles often did not change during slow walks. Trailing legs exhibited extension of MC and PD with a slight levation of CB. The two joints, B/IM and CP, are aligned at 90° angles to CB, MC and PD, moving dorso-anteriorly during swing and ventro-posteriorly during stance. A forward step was more complex; during swing the leg was rotated forward (yaw) and vertically (pitch), due to the action of TC. At the beginning of stance, TC started to rotate posteriorly and laterally, CB was depressed, and MC flexed. As stance progressed and the leg was directed laterally, PD and MC extended, so that at the end of stance the dactyl tip was quite posterior. During walks of the animal out of its shell, the legs were extended more anterior-laterally and the animal often toppled over, indicating that during walking in a shell its weight stabilized the animal. An open chain kinematic model in which each segment was approximated as a rectangular solid, the dimensions of which were derived from measurements on animals, was developed to estimate the CM of the animal under different load conditions. CM was normally quite anterior; removal of the chelipeds shifted it caudally

  20. Environmental endocrine disruption in decapod crustacean larvae: hormone titers, cytochrome P450, and stress protein responses to heptachlor exposure.

    PubMed

    Snyder, M J; Mulder, E P

    2001-11-12

    A variety of enzymes and other proteins are produced by organisms in response to xenobiotic exposures. Cytochrome P450s (CYP) are one of the major phase I-type classes of detoxification enzymes found in terrestrial and aquatic organisms ranging from bacteria to vertebrates. One of the primary functions of stress proteins (HSPs) is to aid in the recovery of damaged proteins by chaperoning their refolding. These and other biomarkers of xenobiotic exposure and resulting effects have not been studied in crustacean larvae. This information is of potential importance for environmental management and risk assessment. In this work, we have given Homarus americanus larvae single 24 h exposures to the cyclodiene pesticide heptachlor, a known environmental endocrine disruptor (EDC) on different days of the 1st larval instar. We followed these larvae during the first larval stage for effects on timing of ecdysis to 2nd stage, ecdysteroid molting hormone titers, and alterations in the levels of cytochrome P450 CYP45 and HSP70 proteins. Delays in ecdysis were correlated with alterations in ecdysteroid levels. This result provides clues that this pesticide may function as an environmental endocrine disruptor in crustaceans. CYP45 and HSP70 levels were significantly elevated for several days following heptachlor exposure. The elevation in HSP70 was prolonged depending on the day of pesticide exposure and this was directly related to the increase in mortality. These results demonstrate the utility of these measurements as potential biomarkers in crustacean larval developmental toxicology and EDC effects research.

  1. Conservation of structure, signaling and pharmacology between two serotonin receptor subtypes from decapod crustaceans, Panulirus interruptus and Procambarus clarkii.

    PubMed

    Spitzer, Nadja; Edwards, Donald H; Baro, Deborah J

    2008-01-01

    Serotonin (5-HT) plays important roles in the maintenance and modulation of neural systems throughout the animal kingdom. The actions of 5-HT have been well characterized for several crustacean model circuits; however, a dissection of the serotonergic transduction cascades operating in these models has been hampered by the lack of pharmacological tools for invertebrate receptors. Here we provide pharmacological profiles for two 5-HT receptors from the swamp crayfish, Procambarus clarkii: 5-HT(2beta) and 5-HT(1alpha). In so doing, we also report the first functional expression of a crustacean 5-HT(1) receptor, and show that it inhibits accumulation of cAMP. The drugs mCPP and quipazine are 5-HT(1alpha) agonists and are ineffective at 5-HT(2beta). Conversely, methiothepin and cinanserin are antagonists of 5-HT(2beta) but do not block 5-HT(1alpha). A comparison of these two receptors with their orthologs from the California spiny lobster, Panulirus interruptus, indicates conservation of protein structure, signaling and pharmacology. This conservation extends beyond crustacean infraorders. The signature residues that form the ligand-binding pocket in mammalian 5-HT receptors are found in the crustacean receptors. Similarly, the protein domains involved in G protein coupling are conserved between the two crustacean receptors and other characterized arthropod and mammalian 5-HT receptors. Considering the apparent conservation of pharmacological properties between crustacean 5-HT receptors, these tools could be applicable to related crustacean physiological preparations.

  2. An improved taxonomic sampling is a necessary but not sufficient condition for resolving inter-families relationships in Caridean decapods.

    PubMed

    Aznar-Cormano, L; Brisset, J; Chan, T-Y; Corbari, L; Puillandre, N; Utge, J; Zbinden, M; Zuccon, D; Samadi, S

    2015-04-01

    During the past decade, a large number of multi-gene analyses aimed at resolving the phylogenetic relationships within Decapoda. However relationships among families, and even among sub-families, remain poorly defined. Most analyses used an incomplete and opportunistic sampling of species, but also an incomplete and opportunistic gene selection among those available for Decapoda. Here we test in the Caridea if improving the taxonomic coverage following the hierarchical scheme of the classification, as it is currently accepted, provides a better phylogenetic resolution for the inter-families relationships. The rich collections of the Muséum National d'Histoire Naturelle de Paris are used for sampling as far as possible at least two species of two different genera for each family or subfamily. All potential markers are tested over this sampling. For some coding genes the amplification success varies greatly among taxa and the phylogenetic signal is highly saturated. This result probably explains the taxon-heterogeneity among previously published studies. The analysis is thus restricted to the genes homogeneously amplified over the whole sampling. Thanks to the taxonomic sampling scheme the monophyly of most families is confirmed. However the genes commonly used in Decapoda appear non-adapted for clarifying inter-families relationships, which remain poorly resolved. Genome-wide analyses, like transcriptome-based exon capture facilitated by the new generation sequencing methods might provide a sounder approach to resolve deep and rapid radiations like the Caridea.

  3. Evidence of secondary consumption of invertebrate prey by Double-crested Cormorants

    USGS Publications Warehouse

    Johnson, J. H.; Ross, R.M.; Smith, D.R.

    1997-01-01

    The piscivorous nature of the Double-crested Cormorant (Phalacrocorax auritus) is well documented. However, many researchers who have used regurgitated pellets to describe the diet of cormorants report that invertebrates compose a small but consistent portion of the diet. We examined the hypothesis that invertebrates found in pellets are primarily the result of secondary consumption. We used odds ratio analysis to examine associations in 2,846 individual pellets between the presence of specific invertebrate prey and the presence of fish species known to consume those invertebrate taxa. Significant (P < 0.05) relationships occurred between gastropods and pumpkinseed (Lepomis gibbosus) and ictalurids, and between decapods and rock bass (Ambloplites rupestris) and smallmouth bass (Micropterus dolomieu). Significant (P < 0.05) relationships were also found between pelecypods and pumpkinseed and ictalurids. We suggest that the invertebrate prey we observed in pellets were present in the digestive tracts of fish that were consumed by Double-crested Cormorants and hence represent secondary consumption by cormorants. We conclude that consumption of invertebrates by Double-crested Cormorants may be overestimated in the literature in instances where the diet was described using pellets.

  4. Twelve invertebrate and eight fish species new to the marine fauna of Madeira, and a discussion of the zoogeography of the area

    NASA Astrophysics Data System (ADS)

    Wirtz, Peter

    1998-06-01

    The benthic ctenophore Vallicula multiformis, a large undescribed flatworm species of the genus Pseudoceros, the prosobranch gastropod Tonna maculosa, the opisthobranch gastropods Placida cf. dendritica, Caloria elegans, Aeolidiella sanguinea, Janolus cristatus, the decapod Balssia gasti, the sea urchin Schizaster canaliferus and the tunicates Clavelina lepadiformis, Clavelina dellavallei and Pycnoclavella taureanensis are recorded from Madeira for the first time. This is the first record of a platyctenid ctenophore in the eastern Atlantic. The teleost fishes Pomatoschistus pictus, Vaneaugobius canariensis, Chromogobius sp., Nerophis ophidion, Hippocampus hippocampus, Acanthocybium solandri, Sphyraena viridensis and Sphyraena barracuda are recorded from Madeira for the first time. The presence of the sea-hare Aplysia dactylomela at Madeira is confirmed; the species has increased tremendously in abundance in the last four years. The crocodile fish Grammoplites gruveli can occasionally be found in the mantle cavity of cuttlefish ( Sepia officinalis) sold at the fish market of Funchal, but does not originate from Madeiran waters. An analysis of 100 new records from the coastal fauna of Madeira shows that, while predominantly of lusitanian, mediterranean and mauritanian affinity, Madeira’s shallow water fauna contains a large component of tropical species.

  5. Ghost shrimps (Decapoda: Axiidea: Callianassidae) as producers of an Upper Miocene trace fossil association from sublittoral deposits of Lake Pannon (Vienna Basin, Slovakia)

    PubMed Central

    Hyžný, Matúš; Šimo, Vladimír; Starek, Dušan

    2015-01-01

    Numerous trace fossils are described from the Late Miocene sediments of the Bzenec Formation exposed at the Gbely section (the Vienna Basin, Slovakia). During deposition of the sediments the area was part of the large, long-lived brackish to freshwater Lake Pannon. Most of the trace fossils are attributed herein to Egbellichnus jordidegiberti igen et ispec. nov. and are interpreted as burrows produced by decapod crustaceans, specifically by a ghost shrimp of the family Callianassidae. This interpretation is based on two independent lines of evidence: environmental requirements of large bioturbators and the burrow morphology itself. The new ichnotaxon is distinguished from other related ichnotaxa by a combination of typically inclined (roughly at an angle of 45°) cylindrical burrows, absence of lining, and tunnels making loops or bends at approximately right angles. The burrow systems at Gbely document the survival of ghost shrimp long after the closure of all seaways and the origin of Lake Pannon. As today, no ghost shrimp are known from long-lived brackish lakes. Egbellichnus from Gbely is the only, although indirect, record of ghost shrimp from a brackish lake environment reported so far. PMID:26089575

  6. Suspension feeding in adult Nephrops norvegicus (L.) and Homarus gammarus (L.) (decapoda)

    NASA Astrophysics Data System (ADS)

    Loo, Lars-Ove; Pihl Baden, Susanne; Ulmestrand, Mats

    Suspension feeding in adults of the Norway lobster Nephrops norvegicus (40-74 g) and the European lobster Homarus gammarus (280-350 g) was tested in experiments offering planktonic food items of different sizes from 200 to 600 μm and measuring the clearing capacity. Both lobster species were found to effectively clear water of food particles comprising nauplii of the brine shrimp Artemia salina of about 600 μm in size. These were reduced to 50% of the initial concentration within 5 h and to 90% within 12 h. When N. norvegicus was offered food particles averaging 200 μm, a significant reduction in average size occurred, indicating that the minimum retention size is around 200 μm. Fluorescently dyed Artemia salina were recovered in the stomach and intestine of lobsters proving that the filtered particles are passed to the digestive tract. Results from other experiments, using the blood pigment (haemocyanin) concentration as an index of nutritional state, indicated that the lobsters can get some nutritional advantage from suspension feeding. Suspension feeding in larger decapods has not been described previously, so the significance of this finding is discussed with respect to changes in behavioural and ecological role.

  7. Flapper Valve and Hayfork: Functional anatomy and taxonomic potential of the Gastric Mill of Bairdioidea (Ostracoda, Podocopida).

    PubMed

    Maddocks, Rosalie F

    2018-02-07

    The chewing apparatus of the Bairdioidea has been described just once and is rarely illustrated, but it might have more taxonomic significance than commonly supposed. It is constructed as a flapper valve (hinged check valve), which is unique among Ostracoda and unusual among animals. It projects into the midgut and is substantially enveloped by it. It serves three functions: to move bites of food into the stomach, to close the esophagus against back-flow, and to pack strands of food and mucus onto the rotating food ball. It is probably less effective for macerating the food to reduce particle size. Two braces anchor this structure to the lateral wall of the forehead. It is lined by cuticle that is shed at each molt, and the formation of food balls is interrupted during molting. In its construction and action, this apparatus is quite unlike the gastric mill of decapod crustaceans, and it shows only distant homology to the dorsal Wulst of Cypridoidea. Some architectural details differ among families and genera. The well-sclerotized plate has some potential for fossil preservation in exceptional circumstances. A revised anatomical analysis is presented, together with an annotated glossary of terms.

  8. SPERMIOGENESIS IN THE CRAYFISH (PROCAMBARUS CLARKII)

    PubMed Central

    Moses, Montrose J.

    1961-01-01

    The sperm of the crayfish, Procambarus clarkii, is relatively simple among decapod sperm and was described in the first paper of this series (28). The present paper details the development of this sperm as followed with the light and electron microscopes. The process is divided into six stages for purposes of description. The main points of interest discussed are the absence of mitochondria or mitochondrial derivatives in the mature sperm, the development of a complex acrosome in the absence of highly organized characteristic Golgi apparatus but in the presence of small stacks of annulate lamellae, and the changes in the nucleus. Of the latter, the elaborate convoluted sheets of membrane that are extensions of the nuclear envelope are unique. The nucleus undergoes unusual changes in size and shape that are accompanied by several phases of organization of the chromatin. In the mature sperm the nucleus is empty-appearing and notably lacking in any apparent high degree of order. The entire development of the sperm is consonant with the idea that the fate of the mitochondria and centrioles, structures that figure prominently in the elaborate architecture of flagellate sperm, is associated with the lack of a flagellum. PMID:13773055

  9. Expanding zooplankton standing stock estimation from meso- to metazooplankton: A case study in the N. Aegean Sea (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Frangoulis, Constantin; Grigoratou, Maria; Zoulias, Theodore; Hannides, Cecelia C. S.; Pantazi, Maria; Psarra, Stella; Siokou, Ioanna

    2017-10-01

    Although metazooplankton includes a wide size range of organisms, our knowledge is essentially based on mesozooplankton. A first estimation of the metazooplankton standing stock in a Mediterranean area, and of its size fractions and functional groups are provided by combining data out of three nets with different mesh sizes (45, 200 and 500 μm). Data were collected along a gradient of oligotrophy in the frontal area created, where the waters of Black Sea origin meet those of Levantine Sea origin (Northeast Aegean Sea, Eastern Mediterranean). Metazooplankton biomass was dominated by mesozooplankton (0.2-2 mm), while meso- and microzooplankton (<0.2 mm) shared dominance of abundance. Copepods dominated both in abundance and biomass and were followed by nauplii in abundance and gelatinous carnivores or decapod-euphausiid larvae in biomass. The spatiotemporal variability of metazoans stock, biomass-size spectra linearity, carnivorous group contribution and copepod diversity, supported that metazooplankton tends to recede from steady-state when approaching less oligotrophic dynamic areas (such as fronts) or dynamic periods (such as the spring bloom). The need and the difficulties of obtaining a larger picture from a wider size range of metazoans for understanding the role of zooplankton are stressed.

  10. Fossil Crustaceans as Parasites and Hosts.

    PubMed

    Klompmaker, Adiël A; Boxshall, Geoff A

    2015-01-01

    Numerous crustacean lineages have independently moved into parasitism as a mode of life. In modern marine ecosystems, parasitic crustaceans use representatives from many metazoan phyla as hosts. Crustaceans also serve as hosts to a rich diversity of parasites, including other crustaceans. Here, we show that the fossil record of such parasitic interactions is sparse, with only 11 examples, one dating back to the Cambrian. This may be due to the limited preservation potential and small size of parasites, as well as to problems with ascribing traces to parasitism with certainty, and to a lack of targeted research. Although the confirmed stratigraphic ranges are limited for nearly every example, evidence of parasitism related to crustaceans has become increasingly more complete for isopod-induced swellings in decapods so that quantitative analyses can be carried out. Little attention has yet been paid to the origin of parasitism in deep time, but insight can be generated by integrating data on fossils with molecular studies on modern parasites. In addition, there are other traces left by parasites that could fossilize, but have not yet been recognized in the fossil record. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Ultrastructure and Transport-Related Enzymes of the Gills and Coxal Gland of the Horseshoe Crab Limulus polyphemus.

    PubMed

    Henry, R P; Jackson, S A; Mangum, C P

    1996-10-01

    The horseshoe crab, Limulus polyphemus, may be unique among marine arthropods in that both its book gills and its coxal gland may serve as sites of ion transport. We have therefore examined the ultrastructure of these organs, as well as the distribution and relative levels of two major transport-related enzymes: the Na+ + K+ ATPase and carbonic anhydrase (CA). The ventral surface of the central region of each lamella shows the typical ultrastructural specializations for ion transport: 10 μm cell thickness, an extensive network of tubules originating from infoldings of the basal membrane, and a high density of mitochondria. This region also contains high levels of activity of the Na+ + K+ ATPase and CA. The distribution of ion transporting epithelium and transport enzymes is identical in each of the five gill books. The peripheral region of the lamellae of each gill book is specialized for passive gas exchange. The ultrastructural and biochemical profile of the coxal gland is similar to that of the central-ventral region of the gill. Limulus possesses the same general mechanism of ion regulation seen in euryhaline decapod crustaceans, but the structural and functional components are uniquely distributed.

  12. Profilicollis novaezelandensis n. sp. (Polymorphidae) and two other acanthocephalan parasites from shore birds (Haematopodidae and Scolopacidae) in New Zealand, with records of two species in intertidal crabs (Decapoda: Grapsidae and Ocypodidae).

    PubMed

    Brockerhoff, A M; Smales, L R

    2002-05-01

    Profilicollis novaezelandensis n. sp. (Acanthocephala: Polymorphidae) is described from the South Island pied oystercatcher Haematopus ostralegus finschi Martens (Haematopodidae) and the intertidal crab Hemigrapsus crenulatus (Milne Edwards) (Brachyura: Grapsidae) from the South Island of New Zealand. The new species can be distinguished from all the other species of the genus by a combination of the following characters: long neck (13% of total body length for adults) and a subspherical proboscis with 14-16 longitudinal rows of 7-8 hooks. The mud crabs Helice crassa Dana (Grapsidae) and Macrophthalmus hirtipes (Heller) (Ocypodidae) were also harbouring cystacanths and the bar-tailed godwit Limosa lapponica (Linnaeus) (Scolopacidae) juveniles of P. novaezelandensis. This is the first record of brachyuran decapods as intermediate hosts of Acanthocephala from New Zealand. P. antarcticus is recorded from three crab species (Helice crassa, Hemigraspus crenulatus and Macrophthalmus hirtipes) and two bird species (Haematopus o. finschi and Limosa lapponica) in New Zealand. An unidentified species of Plagiorhynchus was also found in two bird species (H. o. finschi and H. unicolor Forster). P. antarcticus and P. novaezelandensis are the first records of Profilicollis from New Zealand.

  13. Ichnofossils of the alluvial Willwood Formation (lower Eocene), Bighorn Basin, northwest Wyoming, U.S.A

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1983-01-01

    The ichnofossil assemblage of the lower Eocene Willwood Formation consists of at least nine distinct endichnia that are preserved in full relief. Four forms (three ichnogenera and four ichnospecies) are new and represent fodinichnia and domichnia of oligochaete worms, an insect or spider, an unknown vertebrate (probably a mammal), and domichnia of an unidentified organism. Other potential trace makers of the ichnofauna include insects, mollusks, and decapods. In contrast to an Egyptian Oligocene fluvial ichnofauna produced largely by animals that burrowed in stream channel deposits, the Willwood assemblage is principally of flood-plain origin. Though the ichnofauna occurs in a variety of paleosol types, most of the fossils are restricted in distribution to specific sediment and soil types and, within paleosols, to specific identifiable horizons. This attribute will make them valuable indiced of paleoenvironment once they are better known in other ancient alluvial sequences. The environment suggested by the Willwood trace fossils (damp, but not wet soils with fluctuating water tables) is consistent with the warm temperate to subtropical (possibly monsoonal) conditions that are interpreted for the Willwood Formation by independent evidence of body fossils and paleopedology. ?? 1983.

  14. The radular apparatus of cephalopods

    PubMed Central

    Messenger, J. B.

    1999-01-01

    This paper describes the ontogeny, breakdown and absorption of the radular teeth of cephalopods and, for the first time, considers the function of the 'bolsters' or radular support muscles. The radular ribbon, which bears many regularly arranged transverse rows of teeth one behind the other, lies in a radular canal that emerges from the radular sac. Here the radular teeth are formed by a set of elongate cells with microvilli, the odontoblasts. These are organized into two layers, the outer producing the radular membrane and the bases of the teeth, the inner producing the cusps. The odontoblasts also secrete the hyaline shield and the teeth on the lateral buccal palps, when these are present. At the front end of the radular ribbon the teeth become worn in feeding and are replaced from behind by new ones formed continuously in the radular sac, so that the whole ribbon moves forward during ontogeny. Removal of the old teeth is achieved by cells in the radular organs; these cells, which are formed from modified odontoblasts ('odontoclasts'), dissolve the teeth and membranes and absorb them. There is a subradular organ in all cephalopods. In Octopus vulgaris, which bores into mollusc shells and crustacean carapaces, it is especially well-developed and there is also a supraradular organ. A characteristic feature of the cephalopod radular apparatus is the pair of large radular support muscles or 'bolsters'. Their function seems never to have been investigated, but experiments reported here show that when they elongate, the radular teeth become erect at the bending plane and splayed, presumably enhancing their ability to rake food particles into the pharynx. The bolsters of Octopus function as muscular hydrostats: because their volume is fixed, contraction of their powerful transverse muscles causes them to elongate. In decapods and in nautiloids each bolster contains a 'support rod' of semi-fluid material, as well as massive transverse musculature. This rod may elongate

  15. Behavioural study of two hydrothermal crustacean decapods: Mirocaris fortunata and Segonzacia mesatlantica, from the Lucky Strike vent field (Mid-Atlantic Ridge)

    NASA Astrophysics Data System (ADS)

    Matabos, M.; Cuvelier, D.; Brouard, J.; Shillito, B.; Ravaux, J.; Zbinden, M.; Barthelemy, D.; Sarradin, P. M.; Sarrazin, J.

    2015-11-01

    Identifying the factors driving community dynamics in hydrothermal vent communities, and in particular biological interactions, is challenged by our ability to make direct observations and the difficulty to conduct experiments in those remote ecosystems. As a result, we have very limited knowledge on species' behaviour and interactions in these communities and how they in turn influence community dynamics. Interactions such as competition or predation significantly affect community structure in vent communities, and video time-series have successfully been used to gain insights in biological interactions and species behaviour, including responses to short-term changes in temperature or feeding strategies. In this study, we combined in situ and ex situ approaches to characterise the behaviour and interactions among two key species encountered along the Mid-Atlantic Ridge (MAR): the shrimp Mirocaris fortunata and the crab Segonzacia mesatlantica. In situ, species small-scale distribution, interactions and behaviour were studied using the TEMPO observatory module deployed on the seafloor at the base of the active Eiffel Tower edifice in the Lucky Strike vent field as part of the EMSO-Açores MoMAR observatory. TEMPO sampled 2 min of video four times a day from July 2011 to April 2012. One week of observations per month was used for 'long-term' variations, and a full video data set was analysed for January 2012. In addition, observations of crab and shrimp individuals maintained for the first time under controlled conditions in atmospheric pressure (classic tank) and pressurised (AbyssBox) aquaria allowed better characterisation and description of the different types of behaviour and interactions observed in nature. While the identified in situ spatial distribution pattern was stable over the nine months, both species displayed a significant preference for mussel bed and anhydrite substrata, and preferentially occupied the area located directly in the fluid flow axis. The aggregation behaviour of M. fortunata resulted in the occurrence of numerous intraspecific interactions mainly involving the use of two pairs of sensory organs (antenna/antennule) and fleeing behaviours when in contact or close to individuals of S. mesatlantica. The higher level of passiveness observed in the ex situ artificial environment compared to the in situ environment was attributed to the lack of stimulation related to low densities of congeners and/or of sympatric species compared to the natural environment and the absence of continuous food supply, as both species displayed a significant higher level of activity during feeding time. This result emphasises the role of food supply as a driver of species distribution and behaviour. Direct in situ observations using cameras deployed on deep-sea observatories, combined with experimental set-up in pressurised aquaria, will help investigators understand the factors influencing community dynamics and species biology at vents as well as their underlying mechanisms.

  16. Long-term eruptive activity at a submarine arc volcano.

    PubMed

    Embley, Robert W; Chadwick, William W; Baker, Edward T; Butterfield, David A; Resing, Joseph A; de Ronde, Cornel E J; Tunnicliffe, Verena; Lupton, John E; Juniper, S Kim; Rubin, Kenneth H; Stern, Robert J; Lebon, Geoffrey T; Nakamura, Ko-ichi; Merle, Susan G; Hein, James R; Wiens, Douglas A; Tamura, Yoshihiko

    2006-05-25

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes.

  17. A new PCR-based method shows that blue crabs (Callinectes sapidus (Rathbun)) consume winter flounder (Pseudopleuronectes americanus (Walbaum)).

    PubMed

    Collier, Jackie L; Fitzgerald, Sean P; Hice, Lyndie A; Frisk, Michael G; McElroy, Anne E

    2014-01-01

    Winter flounder (Pseudopleuronectes americanus) once supported robust commercial and recreational fisheries in the New York (USA) region, but since the 1990s populations have been in decline. Available data show that settlement of young-of-the-year winter flounder has not declined as sharply as adult abundance, suggesting that juveniles are experiencing higher mortality following settlement. The recent increase of blue crab (Callinectes sapidus) abundance in the New York region raises the possibility that new sources of predation may be contributing to juvenile winter flounder mortality. To investigate this possibility we developed and validated a method to specifically detect winter flounder mitochondrial control region DNA sequences in the gut contents of blue crabs. A survey of 55 crabs collected from Shinnecock Bay (along the south shore of Long Island, New York) in July, August, and September of 2011 showed that 12 of 42 blue crabs (28.6%) from which PCR-amplifiable DNA was recovered had consumed winter flounder in the wild, empirically supporting the trophic link between these species that has been widely speculated to exist. This technique overcomes difficulties with visual identification of the often unrecognizable gut contents of decapod crustaceans, and modifications of this approach offer valuable tools to more broadly address their feeding habits on a wide variety of species.

  18. Functional morphology of comminuting feeding structures of Trichodactylus borellianus (Brachyura, Decapoda, Trichodactylidae), an omnivorous freshwater crab.

    PubMed

    Carvalho, Débora de Azevedo; Viozzi, Maria Florencia; Collins, Pablo Agustín; Williner, Verónica

    2017-07-01

    Crustaceans exhibit great diversity of feeding structures with morphological traits that are useful to infer the general trophic habits of species. In this study, we analyzed the functional morphology of comminuting feeding structures (mandibles, chelipeds, gastric mill) of the freshwater crab Trichodactylus borellianus directly related with the food fragmentation. The heterochely and mechanical advantage (MA) of the chelae were also studied. In both analyses, we considered the relationship between morphology and the natural diet. We expected to find a consistent relation between feeding habits and morphological traits. In general, we found simple structures armed with uniform setal systems and feeding appendages without pronounced teeth or spines. Mandibles have primarily cutting functions, helping with the food anchoring and fragmentation with mandibular palps armed with pappose setae. Chelipeds were covered with spines and simple setae. Adult males exhibited right-handedness with high MA of the major chelae. The ingested, relatively large pieces of food are finally chewed by a gastric mill equipped with sharp cusps characteristic of decapods with low ingestion of crude fiber material. The morphology of the feeding apparatus revealed that it is well adapted to an omnivorous diet, being able to cope with dietary changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Biomolecular changes that occur in the antennal gland of the giant freshwater prawn (Machrobrachium rosenbergii)

    PubMed Central

    Kruangkum, Thanapong; Wang, Tianfang; Zhao, Min; Ventura, Tomer; Mitu, Shahida Akter; Hodson, Mark P.; Shaw, Paul N.; Sobhon, Prasert

    2017-01-01

    In decapod crustaceans, the antennal gland (AnG) is a major primary source of externally secreted biomolecules, and some may act as pheromones that play a major role in aquatic animal communication. In aquatic crustaceans, sex pheromones regulate reproductive behaviours, yet they remain largely unidentified besides the N-acetylglucosamine-1,5-lactone (NAGL) that stimulates male to female attraction. In this study, we used an AnG transcriptome of the female giant freshwater prawn (Macrobrachium rosenbergii) to predict the secretion of 226 proteins, including the most abundantly expressed transcripts encoding the Spaetzle protein, a serine protease inhibitor, and an arthropodial cuticle protein AMP 8.1. A quantitative proteome analysis of the female AnG at intermolt, premolt and postmolt, identified numerous proteins of different abundances, such as the hemocyanin subunit 1 that is most abundant at intermolt. We also show that hemocyanin subunit 1 is present within water surrounding females. Of those metabolites identified, we demonstrate that the NAGL and N-acetylglucosamine (NAG) can bind with high affinity to hemocyanin subunit 1. In summary, this study has revealed components of the female giant freshwater prawn AnG that are released and contribute to further research towards understanding crustacean conspecific signalling. PMID:28662025

  20. Long-term eruptive activity at a submarine arc volcano

    USGS Publications Warehouse

    Embley, R.W.; Chadwick, W.W.; Baker, E.T.; Butterfield, D.A.; Resing, J.A.; de Ronde, Cornel E. J.; Tunnicliffe, V.; Lupton, J.E.; Juniper, S.K.; Rubin, K.H.; Stern, R.J.; Lebon, G.T.; Nakamura, K.-I.; Merle, S.G.; Hein, J.R.; Wiens, D.A.; Tamura, Y.

    2006-01-01

    Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes. ?? 2006 Nature Publishing Group.

  1. The fossil record of ecdysis, and trends in the moulting behaviour of trilobites.

    PubMed

    Daley, Allison C; Drage, Harriet B

    2016-03-01

    Ecdysis, the process of moulting an exoskeleton, is one of the key characters uniting arthropods, nematodes and a number of smaller phyla into Ecdysozoa. The arthropod fossil record, particularly trilobites, eurypterids and decapod crustaceans, yields information on moulting, although the current focus is predominantly descriptive and lacks a broader evolutionary perspective. We here review literature on the fossil record of ecdysis, synthesising research on the behaviour, evolutionary trends, and phylogenetic significance of moulting throughout the Phanerozoic. Approaches vary widely between taxonomic groups, but an overall theme uniting these works suggests that identifying moults in the palaeontological record must take into account the morphology, taphonomy and depositional environment of fossils. We also quantitatively analyse trends in trilobite ecdysis based on a newly generated database of published incidences of moulting behaviour. This preliminary work reveals significant taxonomic and temporal signal in the trilobite moulting fossil record, with free cheek moulting being prevalent across all Orders and throughout the Phanerozoic, and peaks of cephalic moulting in Phacopida during the Ordovician and rostral plate moulting in Redlichiida during the Cambrian. This study and a review of the literature suggest that it is feasible to extract large-scale evolutionary information from the fossil record of moulting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Optimization of the incubation time and temperature for spermatozoa extraction in freshwater crayfish Pontastacus leptodactylus (Eschscholtz, 1823).

    PubMed

    Farhadi, Ardavan; Harlıoğlu, Muzaffer Mustafa; Gür, Seyfettin; Acısu, Tutku Can

    2018-06-01

    Determination and control of spermatozoa quality in crustacean aquaculture is an important issue for successful and controlled reproduction. Investigation of spermatozoa number in spermatophores is a basic and common parameter for determining the reproductive quality in farmed decapods. In the present study, spermatozoa extraction from spermatophores located in the ductus deferens was conducted in Pontastacus leptodactylus using different incubation times and temperatures. The results indicate that the duration of incubation and temperature affected (P < 0.05) spermatozoa extraction. Greater temperatures (40 and 75 °C) resulted in a reduction (P < 0.05) in number of extracted spermatozoa. In contrast, more spermatozoa were extracted when the 4 and 23 °C temperatures were imposed. After 4 h of incubation, the number of extracted spermatozoa were greatest in number at 23 °C. In conclusion, the greater numbers of crayfish spermatozoa can be obtained when the ductus deferens containing spermatophores is incubated at 23 °C for 4 h as compared with other temperatures and incubation durations. The results of present study are useful for assessing spermatozoa quality in aquaculture as well as the extraction of spermatozoa for research purposes. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Ichnofabrics of the Capdevila Formation (early Eocene) in the Los Palacios Basin (western Cuba): Paleoenvironmental and paleoecological implications

    NASA Astrophysics Data System (ADS)

    Villegas-Martín, Jorge; Netto, Renata Guimarães; Lavina, Ernesto Luis Correa; Rojas-Consuegra, Reinaldo

    2014-12-01

    The ichnofabrics present in the early Eocene siliciclastic deposits of the Capdevila Formation exposed in the Pinar del Rio area (Los Palacios Basin, western Cuba) are analyzed in this paper and their paleoecological and paleoenvironmental significance are discussed. Nine ichnofabrics were recognized in the dominantly sandy sedimentary succession: Ophiomorpha, Asterosoma, Thalassinoides, Palaeophycus, Scolicia, Bichordites-Thalassinoides, Rhizocorallium, Scolicia-Thalassinoides and rhizobioturbation. Diversity of ichnofauna is low and burrows made by detritus-feeding organisms in well oxygenated and stenohaline waters predominate. Suites of the Cruziana and Skolithos Ichnofacies lacking their archetypical characteristics were recognized, being impoverished in diversity and presenting dominance of echinoderm and decapods crustacean burrows as a response to the environmental stress caused by the high frequency of deposition. The ichnofabric distribution in the studied succession, its recurrence in the sandstone beds and the presence of a Glossifungites Ichnofacies suite with rhizobioturbation associated reflect a shoaling-upward event with subaerial exposure of the substrate. The integrated analysis of the ichnology and the sedimentary facies suggests deposition in a shallow slope frequently impacted by gravitational flows and high-energy events. The evidence of substrate exposure indicates the occurrence of a forced regression and suggests the existence of a sequence boundary at the top of the Capdevila Formation.

  4. The olfactory pathway mediates sheltering behavior of Caribbean spiny lobsters, Panulirus argus, to conspecific urine signals.

    PubMed

    Horner, Amy J; Weissburg, Marc J; Derby, Charles D

    2008-03-01

    The "noses" of diverse taxa are organized into different subsystems whose functions are often not well understood. The "nose" of decapod crustaceans is organized into two parallel pathways that originate in different populations of antennular sensilla and project to specific neuropils in the brain-the aesthetasc/olfactory lobe pathway and the non-aesthetasc/lateral antennular neuropil pathway. In this study, we investigated the role of these pathways in mediating shelter selection of Caribbean spiny lobsters, Panulirus argus, in response to conspecific urine signals. We compared the behavior of ablated animals and intact controls. Our results show that control and non-aesthetasc ablated lobsters have a significant overall preference for shelters emanating urine over control shelters. Thus the non-aesthetasc pathway does not play a critical role in shelter selection. In contrast, spiny lobsters with aesthetascs ablated did not show a preference for either shelter, suggesting that the aesthetasc/olfactory pathway is important for processing social odors. Our results show a difference in the function of these dual chemosensory pathways in responding to social cues, with the aesthetasc/olfactory lobe pathway playing a major role. We discuss our results in the context of why the noses of many animals contain multiple parallel chemosensory systems.

  5. Spiny lobsters detect conspecific blood-borne alarm cues exclusively through olfactory sensilla.

    PubMed

    Shabani, Shkelzen; Kamio, Michiya; Derby, Charles D

    2008-08-01

    When attacked by predators, diverse animals actively or passively release molecules that evoke alarm and related anti-predatory behavior by nearby conspecifics. The actively released molecules are alarm pheromones, whereas the passively released molecules are alarm cues. For example, many insects have alarm-signaling systems that involve active release of alarm pheromones from specialized glands and detection of these signals using specific sensors. Many crustaceans passively release alarm cues, but the nature of the cues, sensors and responses is poorly characterized. Here we show in laboratory and field experiments that injured Caribbean spiny lobsters, Panulirus argus, passively release alarm cues via blood (hemolymph) that induce alarm responses in the form of avoidance and suppression of feeding. These cues are detected exclusively through specific olfactory chemosensors, the aesthetasc sensilla. The alarm cues for Caribbean spiny lobsters are not unique to the species but do show some phylogenetic specificity: P. argus responds primarily with alarm behavior to conspecific blood, but with mixed alarm and appetitive behaviors to blood from the congener Panulirus interruptus, or with appetitive behaviors to blood from the blue crab Callinectes sapidus. This study lays the foundation for future neuroethological studies of alarm cue systems in this and other decapod crustaceans.

  6. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities.

    PubMed

    Fabricius, K E; De'ath, G; Noonan, S; Uthicke, S

    2014-01-22

    The ecological effects of ocean acidification (OA) from rising atmospheric carbon dioxide (CO2) on benthic marine communities are largely unknown. We investigated in situ the consequences of long-term exposure to high CO2 on coral-reef-associated macroinvertebrate communities around three shallow volcanic CO2 seeps in Papua New Guinea. The densities of many groups and the number of taxa (classes and phyla) of macroinvertebrates were significantly reduced at elevated CO2 (425-1100 µatm) compared with control sites. However, sensitivities of some groups, including decapod crustaceans, ascidians and several echinoderms, contrasted with predictions of their physiological CO2 tolerances derived from laboratory experiments. High CO2 reduced the availability of structurally complex corals that are essential refugia for many reef-associated macroinvertebrates. This loss of habitat complexity was also associated with losses in many macroinvertebrate groups, especially predation-prone mobile taxa, including crustaceans and crinoids. The transition from living to dead coral as substratum and habitat further altered macroinvertebrate communities, with far more taxa losing than gaining in numbers. Our study shows that indirect ecological effects of OA (reduced habitat complexity) will complement its direct physiological effects and together with the loss of coral cover through climate change will severely affect macroinvertebrate communities in coral reefs.

  7. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities

    PubMed Central

    Fabricius, K. E.; De'ath, G.; Noonan, S.; Uthicke, S.

    2014-01-01

    The ecological effects of ocean acidification (OA) from rising atmospheric carbon dioxide (CO2) on benthic marine communities are largely unknown. We investigated in situ the consequences of long-term exposure to high CO2 on coral-reef-associated macroinvertebrate communities around three shallow volcanic CO2 seeps in Papua New Guinea. The densities of many groups and the number of taxa (classes and phyla) of macroinvertebrates were significantly reduced at elevated CO2 (425–1100 µatm) compared with control sites. However, sensitivities of some groups, including decapod crustaceans, ascidians and several echinoderms, contrasted with predictions of their physiological CO2 tolerances derived from laboratory experiments. High CO2 reduced the availability of structurally complex corals that are essential refugia for many reef-associated macroinvertebrates. This loss of habitat complexity was also associated with losses in many macroinvertebrate groups, especially predation-prone mobile taxa, including crustaceans and crinoids. The transition from living to dead coral as substratum and habitat further altered macroinvertebrate communities, with far more taxa losing than gaining in numbers. Our study shows that indirect ecological effects of OA (reduced habitat complexity) will complement its direct physiological effects and together with the loss of coral cover through climate change will severely affect macroinvertebrate communities in coral reefs. PMID:24307670

  8. Reproductive traits of the symbiotic pea crab Austinotheres angelicus (Crustacea, Pinnotheridae) living in Saccostrea palmula (Bivalvia, Ostreidae), Pacific coast of Costa Rica

    PubMed Central

    Salas-Moya, Carolina; Mena, Sebastián; Wehrtmann, Ingo S.

    2014-01-01

    Abstract Pea crabs of the family Pinnotheridae exhibit a symbiotic life style and live associated with a variety of different marine organisms, especially bivalves. Despite the fact that pea crabs can cause serious problems in bivalve aquaculture, the available information about the ecology of these crabs from Central America is extremely limited. Therefore, the present study aimed to describe different reproductive features of the pinnotherid crab Austinotheres angelicus associated with the oyster Saccostrea palmula in the Golfo de Nicoya, Pacific coast of Costa Rica. Monthly sampling was conducted from April to December 2012. Average carapace width (CW) of the 47 analyzed ovigerous females was 7.62 mm. The species produced on average 2677 ± 1754 recently -extruded embryos with an average volume of 0.020 ± 0.003 mm3; embryo volume increased during embryogenesis by 21%, but did not vary significantly between developmental stages. Brood mass volume varied greatly (between 11.7 and 236.7 mm3), and increased significantly with female CW. Females invested on average 76.7% (minimum: 21.7%; maximum: 162.8%) of their body weight in brood production, which confirms a substantially higher energy allocation for embryo production in pinnotherid crabs compared to free-living decapods. PMID:25561840

  9. Vitellogenin and vitellogenin receptor gene expression and 20-hydroxyecdysone concentration in Macrobrachium rosenbergii exposed to chlordecone.

    PubMed

    Lafontaine, Anne; Hanikenne, Marc; Boulangé-Lecomte, Céline; Forget-Leray, Joëlle; Thomé, Jean-Pierre; Gismondi, Eric

    2016-10-01

    Chlordecone is a persistent organochlorine pesticide widely used in Guadeloupe (French West Indies) to control the banana weevil Cosmopolites sordidus. Although it was previously highlighted that chlordecone may affect the reproduction and growth of vertebrate species, little information is available on the chlordecone effects in invertebrates. The present study investigated the effects of chlordecone on a hormone and a protein having key roles in reproduction and growth of the decapod crustacean Macrobrachium rosenbergii, by measuring the 20-hydroxyecdysone concentration, vitellogenin, and vitellogenin receptor gene expression, as well as the bioconcentration of chlordecone in exposed prawns. First, the results revealed that chlordecone was accumulated in M. rosenbergii. Then, it was found that Vg and VgR gene expression were increased in male and female M. rosenbergii exposed to chlordecone for 90 and 240 days, while the 20-hydroxyecdysone concentrations were decreased. This work suggests that chlordecone accumulates in prawn tissues and could affect key molecules involved in the reproduction and the growth of the invertebrate M. rosenbergii. However, many questions remain unresolved regarding the impacts of chlordecone on growth and reproduction and the signaling pathways responsible for these effects, as well as the potential role of confounding factors present in in situ studies.

  10. Facultative parasitism by the bivalve Kurtiella pedroana in the sand crab Emerita analoga

    USGS Publications Warehouse

    Bhaduri, Ritin; Valentich-Scott, Paul; Hilgers, Mark; Singh, Rajvir; Hickman, Mikaila; Lafferty, Kevin D.

    2017-01-01

    It is rare that an organism capable of independent or commensalistic existence can also become endoparasitic on a host. In this study, we documented a potential step toward parasitism in the commensal clam Kurtiella pedroana (Bivalvia: Galeommatoidea). Galeommatoideans are known commensals of various invertebrates, including crustaceans. Emerita analoga (Decapoda: Hippidae) is an abundant intertidal decapod inhabiting sandy beaches of the Pacific coast of North and South America. Crabs collected from Monterey Bay, California, were measured and examined externally and internally for associated molluscs. Out of the 520 crabs, 37 large female individuals harbored 49 bivalves (prevalence of 7.11% and mean intensity of 1.3). Forty-one ectocommensal clams were either inside the crab's branchial chambers or on their lateroventral surfaces, and were attached by byssal threads. Our key finding was eight clams that lacked byssal threads and were living in the hemocoel. These internal clams were significantly smaller than the ectocommensals. Because these internal clams lacked access to their normal food, we hypothesize they might have fed on their host's hemolymph as would a parasite. This clam species likely can't reproduce inside its host, implying that endoparasitism is a dead-end state for K. pedroana. Facultative parasitism in a free-living or an ectocommensal is uncommon and suggests a pathway to parasitism.

  11. Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans.

    PubMed

    Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Madsen, Peter Teglberg; Wang, Tobias; Bayley, Mark

    2015-06-01

    Thermal sensitivity of the cardiorespiratory oxygen supply capacity has been proposed as the cardinal link underlying the upper boundary of the temperature niche in aquatic ectotherms. Here we examined the evidence for this link in two eurythermal decapods, the Giant tiger shrimp (Penaeus monodon) and the European crayfish (Astacus astacus). We found that both species have a temperature resistant cardiorespiratory system, capable of maintaining oxygen delivery up to their upper critical temperature (Tcrit). In neither species was Tcrit reduced in hypoxia (60% air saturation) and both species showed an exponential increase in heart and gill ventilation rates up to their Tcrit. Further, failure of action potential conduction in preparations of A. astacus motor neurons coincided with Tcrit, indicating that compromised nervous function may provide the underlying determinant for Tcrit rather than oxygen delivery. At high temperatures, absolute aerobic scope was maintained in P. monodon, but reduced in A. astacus. However, A. astacus also displayed reduced exercise intensity indicating that impaired muscle performance with resulting reduced tissue oxygen demand may explain the reduced scope rather than insufficient oxygen supply capacity. This interpretation agrees with early literature on aquatic ectotherms, correlating loss of nervous function with impaired locomotion as temperatures approach Tcrit.

  12. Vulnerability of freshwater native biodiversity to non-native ...

    EPA Pesticide Factsheets

    Background/Question/Methods Non-native species pose one of the greatest threats to native biodiversity. The literature provides plentiful empirical and anecdotal evidence of this phenomenon; however, such evidence is limited to local or regional scales. Employing geospatial analyses, we investigate the potential threat of non-native species to threatened and endangered aquatic animal taxa inhabiting unprotected areas across the continental US. We compiled distribution information from existing publicly available databases at the watershed scale (12-digit hydrologic unit code). We mapped non-native aquatic plant and animal species richness, and an index of cumulative invasion pressure, which weights non-native richness by the time since invasion of each species. These distributions were compared to the distributions of native aquatic taxa (fish, amphibians, mollusks, and decapods) from the International Union for the Conservation of Nature (IUCN) database. We mapped the proportion of species listed by IUCN as threatened and endangered, and a species rarity index per watershed. An overlay analysis identified watersheds experiencing high pressure from non-native species and also containing high proportions of threatened and endangered species or exhibiting high species rarity. Conservation priorities were identified by generating priority indices from these overlays and mapping them relative to the distribution of protected areas across the US. Results/Conclusion

  13. Dancing for Food in the Deep Sea: Bacterial Farming by a New Species of Yeti Crab

    PubMed Central

    Thurber, Andrew R.; Jones, William J.; Schnabel, Kareen

    2011-01-01

    Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3rd maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins. PMID:22140426

  14. Dancing for food in the deep sea: bacterial farming by a new species of Yeti crab.

    PubMed

    Thurber, Andrew R; Jones, William J; Schnabel, Kareen

    2011-01-01

    Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3(rd) maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins.

  15. Trophic amplification of climate warming

    PubMed Central

    Kirby, Richard R.; Beaugrand, Gregory

    2009-01-01

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems. PMID:19740882

  16. Seasonal habitat-use patterns of nekton in a tide-restricted and unrestricted New England salt marsh

    USGS Publications Warehouse

    Raposa, K.B.; Roman, C.T.

    2001-01-01

    Many New England salt marshes remain tide-restricted or are undergoing tidal restoration. Hydrologic manipulation of salt marshes affects marsh biogeochemistry and vegetation patterns, but responses by fishes and decapod crustaceans (nekton) remain unclear, This study examines nekton habitat-use patterns in the tide-restricted Hatches Harbor salt marsh (Provincetown, Massachusetts) relative to a downstream, unrestricted marsh. Nekton assemblages were sampled in tidal creek, marsh pool, and salt marsh surface habitats. Pools and creeks were sampled every two weeks for one year to account for seasonal variability, and the marsh surface was sampled at two-week intervals in summer and fall. Density, richness, and community composition of nekton in creek and marsh surface habitats were similar between the unrestricted and restricted marsh, but use of pools differed drastically on the two sides of the tide-restricting dike. In 95% of the cases tested, restricted marsh habitats provided equal or greater habitat value for nekton than the same habitat in the unrestricted marsh (based on density), suggesting that the restricted marsh did not provide a degraded habitat for most species. For some species, the restricted marsh provided nursery, breeding, and overwintering habitat during different seasons, and tidal restoration of this salt marsh must be approached with care to prevent losses of these valuable marsh functions.

  17. Exoskeletons across the Pancrustacea: Comparative Morphology, Physiology, Biochemistry and Genetics.

    PubMed

    Roer, Robert; Abehsera, Shai; Sagi, Amir

    2015-11-01

    The exoskeletons of pancrustaceans, as typified by decapod crustaceans and insects, demonstrate a high degree of similarity with respect to histology, ultrastructure, function, and composition. The cuticular envelope in insects and the outer epicuticle in crustaceans both serve as the primary barrier to permeability of the exoskeleton, preventing loss of water and ions to the external medium. Prior to and following ecdysis, there is a sequence of expression and synthesis of different proteins by the cuticular epithelium for incorporation into the pre-exuvial and post-exuvial procuticle of insects and the exocuticle and endocuticle of crustaceans. Both exhibit regional differences in cuticular composition, e.g., the articular (intersegmental) membranes of insects and the arthrodial (joint) membranes of crustaceans. The primary difference between these cuticles is the ability to mineralize. Crustaceans' cuticles express a unique suite of proteins that provide for the nucleation and deposition of calcium carbonate. Orthologs of genes discussed in the present review were mined from a recently completed cuticular transcriptome of the crayfish, Cherax quadricarinatus, providing new insights into the nature of these proteins. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  18. Comparative Ultrastructure and Carbohydrate Composition of Gastroliths from Astacidae, Cambaridae and Parastacidae Freshwater Crayfish (Crustacea, Decapoda)

    PubMed Central

    Luquet, Gilles; Fernández, María S.; Badou, Aïcha; Guichard, Nathalie; Roy, Nathalie Le; Corneillat, Marion; Alcaraz, Gérard; Arias, José L.

    2012-01-01

    Crustaceans have to cyclically replace their rigid exoskeleton in order to grow.Most of them harden this skeleton by a calcification process. Some decapods (land crabs, lobsters and crayfish) elaborate calcium storage structures as a reservoir of calcium ions in their stomach wall, as so-called gastroliths. For a better understanding of the cyclic elaboration of these calcium deposits, we studied the ultrastructure of gastroliths from freshwater crayfish by using a combination of microscopic and physical techniques. Because sugars are also molecules putatively involved in the elaboration process of these biomineralizations, we also determined their carbohydrate composition. This study was performed in a comparative perspective on crayfish species belonging to the infra-order Astacidea (Decapoda, Malacostraca): three species from the Astacoidea superfamily and one species from the Parastacoidea superfamily. We observed that all the gastroliths exhibit a similar dense network of protein-chitin fibers, from macro- to nanoscale, within which calcium is precipitated as amorphous calcium carbonate. Nevertheless, they are not very similar at the molecular level, notably as regards their carbohydrate composition. Besides glucosamine, the basic carbohydrate component of chitin, we evidenced the presence of other sugars, some of which are species-specific like rhamnose and galacturonic acid whereas xylose and mannose could be linked to proteoglycan components. PMID:24970155

  19. The elusive baseline of marine disease: Are diseases in ocean ecosystems increasing?

    USGS Publications Warehouse

    Ward, Jessica R.; Lafferty, Kevin D.

    2004-01-01

    Disease outbreaks alter the structure and function of marine ecosystems, directly affecting vertebrates (mammals, turtles, fish), invertebrates (corals, crustaceans, echinoderms), and plants (seagrasses). Previous studies suggest a recent increase in marine disease. However, lack of baseline data in most communities prevents a direct test of this hypothesis. We developed a proxy to evaluate a prediction of the increasing disease hypothesis: the proportion of scientific publications reporting disease increased in recent decades. This represents, to our knowledge, the first quantitative use of normalized trends in the literature to investigate an ecological hypothesis. We searched a literature database for reports of parasites and disease (hereafter “disease”) in nine marine taxonomic groups from 1970 to 2001. Reports, normalized for research effort, increased in turtles, corals, mammals, urchins, and molluscs. No significant trends were detected for seagrasses, decapods, or sharks/rays (though disease occurred in these groups). Counter to the prediction, disease reports decreased in fishes. Formulating effective resource management policy requires understanding the basis and timing of marine disease events. Why disease outbreaks increased in some groups but not in others should be a priority for future investigation. The increase in several groups lends urgency to understanding disease dynamics, particularly since few viable options currently exist to mitigate disease in the oceans.

  20. Palynology of carcinolites and limestones from the Baunilha Grande Ecofacies of the Pirabas Formation (Miocene of Pará state, northeastern Brazil)

    NASA Astrophysics Data System (ADS)

    Antonioli, Luzia; de Araújo Távora, Vladimir; Dino, Rodolfo

    2015-10-01

    The Pirabas Formation records important transgressive/regressive marine events in northern Brazil during the Miocene. Here, we present the results of a palynological analysis of four samples from finely stratified gray limestone and associated carbonate concretions bearing decapod crustacean remains. These sampled strata are representatives of the Baunilha Grande Ecofacies, and our analysis enhances the knowledge of local biostratigraphy and paleoecology. The palynoflora is dominated by taxa typical of Neogene tropical areas, such as Zonocostites ramonae (the most common species), together with Retitricolpites and Retitricolporites genera. Commonly represented are the smooth and apiculate trilete/monolete spores (Polypodiisporites, Verrucosisporites, Magnastriatites, and Deltoidospora), in conjunction with some freshwater algae (Ovoidites and Botryococcus). Gymnosperm pollen grains were absent. Marine microplankton (dinoflagellate cysts, acritarchs and foraminiferal test linings) are scarce, although present in all samples. The presence of the index species, Malvacipolloides maristellae and Pachydermites diederixii, co-occurring with Zonocostites ramonae and Lanagiopollis crassa, suggests that these sediments and concretions belong to the "T-13 Malvacipolloides maristellae" palynozone (Jaramillo et al., 2011), considered as late-Early Miocene in age. Palynological and sedimentological evidence further points to a predominantly continental depositional environment with a weak marine influence, as indicated by the persistent presence of sparse dinoflagellate cysts, acritarchs and foraminiferal test linings, typical of a mangrove environment.

  1. Olfactory organ of Octopus vulgaris: morphology, plasticity, turnover and sensory characterization

    PubMed Central

    Polese, Gianluca; Bertapelle, Carla

    2016-01-01

    ABSTRACT The cephalopod olfactory organ was described for the first time in 1844 by von Kölliker, who was attracted to the pair of small pits of ciliated cells on each side of the head, below the eyes close to the mantle edge, in both octopuses and squids. Several functional studies have been conducted on decapods but very little is known about octopods. The morphology of the octopus olfactory system has been studied, but only to a limited extent on post-hatching specimens, and the only paper on adult octopus gives a minimal description of the olfactory organ. Here, we describe the detailed morphology of young male and female Octopus vulgaris olfactory epithelium, and using a combination of classical morphology and 3D reconstruction techniques, we propose a new classification for O. vulgaris olfactory sensory neurons. Furthermore, using specific markers such as olfactory marker protein (OMP) and proliferating cell nuclear antigen (PCNA) we have been able to identify and differentially localize both mature olfactory sensory neurons and olfactory sensory neurons involved in epithelium turnover. Taken together, our data suggest that the O. vulgaris olfactory organ is extremely plastic, capable of changing its shape and also proliferating its cells in older specimens. PMID:27069253

  2. Physiological and biochemical changes during the larval development of a brachyuran crab reared under constant conditions in the laboratory

    NASA Astrophysics Data System (ADS)

    Anger, K.; Harms, J.; Püschel, C.; Seeger, B.

    1989-06-01

    Larvae of the spider crab Hyas araneus were reared in the laboratory at constant conditions (12°C; 32‰S), and their feeding rate ( F), oxygen consumption ( R), nitrogen excretion ( U), and growth were measured in regular intervals of time during development from hatching to metamorphosis. Growth was measured as dry weight ( W), carbon ( C), nitrogen ( N), hydrogen ( H) protein, and lipid. All these physiological and biochemical traits revealed significant changes both from instar to instar and during individual larval moult cycles. Average F was low in the zoea I, reached a maximum in the zoea II, and decreased again in the megalopa. In the zoeal instars, it showed a bell-shaped pattern, with a maximum in the middle (zoea I) or during the first half of the moult cycle (zoea II). Maximum F in the megalopa was observed still earlier, during postmoult. Respiration ( R) increased in the zoeal instars as a linear function of time, whereas it showed a sinusoidal pattern in the megalopa. These findings on variation in F and R during larval development confirm results obtained in previous studies on H. araneus and other decapod species. Excretion ( U) was measured for the first time with a high temporal resolution in crab larvae. It showed in all three larval instars a bell-shaped variation pattern, with a maximum near the middle of the moult cycle, and significantly increasing average values from instar to instar. The atomic O/N ratio followed an inverse pattern, suggesting a maximum utilization of protein as a metabolic substrate during intermoult. Growth data from the present study and from a number of previous studies were compiled, showing consistency of growth patterns, but a considerable degree of variability between larvae from different hatches reared under identical conditions. The data show the following consistent tendencies: during the first part of each larval moult cycle (in postmoult, partly in intermoult), lipids are accumulated at a higher rate than

  3. Acid-base balance and changes in haemolymph properties of the South African rock lobsters, Jasus lalandii, a palinurid decapod, during chronic hypercapnia.

    PubMed

    Knapp, Jarred L; Bridges, Christopher R; Krohn, Janina; Hoffman, Louwrens C; Auerswald, Lutz

    2015-06-05

    Few studies exist reporting on long-term exposure of crustaceans to hypercapnia. We exposed juvenile South African rock lobsters, Jasus lalandii, to hypercapnic conditions of pH 7.3 for 28 weeks and subsequently analysed changes in the extracellular fluid (haemolymph). Results revealed, for the first time, adjustments in the haemolymph of a palinurid crustacean during chronic hypercapnic exposure: 1) acid-base balance was adjusted and sustained by increased bicarbonate and 2) quantity and oxygen binding properties of haemocyanin changed. Compared with lobsters kept under normocapnic conditions (pH 8.0), during prolonged hypercapnia, juvenile lobsters increased bicarbonate buffering of haemolymph. This is necessary to provide optimum pH conditions for oxygen binding of haemocyanin and functioning of respiration in the presence of a strong Bohr Effect. Furthermore, modification of the intrinsic structure of the haemocyanin molecule, and not the presence of molecular modulators, seems to improve oxygen affinity under conditions of elevated pCO2. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Cationic composition and acid-base state of the extracellular fluid, and specific buffer value of hemoglobin from the branchiopod crustacean Triops cancriformis.

    PubMed

    Pirow, Ralph; Buchen, Ina; Richter, Marc; Allmer, Carsten; Nunes, Frank; Günsel, Andreas; Heikens, Wiebke; Lamkemeyer, Tobias; von Reumont, Björn M; Hetz, Stefan K

    2009-04-01

    Recent insights into the allosteric control of oxygen binding in the extracellular hemoglobin (Hb) of the tadpole shrimp Triops cancriformis raised the question about the physico-chemical properties of the protein's native environment. This study determined the cationic composition and acid-base state of the animal's extracellular fluid. The physiological concentrations of potential cationic effectors (calcium, magnesium) were more than one order of magnitude below the level effective to increase Hb oxygen affinity. The extracellular fluid in the pericardial space had a typical bicarbonate concentration of 7.6 mM but a remarkably high CO(2) partial pressure of 1.36 kPa at pH 7.52 and 20 degrees C. The discrepancy between this high CO(2) partial pressure and the comparably low values for water-breathing decapods could not solely be explained by the hemolymph-sampling procedure but may additionally arise from differences in cardiovascular complexity and efficiency. T. cancriformis hemolymph had a non-bicarbonate buffer value of 2.1 meq L(-1) pH(-1). Hb covered 40-60% of the non-bicarbonate buffering power. The specific buffer value of Hb of 1.1 meq (mmol heme)(-1) pH(-1) suggested a minimum requirement of two titratable histidines per heme-binding domain, which is supported by available information from N-terminal sequencing and expressed sequence tags.

  5. On the brain of a crustacean: a morphological analysis of CaMKII expression and its relation to sensory and motor pathways.

    PubMed

    Ammar, Dib; Nazari, Evelise M; Müller, Yara M R; Allodi, Silvana

    2013-01-01

    Calcium/calmodulin kinase II (CaMKII) is a Ca(2+)-activated enzyme that is abundant in vertebrate and invertebrate brains. However, its characterization is poorly addressed in the nervous system of crustaceans, and, to our knowledge, no studies have determined the microanatomical location of CaMKII in a crustacean species. In this study, we found labeling of CaMKII in the eyestalk and brain of the prawn Macrobrachium acanthurus, by means of immunohistochemistry and Western blotting. Antibodies against neuron (ß tubulin III), glutamate receptor (GluA1), and FMRFamide were used in order to further characterize the CaMKII-labeled cells in the brain. In the eyestalk, strong labeling with CaMKII was observed in the photoreceptors. These cells, especially in the rhabdom, were also reactive to anti-ß tubulin III, whereas the pigment cells were labeled with anti-CaMKII. GluA1 co-located with CaMKII in the photoreceptors. Also, CaMKII appeared in the same sites as FMRFamide in the deutocerebrum, including the olfactory lobe, and in the tritocerebrum, specifically in the antennular neuropil, indicating that the synaptic areas in these regions may be related to sensory-motor processing. In the brain, the identification of cells and regions that express CaMKII contributes to the understanding of the processing of neural connections and the modulating role of CaMKII in decapod crustaceans.

  6. Conservation status of Chinese species: (2) Invertebrates.

    PubMed

    Xie, Yan; Wang, Sung

    2007-06-01

    A total of 2441 invertebrate species were evaluated using the IUCN Red List Criteria and Regional Guidelines. Approximately 30 experts were involved in this project, which covered a wide range of species, including jellyfish, corals, planarians, snails, mollusks, bivalves, decapods, benthic crustaceans, arachnids (spiders, scorpions), butterflies, moths, beetles, sea cucumbers, sea urchins, sea stars, acorn worms and lancelets. In general, invertebrate species in China were found to be severely threatened, with 0.9% being critically endangered, 13.44% endangered and 20.63% vulnerable. All species of hermatypic corals and planarians are threatened. More than 80% of evaluated species face serious threat due to habitat destruction by coral collection, logging, non-woody vegetation collection, timber plantations, non-timber plantations, extraction and/or livestock. Other threats are intrinsic factors, harvesting by humans, alien invasive species and pollution. The main intrinsic factors contributing to the high levels of threat are limited dispersal and restricted range. No conservation measures have been taken for 70% of the threatened invertebrates evaluated. Existing conservation measures include: strengthening of national and international legislation (Convention on International Trade in Endangered Species of Wild Fauna and Flora), increasing public awareness, studying population trends/monitoring, and establishment of protected areas. The major conservation measure employed is strengthening of policies. Relative to the situation worldwide (2006 IUCN Red List), there is little information available about invertebrate extinctions in China.

  7. Analysis of Stomach and Gut Microbiomes of the Eastern Oyster (Crassostrea virginica) from Coastal Louisiana, USA

    PubMed Central

    King, Gary M.; Judd, Craig; Kuske, Cheryl R.; Smith, Conor

    2012-01-01

    We used high throughput pyrosequencing to characterize stomach and gut content microbiomes of Crassostrea virginica, the Easter oyster, obtained from two sites, one in Barataria Bay (Hackberry Bay) and the other in Terrebonne Bay (Lake Caillou), Louisiana, USA. Stomach microbiomes in oysters from Hackberry Bay were overwhelmingly dominated by Mollicutes most closely related to Mycoplasma; a more rich community dominated by Planctomyctes occurred in Lake Caillou oyster stomachs. Gut communities for oysters from both sites differed from stomach communities, and harbored a relatively diverse assemblage of phylotypes. Phylotypes most closely related to Shewanella and a Chloroflexi strain dominated the Lake Caillou and Hackberry Bay gut microbiota, respectively. While many members of the stomach and gut microbiomes appeared to be transients or opportunists, a putative core microbiome was identified based on phylotypes that occurred in all stomach or gut samples only. The putative core stomach microbiome comprised 5 OTUs in 3 phyla, while the putative core gut microbiome contained 44 OTUs in 12 phyla. These results collectively revealed novel microbial communities within the oyster digestive system, the functions of the oyster microbiome are largely unknown. A comparison of microbiomes from Louisiana oysters with bacterial communities reported for other marine invertebrates and fish indicated that molluscan microbiomes were more similar to each other than to microbiomes of polychaetes, decapods and fish. PMID:23251548

  8. Flow cytometric characterization of freshwater crayfish hemocytes for the examination of physiological status in wild and captive animals.

    PubMed

    Taylor, Sean; Landman, Michael J; Ling, Nicholas

    2009-09-01

    Enumeration of invertebrate hemocytes is a potentially powerful tool for the determination of physiological effects of extrinsic stressors, such as hypoxia, disease, and toxicant exposure. A detailed flow cytometric method of broad application was developed for the objective characterization and enumeration of the hemocytes of New Zealand freshwater crayfish Paranephrops planifrons for the purpose of physiological health assessment. Hemocyte populations were isolated by flow cytometric sorting based on differential light scatter properties followed by morphological characterization via light microscopy and software image analysis. Cells were identified as hyaline, semigranular, and granular hemocytes based on established invertebrate hemocyte classification. A characteristic decrease in nuclear size, an increase in granularity between the hyaline and granular cells, and the eccentric location of nuclei in granular cells were also observed. The granulocyte subpopulations were observed to possess varying degrees of granularity. The developed methodology was used to perform total and differential hemocyte counts from three lake populations and between wild and captive crayfish specimens. Differences in total and differential hemocyte counts were not observed among the wild populations. However, specimens held in captivity for 14 d exhibited a significant 63% reduction in total hemocyte count, whereas the relative hemocyte proportions remained the same. These results demonstrate the utility of this method for the investigation of subacute stressor effects in selected decapod crustaceans.

  9. Composition and abundance of zooplankton groups from a coral reef lagoon in Puerto Morelos, Quintana Roo, Mexico, during an annual cycle.

    PubMed

    Alvarez-Cadena, José N; Ordóñez-López, Uriel; Almaral-Mendivil, Alma Rosa; Uicab-Sabido, Amira

    2009-09-01

    Zooplankton sampling was carried out monthly from January to December 1990 at station A near the coastline, and station B near the reef barrier, in a tropical coral reef lagoon in the Mexican Caribbean Sea. Samplings were made at midnight, near surface, with a conical net (mouth 0.40 m, mesh 330 microm) for 10 min. Salinity varied from 35.1 to 36.3 psu and temperature from 26.3 to 30.2 degrees C. The Bray-Curtis test applied to these results has defined two seasons: the dry season from November to May, and the wet season from June to October. A total of 37 zooplankton groups were found. Copepods were the most abundant contributing 49.0% of the total capture with Acartia espinata, Calanopia americana and Farranula gracilis as the most numerous. In the total zooplankton, however, cirripeds captured in only 15 samples of 24 were second in abundance (20.9%). Decapods, present all year-round and more abundant during the wet season, were third and contributed 19.2%. The rest of the groups were scarce and only amphipods (2.4%) and larvaceans (2.0%) were relatively abundant. The abundance of captured organisms correlated with the abiotic factors measured, thus, in the dry season, abundance was lower (mean 7.3 orgs/m3), while in the wet season the mean catch was 36.8 orgs/m3.

  10. The Semaphore crab, Heloecius cordiformis: bio-indication potential for heavy metals in estuarine systems.

    PubMed

    MacFarlane; Booth; Brown

    2000-09-01

    Although alterations at the organism level in decapod crustaceans on exposure to heavy metals have been evidenced in the laboratory, little examination of metal effects on morphology and population parameters have been explored in a field-based situation. Relationships between morphological parameters, population demography and heavy metal sediment loadings were examined in conjunction with the accumulation of metals in the Semaphore crab, Heloecius cordiformis, in the Port Jackson and Hawkesbury River estuaries, Sydney, Australia. H. cordiformis exhibited sexual dimorphism, with males having larger carapace width, carapace length, chelae length and total mass than females. Sexes were subsequently treated separately to assess morphological differences among locations. Locations that had greater proportions of females with purple chelae and less females in the population tended to have higher sediment metal levels. These relationships were maintained over time, and could be employed as population-level biological indicators of heavy metal stress. Copper and zinc were regulated in the hepatopancreas of H. cordiformis. Lead was accumulated in the hepatopancreas of H. cordiformis in proportion to sediment lead levels, suggesting the species is both an appropriate candidate for bio-indication of lead pollution, and Pb is the main metal linked with population level differences. Accumulation of lead varied between sexes, indicating that sexes must be monitored separately. Smaller males accumulated more lead than larger males, suggesting size is an important consideration for lead accumulation.

  11. Analysis of Stomach and Gut Microbiomes of the Eastern Oyster (Crassostrea virginica) from Coastal Louisiana, USA

    DOE PAGES

    King, Gary M.; Judd, Craig; Kuske, Cheryl R.; ...

    2012-12-12

    In this paper, we used high throughput pyrosequencing to characterize stomach and gut content microbiomes of Crassostrea virginica, the Easter oyster, obtained from two sites, one in Barataria Bay (Hackberry Bay) and the other in Terrebonne Bay (Lake Caillou), Louisiana, USA. Stomach microbiomes in oysters from Hackberry Bay were overwhelmingly dominated by Mollicutes most closely related to Mycoplasma; a more rich community dominated by Planctomyctes occurred in Lake Caillou oyster stomachs. Gut communities for oysters from both sites differed from stomach communities, and harbored a relatively diverse assemblage of phylotypes. Phylotypes most closely related to Shewanella and a Chloroflexi strainmore » dominated the Lake Caillou and Hackberry Bay gut microbiota, respectively. While many members of the stomach and gut microbiomes appeared to be transients or opportunists, a putative core microbiome was identified based on phylotypes that occurred in all stomach or gut samples only. The putative core stomach microbiome comprised 5 OTUs in 3 phyla, while the putative core gut microbiome contained 44 OTUs in 12 phyla. These results collectively revealed novel microbial communities within the oyster digestive system, the functions of the oyster microbiome are largely unknown. Finally, a comparison of microbiomes from Louisiana oysters with bacterial communities reported for other marine invertebrates and fish indicated that molluscan microbiomes were more similar to each other than to microbiomes of polychaetes, decapods and fish.« less

  12. Direct Age Determination of a Subtropical Freshwater Crayfish (Redclaw, Cherax quadricarinatus) Using Ossicular Growth Marks

    PubMed Central

    Leland, Jesse C.; Bucher, Daniel J.; Coughran, Jason

    2015-01-01

    Recent studies have reported that crustacean age determination is possible. We applied a direct ageing method (i.e. transverse cross sectioning of gastric ossicles) to a subtropical freshwater crayfish (Cherax quadricarinatus) sourced from an aquaculture population. Growth mark periodicity and the potential for chronological depositions were investigated by staining C. quadricarinatus with calcein and examining their ossicles a year later. Pterocardiac ossicles were superior to other ageing structures (i.e. other ossicles and eyestalks) and produced repeatable between-reader counts (87% were corroborated and 13% varied by ±1). C. quadricarinatus size-at-age data (for an aquaculture population) was described by a von Bertalanffy growth equation (L ∞ = 32 mm occipital carapace length; K = 0.64; t 0 = –0.18; R2 = 0.81). Ossicular growth marks did not correspond to moult history. The calcein stain was retained over an annual cycle comprising multiple moults, demonstrating that pterocardiac ossicles retain chronological information. The maximum age (3+) corroborated other indirectly-obtained longevity estimates for C. quadricarinatus. Multiple lines of evidence indicate that the growth marks in C. quadricarinatus ossicles are probably deposited annually during winter. The ability to extract age information from subtropical decapods provides substantial opportunities for advancing fisheries and conservation research globally, but further research is needed to provide a definitive validation and elucidate the mechanism governing the accrual of ossicular growth marks. PMID:26309228

  13. Genotype Reconstruction of Paternity in European Lobsters (Homarus gammarus).

    PubMed

    Ellis, Charlie D; Hodgson, David J; André, Carl; Sørdalen, Tonje K; Knutsen, Halvor; Griffiths, Amber G F

    2015-01-01

    Decapod crustaceans exhibit considerable variation in fertilisation strategies, ranging from pervasive single paternity to the near-ubiquitous presence of multiple paternity, and such knowledge of mating systems and behaviour are required for the informed management of commercially-exploited marine fisheries. We used genetic markers to assess the paternity of individual broods in the European lobster, Homarus gammarus, a species for which paternity structure is unknown. Using 13 multiplexed microsatellite loci, three of which are newly described in this study, we genotyped 10 eggs from each of 34 females collected from an Atlantic peninsula in the south-western United Kingdom. Single reconstructed paternal genotypes explained all observed progeny genotypes in each of the 34 egg clutches, and each clutch was fertilised by a different male. Simulations indicated that the probability of detecting multiple paternity was in excess of 95% if secondary sires account for at least a quarter of the brood, and in excess of 99% where additional sire success was approximately equal. Our results show that multiple paternal fertilisations are either absent, unusual, or highly skewed in favour of a single male among H. gammarus in this area. Potential mechanisms upholding single paternal fertilisation are discussed, along with the prospective utility of parentage assignments in evaluations of hatchery stocking and other fishery conservation approaches in light of this finding.

  14. Biodiversity and diel variation of the benthohyponeuston: A case study of the Northeast Black Sea

    NASA Astrophysics Data System (ADS)

    Vereshchaka, Alexander L.; Anokhina, Ludmila L.

    2015-12-01

    The neustal is a specific habitat of oceans, which significantly differs in abiotic parameters from the waters below. One of the most significant components of the coastal neustonic fauna is the benthohyponeuston migrating diurnally between benthic and neustonic realms. Data on this fauna are fragmentary and contradictory, partly due to lack of the criteria to distinguish benthohyponeuston from other benthopelagic animals diurnally migrating to the bulk water from the seafloor. We propose a criterion to quantify the degree of aggregation/avoidance of the neustal zone, reveal four distinct ecological groups and describe patterns of their overnight dynamics. Benthohyponeuston appears in open water at sunset, its biomass most rapidly increases one hour after sunset. Cumaceans, mysids and polychaetes make significant contribution during first three hours after sunset. Decapods are important around midnight and 3 h later. Amphipods are significant overnight. By analogy with the benthopelagic species, we define the benthohyponeuston as benthic animals, which are associated with the neustal zone at least at one stage of their life cycle. This association is necessary for reproduction, dispersal or feeding - that represent three basic pathways connecting neustonic and benthic/benthopelagic coastal communities below. The data on benthohyponeuston and patterns of its overnight dynamics will help in a better understanding of vertical migrations in the coastal zone and in estimating diurnal fluxes of organic matter.

  15. Community response of zooplankton to oceanographic changes (2002-2012) in the central/southern upwelling system of Chile

    NASA Astrophysics Data System (ADS)

    Medellín-Mora, Johanna; Escribano, Ruben; Schneider, Wolfgang

    2016-03-01

    A 10-year time series (2002-2012) at Station 18 off central/southern Chile allowed us to study variations in zooplankton along with interannual variability and trends in oceanographic conditions. We used an automated analysis program (ZooImage) to assess changes in the mesozooplankton size structure and the composition of the taxa throughout the entire community. Oceanographic conditions changed over the decade: the water column became less stratified, more saline, and colder; the mixed layer deepened; and the oxygen minimum zone became shallower during the second half of the time series (2008-2012) in comparison with the first period (2002-2007). Both the size structure and composition of the zooplankton were significantly associated with oceanographic changes. Taxonomic and size diversity of the zooplankton community increased to the more recent period. For the second period, small sized copepods (<1 mm) decreased in abundance, being replaced by larger sized (>1.5 mm) and medium size copepods (1-1.5 mm), whereas euphausiids, decapod larvae, appendicularian and ostracods increased their abundance during the second period. These findings indicated that the zooplankton community structure in this eastern boundary ecosystem was strongly influenced by variability of the upwelling process. Thus, climate-induced forcing of upwelling trends can alter the zooplankton community in this highly productive region with potential consequences for the ecosystem food web.

  16. The decapod red pigment-concentrating hormone (Panbo-RPCH) is the first identified neuropeptide of the order Plecoptera and is interpreted as homoplastic character state.

    PubMed

    Gäde, Gerd; Marco, Heather G

    2015-09-15

    This paper presents the first neuropeptide structure, identified by mass spectrometry, in two species of Plectoptera (stoneflies) and in one species of the coleopteran family Lycidae. In all three species, the octapeptide Panbo-RPCH (first identified in Pandalus borealis as a red pigment-concentrating hormone: pGlu-Leu-Asn-Phe-Ser-Pro-Gly-Trp amide) is present. A review of the literature available on invertebrate neuropeptides that are identified or predicted from expressed sequence tags, transcriptome shotgun assemblies, and from fully sequenced genomes, show that Panbo-RPCH is found in Malacostraca (Crustacea) and certain hemipteran Heteroptera (Insecta). To date, Panbo-RPCH has not been shown present in non-Malacostracan crustaceans, nor in basal taxa of the Insecta (Archaeognatha, Zygentoma, Ephemeroptera, Odonata). The present data adds to knowledge on the distribution of Panbo-RPCH, and when taking into account the most accepted, current phylogenetics of the Crustacea-Hexapoda relationship, this distribution of Panbo-RPCH in Malacostraca, Plecoptera, some hemipteran Heteroptera and in Coleoptera (Lycidae) can best be explained by homoplasy, implying parallel evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Astacin Family Metallopeptidases and Serine Peptidase Inhibitors in Spider Digestive Fluid

    PubMed Central

    Foradori, Matthew J.; Tillinghast, Edward K.; Smith, J. Stephen; Townley, Mark A.; Mooney, Robert E.

    2006-01-01

    Digestive fluid of the araneid spider Argiope aurantia is known to contain zinc metallopeptidases. Using anion-exchange chromatography, size-exclusion chromatography, sucrose density gradient centrifugation, and gel electrophoresis, we isolated two lower-molecular-mass peptidases, designated p16 and p18. The N-terminal amino acid sequences of p16 (37 residues) and p18 (20 residues) are 85% identical over the first 20 residues and are most similar to the N-terminal sequences of the fully active form of meprin (β subunits) from several vertebrates (47–52% and 50–60% identical, respectively). Meprin is a peptidase in the astacin (M12A) subfamily of the astacin (M12) family. Additionally, a 66-residue internal sequence obtained from p16 aligns with the conserved astacin subfamily domain. Thus, at least some spider digestive peptidases appear related to astacin of decapod crustaceans. However, important differences between spider and crustacean metallopeptidases with regard to isoelectric point and their susceptibility to hemolymph-borne inhibitors are demonstrated. Anomalous behavior of the lower-molecular-mass Argiope peptidases during certain fractionation procedures indicates that these peptidases may take part in reversible associations with each other or with other proteins. A. aurantia digestive fluid also contains inhibitory activity effective against insect digestive peptidases. Here we present evidence for at least thirteen, heat-stable serine peptidase inhibitors ranging in molecular mass from about 15 to 32 kDa. PMID:16458560

  18. Freshwater scarcity effects on the aquatic macrofauna of a European Mediterranean-climate estuary.

    PubMed

    González-Ortegón, Enrique; Baldó, Francisco; Arias, Alberto; Cuesta, Jose A; Fernández-Delgado, Carlos; Vilas, César; Drake, Pilar

    2015-01-15

    In the Mediterranean-climate zone, recurrent drought events and increasing water demand generally lead to a decrease in freshwater input to estuaries. This water scarcity may alter the proper function of estuaries as nursery areas for marine species and as permanent habitat for estuarine species. A 12-year data set of the aquatic macrofauna (fish, decapod and mysid crustaceans) in a Mediterranean estuary (Guadalquivir estuary, South Spain) was analysed to test if water scarcity favours the nursery function of regional estuaries to the detriment of permanent estuarine inhabitants. Target species typically displayed a salinity-related distribution and estuarine salinisation in dry years resulted in a general upstream community displacement. However, annual densities of marine species were neither consistently higher in dry years nor estuarine species during wet years. Exceptions included the estuarine mysid Neomysis integer and the marine shrimp Crangon crangon, which were more abundant in wet and dry years, respectively. High and persistent turbidity, a collateral effect of water scarcity, altered both the structural (salinity-related pattern) and functional (key prey species and predator density) community characteristics, chiefly after the second drought period of the analysis. The observed high inter-year environmental variability, as well as species-specific effects of water scarcity, suggests that exhaustive and long-term sampling programmes will be required for rigorously monitoring the estuarine communities of the Mediterranean-climate region. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Environmental features and macrofauna of Kahana Estuary, Oahu, Hawaii

    USGS Publications Warehouse

    Maciolek, J.A.; Timbol, A.S.

    1981-01-01

    Lack of ecological information on Hawaiian estuaries prompted an intensive 2-year study of a small (5.7 ha) stream-mouth estuary on windward Oahu. Water quality and macrofauna were sampled weekly at seven stations. The water mass was strongly stratified vertically except during freshets. Average values for water column temperature and bottom salinity were 23.2°C and 12‰ at the head to 28.3°C and 28‰ at the mouth. Dissolved oxygen saturation in the water column varied from about 50% at night to 140% in the afternoon. Usually, bottom waters were 3–6°C warmer than surface waters and sometimes showed severe oxygen depletion.Macrofauna, collected primarily by seining, consisted mainly of decapod crustaceans (four species of crabs, seven species of shrimps) and fishes (24 species). Other typical estuarine taxons (mollusks, barnacles, polychaetes) were scarce or absent. Diversity increased seaward from 14 species near the estuary head to 29 species near the mouth. Three species of crustaceans and six of fishes were captured at all stations. Most abundant were the native prawn, Macrobrachium grandimanus, and mullet, Mugil cephalus. Perennially resident adults occurred among crustaceans and gobioid fishes; most other fishes were present as juveniles and sporadic adults. Comparisons with other data suggest that more than 50 species of native fishes may occur in Hawaiian estuaries, and that estuarine macrofaunal diversity on oceanic islands is much lower than on continents at similar latitudes.

  20. Rhythmic Larval Release in the Crab Dyspanopeus sayi: Entrainment by Light:Dark and Temperature Cycles

    NASA Astrophysics Data System (ADS)

    Sanchez, K.

    2016-02-01

    The release of larvae from the abdomen of the common subtidal crab Dyspanopeus sayi is not random, but instead is associated with several environmental rhythms, in particular light:dark rhythms. Previous work has given us a model which suggests the mother perceives the light:dark cycle and entrains this rhythm upon the embryos, which then stimulate release when the time is right. For this project the light:dark cycle and 24-hour temperature cycle were investigated. Crabs placed in constant conditions were able to display an endogenous circadian rhythm, with release occurring in the hours after sunset and with a period of 24.1 hours. Crabs with embryos of all stages without eye-slits were placed in a reversed light:dark cycle, and they were able to reset the entrainment and release in the hours following 06:00 hrs., the new sunset. The difference between the crabs in the altered cycle and the crabs in the field is significant. Finally, crabs placed in a reversed 24-hour temperature cycle were able to reset the entrainment after 4-5 days in the altered cycle, such that they also released in the hours after 06:00. The fact that the temperature is enough to cause entrainment suggests that maybe the female or embryos do not need to perceive the light in order to know when to induce larval release. In any event, this result opens up new areas of research involving decapod reproduction, in particular D. sayi.

  1. Molecular phylogeny of Pasiphaeidae (Crustacea, Decapoda, Caridea) reveals systematic incongruence of the current classification.

    PubMed

    Liao, Yunshi; De Grave, Sammy; Ho, Tsz Wai; Ip, Brian H Y; Tsang, Ling Ming; Chan, Tin-Yam; Chu, Ka Hou

    2017-10-01

    Caridean shrimps constitute one of the most diverse groups of decapod crustaceans, notwithstanding their poorly resolved infraordinal relationships. One of the systematically controversial families in Caridea is the predominantly pelagic Pasiphaeidae, comprises 101 species in seven genera. Pasiphaeidae species exhibit high morphological disparity, as well as ecological niche width, inhabiting shallow to very deep waters (>4000m). The present work presents the first molecular phylogeny of the family, based on a combined dataset of six mitochondrial and nuclear gene markers (12S rDNA, 16S rDNA, histone 3, sodium-potassium ATPase α-subunit, enolase and ATP synthase β-subunit) from 33 species belonged to six genera of Pasiphaeidae with 19 species from 12 other caridean families as outgroup taxa. Maximum likelihood and Bayesian inference analyses conducted on the concatenated dataset of 2265bp suggest the family Pasiphaeidae is not monophyletic, with Psathyrocaris more closely related to other carideans than to the other five pasiphaeid genera included in this analysis. Leptochela occupies a sister position to the remaining genera and is genetically quite distant from them. At the generic level, the analysis supports the monophyly of Pasiphaea, Leptochela and Psathyrocaris, while Eupasiphae is shown to be paraphyletic, closely related to Parapasiphae and Glyphus. The present molecular result strongly implies that certain morphological characters used in the present systematic delineation within Pasiphaeidae may not be synapomorphies and the classification within the family needs to be urgently revised. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Import and export fluxes of macrozooplankton are taxa- and season-dependent at Jiuduansha marsh, Yangtze River estuary

    NASA Astrophysics Data System (ADS)

    Qin, Haiming; Sheng, Qiang; Chu, Tianjiang; Wang, Sikai; Wu, Jihua

    2015-09-01

    Macrozooplankton may play important roles in influencing nutrient exchange between salt marsh and nearby estuarine ecosystems through predator-prey interactions and their transport by tidal flows. In this study, macrozooplankton transport through year-round monthly sampling was investigated in a salt marsh creek of the Yangtze River estuary. Twenty-one orders of macrozooplankton were captured. Calanoida and Decapoda were dominant and numerically comprised 59.59% and 37.59% respectively of the total captured macrozooplankton throughout the year. Decapoda mainly occurred in April, May and June. In other months, the Calanoida contributed over 90% of the total individuals. The annual Ferrari index (I) for total individual number of macrozooplankton was 0.27, which generally supports the viewpoint that salt marshes are sources of zooplankton. The salt marsh was mainly a source for decapods and mysids, possibly because of larval release in their breeding seasons. The marsh was also a source for amphipods, probably because some benthic forms became transient planktonic forms during tidal water flushing. Copepods and fish larvae exhibited net import into the salt marsh, which may result from predation from salt marsh settlers or retention in the salt marsh. Monthly Ferrari index (I) estimations revealed that the role of the salt marsh as a sink or source of macrozooplankton was time-dependent, which is related to the life history of animals. This study showed that whether the salt marsh zooplankton act as energy importers or exporters is group/taxa-dependent and time-dependent.

  3. Hydroacoustical evidence of the expansion of pelagic swarms of Munida gregaria (Decapoda, Munididae) in the Beagle Channel and the Argentine Patagonian Shelf, and its relationship with habitat features

    NASA Astrophysics Data System (ADS)

    Diez, Mariano J.; Cabreira, Ariel G.; Madirolas, Adrián; Lovrich, Gustavo A.

    2016-08-01

    Squat lobsters are highly diversified and widespread decapods, of which only three species form pelagic swarms. Here we infer the expansion of Munida gregaria populations in the Beagle Channel and the Argentine Patagonian Shelf by means of acoustic surveys of pelagic swarms. We also describe the habitat characteristics in which these swarms occur. Acoustic data was collected during three multidisciplinary scientific cruises on board of the R/V Puerto Deseado during 2009, 2012 and 2014. Despite differences in the environmental conditions between the two surveyed areas, between 2009 and 2014 pelagic swarms increased their occurrence and abundance both in the Beagle Channel and on the Argentine Patagonian Shelf. Towards the end of the studied period, pelagic swarms of M. gregaria occurred in new locations, supporting the notion of a population expansion. Within the Beagle Channel swarm expansions were more marked than on the Patagonian Shelf. We here postulate that M. gregaria expansions occur in association with productive areas of the Argentine continental shelf, such as frontal zones, favoured by the squat lobster phenotypic plasticity that permit to exploit resources in both the neritic and benthic environments. At a regional scale on the Patagonian Shelf, three main groups of pelagic swarms of M. gregaria were clearly associated to respective frontal zones. The information presented here is necessary to understand fluctuations in both distribution and abundance patterns of a key species on the Argentine continental shelf. These fluctuations could be direct or indirect indicators of changes in the ecosystem.

  4. Macrozooplankton biomass in a warm-core Gulf Stream ring: Time series changes in size structure, taxonomic composition, and vertical distribution

    NASA Astrophysics Data System (ADS)

    Davis, Cabell S.; Wiebe, Peter H.

    1985-01-01

    Macrozooplankton size structure and taxonomic composition in warm-core ring 82B was examined from a time series (March, April, June) of ring center MOCNESS (1 m) samples. Size distributions of 15 major taxonomic groups were determined from length measurements digitized from silhouette photographs of the samples. Silhouette digitization allows rapid quantification of Zooplankton size structure and taxonomic composition. Length/weight regressions, determined for each taxon, were used to partition the biomass (displacement volumes) of each sample among the major taxonomic groups. Zooplankton taxonomic composition and size structure varied with depth and appeared to coincide with the hydrographic structure of the ring. In March and April, within the thermostad region of the ring, smaller herbivorous/omnivorous Zooplankton, including copepods, crustacean larvae, and euphausiids, were dominant, whereas below this region, larger carnivores, such as medusae, ctenophores, fish, and decapods, dominated. Copepods were generally dominant in most samples above 500 m. Total macrozooplankton abundance and biomass increased between March and April, primarily because of increases in herbivorous taxa, including copepods, crustacean larvae, and larvaceans. A marked increase in total macrozooplankton abundance and biomass between April and June was characterized by an equally dramatic shift from smaller herbivores (1.0-3.0 mm) in April to large herbivores (5.0-6.0 mm) and carnivores (>15 mm) in June. Species identifications made directly from the samples suggest that changes in trophic structure resulted from seeding type immigration and subsequent in situ population growth of Slope Water zooplankton species.

  5. Crustacean Larvae-Vision in the Plankton.

    PubMed

    Cronin, Thomas W; Bok, Michael J; Lin, Chan

    2017-11-01

    We review the visual systems of crustacean larvae, concentrating on the compound eyes of decapod and stomatopod larvae as well as the functional and behavioral aspects of their vision. Larval compound eyes of these macrurans are all built on fundamentally the same optical plan, the transparent apposition eye, which is eminently suitable for modification into the abundantly diverse optical systems of the adults. Many of these eyes contain a layer of reflective structures overlying the retina that produces a counterilluminating eyeshine, so they are unique in being camouflaged both by their transparency and by their reflection of light spectrally similar to background light to conceal the opaque retina. Besides the pair of compound eyes, at least some crustacean larvae have a non-imaging photoreceptor system based on a naupliar eye and possibly other frontal eyes. Larval compound-eye photoreceptors send axons to a large and well-developed optic lobe consisting of a series of neuropils that are similar to those of adult crustaceans and insects, implying sophisticated analysis of visual stimuli. The visual system fosters a number of advanced and flexible behaviors that permit crustacean larvae to survive extended periods in the plankton and allows them to reach acceptable adult habitats, within which to metamorphose. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  6. Genetic diversity analysis of the oriental river prawn (Macrobrachium nipponense) in Huaihe River.

    PubMed

    Cui, Feng; Yu, Yanyan; Bao, Fangyin; Wang, Song; Xiao, Ming Song

    2018-04-19

    The oriental river prawn (Macrobrachium nipponense) is an economically and nutritionally important species of decapod crustaceans in China. Genetic structure and demographic history of Macrobrachium nipponense were examined using sequence data from portions of the mitochondrial DNA cytochrome oxidase subunit I (COI) gene. Samples of 191 individuals were collected from 10 localities in the upper to middle reaches of the Huaihe River. Variability was detected at a total of 42 nucleotide sites along 684 bp length of homologous sequence (6.14%), and base substitutions occurred mostly at the second codon position. Haplotype diversity (h) and nucleotide diversity (π) of all populations were 0.9136 ± 0.0116 and 0.0078 ± 0.0042, respectively. Phylogenetic tree constructed using the maximum-likelihood (ML) method showed that the 44 haplotypes were assigned to two obvious clades associated with geographic regions. Moreover, the median-joining network was similar to the topology of the phylogenetic tree with 44 haplotypes. The pairwise F ST values between the populations varied from -0.0298 to 0.2994. Generally, moderate genetic differentiation (F ST  = 0.1598, p = .0000) among different geographic populations was detected, with the significant differentiation between the Huaibin (HB) and other Macrobrachium nipponense populations. Both mismatch distribution analyses and neutrality tests suggested the early stage of Late Pleistocene population expansion 85,500 years before present for the species, which was consistent with the palaeoclimatic condition of the Huaihe River Basin.

  7. The diel migrations and distributions within a Mesopelagic community in the North East Atlantic. 1. Introduction and sampling procedures

    NASA Astrophysics Data System (ADS)

    Roe, H. S. J.; Angel, M. V.; Badcock, J.; Domanski, P.; James, P. T.; Pugh, P. R.; Thurston, M. H.

    (i) This paper is an introduction to a series of papers describing the diel migrations and interrelationships of a mesopelagic community in the northeast Atlantic. (ii) The biological and physical background to the sampling area is described. (iii) There was little physical structure in the water column to a depth of 1000 m. (iv) The influence of Mediterranean water was detectable at varying depths between 550 and 800 m during the sampling programme. The possibility of mesoscale activity at these depths is discussed. (v) The sampling programme is described. Using the I.O.S. rectangular midwater trawl, the RMT 1 + 8, one hour samples were taken at 4 depth horizons, 100, 250, 450 and 600 m. Each depth was fished continuously for 48 hr. (vi) Additional non-quantitative surface samples, and surface light measurements were made throughout the RMT 1 + 8 sampling period. (vii) 97 hauls were made and the data for fish, decapod Crustacea, mysids, euphausiids, amphipods, copepods, ostracods, siphonophores, medusae, cteniphores and chaetognaths analysed. (viii) General results in terms of total numbers and numbers of species taken by the RMT 1 and the RMT 8 are described. (ix) The populations at 100 and 250 m showed more diel variation than those at 450 and 600 m, but the proportions of individual species and groups changed continuously at all depths. (x) These changes are due to diel vertical migrations. The migrations of most species only involved a part of their populations.

  8. Assessing Virulence and Transmission Rates of White Spot Syndrome Virus (WSSV) in Two Ecologically Important Palaemonid Shrimp

    NASA Astrophysics Data System (ADS)

    Bernard, C.; Keesee, B.; Philippoff, C.; Curran, S.; Lotz, J.; Powell, E.

    2016-02-01

    Investigators, including three REU interns, conducted an experiment to quantify parameters for an epidemiological model designed to estimate disease transmission in marine invertebrates. White spot syndrome virus (WSSV) is a highly pathogenic disease affecting commercially important penaeid shrimp fisheries worldwide. The virus devastates penaeid shrimp but other varieties of decapods may serve as reservoirs for disease by being less susceptible to WSSV or refractory to disease. Non-penaeid crustaceans are less susceptible to WSSV, and different species have variable resistance to the disease leading to different potential to serve as reservoirs for transmission of the disease to coastal penaeid fisheries. This study investigates virulence and transmission rates of WSSV in two palaemonid shrimp which are keystone members of coastal food webs, and effects of species interactions on transmission rates of WSSV are estimated in a laboratory setting as a proxy for natural habitats. Two species of grass shrimp were exposed to a Chinese strain of WSSV through feeding the test individuals with previously prepared, inoculated penaeid shrimp. Replicated tanks containing 30 animals were exposed to the virus in arenas containing one or both species for 24 hours, then isolated in 1 liter tanks and monitored. During the isolation period moribund individuals were preserved for later analysis. After 7 days all test individuals were analyzed using qPCR to determine WSSV presence and load in DNA. From these data transmission rates, mortality, and viral concentration were quantified and used as parameters in a simple epidemiological model.

  9. Resistance of a northwestern crayfish, Pacifastacus leniusculus (Dana), to elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, C.D.; Genoway, R.G.; Merrill, J.A.

    1975-04-01

    Pacifastacus leniusculus from two populations in Washington State, the central Columbia River and a small tributary, were acclimated at 5/sup 0/C intervals and exposed to elevated temperatures in 48 hour thermal bioassays. The upper lethal temperature for both crayfish populations increased relatively slightly, from about 28.5 to 31.5/sup 0/C, over the entire acclimation range. A rise of 1/sup 0/C in test temperature often represented the difference between zero and total mortality when lethal limits were approached. The ultimate upper lethal temperature was near 32 to 33/sup 0/C. Statistically significant differences in thermal resistance patterns (slope and spacing of regression lines)more » occurred between the two crayfish populations at all acclimation levels, but resistance in terms of eventual mortality was similar for practical purposes. Moulting individuals were particularly susceptible to high temperature stress. Mature, pre-breeding female crayfish from the Columbia River during fall appeared less resistant, and egg-bearing females during winter more resistant, than other individuals. Larger crayfish from the Columbia River were slightly less resistant to elevated temperatures than smaller ones, and females were more resistant than males. The upper temperature triangle for P. leniusculus encompasses an area of 424/sup 0/C/sup 2/. This freshwater decapod is more tolerant of elevated temperatures than native salmonids, but less tolerant than some introduced ''warmwater'' fish.« less

  10. Complete mitochondrial genome of the Asian paddle crab Charybdis japonica (Crustacea: Decapoda: Portunidae): gene rearrangement of the marine brachyurans and phylogenetic considerations of the decapods.

    PubMed

    Liu, Yuan; Cui, Zhaoxia

    2010-06-01

    Given the commercial and ecological importance of the Asian paddle crab, Charybdis japonica, there is a clearly need for genetic and molecular research on this species. Here, we present the complete mitochondrial genome sequence of C. japonica, determined by the long-polymerase chain reaction and primer walking sequencing method. The entire genome is 15,738 bp in length, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, which is typical for metazoans. The total A+T content of the genome is 69.2%, lower than the other brachyuran crabs except for Callinectes sapidus. The gene order is identical to the published marine brachyurans and differs from the ancestral pancrustacean order by only the position of the tRNA ( His ) gene. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes strongly support the monophyly of Dendrobranchiata and Pleocyemata, which is consistent with the previous taxonomic classification. However, the systematic status of Charybdis within subfamily Thalamitinae of family Portunidae is not supported. C. japonica, as the first species of Charybdis with complete mitochondrial genome available, will provide important information on both genomics and molecular ecology of the group.

  11. Taxonomic Review of the Orders Mysida and Stygiomysida (Crustacea, Peracarida)

    PubMed Central

    2015-01-01

    The order Mysida (2 families, 178 genera, 1132 species) contains species across a broad range of habitats, such as subterranean, fresh, brackish, coastal, and surface to deep-sea habitats. The Stygiomysida (2 families, 2 genera, 16 species), however, are found primarily in subterranean waters, but always in waters with a marine influence. The Mysida and Stygiomysida body is divided into three main regions: cephalon, thorax, and abdomen. They are shrimp-like in appearance, containing morphological features earlier referred to as defining a "caridoid facies". The shrimp-like morphology was to some extent diagnostic for the historic Decapod taxon Schizopoda, containing the Nebalia, Mysida, Lophogastrida, and Euphausiacea. In 1904 the concept of Schizopoda was abandoned, and the Mysidacea (Mysida and Lophogastrida) along with Cumacea, Amphipoda, Isopoda, and Tanaidacea were placed in a new taxon, the Peracarida. Later discoveries of groundwater mysids led to the establishment of Stygiomysida, but placement to either Lophogastrida or Mysida remained unclear. The presence of oostegites and absence of podobranchiae, coupled with non-statocyst bearing uropods have been used to classify the Stygiomysida as a primitive Mysida family, comparable to Petalophthalmidae. On the other hand, equally suggestive characters, but for a Lophogastrida affiliation, was suggested for the archaic foregut characters and again, non-statocyst bearing uropods. With the inclusion of DNA sequence data of ribosomal genes, sister group relationships between Stygiomysida, Lophogastrida, and Mictacea within the Peracarida are observed, which supports a classification of the Stygiomysida as a separate order removed from the Mysida. PMID:25927358

  12. Inorganic carbon fixation by chemosynthetic ectosymbionts and nutritional transfers to the hydrothermal vent host-shrimp Rimicaris exoculata

    PubMed Central

    Ponsard, Julie; Cambon-Bonavita, Marie-Anne; Zbinden, Magali; Lepoint, Gilles; Joassin, André; Corbari, Laure; Shillito, Bruce; Durand, Lucile; Cueff-Gauchard, Valérie; Compère, Philippe

    2013-01-01

    The shrimp Rimicaris exoculata dominates several hydrothermal vent ecosystems of the Mid-Atlantic Ridge and is thought to be a primary consumer harbouring a chemoautotrophic bacterial community in its gill chamber. The aim of the present study was to test current hypotheses concerning the epibiont's chemoautotrophy, and the mutualistic character of this association. In-vivo experiments were carried out in a pressurised aquarium with isotope-labelled inorganic carbon (NaH13CO3 and NaH14CO3) in the presence of two different electron donors (Na2S2O3 and Fe2+) and with radiolabelled organic compounds (14C-acetate and 3H-lysine) chosen as potential bacterial substrates and/or metabolic by-products in experiments mimicking transfer of small biomolecules from epibionts to host. The bacterial epibionts were found to assimilate inorganic carbon by chemoautotrophy, but many of them (thick filaments of epsilonproteobacteria) appeared versatile and able to switch between electron donors, including organic compounds (heterotrophic acetate and lysine uptake). At least some of them (thin filamentous gammaproteobacteria) also seem capable of internal energy storage that could supply chemosynthetic metabolism for hours under conditions of electron donor deprivation. As direct nutritional transfer from bacteria to host was detected, the association appears as true mutualism. Import of soluble bacterial products occurs by permeation across the gill chamber integument, rather than via the digestive tract. This first demonstration of such capabilities in a decapod crustacean supports the previously discarded hypothesis of transtegumental absorption of dissolved organic matter or carbon as a common nutritional pathway. PMID:22914596

  13. Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives.

    PubMed

    Vogt, Gunter

    2018-03-01

    In the last 15 years, considerable attempts have been undertaken to develop the obligately parthenogenetic marbled crayfish Procambarus virginalis as a new model in biology. Its main advantage is the production of large numbers of offspring that are genetically identical to the mother, making this crustacean particularly suitable for research in epigenetics. Now, a draft genome, transcriptome and genome-wide methylome are available opening new windows for research. In this article, I summarize the biological advantages and genomic and epigenetic features of marbled crayfish and, based on first promising data, discuss what this new model could contribute to answering of ''big'' biological questions. Genome mining is expected to reveal new insights into the genetic specificities of decapod crustaceans, the genetic basis of arthropod reproduction, moulting and immunity, and more general topics such as the genetic underpinning of adaptation to fresh water, omnivory, biomineralization, sexual system change, behavioural variation, clonal genome evolution, and resistance to cancer. Epigenetic investigations with the marbled crayfish can help clarifying the role of epigenetic mechanisms in gene regulation, tissue specification, adult stem cell regulation, cell ageing, organ regeneration and disease susceptibility. Marbled crayfish is further suitable to elucidate the relationship between genetic and epigenetic variation, the transgenerational inheritance of epigenetic signatures and the contribution of epigenetic phenotype variation to the establishment of social hierarchies, environmental adaptation and speciation. These issues can be tackled by experiments with highly standardized laboratory lineages, comparison of differently adapted wild populations and the generation of genetically and epigenetically edited strains.

  14. Antennular Morphology and Contribution of Aesthetascs in the Detection of Food-related Compounds in the Shrimp Palaemon adspersus Rathke, 1837 (Decapoda: Palaemonidae).

    PubMed

    Solari, Paolo; Sollai, Giorgia; Masala, Carla; Loy, Francesco; Palmas, Francesco; Sabatini, Andrea; Crnjar, Roberto

    2017-04-01

    Shrimp are an essential ecological component of marine ecosystems, and have commercial importance for human consumption and aquaculture. Like other decapod crustaceans, shrimp rely on chemical senses to detect and localize food resources by means of chemosensilla that are located mainly on the cephalothoracic appendages. Using the shrimp Palaemon adspersus, a model organism with omnivorous feeding behavior, we aimed to provide comparative information on the role of aesthetascs, antennular sensilla, and flicking behavior in food detection. To this end, we examined i) the morphology of antennular sensilla by field emission scanning electron microscopy, ii) the shrimp's sensitivity to a number of food-related compounds (amino acids and sugars) by means of whole-animal bioassays, and iii) the contribution of the aesthetasc sensilla to food detection. Our results showed that, aside from the aesthetascs, only three other main morphotypes of setae with chemoreceptive features were present in the antennules, thus accounting for relatively simple sensillar equipment. Nevertheless, we found broad-spectrum sensitivity of the shrimp to a number of amino acids (i.e., isoleucine, leucine, methionine, phenylalanine, glycine, tryptophan, cysteine, and tyrosine) and carbohydrates (trehalose, maltose, cellobiose, and fructose) that was consistent with the omnivorous or scavenging habits of the animal. Although aesthetasc ablation attenuated flicking behavior in a chemical stimulus-independent manner, success in detection and short-range localization of food did not rely on the presence of aesthetasc sensilla. This finding confirms the existence of a non-aesthetasc alternative pathway for feeding, with functional redundancy in simple generalist feeder models such as shrimp.

  15. Pharmacophore based approach to design inhibitors in crustaceans: an insight into the molt inhibition response to the receptor guanylyl cyclase.

    PubMed

    Shrivastava, Sajal; Princy, S Adline

    2014-04-01

    The first set of competitive inhibitors of molt inhibiting hormone (MIH) has been developed using the effective approaches such as Hip-Hop, virtual screening and manual alterations. Moreover, the conserved residues at 71 and 72 positions in the molt inhibiting hormone is known to be significant for selective inhibition of ecdysteroidogenesis; thus, the information from mutation and solution structure were used to generate common pharmacophore features. The geometry of the final six-feature pharmacophore was also found to be consistent with the homology-modeled MIH structures from various other decapod crustaceans. The Hypo-1, comprising six features hypothesis was carefully selected as a best pharmacophore model for virtual screening created on the basis of rank score and cluster processes. The hypothesis was validated and the database was virtually screened using this 3D query and the compounds were then manually altered to enhance the fit value. The hits obtained were further filtered for drug-likeness, which is expressed as physicochemical properties that contribute to favorable ADME/Tox profiles to eliminate the molecules exhibit toxicity and poor pharmacokinetics. In conclusion, the higher fit values of CI-1 (4.6), CI-4 (4.9) and CI-7 (4.2) in conjunction with better pharmacokinetic profile made these molecules practically helpful tool to increase production by accelerating molt in crustaceans. The use of feeding sub-therapeutic dosages of these growth enhancers can be very effectively implemented and certainly turn out to be a vital part of emerging nutritional strategies for economically important crustacean livestock.

  16. Lethal and sublethal effects of chlorine, phenol, and chlorine-phenol mixtures on the mud crab, Panopeus herbstii.

    PubMed

    Key, P B; Scott, G I

    1986-11-01

    The mud crab, Panopeus herbstii, was acutely exposed (96-hr) to chlorine-produced oxidants (CPO), phenol, and a CPO-phenolic mixture (1:1) to determine lethal and sublethal effects. The 96-hr (LC50) values were determined for each individual compound and mixture. Additionally, whole-animal respiration rates were measured following acute exposure to sublethal concentrations of each compound or mixture. Phenol uptake/depuration rates were measured in the phenol and CPO-phenol mixture concentrations. Results indicated 96-hr LC50 values of 1.06 mg/L for CPO (fiducial limits (FL) = 0.53-2.01 mg/L), 52.8 mg/L for phenol (FL = 45.6-64.5 mg/L), and 184.7 mg/L total toxicant units (TTU) for the CPO-phenol mixture (FL = 143.7-250.2 mg/L TTU). Statistical analysis indicated that the acute toxicity of the CPO-phenol mixture was less than additive. Sublethal studies indicated that only acute exposure to sublethal concentrations of CPO caused altered respiration rates. After 96-hr depuration, metabolic rates in all CPO-exposure crabs generally returned to control rates. Uptake/depuration rate studies indicated significantly lower phenol uptake rates in crabs exposed to the CPO-phenol mixture. These findings suggest that the less-than-additive toxicity of the CPO-phenol mixture may result from lowered uptake/depuration rate kinetics and indicate that the discharge of chlorinated-phenolic waste may not result in additive and/or synergistic interactions, but rather in less-than-additive effects on decapod aquatic species.

  17. The role of an ancestral hyperpolarization-activated cyclic nucleotide-gated K+ channel in branchial acid-base regulation in the green crab, Carcinus maenas.

    PubMed

    Fehsenfeld, Sandra; Weihrauch, Dirk

    2016-03-01

    Numerous electrophysiological studies on branchial K(+) transport in brachyuran crabs have established an important role for potassium channels in osmoregulatory ion uptake and ammonia excretion in the gill epithelium of decapod crustaceans. However, hardly anything is known of the actual nature of these channels in crustaceans. In the present study, the identification of a hyperpolarization-activated cyclic nucleotide-gated potassium channel (HCN) in the transcriptome of the green crab Carcinus maenas and subsequent performance of quantitative real-time PCR revealed the ubiquitous expression of this channel in this species. Even though mRNA expression levels in the cerebral ganglion were found to be approximately 10 times higher compared with all other tissues, posterior gills still expressed significant levels of HCN, indicating an important role for this transporter in branchial ion regulation. The relatively unspecific K(+)-channel inhibitor Ba(2+), as well as the HCN-specific blocker ZD7288, as applied in gill perfusion experiments and electrophysiological studies employing the split gill lamellae revealed the presence of at least two different K(+)/NH4(+)-transporting structures in the branchial epithelium of C. maenas. Furthermore, HCN mRNA levels in posterior gill 7 decreased significantly in response to the respiratory or metabolic acidosis that was induced by acclimation of green crabs to high environmental PCO2 and ammonia, respectively. Consequently, the present study provides first evidence that HCN-promoted NH4(+) epithelial transport is involved in both branchial acid-base and ammonia regulation in an invertebrate. © 2016. Published by The Company of Biologists Ltd.

  18. Fauna and paleoecological setting of the La Meseta Formation (Eocene), Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldmann, R.M.; Wiedman, L.A.; Zinsmeister, W.J.

    The La Meseta Formation, an Eocene sandstone from Seymour Island, Palmer Peninsula, Antarctica, has yielded a diverse fossil assemblage of body and trace fossils representative of a cool temperate, littoral to shallow sublittoral habitat. Over 61 taxa of macroinvertebrates, excluding gastropod body fossils, and more than 18 ichnogenera collected from the La Meseta represent the largest, most comprehensive and most diverse assemblage of Paleogene fossils from Antarctica. Included in the body fossil assemblage are species representative of at least 26 taxa of bivales, four taxa of echinoids, two of crinoids, two of ophiuroids, two of asteroids, one inarticulate and fourmore » articulate brachiopods, two barnacles, six decapod crustaceans, two cyclostome and two cheilostome bryozoans, a scaphopod and one coral. The traces include several burrow forms characteristic of the Skolithos ichnofacies of Seilacher (1967), several halo and rind burrows, gastropod predation borings, and abundant examples of teredid bivalve borings in lithified wood.Autecological analyses of the preserved organisms and environmental interpretations of the ichnogenera indicate a littoral to very shallow sublittoral environment of deposition, generally above wave base, for the la Meseta Sandstone. Modern congeneric descendants of the body fossils are known to inhabit both deep water and shallow water habitats. Of the 20 extant genera of bivalves reported from the La Meseta, 19 generally occur only in cool temperate habitats. Only one genus is known to occur south of 60/sup 0/. Most of the shallow water forms are known from cool temperate, austral regimes.« less

  19. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions

    PubMed Central

    Raupach, Michael J.; Barco, Andrea; Steinke, Dirk; Beermann, Jan; Laakmann, Silke; Mohrbeck, Inga; Neumann, Hermann; Kihara, Terue C.; Pointner, Karin; Radulovici, Adriana; Segelken-Voigt, Alexandra; Wesse, Christina; Knebelsberger, Thomas

    2015-01-01

    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences. PMID:26417993

  20. Cytoarchitecture and Ultrastructure of Neural Stem Cell Niches and Neurogenic Complexes Maintaining Adult Neurogenesis in the Olfactory Midbrain of Spiny Lobsters, Panulirus argus

    PubMed Central

    Schmidt, Manfred; Derby, Charles D.

    2013-01-01

    New interneurons are continuously generated in small proliferation zones within neuronal somata clusters in the olfactory deutocerebrum of adult decapod crustaceans. Each proliferation zone is connected to a clump of cells containing one neural stem cell (i.e., adult neuroblast), thus forming a “neurogenic complex.” Here we provide a detailed analysis of the cytoarchitecture of neurogenic complexes in adult spiny lobsters, Panulirus argus, based on transmission electron microscopy and labeling with cell-type-selective markers. The clump of cells is composed of unique bipolar clump-forming cells that collectively completely envelop the adult neuroblast and are themselves ensheathed by a layer of processes of multipolar cell body glia. An arteriole is attached to the clump of cells, but dye perfusion experiments show that hemolymph has no access to the interior of the clump of cells. Thus, the clump of cells fulfills morphological criteria of a protective stem cell niche, with clump-forming cells constituting the adult neuroblast’s microenvironment together with the cell body glia processes separating it from other tissue components. Bromodeoxyuridine pulse-chase experiments with short survival times suggest that adult neuroblasts are not quiescent but rather cycle actively during daytime. We propose a cell lineage model in which an asymmetrically dividing adult neuroblast repopulates the pool of neuronal progenitor cells in the associated proliferation zone. In conclusion, as in mammalian brains, adult neurogenesis in crustacean brains is fueled by neural stem cells that are maintained by stem cell niches that preserve elements of the embryonic microenvironment and contain glial and vascular elements. PMID:21523781

  1. High-density linkage mapping aided by transcriptomics documents ZW sex determination system in the Chinese mitten crab Eriocheir sinensis

    PubMed Central

    Cui, Z; Hui, M; Liu, Y; Song, C; Li, X; Li, Y; Liu, L; Shi, G; Wang, S; Li, F; Zhang, X; Liu, C; Xiang, J; Chu, K H

    2015-01-01

    The sex determination system in crabs is believed to be XY-XX from karyotypy, but centromeres could not be identified in some chromosomes and their morphology is not completely clear. Using quantitative trait locus mapping of the gender phenotype, we revealed a ZW-ZZ sex determination system in Eriocheir sinensis and presented a high-density linkage map covering ~98.5% of the genome, with 73 linkage groups corresponding to the haploid chromosome number. All sex-linked markers in the family we used were located on a single linkage group, LG60, and sex linkage was confirmed by genome-wide association studies (GWAS). Forty-six markers detected by GWAS were heterozygous and segregated only in the female parent. The female LG60 was thus the putative W chromosome, with the homologous male LG60 as the Z chromosome. The putative Z and W sex chromosomes were identical in size and carried many homologous loci. Sex ratio (5:1) skewing towards females in induced triploids using unrelated animals also supported a ZW-ZZ system. Transcriptome data were used to search for candidate sex-determining loci, but only one LG60 gene was identified as an ankyrin-2 gene. Double sex- and mab3-related transcription factor 1 (Dmrt1), a Z-linked gene in birds, was located on a putative autosome. With complete genome sequencing and transcriptomic data, more genes on putative sex chromosomes will be characterised, thus leading towards a comprehensive understanding of the sex determination and differentiation mechanisms of E. sinensis, and decapod crustaceans in general. PMID:25873149

  2. Seafood-Associated Shellfish Allergy: A Comprehensive Review.

    PubMed

    Khora, Samanta S

    2016-08-01

    Shellfish are diverse, serve as main constituents of seafood, and are extensively consumed globally because of their nutritional values. Consequently, increase in reports of IgE-mediated seafood allergy is particularly food associated to shellfish. Seafood-associated shellfish consists of crustaceans (decapods, stomatopods, barnacles, and euphausiids) and molluskans (gastropods, bivalves, and cephalopods) and its products can start from mild local symptoms and lead to severe systemic anaphylactic reactions through ingestion, inhalation, or contact like most other food allergens. Globally, the most commonly causative shellfish are shrimps, crabs, lobsters, clams, oysters, and mussels. The prevalence of shellfish allergy is estimated to be 0.5-2.5% of the general population but higher in coastal Asian countries where shellfish constitute a large proportion of the diet. Diversity in allergens such as tropomyosin, arginine kinase, myosin light chain, and sarcoplasmic binding protein are from crustaceans whereas tropomyosin, paramyosin, troponin, actine, amylase, and hemoyanin are reported from molluskans shellfish. Tropomyosin is the major allergen and is responsible for cross-reactivity between shellfish and other invertebrates, within crustaceans, within molluskans, between crustaceans vs. molluskans as well as between shellfish and fish. Allergenicity diagnosis requires clinical history, in vivo skin prick testing, in vitro quantification of IgE, immunoCAP, and confirmation by oral challenge testing unless the reactions borne by it are life-threatening. This comprehensive review provides the update and new findings in the area of shellfish allergy including demographic, diversity of allergens, allergenicity, their cross-reactivity, and innovative molecular genetics approaches in diagnosing and managing this life-threatening as well as life-long disease.

  3. Recovery of rhythmic activity in a central pattern generator: analysis of the role of neuromodulator and activity-dependent mechanisms.

    PubMed

    Zhang, Yili; Golowasch, Jorge

    2011-11-01

    The pyloric network of decapods crustaceans can undergo dramatic rhythmic activity changes. Under normal conditions the network generates low frequency rhythmic activity that depends obligatorily on the presence of neuromodulatory input from the central nervous system. When this input is removed (decentralization) the rhythmic activity ceases. In the continued absence of this input, periodic activity resumes after a few hours in the form of episodic bursting across the entire network that later turns into stable rhythmic activity that is nearly indistinguishable from control (recovery). It has been proposed that an activity-dependent modification of ionic conductance levels in the pyloric pacemaker neuron drives the process of recovery of activity. Previous modeling attempts have captured some aspects of the temporal changes observed experimentally, but key features could not be reproduced. Here we examined a model in which slow activity-dependent regulation of ionic conductances and slower neuromodulator-dependent regulation of intracellular Ca(2+) concentration reproduce all the temporal features of this recovery. Key aspects of these two regulatory mechanisms are their independence and their different kinetics. We also examined the role of variability (noise) in the activity-dependent regulation pathway and observe that it can help to reduce unrealistic constraints that were otherwise required on the neuromodulator-dependent pathway. We conclude that small variations in intracellular Ca(2+) concentration, a Ca(2+) uptake regulation mechanism that is directly targeted by neuromodulator-activated signaling pathways, and variability in the Ca(2+) concentration sensing signaling pathway can account for the observed changes in neuronal activity. Our conclusions are all amenable to experimental analysis.

  4. The Involvement of Hemocyte Prophenoloxidase in the Shell-Hardening Process of the Blue Crab, Callinectes sapidus

    PubMed Central

    Alvarez, Javier V.; Chung, J. Sook

    2015-01-01

    Cuticular structures of arthropods undergo dramatic molt-related changes from being soft to becoming hard. The shell-hardening process of decapod crustaceans includes sclerotization and mineralization. Hemocyte PPO plays a central role in melanization and sclerotization particularly in wound healing in crustaceans. However, little is known about its role in the crustacean initial shell-hardening process. The earlier findings of the aggregation of heavily granulated hemocytes beneath the hypodermis during ecdysis imply that the hemocytes may be involved in the shell-hardening process. In order to determine if hemocytes and hemocyte PPO have a role in the shell-hardening of crustaceans, a knockdown study using specific CasPPO-hemo-dsRNA was carried out with juvenile blue crabs, Callinectes sapidus. Multiple injections of CasPPO-hemo-dsRNA reduce specifically the levels of CasPPO-hemo expression by 57% and PO activity by 54% in hemocyte lysate at the postmolt, while they have no effect on the total hemocyte numbers. Immunocytochemistry and flow cytometry analysis using a specific antiserum generated against CasPPO show granulocytes, semigranulocytes and hyaline cells as the cellular sources for PPO at the postmolt. Interestingly, the type of hemocytes, as the cellular sources of PPO, varies by molt stage. The granulocytes always contain PPO throughout the molt cycle. However, semigranulocytes and hyaline cells become CasPPO immune-positive only at early premolt and postmolt, indicating that PPO expression in these cells may be involved in the shell-hardening process of C. sapidus. PMID:26393802

  5. Cytoarchitecture and ultrastructure of neural stem cell niches and neurogenic complexes maintaining adult neurogenesis in the olfactory midbrain of spiny lobsters, Panulirus argus.

    PubMed

    Schmidt, Manfred; Derby, Charles D

    2011-08-15

    New interneurons are continuously generated in small proliferation zones within neuronal somata clusters in the olfactory deutocerebrum of adult decapod crustaceans. Each proliferation zone is connected to a clump of cells containing one neural stem cell (i.e., adult neuroblast), thus forming a "neurogenic complex." Here we provide a detailed analysis of the cytoarchitecture of neurogenic complexes in adult spiny lobsters, Panulirus argus, based on transmission electron microscopy and labeling with cell-type-selective markers. The clump of cells is composed of unique bipolar clump-forming cells that collectively completely envelop the adult neuroblast and are themselves ensheathed by a layer of processes of multipolar cell body glia. An arteriole is attached to the clump of cells, but dye perfusion experiments show that hemolymph has no access to the interior of the clump of cells. Thus, the clump of cells fulfills morphological criteria of a protective stem cell niche, with clump-forming cells constituting the adult neuroblast's microenvironment together with the cell body glia processes separating it from other tissue components. Bromodeoxyuridine pulse-chase experiments with short survival times suggest that adult neuroblasts are not quiescent but rather cycle actively during daytime. We propose a cell lineage model in which an asymmetrically dividing adult neuroblast repopulates the pool of neuronal progenitor cells in the associated proliferation zone. In conclusion, as in mammalian brains, adult neurogenesis in crustacean brains is fueled by neural stem cells that are maintained by stem cell niches that preserve elements of the embryonic microenvironment and contain glial and vascular elements. Copyright © 2011 Wiley-Liss, Inc.

  6. Spiny lobsters use urine-borne olfactory signaling and physical aggressive behaviors to influence social status of conspecifics.

    PubMed

    Shabani, Shkelzen; Kamio, Michiya; Derby, Charles D

    2009-08-01

    Decapod crustaceans, like many other animals, engage in agonistic behaviors that enhance their ability to compete for resources with conspecifics. These agonistic behaviors include the release of chemical signals as well as physical aggressive and submissive behaviors. In this study, we report that Caribbean spiny lobsters, Panulirus argus, use both urine-borne chemical signaling and physical aggressive behaviors during interactions with conspecifics, and that these agonistic behaviors can influence the behavior and eventual social status of the interactants. Spiny lobsters that engaged primarily in physical aggressive behaviors became dominant, whereas spiny lobsters that received these physical aggressive behaviors responded with avoidance behaviors and became subordinates. Dominant animals frequently released urine during social interactions, more than when they were not in contact with subordinates and more than when they were not paired with another animal. Subordinates released urine significantly less often than dominants, and no more than when not paired. Preventing release of urine by catheterizing the animals resulted in an increase in the number and duration of physical interactions, and this increase was primarily driven by dominants initiating interactions through physical aggressive behaviors. Introducing urine from one of the catheterized animals into an aquarium reduced physical aggressive behavior by dominant animals to normal levels. Urine-borne signals alone were capable of inducing avoidance behaviors from solitary spiny lobsters in both laboratory and field conditions. We conclude that urine serves as a chemical signal that communicates social status to the interactants. Ablation experiments showed that that these urine signals are detected primarily by aesthetasc sensilla of the olfactory pathway.

  7. Hematodinium spp. infections in wild and cultured populations of marine crustaceans along the coast of China.

    PubMed

    Wang, Jin-Feng; Li, Meng; Xiao, Jie; Xu, Wen-Jun; Li, Cai-Wen

    2017-05-11

    The parasitic dinoflagellate Hematodinium spp. infects a broad range of marine crustaceans. Its epidemics have impacted wild populations of various commercial fishery species around the world and the sustainability of mariculture in China. To study the epidemiology of Hematodinium spp. in marine crustaceans along the coast of China, we conducted a broad survey of wild and cultured stocks of major crustacean species in 2013 to 2015. Hematodinium sp. infections were identified in wild stocks of Portunus trituberculatus from Huludao, Laizhou, Qingdao, Yangtze River Estuary and Zhoushan, and Scylla paramamosain from Shantou; and cultured stocks of Portunus trituberculatus and Penaeus monodon from a polyculture pond in Qingdao. In the polyculture pond, Hematodinium sp. infections were observed in Portunus trituberculatus from June until October, with peak prevalence (up to 90%) observed in late July to early August. Furthermore, Hematodinium sp. infection was identified for the first time in the giant tiger prawn Penaeus monodon in the polyculture system during the disease outbreak. Phylogenetic analysis indicated that the Hematodinium isolate infecting Penaeus monodon was identical to the isolate infecting the co-cultured Portunus trituberculatus, and it was grouped into H. perezi genotype II together with the other isolates reported in China. The Hematodinium sp. isolated from Portunus trituberculatus appeared to have similar life stages as the H. perezi genotype III isolated from the American blue crab Callinectes sapidus. Our study indicates that outbreaks of Hematodinium disease can be a significant threat to the widely used polyculture system for decapods in China that may be particularly vulnerable to such generalist pathogens.

  8. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions.

    PubMed

    Raupach, Michael J; Barco, Andrea; Steinke, Dirk; Beermann, Jan; Laakmann, Silke; Mohrbeck, Inga; Neumann, Hermann; Kihara, Terue C; Pointner, Karin; Radulovici, Adriana; Segelken-Voigt, Alexandra; Wesse, Christina; Knebelsberger, Thomas

    2015-01-01

    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences.

  9. Zooplankton seasonality across a latitudinal gradient in the Northeast Atlantic Shelves Province

    NASA Astrophysics Data System (ADS)

    Fanjul, Alvaro; Iriarte, Arantza; Villate, Fernando; Uriarte, Ibon; Atkinson, Angus; Cook, Kathryn

    2018-05-01

    Zooplankton seasonality and its environmental drivers were studied at four coastal sites within the Northeast Atlantic Shelves Province (Bilbao35 (B35) and Urdaibai35 (U35) in the Bay of Biscay, Plymouth L4 (L4) in the English Channel and Stonehaven (SH) in the North Sea) using time series spanning 1999-2013. Seasonal community patterns were extracted at the level of broad zooplankton groups and copepod and cladoceran genera using redundancy analysis. Temperature was generally the environmental factor that explained most of the taxa seasonal variations at the four sites. However, between-site differences related to latitude and trophic status (i.e. from oligotrophic to mesotrophic) were observed in the seasonality of zooplankton community, mainly in the pattern of taxa that peaked in spring-summer as opposed to late autumn-winter zooplankton, which were linked primarily to differences in the seasonal pattern of phytoplankton. The percentage of taxa variations explained by environmental factors increased with latitude and trophic status likely related to the increase in the co-variation of temperature and chlorophyll a, as well as in the increase in regularity of the seasonal patterns of both temperature and chlorophyll a from south to north, and of chlorophyll a with trophic status. Cladocerans and cirripede larvae at B35 and U35, echinoderm larvae at L4 and decapod larvae at SH made the highest contribution to shape the main mode of seasonal pattern of zooplankton community, which showed a seasonal delay with latitude, as well as with the increase in trophic status.

  10. Evidence for the presence of serotonin in Mysidacea (Crustacea, Peracarida) as revealed by fluorescence immunohistochemistry.

    PubMed

    Moreau, X; Benzid, D; De Jong, L; Barthélémy, R-M; Casanova, J-P

    2002-12-01

    In crustaceans, serotonin (5-HT) exerts a wide range of physiological actions on many tissues. However, 5-HT has not been detected to date in Mysidacea (Crustacea, Peracarida). We have investigated the presence of 5-HT in the brain and the eyestalks of two Mysida (Leptomysis lingvura, Hemimysis margalefi) and one Lophogastrida (Lophogaster typicus) species by using the immunohistofluorescence technique. 5-HT-like immunopositive areas exhibit a similar pattern in the three species. 5-HT-like immunostaining is present in the retinular photosensitive cells, except in the deep-living species L. typicus. 5-HT-like cell bodies and fibres are observed in the lamina ganglionaris and in the three medullae. In the sinus gland, only 5-HT-like endings are detected. In the eyestalks, 5-HT-like fibres detected in the optic tract link with the protocerebrum, in which 5-HT-like somata and their extensions are found. Some neurones are detected in the anterior median cell cluster, in the protocerebral bridge and in the central body. In the deutocerebrum, the paracentral lobes are connected by immunoreactive fibres that run along the deutocerebral commissure. The glomeruli of the olfactory lobes exhibit strong diffuse immunostaining. Beside and in the median part of the deutocerebrum, at least two large serotoninergic neurones project their axons into the olfactory lobe cell cluster. Immunoreactive fibres are also found in the antennular neuropiles. Our results demonstrate the presence of 5-HT-like cell bodies and fibres in Mysidacea. The distribution patterns of the 5-HT immunoreactivity found herein are compared with those of other peracarids and decapods.

  11. The discovery of acanthocephalans parasitizing chaetognaths.

    PubMed

    Lozano-Cobo, Horacio; Gómez-Gutiérrez, Jaime; Franco-Gordo, Carmen; Prado-Rosas, María Del Carmen Gómez Del

    2017-06-01

    A comprehensive literature review shows that 12 types of pathogens, micropredators and parasites are reported to interact with chaetognaths, mostly digenean trematodes, cestodes and nematodes larval stages. Through analysis of 78,152 chaetognaths from a monthly zooplankton time series (Jan 1996-Dec 1998) collected in the Mexican Central Pacific twelve acanthocephalan larvae parasitizing chaetognaths were discovered. This is the first record of an acanthocephalan parasitizing chaetognaths, raising to 13 the types of symbionts known to interact with them (excluding predators). Cystacanth larval specimens of Corynosoma sp. (Polymorphidae) were observed parasitizing the head, trunk and caudal cavities of three of the eight chaetognath species inhabiting this tropical coastal region (Flaccisagitta enflata, Flaccisagitta hexaptera and Zonosagitta bedoti). Because Corynosoma sp. parasitized chaetognaths during different months and years (Jan-Feb 1996, Mar and Jul 1997, Jan, Jun, Aug-Sep 1998) and because the total length of these cystacanths varied between 165-480 µm, suggesting growth inside the hosts, we conclude that chaetognaths are intermediate hosts of Corynosoma sp. The twelve parasitized chaetognaths were juveniles (without gonads) or immature adults (none in reproductively mature stage IV); therefore Corynosoma may have a negative influence on host reproduction. Marine crustaceans (amphipods, decapods, copepods, mysids and euphausiids) and fishes are common intermediate or paratenic hosts of acanthocephalans. Fish, sea birds and marine mammals are definitive hosts for marine Corynosoma species. The present discovery implies that acanthocephalans are transmitted trophically through different intermediate hosts (crustaceans, chaetognaths and/or fish); thus chaetognaths can also be part of the marine acanthocephalan life cycle.

  12. Histophagous ciliate Pseudocollinia brintoni and bacterial assemblage interaction with krill Nyctiphanes simplex. II. Host responses.

    PubMed

    Gómez-Gutiérrez, Jaime; Angel-Rodríguez, Jorge A; Tremblay, Nelly; Zenteno-Savín, Tania; Aguilar-Méndez, Mario J; López-Cortés, Alejandro; Robinson, Carlos J

    2015-10-27

    Unlike decapod crustaceans of commercial interest, the krill defense system and its response to parasites and pathogens is virtually unknown. Histophagous ciliates of the genus Pseudocollinia interact with at least 7 krill species in the northeastern Pacific. Although they can cause epizootic events, the physiology of the histophagous ciliate-host interaction and krill (host) defenses remain unknown. From 1 oceanographic survey along the southwestern coast of the Baja California Peninsula near Bahía Magdalena and 2 in the Gulf of California, we investigated parasitoid-host physiological responses (fatty acid and oxidative stress indicators) of the subtropical krill Nyctiphanes simplex infected with the ciliate P. brintoni. All life stages of P. brintoni were associated with opportunistic bacterial assemblages that have not been explicitly investigated in other Pseudocollinia species (P. beringensis, P. oregonensis, and P. similis). Parasitoid ciliates exclusively infected adult females, which showed increased lipid content during gonad development. As the infection progressed, omega-3 eicosapentaenoic and docosahexaenoic fatty acids, which may act as energy sources to produce high numbers of ciliate transmission stages, were quickly depleted. Antioxidant enzymes, components of the crustacean defense system, varied throughout infection, but without inhibiting Pseudocollinia infection, i.e. higher levels of lipid oxidative damage were detected in late stages of infection. The ineffective response of the krill antioxidant defense system against histophagous ciliates and the bacteria associated with the ciliates suggests that Pseudocollinia ciliates are functionally analogous to krill predators and may have a strong influence on the population dynamics of krill.

  13. Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs.

    PubMed

    Sweetman, Andrew K; Smith, Craig R; Dale, Trine; Jones, Daniel O B

    2014-12-07

    Jellyfish blooms are common in many oceans, and anthropogenic changes appear to have increased their magnitude in some regions. Although mass falls of jellyfish carcasses have been observed recently at the deep seafloor, the dense necrophage aggregations and rapid consumption rates typical for vertebrate carrion have not been documented. This has led to a paradigm of limited energy transfer to higher trophic levels at jelly falls relative to vertebrate organic falls. We show from baited camera deployments in the Norwegian deep sea that dense aggregations of deep-sea scavengers (more than 1000 animals at peak densities) can rapidly form at jellyfish baits and consume entire jellyfish carcasses in 2.5 h. We also show that scavenging rates on jellyfish are not significantly different from fish carrion of similar mass, and reveal that scavenging communities typical for the NE Atlantic bathyal zone, including the Atlantic hagfish, galatheid crabs, decapod shrimp and lyssianasid amphipods, consume both types of carcasses. These rapid jellyfish carrion consumption rates suggest that the contribution of gelatinous material to organic fluxes may be seriously underestimated in some regions, because jelly falls may disappear much more rapidly than previously thought. Our results also demonstrate that the energy contained in gelatinous carrion can be efficiently incorporated into large numbers of deep-sea scavengers and food webs, lessening the expected impacts (e.g. smothering of the seafloor) of enhanced jellyfish production on deep-sea ecosystems and pelagic-benthic coupling. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Vision and Bioluminescence in the Deep-sea Benthos

    NASA Astrophysics Data System (ADS)

    Frank, T. M.; Johnsen, S.; Bracken-Grissom, H.; Messing, C. G.; Widder, E.

    2016-02-01

    During a NOAA-OER funded research cruise, novel collecting techniques were used to collect live, deep-sea benthic animals for studies of bioluminescence and vision. True color images and emission spectra of bioluminescence were obtained from a number of species, including the spiral octocoral Iridogorgia sp., the sea fan Chrysogorgia sp., the sea pen Umbellula sp., and the caridean shrimp Heterocarpus oryx. Electrophysiological studies were conducted on 3 species of decapod crustaceans collected with methods that limited light damage to their photoreceptors. The caridean shrimp, Bathypalaemonella, collected from 1920 m, was always found in association with the bioluminescent spiral octocoral Iridogorgia. While moribund at the surface, enough data were obtained from one specimen to show different waveforms in response to short and long wavelength light, indicative of two different classes of photoreceptor cells. The chirostylid crab, Uroptychus nitidus, found in association with the bioluminescent sea fan, Chrysogorgia sp., also appears to possess two visual pigments, and if further analysis of data supports this preliminary observation, will be the 4th species of deep-sea, non-bioluminescent crustaceans possessing two visual pigments found in association with bioluminescent cnidarians. These four species also share another characteristic - the presence of one or two very long claws, which the crab species are known to use to pick items (possibly plankton stuck in the mucus) off their cnidarian hosts. These data support the previously presented hypothesis (Frank et al. 2012), that these crustaceans may be utilizing their dual visual pigment systems to distinguish between prey and host, based on spectral differences between pelagic and benthic bioluminescence.

  15. Characterization and analysis of a transcriptome from the boreal spider crab Hyas araneus.

    PubMed

    Harms, Lars; Frickenhaus, Stephan; Schiffer, Melanie; Mark, Felix C; Storch, Daniela; Pörtner, Hans-Otto; Held, Christoph; Lucassen, Magnus

    2013-12-01

    Research investigating the genetic basis of physiological responses has significantly broadened our understanding of the mechanisms underlying organismic response to environmental change. However, genomic data are currently available for few taxa only, thus excluding physiological model species from this approach. In this study we report the transcriptome of the model organism Hyas araneus from Spitsbergen (Arctic). We generated 20,479 transcripts, using the 454 GS FLX sequencing technology in combination with an Illumina HiSeq sequencing approach. Annotation by Blastx revealed 7159 blast hits in the NCBI non-redundant protein database. The comparison between the spider crab H. araneus transcriptome and EST libraries of the European lobster Homarus americanus and the porcelain crab Petrolisthes cinctipes yielded 3229/2581 sequences with a significant hit, respectively. The clustering by the Markov Clustering Algorithm (MCL) revealed a common core of 1710 clusters present in all three species and 5903 unique clusters for H. araneus. The combined sequencing approaches generated transcripts that will greatly expand the limited genomic data available for crustaceans. We introduce the MCL clustering for transcriptome comparisons as a simple approach to estimate similarities between transcriptomic libraries of different size and quality and to analyze homologies within the selected group of species. In particular, we identified a large variety of reverse transcriptase (RT) sequences not only in the H. araneus transcriptome and other decapod crustaceans, but also sea urchin, supporting the hypothesis of a heritable, anti-viral immunity and the proposed viral fragment integration by host-derived RTs in marine invertebrates. © 2013.

  16. Metal Concentrations in Sediment And Biota of the Huludao Coast in Liaodong Bay and Associated Human and Ecological Health Risks.

    PubMed

    Gao, Mi; Klerks, Paul L; Wu, Xing; Chen, Hongxing; Xie, Lingtian

    2016-07-01

    This study assessed the contamination extent and potential ecological and human health impacts for chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in sediments and indigenous benthic organisms along the coastal area of Huludao, China. We analyzed a total of eight species: two benthic fish species, two bivalves, two snails, and two decapod crustaceans. Cu, Zn, and Cd levels in sediment exceeded the Chinese marine sediment quality criteria. The geoaccumulation index was highest for Cd followed in a decreasing order by Zn, Pb, Cu, Ni, and Cr. Metal levels were highest in the four mollusk species. The oyster and veined rapa whelk had the highest bioaccumulation factors, indicating that these two species would be well suited for monitoring the metal pollution in this area. Our comparison of estimated daily intake values for human consumption of the seafood species to the Food and Agricultural Organization-recommended daily dietary allowances indicate potential health risks from the intake of Cd from all shellfish other than our crab species and Zn intake from oyster consumption. An analysis of target hazard quotients identified noncarcinogenic health risks from Cd (in all shellfish analyzed except for our crab species), Cu, and Zn (in oysters and veined rapa whelks). Moreover, an analysis of cancer risk from Pb ingestion detected an increased risk for consumption of all shellfish except for the crab species. Health risks seem especially pronounced for the consumption of oysters and the veined rapa whelks; a seafood advisory may be warranted for these mollusks.

  17. Influence of salinity on the larval development of the fiddler crab Uca vocator (Ocypodidae) as an indicator of ontogenetic migration towards offshore waters

    NASA Astrophysics Data System (ADS)

    de Jesus de Brito Simith, Darlan; de Souza, Adelson Silva; Maciel, Cristiana Ramalho; Abrunhosa, Fernando Araújo; Diele, Karen

    2012-03-01

    Larvae of many marine decapod crustaceans are released in unpredictable habitats with strong salinity fluctuations during the breeding season. In an experimental laboratory study, we investigated the influence of seven different salinities (0, 5, 10, 15, 20, 25 and 30) on the survival and development time of fiddler crab zoea larvae, Uca vocator, from northern Brazilian mangroves. The species reproduces during the rainy season when estuarine salinity strongly fluctuates and often reaches values below 10 and even 5. Salinity significantly affected the survival rate and development period from hatching to megalopa, while the number of zoeal stages remained constant. In salinities 0 and 5, no larvae reached the second zoeal stage, but they managed to survive for up to 3 (average of 2.3 days) and 7 days (average of 5.1 days), respectively. From salinity 10 onwards, the larvae developed to the megalopal stage. However, the survival rate was significantly lower (5-15%) and development took more time (average of 13.5 days) in salinity 10 than in the remaining salinities (15-30). In the latter, survival ranged from 80-95% and development took 10-11 days. Given the 100% larval mortality in extremely low salinities and their increased survival in intermediate and higher salinities, we conclude that U. vocator has a larval `export' strategy with its larvae developing in offshore waters where salinity conditions are more stable and higher than in mangrove estuaries. Thus, by means of ontogenetic migration, osmotic stress and resulting mortality in estuarine waters can be avoided.

  18. New Functions of Arthropod Bursicon: Inducing Deposition and Thickening of New Cuticle and Hemocyte Granulation in the Blue Crab, Callinectes sapidus

    PubMed Central

    Chung, J. Sook; Katayama, Hidekazu; Dircksen, Heinrich

    2012-01-01

    Arthropod growth requires molt-associated changes in softness and stiffness of the cuticle that protects from desiccation, infection and injury. Cuticle hardening in insects depends on the blood-borne hormone, bursicon (Burs), although it has never been determined in hemolymph. Whilst also having Burs, decapod crustaceans reiterate molting many more times during their longer life span and are encased in a calcified exoskeleton, which after molting undergoes similar initial cuticle hardening processes as in insects. We investigated the role of homologous crustacean Burs in cuticular changes and growth in the blue crab, Callinectes sapidus. We found dramatic increases in size and number of Burs cells during development in paired thoracic ganglion complex (TGC) neurons with pericardial organs (POs) as neurohemal release sites. A skewed expression of Burs β/Burs α mRNA in TGC corresponds to protein contents of identified Burs β homodimer and Burs heterodimer in POs. In hemolymph, Burs is consistently present at ∼21 pM throughout the molt cycle, showing a peak of ∼89 pM at ecdysis. Since initial cuticle hardness determines the degree of molt-associated somatic increment (MSI), we applied recombinant Burs in vitro to cuticle explants of late premolt or early ecdysis. Burs stimulates cuticle thickening and granulation of hemocytes. These findings demonstrate novel cuticle-associated functions of Burs during molting, while the unambiguous and constant presence of Burs in cells and hemolymph throughout the molt cycle and life stages may implicate further functions of its homo- and heterodimer hormone isoforms in immunoprotective defense systems of arthropods. PMID:23029467

  19. Phylogenetic patterns and the adaptive evolution of osmoregulation in fiddler crabs (Brachyura, Uca)

    PubMed Central

    Faria, Samuel Coelho; Provete, Diogo Borges; Thurman, Carl Leo

    2017-01-01

    Salinity is the primary driver of osmoregulatory evolution in decapods, and may have influenced their diversification into different osmotic niches. In semi-terrestrial crabs, hyper-osmoregulatory ability favors sojourns into burrows and dilute media, and provides a safeguard against hemolymph dilution; hypo-osmoregulatory ability underlies emersion capability and a life more removed from water sources. However, most comparative studies have neglected the roles of the phylogenetic and environmental components of inter-specific physiological variation, hindering evaluation of phylogenetic patterns and the adaptive nature of osmoregulatory evolution. Semi-terrestrial fiddler crabs (Uca) inhabit fresh to hyper-saline waters, with species from the Americas occupying higher intertidal habitats than Indo-west Pacific species mainly found in the low intertidal zone. Here, we characterize numerous osmoregulatory traits in all ten fiddler crabs found along the Atlantic coast of Brazil, and we employ phylogenetic comparative methods using 24 species to test for: (i) similarities of osmoregulatory ability among closely related species; (ii) salinity as a driver of osmoregulatory evolution; (iii) correlation between salt uptake and secretion; and (iv) adaptive peaks in osmoregulatory ability in the high intertidal American lineages. Our findings reveal that osmoregulation in Uca exhibits strong phylogenetic patterns in salt uptake traits. Salinity does not correlate with hyper/hypo-regulatory abilities, but drives hemolymph osmolality at ambient salinities. Osmoregulatory traits have evolved towards three adaptive peaks, revealing a significant contribution of hyper/hypo-regulatory ability in the American clades. Thus, during the evolutionary history of fiddler crabs, salinity has driven some of the osmoregulatory transformations that underpin habitat diversification, although others are apparently constrained phylogenetically. PMID:28182764

  20. Estuarine resources use by juvenile Flagfin mojarra ( Eucinostomus melanopterus) in an inverse tropical estuary (Sine Saloum, Senegal)

    NASA Astrophysics Data System (ADS)

    Gning, Ndombour; Le Loc'h, François; Thiaw, Omar T.; Aliaume, Catherine; Vidy, Guy

    2010-03-01

    The Flagfin mojarra, Eucinostomus melanopterus, is a marine spawner whose young individuals are common in the Sine Saloum inverse estuary (Senegal). The species offers the opportunity to study both the use of the estuarine nursery resources and the impact of the particular environment of the inverse estuary on these resources. This will lead to a better understanding of the functioning of the nursery. We investigated the resources used by juvenile Flagfin mojarra by coupling stomach contents and stable isotopes methods. Young Flagfin mojarra feed on a wide range of invertebrates. Diet changed from copepods in the smallest size class (10-40 mm), to a range of invertebrates including amphipods, insect larvae, polychaetes and mollusc in the medium size class (up to 60 mm) and mainly polychaetes for individuals >60 mm in size. In mangrove habitats with moderate salinity, the diet was dominated by polychaetes and decapod larvae (crabs) whereas in habitats with higher salinity, diet was dominated by amphipods. In very hypersaline areas with scarce mangroves, diet comprised benthic copepods, chironomid larvae and ostracods. This agreed with a clear change in δ13C measured in fish sampled at downstream or upstream sites. Comparison with signatures of primary producers suggested that the local food web exploited by young Flagfin mojarra is mainly based on phytoplankton in the downstream mangrove area, and mainly on benthic microalgae in the upstream hypersaline area. As in many studies considering the food webs in mangrove, mangrove was not identified as a major contributor to the food web exploited by E. melanopterus. This needs further investigation particularly because the exportation of estuarine materials to the sea is limited in an inverse estuary.

  1. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon

    PubMed Central

    Daly, Elizabeth A.; Brodeur, Richard D.

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981–1985; 1998–2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes. PMID:26675673

  2. Elemental and biochemical composition of Nephrops norvegicus (Linnaeus 1758) larvae from the Mediterranean and Irish Seas

    NASA Astrophysics Data System (ADS)

    Rotllant, Guiomar; Anger, Klaus; Durfort, Mercè; Sardà, Francisco

    2004-10-01

    The Norway lobster, Nephrops norvegicus, is a commercially exploited decapod which is widely distributed throughout the north-eastern Atlantic and the Mediterranean Sea. Ovigerous females originating from the Mediterranean and the Irish Seas were held in the laboratory until larvae hatched. Biomass and biochemical composition, as well as digestive gland structure, were examined in newly hatched larvae from these two regions. In addition, previously published data from a North Sea population were included in our comparison. Elemental analyses showed that the absolute quantities of dry mass (DM), carbon (C), nitrogen (N) and hydrogen (H) (collectively referred to as CHN) per individual, and the C:N mass ratios, were significantly lower, while the relative CHN, protein and lipid values (in % of DM) were higher in samples from the Irish Sea compared to larvae originating from either the Mediterranean or the North Sea. As in CHN, the absolute level of protein per individual was higher in larvae from the Mediterranean, while no significant differences were observed in the individual lipid contents. Likewise, the digestive gland structure at hatching did not show any differences between study areas. Intraspecific variability in biomass and chemical composition of newly hatched larvae from different regions may be related to differential patterns of reproduction in regions with different climatic conditions. Lobster larvae hatch in the Mediterranean Sea predominantly in winter when both water temperature and planktonic food availability are at a minimum, while hatching in the Irish Sea occurs under more favourable conditions in spring. Hence, significantly higher wet mass, dry mass and protein values in Mediterranean larvae may represent adaptive traits allowing for early posthatching survival and development under food-limited conditions in an oligotrophic environment.

  3. Resistance to the crayfish plague, Aphanomyces astaci (Oomycota) in the endangered freshwater crayfish species, Austropotamobius pallipes.

    PubMed

    Martín-Torrijos, Laura; Campos Llach, Miquel; Pou-Rovira, Quim; Diéguez-Uribeondo, Javier

    2017-01-01

    The pathogen Aphanomyces astaci Schikora 1906 is responsible for the decline of the native crayfish species of Europe, and their current endangered status. This pathogenic species is native to North America and only colonizes aquatic decapods. The North American crayfish species have a high resistance to this pathogen, while species from other regions are highly susceptible. However, recent field and laboratory observations indicate that there might exist some populations with resistance against this disease. The objective of this study was to test the susceptibility of 8 selected native European crayfish populations of Austropotamobius pallipes Lereboullet 1858 from the Pyrenees. We challenged them against the genome sequenced strain AP03 of A. astaci isolated from a North American red swamp crayfish, Procambarus clarkii Girard 1852, in the Garrotxa Natural Park, Girona. The results showed that there are significant differences (P<0,001) among populations, although most of them show high mortality rates after the zoospore challenge with A. astaci. However, one population from Girona exhibited a 100% survival during a four-month monitoring period under the experimental conditions tested. Histological analyses revealed a high immune reaction in tissues examined, i.e., encapsulation and melanization of hyphae, similar to that found in North American resistant crayfish species. These results represent the first observation of a native European crayfish population showing high resistance towards the most virulent genotype of this pathogen, i.e., genotype Pc. The identification of this population is of key importance for the management of these endangered species, and represents a crucial step forward towards the elucidation of the factors involved in the immune reaction against this devastating pathogen.

  4. Warming Ocean Conditions Relate to Increased Trophic Requirements of Threatened and Endangered Salmon.

    PubMed

    Daly, Elizabeth A; Brodeur, Richard D

    2015-01-01

    The trophic habits, size and condition of yearling Chinook salmon (Oncorhynchus tshawytscha) caught early in their marine residence were examined during 19 survey years (1981-1985; 1998-2011). Juvenile salmon consumed distinct highly piscivorous diets in cold and warm ocean regimes with major differences between ocean regimes driven by changes in consumption of juvenile rockfishes, followed by several other fish prey, adult euphausiids and decapod larvae. Notable, Chinook salmon consumed 30% more food in the warm versus cold ocean regime in both May and June. Additionally, there were about 30% fewer empty stomachs in the warm ocean regime in May, and 10% fewer in warm June periods. The total prey energy density consumed during the warmer ocean regime was also significantly higher than in cold. Chinook salmon had lower condition factor and were smaller in fork length during the warm ocean regime, and were longer and heavier for their size during the cold ocean regime. The significant increase in foraging during the warm ocean regime occurred concurrently with lower available prey biomass. Adult return rates of juvenile Chinook salmon that entered the ocean during a warm ocean regime were lower. Notably, our long term data set contradicts the long held assertion that juvenile salmon eat less in a warm ocean regime when low growth and survival is observed, and when available prey are reduced. Comparing diet changes between decades under variable ocean conditions may assist us in understanding the effects of projected warming ocean regimes on juvenile Chinook salmon and their survival in the ocean environment. Bioenergetically, the salmon appear to require more food resources during warm ocean regimes.

  5. Presence of gonadotropin-releasing hormone-like peptide in the central nervous system and reproductive organs of the male blue swimming crab, Portunus pelagicus, and its effect on spermatogenesis.

    PubMed

    Senarai, Thanyaporn; Saetan, Jirawat; Tamtin, Montakan; Weerachatyanukul, Wattana; Sobhon, Prasert; Sretarugsa, Prepee

    2016-08-01

    Our previous studies have demonstrated that lamprey gonadotropin-releasing hormone-III (lGnRH-III)-like peptide occurs in the central nervous system (CNS) of decapod crustaceans (Macrobrachium rosenbergii, Penaeus monodon, Portunus pelagicus), and that lGnRH-III is the most potent in stimulating ovarian maturation compared with other GnRH isoforms. In this study, we examined the localization of lGnRH-III-like peptide in the CNS and male reproductive organs of the blue swimming crab by using anti-lGnRH-III as a probe. In the brain, lGnRH-III immunoreactivity (-ir) was detected in neurons of clusters 6, 10, 11, 14/15, 16, and 17 and in many neuropils. In the subesophageal ganglion, lGnRH-III-ir was present in neurons of the dorso-lateral and ventro-medial clusters. In the thoracic ganglia, lGnRH-III-ir was observed in the large-sized neurons between the thoracic neuropils and in the ventromedial cluster of the abdominal ganglia. In the testis, lGnRH-III-ir was detected in nurse cells, hemocytes, spermatids 2, and the outer and inner zones of the acrosomes of spermatozoa. Bioassay showed that lGnRH-III significantly increased the testis-somatic index, the percentage of late stages of seminiferous tubules (stages VII-IX), the diameter of the seminiferous tubules, and the number of BrdU-labeled early germ cells compared with the control groups. Thus, lGnRH-III-like peptide exists in the male crab and possibly enhances germ cell proliferation and maturation in the testes, leading to increased sperm production.

  6. Osmoregulation in the Hawaiian anchialine shrimp Halocaridina rubra (Crustacea: Atyidae): expression of ion transporters, mitochondria-rich cell proliferation and hemolymph osmolality during salinity transfers.

    PubMed

    Havird, Justin C; Santos, Scott R; Henry, Raymond P

    2014-07-01

    Studies of euryhaline crustaceans have identified conserved osmoregulatory adaptions allowing hyper-osmoregulation in dilute waters. However, previous studies have mainly examined decapod brachyurans with marine ancestries inhabiting estuaries or tidal creeks on a seasonal basis. Here, we describe osmoregulation in the atyid Halocaridina rubra, an endemic Hawaiian shrimp of freshwater ancestry from the islands' anchialine ecosystem (coastal ponds with subsurface freshwater and seawater connections) that encounters near-continuous spatial and temporal salinity changes. Given this, survival and osmoregulatory responses were examined over a wide salinity range. In the laboratory, H. rubra tolerated salinities of ~0-56‰, acting as both a hyper- and hypo-osmoregulator and maintaining a maximum osmotic gradient of ~868 mOsm kg(-1) H2O in freshwater. Furthermore, hemolymph osmolality was more stable during salinity transfers relative to other crustaceans. Silver nitrate and vital mitochondria-rich cell staining suggest all gills are osmoregulatory, with a large proportion of each individual gill functioning in ion transport (including when H. rubra acts as an osmoconformer in seawater). Additionally, expression of ion transporters and supporting enzymes that typically undergo upregulation during salinity transfer in osmoregulatory gills (i.e. Na(+)/K(+)-ATPase, carbonic anhydrase, Na(+)/K(+)/2Cl(-) cotransporter, V-type H(+)-ATPase and arginine kinase) were generally unaltered in H. rubra during similar transfers. These results suggest H. rubra (and possibly other anchialine species) maintains high, constitutive levels of gene expression and ion transport capability in the gills as a means of potentially coping with the fluctuating salinities that are encountered in anchialine habitats. Thus, anchialine taxa represent an interesting avenue for future physiological research. © 2014. Published by The Company of Biologists Ltd.

  7. Expression of the prospective mesoderm genes twist, snail, and mef2 in penaeid shrimp.

    PubMed

    Wei, Jiankai; Glaves, Richard Samuel Elliot; Sellars, Melony J; Xiang, Jianhai; Hertzler, Philip L

    2016-07-01

    In penaeid shrimp, mesoderm forms from two sources: naupliar mesoderm founder cells, which invaginate during gastrulation, and posterior mesodermal stem cells called mesoteloblasts, which undergo characteristic teloblastic divisions. The primordial mesoteloblast descends from the ventral mesendoblast, which arrests in cell division at the 32-cell stage and ingresses with its sister dorsal mesendoblast prior to naupliar mesoderm invagination. The naupliar mesoderm forms the muscles of the naupliar appendages (first and second antennae and mandibles), while the mesoteloblasts form the mesoderm, including the muscles, of subsequently formed posterior segments. To better understand the mechanism of mesoderm and muscle formation in penaeid shrimp, twist, snail, and mef2 cDNAs were identified from transcriptomes of Penaeus vannamei, P. japonicus, P. chinensis, and P. monodon. A single Twist ortholog was found, with strong inferred amino acid conservation across all three species. Multiple Snail protein variants were detected, which clustered in a phylogenetic tree with other decapod crustacean Snail sequences. Two closely-related mef2 variants were found in P. vannamei. The developmental mRNA expression of these genes was studied by qPCR in P. vannamei embryos, larvae, and postlarvae. Expression of Pv-twist and Pv-snail began during the limb bud stage and continued through larval stages to the postlarva. Surprisingly, Pv-mef2 expression was found in all stages from the zygote to the postlarva, with the highest expression in the limb bud and protozoeal stages. The results add comparative data on the development of anterior and posterior mesoderm in malacostracan crustaceans, and should stimulate further studies on mesoderm and muscle development in penaeid shrimp.

  8. Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons

    PubMed Central

    Groh-Lunow, Katrin C.; Getahun, Merid N.; Grosse-Wilde, Ewald; Hansson, Bill S.

    2015-01-01

    Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs) as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs) has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs. PMID:25698921

  9. Resistance to the crayfish plague, Aphanomyces astaci (Oomycota) in the endangered freshwater crayfish species, Austropotamobius pallipes

    PubMed Central

    Martín-Torrijos, Laura; Campos Llach, Miquel; Pou-Rovira, Quim

    2017-01-01

    The pathogen Aphanomyces astaci Schikora 1906 is responsible for the decline of the native crayfish species of Europe, and their current endangered status. This pathogenic species is native to North America and only colonizes aquatic decapods. The North American crayfish species have a high resistance to this pathogen, while species from other regions are highly susceptible. However, recent field and laboratory observations indicate that there might exist some populations with resistance against this disease. The objective of this study was to test the susceptibility of 8 selected native European crayfish populations of Austropotamobius pallipes Lereboullet 1858 from the Pyrenees. We challenged them against the genome sequenced strain AP03 of A. astaci isolated from a North American red swamp crayfish, Procambarus clarkii Girard 1852, in the Garrotxa Natural Park, Girona. The results showed that there are significant differences (P<0,001) among populations, although most of them show high mortality rates after the zoospore challenge with A. astaci. However, one population from Girona exhibited a 100% survival during a four-month monitoring period under the experimental conditions tested. Histological analyses revealed a high immune reaction in tissues examined, i.e., encapsulation and melanization of hyphae, similar to that found in North American resistant crayfish species. These results represent the first observation of a native European crayfish population showing high resistance towards the most virulent genotype of this pathogen, i.e., genotype Pc. The identification of this population is of key importance for the management of these endangered species, and represents a crucial step forward towards the elucidation of the factors involved in the immune reaction against this devastating pathogen. PMID:28750039

  10. Evolution of pigment-dispersing factor neuropeptides in Panarthropoda: Insights from Onychophora (velvet worms) and Tardigrada (water bears).

    PubMed

    Mayer, Georg; Hering, Lars; Stosch, Juliane M; Stevenson, Paul A; Dircksen, Heinrich

    2015-09-01

    Pigment-dispersing factor (PDF) denotes a conserved family of homologous neuropeptides present in several invertebrate groups, including mollusks, nematodes, insects, and crustaceans (referred to here as pigment-dispersing hormone [PDH]). With regard to their encoding genes (pdf, pdh), insects possess only one, nematodes two, and decapod crustaceans up to three, but their phylogenetic relationship is unknown. To shed light on the origin and diversification of pdf/pdh homologs in Panarthropoda (Onychophora + Tardigrada + Arthropoda) and other molting animals (Ecdysozoa), we analyzed the transcriptomes of five distantly related onychophorans and a representative tardigrade and searched for putative pdf homologs in publically available genomes of other protostomes. This revealed only one pdf homolog in several mollusk and annelid species; two in Onychophora, Priapulida, and Nematoda; and three in Tardigrada. Phylogenetic analyses suggest that the last common ancestor of Panarthropoda possessed two pdf homologs, one of which was lost in the arthropod or arthropod/tardigrade lineage, followed by subsequent duplications of the remaining homolog in some taxa. Immunolocalization of PDF-like peptides in six onychophoran species, by using a broadly reactive antibody that recognizes PDF/PDH peptides in numerous species, revealed an elaborate system of neurons and fibers in their central and peripheral nervous systems. Large varicose projections in the heart suggest that the PDF neuropeptides functioned as both circulating hormones and locally released transmitters in the last common ancestor of Onychophora and Arthropoda. The lack of PDF-like-immunoreactive somata associated with the onychophoran optic ganglion conforms to the hypothesis that onychophoran eyes are homologous to the arthropod median ocelli. © 2015 Wiley Periodicals, Inc.

  11. Identification and Characterization of an Insulin-Like Receptor Involved in Crustacean Reproduction.

    PubMed

    Sharabi, O; Manor, R; Weil, S; Aflalo, E D; Lezer, Y; Levy, T; Aizen, J; Ventura, T; Mather, P B; Khalaila, I; Sagi, A

    2016-02-01

    Sexual differentiation and maintenance of masculinity in crustaceans has been suggested as being regulated by a single androgenic gland (AG) insulin-like peptide (IAG). However, downstream elements involved in the signaling cascade remain unknown. Here we identified and characterized a gene encoding an insulin-like receptor in the prawn Macrobrachium rosenbergii (Mr-IR), the first such gene detected in a decapod crustacean. In mining for IRs and other insulin signaling-related genes, we constructed a comprehensive M. rosenbergii transcriptomic library from multiple sources. In parallel we sequenced the complete Mr-IR cDNA, confirmed in the wide transcriptomic library. Mr-IR expression was detected in most tissues in both males and females, including the AG and gonads. To study Mr-IR function, we performed long-term RNA interference (RNAi) silencing in young male prawns. Although having no effect on growth, Mr-IR silencing advanced the appearance of a male-specific secondary trait. The most noted effects of Mr-IR silencing were hypertrophy of the AG and the associated increased production of Mr-IAG, with an unusual abundance of immature sperm cells being seen in the distal sperm duct. A ligand blot assay using de novo recombinant Mr-IAG confirmed the existence of a ligand-receptor interaction. Whereas these results suggest a role for Mr-IR in the regulation of the AG, we did not see any sexual shift after silencing of Mr-IR, as occurred when the ligand-encoding Mr-IAG gene was silenced. This suggests that sexual differentiation in crustaceans involve more than a single Mr-IAG receptor, emphasizing the complexity of sexual differentiation and maintenance.

  12. Toxicokinetics, disposition and metabolism of fluoxetine in crabs.

    PubMed

    Robert, Alexandrine; Schultz, Irvin R; Hucher, Nicolas; Monsinjon, Tiphaine; Knigge, Thomas

    2017-11-01

    The disposition and metabolism of fluoxetine in the European shore crab and the Dungeness crab were assessed. Crabs received intracardiac doses of either 0.13 μg/kg or 0.5 mg/kg fluoxetine, respectively. In addition, fluoxetine was administered to Metacarcinus cancer by oral gavage at 7.8 mg/kg. The distribution of fluoxetine was quantified in haemolymph and digestive gland for both crabs, as well as brain, muscle, and testis of Carcinus maenas, over 12 days. The metabolite norfluoxetine, was also measured in C. maenas. Fluoxetine was mainly found in lipid rich tissues. Distribution coefficients increased for digestive gland until three days after fluoxetine administration and then decreased until the end of the observations. The highest distribution coefficients were obtained for brain. Norfluoxetine displayed continuously high levels in digestive gland and brain. The strong decrease in fluoxetine and the concomitant increase in norfluoxetine demonstrates that decapod crustaceans metabolise fluoxetine into the more biologically active norfluoxetine. Fluoxetine levels in the haemolymph of M. cancer declined within 20 h, but showed a second peak 25 h later, suggesting remobilisation from tissues sequestering the compound. The steady state volume distribution and the total body clearance of fluoxetine were high, consistent with high diffusion of fluoxetine into the peripheral tissues and biotransformation as an important elimination pathway. Oral administration of fluoxetine prolonged its half-life in M. cancer, but bioavailability was low. These results confirm the high distribution into nervous tissue, extensive biotransformation into the highly active norfluoxetine and a half-life similar to that observed in vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Green crab Carcinus maenas symbiont profiles along a North Atlantic invasion route.

    PubMed

    Bojko, Jamie; Stebbing, Paul D; Dunn, Alison M; Bateman, Kelly S; Clark, Fraser; Kerr, Rose C; Stewart-Clark, Sarah; Johannesen, Ása; Stentiford, Grant D

    2018-05-07

    The green crab Carcinus maenas is an invader on the Atlantic coast of Canada and the USA. In these locations, crab populations have facilitated the development of a legal fishery in which C. maenas is caught and sold, mainly for use as bait to capture economically important crustaceans such as American lobster Homarus americanus. The paucity of knowledge on the symbionts of invasive C. maenas in Canada and their potential for transfer to lobsters poses a potential risk of unintended transmission. We carried out a histological survey for symbionts of C. maenas from their native range in Northern Europe (in the UK and Faroe Islands), and invasive range in Atlantic Canada. In total, 19 separate symbiotic associations were identified from C. maenas collected from 27 sites. These included metazoan parasites (nematodes, Profilicollis botulus, Sacculina carcini, Microphallidae, ectoparasitic crustaceans), microbial eukaryotes (ciliates, Hematodinium sp., Haplosporidium littoralis, Ameson pulvis, Parahepatospora carcini, gregarines, amoebae), bacteria (Rickettsia-like organism, milky disease), and viral pathogens (parvo-like virus, herpes-like virus, iridovirus, Carcinus maenas bacilliform virus and a haemocyte-infecting rod-shaped virus). Hematodinium sp. were not observed in the Canadian population; however, parasites such as Trematoda and Acanthocephala were present in all countries despite their complex, multi-species lifecycles. Some pathogens may pose a risk of transmission to other decapods and native fauna via the use of this host in the bait industry, such as the discovery of a virus resembling the previously described white spot syndrome virus (WSSV), B-virus and 'rod-shaped virus' (RV-CM) and amoebae, which have previously been found to cause disease in aquaculture (e.g. Salmo salar) and fisheries species (e.g. H. americanus).

  14. Transcriptomic analysis of the autophagy machinery in crustaceans.

    PubMed

    Suwansa-Ard, Saowaros; Kankuan, Wilairat; Thongbuakaew, Tipsuda; Saetan, Jirawat; Kornthong, Napamanee; Kruangkum, Thanapong; Khornchatri, Kanjana; Cummins, Scott F; Isidoro, Ciro; Sobhon, Prasert

    2016-08-09

    The giant freshwater prawn, Macrobrachium rosenbergii, is a decapod crustacean that is commercially important as a food source. Farming of commercial crustaceans requires an efficient management strategy because the animals are easily subjected to stress and diseases during the culture. Autophagy, a stress response process, is well-documented and conserved in most animals, yet it is poorly studied in crustaceans. In this study, we have performed an in silico search for transcripts encoding autophagy-related (Atg) proteins within various tissue transcriptomes of M. rosenbergii. Basic Local Alignment Search Tool (BLAST) search using previously known Atg proteins as queries revealed 41 transcripts encoding homologous M. rosenbergii Atg proteins. Among these Atg proteins, we selected commonly used autophagy markers, including Beclin 1, vacuolar protein sorting (Vps) 34, microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B), p62/sequestosome 1 (SQSTM1), and lysosomal-associated membrane protein 1 (Lamp-1) for further sequence analyses using comparative alignment and protein structural prediction. We found that crustacean autophagy marker proteins contain conserved motifs typical of other animal Atg proteins. Western blotting using commercial antibodies raised against human Atg marker proteins indicated their presence in various M. rosenbergii tissues, while immunohistochemistry localized Atg marker proteins within ovarian tissue, specifically late stage oocytes. This study demonstrates that the molecular components of autophagic process are conserved in crustaceans, which is comparable to autophagic process in mammals. Furthermore, it provides a foundation for further studies of autophagy in crustaceans that may lead to more understanding of the reproduction- and stress-related autophagy, which will enable the efficient aquaculture practices.

  15. Reproductive cycles in tropical intertidal gastropods are timed around tidal amplitude cycles.

    PubMed

    Collin, Rachel; Kerr, Kecia; Contolini, Gina; Ochoa, Isis

    2017-08-01

    Reproduction in iteroparous marine organisms is often timed with abiotic cycles and may follow lunar, tidal amplitude, or daily cycles. Among intertidal marine invertebrates, decapods are well known to time larval release to coincide with large amplitude nighttime tides, which minimizes the risk of predation. Such bimonthly cycles have been reported for few other intertidal invertebrates. We documented the reproduction of 6 gastropod species from Panama to determine whether they demonstrate reproductive cycles, whether these cycles follow a 2-week cycle, and whether cycles are timed so that larval release occurs during large amplitude tides. Two of the species ( Crepidula cf. marginalis and Nerita scabricosta ) showed nonuniform reproduction, but without clear peaks in timing relative to tidal or lunar cycles. The other 4 species show clear peaks in reproduction occurring every 2 weeks. In 3 of these species ( Cerithideopsis carlifornica var. valida, Littoraria variegata , and Natica chemnitzi ), hatching occurred within 4 days of the maximum amplitude tides. Siphonaria palmata exhibit strong cycles, but reproduction occurred during the neap tides. Strong differences in the intensity of reproduction of Cerithideopsis carlifornica , and in particular, Littoraria variegata , between the larger and smaller spring tides of a lunar month indicate that these species time reproduction with the tidal amplitude cycle rather than the lunar cycle. For those species that reproduce during both the wet and dry seasons, we found that reproductive timing did not differ between seasons despite strong differences in temperature and precipitation. Overall, we found that most (4/6) species have strong reproductive cycles synchronized with the tidal amplitude cycle and that seasonal differences in abiotic factors do not alter these cycles.

  16. Community structure of zooplankton in the main entrance of Bahía Magdalena, México during 1996.

    PubMed

    Gómez-Gutiérrez, J; Palomares-García, R; Hernández-Trujillo, S; Carballido-Carranza, A

    2001-06-01

    The zooplankton community structure, including copepods, euphausiids, chaetognaths, and decapod larvae, was monitored during six circadian cycles using Bongo net (500 microns mesh net) samples from Bahía Magdalena, on the southwest coast of Baja California, México. Samples were obtained during three oceanographic surveys (March, July, and December 1996) to describe the changes in the zooplankton community structure throughout the main mouth of Bahía Magdalena. The zooplankton community structure showed strong changes with a close relation to environmental conditions. During March, a well-mixed water column with low temperature and salinity indicated an influence of the California Current water and local upwelling processes. During July, temperature increased and a wide salinity range was recorded. The stratification of the water column was intense during summer, enhancing the thermocline. The highest temperatures and salinity were recorded in December, related to the presence of the Costa Rica Coastal Current (CRCC). The thermocline deepened as water temperature increased. A typical temperate community structure with low specific richness dominated by Calanus pacificus, Nyctiphanes simplex, and Acartia clausi and high zooplankton biomass (average 9.3 and 5.5 ml 1000 m-3 respectively) during March and July shifted to a more complex tropical community structure with a low zooplankton biomass in December (average 0.37 ml 1000 m-3). The mouth of Bahía Magdalena has a vigorous exchange of water caused by tidal currents. The zooplankton community structure was not significantly different between the central part of Bahía Magdalena and the continental shelf outside the bay for all months. The results suggest a more dynamic inside-outside interaction of zooplankton assemblages than first thought.

  17. Community structure and trophic ecology of megabenthic fauna from the deep basins in the Interior Sea of Chiloé, Chile (41-43° S)

    NASA Astrophysics Data System (ADS)

    Zapata-Hernández, Germán; Sellanes, Javier; Thiel, Martin; Henríquez, Camila; Hernández, Sebastián; Fernández, Julio C. C.; Hajdu, Eduardo

    2016-11-01

    Estuarine environments are complex ecological systems, which depend on multiple inputs of organic sources that could support their benthic communities. The deep-water megabenthic communities of the Interior Sea of Chiloé (ISCh, northern part of the fjord region of Chile) were studied to characterize their taxonomic composition and to trace the energy pathways supporting them by using stable isotope analysis (SIA). Megabenthic and demersal organisms as well as sunken macroalgal debris and terrestrial organic matter (TOM: wood, leaves, branches) were obtained by bottom trawling along an estuarine gradient covering 100-460 m water depth. Additionally, particulate organic matter (POM) and the sedimentary organic matter (SOM) were sampled and carbon (δ13C) and nitrogen (δ15N) isotope ratios were determined for all these organisms and potential food sources. A total of 140 taxa were obtained, including invertebrates (e.g. polychaetes, mollusks, crustaceans and echinoderms) bony fishes, rays and sharks. Based on the stable isotope values it was possible to infer a strong dependence on primary production derived from phytoplankton which is exported to the benthos. A potentially important contribution from sunken macroalgae to megabenthic consumers was established only for some invertebrates, such as the irregular echinoid Tripylaster philippii and the decapod Eurypodius latreillii. The trophic structure metrics suggest a similar isotopic niche width, trophic diversity and species packaging in the food webs among the major basins in the ISCh. It is thus concluded that the benthic food webs are supported principally by surface primary production, but macroalgal subsidies could be exploited by selected invertebrate taxa (e.g. detritivores) and terrestrial carbon pathways are important for certain specialized taxa (e.g. Xylophaga dorsalis).

  18. Application of D-Crustacean Hyperglycemic Hormone Induces Peptidases Transcription and Suppresses Glycolysis-Related Transcripts in the Hepatopancreas of the Crayfish Pontastacus leptodactylus — Results of a Transcriptomic Study

    PubMed Central

    De Moro, Gianluca; Gerdol, Marco; Guarnaccia, Corrado; Mosco, Alessandro; Pallavicini, Alberto; Giulianini, Piero Giulio

    2013-01-01

    The crustacean Hyperglycemic Hormone (cHH) is a neuropeptide present in many decapods. Two different chiral isomers are simultaneously present in Astacid crayfish and their specific biological functions are still poorly understood. The present study is aimed at better understanding the potentially different effect of each of the isomers on the hepatopancreatic gene expression profile in the crayfish Pontastacus leptodactylus, in the context of short term hyperglycemia. Hence, two different chemically synthesized cHH enantiomers, containing either L- or D-Phe3, were injected to the circulation of intermolt females following removal of their X organ-Sinus gland complex. The effects triggered by the injection of the two alternate isomers were detected after one hour through measurement of circulating glucose levels. Triggered changes of the transcriptome expression profile in the hepatopancreas were analyzed by RNA-seq. A whole transcriptome shotgun sequence assembly provided the assumedly complete transcriptome of P. leptodactylus hepatopancreas, followed by RNA-seq analysis of changes in the expression level of many genes caused by the application of each of the hormone isomers. Circulating glucose levels were much higher in response to the D-isoform than to the L-isoform injection, one hour from injection. Similarly, the RNA-seq analysis confirmed a stronger effect on gene expression following the administration of D-cHH, while just limited alterations were caused by the L-isomer. These findings demonstrated a more prominent short term effect of the D-cHH on the transcription profile and shed light on the effect of the D-isomer on specific functional gene groups. Another contribution of the study is the construction of a de novo assembly of the hepatopancreas transcriptome, consisting of 39,935 contigs, that dramatically increases the molecular information available for this species and for crustaceans in general, providing an efficient tool for studying gene

  19. Effects of Cadmium on Lipid Storage and Metabolism in the Freshwater Crab Sinopotamon henanense

    PubMed Central

    Yang, Jian; Liu, Dongmei; Jing, Weixin; Dahms, Hans-Uwe; Wang, Lan

    2013-01-01

    Since environmental effects of molecular traits are often questioned we analyze here the molecular effects of cadmium (Cd) on lipid pathways and their effects on tissues development. Lipids are an important energy source for the developing embryo, and accumulate in the ovary and hepatopancreas of decapod crustaceans. The extend of Cd affecting lipid storage and metabolism, is studied here with the freshwater crabs Sinopotamon henanense. Crabs were exposed to water-born Cd at 1.45, 2.9, 5.8 mg/l for 10, 15, and 20 days. With significantly increased Cd accumulation in exposed crabs, lipid content in hepatopancreas and ovary showed a time-dependent and concentration-dependent reduction, being at least one of the reasons for a lower ovarian index (OI) and hepatopancreatic index (HI). After 10-day exposure increased triglyceride (TG) level in hemolymph and up-regulation of pancreatic lipase (PL) activity in the hepatopancreas suggested an increased nutritional lipid uptake. However, two processes led to lower lipid levels upon Cd exposure: an increased utilization of lipids and a down-regulated lipoprotein lipase (LPL) led to insufficient lipid transport. 10-day Cd exposure also triggered the production of β-nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt hydrate (NADPH), as well as to the synthesis of adenosine triphosphate (ATP) and fatty acids. With increasing exposure time, the crabs at 15 and 20-day exposure contained less lipid and TG, suggesting that more energy was consumed during the exposure time. Meanwhile, the level of NADPH, ATP and the activity of PL, LPL, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) activity was down-regulated suggesting an impairment of the crab metabolism by Cd in addition to causing a lower lipid level. PMID:24130894

  20. DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition

    NASA Astrophysics Data System (ADS)

    Bucklin, Ann; Hopcroft, Russell R.; Kosobokova, Ksenia N.; Nigro, Lisa M.; Ortman, Brian D.; Jennings, Robert M.; Sweetman, Christopher J.

    2010-01-01

    Zooplankton species diversity and distribution are important measures of environmental change in the Arctic Ocean, and may serve as 'rapid-responders' of climate-induced changes in this fragile ecosystem. The scarcity of taxonomists hampers detailed and up-to-date monitoring of these patterns for the rarer and more problematic species. DNA barcodes (short DNA sequences for species recognition and discovery) provide an alternative approach to accurate identification of known species, and can speed routine analysis of zooplankton samples. During 2004-2008, zooplankton samples were collected during cruises to the central Arctic Ocean and Chukchi Sea. A ˜700 base-pair region of the mitochondrial cytochrome oxidase I (mtCOI) gene was amplified and sequenced for 82 identified specimens of 41 species, including cnidarians (six hydrozoans, one scyphozoan), arthropod crustaceans (five amphipods, 24 copepods, one decapod, and one euphausiid); two chaetognaths; and one nemertean. Phylogenetic analysis used the Neighbor-Joining algorithm with Kimura-2-Parameter (K-2-P) distances, with 1000-fold bootstrapping. K-2-P genetic distances between individuals of the same species ranged from 0.0 to 0.2; genetic distances between species ranged widely from 0.1 to 0.7. The mtCOI gene tree showed monophyly (at 100% bootstrap value) for each of the 26 species for which more than one individual was analyzed. Of seven genera for which more than one species was analyzed, four were shown to be monophyletic; three genera were not resolved. At higher taxonomic levels, only the crustacean order Copepoda was resolved, with bootstrap value of 83%. The mtCOI barcodes accurately discriminated and identified known species of 10 taxonomic groups of Arctic Ocean holozooplankton. A comprehensive DNA barcode database for the estimated 300 described species of Arctic holozooplankton will allow rapid assessment of species diversity and distribution in this climate-vulnerable ocean ecosystem.

  1. Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans.

    PubMed

    Derby, Charles D; Sorensen, Peter W

    2008-07-01

    This manuscript reviews the chemical ecology of two of the major aquatic animal models, fish and crustaceans, in the study of chemoreception. By necessity, it is restricted in scope, with most emphasis placed on teleost fish and decapod crustaceans. First, we describe the nature of the chemical world perceived by fish and crustaceans, giving examples of the abilities of these animals to analyze complex natural odors. Fish and crustaceans share the same environments and have evolved some similar chemosensory features: the ability to detect and discern mixtures of small metabolites in highly variable backgrounds and to use this information to identify food, mates, predators, and habitat. Next, we give examples of the molecular nature of some of these natural products, including a description of methodologies used to identify them. Both fish and crustaceans use their olfactory and gustatory systems to detect amino acids, amines, and nucleotides, among many other compounds, while fish olfactory systems also detect mixtures of sex steroids and prostaglandins with high specificity and sensitivity. Third, we discuss the importance of plasticity in chemical sensing by fish and crustaceans. Finally, we conclude with a description of how natural chemical stimuli are processed by chemosensory systems. In both fishes and crustaceans, the olfactory system is especially adept at mixture discrimination, while gustation is well suited to facilitate precise localization and ingestion of food. The behaviors of both fish and crustaceans can be defined by the chemical worlds in which they live and the abilities of their nervous systems to detect and identify specific features in their domains. An understanding of these worlds and the sensory systems that provide the animals with information about them provides insight into the chemical ecology of these species.

  2. Spatial, temporal and ontogenetic variation in diet of anchovy ( Engraulis encrasicolus) on the Algerian coast (SW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Bacha, M.; Amara, R.

    2009-11-01

    The diet of anchovy Engraulis encrasicolus was studied in three regions (Béjaia, Bénisaf and Ghazaouet) along the Algerian coast. Ontogenetic, spatial and seasonal variations in anchovy diet were investigated using multivariate analyses and analysed in relation with sea surface temperature and chlorophyll- a. 46 prey taxa of varying size between 0.57 mm ( Euterpina acutifrons) and 6.8 mm (fish larvae) were recorded. Whatever the season, the region or the fish size, anchovy is exclusively zooplanktivorous and copepods were the most present prey, constituting 87% by number of the prey taken and found in 98% of the anchovy stomachs examined. However, their occurrence and number varied according to the different areas, seasons and fish size. During its first year of life, anchovy feeds almost exclusively on copepods (mainly small and medium size prey). As anchovy grows, copepods are gradually substituted by large crustaceans such as decapods and amphipods. Hierarchical cluster analysis, analysis of similarities (ANOSIM) and similarities percentage (SIMPER) indicated a distinct diet of anchovy of the bay of Bejaia from those of the bays of Bénisaf and Ghazaouet probably due to differences in hydrologic conditions. Diet differences also occurred between seasons. Summer and spring have distinct prey assemblages each and showed low diet similarities with the two other seasons. More prey species were found in the diet during winter (36) and autumn (30) and the vacuity index was lower in winter. Temporal variability in satellite-derived chlorophyll- a matched the seasonal variability in the diversity of the anchovy prey and feeding intensity as reflected by the vacuity index, suggesting further investigation of the potential use of satellite-derived chlorophyll- a data as a proxy for anchovy feeding intensity.

  3. Growth, inter- and intraspecific variation, palaeobiogeography, taphonomy and systematics of the Cenozoic ghost shrimp Glypturus

    PubMed Central

    Klompmaker, Adiël A.; Hyžný, Matúš; Portell, Roger W.; Kowalewski, Michał

    2015-01-01

    Studies in systematic palaeontology are greatly aided when numerous, well-preserved specimens are available so that quantitative methods can be used to substantiate qualitative observations. This is often not the case for fossil decapod crustaceans due to their relatively low preservation potential. Here, we examined primarily two large collections of the well-preserved ghost shrimp Glypturus from the Holo-Pleistocene of Panama and the late Miocene of Florida. Using descriptive, bivariate, multivariate and geometric morphometric methods, two new species are described based on appendage material: Glypturus panamacanalensis sp. nov. and G. sikesi sp. nov. New characters are identified, and size-related and intraspecific variation are assessed for these taxa and modern G. acanthochirus. Taxonomic placement of single specimens from other localities was confirmed by multivariate methods. Furthermore, Glypturus is revised, especially with regard to Western Atlantic species that inhabited both carbonate and siliciclastic environments. Callianassa anguillensis, C. latidigata, and Neocallichirus? quisquellanus are referred to as Glypturus sp. until more material is available to determine the validity of these species. Diversity within Glypturus may thus be underestimated, thereby also impacting the assessment of phylogenetic relationships. Minor propodi appear under-represented relative to major propodi, suggesting a taphonomic bias. Single specimens of interest include a specimen of G. panamacanalensis sp. nov. exhibiting a peculiar swelling in the fixed finger and another showing damage on the propodal upper margin, suggesting failed predation or antagonistic behaviour. Glypturus is first found in the Oligocene in the Western Atlantic and may have expanded its palaeobiogeographical range since the Miocene. The genus was still present on the Pacific side of the Isthmus of Panama in the Holo-Pleistocene, but is only known from the Western Atlantic today, suggesting a

  4. Reprint of 'Association of helminth infections and food consumption in common eiders Somateria mollissima in Iceland'

    NASA Astrophysics Data System (ADS)

    Skirnisson, Karl

    2016-07-01

    Common eider Somateria mollissima L. 1758, subsp. borealis, is widely distributed along the coasts of Iceland. In this study association of parasite infections and food composition was studied among 40 females and 38 males (66 adults, 12 subadults), shot under license on four occasions within the same year (February; before egg-laying in May; after the breeding period in late June; and in November) in Skerjafjörður, SW Iceland. Parasitological examinations revealed 31 helminth species (11 digeneans, ten cestodes, seven nematodes, and three acanthocephalans). Distinct digenean species parasitized the gallbladder, kidney and bursa of Fabricius, whereas other helminths parasitized the gastrointestinal tract. Thirty-six invertebrate prey species were identified as food; waste and bread fed by humans, were also consumed by some birds. Amidostomum acutum was the only parasite found with a direct life cycle, whereas other species were food transmitted and ingested with different invertebrate prey. Opposite to females male birds rarely utilized periwinkles and gammarids as a food source. As a result, Microphallus and Microsomacanthus infection intensities were low except in February, when subadult males were responsible for an infection peak. Females caring for young increased their consumption of periwinkles close to the littoral zone in June; during pre-breeding, females also increased their gammarid intake. As a consequence, Microphallus and Microsomacanthus infection intensities temporarily peaked. Increased food intake (including Mytilus edulis) of females before the egg-laying period resulted in twofold higher Gymnophallus bursicola infection intensity than observed for males. Profilicollis botulus infection reflected seasonal changes in decapod consumption in both genders. Different life history strategies of males and females, especially before and during the breeding season and caring of young, and during molting in distinct feeding areas in summer, promote

  5. Association of helminth infections and food consumption in common eiders Somateria mollissima in Iceland

    NASA Astrophysics Data System (ADS)

    Skirnisson, Karl

    2015-10-01

    Common eider Somateria mollissima L. 1758, subsp. borealis, is widely distributed along the coasts of Iceland. In this study association of parasite infections and food composition was studied among 40 females and 38 males (66 adults, 12 subadults), shot under license on four occasions within the same year (February; before egg-laying in May; after the breeding period in late June; and in November) in Skerjafjörður, SW Iceland. Parasitological examinations revealed 31 helminth species (11 digeneans, ten cestodes, seven nematodes, and three acanthocephalans). Distinct digenean species parasitized the gallbladder, kidney and bursa of Fabricius, whereas other helminths parasitized the gastrointestinal tract. Thirty-six invertebrate prey species were identified as food; waste and bread fed by humans, were also consumed by some birds. Amidostomum acutum was the only parasite found with a direct life cycle, whereas other species were food transmitted and ingested with different invertebrate prey. Opposite to females male birds rarely utilized periwinkles and gammarids as a food source. As a result, Microphallus and Microsomacanthus infection intensities were low except in February, when subadult males were responsible for an infection peak. Females caring for young increased their consumption of periwinkles close to the littoral zone in June; during pre-breeding, females also increased their gammarid intake. As a consequence, Microphallus and Microsomacanthus infection intensities temporarily peaked. Increased food intake (including Mytilus edulis) of females before the egg-laying period resulted in twofold higher Gymnophallus bursicola infection intensity than observed for males. Profilicollis botulus infection reflected seasonal changes in decapod consumption in both genders. Different life history strategies of males and females, especially before and during the breeding season and caring of young, and during molting in distinct feeding areas in summer, promote

  6. The global diversity of parasitic isopods associated with crustacean hosts (Isopoda: Bopyroidea and Cryptoniscoidea).

    PubMed

    Williams, Jason D; Boyko, Christopher B

    2012-01-01

    Parasitic isopods of Bopyroidea and Cryptoniscoidea (commonly referred to as epicarideans) are unique in using crustaceans as both intermediate and definitive hosts. In total, 795 epicarideans are known, representing ~7.7% of described isopods. The rate of description of parasitic species has not matched that of free-living isopods and this disparity will likely continue due to the more cryptic nature of these parasites. Distribution patterns of epicarideans are influenced by a combination of their definitive (both benthic and pelagic species) and intermediate (pelagic copepod) host distributions, although host specificity is poorly known for most species. Among epicarideans, nearly all species in Bopyroidea are ectoparasitic on decapod hosts. Bopyrids are the most diverse taxon (605 species), with their highest diversity in the North West Pacific (139 species), East Asian Sea (120 species), and Central Indian Ocean (44 species). The diversity patterns of Cryptoniscoidea (99 species, endoparasites of a diverse assemblage of crustacean hosts) are distinct from bopyrids, with the greatest diversity of cryptoniscoids in the North East Atlantic (18 species) followed by the Antarctic, Mediterranean, and Arctic regions (13, 12, and 8 species, respectively). Dajidae (54 species, ectoparasites of shrimp, mysids, and euphausids) exhibits highest diversity in the Antarctic (7 species) with 14 species in the Arctic and North East Atlantic regions combined. Entoniscidae (37 species, endoparasites within anomuran, brachyuran and shrimp hosts) show highest diversity in the North West Pacific (10 species) and North East Atlantic (8 species). Most epicarideans are known from relatively shallow waters, although some bopyrids are known from depths below 4000 m. Lack of parasitic groups in certain geographic areas is likely a sampling artifact and we predict that the Central Indian Ocean and East Asian Sea (in particular, the Indo-Malay-Philippines Archipelago) hold a wealth of

  7. Spatial and temporal patterns in the hyperbenthic community structure in a warm temperate southern African permanently open estuary

    NASA Astrophysics Data System (ADS)

    Heyns, Elodie; Froneman, William

    2010-06-01

    The spatial and temporal patterns in the hyperbenthic community structure (>500 μm) in the warm temperate, permanently open Kariega Estuary situated along the south-eastern coastline of South Africa was investigated monthly over a period of twelve months. Data were collected using a modified hyperbenthic sledge at six stations along the length of the estuary. Physico-chemical data indicate the presence of a constant reverse salinity gradient, with highest salinities measured in the upper reaches and lowest at the mouth of the estuary. Strong seasonal patterns in temperature, dissolved oxygen and total chlorophyll- a (chl- a) concentration were evident. Total average hyperbenthic densities ranged between 0.4 and 166 ind.m -3 in the lower net and between 0.2 and 225 ind.m -3 in the upper net. Hyperbenthic biomass values ranged between 0.02 and 11.9 mg.dry weight.m -3 in the lower net and between 0.02 and 17.4 mg.dry weight.m -3 in the upper net. Both the lower and upper nets were numerically dominated by decapods (mainly brachyuran crab zoea) with the exception of June and July 2008 when mysids (mainly Mesopodopsis wooldridgei) dominated, comprising up to 72.4 ± 58.14% of the total abundance in the lower net. A redundancy analysis (RDA) indicated that 99.2% of the variance in the hyperbenthic community structure could be explained by the first two canonical axes. Axis one, which accounted for 96.8% of the total variation detected in the ordination plot was highly correlated with sedimentary organic content and to a lesser extent the chl- a concentration within the Kariega Estuary. The correlations with the second canonical axis (2.4%) were less obvious, however, salinity and seston concentration were weakly correlated with this axis.

  8. Depth zonation and bathymetric trends of deep-sea megafaunal scavengers of the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Yeh, John; Drazen, Jeffrey C.

    2009-02-01

    The deep sea has been shown to exhibit strong depth zonation in species composition and abundance. Examination of these patterns can offer ecological insight into how organisms adapt and respond to changing environmental parameters that co-occur with depth. Here we provide the first tropical study on bathymetric zonation and other depth-related trends (size, abundance, and species richness) spanning shelf to abyssal depths of scavenging megafauna. Baited time-lapse free-vehicle cameras were used to examine the deep-sea benthic and demersal scavenging communities of the Hawaiian Islands, an area for which the biology and ecology have remained poorly studied below 2000 m. Twenty-two deployments ranging in depth from 250 to 4783 m yielded 37 taxa attracted to bait, including the first known occurrence of the family Zoarcidae in the Hawaiian Islands. Cluster analysis of Bray-Curtis similarity of species peak abundance ( nmax) revealed four main faunal zones (250-500, 1000, 1500-3000, and ⩾4000 m) with significant separation (ANOSIM, global R=0.907, p=0.001) between designated depth groups. A major faunal break was identified at the 500-1000 m transition where species turnover was greatest, coinciding with the location of the local oxygen minimum zone. Dominance in species assemblage shifted from decapod crustaceans to teleosts moving from shallow to deeper faunal zones. Significant size differences in total length with depth were found for two of the four fish species examined. A logarithmic decline was observed in scavenger relative abundance with depth. Evidence of interaction between scavenging species was also noted between Synaphobranchus affinis and Neolithodes sp. (competition) and Histiobranchus sp. and aristeid shrimp (predation), suggesting that interactions between scavengers could influence indices of abundance generated from baited camera data.

  9. Molecular characterization and immunological response analysis of a novel transferrin-like, pacifastin heavy chain protein in giant freshwater prawn, Macrobrachium rosenbergii (De Man, 1879).

    PubMed

    Toe, Aung; Areechon, Nontawith; Srisapoome, Prapansak

    2012-10-01

    The full-length cDNA of the pacifastin heavy chain gene from giant freshwater prawn (Macrobrachium rosenbergii, Mr-PHC) was cloned and characterized. The full sequence of the Mr-PHC cDNA was 4331 bp and contained a 119-bp 5'-untranslated region (UTR), a 3990-bp open reading frame (ORF) encoding 1329 amino acid residues and a 222-bp 3' UTR. The Mr-PHC protein predicted by its full ORF, exhibited a unique transferrin-like protein structure containing 4 different lobes that have not been previously identified. Three of the four lobes contained highly conserved of iron/anion binding residues. Expression analyses by conventional RT-PCR demonstrated that Mr-PHC was expressed predominantly during postlarval stage 45 and also in the foregut and gills of the adult prawn. Interestingly, dose response analyses that were quantified using quantitative real-time PCR indicated a significant upregulation of Mr-PHC during postlarval stage 45 in prawn grown at hour 24 after challenging with 10(9) cfu/ml of Aeromonas hydrophila, which is a pathogenic bacterium. Mr-HPC in the adult prawn was significantly upregulated at both hour 12 and day 7 after stimulation with A. hydrophila (P < 0.05 and P < 0.01, respectively). Additionally, a delayed induction response of the Mr-PHC gene was observed at 14 days when the experimental adult prawns were fed with β-glucan-supplemented feed. Based on results of this study, the transferrin-like protein encoded by the pacifastin heavy chain gene may exist in all decapod crustaceans. Even though the function as an iron transporter is not proven, immune response studies are clearly indicated that PHC is critically involved in the immune system in these animals.

  10. Migrant biomass and respiratory carbon flux by zooplankton and micronekton in the subtropical northeast Atlantic Ocean (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Ariza, A.; Garijo, J. C.; Landeira, J. M.; Bordes, F.; Hernández-León, S.

    2015-05-01

    Diel Vertical Migration (DVM) in marine ecosystems is performed by zooplankton and micronekton, promoting a poorly accounted export of carbon to the deep ocean. Major efforts have been made to estimate carbon export due to gravitational flux and to a lesser extent, to migrant zooplankton. However, migratory flux by micronekton has been largely neglected in this context, due to its time-consuming and difficult sampling. In this paper, we evaluated gravitational and migratory flux due to the respiration of zooplankton and micronekton in the northeast subtropical Atlantic Ocean (Canary Islands). Migratory flux was addressed by calculating the biomass of migrating components and measuring the electron transfer system (ETS) activity in zooplankton and dominant species representing micronekton (Euphausia gibboides, Sergia splendens and Lobianchia dofleini). Our results showed similar biomass in both components. The main taxa contributing to DVM within zooplankton were juvenile euphausiids, whereas micronekton were mainly dominated by fish, followed by adult euphausiids and decapods. The contribution to respiratory flux of zooplankton (3.4 ± 1.9 mg C m-2 d-1) was similar to that of micronekton (2.9 ± 1.0 mg C m-2 d-1). In summary, respiratory flux accounted for 53% (range 23-71) of the gravitational flux measured at 150 m depth (11.9 ± 5.8 mg C m-2 d-1). However, based on larger migratory ranges and gut clearance rates, micronekton are expected to be the dominant component that contributes to carbon export in deeper waters. Micronekton estimates in this paper as well as those in existing literature, although variable due to regional differences and difficulties in calculating their biomass, suggest that carbon fluxes driven by this community are important for future models of the biological carbon pump.

  11. Polarized object detection in crabs: a two-channel system.

    PubMed

    Basnak, Melanie Ailín; Pérez-Schuster, Verónica; Hermitte, Gabriela; Berón de Astrada, Martín

    2018-05-25

    Many animal species take advantage of polarization vision for vital tasks such as orientation, communication and contrast enhancement. Previous studies have suggested that decapod crustaceans use a two-channel polarization system for contrast enhancement. Here, we characterize the polarization contrast sensitivity in a grapsid crab . We estimated the polarization contrast sensitivity of the animals by quantifying both their escape response and changes in heart rate when presented with polarized motion stimuli. The motion stimulus consisted of an expanding disk with an 82 deg polarization difference between the object and the background. More than 90% of animals responded by freezing or trying to avoid the polarized stimulus. In addition, we co-rotated the electric vector (e-vector) orientation of the light from the object and background by increments of 30 deg and found that the animals' escape response varied periodically with a 90 deg period. Maximum escape responses were obtained for object and background e-vectors near the vertical and horizontal orientations. Changes in cardiac response showed parallel results but also a minimum response when e-vectors of object and background were shifted by 45 deg with respect to the maxima. These results are consistent with an orthogonal receptor arrangement for the detection of polarized light, in which two channels are aligned with the vertical and horizontal orientations. It has been hypothesized that animals with object-based polarization vision rely on a two-channel detection system analogous to that of color processing in dichromats. Our results, obtained by systematically varying the e-vectors of object and background, provide strong empirical support for this theoretical model of polarized object detection. © 2018. Published by The Company of Biologists Ltd.

  12. Cross-shelf transport of pink shrimp larvae: Interactions of tidal currents, larval vertical migrations and internal tides

    USGS Publications Warehouse

    Criales, Maria M.; Browder, Joan A.; Mooers, C.N.K.; Robblee, M.B.; Cardenas, H.; Jackson, Thomas L.

    2007-01-01

    Transport and behavior of pink shrimp Farfantepenaeus duorarum larvae were investigated on the southwestern Florida (SWF) shelf of the Gulf of Mexico between the Dry Tortugas spawning grounds and Florida Bay nursery grounds. Stratified plankton samples and hydrographic data were collected at 2 h intervals at 3 stations located on a cross-shelf transect. At the Marquesas station, midway between Dry Tortugas and Florida Bay, internal tides were recognized by anomalously cool water, a shallow thermocline with strong density gradients, strong current shear, and a high concentration of pink shrimp larvae at the shallow thermocline. Low Richardson numbers occurred at the pycnocline depth, indicating vertical shear instability and possible turbulent transport from the lower to the upper layer where myses and postlarvae were concentrated. Analysis of vertically stratified plankton suggested that larvae perform vertical migrations and the specific behavior changes ontogenetically; protozoeae were found deeper than myses, and myses deeper than postlarvae. Relative concentrations of protozoea in the upper, middle and bottom layers were consistent with a diel vertical migration, whereas that of postlarvae and myses were consistent with the semidiurnal tides in phase with the flood tide. Postlarvae, the shallowest dwellers that migrate with a semidiurnal periodicity, experienced the largest net onshore flux and larval concentrations were highly correlated with the cross-shelf current. These results provide the first evidence of an onshore tidal transport (a type of selective tidal stream transport, STST), in decapod larvae migrating in continental shelf waters offshore, ca. 100 km from the coast and at a depth of 20 m, while approaching the coastal nursery grounds. Longer time series would be necessary to establish whether internal tides play any role in the larval onshore transport of this species and determine if the STST is the dominant onshore transport mechanism.

  13. Phylogeny and Evolutionary Patterns in the Dwarf Crayfish Subfamily (Decapoda: Cambarellinae)

    PubMed Central

    Pedraza-Lara, Carlos; Doadrio, Ignacio; Breinholt, Jesse W.; Crandall, Keith A.

    2012-01-01

    The Dwarf crayfish or Cambarellinae, is a morphologically singular subfamily of decapod crustaceans that contains only one genus, Cambarellus. Its intriguing distribution, along the river basins of the Gulf Coast of United States (Gulf Group) and into Central México (Mexican Group), has until now lacked of satisfactory explanation. This study provides a comprehensive sampling of most of the extant species of Cambarellus and sheds light on its evolutionary history, systematics and biogeography. We tested the impact of Gulf Group versus Mexican Group geography on rates of cladogenesis using a maximum likelihood framework, testing different models of birth/extinction of lineages. We propose a comprehensive phylogenetic hypothesis for the subfamily based on mitochondrial and nuclear loci (3,833 bp) using Bayesian and Maximum Likelihood methods. The phylogenetic structure found two phylogenetic groups associated to the two main geographic components (Gulf Group and Mexican Group) and is partially consistent with the historical structure of river basins. The previous hypothesis, which divided the genus into three subgenera based on genitalia morphology was only partially supported (P = 0.047), resulting in a paraphyletic subgenus Pandicambarus. We found at least two cases in which phylogenetic structure failed to recover monophyly of recognized species while detecting several cases of cryptic diversity, corresponding to lineages not assigned to any described species. Cladogenetic patterns in the entire subfamily are better explained by an allopatric model of speciation. Diversification analyses showed similar cladogenesis patterns between both groups and did not significantly differ from the constant rate models. While cladogenesis in the Gulf Group is coincident in time with changes in the sea levels, in the Mexican Group, cladogenesis is congruent with the formation of the Trans-Mexican Volcanic Belt. Our results show how similar allopatric divergence in

  14. Expression of the reproductive female-specific vitellogenin gene in endocrinologically induced male and intersex Cherax quadricarinatus crayfish.

    PubMed

    Shechter, Asaf; Aflalo, Eliahu D; Davis, Claytus; Sagi, Amir

    2005-07-01

    In oviparous females, the synthesis of the yolk precursor vitellogenin is an important step in ovarian maturation and oocyte development. In decapod Crustacea, including the red-claw crayfish (Cherax quadricarinatus), this reproductive process is regulated by inhibitory neurohormones secreted by the endocrine X-organ-sinus gland (XO-SG) complex. In males, the C. quadricarinatus vitellogenin gene (CqVg), although present, is not expressed under normal conditions. We show here that endocrine manipulation by removal of the XO-SG complex from male animals induced CqVg transcription. The CqVg gene was expressed differentially during the molt cycle in these induced males: no expression was seen in the intermolt stages, but expression was occasionally detected in the premolt stages and always detected in the early postmolt stages. Relative quantitation with a real-time reverse transcriptase-polymerase chain reaction showed that expression of CqVg in induced early postmolt males was an order of magnitude lower than that in reproductive females, a finding that was consistent with RNA in situ hybridization results. The SDS-PAGE of high-density lipoproteins from the hemolymph of endocrinologically induced early postmolt males did not show the typical vitellogenin-related polypeptide profile found in reproductive females. On the other hand, removal of the XO-SG complex from intersex individuals, which are chromosomally female but functionally male and possess an arrested female reproductive system, induced the expression, translation, and release of CqVg products into the hemolymph, as was the case for vitellogenic females. The expression of CqVg in endocrinologically manipulated molting males and intersex animals provides an inducible model for the investigation and understanding of the endocrine regulation of CqVg expression and translation in Crustacea as well as the relationship between the endocrine axes regulating molt and reproduction.

  15. Evidence of micro-debris ingestion by Sargassum-associated fishes in the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Vick, P.; Hernandez, F., Jr.; Muffelman, S.; Lestrade, O.

    2016-02-01

    Sargassum natans and S. fluitans collectively form a pelagic macroalgae complex (Sargassum) which is commonly found in surface waters of the Western-Central Atlantic Ocean (including the Gulf of Mexico). Mats and windrows of Sargassum support large and diverse assemblages of marine fishes and invertebrates, including many early life stages which use Sargassum as nursery areas. Sargassum is a near-surface habitat, and therefore is subject to oceanographic processes (e.g., Langmuir cells, frontal zones) that aggregate floating objects, including marine debris. Relatively little is known about the impacts of marine debris (which often gets broken down into "micro-debris") within Sargassum communities, although micro-debris particles may serve as vectors for toxic compounds if consumed by organisms. Here we present preliminary results from a pilot study examining the frequency of micro-debris occurrence in the stomachs of Sargassum-associated fishes. Neuston and plankton purse seine nets were used to collect Sargassum and associated fauna during surveys in the northern Gulf of Mexico (May, June and July 2014). Marine debris was present in all Sargassum collections, and ranged from relatively large items (e.g., soda bottles) to smaller particles (e.g., microplastics, monofilament threads). The associated fish community was dominated by relatively few taxa, including pipefishes, filefishes and the Sargassumfish, which collectively comprised approximately 85% of the total catch. Stomach contents from juvenile fishes contained mostly natural prey items, including copepods, small decapods, hydroids, and fishes. Micro-debris particles were observed in the stomachs of eight fish species, including juvenile Mahi Mahi, Planehead Filefish and Bermuda chub, among others. Overall, our initial observations suggest that there is some ingestion of micro-debris by fishes associated with Sargassum, although the frequency of occurrence is relatively low.

  16. Temperature effects on zoeal morphometric traits and intraspecific variability in the hairy crab Cancer setosus across latitude

    NASA Astrophysics Data System (ADS)

    Weiss, Monika; Thatje, Sven; Heilmayer, Olaf

    2010-06-01

    Phenotypic plasticity is an important but often ignored ability that enables organisms, within species-specific physiological limits, to respond to gradual or sudden extrinsic changes in their environment. In the marine realm, the early ontogeny of decapod crustaceans is among the best known examples to demonstrate a temperature-dependent phenotypic response. Here, we present morphometric results of larvae of the hairy crab Cancer setosus, the embryonic development of which took place at different temperatures at two different sites (Antofagasta, 23°45' S; Puerto Montt, 41°44' S) along the Chilean Coast. Zoea I larvae from Puerto Montt were significantly larger than those from Antofagasta, when considering embryonic development at the same temperature. Larvae from Puerto Montt reared at 12 and 16°C did not differ morphometrically, but sizes of larvae from Antofagasta kept at 16 and 20°C did, being larger at the colder temperature. Zoea II larvae reared in Antofagasta at three temperatures (16, 20, and 24°C) showed the same pattern, with larger larvae at colder temperatures. Furthermore, larvae reared at 24°C, showed deformations, suggesting that 24°C, which coincides with temperatures found during strong EL Niño events, is indicative of the upper larval thermal tolerance limit. C. setosus is exposed to a wide temperature range across its distribution range of about 40° of latitude. Phenotypic plasticity in larval offspring does furthermore enable this species to locally respond to the inter-decadal warming induced by El Niño. Morphological plasticity in this species does support previously reported energetic trade-offs with temperature throughout early ontogeny of this species, indicating that plasticity may be a key to a species’ success to occupy a wide distribution range and/or to thrive under highly variable habitat conditions.

  17. Morphology of First Zoeal Stage of Four Genera of Alvinocaridid Shrimps from Hydrothermal Vents and Cold Seeps: Implications for Ecology, Larval Biology and Phylogeny

    PubMed Central

    Hernández-Ávila, Iván; Cambon-Bonavita, Marie-Anne; Pradillon, Florence

    2015-01-01

    Alvinocaridid shrimps are endemic species inhabiting hydrothermal vents and/or cold seeps. Although indirect evidences (genetic and lipid markers) suggest that their larval stages disperse widely and support large scale connectivity, larval life and mechanisms underlying dispersal are unknown in alvinocaridids. Here we provide for the first time detailed descriptions of the first larval stage (zoea I) of four alvinocaridid species: Rimicaris exoculata and Mirocaris fortunata from the Mid-Atlantic Ridge, Alvinocaris muricola from the Congo Basin and Nautilocaris saintlaurentae from the Western Pacific. The larvae were obtained from onboard hatching of brooding females (either at atmospheric pressure or at habitat pressure in hyperbaric chambers) and from the water column near adult habitats, sampled with plankton pumps or sediment traps. Major characteristics of the alvinocaridid larvae include undeveloped mandible and almost complete absence of setation in the inner margin of the mouth parts and maxillipeds. Although the larvae are very similar between the four species studied, some morphological features could be used for species identification. In addition, undeveloped mouthparts and the large amount of lipid reserves strongly support the occurrence of primary lecithotrophy in the early stage of alvinocaridids. Although lecithotrophy in decapod crustaceans is usually associated with abbreviated larval development, as a mechanism of larval retention, morphological and physiological evidences suggest the occurrence of an extended and lecithotrophic larval stage in the Alvinocarididae. These traits permit the colonization of widely dispersed and fragmented environments of hydrothermal vents and cold seeps. Distribution of larval traits along the phylogenetic reconstruction of the Alvinocarididae and related families suggest that lecithotrophy/planktotrophy and extended/abbreviated development have evolved independently along related families in all potential

  18. Deep-water zooplankton of the Guaymas basin hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Wiebe, Peter H.; Copley, Nancy; Van Dover, Cindy; Tamse, Armando; Manrique, Fernando

    1988-06-01

    Zooplankton from the Guaymas Basin deep-sea vent field were collected with a 1 m 2 MOCNESS to examine the distribution of total standing stock, taxonomic composition, size-frequency distribution of zooplankton, and the species composition of calanoid copepods. Low altitude (˜ 100 m above the bottom) horizontal tows along and across the axis of the basin's southern trough, and oblique tows from the bottom of the basin (˜ 2000 m) to the surface were made. Total biomass in near-bottom samples (range: 13-46 cc/1000 m 3) was only about a factor of 10 lower than in the upper 100 m. However, there was little or no evidence for enrichment of biomass in the ˜ 100 m zone above the vent site relative to biomass at the same depth horizon over non-vent areas. Total numbers of individuals ranged between 2600 and 4800/1000 m 3. Calanoid copepods consistently ranked first in abundance of counts of the taxa, followed by cyclopoid copepods, ostracods, chaetognaths, and amphipods. Other less abundant taxa, but in some cases important contributors to total biomass, were coelenterates (siphonophores, medusae), decapod shrimp, and polychaetes. Size-frequency analysis of individuals from each taxon indicated that the biomass and abundance spectra do not fit the theoretically expected spectra based on weight-dependent metabolism and growth. The pyramid of biomass was substantially different from the pyramid of numbers in this deep-sea community. Of the 67 species of copepods identified in two samples taken on low altitude tows, only 15 co-occurred in both samples. Many of the species in this relatively diverse community remain to be described. Larval and post-larval forms of benthic clams, gastropods, polychaetes, and crustaceans associated with the vents were collected 100-200 m above the southern trough, indicating the post-larvae may play an active role in dispersal of hydrothermal vent species.

  19. Crustacean hyperglycemic hormone (CHH) neuropeptidesfamily: Functions, titer, and binding to target tissues.

    PubMed

    Chung, J Sook; Zmora, N; Katayama, H; Tsutsui, N

    2010-05-01

    The removal of the eyestalk (s) induces molting and reproduction promoted the presence of regulatory substances in the eyestalk (ES), particularly medulla terminalis X-organ and the sinus gland (MTXO-SG). The PCR-based cloning strategies have allowed for isolating a great number of cDNAs sequences of crustacean hyperglycemic hormone (CHH) neuropeptides family from the eyestalk and non-eyestalk tissues, e.g., pericardial organs and fore- and hindguts. However, the translated corresponding neuropeptides in these tissues, their circulating concentrations, the mode of actions, and specific physiological functions have not been well described. The profiles of CHH neuropeptides present in the MTXO-SG may differ among decapod crustacean species, but they can be largely divided into two sub-groups on the basis of structural homology: (1) CHH and (2) molt-inhibiting hormone (MIH)/mandibular organ-inhibiting hormone (MOIH)/vitellogenesis/gonad-inhibiting hormone (V/GIH). CHH typically elevating the level of circulating glucose from animals under stressful conditions (hyper- and hypothermia, hypoxia, and low salinity) has multiple target tissues and functions such as ecdysteroidogenesis, osmoregulation, and vitellogenesis. Recently, MIH, known for exclusively suppressing ecdysteroidogenesis in Y-organs, is also reported to have an additional role in vitellogenesis of adult female crustacean species, suggesting that some CHH neuropeptides may acquire an extra regulatory role in reproduction at adult stage. This paper reviews the regulatory roles of CHH and MIH at the levels of specific functions, temporal and spatial expression, titers, their binding sites on the target tissues, and second messengers from two crab species: the blue crab, Callinectes sapidus, and the European green crab, Carcinus maenas. It further discusses the diverse regulatory roles of these neuropeptides and the functional plasticity of these neuropeptides in regard to life stage and species

  20. SIFamide peptides in clawed lobsters and freshwater crayfish (Crustacea, Decapoda, Astacidea): a combined molecular, mass spectrometric and electrophysiological investigation.

    PubMed

    Dickinson, Patsy S; Stemmler, Elizabeth A; Cashman, Christopher R; Brennan, Henry R; Dennison, Bobbi; Huber, Kristen E; Peguero, Braulio; Rabacal, Whitney; Goiney, Christopher C; Smith, Christine M; Towle, David W; Christie, Andrew E

    2008-04-01

    Recently, we identified the peptide VYRKPPFNGSIFamide (Val(1)-SIFamide) in the stomatogastric nervous system (STNS) of the American lobster Homarus americanus using matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS). Given that H. americanus is the only species thus far shown to possess this peptide, and that a second SIFamide isoform, Gly(1)-SIFamide, is broadly conserved in other decapods, including another astacidean, the crayfish Procambarus clarkii, we became interested both in confirming our identification of Val(1)-SIFamide via molecular methods and in determining the extent to which this isoform is conserved within other members of the infraorder Astacidea. Here, we present the identification and characterization of an H. americanus prepro-SIFamide cDNA that encodes the Val(1) isoform. Moreover, we demonstrate via MALDI-FTMS the presence of Val(1)-SIFamide in a second Homarus species, Homarus gammarus. In contrast, only the Gly(1) isoform was detected in the other astacideans investigated, including the lobster Nephrops norvegicus, a member of the same family as Homarus, and the crayfish Cherax quadricarinatus, P. clarkii and Pacifastacus leniusculus, which represent members of each of the extant families of freshwater astacideans. These results suggest that Val(1)-SIFamide may be a genus (Homarus)-specific isoform. Interestingly, both Val(1)- and Gly(1)-SIFamide possess an internal dibasic site, Arg(3)-Lys(4), raising the possibility of the ubiquitously conserved isoform PPFNGSIFamide. However, this octapeptide was not detected via MALDI-FTMS in any of the investigated species, and when applied to the isolated STNS of H. americanus possessed little bioactivity relative to the full-length Val(1) isoform. Thus, it appears that the dodeca-variants Val(1)- and Gly(1)-SIFamide are the sole bioactive isoforms of this peptide family in clawed lobsters and freshwater crayfish.

  1. Comparative molecular analyses of select pH- and osmoregulatory genes in three freshwater crayfish Cherax quadricarinatus, C. destructor and C. cainii.

    PubMed

    Ali, Muhammad Y; Pavasovic, Ana; Dammannagoda, Lalith K; Mather, Peter B; Prentis, Peter J

    2017-01-01

    Systemic acid-base balance and osmotic/ionic regulation in decapod crustaceans are in part maintained by a set of transport-related enzymes such as carbonic anhydrase (CA), Na + /K + -ATPase (NKA), H + -ATPase (HAT), Na + /K + /2Cl - cotransporter (NKCC), Na + /Cl - /HCO[Formula: see text] cotransporter (NBC), Na + /H + exchanger (NHE), Arginine kinase (AK), Sarcoplasmic Ca +2 -ATPase (SERCA) and Calreticulin (CRT). We carried out a comparative molecular analysis of these genes in three commercially important yet eco-physiologically distinct freshwater crayfish , Cherax quadricarinatus, C. destructor and C. cainii , with the aim to identify mutations in these genes and determine if observed patterns of mutations were consistent with the action of natural selection. We also conducted a tissue-specific expression analysis of these genes across seven different organs, including gills, hepatopancreas, heart, kidney, liver, nerve and testes using NGS transcriptome data. The molecular analysis of the candidate genes revealed a high level of sequence conservation across the three Cherax sp. Hyphy analysis revealed that all candidate genes showed patterns of molecular variation consistent with neutral evolution. The tissue-specific expression analysis showed that 46% of candidate genes were expressed in all tissue types examined, while approximately 10% of candidate genes were only expressed in a single tissue type. The largest number of genes was observed in nerve (84%) and gills (78%) and the lowest in testes (66%). The tissue-specific expression analysis also revealed that most of the master genes regulating pH and osmoregulation (CA, NKA, HAT, NKCC, NBC, NHE) were expressed in all tissue types indicating an important physiological role for these genes outside of osmoregulation in other tissue types. The high level of sequence conservation observed in the candidate genes may be explained by the important role of these genes as well as potentially having a number of

  2. Diversity and distribution of deep-sea shrimps in the Ross Sea region of Antarctica.

    PubMed

    Basher, Zeenatul; Bowden, David A; Costello, Mark J

    2014-01-01

    Although decapod crustaceans are widespread in the oceans, only Natantia (shrimps) are common in the Antarctic. Because remoteness, depth and ice cover restrict sampling in the South Ocean, species distribution modelling is a useful tool for evaluating distributions. We used physical specimen and towed camera data to describe the diversity and distribution of shrimps in the Ross Sea region of Antarctica. Eight shrimp species were recorded: Chorismus antarcticus; Notocrangon antarcticus; Nematocarcinus lanceopes; Dendrobranchiata; Pasiphaea scotiae; Pasiphaea cf. ledoyeri; Petalidium sp., and a new species of Lebbeus. For the two most common species, N. antarcticus and N. lanceopes, we used maximum entropy modelling, based on records of 60 specimens and over 1130 observations across 23 sites in depths from 269 m to 3433 m, to predict distributions in relation to environmental variables. Two independent sets of environmental data layers at 0.05° and 0.5° resolution respectively, showed how spatial resolution affected the model. Chorismus antarcticus and N. antarcticus were found only on the continental shelf and upper slopes, while N. lanceopes, Lebbeus n. sp., Dendrobranchiata, Petalidium sp., Pasiphaea cf. ledoyeri, and Pasiphaea scotiae were found on the slopes, seamounts and abyssal plain. The environmental variables that contributed most to models for N. antarcticus were depth, chlorophyll-a concentration, temperature, and salinity, and for N. lanceopes were depth, ice concentration, seabed slope/rugosity, and temperature. The relative ranking, but not the composition of these variables changed in models using different spatial resolutions, and the predicted extent of suitable habitat was smaller in models using the finer-scale environmental layers. Our modelling indicated that shrimps were widespread throughout the Ross Sea region and were thus likely to play important functional role in the ecosystem, and that the spatial resolution of data needs to be

  3. Diversity and Distribution of Deep-Sea Shrimps in the Ross Sea Region of Antarctica

    PubMed Central

    Basher, Zeenatul; Bowden, David A.; Costello, Mark J.

    2014-01-01

    Although decapod crustaceans are widespread in the oceans, only Natantia (shrimps) are common in the Antarctic. Because remoteness, depth and ice cover restrict sampling in the South Ocean, species distribution modelling is a useful tool for evaluating distributions. We used physical specimen and towed camera data to describe the diversity and distribution of shrimps in the Ross Sea region of Antarctica. Eight shrimp species were recorded: Chorismus antarcticus; Notocrangon antarcticus; Nematocarcinus lanceopes; Dendrobranchiata; Pasiphaea scotiae; Pasiphaea cf. ledoyeri; Petalidium sp., and a new species of Lebbeus. For the two most common species, N. antarcticus and N. lanceopes, we used maximum entropy modelling, based on records of 60 specimens and over 1130 observations across 23 sites in depths from 269 m to 3433 m, to predict distributions in relation to environmental variables. Two independent sets of environmental data layers at 0.05° and 0.5° resolution respectively, showed how spatial resolution affected the model. Chorismus antarcticus and N. antarcticus were found only on the continental shelf and upper slopes, while N. lanceopes, Lebbeus n. sp., Dendrobranchiata, Petalidium sp., Pasiphaea cf. ledoyeri, and Pasiphaea scotiae were found on the slopes, seamounts and abyssal plain. The environmental variables that contributed most to models for N. antarcticus were depth, chlorophyll-a concentration, temperature, and salinity, and for N. lanceopes were depth, ice concentration, seabed slope/rugosity, and temperature. The relative ranking, but not the composition of these variables changed in models using different spatial resolutions, and the predicted extent of suitable habitat was smaller in models using the finer-scale environmental layers. Our modelling indicated that shrimps were widespread throughout the Ross Sea region and were thus likely to play important functional role in the ecosystem, and that the spatial resolution of data needs to be

  4. Spatial variability in the structure of intertidal crab and gastropod assemblages within the Seychelles Archipelago (Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Smale, Dan A.; Barnes, David K. A.; Barnes, Richard S. K.; Smith, David J.; Suggett, David J.

    2012-04-01

    Tropical nearshore ecosystems represent global hotspots of marine biodiversity and endemism but are often poorly understood and impacted by human activities. The Seychelles Archipelago (Western Indian Ocean) sustains a wealth of marine life, much of which is threatened by rapid development associated with tourism and climate change. Six marine parks exist within the Archipelago, but their biodiversity value and ecological health are poorly known, especially with regards to non-fish and coral species. Here we investigate spatial patterns of littoral biodiversity on 6 islands, 5 of which were granitic and within marine parks, including the first surveys of Curieuse and Ile Cocos. Our surveys formed a nested sampling design, to facilitate an examination of variability in species richness, faunal abundance, taxonomic distinctness and assemblage composition at multiple spatial scales, from islands (> 100 s km) to quadrats (metres). We identified (mostly to species) and enumerated two target taxa, brachyuran decapod crustaceans and gastropod molluscs, and recorded over 8300 individuals belonging to over 150 species. Crabs and gastropods exhibited different patterns of spatial variability, as crab assemblages were generally more distinct between islands, while gastropod assemblages were markedly variable at the smallest spatial scales of 'patch' and 'quadrat'. Intertidal biodiversity was greatest on Curieuse Island and least at Desroches, the latter was being the only coral atoll we surveyed and thereby differing in its geological and ecological context. We discuss likely drivers of these biodiversity patterns and highlight urgently-needed research directions. Our assessment of the status of poorly-known invertebrate assemblages across the Seychelles will complement more extensive surveys of coral and fish assemblages and, in doing so, provide a useful baseline for monitoring the effects of key stressors in the region, such as coastal development and climate change.

  5. Modeling prey consumption by native and non-native piscivorous fishes: implications for competition and impacts on shared prey in an ultraoligotrophic lake in Patagonia

    USGS Publications Warehouse

    Juncos, Romina; Beauchamp, David A.; Viglianoc, Pablo H.

    2013-01-01

    We examined trophic interactions of the nonnative salmonids Rainbow Trout Oncorhynchus mykiss, Brown Trout Salmo trutta, and Brook Trout Salvelinus fontinalisand the main native predator Creole Perch Percichthys trucha in Lake Nahuel Huapi (Patagonia, Argentina) to determine the relative impact of each predator on their forage base and to evaluate the potential vulnerability of each predator to competitive impacts by the others. Using bioenergetics simulations, we demonstrated the overall importance of galaxiids and decapods to the energy budgets of nonnative salmonids and Creole Perch. Introduced salmonids, especially Rainbow Trout, exerted considerably heavier predatory demands on shared resources than did the native Creole Perch on both a per capita basis and in terms of relative population impacts. Rainbow Trout consumed higher quantities and a wider size range of Small Puyen (also known as Inanga) Galaxias maculatus than the other predators, including early pelagic life stages of that prey; as such, this represents an additional source of mortality for the vulnerable early life stages of Small Puyen before and during their transition from pelagic to benthic habitats. All predators were generally feeding at high feeding rates (above 40% of their maximum physiological rates), suggesting that competition for prey does not currently limit either Creole Perch or the salmonids in this lake. This study highlights the importance of keystone prey for the coexistence of native species with nonnative top predators. It provides new quantitative and qualitative evidence of the high predation pressure exerted on Small Puyen, the keystone prey species, during the larval to juvenile transition from pelagic to littoral-benthic habitat in Patagonian lakes. This study also emphasizes the importance of monitoring salmonid and Creole Perch population dynamics in order to detect signs of potential impacts through competition and shows the need to carefully consider the rationale

  6. Behavioural Response Thresholds in New Zealand Crab Megalopae to Ambient Underwater Sound

    PubMed Central

    Stanley, Jenni A.; Radford, Craig A.; Jeffs, Andrew G.

    2011-01-01

    A small number of studies have demonstrated that settlement stage decapod crustaceans are able to detect and exhibit swimming, settlement and metamorphosis responses to ambient underwater sound emanating from coastal reefs. However, the intensity of the acoustic cue required to initiate the settlement and metamorphosis response, and therefore the potential range over which this acoustic cue may operate, is not known. The current study determined the behavioural response thresholds of four species of New Zealand brachyuran crab megalopae by exposing them to different intensity levels of broadcast reef sound recorded from their preferred settlement habitat and from an unfavourable settlement habitat. Megalopae of the rocky-reef crab, Leptograpsus variegatus, exhibited the lowest behavioural response threshold (highest sensitivity), with a significant reduction in time to metamorphosis (TTM) when exposed to underwater reef sound with an intensity of 90 dB re 1 µPa and greater (100, 126 and 135 dB re 1 µPa). Megalopae of the mud crab, Austrohelice crassa, which settle in soft sediment habitats, exhibited no response to any of the underwater reef sound levels. All reef associated species exposed to sound levels from an unfavourable settlement habitat showed no significant change in TTM, even at intensities that were similar to their preferred reef sound for which reductions in TTM were observed. These results indicated that megalopae were able to discern and respond selectively to habitat-specific acoustic cues. The settlement and metamorphosis behavioural response thresholds to levels of underwater reef sound determined in the current study of four species of crabs, enables preliminary estimation of the spatial range at which an acoustic settlement cue may be operating, from 5 m to 40 km depending on the species. Overall, these results indicate that underwater sound is likely to play a major role in influencing the spatial patterns of settlement of coastal crab

  7. Neuroendocrine disruption in the shore crab Carcinus maenas: Effects of serotonin and fluoxetine on chh- and mih-gene expression, glycaemia and ecdysteroid levels.

    PubMed

    Robert, Alexandrine; Monsinjon, Tiphaine; Delbecque, Jean-Paul; Olivier, Stéphanie; Poret, Agnès; Foll, Frank Le; Durand, Fabrice; Knigge, Thomas

    2016-06-01

    Serotonin, a highly conserved neurotransmitter, controls many biological functions in vertebrates, but also in invertebrates. Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are commonly used in human medication to ease depression by affecting serotonin levels. Their residues and metabolites can be detected in the aquatic environment and its biota. They may also alter serotonin levels in aquatic invertebrates, thereby perturbing physiological functions. To investigate whether such perturbations can indeed be expected, shore crabs (Carcinus maenas) were injected either with serotonin, fluoxetine or a combination of both. Dose-dependent effects of fluoxetine ranging from 250 to 750nM were investigated. Gene expression of crustacean hyperglycemic hormone (chh) as well as moult inhibiting hormone (mih) was assessed by RT-qPCR at 2h and 12h after injection. Glucose and ecdysteroid levels in the haemolymph were monitored in regular intervals until 12h. Serotonin led to a rapid increase of chh and mih expression. On the contrary, fluoxetine only affected chh and mih expression after several hours, but kept expression levels significantly elevated. Correspondingly, serotonin rapidly increased glycaemia, which returned to normal or below normal levels after 12h. Fluoxetine, however, resulted in a persistent low-level increase of glycaemia, notably during the period when negative feedback regulation reduced glycaemia in the serotonin treated animals. Ecdysteroid levels were significantly decreased by serotonin and fluoxetine, with the latter showing less pronounced and less rapid, but longer lasting effects. Impacts of fluoxetine on glycaemia and ecdysteroids were mostly observed at higher doses (500 and 750nM) and affected principally the response dynamics, but not the amplitude of glycaemia and ecdysteroid-levels. These results suggest that psychoactive drugs are able to disrupt neuroendocrine control in decapod crustaceans, as they interfere with the

  8. Exploration of the Canyon-Incised Continental Margin of the Northeastern United States Reveals Dynamic Habitats and Diverse Communities.

    PubMed

    Quattrini, Andrea M; Nizinski, Martha S; Chaytor, Jason D; Demopoulos, Amanda W J; Roark, E Brendan; France, Scott C; Moore, Jon A; Heyl, Taylor; Auster, Peter J; Kinlan, Brian; Ruppel, Carolyn; Elliott, Kelley P; Kennedy, Brian R C; Lobecker, Elizabeth; Skarke, Adam; Shank, Timothy M

    2015-01-01

    The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration

  9. The presence of an insulin-like androgenic gland factor (IAG) and insulin-like peptide binding protein (ILPBP) in the ovary of the blue crab, Callinectes sapidus and their roles in ovarian development.

    PubMed

    Huang, Xiaoshuai; Ye, Haihui; Chung, J Sook

    2017-08-01

    Insulin-like androgenic gland factor (IAG) that is produced by the male androgenic gland (AG), plays a role in sexual differentiation and maintenance of male secondary sex characteristics in decapod crustaceans. With an earlier finding of IAG expression in a female Callinectes sapidus ovary, we aimed to examine a putative role of IAG during the ovarian development of this species. To this end, the full-length cDNA sequence of the ovarian CasIAG (termed CasIAG-ova) has been isolated. The predicted mature peptide sequence of CasIAG-ova is identical to that of the IAG from the AG, except in their signal peptide regions. The CasIAG-ova contains an alternative initiation codon (UUG) as the start codon, which suggests that the translational regulation of CasIAG-ova may differ from that of the IAG from AG. To define the function of CasIAG-ova, the expressions of CasIAG-ova as well as its putative binding protein, insulin-like peptide binding protein (ILPBP), are measured in the ovaries at various developmental stages obtained from different seasons. Season affects both CasIAG and ILPBP expression in the ovary. Overall, summer females at earlier ovarian stages contain high levels of CasIAG and ILPBP than spring or fall females. These findings indicate that CasIAG-ova and CasILPBP may be involved in the ovarian development. When comparing the levels of CasIAG and CasILPBP in the ovary, the latter are much higher (∼10-10000 fold) than the former. Expression patterns of CasILPBP differ from those of CasIAG-ova during ovarian development and by season, suggesting that ILPBP may have an additional role in ovarian development rather than a function of a putative binding protein of IAG. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The insulin-like androgenic gland hormone in crustaceans: From a single gene silencing to a wide array of sexual manipulation-based biotechnologies.

    PubMed

    Ventura, Tomer; Sagi, Amir

    2012-01-01

    Due to the over-harvesting and deterioration of wild populations, the ever-growing crustacean market is increasingly reliant on aquaculture, driving the need for better management techniques. Since most cultured crustacean species exhibit sexually dimorphic growth patterns, the culture of monosex populations (either all-male or all-female) is a preferred approach for gaining higher yields, with the ecological benefit of reducing the risk of invasion by the cultured species. Sexual manipulations may also render sustainable solutions to the environmental problems caused by the presence of invasive crustacean species with detrimental impacts ranging from aggressive competition with native species for food and shelter, to affecting aquaculture facilities and harvests and causing structural damage to river banks. Recent discoveries of androgenic gland (AG)-specific insulin-like peptides (IAGs) in crustaceans and the ability to manipulate them and their encoding transcripts (IAGs) have raised the possibility of sexually manipulating crustacean populations. Sexual manipulation is already a part of sustainable solutions in fish aquaculture and in the bio-control of insect pest species, and attempts are also being made to implement it with crustaceans. As recently exemplified in a commercially important prawn species, IAG silencing, a temporal, non-genetically modifying and non-transmissible intervention, has enabled the production of non-breeding all-male monosex populations that are the progeny of sexually reversed males ('neo-females'). IAG manipulations-based biotechnologies therefore have the potential to radically transform the entire industry. We review here how this proof of concept could be broadened to meet both aquacultural and environmental needs. We include the major cultured decapod crustacean groups and suggest a sustainable solution for the management of invasive and pest crustacean species. We also review the key considerations for devising a

  11. Day-night and depth differences in haemolymph melatonin of the Norway lobster, Nephrops norvegicus (L.)

    NASA Astrophysics Data System (ADS)

    Aguzzi, J.; Sanchez-Pardo, J.; García, J. A.; Sardà, F.

    2009-10-01

    Few studies have been conducted to quantify and understand the role of melatonin in invertebrates, and particularly in crustaceans and in deep-sea animals. In this study, we examined day-night differences in haemolymph melatonin of the burrowing decapod crustacean Nephrops norvegicus (L.) during exposure to cycles of monochromatic blue light (480 nm) and darkness cycles of 10 and 0.1 lx. These differential intensity conditions simulate illumination at the depth of the shelf (80-100 m) and of the slope (300-400 m), where these lobster populations are chiefly found in the Western Mediterranean Sea. Our objectives were: (a) to verify the presence of melatonin in the haemolymph of this species using liquid chromatography/tandem mass spectrometry (LC-MS/MS) and fluorescence HPLC (HPLC); and (b) to study the relationship between diel variations in melatonin concentration and locomotor rhythms, in order to examine whether the former influences behaviour. Melatonin was identified in LC-MS/MS by Q1 and Q3 mass peaks at an elution time of 3.7 min, and it was also detected by HPLC. Melatonin concentration was found to be two orders of magnitude higher at 10 lx (4.8±5.3 ng ml -1) than at 0.1 lx (0.06±0.03 ng ml -1). Also, the increase at daytime in 10 lx was absent in 0.1 lx. When the locomotor rhythm of animals exposed to both photoperiod regimes was compared, the diel periodicity was found to be preserved, but the timing of activity shifted from night to day. Extrapolating these data to the field, we interpret our results to mean that locomotor activity preserves its diel character, but not its phase and amplitude, in a bathymetric range where haemolymph melatonin reduces its concentration and rhythmic fluctuation.

  12. Molecular characterization of an adiponectin receptor homolog in the white leg shrimp, Litopenaeus vannamei

    PubMed Central

    Kim, Ah Ran; Alam, Md Jobaidul; Yoon, Tae-ho; Lee, Soo Rin; Park, Hyun; Kim, Doo-Nam; An, Doo-Hae; Lee, Jae-Bong; Lee, Chung Il

    2016-01-01

    Adiponectin (AdipoQ) and its receptors (AdipoRs) are strongly related to growth and development of skeletal muscle, as well as glucose and lipid metabolism in vertebrates. Herein we report the identification of the first full-length cDNA encoding an AdipoR homolog (Liv-AdipoR) from the decapod crustacean Litopenaeus vannamei using a combination of next generation sequencing (NGS) technology and bioinformatics analysis. The full-length Liv-AdipoR (1,245 bp) encoded a protein that exhibited the canonical seven transmembrane domains (7TMs) and the inversed topology that characterize members of the progestin and adipoQ receptor (PAQR) family. Based on the obtained sequence information, only a single orthologous AdipoR gene appears to exist in arthropods, whereas two paralogs, AdipoR1 and AdipoR2, have evolved in vertebrates. Transcriptional analysis suggested that the single Liv-AdipoR gene appears to serve the functions of two mammalian AdipoRs. At 72 h after injection of 50 pmol Liv-AdipoR dsRNA (340 bp) into L. vannamei thoracic muscle and deep abdominal muscle, transcription levels of Liv-AdipoR decreased by 93% and 97%, respectively. This confirmed optimal conditions for RNAi of Liv-AdipoR. Knockdown of Liv-AdipoR resulted in significant changes in the plasma levels of ammonia, 3-methylhistine, and ornithine, but not plasma glucose, suggesting that that Liv-AdipoR is important for maintaining muscle fibers. The chronic effect of Liv-AdipoR dsRNA injection was increased mortality. Transcriptomic analysis showed that 804 contigs were upregulated and 212 contigs were downregulated by the knockdown of Liv-AdipoR in deep abdominal muscle. The significantly upregulated genes were categorized as four main functional groups: RNA-editing and transcriptional regulators, molecular chaperones, metabolic regulators, and channel proteins. PMID:27478708

  13. Infaunal community responses to a gradient of trawling disturbance and a long-term Fishery Exclusion Zone in the Southern Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Mangano, M. Cristina; Kaiser, Michel J.; Porporato, Erika M. D.; Lambert, Gwladys I.; Rinelli, Paola; Spanò, Nunziacarla

    2014-03-01

    Historically the majority of Mediterranean trawl fisheries occur on the continental shelf with a smaller proportion focused on the shelf slope and deep sea areas. Understanding how trawl fisheries affect the wider ecosystem is an important component of the ecosystem-based approach to fisheries management. In this context the current study examined the impact of the otter trawl fishery on the infaunal communities found on the continental shelf and upper slope off the coast of Sicily and Calabria, Italy. A total of thirty six sites were sampled across a gradient of fishing intensity and from within a large bay from which trawling has been excluded for 22 years. Fishing intensities were ascertained post-hoc from vessel monitoring system data. Seabed characteristics of the sites studied were uniform across the continental shelf and slope areas that were studied, such that the only factor that varied was fishing intensity. The density index (DI) and total number of species (S) were significantly higher in the fishery closure area compared with other continental shelf sites. In particular, bioturbating decapod fauna occurred only within the fishery closure area. Fished sites were dominated primarily by burrowing deposit feeding worms, small bivalves and scavenging biota. In contrast, the response to fishing on the upper slope was less clear. This observation was treated with caution as the power to detect fishing effects was lower for the upper slope sites as a result of possible illegal fishing that had compromised two of the four replicate sites within the closed area. While the present study was able to quantify the effect of the demersal trawl fleet on the benthic infauna of the continental shelf, the effects of trawling on the upper shelf slope remain unclear and warrant further study.

  14. The Global Diversity of Parasitic Isopods Associated with Crustacean Hosts (Isopoda: Bopyroidea and Cryptoniscoidea)

    PubMed Central

    Williams, Jason D.; Boyko, Christopher B.

    2012-01-01

    Parasitic isopods of Bopyroidea and Cryptoniscoidea (commonly referred to as epicarideans) are unique in using crustaceans as both intermediate and definitive hosts. In total, 795 epicarideans are known, representing ∼7.7% of described isopods. The rate of description of parasitic species has not matched that of free-living isopods and this disparity will likely continue due to the more cryptic nature of these parasites. Distribution patterns of epicarideans are influenced by a combination of their definitive (both benthic and pelagic species) and intermediate (pelagic copepod) host distributions, although host specificity is poorly known for most species. Among epicarideans, nearly all species in Bopyroidea are ectoparasitic on decapod hosts. Bopyrids are the most diverse taxon (605 species), with their highest diversity in the North West Pacific (139 species), East Asian Sea (120 species), and Central Indian Ocean (44 species). The diversity patterns of Cryptoniscoidea (99 species, endoparasites of a diverse assemblage of crustacean hosts) are distinct from bopyrids, with the greatest diversity of cryptoniscoids in the North East Atlantic (18 species) followed by the Antarctic, Mediterranean, and Arctic regions (13, 12, and 8 species, respectively). Dajidae (54 species, ectoparasites of shrimp, mysids, and euphausids) exhibits highest diversity in the Antarctic (7 species) with 14 species in the Arctic and North East Atlantic regions combined. Entoniscidae (37 species, endoparasites within anomuran, brachyuran and shrimp hosts) show highest diversity in the North West Pacific (10 species) and North East Atlantic (8 species). Most epicarideans are known from relatively shallow waters, although some bopyrids are known from depths below 4000 m. Lack of parasitic groups in certain geographic areas is likely a sampling artifact and we predict that the Central Indian Ocean and East Asian Sea (in particular, the Indo-Malay-Philippines Archipelago) hold a wealth of

  15. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction.

    PubMed

    Jung, Hyungtaek; Yoon, Byung-Ha; Kim, Woo-Jin; Kim, Dong-Wook; Hurwood, David A; Lyons, Russell E; Salin, Krishna R; Kim, Heui-Soo; Baek, Ilseon; Chand, Vincent; Mather, Peter B

    2016-05-07

    The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world's most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium.

  16. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction

    PubMed Central

    Jung, Hyungtaek; Yoon, Byung-Ha; Kim, Woo-Jin; Kim, Dong-Wook; Hurwood, David A.; Lyons, Russell E.; Salin, Krishna R.; Kim, Heui-Soo; Baek, Ilseon; Chand, Vincent; Mather, Peter B.

    2016-01-01

    The giant freshwater prawn, Macrobrachium rosenbergii, a sexually dimorphic decapod crustacean is currently the world’s most economically important cultured freshwater crustacean species. Despite its economic importance, there is currently a lack of genomic resources available for this species, and this has limited exploration of the molecular mechanisms that control the M. rosenbergii sex-differentiation system more widely in freshwater prawns. Here, we present the first hybrid transcriptome from M. rosenbergii applying RNA-Seq technologies directed at identifying genes that have potential functional roles in reproductive-related traits. A total of 13,733,210 combined raw reads (1720 Mbp) were obtained from Ion-Torrent PGM and 454 FLX. Bioinformatic analyses based on three state-of-the-art assemblers, the CLC Genomic Workbench, Trans-ABySS, and Trinity, that use single and multiple k-mer methods respectively, were used to analyse the data. The influence of multiple k-mers on assembly performance was assessed to gain insight into transcriptome assembly from short reads. After optimisation, de novo assembly resulted in 44,407 contigs with a mean length of 437 bp, and the assembled transcripts were further functionally annotated to detect single nucleotide polymorphisms and simple sequence repeat motifs. Gene expression analysis was also used to compare expression patterns from ovary and testis tissue libraries to identify genes with potential roles in reproduction and sex differentiation. The large transcript set assembled here represents the most comprehensive set of transcriptomic resources ever developed for reproduction traits in M. rosenbergii, and the large number of genetic markers predicted should constitute an invaluable resource for future genetic research studies on M. rosenbergii and can be applied more widely on other freshwater prawn species in the genus Macrobrachium. PMID:27164098

  17. Exploration of the Canyon-Incised Continental Margin of the Northeastern United States Reveals Dynamic Habitats and Diverse Communities

    PubMed Central

    Quattrini, Andrea M.; Nizinski, Martha S.; Chaytor, Jason D.; Demopoulos, Amanda W. J.; Roark, E. Brendan; France, Scott C.; Moore, Jon A.; Heyl, Taylor; Auster, Peter J.; Kinlan, Brian; Ruppel, Carolyn; Elliott, Kelley P.; Kennedy, Brian R.C.; Lobecker, Elizabeth; Skarke, Adam; Shank, Timothy M.

    2015-01-01

    The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration

  18. Modifications to the bottomless lift net for sampling nekton in tidal mangrove forests

    USGS Publications Warehouse

    McIvor, C.C.; Silverman, N.L.

    2010-01-01

    Sampling fishes in vegetated intertidal wetlands is logistically challenging. We modified the 2 ?? 3-m2 bottomless lift net developed for sampling nekton (fish and decapod crustaceans) on the surface of salt marshes for use in tidal mangrove forests with a woody (as opposed to herbaceous) underground root system. As originally designed (Rozas, Mar Ecol Prog Ser 89:287-292, 1992), the lift net was buried directly in the marsh substrate. The net was raised at slack high tide thereby encircling nekton within the enclosed area. A chain-line on the net bottom prevented escape under the net once deployed. However, when we used this same design in tidal mangrove forests, the extensive woody roots and occasional slumping sediments resulted in uneven trenches that could not be cleared effectively during sample recovery. We made 3 modifications to the original net design: (i) lined the peat trenches with aluminum channels of uniform width and depth; (ii) replaced the previous chain-line with Velcro closures that directly attached the net to the inner face of the outer wall of the aluminum channel; and (iii) removed the subtidal pan previously used for concentrating the enclosed nekton at low tide, and filled in those depressions with on-site peat. In the modified version, the aluminum trench became the only subtidal refuge available to nekton, and it was from here that we collected the sample after the forest drained. These modifications permitted high clearing efficiency (93-100%) of fin-clipped individuals of two common species of estuarine resident fishes, Kryptolebias marmoratus (mangrove rivulus) and Bathygobius soporator (frillfin goby). Additionally, the density estimates of grass shrimp (Palaemonetes spp.) increased 10-fold post-modification. ?? 2010 US Government.

  19. Environmental Impact Research Program. Ecological Effects of Rubble Weir Jetty Construction at Murrells Inlet, South Carolina. Volume 3. Community Structure and Habitat Utilization of Fishes and Decapods Associated with the Jetties.

    DTIC Science & Technology

    1987-08-01

    also highly similar to crested blennies (Hypleurochilus geminatus) in their consumption of tubicolous and errant polychaetes (Hydroides dianthus and...Hydroson Obelia ariculate 13.0 𔃺.1 𔃺.1 Sottularis distan 8.7 𔃺.1 𔃺.1 Total Nydromos 17.4 𔃺.1 0.1 LAmelIda Folychoet a ,. ndroide dianthus 5.5...0.1 Dyname uadradent&ta 20.0 0.7 0.6 Total Hydrozo. 20.0 0.7 0.6 50.0 0.1 0.1 hAilelida Polychoota Hydroides dianthus 25.0 0.5 0.2 Neres succinea 20.0

  20. The implications of a Silurian and other thylacocephalan crustaceans for the functional morphology and systematic affinities of the group

    PubMed Central

    2014-01-01

    Background Thylacocephala is a group of enigmatic extinct arthropods. Here we provide a full description of the oldest unequivocal thylacocephalan, a new genus and species Thylacares brandonensis, which is present in the Silurian Waukesha fauna from Wisconsin, USA. We also present details of younger, Jurassic specimens, from the Solnhofen lithographic limestones, which are crucial to our interpretation of the systematic position of Thylacocephala. In the past, Thylacocephala has been interpreted as a crustacean ingroup and as closely related to various groups such as cirripeds, decapods or remipeds. Results The Waukesha thylacocephalan, Thylacares brandonensis n. gen. n. sp., bears compound eyes and raptorial appendages that are relatively small compared to those of other representatives of the group. As in other thylacocephalans the large bivalved shield encloses much of the entire body. The shield lacks a marked optical notch. The eyes, which project just beyond the shield margin, appear to be stalked. Head appendages, which may represent antennulae, antennae and mandibles, appear to be present. The trunk is comprised of up to 22 segments. New details observed on thylacocephalans from the Jurassic Solnhofen lithographic limestones include antennulae and antennae of Mayrocaris bucculata, and endites on the raptorial appendages and an elongate last trunk appendage in Clausocaris lithographica. Preserved features of the internal morphology in C. lithographica include the muscles of the raptorial appendage and trunk. Conclusions Our results indicate that some ‘typical’ thylacocephalan characters are unique to the group; these autapomorphies contribute to the difficulty of determining thylacocephalan affinities. While the new features reported here are consistent with a eucrustacean affinity, most previous hypotheses for the position of Thylacocephala within Eucrustacea (as Stomatopoda, Thecostraca or Decapoda) are shown to be unlikely. A sister group relationship

  1. Isotopic determination of the trophic ecology of a ubiquitous key species - The crab Liocarcinus depurator (Brachyura: Portunidae)

    NASA Astrophysics Data System (ADS)

    Careddu, Giulio; Calizza, Edoardo; Costantini, Maria Letizia; Rossi, Loreto

    2017-05-01

    Knowledge of the trophic ecology of predators is key to understanding how they affect food web structure and ecosystem functioning. The harbour crab Liocarcinus depurator (L.) (Brachyura: Portunidae) is one of the most abundant decapod species in soft-bottom areas of the Mediterranean Sea and northeast Atlantic Ocean. It is both a common prey and predator of commercial and non-commercial marine species and its predation pressure appears to have little effect on the subtidal community assemblage. However, there are few studies of its diet and little is known about its role in mediating energy flows in marine ecosystems. In this study, carbon (δ13C) and nitrogen (δ15N) stable isotope analysis (SIA) and Bayesian analytical tools were used to characterise the trophic niche of L. depurator and to quantify the most important prey supporting this species under various environmental conditions. Specimens of L. depurator, their potential prey and basal resources were collected from two different subtidal areas of the Gulf of Gaeta, one affected by human activities (north side) and the other seasonally influenced by freshwater inputs originating from the River Garigliano (south side). While there were differences between the two sampling areas in terms of the abundance and δ15N and δ13C values of the macrobenthic prey community, no differences in the δ15N values and trophic position of L. depurator were observed. Specifically, Bayesian mixing models showed Polychaeta Errantia as the main source of crab diets in both areas. The observed differences in the δ13C values and the analysis of trophic pathways also indicate that the terrestrial organic matter originating from the discharge of the River Garigliano was integrated along the food web up to L. depurator. Although this species is usually considered an opportunistic feeder, it appears to be highly selective and its trophic habits did not influence food web topology, which in contrast was found to be strongly

  2. Hematodinium sp. and its bacteria-like endosymbiont in European brown shrimp (Crangon crangon)

    PubMed Central

    2012-01-01

    Background Parasitic dinoflagellates of the genus Hematodinium are significant pathogens affecting the global decapod crustacean fishery. Despite this, considerable knowledge gaps exist regarding the life history of the pathogen in vivo, and the role of free living life stages in transmission to naïve hosts. Results In this study, we describe a novel disease in European brown shrimp (Crangon crangon) caused by infection with a parasitic dinoflagellate of the genus Hematodinium. This is the second example host within the Infraorder Caridea (shrimp) and significantly, the first description within the superfamily Crangonoidea. Based upon analysis of the rRNA gene (SSU) and spacers (ITS1), the parasite in C. crangon is the same as that previously described infecting Nephrops norvegicus and Cancer pagurus from European seas, and to the parasite infecting several other commercially important crab species in the Northern Hemisphere. The parasite is however distinct from the type species, H. perezi, found infecting type hosts (Carcinus maenas and Liocarcinus depurator) from nearby sites within Europe. Despite these similarities, the current study has also described for the first time, a bacteria-like endosymbiont within dinospore stages of the parasite infecting shrimp. The endosymbionts were either contained individually within electron lucent vacuoles within the parasite cell cytoplasm, or remained in direct contact with the parasite cytoplasm or in some cases, the nucleoplasm. In all of these cases, no apparent detrimental effects of colonization were observed within the parasite cell. Conclusions The presence of bacteria-like endosymbionts within dinospore life stages presumes that the relationship between the dinoflagellate and the bacteria is extended beyond the period of liberation of spores from the infected host shrimp. In this context, a potential role of endosymbiosis in the survival of free-living stages of the parasite is possible. The finding offers a

  3. Mercury bioaccumulation in cartilaginous fishes from Southern New England coastal waters: Contamination from a trophic ecology and human health perspective

    PubMed Central

    Taylor, David L.; Kutil, Nicholas J.; Malek, Anna J.; Collie, Jeremy S.

    2014-01-01

    This study examined total mercury (Hg) concentrations in cartilaginous fishes from Southern New England coastal waters, including smooth dogfish (Mustelus canis), spiny dogfish (Squalus acanthias), little skate (Leucoraja erinacea), and winter skate (L. ocellata). Total Hg in dogfish and skates were positively related to their respective body size and age, indicating Hg bioaccumulation in muscle tissue. There were also significant inter-species differences in Hg levels (mean ± 1 SD, mg Hg/kg dry weight, ppm): smooth dogfish (3.3 ± 2.1 ppm; n = 54) > spiny dogfish (1.1 ± 0.7 ppm; n = 124) > little skate (0.4 ± 0.3 ppm; n = 173) ~ winter skate (0.3 ± 0.2 ppm; n = 148). The increased Hg content of smooth dogfish was attributed to its upper trophic level status, determined by stable nitrogen (δ15N) isotope analysis (mean δ15N = 13.2 ± 0.7‰), and the consumption of high Hg prey, most notably cancer crabs (0.10 ppm). Spiny dogfish had depleted δ15N signatures (11.6 ± 0.8‰), yet demonstrated a moderate level of contamination by foraging on pelagic prey with a range of Hg concentrations, e.g., in order of dietary importance, butterfish (Hg = 0.06 ppm), longfin squid (0.17 ppm), and scup (0.11 ppm). Skates were low trophic level consumers (δ15N = 11.9-12.0‰) and fed mainly on amphipods, small decapods, and polychaetes with low Hg concentrations (0.05-0.09 ppm). Intra-specific Hg concentrations were directly related to δ15N and carbon (δ13C) isotope signatures, suggesting that Hg biomagnifies across successive trophic levels and foraging in the benthic trophic pathway increases Hg exposure. From a human health perspective, 87% of smooth dogfish, 32% of spiny dogfish, and < 2% of skates had Hg concentrations exceeding the US Environmental Protection Agency threshold level (0.3 ppm wet weight). These results indicate that frequent consumption of smooth dogfish and spiny dogfish may adversely affect human health, whereas skates present minimal risk. PMID

  4. Biodiversity of the Deep-Sea Continental Margin Bordering the Gulf of Maine (NW Atlantic): Relationships among Sub-Regions and to Shelf Systems

    PubMed Central

    Kelly, Noreen E.; Shea, Elizabeth K.; Metaxas, Anna; Haedrich, Richard L.; Auster, Peter J.

    2010-01-01

    Background In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. Methodology/Principal Findings We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39–43°N, 63–71°W, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. Conclusions/Significance The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life

  5. Comparative molecular analyses of select pH- and osmoregulatory genes in three freshwater crayfish Cherax quadricarinatus, C. destructor and C. cainii

    PubMed Central

    Pavasovic, Ana; Dammannagoda, Lalith K.; Mather, Peter B.; Prentis, Peter J.

    2017-01-01

    Systemic acid-base balance and osmotic/ionic regulation in decapod crustaceans are in part maintained by a set of transport-related enzymes such as carbonic anhydrase (CA), Na+/K+-ATPase (NKA), H+-ATPase (HAT), Na+/K+/2Cl− cotransporter (NKCC), Na+/Cl−/HCO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{3}^{-}$\\end{document}3− cotransporter (NBC), Na+/H+ exchanger (NHE), Arginine kinase (AK), Sarcoplasmic Ca+2-ATPase (SERCA) and Calreticulin (CRT). We carried out a comparative molecular analysis of these genes in three commercially important yet eco-physiologically distinct freshwater crayfish, Cherax quadricarinatus, C. destructor and C. cainii, with the aim to identify mutations in these genes and determine if observed patterns of mutations were consistent with the action of natural selection. We also conducted a tissue-specific expression analysis of these genes across seven different organs, including gills, hepatopancreas, heart, kidney, liver, nerve and testes using NGS transcriptome data. The molecular analysis of the candidate genes revealed a high level of sequence conservation across the three Cherax sp. Hyphy analysis revealed that all candidate genes showed patterns of molecular variation consistent with neutral evolution. The tissue-specific expression analysis showed that 46% of candidate genes were expressed in all tissue types examined, while approximately 10% of candidate genes were only expressed in a single tissue type. The largest number of genes was observed in nerve (84%) and gills (78%) and the lowest in testes (66%). The tissue-specific expression analysis also revealed that most of the master genes regulating pH and osmoregulation (CA, NKA, HAT, NKCC, NBC, NHE) were expressed in all tissue types indicating an important physiological role

  6. Pre-Partum Diet of Adult Female Bearded Seals in Years of Contrasting Ice Conditions

    PubMed Central

    Hindell, Mark A.; Lydersen, Christian; Hop, Haakon; Kovacs, Kit M.

    2012-01-01

    Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus) during three spring breeding periods (2005, 2006 and 2007) with markedly contrasting ice conditions in Svalbard using stable isotopes (δ13C and δ15N) measured in whiskers collected from their newborn pups. The δ15N values in the whiskers of individual seals ranged from 11.95 to 17.45 ‰, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005), the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006), the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals. PMID:22693616

  7. Exploration of the canyon-incised continental margin of the northeastern United States reveals dynamic habitats and diverse communities

    USGS Publications Warehouse

    Quattrini, Andrea; Nizinski, Martha S.; Chaytor, Jason; Demopoulos, Amanda W.J.; Roark, E. Brendan; France, Scott; Moore, Jon A.; Heyl, Taylor P.; Auster, Peter J.; Ruppel, Carolyn D.; Elliott, Kelley P.; Kennedy, Brian R.C.; Lobecker, Elizabeth A.; Skarke, Adam; Shank, Timothy M.

    2015-01-01

    The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichosand the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial

  8. Are deep-sea organisms dwelling within a submarine canyon more at risk from anthropogenic contamination than those from the adjacent open slope? A case study of Blanes canyon (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Koenig, Samuel; Fernández, Pilar; Company, Joan B.; Huertas, David; Solé, Montserrat

    2013-11-01

    Due to their geomorphological structure and proximity to the coastline, submarine canyons may act as natural conduit routes for anthropogenic contaminants that are transported from surface waters to the deep-sea. Organisms dwelling in these canyon environments might thus be at risk of experiencing adverse health effects due to higher pollution exposure. To address this question, chemical and biochemical analyses were conducted on two of the most abundant deep-sea fish species in the study area, namely Alepocephalus rostratus and Lepidion lepidion, and the most abundant deep-sea commercial decapod crustacean Aristeus antennatus sampled inside Blanes canyon (BC) and on the adjacent open slope (OS). Persistent organic pollutants (POPs) levels, including polychlorinated biphenyl (PCB), dichlorodiphenyltrichloroethane (DDT) and derivatives, hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) were determined in muscle tissue of selected samples from 900 m and 1500 m depth. Potential effects resulting from contaminant exposure were determined using hepatic biomarkers such as ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-deethylase (PROD), catalase (CAT), carboxylesterase (CbE), glutathione-S-transferase (GST), total glutathione peroxidase (GPX), glutathione reductase (GR) and superoxide-dismutase (SOD) enzyme activities and lipid peroxidation levels (LP). L. lepidion and A. antennatus tissues exhibited higher POP levels inside BC compared to the OS at 900 m depth. These findings were consistent with biomarker data (i.e. enzymatic response to presence of contaminant agents). Elevated xenobiotic-metabolizing (EROD and PROD) and antioxidant enzymes (CAT and GPX) indicated higher contaminant exposure in both species caught within BC. No difference in POP accumulation between sites was observed in L. lepidion at 1500 m depth, nor in biomarker data, suggesting that the pollution gradient was less pronounced at greater depths. This trend was further corroborated

  9. Diet Composition and Trophic Ecology of Northeast Pacific Ocean Sharks.

    PubMed

    Bizzarro, Joseph J; Carlisle, Aaron B; Smith, Wade D; Cortés, Enric

    Although there is a general perception of sharks as large pelagic, apex predators, most sharks are smaller, meso- and upper-trophic level predators that are associated with the seafloor. Among 73 shark species documented in the eastern North Pacific (ENP), less than half reach maximum lengths >200cm, and 78% occur in demersal or benthic regions of the continental shelf or slope. Most small (≤200cm) species (e.g., houndsharks) and demersal, nearshore juveniles of larger species (e.g., requiem sharks) consume small teleosts and decapod crustaceans, whereas large species in pelagic coastal and oceanic environments feed on large teleosts and squids. Several large, pelagic apex predator species occur in the ENP, but the largest species (i.e., Basking Shark, Whale Shark) consume zooplankton or small nekton. Size-based dietary variability is substantial for many species, and segregation of juvenile and adult foraging habitats also is common (e.g., Horn Shark, Shortfin Mako). Temporal dietary differences are most pronounced for temperate, nearshore species with wide size ranges, and least pronounced for smaller species in extreme latitudes and deep-water regions. Sympatric sharks often occupy various trophic positions, with resource overlap differing by space and time and some sharks serving as prey to other species. Most coastal species remain in the same general region over time and feed opportunistically on variable prey inputs (e.g., season migrations, spawning, or recruitment events), whereas pelagic, oceanic species actively seek hot spots of prey abundance that are spatiotemporally variable. The influence of sharks on ecosystem structure and regulation has been downplayed compared to that of large teleosts species with higher per capita consumption rates (e.g., tunas, billfishes). However, sharks also exert indirect influences on prey populations by causing behavioural changes that may result in restricted ranges and reduced fitness. Except for food web modelling

  10. Antarctic Crabs: Invasion or Endurance?

    PubMed Central

    Griffiths, Huw J.; Whittle, Rowan J.; Roberts, Stephen J.; Belchier, Mark; Linse, Katrin

    2013-01-01

    Recent scientific interest following the “discovery” of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This “invasion hypothesis” suggests that decapod crabs were driven out of Antarctica 40–15 million years ago and are only now returning as “warm” enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura), and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60°S. All are restricted to waters warmer than 0°C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW). Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day “crab invasion”. We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the

  11. Role of crustacean hyperglycemic hormone (CHH) in the environmental stressor-exposed intertidal copepod Tigriopus japonicus.

    PubMed

    Kim, Bo-Mi; Jeong, Chang-Bum; Han, Jeonghoon; Kim, Il-Chan; Rhee, Jae-Sung; Lee, Jae-Seong

    2013-09-01

    To identify and characterize CHH (TJ-CHH) gene in the copepod Tigriopus japonicus, we analyzed the full-length cDNA sequence, genomic structure, and promoter region. The full-length TJ-CHH cDNA was 716 bp in length, encoding 136 amino acid residues. The deduced amino acid sequences of TJ-CHH showed a high similarity of the CHH mature domain to other crustaceans. Six conserved cysteine residues and five conserved structural motifs in the CHH mature peptide domain were also observed. The genomic structure of the TJ-CHH gene contained three exons and two introns in its open reading frame (ORF), and several transcriptional elements were detected in the promoter region of the TJ-CHH gene. To investigate transcriptional change of TJ-CHH under environmental stress, T. japonicus were exposed to heat treatment, UV-B radiation, heavy metals, and water-accommodated fractions (WAFs) of Iranian crude oil. Upon heat stress, TJ-CHH transcripts were elevated at 30 °C and 35 °C for 96 h in a time-course experiment. UV-B radiation led to a decreased pattern of the TJ-CHH transcript 48 h and more after radiation (12 kJ/m(2)). After exposure of a fixed dose (12 kJ/m(2)) in a time-course experiment, TJ-CHH transcript was down-regulated in time-dependent manner with a lowest value at 12h. However, the TJ-CHH transcript level was increased in response to five heavy metal exposures for 96 h. Also, the level of the TJ-CHH transcript was significantly up-regulated at 20% of WAFs after exposure to WAFs for 48 h and then remarkably reduced in a dose-dependent manner. These findings suggest that the enhanced TJ-CHH transcript level is associated with a cellular stress response of the TJ-CHH gene as shown in decapod crustaceans. This study is also helpful for a better understanding of the detrimental effects of environmental changes on the CHH-triggered copepod metabolism. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. The implications of a Silurian and other thylacocephalan crustaceans for the functional morphology and systematic affinities of the group.

    PubMed

    Haug, Carolin; Briggs, Derek E G; Mikulic, Donald G; Kluessendorf, Joanne; Haug, Joachim T

    2014-08-22

    Thylacocephala is a group of enigmatic extinct arthropods. Here we provide a full description of the oldest unequivocal thylacocephalan, a new genus and species Thylacares brandonensis, which is present in the Silurian Waukesha fauna from Wisconsin, USA. We also present details of younger, Jurassic specimens, from the Solnhofen lithographic limestones, which are crucial to our interpretation of the systematic position of Thylacocephala. In the past, Thylacocephala has been interpreted as a crustacean ingroup and as closely related to various groups such as cirripeds, decapods or remipeds. The Waukesha thylacocephalan, Thylacares brandonensis n. gen. n. sp., bears compound eyes and raptorial appendages that are relatively small compared to those of other representatives of the group. As in other thylacocephalans the large bivalved shield encloses much of the entire body. The shield lacks a marked optical notch. The eyes, which project just beyond the shield margin, appear to be stalked. Head appendages, which may represent antennulae, antennae and mandibles, appear to be present. The trunk is comprised of up to 22 segments. New details observed on thylacocephalans from the Jurassic Solnhofen lithographic limestones include antennulae and antennae of Mayrocaris bucculata, and endites on the raptorial appendages and an elongate last trunk appendage in Clausocaris lithographica. Preserved features of the internal morphology in C. lithographica include the muscles of the raptorial appendage and trunk. Our results indicate that some 'typical' thylacocephalan characters are unique to the group; these autapomorphies contribute to the difficulty of determining thylacocephalan affinities. While the new features reported here are consistent with a eucrustacean affinity, most previous hypotheses for the position of Thylacocephala within Eucrustacea (as Stomatopoda, Thecostraca or Decapoda) are shown to be unlikely. A sister group relationship to Remipedia appears compatible

  13. Ecology of mangroves in the Jewfish Chain, Exuma, Bahamas

    USGS Publications Warehouse

    Wilcox, L. V.; Yocom, Thomas G.; Forbes, A. M.

    1976-01-01

    The structure and function of mangrove communities in the Jewfish Chain, Exumas, Bahamas, were investigated for 3-1/2 years. Mangrove vegetation in the Jewfish Chain is similar to that in all the Caribbean-Florida area; Rhizophora mangle L. dominates and is interspersed with Avicennia germinans (L.) Lamk. and Laguncularia racemosa (L.) Gaertn. There is no apparent zonation of these three species. The mangrove communities in the Jewfish Chain occur only where they are protected from prevailing winds, storms, and tides, although all are periodically devastated by hurricanes. We found little or no evidence of coast building within these protected locations. The importance of the mangroves appears to be in providing protection and food for other flora and fauna within this unique ecosystem. Twenty-four species of algae were found in the mangroves, 9 of which had not previously been reported from the Bahamas. Distribution of these algae appears to be correlated to incident solar radiation, desiccation, and tide level. A total of 56 species of fish were found in the mangroves, 2 of which were not previously known from the Bahamas. Many fish taken were juveniles, suggesting that mangroves are a nursery ground for numerous species. Nine species of molluscs were found. Each species had a distinct distribution pattern relative to distance from the seaward edge of the mangroves, as well as a distinct vertical distribution pattern. Seventeen species of decapod crustaceans were recorded. Though several species of birds were noted in the mangroves, three species were most abundant: the white-crowned pigeon (Columba leucocephala) uses the mangrove for nesting but feeds in nearby shrub-thorn communities; the gray kingbird (Tyrannus dominicensis) and green heron (Butorides virescens) nest and feed in the mangroves. Our data do not completely describe a stereotyped mangrove community in the Bahamas, but they do give an indication of community structure and suggest several

  14. Cloning and functional characterization of the DA2 receptor gene in Chinese mitten crab (Eriocheir sinensis)

    PubMed Central

    Xu, Min-jie; Zhang, Cong; Yang, Zhigang

    2018-01-01

    adaptation and digestive functions of the DA2 receptor in decapods. PMID:29554147

  15. Phylogeography of an Island endemic, the Puerto Rican Freshwater Crab (Epilobocera sinuatifrons).

    PubMed

    Cook, Benjamin D; Pringle, Catherine M; Hughes, Jane M

    2008-01-01

    The endemic Puerto Rican crab, Epilobocera sinuatifrons (Pseudothelphusidae), has a freshwater-dependant life-history strategy, although the species has some capabilities for terrestrial movement as adults. In contrast to all other freshwater decapods on the island (e.g., caridean shrimp), E. sinuatifrons does not undertake amphidromous migration, and is restricted to purely freshwater habitats and adjacent riparian zones. As Puerto Rico has a dynamic geologic history, we predicted that both the life history of E. sinuatifrons and the geological history of the island would be important determinants of phylogeographic structuring in the species. Using a fragment of the cytochrome c oxidase subunit 1 mtDNA (mitochondrial DNA) gene, we tested for deviations from panmixia among and within rivers draining Puerto Rico and used statistical phylogeography to explore processes that may explain extant patterns of genetic variation in the species. While populations of E. sinuatifrons were significantly differentiated among rivers, they were likely to be recently derived because nested clade analysis (NCA) indicated evolutionarily recent restricted gene flow with isolation by distance (IBD) and contiguous range expansion at various spatial scales. Ongoing drainage rearrangements associated with faulting and land slippage were invoked as processes involved in sporadic gene flow among rivers throughout the Pleistocene. Patterns of genetic differentiation conformed to IBD and population demographic statistics were nonsignificant, indicating that although recently derived, populations from different rivers were in drift-mutation equilibrium. A shallow (0.6 million years ago), paraphyletic split was observed in the haplotype network, which NCA indicated arose via allopatric fragmentation. This split coincides with an area of high relief in central Puerto Rico that may have experienced relatively little drainage rearrangements. Shallow but significant genetic isolation of

  16. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet

    PubMed Central

    Meyer, Christopher P.; Mills, Suzanne C.

    2015-01-01

    Understanding the role of predators in food webs can be challenging in highly diverse predator/prey systems composed of small cryptic species. DNA based dietary analysis can supplement predator removal experiments and provide high resolution for prey identification. Here we use a metabarcoding approach to provide initial insights into the diet and functional role of coral-dwelling predatory fish feeding on small invertebrates. Fish were collected in Moorea (French Polynesia) where the BIOCODE project has generated DNA barcodes for numerous coral associated invertebrate species. Pyrosequencing data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfish (Paracirrhites arcatus), the flame hawkfish (Neocirrhites armatus) and the coral croucher (Caracanthus maculatus). One hundred forty-nine (51%) of them had species-level matches in reference libraries (>98% similarity) while 76 additional OTUs (26%) could be identified to higher taxonomic levels. Decapods that have a mutualistic relationship with Pocillopora and are typically dominant among coral branches, represent a minor contribution of the predators’ diets. Instead, predators mainly consumed transient species including pelagic taxa such as copepods, chaetognaths and siphonophores suggesting non random feeding behavior. We also identified prey species known to have direct negative interactions with stony corals, such as Hapalocarcinus sp, a gall crab considered a coral parasite, as well as species of vermetid snails known for their deleterious effects on coral growth. Pocillopora DNA accounted for 20.8% and 20.1% of total number of sequences in the guts of the flame hawkfish and coral croucher but it was not detected in the guts of the arc-eye hawkfish. Comparison of diets among the three fishes demonstrates remarkable partitioning with nearly 80% of prey items consumed by only one predator. Overall, the taxonomic resolution provided by the metabarcoding approach

  17. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet.

    PubMed

    Leray, Matthieu; Meyer, Christopher P; Mills, Suzanne C

    2015-01-01

    Understanding the role of predators in food webs can be challenging in highly diverse predator/prey systems composed of small cryptic species. DNA based dietary analysis can supplement predator removal experiments and provide high resolution for prey identification. Here we use a metabarcoding approach to provide initial insights into the diet and functional role of coral-dwelling predatory fish feeding on small invertebrates. Fish were collected in Moorea (French Polynesia) where the BIOCODE project has generated DNA barcodes for numerous coral associated invertebrate species. Pyrosequencing data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfish (Paracirrhites arcatus), the flame hawkfish (Neocirrhites armatus) and the coral croucher (Caracanthus maculatus). One hundred forty-nine (51%) of them had species-level matches in reference libraries (>98% similarity) while 76 additional OTUs (26%) could be identified to higher taxonomic levels. Decapods that have a mutualistic relationship with Pocillopora and are typically dominant among coral branches, represent a minor contribution of the predators' diets. Instead, predators mainly consumed transient species including pelagic taxa such as copepods, chaetognaths and siphonophores suggesting non random feeding behavior. We also identified prey species known to have direct negative interactions with stony corals, such as Hapalocarcinus sp, a gall crab considered a coral parasite, as well as species of vermetid snails known for their deleterious effects on coral growth. Pocillopora DNA accounted for 20.8% and 20.1% of total number of sequences in the guts of the flame hawkfish and coral croucher but it was not detected in the guts of the arc-eye hawkfish. Comparison of diets among the three fishes demonstrates remarkable partitioning with nearly 80% of prey items consumed by only one predator. Overall, the taxonomic resolution provided by the metabarcoding approach

  18. Pre-partum diet of adult female bearded seals in years of contrasting ice conditions.

    PubMed

    Hindell, Mark A; Lydersen, Christian; Hop, Haakon; Kovacs, Kit M

    2012-01-01

    Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus) during three spring breeding periods (2005, 2006 and 2007) with markedly contrasting ice conditions in Svalbard using stable isotopes (δ(13)C and δ(15)N) measured in whiskers collected from their newborn pups. The δ(15)N values in the whiskers of individual seals ranged from 11.95 to 17.45 ‰, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005), the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006), the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals.

  19. Differential effects of arginine, glutamate and phosphoarginine on Ca(2+)-activation properties of muscle fibres from crayfish and rat.

    PubMed

    Jame, David W; West, Jan M; Dooley, Philip C; Stephenson, D George

    2004-01-01

    The effects of two amino acids, arginine which has a positively charged side-chain and glutamate which has a negatively charged side-chain on the Ca2+-activation properties of the contractile apparatus were examined in four structurally and functionally different types of skeletal muscle; long- and short-sarcomere fibres from the claw muscle of the yabby (a freshwater decapod crustacean), and fast- and slow-twitch fibres from limb muscles of the rat. Single skinned fibres were activated in carefully balanced solutions of different pCa (-log10[Ca2+]) that either contained the test solute ("test") or not ("control"). The effect of phosphoarginine, a phosphagen that bears a nett negative charge, was also compared to the effects of arginine. Results show that (i) arginine (33-36 mmol l(-1)) significantly shifted the force-pCa curve by 0.08-0.13 pCa units in the direction of increased sensitivity to Ca2+-activated contraction in all fibre types; (ii) phosphoarginine (9-10 mmol l(-1)) induced a significant shift of the force-pCa curve by 0.18-0.24 pCa units in the direction of increased sensitivity to Ca2+ in mammalian fast- and slow-twitch fibres, but had no significant effects on the force-pCa relation in either long- or short-sarcomere crustacean fibres; (iii) glutamate (36-40 mmol l(-1)), like arginine affected the force-pCa relation of all fibre types investigated, but in the opposite direction, causing a significant decrease in the sensitivity to Ca2+-activated contraction by 0.08-0.19 pCa units; (iv) arginine, phosphoarginine and glutamate had little or no effect on the maximum Ca2+-activated force of crustacean and mammalian fibres. The results suggest that the opposing effects of glutamate and arginine are not related to simply their charge structure, but must involve complex interactions between these molecules, Ca2+ and the regulatory and other myofibrillar proteins.

  20. Low faunal diversity on Maltese sandy beaches: fact or artefact?

    NASA Astrophysics Data System (ADS)

    Deidun, Alan; Azzopardi, Marthese; Saliba, Stephen; Schembri, Patrick J.

    2003-10-01

    Eight sandy beaches on Malta and two on Gozo were sampled for macrofauna to test the hypothesis that Maltese beaches have an intrinsically low diversity. Stations distributed in the supralittoral (dry zone), mediolittoral (wet zone) and upper infralittoral (submerged zone to 1 m water depth) were sampled by sieving core samples and standardised searching during daytime, and pitfall trapping and standardised sweeping of the water column using a hand-net at night, as appropriate. Physical parameters of the sediment were measured and human occupancy of the beaches was estimated. From the supralittoral and mediolittoral, 39 species represented by 1584 individuals were collected by the combined techniques of pitfall trapping, sieving and standard searching. For Ramla beach, which had the highest diversity, 267 individuals representing 25 infaunal species were collected by sieving from a combined volume of 1.175 m 3 of sand, and 149 individuals representing 28 epifaunal species were collected by standardised searching from a combined area of 700 m 2 of sand during two winter and two summer sampling sessions between 1992 and 1993. For nine other beaches sampled during the summer of 2000, only six macrofaunal species were collected from core samples, with overall population densities ranging from 4.13 to 45.45 individuals m -2. Only 92 individuals belonging to 12 species were collected by hand-net from the uppermost infralittoral of five beaches sampled using this method during the summer of 2000. Taxa of gastropods, bivalves, decapods, mysids and staphylinid beetles generally abundant on Mediterranean sandy beaches, were entirely absent from the beaches sampled. Few correlations that could explain the impoverishment of Maltese sandy beaches were found between physical parameters and faunal abundances, and other factors such as inadequate sampling effort, human disturbance and marine pollution were also excluded; however, seasonally biased sampling may partly explain the

  1. Diet Composition and Variability of Wild Octopus vulgaris and Alloteuthis media (Cephalopoda) Paralarvae: a Metagenomic Approach

    PubMed Central

    Olmos-Pérez, Lorena; Roura, Álvaro; Pierce, Graham J.; Boyer, Stéphane; González, Ángel F.

    2017-01-01

    The high mortality of cephalopod early stages is the main bottleneck to grow them from paralarvae to adults in culture conditions, probably because the inadequacy of the diet that results in malnutrition. Since visual analysis of digestive tract contents of paralarvae provides little evidence of diet composition, the use of molecular tools, particularly next generation sequencing (NGS) platforms, offers an alternative to understand prey preferences and nutrient requirements of wild paralarvae. In this work, we aimed to determine the diet of paralarvae of the loliginid squid Alloteuthis media and to enhance the knowledge of the diet of recently hatched Octopus vulgaris paralarvae collected in different areas and seasons in an upwelling area (NW Spain). DNA from the dissected digestive glands of 32 A. media and 64 O. vulgaris paralarvae was amplified with universal primers for the mitochondrial gene COI, and specific primers targeting the mitochondrial gene 16S gene of arthropods and the mitochondrial gene 16S of Chordata. Following high-throughput DNA sequencing with the MiSeq run (Illumina), up to 4,124,464 reads were obtained and 234,090 reads of prey were successfully identified in 96.87 and 81.25% of octopus and squid paralarvae, respectively. Overall, we identified 122 Molecular Taxonomic Units (MOTUs) belonging to several taxa of decapods, copepods, euphausiids, amphipods, echinoderms, molluscs, and hydroids. Redundancy analysis (RDA) showed seasonal and spatial variability in the diet of O. vulgaris and spatial variability in A. media diet. General Additive Models (GAM) of the most frequently detected prey families of O. vulgaris revealed seasonal variability of the presence of copepods (family Paracalanidae) and ophiuroids (family Euryalidae), spatial variability in presence of crabs (family Pilumnidae) and preference in small individual octopus paralarvae for cladocerans (family Sididae) and ophiuroids. No statistically significant variation in the

  2. Trophodynamics of suprabenthic fauna on coastal muddy bottoms of the southern Tyrrhenian Sea (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Fanelli, E.; Cartes, J. E.; Badalamenti, F.; Rumolo, P.; Sprovieri, M.

    2009-02-01

    The trophodynamics of suprabenthic fauna were analyzed in the Gulf of Castellammare (North-western Sicily, Italy) at depths ranging between 40 and 80 m. Variations in species abundance and biomass together with changes in nitrogen and carbon stable isotope composition were explored at a seasonal scale, from November 2004 to June 2005. Suprabenthos showed maximum biomass and abundance from late winter to summer, while minimum values were found in autumn. The highest abundances of mysids and copepods occurred in March, 1 month after the peak of primary production. Amphipod abundance was higher in summer, likely due to a relative increase in organic matter in the sediments. Statistical analysis provided evidence for separation of sample abundances as a function of season. The best match between suprabenthos abundance and environmental variables was found with Chlorophyll a recorded 3 months before the sampling. Stable isotope analyses suggest a relatively complex food web in the Gulf of Castellammare with several potential food sources. Some suprabenthic species (i.e. mysids and copepods) exhibited depleted values of δ13C, indicating a planktonic source of nutrition. Cumaceans and amphipods displayed more enriched δ13C values, pointing to more detritivorous behaviour. A third group with intermediate δ13C values comprised species with a mixed diet (e.g. Ampelisca spp., Apherusa vexatrix and Harpinia spp.). Assuming a 15N-enrichment of ca. 2.54‰ between consumers and their diet, at least two trophic levels can be distinctly identified: (1) filter feeders/grazers (mysids, copepods), suspension/deposit feeders ( Ampelisca spp., A. vexatrix, small Goneplax rhomboides) and omnivores, alternatively feeding on detritus and small invertebrates such as meiobenthos (the cumacean Leucon mediterraneus or the amphipod Westwoodilla rectirostris); (2) carnivores on small crustaceans and zooplankton (the amphipod Harpinia spp., the gobiid fish Lesuerigobius suerii and the decapod

  3. A phylogenetic perspective on diversity of Galatheoidea (Munida, Munidopsis) from cold-water coral and cold seep communities in the western North Atlantic Ocean

    USGS Publications Warehouse

    Coykendall, D. Katharine; Nizinski, Martha S.; Morrison, Cheryl L.

    2016-01-01

    Squat lobsters (Galatheoidea and Chirostyloidea), a diverse group of decapod crustaceans, are ubiquitous members of the deep-sea fauna. Within Galatheoidea, the genera Munida and Munidopsis are the most diverse, but accurate estimates of biodiversity are difficult due to morphological complexity and cryptic diversity. Four species of Munida and nine species of Munidopsis from cold-water coral (CWC) and cold seep communities in the northwestern Atlantic Ocean (NWA) and the Gulf of Mexico (GOM) were collected over eleven years and fifteen research cruises in order to assess faunal associations and estimate squat lobster biodiversity. Identification of the majority of specimens was determined morphologically. Mitochondrial COI sequence data, obtained from material collected during these research cruises, was supplemented with published sequences of congeners from other regions. The phylogenetic analysis of Munida supports three of the four NWA and GOM species (M. microphthalma, M. sanctipauli, and M. valida) as closely related taxa. The fourth species, Munida iris, is basal to most other species of Munida, and is closely related to M. rutllanti, a species found in the northeastern Atlantic Ocean (NEA). The majority of the nine species of Munidopsis included in our analyses were collected from chemosynthetic cold seep sites from the GOM. While seep taxa were scattered throughout the phylogenetic tree, four of these species (Munidopsis livida, M. similis, M. bermudezi, and M. species A) from the NWA and the GOM were part of a large eighteen-species clade that included species collected from Pacific Ocean chemosynthetic habitats, such as hydrothermal vents and whale falls. Shinkaia crosnieri was the sister taxon to the chemosynthetic clade, and M. livida was the most basal member of this clade. Munidopsis sp. B, an undescribed species with representative individuals collected from two GOM chemosynthetic sites, exhibited the largest genetic distance from other northern

  4. Accumulation and fate of mercury in an Everglades aquatic food web

    USGS Publications Warehouse

    Loftus, William F.

    2000-01-01

    This project examined the pathways of mercury (Hg) bioaccumulation and its relation to trophic position and hydroperiod in the Everglades. I described fish-diet differences across habitats and seasons by analyzing stomach contents of 4,000 fishes of 32 native and introduced species. Major foods included periphyton, detritus/algal conglomerate, small invertebrates, aquatic insects, decapods, and fishes. Florida gar, largemouth bass, pike killifish, and bowfin were at the top of the piscine food web. Using prey volumes, I quantitatively classified the fishes into trophic groups of herbivores, omnivores, and carnivores. Stable-isotope analysis of fishes and invertebrates gave an independent and similar assessment of trophic placement. Trophic patterns were similar to those from tropical communities. I tested for correlations of trophic position and total mercury. Over 4,000 fish, 620 invertebrate, and 46 plant samples were analyzed for mercury with an atomic-fluorescence spectrometer. Mercury varied within and among taxa. Invertebrates ranged from 25–200 ng g −1 ww. Small-bodied fishes varied from 78–>400 ng g −1 ww. Large predatory fishes were highest, reaching a maximum of 1,515 ng−1 ww. Hg concentrations in both fishes and invertebrates were positively correlated with trophic position. I examined the effects of season and hydroperiod on mercury in wild and caged mosquitofish at three pairs of marshes. Nine monthly collections of wild mosquitofish were analyzed. Hydroperiod-within-site significantly affected concentrations but it interacted with sampling period. To control for wild-fish dispersal, and to measure in situ uptake and growth, I placed captive-reared, neonate mosquitofish with mercury levels from 7–14 ng g−1 ww into field cages in the six study marshes in six trials. Uptake rates ranged from 0.25–3.61 ng g−1 ww d −1. As with the wild fish, hydroperiod-within-site was a significant main effect that also interacted with

  5. Late Miocene fossils from shallow marine sediments in Brunei Darussalam: systematics, palaeoenvironment and ecology.

    NASA Astrophysics Data System (ADS)

    Roslim, Amajida; Briguglio, Antonino; Kocsis, László; Ćorić, Stjepan; Razak, Hazirah

    2016-04-01

    The geology of Brunei Darussalam is fascinating but difficult to approach: rainforests and heavy precipitation tend to erode and smoothen the landscape limiting rocks exposure, whereas abundant constructions sites and active quarries allow the creation of short time available outcrop, which have to be immediately sampled. The stratigraphy of Brunei Darussalam comprises mainly Neogene sediments deposited in a wave to tide dominated shallow marine environment in a pure siliciclastic system. Thick and heavily bioturbated sandstone layers alternate to claystone beds which occasionally yield an extraordinary abundance and diversity of fossils. The sandstones, when not bioturbated, are commonly characterized by a large variety of sedimentary structures (e.g., ripple marks, planar laminations and cross beddings). In this study, we investigate the sediments and the fossil assemblages to record the palaeoenvironmental evolution of the shallow marine environment during the late Miocene, in terms of sea level change, chemostratigraphy and sedimentation rate. The study area is one of the best in terms of accessibility, extension, abundance and preservation of fossils; it is located in the region -'Bukit Ambug' (Ambug Hill), Tutong District. The fossils fauna collected encompasses mollusks, decapods, otoliths, shark and ray teeth, amber, foraminifera and coccolithophorids. In this investigation, sediment samples were taken along a section which measures 62.5 meters. A thick clay layer of 9 meters was sampled each 30 cm to investigate microfossils occurrences. Each sample was treated in peroxide and then sieved trough 63 μm, 150μm, 250μm, 450μm, 600μm, 1mm and 2mm sieves. Results point on the changes in biodiversity of foraminifera along the different horizons collected reflecting sea level changes and sediment production. The most abundant taxa identified are Pseoudorotalia schroeteriana, Ampistegina lessonii, Elphidium advenum, Quinqueloculina sp., Bolivina sp

  6. Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Chieh

    The study of the imaging principles of natural compound eyes has become an active area of research and has fueled the advancement of modern optics with many attractive design features beyond those available with conventional technologies. Most prominent among all compound eyes is the reflecting superposition compound eyes (RSCEs) found in some decapods. They are extraordinary imaging systems with numerous optical features such as minimum chromatic aberration, wide-angle field of view (FOV), high sensitivity to light and superb acuity to motion. Inspired by their remarkable visual system, we were able to implement the unique lens-free, reflection-based imaging mechanisms into a miniaturized, large-FOV optical imaging device operating at the wide visible spectrum to minimize chromatic aberration without any additional post-image processing. First, two micro-transfer printing methods, a multiple and a shear-assisted transfer printing technique, were studied and discussed to realize life-sized artificial RSCEs. The processes exploited the differential adhesive tendencies of the microstructures formed between a donor and a transfer substrate to accomplish an efficient release and transfer process. These techniques enabled conformal wrapping of three-dimensional (3-D) microstructures, initially fabricated in two-dimensional (2-D) layouts with standard fabrication technology onto a wide range of surfaces with complex and curvilinear shapes. Final part of this dissertation was focused on implementing the key operational features of the natural RSCEs into large-FOV, wide-spectrum artificial RSCEs as an optical imaging device suitable for the wide visible spectrum. Our devices can form real, clear images based on reflection rather than refraction, hence avoiding chromatic aberration due to dispersion by the optical materials. Compared to the performance of conventional refractive lenses of comparable size, our devices demonstrated minimum chromatic aberration, exceptional

  7. Effect of saponin treatment on the sarcoplasmic reticulum of rat, cane toad and crustacean (yabby) skeletal muscle.

    PubMed Central

    Launikonis, B S; Stephenson, D G

    1997-01-01

    1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 micrograms ml-1 saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min-1. Saponin concentrations up to 150 micrograms ml-1 and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 micrograms ml-1 saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 micrograms ml-1 for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min-1 in the presence of 150 micrograms ml-1 saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 microM Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 microns) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 micrograms ml-1 saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. It is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species

  8. Effect of saponin treatment on the sarcoplasmic reticulum of rat, cane toad and crustacean (yabby) skeletal muscle.

    PubMed

    Launikonis, B S; Stephenson, D G

    1997-10-15

    1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 micrograms ml-1 saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min-1. Saponin concentrations up to 150 micrograms ml-1 and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 micrograms ml-1 saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 micrograms ml-1 for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min-1 in the presence of 150 micrograms ml-1 saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 microM Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 microns) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 micrograms ml-1 saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. It is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species

  9. Viral diseases of marine invertebrates

    NASA Astrophysics Data System (ADS)

    Johnson, P. T.

    1984-03-01

    Approximately 40 viruses are known from marine sponges; turbellarian and monogenetic flatworms; cephalopod, bivalve, and gastropod mollusks; nereid polychaetes; and isopod and decapod crustaceans. Most of the viruses can be tentatively assigned to the Herpesviridae, Baculoviridae, Iridoviridae, Adenoviridae, Papovaviridae, Reoviridae, “Birnaviridae”, Bunyaviridae, Rhabdoviridae, and Picornaviridae. Viruslike particles found in oysters might be representatives of the Togaviridae and Retroviridae. Enveloped single-stranded RNA viruses from crustaceans have developmental and morphological characteristics intermediate between families, and some show evidence of relationships to the Paramyxoviridae as well as the Bunyaviridae or Rhabdoviridae. Certain small viruses of shrimp cannot be assigned, even tentatively, to a particular family. Some viruses cause disease in wild and captive hosts, others are associated with disease states but may not be primary instigators, and many occur in apparently normal animals. The frequency of viral disease in natural populations of marine invertebrates is unknown. Several viruses that cause disease in captive animals, with or without experimental intervention, have also been found in diseased wild hosts, including herpeslike viruses of crabs and oysters, iridovirus of octopus, and reolike and bunyalike viruses of crabs. Iridolike viruses have been implicated in massive mortalities of cultured oysters. Baculoviruses, and IHHN virus, which is of uncertain affinities, cause economically damaging diseases in cultured penaeid shrimp. Double or multiple viral infection is common in crabs. For example, a reolike virus and associated rhabdolike virus act synergistically to cause paralytic and fatal disease in Callinectes sapidus. Information on host range, most susceptible stage, and viral latency is available only for viruses of shrimp. One baculovirus attacks five species of New World penaeid shrimp. IHHN virus infects three species of

  10. A phylogenetic perspective on diversity of Galatheoidea (Munida, Munidopsis) from cold-water coral and cold seep communities in the western North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Katharine Coykendall, D.; Nizinski, Martha S.; Morrison, Cheryl L.

    2017-03-01

    Squat lobsters (Galatheoidea and Chirostyloidea), a diverse group of decapod crustaceans, are ubiquitous members of the deep-sea fauna. Within Galatheoidea, the genera Munida and Munidopsis are the most diverse, but accurate estimates of biodiversity are difficult due to morphological complexity and cryptic diversity. Four species of Munida and nine species of Munidopsis from cold-water coral (CWC) and cold seep communities in the northwestern Atlantic Ocean (NWA) and the Gulf of Mexico (GOM) were collected over eleven years and fifteen research cruises in order to assess faunal associations and estimate squat lobster biodiversity. Identification of the majority of specimens was determined morphologically. Mitochondrial COI sequence data, obtained from material collected during these research cruises, was supplemented with published sequences of congeners from other regions. The phylogenetic analysis of Munida supports three of the four NWA and GOM species (M. microphthalma, M. sanctipauli, and M. valida) as closely related taxa. The fourth species, Munida iris, is basal to most other species of Munida, and is closely related to M. rutllanti, a species found in the northeastern Atlantic Ocean (NEA). The majority of the nine species of Munidopsis included in our analyses were collected from chemosynthetic cold seep sites from the GOM. While seep taxa were scattered throughout the phylogenetic tree, four of these species (Munidopsis livida, M. similis, M. bermudezi, and M. species A) from the NWA and the GOM were part of a large eighteen-species clade that included species collected from Pacific Ocean chemosynthetic habitats, such as hydrothermal vents and whale falls. Shinkaia crosnieri was the sister taxon to the chemosynthetic clade, and M. livida was the most basal member of this clade. Munidopsis sp. B, an undescribed species with representative individuals collected from two GOM chemosynthetic sites, exhibited the largest genetic distance from other northern

  11. Natural variability of parasite communities of Macrouridae of the middle and lower slope of the Mediterranean Sea and their relation with fish diet and health indicators

    NASA Astrophysics Data System (ADS)

    Pérez-i-García, D.; Constenla, M.; Soler-Membrives, A.; Cartes, J. E.; Solé, M.; Carrassón, M.

    2017-06-01

    This study examines the parasite communities of Coelorinchus caelorhincus, Coelorinchus mediterraneus, Coryphaenoides guentheri and Coryphaenoides mediterraneus of the middle and lower slopes of the Mediterranean Sea. Histopathological, enzymatic activity (acetylcholinesterase and lactate dehydrogenase), dietary and environmental (oxygen, salinity, temperature and turbidity) information were also obtained. A total of 11 parasite taxa were found in the four fish species, the copepod Hamaticolax resupinus being the only parasite shared by all of them. Coelorinchus mediterraneus, Coryphaenoides guentheri and Cor. mediterraneus exhibited rather homogeneous parasite communities, especially in the case of the latter two. Coelorinchus mediterraneus showed the highest richness of parasite taxa (eight species), whereas C. guentheri and Cor. mediterraneus harboured up to five and six, respectively, and C. caelorhincus up to three. Several of the parasites encountered occurred at very low prevalences (<10%), while only three species were exceptionally prevalent and abundant: Cucullanidae fam. gen. sp. larvae in C. caelorhincus; Lepidapedon desclersae in Coe. mediterraneus and Hysterothylacium aduncum in both Coryphaenoides spp. The abundance of the nematode H. aduncum, present in all host species except for C. caelorhincus, increased with water temperature and depth and became the dominant parasite below 2000 m. Salinity may be an important factor affecting the distribution of H. resupinus. The diet was generally homogeneous between the studied species, C. guentheri being more specialized on suprabenthic/benthic prey. The parasites H. aduncum and Tetraphylidea, and to lesser extent Raphidascaris sp., were associated with the most mobile (swimming) prey consumed by macrourids (Chaetognaths, decapod larvae, and Boreomysis arctica). The parasites L. desclersae, Capillostrongyloides morae and Otodistomum sp. were associated in Coe. mediterraneus with epibenthic prey (ophiuroids

  12. Influence of starvation on the larval development of Hyas araneus (Decapoda, Majidae)

    NASA Astrophysics Data System (ADS)

    Anger, K.; Dawirs, R. R.

    1981-09-01

    The influence of starvation on larval development of the spider crab Hyas araneus (L.) was studied in laboratory experiments. No larval stage suffering from continual lack of food had sufficient energy reserves to reach the next instar. Maximal survival times were observed at four different constant temperatures (2°, 6°, 12° and 18 °C). In general, starvation resistance decreased as temperatures increased: from 72 to 12days in the zoea-1, from 48 to 18 days in the zoea-2, and from 48 to 15 days in the megalopa stage. The length of maximal survival is of the same order of magnitude as the duration of each instar at a given temperature. “Sublethal limits” of early starvation periods were investigated at 12 °C: Zoea larvae must feed right from the beginning of their stage (at high food concentration) and for more than one fifth, approximately, of that stage to have at least some chance of surviving to the next instar, independent of further prey availability. The minimum time in which enough reserves are accumulated for successfully completing the instar without food is called “point-of-reserve-saturation” (PRS). If only this minimum period of essential initial feeding precedes starvation, development in both zoeal stages is delayed and mortality is greater, when compared to the fed control. Starvation periods beginning right after hatching of the first zoea cause a prolongation of this instar and, surprisingly, a slight shortening of the second stage. The delay in the zoea-1 increases proportionally to the length of the initial fasting period. If more than approximately 70 % of the maximum possible survival time has elapsed without food supply, the larvae become unable to recover and to moult to the second stage even when re-fed (“point-of-no-return”, PNR). The conclusion, based on own observations and on literature data, is that initial feeding is of paramount importance in the early development of planktotrophic decapod larvae. Taking into account

  13. a Study of the Bioluminescence of Larger Zooplankton and the Effects of Low-Level Light Changes on Their Behavior.

    NASA Astrophysics Data System (ADS)

    van Keuren, Jeffrey Robert

    A bio-optical study was undertaken to quantify the relationships which exist between counter-illuminating organisms and the downwelling spectral light field in which they exist. The basic hypothesis behind counter-illumination is that the animal emits light using ventrally-oriented photophores to disrupt or eliminate the shadowed area on ventral surfaces. An organism lacking photophores sharply silhouettes against the highly directional downwelling irradiance, whereas by distributing photophores over the ventral surface of the body and closely matching the spectral and intensity characteristics of the downwelling light, this silhouette is obscured. Analysis carried out on changes in vertical distribution patterns in response to low-level intensity changes in ambient surface light suggested that diel migrating organisms begin to shift vertically in the water column when surface scalar irradiance decreased below or increased above 1.0 times10^{-2} muEin m^{-2} sec^ {-1}. Maximum aggregations of organisms, as defined by MOCNESS net sampling or single-frequency acoustic backscatter, appeared to remain within definable in situ blue-green isolume ranges varying less than a factor of ten throughout each night. Comparisons made between organism counter-illumination capacity and modeled in situ downwelling irradiance levels suggested that euphausiids, decapods and myctophids use between 1-10 percent of their maximum counter-illumination capacity to match the ambient downwelling light conditions. Modeling also suggested that up to 40 percent of the maximum measured bioluminescence output is required to match ambient irradiance in the shallower surface zones where aggregations of copepods, potential food sources, were commonly found at night. An optical study to quantify the radiative transfer of bioluminescence from a point source revealed that non -isotropic point sources produce radiance patterns that cannot be simply explained by inverse square losses. Therefore simple

  14. Global analysis of the ovarian microRNA transcriptome: implication for miR-2 and miR-133 regulation of oocyte meiosis in the Chinese mitten crab, Eriocheir sinensis (Crustacea:Decapoda).

    PubMed

    Song, Ya-Nan; Shi, Li-Li; Liu, Zhi-Qiang; Qiu, Gao-Feng

    2014-07-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that downregulate gene expression by base pairing to the 3'-untranslated region (UTR) of target messenger RNAs (mRNAs). Up to now, rare information for the miRNAs is available in decapod crustaceans. Our previous studies showed that many miRNA-binding sites are present in the 3'-UTR of the cyclin B in the Chinese mitten crab Eriocheir sinensis, suggesting that the translation or post-transcription of the crab cyclin B might be regulated by miRNAs during meiosis of oocyte. To identify ovarian miRNAs in the mitten crab, ovarian small RNAs were subjected to high-throughput sequencing using an Illumina Genome Analyzer. Of 14,631,328 reads, 55 known miRNAs representing 44 miRNA families were identified and 136 novel miRNA candidates were predicted. The 5' seed sequences of four miRNAs, miR-2, miR-7, miR-79 and miR-133, were revealed to complementary to miRNA binding sites in 3'-UTR of the cyclin B. Quantitative real time PCR analysis showed that miR-2 and miR-133 are much more abundant in the first metaphase (MI) of meiosis than in germinal vesicle (GV) stage. But their increasing expressions are independent of induction of gonadotropin-releasing hormone (GnRH). Further expression analysis using double-luciferase reporter genes assay showed that miR-2 and miR-133 can downregulate the 3'-UTRs of the crab cyclin B gene, indicating that they could inhibit the translation of the cyclin B. Western blot analysis confirmed that cyclin B protein is completely disappeared in fertilized egg at the metaphase-anaphase transition of meiosis I, suggesting that miR-2 and miR-133 could function in destruction of cyclin B near the end of MI. A high number of miRNAs have been identified from the crab ovarian small RNA transcriptom for the first time. miR-2 and miR-133 exhibit differential expression during the meiotic maturation of the oocytes and have activity in regulating the 3'-UTR of the crab cyclin B gene. This result is

  15. Elevated expression of neuropeptide signaling genes in the eyestalk ganglia and Y-organ of Gecarcinus lateralis individuals that are refractory to molt induction.

    PubMed

    Pitts, Natalie L; Schulz, Hanna M; Oatman, Stephanie R; Mykles, Donald L

    2017-12-01

    Molting is induced in decapod crustaceans via multiple leg autotomy (MLA) or eyestalk ablation (ESA). MLA removes five or more walking legs, which are regenerated and become functional appendages at ecdysis. ESA eliminates the primary source of molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH), which suppress the production of molting hormones (ecdysteroids) from the molting gland or Y-organ (YO). Both MLA and ESA are effective methods for molt induction in Gecarcinus lateralis. However, some G. lateralis individuals are refractory to MLA, as they fail to complete ecdysis by 12weeks post-MLA; these animals are in the "blocked" condition. Quantitative polymerase chain reaction was used to quantify mRNA levels of neuropeptide and mechanistic target of rapamycin (mTOR) signaling genes in YO, eyestalk ganglia (ESG), thoracic ganglion (TG), and brain of intact and blocked animals. Six of the seven neuropeptide signaling genes, three of four mTOR signaling genes, and Gl-elongation factor 2 (EF2) mRNA levels were significantly higher in the ESG of blocked animals. Gl-MIH and Gl-CHH mRNA levels were higher in the TG and brain of blocked animals and levels increased in both control and blocked animals in response to ESA. By contrast, mRNA levels of Gl-EF2 and five of the 10 MIH signaling pathway genes in the YO were two to four orders of magnitude higher in blocked animals compared to controls. These data suggest that increased MIH and CHH synthesis in the ESG contributes to the prevention of molt induction by MLA in blocked animals. The up-regulation of MIH signaling genes in the YO of blocked animals suggests that the YO is more sensitive to MIH produced in the ESG, as well as MIH produced in brain and TG of ESA animals. Both the up-regulation of MIH signaling genes in the YO and of Gl-MIH and Gl-CHH in the ESG, TG, and brain appear to contribute to some G. lateralis individuals being refractory to MLA and ESA. Copyright © 2017 Elsevier Inc. All

  16. Coherence of long-term variations of zooplankton in two sectors of the California Current System

    NASA Astrophysics Data System (ADS)

    Lavaniegos, Bertha E.; Ohman, Mark D.

    2007-10-01

    We analyzed long-term (56-year) variations in springtime biomass of the zooplankton of the California Current System from two primary regions sampled by CalCOFI: Southern California (SC) and Central California (CC) waters. All organisms were enumerated from the plankton samples and converted to organic carbon biomass using length-carbon relationships, then aggregated into 19 major taxa. Planktonic copepods dominate the carbon biomass in both SC (59%) and CC (46%), followed by euphausiids (18% and 25% of mean biomass in SC and CC, respectively). Pelagic tunicates, especially salps and doliolids, constituted a higher fraction of the biomass in CC (13%) than in SC (5%). There was no long-term trend detectable in total zooplankton carbon biomass, in marked contrast to a decline in zooplankton displacement volume in both regions. The difference between these biomass metrics is accounted for by a long-term decline in pelagic tunicates (particularly salps), which have a relatively high ratio of biovolume:carbon. The decline in pelagic tunicates was accompanied by a long-term increase in water column density stratification. No other taxa showed a decline over the duration of the study, apart from salps and pyrosomes in SC and doliolids in CC. Some zooplankton taxa showed compensatory increases over the same time period (ostracods, large decapods, and calycophoran siphonophores in both SC and CC; appendicularians and polychaetes in SC). Two tests for ecosystem shifts, a sequential algorithm and the cumulative sum of anomalies (CuSum) approach, failed to detect changes in 1976-1977 in total carbon biomass, displacement volume, or most individual major taxa, suggesting that aggregated biomass is an insensitive indicator of climate forcing. In contrast, both techniques revealed a cluster of step-like changes associated with the La Niña of 1999. The major El Niño’s in the past half century have consistently depressed total zooplankton biomass and biomass of many major taxa

  17. Ontogeny of osmoregulation in embryos of intertidal crabs (Hemigrapsus sexdentatus and H. crenulatus, Grapsidae, Brachyura): putative involvement of the embryonic dorsal organ.

    PubMed

    Seneviratna, Deepani; Taylor, H H

    2006-04-01

    This study examined whether the existence of hyperosmotic internal fluids in embryos of euryhaline crabs (Hemigrapsus sexdentatus and H. crenulatus) in dilute seawater reflects osmotic isolation due to impermeability of the egg envelope, as proposed for other decapods, or active osmoregulation. When ovigerous crabs with eggs at gastrula stage were transferred from 100% seawater (osmolality 1000 mmol kg(-1)) to 50% seawater, embryogenesis and hatching of zoea were completed normally, but were delayed. Hatching failed if the transfer to 50% seawater occurred before gastrulation, and embryogenesis was abnormal in 25% seawater. In 100% seawater, embryos at all stages were internally hyperosmotic by 150-250 mmol kg(-1). On transfer to 50% seawater, osmolality initially decreased but remained 200-350 mmol kg(-1) hyperosmotic to the medium for several weeks until hatching. High efflux rates of tritium-labelled water (t((1/2)) 16-75 min) and (22)Na (t(1/2) 109-374 min) from H. crenulatus embryos were inconsistent with the osmotic isolation hypothesis. It is concluded that post-gastrula embryos were actively hyper-osmoregulating. The diffusional water permeability of the embryos decreased during development while the sodium efflux rate increased 10-fold. Very rapidly exchanging pools of water and sodium (t(1/2) a few seconds to minutes) probably corresponded to peri-embryonic fluid and implied that the egg envelope was a negligible barrier to diffusion of water and salts. Higher Na(+)/K(+)-ATPase activities in late embryos of H. crenulatus incubated in 50% seawater than in embryos incubated in full strength seawater were consistent with an acclimation response. An area of the embryonic surface located over the yolk in the region of the embryonic dorsal organ stained with AgNO(3). Staining appeared at gastrulation, persisted throughout development and was lost at hatching. Deposits of AgCl between the outer and inner membranes, identified by X-ray microanalysis, suggest that

  18. Suprabenthic assemblages from the Capbreton area (SE Bay of Biscay). Faunal recovery after a canyon turbidity disturbance

    NASA Astrophysics Data System (ADS)

    Frutos, Inmaculada; Sorbe, Jean Claude

    2017-12-01

    In the Capbreton area, suprabenthic assemblages were sampled with a sledge towed over the bottom, at different sites located within the upper part of a 'gouf-type' canyon (8 hauls between 642 m and 797 m, on the axis of the thalweg or on flat perched flank terraces such as site K), on the northern adjacent open slope (2 hauls between 500 and 567 m) and on the northern adjacent shelf margin (2 hauls between 151 m and 158 m). A multivariate analysis carried on the faunal data discriminated different assemblages in this area: a near-canyon shelf assemblage (55 species, mainly amphipods and decapods; 3496 ind./100 m2, 40% mysids; dominant species: Nyctiphanes couchii, Leptomysis gracilis, Weswoodilla rectirostris, Anchialina agilis, Scopelocheirus hopei and Philocheras bispinosus); an open slope assemblage (111 species, mainly amphipods and isopods; 249 ind./100 m2, 36% amphipods; dominant species: Disconectes phalangium, Munnopsurus atlanticus and Boreomysis arctica); a canyon E assemblage (129 species, mainly amphipods, mysids and cumaceans; 1172 ind./100 m2, 58% amphipods; dominant species: Melphidippa sp. B, Chelator insignis); a canyon E' assemblage (107 species, mainly amphipods and mysids; 507 ind./100 m2, 73% amphipods; dominant species: Cleonardopsis carinata, Bonnierella abyssorum, Rhachotropis caeca and Arcturopsis giardi); and a temporary canyon assemblage at site K (34 species, mainly amphipods and mysids; 899 ind./100 m2, 85% amphipods; dominant species: Tmetomyx similis, Caeconyx caeculus, Nebalia sp. A and Cleonardopsis carinata). Site K was sampled only four months after a turbidity event, detected on sediment cores (18 cm thick Bouma sequence) taken during the same cruise and triggered by the violent storm ('ouragan Martin', wind up to 200 km/h) which affected the French Atlantic coast on 27 December 1999. The corresponding suprabenthic assemblage showed evidence of deep structural changes after this catastrophic event, characterized by relative low

  19. Two fast-type fibers in claw closer and abdominal deep muscles of the Australian freshwater crustacean, Cherax destructor, differ in Ca2+ sensitivity and troponin-I isoforms.

    PubMed

    Koenders, Annette; Lamey, Tina M; Medler, Scott; West, Jan M; Mykles, Donald L

    2004-07-01

    One type of fast fiber and two types of slow (slow-twitch, S1 and slow-tonic, S2) fibers are found in decapod crustacean skeletal muscles that differ in contractile properties and myofibrillar protein isoform compositions. In this study the structural characteristics, protein isoform compositions, and Ca2+-activation properties of fast fibers in the claw closer (F1) and abdominal deep flexor (F2) muscles of Cherax destructor were analyzed. For comparison, myofibrillar protein isoform compositions of slow (long-sarcomere) fibers from claw and abdomen were also determined; our results indicate that the slow fibers in the claw closer were the slow-twitch (S1) type and those in the abdominal superficial flexor were primarily slow-tonic (S2) type. F1 fibers had shorter resting sarcomere lengths (2.93 microm in unstretched fibers and 3.06 microm in stretched fibers) and smaller fiber diameter (256 microm) than F2 fibers (sarcomere lengths 3.48 microm in unstretched and 3.46 microm in stretched; 747 microm diameter). Moreover, F1 fibers showed a narrower range in sarcomere lengths than F2 fibers (2.81 to 3.28 microm vs. 2.47 to 4.05 micro m in unstretched fibers). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting showed that the fast fibers from claw and abdomen differed in troponin-I composition; F1 fibers expressed two isoforms of troponin-I (TnI1 and TnI2) in approximately equal amounts, whereas F2 fibers expressed primarily TnI3 and lower levels of TnI1. F1 fibers were more sensitive to Ca2+, as shown by higher pCa values at threshold activation (pCa(10)=6.50+/-0.07) and at 50% maximum force (pCa(50)=6.43+/-0.07) than F2 fibers (pCa(10)=6.12+/-0.04 and pCa(50)=5.88+/-0.03, respectively). F1 fibers also had a greater degree of co-operativity in Ca2+ activation, as shown by a higher maximum slope of the force-pCa curve (n(Ca)=12.98+/-2.27 vs. 4.34+/-0.64). These data indicate that there is a greater fast fiber-type diversity in crustacean

  20. Isotopic composition of carbon and nitrogen of suprabenthic fauna in the NW Balearic Islands (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Madurell, T.; Fanelli, E.; Cartes, J. E.

    Stable isotope (δ 13C and δ 15N) analyses were performed on suprabenthic fauna collected in the western Mediterranean (NW Balearic Islands), at depths ranging between 350 and 780 m. Samples were collected seasonally at bi-monthly intervals during six cruises performed between August 2003 and June 2004, using a Macer-GIROQ suprabenthic sledge (0.5 mm mesh size). Twenty-four separate species (5 mysids, 12 amphipods, 2 cumaceans, 2 isopods, 1 euphausiid, 1 decapod and 1 fish) and bulk copepods were analyzed on a seasonal basis for stable carbon and nitrogen isotopes. Stable nitrogen isotope ratios (δ 15N) ranged from 2.3‰ (the amphipod Lepechinella manco in September 2003) to 13.0‰ (the amphipod Rhachotropis caeca in August 2003). δ 13C values ranged from - 24.2 (the cumacean Campylaspis sulcata in June 2004) to - 16.1 (the amphipod Bruzelia typica in November 2006). Both δ 13C and δ 15N values suggest that there are three trophic levels within the suprabenthic community. However, considering the bathymetric range of the species, the results suggest that the deepest assemblage supported only two trophic levels. The stable isotope ratios of suprabenthic fauna displayed a continuum of values and confirmed a wide spectrum of feeding types (from filter-feeders to predators). In general, and in spite of the poor knowledge about diets available for most suprabenthic species, higher δ 15N were found for carnivorous amphipods (e.g. Rhachotropis spp., Nicippe tumida) consuming copepods. Low overlap for δ 13C and δ 15N values was observed, though δ 15N values where less variable than δ 13C, which suggests high resource partitioning in this assemblage. Seasonal variations in isotopic composition for both δ 13C and δ 15N were low (less than 1‰ and 3‰, respectively) and variable depending on species. Low correlations between δ 13C and δ 15N of suprabenthic fauna were found for all periods studied, though increasing from February 2004 to June 2004 (after the

  1. Uptake and loss of dissolved 109Cd and 75Se in estuarine macroinvertebrates.

    PubMed

    Alquezar, Ralph; Markich, Scott J; Twining, John R

    2007-04-01

    Semaphore crabs (Heloecius cordiformis), soldier crabs (Mictyris platycheles), ghost shrimps (Trypaea australiensis), pygmy mussels (Xenostrobus securis), and polychaetes (Eunice sp.), key benthic prey items of predatory fish commonly found in estuaries throughout southeastern Australia, were exposed to dissolved (109)Cd and (75)Se for 385 h at 30 k Bq/l (uptake phase), followed by exposure to radionuclide-free water for 189 h (loss phase). The whole body uptake rates of (75)Se by pygmy mussels, semaphore crabs and soldier crabs were 1.9, 2.4 and 4.1 times higher than (109)Cd, respectively. There were no significant (P>0.05) differences between the uptake rates of (75)Se and (109)Cd for ghost shrimps and polychaetes. The uptake rates of (109)Cd and (75)Se were highest in pygmy mussels; about six times higher than in soldier crabs for (109)Cd and in polychaetes for (75)Se - the organisms with the lowest uptake rates. The loss rates of (109)Cd and (75)Se were highest in semaphore crabs; about four times higher than in polychaetes for (109)Cd and nine times higher than in ghost shrimps for (75)Se - the organisms with the lowest loss rates. The loss of (109)Cd and (75)Se in all organisms was best described by a two (i.e. short and a longer-lived) compartment model. In the short-lived, or rapidly exchanging, compartment, the biological half-lives of (75)Se (16-39 h) were about three times greater than those of (109)Cd (5-12h). In contrast, the biological half-lives of (109)Cd in the longer-lived, or slowly exchanging compartment(s), were typically greater (1370-5950 h) than those of (75)Se (161-1500 h). Semaphore crabs had the shortest biological half-lives of both radionuclides in the long-lived compartment, whereas polychaetes had the greatest biological half-life for (109)Cd (5950 h), and ghost shrimps had the greatest biological half-life for (75)Se (1500 h). This study provides the first reported data for the biological half-lives of Se in estuarine decapod

  2. Effect of hypoxia and anoxia on invertebrate behaviour: ecological perspectives from species to community level

    NASA Astrophysics Data System (ADS)

    Riedel, B.; Pados, T.; Pretterebner, K.; Schiemer, L.; Steckbauer, A.; Haselmair, A.; Zuschin, M.; Stachowitsch, M.

    2013-08-01

    interspecific reactions were weakened or changed: decapods ceased defensive and territorial behaviour, and predator-prey interactions and relationships shifted. This nuanced scale of resolution is a useful tool to interpret present benthic community status (behaviour) and past mortalities (community composition, e.g. survival of tolerant species). This information on the sensitivity (onset of stress response), tolerance (mortality, survival), and characteristics (i.e. life habit, functional role) of key species also helps predict potential future changes in benthic structure and ecosystem functioning. This integrated approach can transport complex ecological processes to the public and decision-makers and help define specific monitoring, assessment and conservation plans.

  3. Comparative feeding ecology of abyssal and hadal fishes through stomach content and amino acid isotope analysis

    NASA Astrophysics Data System (ADS)

    Gerringer, M. E.; Popp, B. N.; Linley, T. D.; Jamieson, A. J.; Drazen, J. C.

    2017-03-01

    The snailfishes, family Liparidae (Scorpaeniformes), have found notable success in the hadal zone from 6000-8200 m, comprising the dominant ichthyofauna in at least five trenches worldwide. Little is known about the biology of these deepest-living fishes, nor the factors that drive their success at hadal depths. Using recent collections from the Mariana Trench, Kermadec Trench, and neighboring abyssal plains, this study investigates the potential role of trophic ecology in structuring fish communities at the abyssal-hadal boundary. Stomach contents were analyzed from two species of hadal snailfishes, Notoliparis kermadecensis and a newly-discovered species from the Mariana Trench. Amphipods comprised the majority (Kermadec: 95.2%, Mariana: 97.4% index of relative importance) of stomach contents in both species. Decapod crustaceans, polychaetes (N. kermadecensis only), and remains of carrion (squid and fish) were minor dietary components. Diet analyses of abyssal species (families Macrouridae, Ophidiidae, Zoarcidae) collected from near the trenches and the literature are compared to those of the hadal liparids. Stomachs from abyssal fishes also contained amphipods, however macrourids had a higher trophic plasticity with a greater diversity of prey items, including larger proportions of carrion and fish remains; supporting previous findings. Suction-feeding predatory fishes like hadal liparids may find an advantage to descending into the trench - where amphipods are abundant. More generalist feeders and scavengers relying on carrion, such as macrourids, might not benefit from this nutritional advantage at hadal depths. Compound specific isotope analysis of amino acids was used to estimate trophic level of these species (5.3±0.2 Coryphaenoides armatus, 5.2±0.2 C. yaquinae, 4.6±0.2 Spectrunculus grandis, 4.2±0.2 N. kermadecensis, 4.4±0.2 Mariana snailfish). Source amino acid δ15N values were especially high in hadal liparids (8.0±0.3‰ Kermadec, 6.7±0.2

  4. Diet analysis of Alaska Arctic snow crabs (Chionoecetes opilio) using stomach contents and δ13C and δ15N stable isotopes

    NASA Astrophysics Data System (ADS)

    Divine, Lauren M.; Bluhm, Bodil A.; Mueter, Franz J.; Iken, Katrin

    2017-01-01

    We used stomach content and stable δ13C and δ15N isotope analyses to investigate male and female snow crab diets over a range of body sizes (30-130 mm carapace width) in five regions of the Pacific Arctic (southern and northern Chukchi Sea, western, central, and Canadian Beaufort Sea). Snow crab stomach contents from the southern Chukchi Sea were also compared to available prey biomass and abundance. Snow crabs consumed four main prey taxa: polychaetes, decapod crustaceans (crabs, amphipods), echinoderms (mainly ophiuroids), and mollusks (bivalves, gastropods). Both approaches revealed regional differences. Crab diets in the two Chukchi regions were similar to those in the western Beaufort (highest bivalve, amphipod, and crustacean consumption). The Canadian Beaufort region was most unique in prey composition and in stable isotope values. We also observed a trend of decreasing carbon stable isotopes in crabs from the Chukchi to those in the Canadian Beaufort, likely reflecting the increasing use of terrestrial carbon sources towards the eastern regions of the Beaufort Sea from Mackenzie River influx. Cannibalism on snow crabs was higher in the Chukchi regions relative to the Beaufort regions. We suggest that cannibalism may have an impact on recruitment in the Chukchi Sea via reduction of cohort strength after settlement to the benthos, as known from the Canadian Atlantic. Prey composition varied with crab size only in some size classes in the southern Chukchi and central Beaufort, while stable isotope results showed no size-dependent differences. Slightly although significantly higher mean carbon isotope values for males in the southern Chukchi may not be reflective of a gender-specific pattern but rather be driven by low sample size. Finally, the lack of prey selection relative to availability in crabs in the southern Chukchi suggests that crabs consume individual prey taxa in relative proportions to prey field abundances. The present study is the first to

  5. Toxicity of organic compounds to marine invertebrate embryos and larvae: a comparison between the sea urchin embryogenesis bioassay and alternative test species.

    PubMed

    Bellas, Juan; Beiras, Ricardo; Mariño-Balsa, José Carlos; Fernández, Nuria

    2005-04-01

    This study investigated the toxic effects of the insecticides lindane and chlorpyrifos, the herbicide diuron, the organometallic antifoulant tributyltin (TBT), and the surfactant sodium dodecyl sulfate (SDS) on the early life stages of Paracentrotus lividus (Echinodermata, Euechinoidea), Ciona intestinalis (Chordata, Ascidiacea), Maja squinado and Palaemon serratus (Arthropoda, Crustacea) in laboratory acute toxicity tests. The assays studied embryogenesis success from fertilized egg to normal larvae in P. lividus (48 h incubation at 20 degrees C) and C. intestinalis (24 h incubation at 20 degrees C), and larval mortality at 24 and 48 h in M. squinado and P. serratus. For P. lividus, the median effective concentrations (EC50) reducing percentages of normal larvae by 50% were: 350 microg l(-1) for chlorpyrifos, 5500 microg l(-1) for diuron, 4277 microg l(-1) for SDS, and 0.309 microg l(-1) for TBT. For C. intestinalis, the EC50 values affecting embryogenesis success were 5666 microg l(-1) for chlorpyrifos, 24,397 microg (l-1) for diuron, 4412 microg l(-1) for lindane, 5145 microg I(-1) for SDS, and 7.1 microg l(-1) for TBT. The median lethal concentrations (LC50) for M. squinado larval survival were 0.84 microg l(-1) (24 h) and 0.79 microg l(-1) (48 h) for chlorpyrifos, 2.23 microg(l(-1) (24 h) and 2.18 microg l(-1) (48 h) for lindane, and 687 microg l(-1) (48 h) for SDS. For P. serratus the LC50 values obtained were 0.35 microg l(-1) (24 h) and 0.22 microg l(-1) (48 h) for chlorpyrifos, 3011 microg l(-1) (24 h) and 3044 microg l(-1) (48 h) for diuron, 5.20 microg l(-1) (24 h) and 5.59 microg l(-1) (48 h) for lindane, and 22.30 microg l(-1) (24 h) and 17.52 microg l(-1) (48 h) for TBT. Decapod larvae, as expected, were markedly more sensitive to the insecticides than sea urchins and ascidians, and SDS was the least toxic compound tested for these organisms. Lowest observed effect concentrations (LOEC) of TBT for sea urchin and ascidian embryos, chlorpyrifos and

  6. Effects of Mg2+ on Ca2+ release from sarcoplasmic reticulum of skeletal muscle fibres from yabby (crustacean) and rat.

    PubMed

    Launikonis, B S; Stephenson, D G

    2000-07-15

    1. The role of myoplasmic [Mg2+] on Ca2+ release from the sarcoplasmic reticulum (SR) was examined in the two major types of crustacean muscle fibres, the tonic, long sarcomere fibres and the phasic, short sarcomere fibres of the fresh water decapod crustacean Cherax destructor (yabby) and in the fast-twitch rat muscle fibres using the mechanically skinned muscle fibre preparation. 2. A robust Ca2+-induced Ca2+-release (CICR) mechanism was present in both long and short sarcomere fibres and 1 mM Mg2+ exerted a strong inhibitory action on the SR Ca2+ release in both fibre types. 3. The SR displayed different properties with respect to Ca2+ loading in the long and the short sarcomere fibres and marked functional differences were identified with respect to Mg2+ inhibition between the two crustacean fibre types. Thus, in long sarcomere fibres, the submaximally loaded SR was able to release Ca2+ when [Mg2+] was lowered from 1 to 0.01 mM in the presence of 8 mM ATPtotal and in the virtual absence of Ca2+ (< 5 nM) even when the CICR was suppressed. In contrast, negligible Ca2+ was released from the submaximally loaded SR of short sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0.01 mM under the same conditions as for the long sarcomere fibres. Nevertheless, the rate of SR Ca2+ release in short sarcomere fibres increased markedly when [Mg2+] was lowered in the presence of [Ca2+] approaching the normal resting levels (50-100 nM). 4. Rat fibres were able to release SR Ca2+ at a faster rate than the long sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0. 01 mM in the virtual absence of Ca2+ but, unlike with yabby fibres, the net rate of Ca2+ release was actually increased for conditions that were considerably less favourable to CICR. 5. In summary, it is concluded that crustacean skeletal muscles have more that one functional type of Ca2+-release channels, that these channels display properties that are intermediate between those of mammalian skeletal and

  7. Deep-sea suprabenthos assemblages (Crustacea) off the Balearic Islands (western Mediterranean): Mesoscale variability in diversity and production

    NASA Astrophysics Data System (ADS)

    Cartes, J. E.; Mamouridis, V.; Fanelli, E.

    2011-04-01

    The composition of suprabenthic crustacean assemblages, their diversity, production (P) and production/biomass (P/B) ratios, were analyzed at species level along two transects situated to the north (N) and south (S) of Mallorca (Balearic Islands, western Mediterranean) at depths between 134 m and 760 m, based on a ca. bi-monthly sampling performed between August 2003 and June 2004. Differences with depth and season in assemblage composition and diversity were analyzed as a function of the contrasting environmental features (e.g. water mass dynamics) of the two areas. We identified 187 species (18 decapods, 5 euphausiids, 16 mysids, 76 gammaridean amphipods, 13 hyperiids, 1 caprellid, 21 isopods and 37 cumaceans). Substantial mesoscale variability in the deep-sea suprabenthic assemblages coupled with diversity trends between the N and S transects were found. Seasonality was the most important gradient influencing the dynamics of suprabenthos over the upper (350 m) and middle (650-750 m) slope in the N area. Conversely, the S area appeared to be more stable temporally with depth as the main gradient inducing assemblage differences. Different depth-related patterns were observed both for diversity and P/B. To the north diversity was very low at the shelf-break, increasing on the upper-slope ( H' > 3.00) and then decreasing again on the middle-slope. To the south diversity increased smoothly downward, reaching the highest values on the middle-slope. Regarding productivity, P/B was highest at intermediate depths to the north (over ca. 450-500 m), while to the south highest P/Bs were found deeper (over ca. 600-650 m). The higher P/B at intermediate depths found along N are likely due to higher % of organic matter (OM) in sediments, a product of oceanographic frontal systems. In particular, P/B was higher along N among omnivores and detritus feeders (e.g. Andaniexis mimonectes, Lepechinella manco and combined cumaceans), coupled to enriched OM in sediments, while along S

  8. Respiratory and Metabolic Impacts of Crustacean Immunity: Are there Implications for the Insects?

    PubMed

    Burnett, Karen G; Burnett, Louis E

    2015-11-01

    Extensive similarities in the molecular architecture of the crustacean immune system to that of insects give credence to the current view that the Hexapoda, including Insecta, arose within the clade Pancrustacea. The crustacean immune system is mediated largely by hemocytes, relying on suites of pattern recognition receptors, effector functions, and signaling pathways that parallel those of insects. In crustaceans, as in insects, the cardiovascular system facilitates movement of hemocytes and delivery of soluble immune factors, thereby supporting immune surveillance and defense along with other physiological functions such as transport of nutrients, wastes, and hormones. Crustaceans also rely heavily on their cardiovascular systems to mediate gas exchange; insects are less reliant on internal circulation for this function. Among the largest crustaceans, the decapods have developed a condensed heart and a highly arteriolized cardiovascular system that supports the metabolic demands of their often large body size. However, recent studies indicate that mounting an immune response can impair gas exchange and metabolism in their highly developed vascular system. When circulating hemocytes detect the presence of potential pathogens, they aggregate rapidly with each other and with the pathogen. These growing aggregates can become trapped in the microvasculature of the gill where they are melanized and may be eliminated at the next molt. Prior to molting, trapped aggregates of hemocytes also can impair hemolymph flow and oxygenation at the gill. Small shifts to anaerobic metabolism only partially compensate for this decrease in oxygen uptake. The resulting metabolic depression is likely to impact other energy-expensive cellular processes and whole-animal performance. For crustaceans that often live in microbially-rich, but oxygen-poor aquatic environments, there appear to be distinct tradeoffs, based on the gill's multiple roles in respiration and immunity. Insects have

  9. Effect of hypoxia and anoxia on invertebrate behaviour: ecological perspectives from species to community level

    NASA Astrophysics Data System (ADS)

    Riedel, B.; Pados, T.; Pretterebner, K.; Schiemer, L.; Steckbauer, A.; Haselmair, A.; Zuschin, M.; Stachowitsch, M.

    2014-03-01

    longimana. Intra- and interspecific reactions were weakened or changed: decapods ceased defensive and territorial behaviour, and predator-prey interactions and relationships shifted. This nuanced scale of resolution is a useful tool to interpret present benthic community status (behaviour) and past mortalities (community composition, e.g. survival of tolerant species). This information on the sensitivity (onset of stress response), tolerance (mortality, survival), and characteristics (i.e. life habit, functional role) of key species also helps predict potential future changes in benthic structure and ecosystem functioning. This integrated approach can transport complex ecological processes to the public and decision-makers and help define specific monitoring, assessment and conservation plans.

  10. δ 13C values of lipids from phototrophic zone microplankton and bathypelagic shrimps at the Azores sector of the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Pond, D. W.; Sargent, J. R.; Fallick, A. E.; Allen, C.; Bell, M. V.; Dixon, D. R.

    2000-01-01

    The lipid composition and δ 13C values of phototrophic zone microplankton, and species of bathypelagic shrimp that are not associated with hydrothermal vents, were determined for samples collected from the water column above the Mid-Atlantic Ridge. These analyses were compared with similar previously published data for vent bresiliid shrimp to address the hypothesis that deep-sea hydrothermal vent ecosystems are reliant on specific dietary nutrients produced by photosynthetic organisms. Microplankton (<200 μm) sampled from the surface layer (˜4 m deep) and from the region of maximum light scattering (LSM, 48-75 m deep) were analysed to determine δ 13C values of individual fatty acids in particulate matter. The distributions of fatty acids in total lipid from the surface layer and from the LSM were very similar, with high levels (˜45% of the total) of saturated fatty acids, particularly 14 : 0, 16 : 0 and 18 : 0, and moderate amounts (˜31% of the total) of polyunsaturated fatty acids (PUFA), dominated by 22 : 6(n-3). δ 13C values of fatty acids from the surface layer and LSM were also very similar (mean values of -27.6 and -28.8‰, respectively), with a range of values from -25.0 to -32.2‰ and PUFA being somewhat depleted in 13C relative to saturated and monounsaturated fatty acids. Total lipid of abdominal muscle from three species of bathypelagic decapod shrimp, Ephyrina bidentata, Parapasiphaea sulcatifrons and Sergia japonicus collected from 2000 m contained 18 : 1(n-9), 16 : 0, 22 : 6(n-3) and 20 : 5(n-3) as major fatty acids in all cases. The fatty acids in total lipid from the wax ester-rich hepatopancreas of all three shrimps were dominated (˜50% of the total) by 18 : 1(n-9) and contained substantially lower levels of PUFA than muscle lipid. Total lipids from the hepatopancreas of E. bidentata and S. japonicus contained high levels of 22 : 1 alcohols and 16 : 0 alcohol, respectively, whereas total hepatopancreatic lipid from P. sulcatifrons

  11. Automated Image Analysis for the Detection of Benthic Crustaceans and Bacterial Mat Coverage Using the VENUS Undersea Cabled Network

    PubMed Central

    Aguzzi, Jacopo; Costa, Corrado; Robert, Katleen; Matabos, Marjolaine; Antonucci, Francesca; Juniper, S. Kim; Menesatti, Paolo

    2011-01-01

    The development and deployment of sensors for undersea cabled observatories is presently biased toward the measurement of habitat variables, while sensor technologies for biological community characterization through species identification and individual counting are less common. The VENUS cabled multisensory network (Vancouver Island, Canada) deploys seafloor camera systems at several sites. Our objective in this study was to implement new automated image analysis protocols for the recognition and counting of benthic decapods (i.e., the galatheid squat lobster, Munida quadrispina), as well as for the evaluation of changes in bacterial mat coverage (i.e., Beggiatoa spp.), using a camera deployed in Saanich Inlet (103 m depth). For the counting of Munida we remotely acquired 100 digital photos at hourly intervals from 2 to 6 December 2009. In the case of bacterial mat coverage estimation, images were taken from 2 to 8 December 2009 at the same time frequency. The automated image analysis protocols for both study cases were created in MatLab 7.1. Automation for Munida counting incorporated the combination of both filtering and background correction (Median- and Top-Hat Filters) with Euclidean Distances (ED) on Red-Green-Blue (RGB) channels. The Scale-Invariant Feature Transform (SIFT) features and Fourier Descriptors (FD) of tracked objects were then extracted. Animal classifications were carried out with the tools of morphometric multivariate statistic (i.e., Partial Least Square Discriminant Analysis; PLSDA) on Mean RGB (RGBv) value for each object and Fourier Descriptors (RGBv+FD) matrices plus SIFT and ED. The SIFT approach returned the better results. Higher percentages of images were correctly classified and lower misclassification errors (an animal is present but not detected) occurred. In contrast, RGBv+FD and ED resulted in a high incidence of records being generated for non-present animals. Bacterial mat coverage was estimated in terms of Percent Coverage

  12. ORDER within the chaos: Insights into phylogenetic relationships within the Anomura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements.

    PubMed

    Hua Tan, Mun; Ming Gan, Han; Peng Lee, Yin; Linton, Stuart; Grandjean, Frederic; Ladvocat Bartholomei-Santos, Marlise; Miller, Adam D; Austin, Christopher M

    2018-05-22

    The infraorder Anomura consists of a morphologically and ecologically heterogeneous group of decapod crustaceans, and has attracted interest from taxonomists for decades attempting to find some order out of the seemingly chaotic diversity within the group. Species-level diversity within the Anomura runs the gamut from the "hairy" spindly-legged yeti crab found in deep-sea hydrothermal vent environments to the largest known terrestrial invertebrate, the robust coconut or robber crab. Owing to a well-developed capacity for parallel evolution, as evidenced by the occurrence of multiple independent carcinization events, Anomura has long tested the patience and skill of both taxonomists attempting to find order, and phylogeneticists trying to establish stable hypotheses of evolutionary inter-relationships. In this study, we performed genome skimming to recover the mitogenome sequences of 12 anomuran species including the world's largest extant invertebrate, the robber crab (Birgus latro), thereby over doubling these resources for this group, together with 8 new brachyuran mitogenomes. Maximum-likelihood (ML) and Bayesian-inferred (BI) phylogenetic reconstructions based on amino acid sequences from mitogenome protein-coding genes provided strong support for the monophyly of the Anomura and Brachyura and their sister relationship, consistent with previous studies. The majority of relationships within families were supported and were largely consistent with current taxonomic classifications, whereas many relationships at higher taxonomic levels were unresolved. Nevertheless, we have strong support for a polyphyletic Paguroidea and recovered a well-supported clade of a subset of paguroids (Diogenidae + Coenobitidae) basal to all other anomurans, though this requires further testing with greater taxonomic sampling. We also introduce a new feature to the MitoPhAST bioinformatics pipeline (https://github.com/mht85/MitoPhAST) that enables the extraction of mitochondrial gene

  13. Food web structure of the epibenthic and infaunal invertebrates on the Catalan slope (NW Mediterranean): Evidence from δ 13C and δ 15N analysis

    NASA Astrophysics Data System (ADS)

    Fanelli, E.; Papiol, V.; Cartes, J. E.; Rumolo, P.; Brunet, C.; Sprovieri, M.

    2011-01-01

    The food-web structure of the epibenthic and infaunal invertebrates on the continental slope of the Catalan Sea (Balearic basin, NW Mediterranean) was investigated using carbon and nitrogen stable isotopes on a total of 34 species, and HPLC pigment analyses for three key species. Samples were collected close to Barcelona (NE Iberian Peninsula), between 650 and 800 m depth and between February 2007 and February 2008. Mean δ 13C values ranged from -21.0‰ (small Calocaris macandreae and Amphipholis squamata) to -14.5‰ ( Sipunculus norvegicus). Values of δ 15N ranged from 4.0‰ ( A. squamata) to 12.1‰ ( Molpadia musculus). The stable isotope ratios of benthic fauna displayed a continuum of values (e.g. δ 15N range of 8‰), confirming a wide spectrum of feeding strategies (from active suspension feeders to predators) and complex food webs. According to the available information on diets of benthic fauna, the lowest values were found for surface deposit feeders (small C. macandrae and the two ophiuroids A. squamata and Amphiura chiajei) and active suspension feeders ( Abra longicallus and Scalpellum scalpellum) feeding on different sizes of particulate organic matter (POM), among which small particles may exhibit lower δ 15N. High annual mean δ 15N values were found among sub-surface deposit feeders, exploiting refractory or frequently recycled organic matter that is enriched in δ 15N. Carnivorous polychaetes ( Nephtys spp., Oenonidae and Polynoidae) and large decapods ( Geryon longipes and Paromola cuvieri) also displayed high δ 15N values. δ 13C ranges were particularly wide among surface deposit feeders (ranging from -21.0‰ to -16.4‰), suggesting exploitation of POM of both terrigenous and oceanic origins. Correlation between δ 13C and δ 15N was generally weak, indicating multiple carbon sources, likely due to the consumption of different kinds of sinking particles (e.g. marine snow, phytodetritus, etc.), sedimented and frequently recycled POM

  14. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway?

    PubMed Central

    2010-01-01

    Background Several lineages within the Crustacea conquered land independently during evolution, thereby requiring physiological adaptations for a semi-terrestrial or even a fully terrestrial lifestyle. Birgus latro Linnaeus, 1767, the giant robber crab or coconut crab (Anomura, Coenobitidae), is the largest land-living arthropod and inhabits Indo-Pacific islands such as Christmas Island. B. latro has served as a model in numerous studies of physiological aspects related to the conquest of land by crustaceans. From an olfactory point of view, a transition from sea to land means that molecules need to be detected in gas phase instead of in water solution. Previous studies have provided physiological evidence that terrestrial hermit crabs (Coenobitidae) such as B. latro have a sensitive and well differentiated sense of smell. Here we analyze the brain, in particular the olfactory processing areas of B. latro, by morphological analysis followed by 3 D reconstruction and immunocytochemical studies of synaptic proteins and a neuropeptide. Results The primary and secondary olfactory centers dominate the brain of B. latro and together account for ca. 40% of the neuropil volume in its brain. The paired olfactory neuropils are tripartite and composed of more than 1,000 columnar olfactory glomeruli, which are radially arranged around the periphery of the olfactory neuropils. The glomeruli are innervated ca. 90,000 local interneurons and ca. 160,000 projection neurons per side. The secondary olfactory centers, the paired hemiellipsoid neuropils, are targeted by the axons of these olfactory projection neurons. The projection neuron axonal branches make contact to ca. 250.000 interneurons (per side) associated with the hemiellipsoid neuropils. The hemiellipsoid body neuropil is organized into parallel neuropil lamellae, a design that is quite unusual for decapod crustaceans. The architecture of the optic neuropils and areas associated with antenna two suggest that B. latro has

  15. Localization and expression of molt-inhibiting hormone and nitric oxide synthase in the central nervous system of the green shore crab, Carcinus maenas, and the blackback land crab, Gecarcinus lateralis.

    PubMed

    Pitts, Natalie L; Mykles, Donald L

    2017-01-01

    In decapod crustaceans, molting is controlled by the pulsatile release of molt-inhibiting hormone (MIH) from neurosecretory cells in the X-organ/sinus gland (XO/SG) complex in the eyestalk ganglia (ESG). A drop in MIH release triggers molting by activating the molting gland or Y-organ (YO). Post-transcriptional mechanisms ultimately control MIH levels in the hemolymph. Neurotransmitter-mediated electrical activity controls Ca 2+ -dependent vesicular release of MIH from the SG axon terminals, which may be modulated by nitric oxide (NO). In green shore crab, Carcinus maenas, nitric oxide synthase (NOS) protein and NO are present in the SG. Moreover, C. maenas are refractory to eyestalk ablation (ESA), suggesting other regions of the nervous system secrete sufficient amounts of MIH to prevent molting. By contrast, ESA induces molting in the blackback land crab, Gecarcinus lateralis. Double-label immunofluorescence microscopy and quantitative polymerase chain reaction were used to localize and quantify MIH and NOS proteins and transcripts, respectively, in the ESG, brain, and thoracic ganglion (TG) of C. maenas and G. lateralis. In ESG, MIH- and NOS-immunopositive cells were closely associated in the SG of both species; confocal microscopy showed that NOS was localized in cells adjacent to MIH-positive axon terminals. In brain, MIH-positive cells were located in a small number of cells in the olfactory lobe; no NOS immunofluorescence was detected. In TG, MIH and NOS were localized in cell clusters between the segmental nerves. In G. lateralis, Gl-MIH and Gl-crustacean hyperglycemic hormone (CHH) mRNA levels were ~10 5 -fold higher in ESG than in brain or TG of intermolt animals, indicating that the ESG is the primary source of these neuropeptides. Gl-NOS and Gl-elongation factor (EF2) mRNA levels were also higher in the ESG. Molt stage had little or no effect on CHH, NOS, NOS-interacting protein (NOS-IP), membrane Guanylyl Cyclase-II (GC-II), and NO-independent GC

  16. Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna

    NASA Astrophysics Data System (ADS)

    Gooday, A. J.; Levin, L. A.; Aranda da Silva, A.; Bett, B. J.; Cowie, G. L.; Dissard, D.; Gage, J. D.; Hughes, D. J.; Jeffreys, R.; Lamont, P. A.; Larkin, K. E.; Murty, S. J.; Schumacher, S.; Whitcraft, C.; Woulds, C.

    2009-03-01

    The Pakistan Margin is characterised by a strong mid-water oxygen minimum zone (OMZ) that intercepts the seabed at bathyal depths (150-1300 m). We investigated whether faunal abundance and diversity trends were similar among protists (foraminiferans and gromiids), metazoan macrofauna and megafauna along a transect (140-1850 m water depth) across the OMZ during the 2003 intermonsoon (March-May) and late/post-monsoon (August-October) seasons. All groups exhibited some drop in abundance in the OMZ core (250-500 m water depth; O 2: 0.10-0.13 mL L -1=4.46-5.80 μM) but to differing degrees. Densities of foraminiferans >63 μm were slightly depressed at 300 m, peaked at 738 m, and were much lower at deeper stations. Foraminiferans >300 μm were the overwhelmingly dominant macrofaunal organisms in the OMZ core. Macrofaunal metazoans reached maximum densities at 140 m depth, with additional peaks at 850, 940 and 1850 m where foraminiferans were less abundant. The polychaete Linopherus sp. was responsible for a macrofaunal biomass peak at 950 m. Apart from large swimming animals (fish and natant decapods), metazoan megafauna were absent between 300 and 900 m (O 2 <0.14-0.15 mL L -1=6.25-6.69 μM) but were represented by a huge, ophiuroid-dominated abundance peak at 1000 m (O 2 ˜0.15-0.18 mL L -1=6.69-8.03 μM). Gromiid protists were confined largely to depths below 1150 m (O 2 >0.2 mL L -1=8.92 μM). The progressively deeper abundance peaks for foraminiferans (>63 μm), Linopherus sp. and ophiuroids probably represent lower OMZ boundary edge effects and suggest a link between body size and tolerance of hypoxia. Macro- and megafaunal organisms collected between 800 and 1100 m were dominated by a succession of different taxa, indicating that the lower part of the OMZ is also a region of rapid faunal change. Species diversity was depressed in all groups in the OMZ core, but this was much more pronounced for macrofauna and megafauna than for foraminiferans. Oxygen levels

  17. Climate-dependent evolution of Antarctic ectotherms: An integrative analysis

    NASA Astrophysics Data System (ADS)

    Pörtner, Hans O.

    2006-04-01

    , and the use of lipid body stores for neutral buoyancy. Important trade-offs result from obligatory energy savings in the permanent cold: low metabolic rates support cold-compensated growth but imply narrow windows of thermal tolerance and reduced scopes for activity. The degree of thermal specialization is not uniformly defined by cold temperature but varies with life style characteristics and activity levels and associated aerobic scope. Trade-offs for the sake of cold compensated growth parallel reduced capacities for exercise performance, exacerbated by the effect of high haemolymph magnesium levels in crustaceans and, possibly, other invertebrates. High magnesium levels likely exclude the group of reptant decapod crustaceans from Antarctic waters below 0 °C. The hypothesis is developed that energy savings imposed by the permanent cold bear specific life history consequences. Due to effects of allometry, energy savings are exacerbated at small body size, favouring passive lecithotrophic larvae. At all stages of life history, reduced energy turnover for the sake of growth causes delays and low rates in other higher functions, with the result of late maturity, fecundity and offspring release, as well as extended development. As a consequence, extended life spans evolved due to life history requirements. At the same time, polar gigantism is enabled by a combination of elevated oxygen levels in cold waters, of reduced metabolism and of extended periods of growth at slow developmental rates.

  18. On two reports associated with James Wood-Mason and Alfred William Alcock published by the Indian Museum and the Indian Marine Survey between 1890 and 1891: implications for malacostracan nomenclature.

    PubMed

    Huys, Rony; Low, Martyn E Y; De Grave, Sammy; Ng, Peter K L; Clark, Paul F

    2014-01-29

    Two rare documents associated with the Indian Museum and the Indian Marine Survey for the administrative year April 1890 to March 1891 have been examined and found to have nomenclatural consequences for malacostracan crustaceans. Even though they constitute available published works according to the International Code for Zoological Nomenclature, these reports have rarely been cited. Dating these two publications is of importance as they make decapod scientific names available and, in a few instances, describe the same taxa. After searching the collections deposited in the Asian and African Room, British Library, the Administration Report of the Indian Marine for the year April 1890 to March 1891 could be dated with some degree of certainty as 25 August 1891. In contrast, dating the Indian Museum Annual Report proved more difficult because after examination of copies held by the General Library in the Natural History Museum, London, it was evident that not all of these reports were consistently published on time to meet an end of year deadline. However, the publication of volume XXII of the Indian Museum Annual Report for the year April 1890 to March 1891 appeared to be contemporary with the year printed at the bottom of the title page. As no exact date could be established with confidence, the publication date for this volume was fixed as 31 December 1891 in accordance with ICZN Art. 21.3.2. Therefore the Administration Report of the Indian Marine (published 25 August 1891) is considered to take precedence over the Indian Museum Annual Report (published 31 December 1891) and as such the names made available in the former take priority. As original copies of the Administration Report of the Indian Marine are not readily available in most libraries and few scientists have actually had access to these publications, the relevant Appendix No. XIII, in which the names of several malacostracan taxa are made available, is reproduced here. Since the appendix is not

  19. Food-web structure and trophodynamics of mesopelagic-suprabenthic bathyal macrofauna of the Algerian Basin based on stable isotopes of carbon and nitrogen

    NASA Astrophysics Data System (ADS)

    Fanelli, E.; Cartes, J. E.; Rumolo, P.; Sprovieri, M.

    2009-09-01

    (the hyperiid Phrosina semilunata) to -19.9‰ (the decapod Pasiphaea multidentata), while δ 15N values ranged from 3.9‰ ( P. semilunata) to 7.5‰ ( P. multidentata). Among zooplankton, more enriched δ 15N values were found among carnivores (e.g. the fish Cyclothone spp. and Pasiphaea multidentata) preying on copepods, hyperiids, euphausiids and small fish. The lowest δ 15N values were found for hyperiids that feed on the mucus nets of salps (e.g. Vibilia armata). After contrasting isotope analysis with dietary data, we conclude there were two trophic levels among zooplankton/micronekton. Strong correlation between the mean annual δ 15N and δ 13C values was found for zooplankton ( R2=0.7), but not for suprabenthos, which suggests a single source of carbon for plankton. We found a general seasonal trend for δ 13C enrichment from late autumn (November) to late winter-spring (February-April) for both suprabenthos and zooplankton. The δ 13C enrichment in February-April was correlated in zooplankton with higher surface chlorophyll a concentration 1 month before sampling. As evidenced by δ 13C-δ 15N correlations, the response of zooplankton to the peak of surface primary production was almost immediate (an increase of δ 13C-δ 15N correlations in February), and stronger than for suprabenthos. The response among suprabenthos was weak, with slight increase in δ 13C-δ 15N relationships in April-June.

  20. Dynamics of suprabenthos-zooplankton communities around the Balearic Islands (western Mediterranean): Influence of environmental variables and effects on the biological cycle of Aristeus antennatus

    NASA Astrophysics Data System (ADS)

    Cartes, J. E.; Madurell, T.; Fanelli, E.; López-Jurado, J. L.

    salinity close to the bottom, suggesting a link between suprabenthos abundance and changes in the oceanographic condition of water masses close to the bottom. It is suggested that a higher suprabenthos biomass recorded off Sóller in comparison to that off Cabrera in June could, in turn, be related to a seasonal inflow of Levantine Intermediate Water (LIW) in April-June in this area at mid bathyal depths (350-650 m). This trend would be based on: 1) it was evident only at mid-slope depths between 350-750 m, coinciding with the LIW distribution, and 2) it was not recorded among zooplankton (collected throughout the water column). The possible effect of the fluctuations of suprabenthos and zooplankton on higher trophic levels has been explored studying the diet and food consumption rates of the red shrimp Aristeus antennatus, as indicator species by its dominance in bathyal communities. A. antennatus increased its food consumption from February to April-June 2004 off Sóller, which in the case of large (CL > 40 mm) specimens was found in both areas. In addition, there was a shift of diet from winter to spring-early summer. In this last period, A. antennatus preyed upon euphausiids and mesopelagic decapods and fish, while benthos (e.g. polychaetes and bivalves) decreased in the diet. This indicates an increase in the food consumption and probably in the caloric content of the diet in pre-spawning females in April-June 2004, which is synchronized with the period when gonad development begins in A. antennatus females (May-June). Anyway, macrozooplankton, and not suprabenthos, is crucial as a high energetic food source in the coupling between food intake and reproduction in the red shrimp.

  1. Mechanisms for the export of archaeal lipids down the water column in the upwelling area off Cape Blanc, North-West Africa

    NASA Astrophysics Data System (ADS)

    Ebersbach, Friederike; Goldenstein, Nadine; Iversen, Morten; Mollenhauer, Gesine; Hinrichs, Kai-Uwe

    2016-04-01

    thousands of individual particles collected in gels in addition to (ii) the sinking particles and SPM present in different particle size fractions on the filters. First results show that the large size fraction carries relatively more intact lipids indicating fresh material being attached to sinking particles rather than suspended in the water column. Furthermore, the distribution of 1G-GDGTs over depths differs from that of 2G- and HPH-GDGTs which might relate to different archaeal communities at different depths. Our findings contribute to the mechanistic understanding of the export of organic molecules through the water column and support the validation of lipid-based paleoceanographic proxies. References Huguet, C., Cartes, J.E., Sinninghe Damsté, J.S., Schouten, S., 2006. Marine crenarchaeotal membrane lipids in decapods: Implications for the TEX86 paleothermometer. Geochemistry, Geophysics, Geosystems 7 (11), Q11010. Mollenhauer, G., Basse, A., Kim, J.-H., Sinninghe Damsté, J.S., Fischer, G., 2015. A four-year record of UK'37- and TEX86-derived sea surface temperature estimates from sinking particles in the filamentous upwelling region off Cape Blanc, Mauritania. Deep Sea Research Part I: Oceanographic Research Papers 97, 67-79. doi:10.1016/j.dsr.2014.11.015 Schouten, S., Hopmans, E.C., Sinninghe Damsté, J.S., 2013. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Organic Geochemistry 54, 19-61. Volk, T., Hoffert, M.I., 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. Geophysical Monographs 32, 99-110. Yamamoto, M., Shimamoto, A., Fukuhara, T., Tanaka, Y., Ishizaka, J., 2012. Glycerol dialkyl glycerol tetraethers and TEX86 index in sinking particles in the western North Pacific. Organic Geochemistry 53 (0), 52-62.

  2. Final report: Initial ecosystem response of salt marshes to ditch plugging and pool creation: Experiments at Rachel Carson National Wildlife Refuge (Maine)

    USGS Publications Warehouse

    Adamowicz, S.C.; Roman, C.T.

    2002-01-01

    This study evaluates the response of three salt marshes, associated with the Rachel Carson National Wildlife Refuge (Maine), to the practice of ditch plugging. Drainage ditches, originally dug to drain the marsh for mosquito control or to facilitate salt hay farming, are plugged with marsh peat in an effort to impound water upstream of the plug, raise water table levels in the marsh, and increase surface water habitat. At two study sites, Moody Marsh and Granite Point Road Marsh, ditch plugs were installed in spring 2000. Monitoring of hydrology, vegetation, nekton and bird utilization, and marsh development processes was conducted in 1999, before ditch plugging, and then in 2000 and 2001 (all parameters except nekton), after ditch plugging. Each study site had a control marsh that was monitored simultaneously with the plugged marsh, and thus, we employed a BACI study design (before, after, control, impact). A third site, Marshall Point Road Marsh, was plugged in 1998. Monitoring of the plugged and control sites was conducted in 1999 and 2000, with limited monitoring in 2001, thus there was no ?before? plug monitoring. With ditch plugging, water table levels increased toward the marsh surface and the areal extent of standing water increased. Responding to a wetter substrate, a vegetation change from high marsh species (e.g., Spartina patens) to those more tolerant of flooded conditions (e.g., Spartina alterniflora) was noted at two of the three ditch plugged sites. Initial response of the nekton community (fishes and decapod crustaceans) was evaluated by monitoring utilization of salt marsh pools using a 1m2 enclosure trap. In general, nekton species richness, density, and community structure remained unchanged following ditch plugging at the Moody and Granite Point sites. At Marshall Point, species richness and density (number of individuals per m2) were significantly greater in the experimental plugged marsh than the control marsh (<2% of the control marsh was