Science.gov

Sample records for decay lifetime measurement

  1. Measurement of the Bs(0) lifetime using semileptonic decays.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J-L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Asman, B; Jesus, A C S Assis; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Blumenschein, U; Boehnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calvet, S; Cammin, J; Caron, S; Carrasco-Lizarraga, M A; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cousinou, M-C; Cox, B; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Das, M; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Estrada, J; Evans, H; Evdokimov, A; Evdokimov, V N; Fatakia, S N; Feligioni, L; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Krzywdzinski, S; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lager, S; Lammers, S; Landsberg, G; Lazoflores, J; Le Bihan, A-C; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A-M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; McCarthy, R; McCroskey, R; Meder, D; Melnitchouk, A; Mendes, A; Mendoza, L; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundim, L; Mutaf, Y D; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Oguri, V; Oliveira, N; Oshima, N; Otec, R; y Garzón, G J Otero; Owen, M; Padley, P; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perez, E; Peters, K; Pétroff, P; Petteni, M; Piegaia, R; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Popov, A V; da Silva, W L Prado; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rani, K J; Ranjan, K; Rapidis, P A; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Rud, V I; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shephard, W D; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vlimant, J-R; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; Warchol, J; Watts, G; Wayne, M; Weber, M; Weerts, H; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xie, Y; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G

    2006-12-15

    We report a measurement of the Bs(0) lifetime in the semileptonic decay channel Bs(0) --> Ds- mu+ nuX (and its charge conjugate), using approximately 0.4 fb(-1) of data collected with the D0 detector during 2002-2004. Using 5176 reconstructed Ds- mu+ signal events, we have measured the Bs(0) lifetime to be tau(Bs(0))=1.398+/-0.044(stat)(-0.025)(+0.028)(syst) ps. This is the most precise measurement of the Bs(0) lifetime to date. PMID:17280267

  2. Measurement of the Bs0 Lifetime Using Semileptonic Decays

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Andeen, T.; Anderson, S.; Andrieu, B.; Anzelc, M. S.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Jesus, A. C. S. Assis; Atramentov, O.; Autermann, C.; Avila, C.; Ay, C.; Badaud, F.; Baden, A.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, P.; Banerjee, S.; Barberis, E.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellavance, A.; Benitez, J. A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Berntzon, L.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Black, K. M.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Bloom, K.; Blumenschein, U.; Boehnlein, A.; Boeriu, O.; Bolton, T. A.; Borcherding, F.; Borissov, G.; Bos, K.; Bose, T.; Brandt, A.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, J. M.; Calvet, S.; Cammin, J.; Caron, S.; Carrasco-Lizarraga, M. A.; Carvalho, W.; Casey, B. C. K.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapin, D.; Charles, F.; Cheu, E.; Chevallier, F.; Cho, D. K.; Choi, S.; Choudhary, B.; Christofek, L.; Claes, D.; Clément, B.; Clément, C.; Coadou, Y.; Cooke, M.; Cooper, W. E.; Coppage, D.; Corcoran, M.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cutts, D.; Ćwiok, M.; da Motta, H.; Das, A.; Das, M.; Davies, B.; Davies, G.; Davis, G. A.; de, K.; de Jong, P.; de Jong, S. J.; de La Cruz-Burelo, E.; Martins, C. De Oliveira; Degenhardt, J. D.; Déliot, F.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doidge, M.; Dominguez, A.; Dong, H.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Edwards, T.; Ellison, J.; Elmsheuser, J.; Elvira, V. D.; Eno, S.; Ermolov, P.; Estrada, J.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fatakia, S. N.; Feligioni, L.; Ferapontov, A. V.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fleck, I.; Ford, M.; Fortner, M.; Fox, H.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Garcia, C.; Garcia-Bellido, A.; Gardner, J.; Gavrilov, V.; Gay, A.; Gay, P.; Gelé, D.; Gelhaus, R.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Ginther, G.; Gollub, N.; Gómez, B.; Gounder, K.; Goussiou, A.; Grannis, P. D.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grünendahl, S.; Grünewald, M. W.; Guo, F.; Guo, J.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haefner, P.; Hagopian, S.; Haley, J.; Hall, I.; Hall, R. E.; Han, L.; Hanagaki, K.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, J.; Hebbeker, T.; Hedin, D.; Hegeman, J. G.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Houben, P.; Hu, Y.; Hynek, V.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jain, S.; Jakobs, K.; Jarvis, C.; Jenkins, A.; Jesik, R.; Johns, K.; Johnson, C.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Juste, A.; Käfer, D.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Kalk, J. M.; Kalk, J. R.; Kappler, S.; Karmanov, D.; Kasper, J.; Katsanos, I.; Kau, D.; Kaur, R.; Kehoe, R.; Kermiche, S.; Kesisoglou, S.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. M.; Khatidze, D.; Kim, H.; Kim, T. J.; Kirby, M. H.; Klima, B.; Kohli, J. M.; Konrath, J.-P.; Kopal, M.; Korablev, V. M.; Kotcher, J.; Kothari, B.; Koubarovsky, A.; Kozelov, A. V.; Kozminski, J.; Kryemadhi, A.; Krzywdzinski, S.; Kuhl, T.; Kumar, A.; Kunori, S.; Kupco, A.; Kurča, T.; Kvita, J.; Lager, S.; Lammers, S.; Landsberg, G.; Lazoflores, J.; Bihan, A.-C. Le; Lebrun, P.; Lee, W. M.; Leflat, A.; Lehner, F.; Leonidopoulos, C.; Lesne, V.; Leveque, J.; Lewis, P.; Li, J.; Li, Q. Z.; Lima, J. G. R.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Z.; Lobo, L.; Lobodenko, A.; Lokajicek, M.; Lounis, A.; Love, P.; Lubatti, H. J.; Lynker, M.; Lyon, A. L.; Maciel, A. K. A.; Madaras, R. J.; Mättig, P.; Magass, C.; Magerkurth, A.; Magnan, A.-M.; Makovec, N.; Mal, P. K.; Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Mao, H. S.; Maravin, Y.; Martens, M.; Mattingly, S. E. K.; McCarthy, R.; McCroskey, R.; Meder, D.; Melnitchouk, A.; Mendes, A.; Mendoza, L.; Merkin, M.; Merritt, K. W.; Meyer, A.; Meyer, J.; Michaut, M.; Miettinen, H.; Millet, T.; Mitrevski, J.; Molina, J.; Mondal, N. K.; Monk, J.; Moore, R. W.; Moulik, T.; Muanza, G. S.; Mulders, M.; Mulhearn, M.; Mundim, L.; Mutaf, Y. D.; Nagy, E.; Naimuddin, M.; Narain, M.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Nelson, S.; Neustroev, P.; Noeding, C.; Nomerotski, A.; Novaes, S. F.; Nunnemann, T.; O'Dell, V.; O'Neil, D. C.; Obrant, G.; Oguri, V.; Oliveira, N.; Oshima, N.; Otec, R.; Y Garzón, G. J. Otero; Owen, M.; Padley, P.; Parashar, N.; Park, S.-J.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Pawloski, G.; Perea, P. M.; Perez, E.; Peters, K.; Pétroff, P.; Petteni, M.; Piegaia, R.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pogorelov, Y.; Pol, M.-E.; Pompoš, A.; Pope, B. G.; Popov, A. V.; da Silva, W. L. Prado; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quadt, A.; Quinn, B.; Rani, K. J.; Ranjan, K.; Rapidis, P. A.; Ratoff, P. N.; Renkel, P.; Reucroft, S.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Robinson, S.; Rodrigues, R. F.; Royon, C.; Rubinov, P.; Ruchti, R.; Rud, V. I.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santoro, A.; Savage, G.; Sawyer, L.; Scanlon, T.; Schaile, D.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schieferdecker, P.; Schmitt, C.; Schwanenberger, C.; Schwartzman, A.; Schwienhorst, R.; Sengupta, S.; Severini, H.; Shabalina, E.; Shamim, M.; Shary, V.; Shchukin, A. A.; Shephard, W. D.; Shivpuri, R. K.; Shpakov, D.; Siccardi, V.; Sidwell, R. A.; Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smith, R. P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, X.; Sonnenschein, L.; Sopczak, A.; Sosebee, M.; Soustruznik, K.; Souza, M.; Spurlock, B.; Stark, J.; Steele, J.; Stevenson, K.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strandberg, J.; Strang, M. A.; Strauss, M.; Ströhmer, R.; Strom, D.; Strovink, M.; Stutte, L.; Sumowidagdo, S.; Sznajder, A.; Talby, M.; Tamburello, P.; Taylor, W.; Telford, P.; Temple, J.; Tiller, B.; Titov, M.; Tokmenin, V. V.; Tomoto, M.; Toole, T.; Torchiani, I.; Towers, S.; Trefzger, T.; Trincaz-Duvoid, S.; Tsybychev, D.; Tuchming, B.; Tully, C.; Turcot, A. S.; Tuts, P. M.; Unalan, R.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Vachon, B.; van den Berg, P. J.; van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vartapetian, A.; Vasilyev, I. A.; Vaupel, M.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Villeneuve-Seguier, F.; Vint, P.; Vlimant, J.-R.; von Toerne, E.; Voutilainen, M.; Vreeswijk, M.; Wahl, H. D.; Wang, L.; Warchol, J.; Watts, G.; Wayne, M.; Weber, M.; Weerts, H.; Wermes, N.; Wetstein, M.; White, A.; Wicke, D.; Wilson, G. W.; Wimpenny, S. J.; Wobisch, M.; Womersley, J.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Xuan, N.; Yacoob, S.; Yamada, R.; Yan, M.; Yasuda, T.; Yatsunenko, Y. A.; Yip, K.; Yoo, H. D.; Youn, S. W.; Yu, C.; Yu, J.; Yurkewicz, A.; Zatserklyaniy, A.; Zeitnitz, C.; Zhang, D.; Zhao, T.; Zhao, Z.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.

    2006-12-01

    We report a measurement of the Bs0 lifetime in the semileptonic decay channel Bs0→Ds-μ+νX (and its charge conjugate), using approximately 0.4fb-1 of data collected with the D0 detector during 2002 2004. Using 5176 reconstructed Ds-μ+ signal events, we have measured the Bs0 lifetime to be τ(Bs0)=1.398±0.044(stat)-0.025+0.028(syst)ps. This is the most precise measurement of the Bs0 lifetime to date.

  3. Measurement of the Lambdab0 lifetime using semileptonic decays.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Banerjee, P; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chan, K; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clément, C; Clément, B; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; de Jong, P; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, J; Guo, F; Gutierrez, P; Gutierrez, G; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J R; Kalk, J M; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kothari, B; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lesne, V; Leveque, J; Lewin, M; Lewis, P; Li, J; Li, Q Z; Li, L; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, J; Meyer, A; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perea, P M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, J; Snow, G R; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strauss, E; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, S; Uvarov, L; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Weber, G; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yu, C; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2007-11-01

    We report a measurement of the Lambda(b)(0) lifetime using a sample corresponding to 1.3 fb(-1) of data collected by the D0 experiment in 2002-2006 during run II of the Fermilab Tevatron collider. The Lambda(b)(0) baryon is reconstructed via the decay Lambda(b)(0)-->micronuLambda(c)(+)X. Using 4437+/-329 signal candidates, we measure the Lambda(b)(0) lifetime to be tau(Lambda(b)(0))=1.290(-0.110)(+0.119)(stat)(-0.091)(+0.087)(syst) ps, which is among the most precise measurements in semileptonic Lambda(b)(0) decays. This result is in good agreement with the world average value. PMID:17995396

  4. Measurement of the average B hadron lifetime in Z0 decays using reconstructed vertices

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abt, I.; Ahn, C. J.; Akagi, T.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A. O.; Ben-David, R.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bolton, T.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Busza, W.; Calcaterra, A.; Caldwell, D. O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H. O.; Coller, J. A.; Cook, V.; Cotton, R.; Cowan, R. F.; Coyne, D. G.; D'oliveira, A.; Damerell, C. J.; Daoudi, M.; de Sangro, R.; de Simone, P.; dell'orso, R.; Dima, M.; Du, P. Y.; Dubois, R.; Eisenstein, B. I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M. J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G. D.; Hart, E. L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Hwang, H.; Iwasaki, Y.; Jackson, D. J.; Jacques, P.; Jaros, J.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kendall, H. W.; Kim, Y.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Labs, J. F.; Langston, M.; Lath, A.; Lauber, J. A.; Leith, D. W.; Liu, M. X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Mours, B.; Müller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L. S.; Panvini, R. S.; Park, H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Rensing, P. E.; Rochester, L. S.; Rothberg, J. E.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schaffner, S. F.; Schalk, T.; Schindler, R. H.; Schneekloth, U.; Schumm, B. A.; Seiden, A.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Shapiro, S. L.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Snyder, J. A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Torrence, E.; Trandafir, A. I.; Turk, J. D.; Usher, T.; Va'vra, J.; Vannini, C.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, S. R.; Waite, A. P.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, D. A.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Woods, M.; Word, G. B.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zeitlin, C.; Zhang, Z.; Zhou, J.

    1995-11-01

    We report a measurement of the average B hadron lifetime using data collected with the SLD detector at the SLAC Linear Collider in 1993. An inclusive analysis selected three-dimensional vertices with B hadron lifetime information in a sample of 50×103 Z0 decays. A lifetime of 1.564+/-0.030(stat)+/-0.036(syst) ps was extracted from the decay length distribution of these vertices using a binned maximum likelihood method.

  5. Measurement of the Lambda b lifetime in the exclusive decay Lambda b --> J/psi Lambda.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Jesus, A C S Assis; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kothari, B; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'dell, V; O'neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Panikashvili, N; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2007-10-01

    We have measured the Lambda b lifetime using the exclusive decay Lambda b --> J/psi Lambda, based on 1.2 fb(-1) of data collected with the D0 detector during 2002-2006. From 171 reconstructed Lambda b decays, where the J/psi and Lambda are identified via the decays J/psi --> mu+ mu- and Lambda --> ppi, we measured the Lambda b lifetime to be tau(Lambda b)=1.218 (+0.130)/(-0.115) (stat) +/- 0.042(syst) ps. We also measured the B0 lifetime in the decay B0 --> J/psi(mu+ mu-)K(0)/(S)(pi+ pi-) to be tau(B0)=1.501 (+0.078)/(-0.074) (stat) +/- 0.050(syst) ps, yielding a lifetime ratio of tau(Lambda b)/tau(B0)=0.811 (+0.096)/(-0.087) (stat) +/- 0.034(syst). PMID:17930660

  6. UCNtau: A Precision Measurement of the Neutron Beta-Decay Lifetime

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Yu

    2015-10-01

    Eighty years after Chadwick discovered the neutron, physicists today still debate over how long the neutron lives. Measurements of the neutron lifetime have achieved the 0.1% level of precision (~1 s), however, experiments using the bottle technique yield lifetime results systematically lower than those using the beam technique. Measuring the neutron lifetime is difficult due to several limitations: the low energy of the decay products, the inability to track slow neutrons, and the fact that the neutron lifetime is long (880 . 3 +/- 1 . 1 s, PDG2014). In particular, slow neutrons are susceptible to many loss mechanisms other than beta-decay, such as upscattering and absorption on material surfaces; they act on time scales comparable to the neutron beta-decay and thus make the extraction of the beta-decay lifetime very challenging. In the UCN τ experiment, we trap ultracold neutrons (UCN) in a magnetic-gravitational trap. The apparatus, installed at the Los Alamos UCN source, has been used to develop new techniques-using field confinements with attentions to the phase space evolution of trapped neutrons-with an aim to reduce the uncertainty to 1 s (and better). I will report first competitive results and discuss plans to quantify systematic effects. The work was supported by the NSF (Grant-1306942 to IU) and the LANL LDRD program.

  7. Measurement of the B¯s 0 Meson Lifetime in Ds+π- Decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gavrilov, G.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.; LHCb Collaboration

    2014-10-01

    We present a measurement of the ratio of the B¯s 0 meson lifetime, in the flavor-specific decay to Ds+π-, to that of the B¯ 0 meson. The p p collision data used correspond to an integrated luminosity of 1 fb-1 , collected with the LHCb detector, at a center-of-mass energy of 7 TeV. Combining our measured value of 1.010 ±0.010 ±0.008 for this ratio with the known B¯ 0 lifetime, we determine the flavor-specific B¯s 0 lifetime to be τ (B¯s 0)=1.535 ±0.015 ±0.014 ps , where the uncertainties are statistical and systematic, respectively. This is the most precise measurement to date, and is consistent with previous measurements and theoretical predictions.

  8. Measurement of the B¯s⁰ meson lifetime in Ds⁺π⁻ decays.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-10-24

    We present a measurement of the ratio of the B¯s⁰ meson lifetime, in the flavor-specific decay to Ds⁺π⁻, to that of the B¯⁰ meson. The pp collision data used correspond to an integrated luminosity of 1  fb(-1), collected with the LHCb detector, at a center-of-mass energy of 7 TeV. Combining our measured value of 1.010±0.010±0.008 for this ratio with the known B¯⁰ lifetime, we determine the flavor-specific B¯s⁰ lifetime to be τ(B¯s⁰ )=1.535±0.015±0.014  ps, where the uncertainties are statistical and systematic, respectively. This is the most precise measurement to date, and is consistent with previous measurements and theoretical predictions. PMID:25379914

  9. A measurement of A FBb in lifetime tagged heavy flavour Z decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Mattison, T.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Teubert, F.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Huang, D.; Huang, X.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Boudreau, J.; Comas, P.; Coyle, P.; Drevermann, H.; Engelhardt, A.; Forty, R. W.; Ganis, G.; Gay, C.; Girone, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Palazzi, P.; Pater, J. R.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rothberg, J.; Saich, M.; Schlatter, D.; Schmelling, M.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Venturi, A.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Johnson, S. D.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Levinthal, D.; Antonelli, A.; Nencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Salomone, S.; Colrain, P.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Hassard, J. F.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Moutoussi, A.; Nash, J.; Payne, D. G.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Nicod, D.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Kroha, H.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Schael, S.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Jacquet, M.; Kimtr19, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Simion, S.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Martin, E. B.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; Johnson, D. L.; March, P. V.; Medcalf, T.; Mir, Ll. M.; Quazi, I. S.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Beddall, A.; Booth, C. N.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Pitis, L.; Ragusa, F.; Bellantoni, L.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1994-08-01

    A new measurement of the forward-backward asymmetry in Z→ b overlineb decays is presented. Hadrons from b decays are tagged using their long lifetimes. The b quark charge and direction are reconstructed with a hemisphere charge algorithm. The asymmetry and reconstructed b hemisphere charge are measured in the 69 pb -1 of data collected by ALEPH during 1991, 1992 and 1993. They are used to extract sin 2θ Weff, which is determined to be 0.2315 ± 0.0016 (stat.) ± 0.0009 (syst.), corresponding to an AFBb of 0.0992 ± 0.0084 (stat.) ± 0.0046 (syst.).

  10. Measurement of the B/s0 lifetime in B/s0 --> K+ K- decays

    SciTech Connect

    Pounder, Nicola Louise; /Oxford U.

    2009-02-01

    A method is presented to simultaneously separate the contributions to a sample of B{sub (s)}{sup 0} {yields} h{sup +}h{sup {prime}-} decays, where h = {pi} or K, and measure the B meson lifetimes in the sample while correcting for the bias in the lifetime distributions due to the hadronic trigger at the CDF experiment. Using 1 fb{sup -1} of data collected at CDF the B{sup 0} lifetime is measured as {tau}{sub B{sup 0}} = 1.558{sub -0.047}{sup +0.050}{sub stat} {+-} 0.028{sub syst} ps, in agreement with the world average measurement. The B{sub s}{sup 0} lifetime in the B{sub s}{sup 0} {yields} K{sup +}K{sup -} decay is measured as {tau}{sub B{sub s}{sup 0} {yields} K{sup +}K{sup -}} = 1.51{sub -0.11}{sup +0.13}{sub stat} {+-} 0.04{sub syst} ps. No difference is observed between the lifetime and other measurements of the average B{sub s}{sup 0} lifetime or the lifetime of the light B{sub s}{sup 0} mass eigenstate determined from B{sub s}{sup 0} {yields} J/{psi}{phi} decays. With the assumptions that B{sub s}{sup 0} {yields} K{sup +}K{sup -} is 100% CP-even and that {tau}{sub B{sub s}{sup 0}} = {tau}{sub B{sup 0}} the width difference in the B{sub s}{sup 0} system is determined as {Delta}{Lambda}{sup CP}/{Lambda} = 0.03{sub -0.15}{sup +0.17}{sub stat} {+-} 0.05{sub syst} using the current world average B{sup 0} lifetime. This is consistent with zero and with the current world average measurement.

  11. Toward a measurement of α -decay lifetime change at high pressure: The case of 241Am

    NASA Astrophysics Data System (ADS)

    Nissim, Noaz; Belloni, Fabio; Eliezer, Shalom; Delle Side, Domenico; Martinez Val, José Maria

    2016-07-01

    This paper suggests that a change in the lifetime of the α -decay process in 241Am may be detected at high pressures achievable in the laboratory, essentially, due to the extraordinary high compressibility of Am at the megabar range. The Thomas-Fermi model was used to calculate the effect of high pressure on the atomic electron density and the variation of the atomic potential of 241Am . It was found that at pressures of about 0.5 Mbar the relative change in the lifetime of 241Am is about -2 ×10-4 . Detailed experimental procedures to measure this effect by compressing the 241Am metal in a diamond-anvil cell are presented where diagnostics is based on counting of the 60-keV γ rays accompanying the α decay and/or mass spectrometry on the 237Np/241Am isotope ratio.

  12. Measurements of the masses, lifetimes and decay modes of hadrons at Tevatron

    SciTech Connect

    Dorigo, Mirco; /Trieste U. /INFN, Trieste

    2010-05-01

    The Tevatron provides 1.96 TeV p{bar p} collisions and allows for collection of rich b-hadron samples to the two experiments CDF and D0. The study of heavy flavor properties represents a fruitful opportunity to investigate the flavor sector of the Standard Model (SM) and to look for hints of New Physics (NP). Here we report the first measurement of polarization amplitudes in B{sub s}{sup 0} charmless decays, world leading results on b-hadron lifetimes, and measurements of several other properties of b-hadrons.

  13. Measurement of Lifetime and Decay-Width Difference in B_{s};{0}-->J/psivarphi Decays.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-03-28

    We measure the mean lifetime tau=2/(Gamma_{L}+Gamma_{H}) and the decay-width difference DeltaGamma=Gamma_{L}-Gamma_{H} of the light and heavy mass eigenstates of the B_{s}{0} meson, B_{sL}{0} and B_{sH}{0}, in B_{s}{0}-->J/psivarphi decays using 1.7 fb;{-1} of data collected with the CDF II detector at the Fermilab Tevatron pp[over ] collider. Assuming CP conservation, a good approximation for the B_{s}{0} system in the standard model, we obtain DeltaGamma=0.076_{-0.063}{+0.059}(stat)+/-0.006(syst) ps{-1} and tau=1.52+/-0.04(stat)+/-0.02(syst) ps, the most precise measurements to date. Our constraints on the weak phase and DeltaGamma are consistent with CP conservation. PMID:18517856

  14. Measurements of mean lifetime and branching fractions of b hadrons decaying to J/ ψ

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Pacheco, A.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Atwood, W. B.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Bossi, F.; Boudreau, J.; Burnett, T. H.; Drevermann, H.; Forty, R. W.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lançon, E.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Mattison, T.; Meinhard, H.; Menary, S.; Meyer, T.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Roth, A.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; Bencheikh, A. M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Pietrzyk, B.; Proriol, J.; Prulhière, F.; Stimpfl, G.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Altoon, B.; Boyle, O.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geiges, R.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wolf, B.; Aubert, J.-J.; Benchouk, C.; Bernard, V.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Papalexiou, S.; Payre, P.; Qian, Z.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Bauer, C.; Blum, W.; Brown, D.; Cowan, G.; Dehning, B.; Dietl, H.; Dydak, F.; Fernandez-Bosman, M.; Frank, M.; Halley, A. W.; Hauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Takashima, M.; Thomas, J.; Wolf, G.; Bertin, V.; Boucrot, J.; Callot, O.; Chen, X.; Cordier, A.; Davier, M.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Zomer, F.; Abbaneo, D.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lemaire, M. C.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Reeves, P.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Grupen, C.; Mirabito, L.; Rivera, F.; Schäfer, U.; Ganis, G.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Peter, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Whitney, M. H.; Sau Lan Wu; Wu, X.; Zoberning, G.; Aleph Collaboration

    1992-12-01

    From a data sample of 450 000 hadronic events recorded with the ALEPH detector at LEP, 92±10 events are observed containing a J/ψ meson decaying to μ+μ- or e +e -. From these data the measured inclusive branching fraction for a b flavoured hadron to decay to a J/ψ is BR(b→ J/ ψX) = (1.21±0.13 (stat.)±0.08 (syst.))%, and the average b hadron lifetime in the events tagged with a J/ ψ is τb = 1.35 +0.19-0.17±0.05 ps. Five events are observed consistent with the exclusive decay B ± → J/ ψK ± and from these events the exclusive branching fraction is measured to be BR(B ± → J/ ψK ±) = (0.22±0.10±0.02)%. Upper limits for other exclusive branching ratios are given.

  15. Measurement of the average {ital B} hadron lifetime in {ital Z}{sup 0} decays using reconstructed vertices

    SciTech Connect

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Allen, N.J.; Ash, W.W.; Aston, D.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D`Oliveira, A.; Damerell, C.J.S.; Daoudi, M.; De Sangro, R.; De Simone, P.; Dell`Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jackson, D.J.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H.J.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.S.; Liu, M.X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Reidy, J.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; Russell, J.J.; (SLD Collabora...

    1995-11-13

    We report a measurement of the average {ital B} hadron lifetime using data collected with the SLD detector at the SLAC Linear Collider in 1993. An inclusive analysis selected three-dimensional vertices with {ital B} hadron lifetime information in a sample of 50{times}10{sup 3} {ital Z}{sup 0} decays. A lifetime of 1.564{plus_minus}0.030(stat){plus_minus}0.036(syst) ps was extracted from the decay length distribution of these vertices using a binned maximum likelihood method. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  16. Measurement of Lifetime and Decay-Width Difference in B0s -> J/psi phi Decays

    SciTech Connect

    Aaltonen, : T.

    2007-12-01

    The authors measure the mean lifetime, {tau} = 2/({Lambda}{sub L} + {Lambda}{sub H}), and the decay-width difference, {Delta}{Lambda} = {Lambda}{sub L} - {Lambda}{sub H}, of the light and heavy mass eigenstates of the B{sub s}{sup 0} meson, B{sub sL}{sup 0} and B{sub sH}{sup 0}, in B{sub s}{sup 0} {yields} J/{psi}{phi} decays using 1.7 fb{sup -1} of data collected with the CDF II detector at the Fermilab Tevatron p{bar p} collider. Assuming CP conservation, a good approximation for the B{sub s}{sup 0} system in the standard model, they obtain {Delta}{Lambda} = 0.076{sub -0.063}{sup +0.059}(stat.) {+-} 0.006(syst.) ps{sup -1} and {tau} = 1.52 {+-} 0.04(stat.) {+-} 0.02(syst.) ps, the most precise measurements to date. The constraints on the weak phase and {Delta}{Lambda} are consistent with CP conservation.

  17. Mathematical analysis of the Photovoltage Decay (PVD) method for minority carrier lifetime measurements

    NASA Technical Reports Server (NTRS)

    Vonroos, O. H.

    1982-01-01

    When the diffusion length of minority carriers becomes comparable with or larger than the thickness of a p-n junction solar cell, the characteristic decay of the photon-generated voltage results from a mixture of contributions with different time constants. The minority carrier recombination lifetime tau and the time constant l(2)/D, where l is essentially the thickness of the cell and D the minority carrier diffusion length, determine the signal as a function of time. It is shown that for ordinary solar cells (n(+)-p junctions), particularly when the diffusion length L of the minority carriers is larger than the cell thickness l, the excess carrier density decays according to exp (-t/tau-pi(2)Dt/4l(2)), tau being the lifetime. Therefore, tau can be readily determined by the photovoltage decay method once D and L are known.

  18. Measurement of the B s0 lifetime and production rate with D s-ℓ + combinations in Z decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Engelhardt, A.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Knobloch, J.; Lehraus, I.; Markou, C.; Martin, E. B.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Dorris, S. J.; Halley, A. W.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Morton, W. T.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; Wanke, R.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Thulasidas, M.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Stierlin, U.; Denis, R. St; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, Ll. M.; Perrodo, P.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marz, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1995-02-01

    The lifetime of the B s0 meson is measured in approximately 3 million hadronic Z decays accumulated using the ALEPH detector at LEP from 1991 to 1994. Seven different D s- decay modes were reconstructed and combined with an opposite sign lepton as evidence of semileptonic B s0 decays. Two hundred and eight D s-ℓ + candidates satisfy selection criteria designed to ensure precise proper time reconstruction and yield a measured B s0 lifetime of τ(B s0) = 1.59 -0.15+0.17 (stat) ±0.03 (syst) ps. Using a larger, less constrained sample of events, the product branching ratio is measured to be Br( overlineb → B s0) · Br(B s0 → D s-ℓ +νX) = 0.82 ± 0.09 (stat) -0.14+0.13 (syst) %.

  19. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-02-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  20. Resolution of heterogeneous fluorescence emission signals and decay lifetime measurement on fluorochrome-labeled cells by phase-sensitive FCM

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A.

    1993-01-01

    A phase-sensitive flow cytometer has been developed to resolve signals from heterogeneous fluorescence emission spectra and quantify fluorescence decay times on cells labeled with fluorescent dyes. This instrument combines flow cytometry (FCM) and fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved measurements on single cells in flow, while preserving conventional FCM measurement capabilities. Stained cells are analyzed as they pass through an intensity-modulated (sinusoid) laser excitation beam. Fluorescence is measured orthogonally using a s barrier filter to block scattered laser excitation light, and a photomultiplier tube detector output signals, which are shifted in phase from a reference signal and amplitude demodulated, are processed by phase-sensitive detection electronics to resolve signals from heterogeneous emissions and quantify decay lifetimes directly. The output signals are displayed as frequency distribution histograms and bivariate diagrams using a computer-based data acquisition system. Results have demonstrated signal phase shift, amplitude demodulation, and average measurement of fluorescence lifetimes on stained cells; a detection limit threshold of 300 to 500 fluorescein isothiocyanate (FITC); fluorescence measurement precision of 1.3% on alignment fluorospheres and 3.4% on propidium iodide (PI)-stained cells; the resolution of PI and FITC signals from cells stainedin combination with PI and FITC, based on differences in their decay lifetimes; and the ability to measure single decay nines by the two-phase, phase comparator, method.

  1. Measurement of the B-cmeson lifetime in the decay B-c→J/ψπ⁻

    DOE PAGESBeta

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; et al

    2013-01-02

    The lifetime of the B-c meson is measured using 272 exclusive B-c→J/ψ(→μ⁺μ⁻)π⁻ decays reconstructed in data from proton-antiproton collisions corresponding to an integrated luminosity of 6.7 fb⁻¹ recorded by the CDF II detector at the Fermilab Tevatron. The lifetime of the B-cmeson is measured to be τ(B-c)=0.452±0.048(stat)±0.027(syst) ps. This is the first measurement of the B-c meson lifetime in a fully reconstructed hadronic channel, and it agrees with previous results and has comparable precision.

  2. Measurement of the B+and B0 Lifetimes Using Topological Reconstruction of Inclusive and Semileptonic Decays

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abe, K.; Akagi, T.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Baranko, G.; Bardon, O.; Barklow, T. L.; Bashindzhagyan, G. L.; Bazarko, A. O.; Ben-David, R.; Benvenuti, A. C.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bolen, B.; Bolton, T.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Busza, W.; Calcaterra, A.; Caldwell, D. O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Chou, A.; Church, E.; Cohn, H. O.; Coller, J. A.; Cook, V.; Cotton, R.; Cowan, R. F.; Coyne, D. G.; Crawford, G.; D'Oliveira, A.; Damerell, C. J.; Daoudi, M.; de Sangro, R.; dell'Orso, R.; Dervan, P. J.; Dima, M.; Dong, D. N.; Du, P. Y.; Dubois, R.; Eisenstein, B. I.; Elia, R.; Etzion, E.; Fahey, S.; Falciai, D.; Fan, C.; Fernandez, J. P.; Fero, M. J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hart, E. L.; Harton, J. L.; Hasan, A.; Hasegawa, Y.; Hasuko, K.; Hedges, S. J.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Hwang, H.; Iwasaki, Y.; Jackson, D. J.; Jacques, P.; Jaros, J. A.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kendall, H. W.; Kim, Y. D.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Labs, J. F.; Langston, M.; Lath, A.; Lauber, J. A.; Leith, D. W.; Lia, V.; Liu, M. X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Moore, T. B.; Muller, D.; Nagamine, T.; Narita, S.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L. S.; Panvini, R. S.; Park, C. H.; Park, H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Reinertsen, P. L.; Rensing, P. E.; Rochester, L. S.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schindler, R. H.; Schumm, B. A.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Smy, M. B.; Snyder, J. A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Torrence, E.; Trandafir, A. I.; Turk, J. D.; Usher, T.; Va'Vra, J.; Vannini, C.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, D. L.; Wagner, S. R.; Waite, A. P.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, D. A.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Woods, M.; Word, G. B.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yashima, J.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zhou, J.

    1997-07-01

    The lifetimes of B+ and B0 mesons are measured using a sample of 150 000 hadronic Z0 decays collected by the SLD experiment at the SLAC Linear Collider between 1993 and 1995. Two analyses are presented in which the decay length and charge of the B meson are reconstructed. The first method uses a novel topological vertexing technique while the second uses semi-inclusively reconstructed semileptonic decays. The topological analysis yields a sample of 6033 (3665) charged (neutral) vertices with good charge purity, whereas the semileptonic analysis yields a smaller sample of 634 (584) charged (neutral) decays with excellent charge purity. Combining the results from both analyses, we find τB+ = 1.66+/-0.06\\(stat\\)+/-0.05\\(syst\\) ps, τB0 = 1.64+/-0.08\\(stat\\)+/-0.08\\(syst\\) ps, and τB+/τB0 = 1.01+/-0.07\\(stat\\)+/-0.06\\(syst\\).

  3. Measurement of the B(0) lifetime with partially reconstructed B(0)-->D(-)l(+)nu(l) decays.

    PubMed

    Aubert, B; Boutigny, D; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; LeClerc, C; Levi, M E; Lynch, G; Oddone, P J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Harrison, T J; Hawkes, C M; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; Foster, B; Mackay, C; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Jolly, S; McKemey, A K; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Telnov, V I; Yushkov, A N; Best, D; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Arisaka, K; Buchanan, C; Chun, S; MacFarlane, D B; Prell, S; Rahatlou, Sh; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beringer, J; Eisner, A M; Grothe, M; Heusch, C A; Lockman, W S; Pulliam, T; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Barillari, T; Bloom, P; Dima, M O; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; T'Jampens, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Tinslay, J; Falbo, M; Borean, C; Bozzi, C; Dittongo, S; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Robutti, E; Santroni, A; Tosi, S; Morii, M; Bartoldus, R; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P-A; Lamsa, J; Meyer, W T; Rosenberg, E I; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; Laplace, S; Lepeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Wormser, G; Bionta, R M; Brigljević, V; Lange, D J; Mugge, M; van Bibber, K; Wright, D M; Bevan, A J; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J W; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Bellodi, G; Dixon, P; Harrison, P F; Potter, R J L; Shorthouse, H W; Strother, P; Vidal, P B; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Staengle, H; Willocq, S; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Milek, M; Patel, P M; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Nief, J Y; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R G; Gabriel, T A; Brau, J; Frey, R; Grauges, E; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, Ph; Ocariz, J; Roos, L; Stark, J; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Campagna, E; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Elmer, P; Lu, C; Miftakov, V; Schaffner, S F; Smith, A J S; Tumanov, A; Varnes, E W; Cavoto, G; Del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Lamanna, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Singh, H; Weidemann, A W; Yumiceva, F X; Adam, I; Aston, D; Berger, N; Boyarski, A M; Calderini, G; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Haas, T; Halyo, V; Himel, T; Hryn'ova, T; Huffer, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Quinn, H; Ratcliff, B N; Robertson, S H; Roodman, A; Salnikov, A A; Schietinger, T; Schindler, R H; Schwiening, J; Snyder, A; Soha, A; Spanier, S M; Stelzer, J; Su, D; Sullivan, M K; Tanaka, H A; Va'vra, J; Wagner, S R; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Cheng, C H; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Izen, J M; Kitayama, I; Lou, X C; Bianchi, F; Bona, M; Gamba, D; Bosisio, L; Della Ricca, G; Lanceri, L; Poropat, P; Vuagnin, G; Panvini, R S; Brown, C M; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Di Lodovico, F; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Kordich, T M B; Neal, H

    2002-07-01

    The B(0) lifetime was measured with a sample of 23 million BB pairs collected by the BABAR detector at the PEP-II e(+)e(-) storage ring during 1999 and 2000. Events from the semileptonic decay B(0)-->D(*-)l(+)nu(l) have been selected with a partial reconstruction method in which only the charged lepton and the slow pi from the D*--->D(0)pi(-) decay are reconstructed. The result is tau(B(0)) = 1.529+/-0.012(stat)+/-0.029(syst) ps. PMID:12097031

  4. Analysis of the photo voltage decay /PVD/ method for measuring minority carrier lifetimes in P-N junction solar cells

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1981-01-01

    The photo voltage decay (PVD) method for the measurement of minority carrier lifetimes in P-N junction solar cells with cell thickness comparable to or even less than the minority carrier diffusion length is examined. The method involves the generation of free carriers in the quasi-neutral bulk material by flashes of light and the monitoring of the subsequent decay of the induced open-circuit voltages as the carriers recombine, which is dependent on minority carrier recombination lifetime. It is shown that the voltage versus time curve for an ordinary solar cell (N(+)-P junction) is proportional to the inverse minority carrier lifetime plus a factor expressing the ratio of diffusion length to cell thickness. In the case of an ideal back-surface-field cell (N(+)-P-P(+) junction) however, the slope is directly proportional to the inverse minority carrier lifetime. It is noted that since most BSF cells are not ideal, possessing a sizable back surface recombination velocity, the PVD measurements must be treated with caution and supplemented with other nonstationary methods.

  5. Measurement of the B0s lifetime in the exclusive decay channel B0s-->J/psiphi.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, D L; Adams, M; Adams, T; Agelou, M; Agram, J-L; Ahmed, S N; Ahn, S H; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Anderson, S; Andrieu, B; Arnoud, Y; Askew, A; Asman, B; Atramentov, O; Autermann, C; Avila, C; Babukhadia, L; Bacon, T C; Badaud, F; Baden, A; Baffioni, S; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Beaudette, F; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Binder, M; Bischoff, A; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Boehnlein, A; Boeriu, O; Bolton, T A; Bonamy, P; Borcherding, F; Borissov, G; Bos, K; Bose, T; Boswell, C; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burnett, T H; Busato, E; Butler, J M; Bystricky, J; Canelli, F; Carvalho, W; Casey, B C K; Casey, D; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Cho, D K; Choi, S; Chopra, S; Christiansen, T; Christofek, L; Claes, D; Clark, A R; Clément, B; Clément, C; Coadou, Y; Colling, D J; Coney, L; Connolly, B; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M-C; Crépé-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; da Motta, H; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Dean, S; Del Signore, K; Déliot, F; Delsart, P A; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Fein, D; Feligioni, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleuret, F; Fortner, M; Fox, H; Freeman, W; Fu, S; Fuess, S; Galea, C F; Gallas, E; Galyaev, E; Gao, M; Garcia, C; Garcia-Bellido, A; Gardner, J; Gavrilov, V; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Y; Geurkov, G; Ginther, G; Goldmann, K; Golling, T; Gómez, B; Gounder, K; Goussiou, A; Graham, G; Grannis, P D; Greder, S; Green, J A; Greenlee, H; Greenwood, Z D; Gregores, E M; Grinstein, S; Gris, Ph; Grivaz, J-F; Groer, L; Grünendahl, S; Grünewald, M W; Gu, W; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haggerty, H; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Hanlet, P; Harder, K; Harrington, R; Hauptman, J M; Hauser, R; Hays, C; Hays, J; Hebbeker, T; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Hou, S; Houben, P; Hu, Y; Huang, J; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Jiang, Y; Johns, K; Johnson, M; Johnson, P; Jonckheere, A; Jonsson, P; Jöstlein, H; Juste, A; Kado, M M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Kau, D; Ke, Z; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A; Kharzheev, Y M; Kim, K H; Klima, B; Klute, M; Kohli, J M; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Kotwal, A V; Koubarovsky, A; Kouznetsov, O; Kozelov, A V; Kozminski, J; Krane, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kurca, T; Kuznetsov, V E; Lager, S; Lahrichi, N; Landsberg, G; Lazoflores, J; Le Bihan, A-C; Lebrun, P; Lee, S W; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Leonidopoulos, C; Lewis, P; Li, J; Li, Q Z; Li, X; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipaev, V V; Lipton, R; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Lu, J; Lubatti, H J; Lucotte, A; Lueking, L; Luo, C; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magerkurth, A; Magnan, A-M; Maity, M; Makovec, N; Mal, P K; Malik, S; Malyshev, V L; Manankov, V; Mao, H S; Maravin, Y; Marshall, T; Martens, M; Martin, M I; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; McMahon, T; Meder, D; Melanson, H L; Melnitchouk, A; Meng, X; Merkin, M; Merritt, K W; Meyer, A; Miao, C; Miettinen, H; Mihalcea, D; Mitrevski, J; Mokhov, N; Molina, J; Mondal, N K; Montgomery, H E; Moore, R W; Mostafa, M; Muanza, G S; Mulders, M; Mutaf, Y D; Nagy, E; Nang, F; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Oliveira, N; Olivier, B; Oshima, N; Otero y Garzón, G J; Padley, P; Papageorgiou, K; Parashar, N; Park, J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Perea, P M; Perez, E; Peters, O; Pétroff, P; Petteni, M; Phaf, L; Piegaia, R; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pope, B G; Popkov, E; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Przybycien, M B; Qian, J; Quadt, A; Quinn, B; Rani, K J; Rapidis, P A; Ratoff, P N; Reay, N W; Renardy, J-F; Reucroft, S; Rha, J; Ridel, M; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Royon, C; Rubinov, P; Ruchti, R; Sabirov, B M; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Schellman, H; Schieferdecker, P; Schmitt, C; Schukin, A A; Schwartzman, A; Schwienhorst, R; Sengupta, S; Severini, H; Shabalina, E; Shary, V; Shephard, W D; Shpakov, D; Sidwell, R A; Simak, V; Sirotenko, V; Skow, D; Skubic, P; Slattery, P; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Song, Y; Sonnenschein, L; Sopczak, A; Sorín, V; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Steinbrück, G; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tentindo-Repond, S; Thomas, E; Thooris, B; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Trippe, T G; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Von Vlimant, J-R; Toerne, E; Vreeswijk, M; Vu Anh, T; Wahl, H D; Walker, R; Wallace, N; Wang, Z-M; Warchol, J; Warsinsky, M; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; White, A; White, V; Whiteson, D; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wlodek, T; Wobisch, M; Womersley, J; Wood, D R; Wu, Z; Wyatt, T R; Xu, Q; Xuan, N; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, B; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zheng, H; Zhou, B; Zhou, Z; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G; Zylberstejn, A

    2005-02-01

    Using the exclusive decay B0s-->J/psi(mu+mu-)phi(K+K-), we report the most precise single measurement of the B0s lifetime. The data sample corresponds to an integrated luminosity of approximately 220 pb(-1) collected with the D0 detector at the Fermilab Tevatron Collider in 2002-2004. We reconstruct 337 signal candidates, from which we extract the B0s lifetime, tau(B0s)=1.444(+0.098)(-0.090)(stat)+/-0.020(sys) ps. We also report a measurement for the lifetime of the B0 meson using the exclusive decay B0-->J/psi(mu+mu-)K*0(892)(K+pi-). We reconstruct 1370 signal candidates, obtaining tau(B0)=1.473(+0.052)(-0.050)(stat)+/-0.023(sys) ps, and the ratio of lifetimes, tau(B0s)/tau(B0)=0.980(+0.076)(-0.071)(stat)+/-0.003(sys). PMID:15783550

  6. Production of Ξ{_c^0} and Ξ{_b} in Z decays and lifetime measurement of Ξ{_b}

    NASA Astrophysics Data System (ADS)

    DELPHI Collaboration

    2005-11-01

    The charmed strange baryon Ξ{_c^0} was searched for in the decay channel Ξ{_c^0} rightarrow Ξ^- π^ + , and the beauty strange baryon Ξ{_b} in the inclusive channel Ξ_b rightarrow Ξ- ell- bar{ν} X, using the 3.5 million hadronic Z events collected by the DELPHI experiment in the years 1992-1995. The Ξ^- was reconstructed through the decay Ξ^- rightarrow Λ π^-, using a constrained fit method for cascade decays. An iterative discriminant analysis was used for the Ξ{_c^0} and Ξ{_b} selection. The production rates were measured to be f_{Ξ{_c^0}} ×BR (Ξ{_c^0} rightarrow Ξ^- π^ + ) = (4.7 ± 1.4 (stat.) ± 1.1 (syst.))× 10^{-4} per hadronic Z decay, and BR (b rightarrow Ξ{_b}) ×BR (Ξ{_b} rightarrow Ξ^- ell^- X) = (3.0 ± 1.0(stat.) ± 0.3(syst.))× 10^{-4} for each lepton species (electron or muon). The lifetime of the Ξ{_b} baryon was measured to be tau_{Ξ{_b}} = 1.45{^{ + 0.55}_{-0.43}} (stat.) ± 0.13 (syst.) ps. A combination with the previous DELPHI lifetime measurement gives tau_{Ξ{_b}} = 1.48{^{ + 0.40}_{-0.31}} (stat.) ± 0.12 (syst.) ps.

  7. Measurement of the B+-_c Meson Lifetime Using B+-_c -> J/psi + l+- + X Decays

    SciTech Connect

    Hartz, Mark Patrick; /Pittsburgh U.

    2008-11-01

    This thesis describes a measurement of the average proper decay time of the B{sub c}{sup {+-}} mesons, the ground state of bottom and charm quark bound states. The lifetime measurement is carried out in the decay modes B{sub c}{sup {+-}} {yields} J/{psi} + e{sup {+-}} + X and B{sub c}{sup {+-}} {yields} J/{psi} + {mu}{sup {+-}} + X, where the J/{psi} decays as J/{psi} {yields} {mu}{sup +}{mu}{sup -} and the X are unmeasured particles such as {nu}{sub e} or {nu}{sub {mu}}. The data are collect by the CDF II detector which measures the properties of particles created in {radical}s = 1.96 TeV p{bar p} collisions delivered by the Fermilab Tevatron. This measurement uses {approx} 1 fb{sup -1} of integrated luminosity. The measured average proper decay time of B{sub c}{sup {+-}} mesons, {tau} = 0.475{sub -0.049}{sup +0.053}(stat.) {+-} 0.018(syst.) ps, is competitive with the most precise measurements in the world and confirms previous measurements and theoretical predictions.

  8. Measurement of the Ds lifetime

    NASA Astrophysics Data System (ADS)

    Fermilab E791 Collaboration; Aitala, E. M.; Amato, S.; Anjos, J. C.; Appel, J. A.; Ashery, D.; Banerjee, S.; Bediaga, I.; Blaylock, G.; Bracker, S. B.; Burchat, P. R.; Burnstein, R. A.; Carter, T.; Carvalho, H. S.; Copty, N. K.; Cremaldi, L. M.; Darling, C.; Denisenko, K.; Fernandez, A.; Fox, G. F.; Gagnon, P.; Gobel, C.; Gounder, K.; Halling, A. M.; Herrera, G.; Hurvits, G.; James, C.; Kasper, P. A.; Kwan, S.; Langs, D. C.; Leslie, J.; Lundberg, B.; Maytal-Beck, S.; Meadows, B.; de Mello Neto, J. R. T.; Mihalcea, D.; Milburn, R. H.; de Miranda, J. M.; Napier, A.; Nguyen, A.; D'Oliveira, A. B.; O'Shaughnessy, K.; Peng, K. C.; Perera, L. P.; Purohit, M. V.; Quinn, B.; Radeztsky, S.; Rafatian, A.; Reay, N. W.; Reidy, J. J.; Dos Reis, A. C.; Rubin, H. A.; Sanders, D. A.; Santha, A. K. S.; Santoro, A. F. S.; Schwartz, A. J.; Sheaff, M.; Sidwell, R. A.; Slaughter, A. J.; Sokoloff, M. D.; Solano, J.; Stanton, N. R.; Stefanski, R. J.; Stenson, K.; Summers, D. J.; Takach, S.; Thorne, K.; Tripathi, A. K.; Watanabe, S.; Weiss-Babai, R.; Wiener, J.; Witchey, N.; Wolin, E.; Yang, S. M.; Yi, D.; Yoshida, S.; Zaliznyak, R.; Zhang, C.

    1999-01-01

    We report the results of a precise measurement of the Ds meson lifetime based on 1662+/-56 fully reconstructed Ds-->φπ decays, from the charm hadroproduction experiment E791 at Fermilab. Using an unbinned maximum likelihood fit, we measure the Ds lifetime to be 0.518+/-0.014+/-0.007 ps. The ratio of the measured Ds lifetime to the world average D0 lifetime [1] is 1.25+/-0.04. This result differs from unity by six standard deviations, indicating significantly different lifetimes for the Ds and the D0.

  9. A measurement of the lifetime and mixing frequency of neutral B mesons with semileptonic decays in the BABAR detector

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsiang

    The neutral B meson, consisting of a b quark and an anti-d quark, can mix (oscillate) to its own anti-particle through second-order weak interactions. The measurement of the mixing frequency can constrain the quark mixing matrix in the Standard Model of particle physics. The PEP-II B-factory at the Stanford Linear Accelerator Center provides a very large data sample that enables us to make measurements with much higher precisions than previous measurements, and to probe physics beyond the Standard Model. The lifetime of the neutral B meson tB0 and the B0-B¯ 0 mixing frequency Deltamd are measured with a sample of approximately 14,000 exclusively reconstructed B 0 → D*-ℓ +nuℓ signal events, selected from 23 million BB¯ pairs recorded at the Upsilon(4S) resonance with the BABAR detector at the asymmetric-energy e +e- collider, PEP-II. The decay position of the other B is determined inclusively, and its b-quark flavor at the time of decay is determined (tagged) with the charge of tracks in the final state, where identified leptons or kaons give the most information. The decay time difference of two B mesons in the event is calculated from the distance between their decay vertices and the Lorentz boost of the center of mass. The lifetime and mixing frequency, along with wrong-tag probabilities and the time-difference resolution function, are measured simultaneously with an unbinned maximum-likelihood fit that uses, for each event, the measured difference in B decay times (Deltat), the calculated uncertainty on Deltat, the signal and background probabilities, and b-quark tagging for the other B meson. The results are tB0=1.523 +0.024-0.023+/-0.022 ps Dmd=0.492+/-0.018+/- 0.013ps-1, where the first error is statistical and the second is systematic. The statistical correlation coefficient between tB0 and Deltamd is -0.22. This result is consistent with the current world average values, the total errors are comparable with other most-precise measurements.

  10. Measurement of the B{sup +} and B{sup 0} lifetimes from semileptonic decays at SLD

    SciTech Connect

    1996-07-01

    The lifetimes of B{sup +} and B{sup 0} mesons have been measured using a sample of 150,000 hadronic Z{sup 0} decays collected by the SLD experiment at the SLC between 1993 and 1995. The analysis identifies the semileptonic decays of B mesons with high (p,p{sub t}) leptons and reconstructs the B meson decay length and charge by vertexing the lepton with a partially reconstructed D meson. This method results in a sample of 634 (584) charged (neutral) decays with high charge purity. A maximum likelihood fit finds: {tau}{sub B{sup +}} = 1.60{sub {minus}0.11}{sup +0.12}(stat) {+-} 0.06(syst) ps, {tau}{sub B{sup 0}} = 1.55{sub {minus}0.12}{sup +0.13}(stat) {+-} 0.09(syst) ps, and the ratio {tau}{sub B{sup +}}/{tau}{sub B{sup 0}} = 1.03{sub {minus}0.13}{sup +0.15}(stat) {+-} 0.08(syst).

  11. Measurement of the $B_c^{\\pm}$ meson lifetime using $B_c^{\\pm} \\to J/\\psi~\\pi^{\\pm}$ decays

    SciTech Connect

    Song, Hao

    2013-01-01

    This thesis describes a measurement of the lifetime of the B± c meson in an exclusive decay channel B± c → J/ ψ π±, where the J/ψ decays as J/ψ → μ+μ- . The measurement uses a data sample with an integrated luminosity of 6.7 fb-1 collected at CDF. This is the first measurement of the B± c meson lifetime in a hadronic channel and the measured lifetime, τ = 0.449 +0.054 -0.048(stat:) ± 0.019(syst:) ps, is in good agreement with previous results obtained from semileptonic decay channel and confirms previous measurements and theoretical predictions.

  12. Measurement of the Lambda0b lifetime in the decay lambda0b--> J/psiLambda0 with the D0 detector.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J-L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Anderson, S; Andrieu, B; Arnoud, Y; Askew, A; Asman, B; Atramentov, O; Autermann, C; Avila, C; Badaud, F; Baden, A; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Boehnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burnett, T H; Busato, E; Butler, J M; Bystricky, J; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Cho, D K; Choi, S; Christiansen, T; Christofek, L; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M-C; Crépé-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; da Motta, H; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Dean, S; Déliot, F; Delsart, P A; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Feligioni, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Freeman, W; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gardner, J; Gavrilov, V; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Y; Ginther, G; Golling, T; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Gris, Ph; Grivaz, J-F; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Harder, K; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Huang, J; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jonsson, P; Jöstlein, H; Juste, A; Kado, M M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Kau, D; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A; Kharzheev, Y M; Kim, K H; Klima, B; Klute, M; Kohli, J M; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Krzywdzinski, S; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kurca, T; Lager, S; Lahrichi, N; Landsberg, G; Lazoflores, J; Le Bihan, A-C; Lebrun, P; Lee, S W; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipaev, V V; Lipton, R; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Lubatti, H J; Lueking, L; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magerkurth, A; Magnan, A-M; Makovec, N; Mal, P K; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; Meder, D; Melanson, H L; Melnitchouk, A; Merkin, M; Merritt, K W; Meyer, A; Miettinen, H; Mihalcea, D; Mitrevski, J; Mokhov, N; Molina, J; Mondal, N K; Montgomery, H E; Moore, R W; Muanza, G S; Mulders, M; Mutaf, Y D; Nagy, E; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'dell, V; O'Neil, D C; Oguri, V; Oliveira, N; Oshima, N; Otero Y Garzón, G J; Padley, P; Parashar, N; Park, J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Perea, P M; Perez, E; Peters, O; Pétroff, P; Petteni, M; Phaf, L; Piegaia, R; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pope, B G; da Silva, W L Prado; Prosper, H B; Protopopescu, S; Przybycien, M B; Qian, J; Quadt, A; Quinn, B; Rani, K J; Rapidis, P A; Ratoff, P N; Reay, N W; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Schellman, H; Schieferdecker, P; Schmitt, C; Schukin, A A; Schwartzman, A; Schwienhorst, R; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shephard, W D; Shpakov, D; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Song, Y; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Steinbrück, G; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tentindo-Repond, S; Thomas, E; Thooris, B; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vlimant, J-R; Von Toerne, E; Vreeswijk, M; Vu Anh, T; Wahl, H D; Walker, R; Wang, L; Wang, Z-M; Warchol, J; Warsinsky, M; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; White, A; White, V; Whiteson, D; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xu, Q; Xuan, N; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G; Zylberstejn, A

    2005-03-18

    We present measurements of the Lambda(0)(b) lifetime in the exclusive decay channel Lambda(0)(b)--> J/psiLambda(0), with J/psi--> mu(+)mu(-) and Lambda(0)--> ppi(-), the B0 lifetime in the decay B0-->J/psiK(0)(S) with J/psi--> mu(+)mu(-) and K(0)(S)-->pi(+)pi(-), and the ratio of these lifetimes. The analysis is based on approximately 250 pb(-1) of data recorded with the D0 detector in pp collisions at sqrt[s] = 1.96 TeV. The Lambda(0)(b) lifetime is determined to be tau(Lambda(0)(b)) = 1.22(+0.22)(-0.18)(stat) +/- 0.04(syst) ps, the B0 lifetime tau(B0) = 1.40(+0.11)(-0.10)(stat) +/- 0.03(syst) ps, and the ratio tau(Lambda(0)(b))/tau(B0) = 0.87(+0.17)(-0.14)(stat) +/- 0.03(syst). In contrast with previous measurements using semileptonic decays, this is the first determination of the Lambda(0)(b) lifetime based on a fully reconstructed decay channel. PMID:15783476

  13. Simulation free measurement of the B+ → $\\bar{D}$0π+ lifetime using decays selected using displaced tracks

    SciTech Connect

    Malde, Sneha

    2008-01-01

    The lifetime of the B± meson is measured using the decay channel B+ → $\\bar{D}$0π+. The measurement is made using approximately 1.0 fb-1 of Tevatron proton-anti-proton collision data at √s = 1.96 TeV collected by the CDF detector. The data were collected using impact parameter based triggers that were designed to select events with a secondary vertex. The trigger selection criteria result in data rich in a variety of B hadron decays, but intrinsically bias the lifetime distribution of the collected signal events. The traditional way to compensate for the bias is to use information from simulation. Presented here is a new method for correction of the lifetime bias using an analytical technique that uses information from the data only. This eliminates measurement uncertainty due to data and simulation agreement, ultimately resulting in a smaller systematic measurement uncertainty. The B± lifetime measurement is the first measurement using this new technique and demonstrates its potential for use in future measurements. The B± lifetime is measured to be τ(B±) = 1.662 ± 0.023(stat) ± 0.015(syst)ps.

  14. Lifetime constraints for late dark matter decay

    SciTech Connect

    Bell, Nicole F.; Galea, Ahmad J.; Petraki, Kalliopi

    2010-07-15

    We consider a class of late-decaying dark matter models, in which a dark matter particle decays to a heavy stable daughter of approximately the same mass, together with one or more relativistic particles which carry away only a small fraction of the parent rest mass. Such decays can affect galactic halo structure and evolution, and have been invoked as a remedy to some of the small-scale structure formation problems of cold dark matter. There are existing stringent limits on the dark matter lifetime if the decays produce photons. By considering examples in which the relativistic decay products instead consist of neutrinos or electron-position pairs, we derive stringent limits on these scenarios for a wide range of dark matter masses. We thus eliminate a sizable portion of the parameter space for these late-decay models if the dominant decay channel involves standard model final states.

  15. Measurement of the B(s)(0) lifetime in the flavor-specific decay channel B(s)(0)→D(s)(-)μ(+)νX.

    PubMed

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Begalli, M; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Borysova, M; Brandt, A; Brandt, O; Brock, R; Bross, A; Brown, D; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Das, A; Davies, G; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, V N; Fauré, A; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Gavrilov, V; Geng, W; Gerber, C E; Gershtein, Y; Ginther, G; Gogota, O; Golovanov, G; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Jeong, M S; Jesik, R; Jiang, P; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kajfasz, E; Karmanov, D; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Mansour, J; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nguyen, H T; Nunnemann, T; Orduna, J; Osman, N; Osta, J; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santos, A S; Savage, G; Savitskyi, M; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Suter, L; Svoisky, P; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, S; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J M; Zennamo, J; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2015-02-13

    We present an updated measurement of the B(s)(0) lifetime using the semileptonic decays B(s)(0)→D(s)(-)μ(+)νX, with D(s)(-)→ϕπ(-) and ϕ→K(+)K(-) (and the charge conjugate process). This measurement uses the full Tevatron Run II sample of proton-antiproton collisions at √[s]=1.96  TeV, comprising an integrated luminosity of 10.4  fb(-1). We find a flavor-specific lifetime τ(fs)(B(s)(0))=1.479±0.010(stat)±0.021(syst)  ps. This technique is also used to determine the B(0) lifetime using the analogous B(0)→D(-)μ(+)νX decay with D(-)→ϕπ(-) and ϕ→K(+)K(-), yielding τ(B(0))=1.534±0.019(stat)±0.021(syst)  ps. Both measurements are consistent with the current world averages, and the B(s)(0) lifetime measurement is one of the most precise to date. Taking advantage of the cancellation of systematic uncertainties, we determine the lifetime ratio τ(fs)(B(s)(0))/τ(B(0))=0.964±0.013(stat)±0.007(syst). PMID:25723207

  16. Measurement of the B0s lifetime in the flavor-specific decay channel B0s → D-sμ+νX

    DOE PAGESBeta

    Abazov, Victor Mukhamedovich

    2015-02-09

    We present an updated measurement of the B0s lifetime using the semileptonic decays B0s → D-sμ+νX, with D–s → π– and Φ → K+K– (and the charge conjugate process). This measurement uses the full Tevatron Run II sample of proton-antiproton collisions at √s = 1.96 TeV, comprising an integrated luminosity of 10.4 fb–1. We find a flavor-specific lifetime τfs(B0s) = 1.479 ± 0.010(stat) ± 0.021(syst) ps. This technique is also used to determine the B0 lifetime using the analogous B0 → D–μ+νX decay with D– → Φπ– and Φ → K+K–, yielding τ(B0) = 1.534 ± 0.019(stat) ± 0.021(syst) ps.more » Both measurements are consistent with the current world averages, and the B0s lifetime measurement is one of the most precise to date. As a result, taking advantage of the cancellation of systematic uncertainties, we determine the lifetime ratio τfs(B0s)/τ(B0) = 0.964 ± 0.013(stat) ± 0.007(syst).« less

  17. Measurement of the Lambda/b lifetime in Lambda/b to Lambda/c pi decays at the Collider Detector at Fermilab

    SciTech Connect

    Mumford, Jonathan Reid; /Johns Hopkins U.

    2008-10-01

    The lifetime of the {Lambda}{sub b}{sup 0} baryon (consisting of u, d and b quarks) is the theoretically most interesting of all b-hadron lifetimes. The lifetime of {Lambda}{sub b}{sup 0} probes our understanding of how baryons with one heavy quark are put together and how they decay. Experimentally however, measurements of the {Lambda}{sub b}{sup 0} lifetime have either lacked precision or have been inconsistent with one another. This thesis describes the measurement of {Lambda}{sub b}{sup 0} lifetime in proton-antiproton collisions with center of mass energy of 1.96 TeV at Fermilab's Tevatron collider. Using 1070 {+-} 60pb{sup -1} of data collected by the Collider Detector at Fermilab (CDF), a clean sample of about 3,000 fully-reconstructed {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{pi}{sup -} decays (with {Lambda}{sub c}{sup +} subsequently decaying via {Lambda}{sub c}{sup +} {yields} p{sup +} K{sup -} {pi}{sup +}) is used to extract the lifetime of the {Lambda}{sub b}{sup 0} baryon, which is found to be c{tau}({Lambda}{sub b}{sup 0}) = 422.8 {+-} 13.8(stat) {+-} 8.8(syst){micro}m. This is the most precise measurement of its kind, and is even better than the current world average. It also settles the recent controversy regarding the apparent inconsistency between CDF's other measurement and the rest of the world.

  18. Measurement of the B-cmeson lifetime in the decay B-c→J/ψπ⁻

    SciTech Connect

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell’Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.

    2013-01-02

    The lifetime of the B-c meson is measured using 272 exclusive B-c→J/ψ(→μ⁺μ⁻)π⁻ decays reconstructed in data from proton-antiproton collisions corresponding to an integrated luminosity of 6.7 fb⁻¹ recorded by the CDF II detector at the Fermilab Tevatron. The lifetime of the B-cmeson is measured to be τ(B-c)=0.452±0.048(stat)±0.027(syst) ps. This is the first measurement of the B-c meson lifetime in a fully reconstructed hadronic channel, and it agrees with previous results and has comparable precision.

  19. Measurement of the B_d0 lifetime using B_d0 to J/psi K0_S decays at Dzero

    SciTech Connect

    Balm, Paul W

    2004-12-01

    This thesis describes a measurement of the B{sub d}{sup 0} lifetime in the decay to (J/{psi}K{sub S}{sup 0}), using 114 pb{sup -1} of data collected by the D0 experiment at the Tevatron from October 15, 2002, to June 10, 2003. The measurement is motivated by the tests of the Standard Model that it makes possible. These include tests of Heavy Quark Effective Theory predicting B-meson lifetimes, and of the complex phase in the CKM-matrix as the source of CP-violation in B{sub d}{sup 0} decays to (J/{psi}K{sub S}{sup 0}).

  20. Lifetime measurements in 180Pt

    NASA Astrophysics Data System (ADS)

    Chen, Q. M.; Wu, X. G.; Chen, Y. S.; Li, C. B.; Gao, Z. C.; Li, G. S.; Chen, F. Q.; He, C. Y.; Zheng, Y.; Hu, S. P.; Zhong, J.; Wu, Y. H.; Li, H. W.; Luo, P. W.

    2016-04-01

    Lifetimes of the yrast states in 180Pt have been measured from 4+ to 8+ using the recoil distance Doppler-shift technique in the coincidence mode. These states were populated by the reaction 156Gd(28Si,4 n )180Pt at a beam energy of 144 MeV. The differential decay curve method was applied to determine the lifetimes from experimental coincidence data. The B (E 2 ) values extracted from lifetimes increase with increasing spin, implying rotor behavior, but do not show the typical shape coexistence where the B (E 2 ) values present a rapid increase at very low spins. Calculations based on the triaxial projected shell model were performed for the yrast states in 180Pt and the results of both energies and E 2 transition probabilities reproduce the experimental data very well. The result also shows that a better description of the yrast band in 180Pt requires consideration of the γ degree of freedom.

  1. Effective lifetime measurements in the Bs0→K+K-, B0→K+π- and Bs0→π+K- decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Esen, S.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R. F.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani', S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Mountain, R.; Muheim, F.; Müller, K.; Muresan, R.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-09-01

    Measurements of the effective lifetimes in the Bs0→K+K-, B0→K+π- and Bs0→π+K- decays are presented using 1.0 fb of pp collision data collected at a centre-of-mass energy of 7 TeV by the LHCb experiment. The analysis uses a data-driven approach to correct for the decay time acceptance. The measured effective lifetimes are τBs0→K+K-=1.407±0.016 (stat)±0.007 (syst) ps, τB0→K+π-=1.524±0.011 (stat)±0.004 (syst) ps, τBs0→π+K-=1.60±0.06 (stat)±0.01 (syst) ps. This is the most precise determination to date of the effective lifetime in the Bs0→K+K- decay and provides constraints on contributions from physics beyond the Standard Model to the Bs0 mixing phase and the width difference ΔΓs.

  2. Bs0 lifetime measurement in the CP-odd decay channel Bs0→J/ψ f0(980)

    DOE PAGESBeta

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; et al

    2016-07-06

    Here, the lifetime of the Bs0 meson is measured in the decay channel Bs0→J/ψπ+π- with 880 ≤ Mπ+π- ≤ 1080 MeV/c2, which is mainly a CP-odd state and dominated by the f0(980) resonance. In 10.4 fb-1 of data collected with the D0 detector in Run II of the Tevatron, the lifetime of the Bs0 meson is measured to be τ(Bs0) = 1.70 ± 0.14(stat) ± 0.05(syst) ps. Neglecting CP violation in Bs0/more » $$\\bar{B}$$0s mixing, the measurement can be translated into the width of the heavy mass eigenstate of the Bs0, ΓH = 0.59 ± 0.05(stat) ± 0.02(syst) ps-1.« less

  3. Bs0 lifetime measurement in the C P -odd decay channel Bs0→J /ψ f 0(980 )

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brochmann, M.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Hernández-Villanueva, M.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.

    2016-07-01

    The lifetime of the Bs0 meson is measured in the decay channel Bs0→J /ψ π+π- with 880 ≤Mπ+π-≤1080 MeV /c2 , which is mainly a C P -odd state and dominated by the f0(980 ) resonance. In 10.4 fb-1 of data collected with the D0 detector in Run II of the Tevatron, the lifetime of the Bs0 meson is measured to be τ (Bs0)=1.70 ±0.14 (stat ) ±0.05 (syst) ps . Neglecting C P violation in Bs0/B¯s0 mixing, the measurement can be translated into the width of the heavy mass eigenstate of the Bs0, ΓH=0.59 ±0.05 (stat ) ±0.02 (syst ) ps-1 .

  4. $$B^{0}_{s}$$ Lifetime Measurement in the CP-odd Decay Channel $$B^{0}_{s} \\to J/\\psi\\mbox{ }f_{0}(980)$$

    DOE PAGESBeta

    Abazov, V. M.

    2016-07-06

    Here, the lifetime of the Bs0 meson is measured in the decay channel Bs0→J/ψπ+π- with 880 ≤ Mπ+π- ≤ 1080 MeV/c2, which is mainly a CP-odd state and dominated by the f0(980) resonance. In 10.4 fb-1 of data collected with the D0 detector in Run II of the Tevatron, the lifetime of the Bs0 meson is measured to be τ(Bs0) = 1.70 ± 0.14(stat) ± 0.05(syst) ps. Neglecting CP violation in Bs0/more » $$\\bar{B}$$0s mixing, the measurement can be translated into the width of the heavy mass eigenstate of the Bs0, ΓH = 0.59 ± 0.05(stat) ± 0.02(syst) ps-1.« less

  5. Measurement of branching ratio and B0s lifetime in the decay B0s → J/ψ f0(980) at CDF

    DOE PAGESBeta

    Aaltonen, T.

    2011-09-30

    We present a study of Bs0 decays to the CP-odd final state J/ψ f0(980) with J/ψ → µ+µ- and f0(980) → π+π-. Using pp̄ collision data with an integrated luminosity of 3.8 fb-1 collected by the CDF II detector at the Tevatron we measure a Bs0 lifetime of τ(B0s → J/ψ f0(980)) = 1.70-0.11+0.12(stat) ± 0.03(syst) ps. This is the first measurement of the Bs0} lifetime in a decay to a CP eigenstate and corresponds in the standard model to the lifetime of the heavy Bs0 eigenstate. We also measure the product of branching fractions of B0s → J/ψ f0(980)more » and f0(980) → π+π- relative to the product of branching fractions of B0s → J/ψφ and φ→K+K- to be Rf0/ψ = 0.257 ± 0.020(stat) ± 0.014(syst), which is the most precise determination of this quantity to date.« less

  6. Measurement of the $\\Lambda^0_b$ lifetime in the exclusive decay $\\Lambda^0_b \\rightarrow J/\\psi \\Lambda^0$ with the \\D0~detector

    SciTech Connect

    Heredia-De La Cruz, Ivan

    2012-06-01

    In this work we report a measurement of the Λ0b baryon lifetime using the exclusive decay Λ0b→ J/ ΨΛ0. The B0 meson lifetime is also measured in the topologically similar channel B0→ J/ K0S , which provides a crosscheck of the measurement procedure, and allows a direct determination of the ratio of the Λ0b and the B0 lifetimes. The data used in this analysis were collected with the DØ detector during the complete Run II of the Fermilab Tevatron Collider, from 2002 to 2011, and correspond to an integrated luminosity of 10.4 fb-1 of proton-antiproton collisions at a center of mass energy √s = 1.96 TeV. We obtain τ (Λ0b ) = 1.303 ± 0.075 (stat.) ± 0.035 (syst.) ps, τ (B0) = 1.508±0.025 (stat.)±0.043 (syst.) ps and τ (Λ0b )/τ (B0) = 0.864± 0.052 (stat.)±0.033 (syst.). These measurements supersede previous results of the DØ Collaboration using the same decay channels. Our measurement of the lifetime ratio is in excellent agreement with theoretical predictions and compatible with the current world-average, but differs with the latest measurement of the CDF Collaboration in more than 2 standard deviations.

  7. Measurement of the lifetime of the Bc+ meson using the Bc+ → J / ψπ+ decay mode

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R. C. M.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Domenico, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Orlandea, M.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M. P.; Williams, M.; Wilschut, H. W.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-03-01

    The difference in total widths between the Bc+  and B+ mesons is measured using a data sample corresponding to an integrated luminosity of 3.0fb-1  collected by the LHCb experiment in 7 and 8 TeV centre-of-mass energy proton-proton collisions at the LHC. Through the study of the time evolution of Bc+ → J / ψπ+ and B+ → J / ψK+ decays, the width difference is measured to be

  8. Measurement of the tau lepton lifetime

    NASA Astrophysics Data System (ADS)

    Decamp, D.; Deschizeaux, B.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Alemany, R.; Ariztizabal, F.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Mir, Ll. M.; Pacheco, A.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Gao, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Atwood, W. B.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Bossi, F.; Boudreau, J.; Burnett, T. H.; Drevermann, H.; Forty, R. W.; Hagelberg, R.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Kasemann, M.; Knobloch, J.; Lançon, E.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Mattison, T.; Meinhard, H.; Menary, S.; Meyer, T.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Nash, J.; Palazzi, P.; Perlas, J. A.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Roth, A.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; Bencheikh, A. M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Pietrzyk, B.; Proriol, J.; Prulhière, F.; Stimpfl, G.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Simopoulou, E.; Vayaki, A.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Gamess, A.; Harvey, J.; Orteu, S.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Altoon, B.; Boyle, O.; Colrain, P.; Halley, A. W.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geiges, R.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Taylor, G.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Barczewski, T.; Kleinknecht, K.; Raab, J.; Renk, B.; Roehn, S.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wolf, B.; Aubert, J.-J.; Benchouk, C.; Bernard, V.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Papalexiou, S.; Payre, P.; Qian, Z.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Becker, H.; Blum, W.; Brown, D.; Cattaneo, P.; Cowan, G.; Dehning, B.; Dietl, H.; Dydak, F.; Fernandez-Bosman, M.; Frank, M.; Hansl-Kozanecka, T.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Pan, Y.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Takashima, M.; Thomas, J.; Wolf, G.; Bertin, V.; Boucrot, J.; Callot, O.; Chen, X.; Cordier, A.; Davier, M.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Zomer, F.; Abbaneo, D.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Gatto, C.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Medacalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Wildish, T.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Kozanecki, W.; Lemaire, M. C.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Martin, J.; Parker, D.; Reeves, P.; Thompson, L. F.; Barberio, E.; Brandt, S.; Grupen, C.; Mirabito, L.; Schäfer, U.; Seywerd, H.; Ganis, G.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Tang, Y. H.; Walsh, A. M.; Weber, F. V.; Whitney, M. H.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1992-04-01

    The mean lifetime of the τ lepton is measured from a sample of Z-->τ+τ- decays observed with the ALEPH detector at LEP in 1989 and 1990. A new technique is applied to the events containing two one-prong decays: the lifetime is measured from the observed correlation between the impact parameters and azimuthal angles of the two charged tracks. The lifetime is also determined from measured vertex displacements for three-prong decays and track impact parameters for one-prong decays. The combined results is ττ=291 +/- 13 (stat) +/-6 (syst.) fs. Supported by the US Department of Energy, contract DE-AC02-76ER00881.

  9. Interpretation of fluorescence decays in proteins using continuous lifetime distributions.

    PubMed Central

    Alcala, J R; Gratton, E; Prendergast, F G

    1987-01-01

    The decay of the tryptophanyl emission in proteins is often complex due to the sensitivity of the tryptophan excited state to its surroundings. The traditional analysis of the decay curve using exponential components is based on the identification of each component with a particular protein conformation. An alternative approach assumes that proteins can exhibit a large number of conformations and that, at room temperature, the interconversion rate between conformations can be of the same order of magnitude as the excited-state decay rate. Following this assumption, the analysis of the protein emission was performed using continuous distributions of lifetime values. The number of average protein conformations, the range of mobility around each conformation, and the rate of interconversion between conformations determines the characteristics of the lifetime distribution. The fluorescence decay from some single tryptophan proteins was measured using multifrequency phase fluorometry and analyzed using a sum of exponentials, unimodal and bimodal probability-density functions, and the analytical form for lifetime distribution obtained for a model in which the tryptophan residue can move in a single potential well. For ribonuclease T1 and neurotoxin variant 3, the sum of two exponentials and bimodal probability-density functions gave comparable results, whereas for phospholipase A2, the description of the decay required three exponentials or bimodal probability-density functions. Also the temperature dependence of the fluorescence decay was investigated. It was found that the lifetime distribution was broader and shifted toward longer lifetime values at lower temperature. The analysis of the decay of tryptophan in buffer and of some tryptophan derivatives gave single-exponential decays. The single-potential well lifetime distribution, which has only three adjustable parameters, gave good fits for all cases investigated, but in the case of phopholipase A2, the temperature

  10. Measurement of the D(s)+ lifetime.

    PubMed

    Link, J M; Yager, P M; Anjos, J C; Bediaga, I; Castromonte, C; Machado, A A; Magnin, J; Massafferi, A; de Miranda, J M; Pepe, I M; Polycarpo, E; dos Reis, A C; Carrillo, S; Casimiro, E; Cuautle, E; Sánchez-Hernández, A; Uribe, C; Vázquez, F; Agostino, L; Cinquini, L; Cumalat, J P; O'Reilly, B; Segoni, I; Stenson, K; Butler, J N; Cheung, H W K; Chiodini, G; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E; Kasper, P H; Kreymer, A E; Kutschke, R; Wang, M; Benussi, L; Bertani, M; Bianco, S; Fabbri, F L; Pacetti, S; Zallo, A; Reyes, M; Cawlfield, C; Kim, D Y; Rahimi, A; Wiss, J; Gardner, R; Kryemadhi, A; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Cho, K; Park, H; Alimonti, G; Barberis, S; Boschini, M; Cerutti, A; D'Angelo, P; DiCorato, M; Dini, P; Edera, L; Erba, S; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Milazzo, L; Moroni, L; Pedrini, D; Pontoglio, C; Prelz, F; Rovere, M; Sala, S; Davenport, T F; Arena, V; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Pegna, D Lopes; Merlo, M M; Pantea, D; Ratti, S P; Riccardi, C; Vitulo, P; Göbel, C; Hernandez, H; Lopez, A M; Mendez, H; Paris, A; Quinones, J; Ramirez, J E; Zhang, Y; Wilson, J R; Handler, T; Mitchell, R; Engh, D; Hosack, M; Johns, W E; Luiggi, E; Moore, J E; Nehring, M; Sheldon, P D; Vaandering, E W; Webster, M; Sheaff, M

    2005-07-29

    A high statistics measurement of the D(s)+ lifetime from the Fermilab fixed-target FOCUS photoproduction experiment is presented. We describe the analysis of the two decay modes, D(s)+ --> phi(1020)pi+ and D(s)+ -->K*(892)0K+, used for the measurement. The measured lifetime is 507.4 +/- 5.5(stat) +/- 5.1(syst) fs using 8961 +/- 105 D(s)+ --> phi(1020)pi+ and 4680 +/- 90 D(s)+ --> K*(892)0K+ decays. This is a significant improvement over the present world average. PMID:16090867

  11. Lifetime measurements for bottom hadrons

    SciTech Connect

    Wolf, G.

    1984-09-01

    The review of lifetime measurements of bottom hadrons begins with a first measurement by JADE, followed by similar measurements by MAC and MKII groups. New MAC data are reviewed based on a total of 75,000 multihadron events taken at a c.m. energy of 29 GeV. According to Monte Carlo calculations, 18% of the lepton candidates stem from charm decay and roughly 30% were misidentified hadrons. DELCO studied electrons obtained from 42,000 multihadron events at 29 GeV. The electrons were identified by means of Cerenkov counters. JADE analayzed 22,000 multihadron events at 35 GeV. Data were analyzed using two methods - one using a sample of b-enriched events, and the other using weighted distributions. The TASSO results were obtained with two different configurations of the detector - one of which used a drift chamber and the other a vertex detector. (LEW)

  12. Measurement of the τ lifetime at SLD

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abt, I.; Ahn, C. J.; Akagi, T.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A. O.; Ben-David, R.; Benvenuti, A. C.; Bienz, T.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bolton, T.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Busza, W.; Calcaterra, A.; Caldwell, D. O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H. O.; Coller, J. A.; Cook, V.; Cotton, R.; Cowan, R. F.; Coyne, D. G.; D'oliveira, A.; Damerell, C. J.; Daoudi, M.; de Sangro, R.; de Simone, P.; dell'orso, R.; Dima, M.; Du, P. Y.; Dubois, R.; Eisenstein, B. I.; Elia, R.; Etzion, E.; Falciai, D.; Fero, M. J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G. D.; Hart, E. L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Hwang, H.; Iwasaki, Y.; Jackson, D. J.; Jacques, P.; Jaros, J.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kendall, H. W.; Kim, Y.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Labs, J. F.; Langston, M.; Lath, A.; Lauber, J. A.; Leith, D. W.; Liu, M. X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Mours, B.; Müller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L. S.; Panvini, R. S.; Park, H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Rensing, P. E.; Rochester, L. S.; Rothberg, J. E.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schaffner, S. F.; Schalk, T.; Schindler, R. H.; Schneekloth, U.; Schumm, B. A.; Seiden, A.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Shapiro, S. L.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Snyder, J. A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Torrence, E.; Turk, J. D.; Usher, T.; Va'vra, J.; Vannini, C.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, S. R.; Waite, A. P.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, D. A.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Woods, M.; Word, G. B.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zeitlin, C.; Zhang, Z.; Zhou, J.

    1995-11-01

    A measurement of the lifetime of the τ lepton has been made using a sample of 1671 Z0-->τ+τ- decays collected by the SLD detector at the SLC. The measurement benefits from the small and stable collision region at the SLC and the precision pixel vertex detector of the SLD. Three analysis techniques have been used: decay length, impact parameter, and impact parameter difference methods. The combined result is ττ=297+/-9 (stat)+/-5(syst) fs.

  13. Measurements of the b baryon lifetime

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, L.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Cassel, D.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Engelhardt, A.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Martin, E. B.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Dorris, S. J.; Halley, A. W.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Morton, W. T.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; Wanke, R.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Thulasidas, M.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Settles, R.; Seywerd, H.; Stierlin, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Gambino, D.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, L. M.; Perrodo, P.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1995-02-01

    Using about 1.5 million hadronic Z decays recorded with the ALEPH detector, the lifetime of the b baryons has been measured using two independent data samples. From a maximum likelihood fit to the impact parameter distribution of leptons in 519 Λℓ - combinations containing a b baryon sample of 290 decays, the measured b baryon lifetime is τb-baryon = 1.05 -0.11+0.12(stat)±0.09(syst) ps. The lifetime of the Λb0 baryon from a maximum likelihood fit to the proper time distribution of 58 Λc+ℓ - candidates containing a Λb0 sample of 44 decays, is τΛb0 = 1.02 -0.18+0.23(stat) ± 0.06(syst) ps.

  14. Measurement of D0- Dmacr 0 mixing using the ratio of lifetimes for the decays D0→K-π+, K-K+, and π-π+

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Del Amo Sanchez, P.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Walker, D.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.; Paar, H. P.; Rahatlou, S.; Sharma, V.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.; Clark, P. J.; Gradl, W.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Panduro Vazquez, W.; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Denig, A. G.; Fritsch, M.; Schott, G.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Firmino da Costa, J.; Grosdidier, G.; Höcker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; George, K. A.; di Lodovico, F.; Sacco, R.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; McLachlin, S. E.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Côté, D.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; de Nardo, G.; Lista, L.; Monorchio, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de La Vaissière, Ch.; Hamon, O.; Leruste, Ph.; Malclès, J.; Ocariz, J.; Perez, A.; Prendki, J.; Gladney, L.; Biasini, M.; Covarelli, R.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Biesiada, J.; Lau, Y. P.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Baracchini, E.; Cavoto, G.; Del Re, D.; di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.; Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; Hamel de Monchenault, G.; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Ye, S.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.; Neal, H.

    2008-07-01

    We present a measurement of D0- Dmacr 0 mixing parameters using the ratios of lifetimes extracted from a sample of D0 mesons produced through the process D*+→D0π+, which decay to K-π+, K-K+, or π-π+. The lifetimes of the CP-even, Cabibbo-suppressed modes K-K+ and π-π+ are compared with that of the CP-mixed, Cabibbo-favored mode K-π+ to obtain a measurement of yCP, which in the limit of CP conservation corresponds to the mixing parameter y. The analysis is based on a data sample of 384fb-1 collected by the BABAR detector at the PEP-II asymmetric-energy e+e- collider. We obtain yCP=[1.24±0.39(stat)±0.13(syst)]%, which is evidence for D0- Dmacr 0 mixing at the 3σ level, and ΔY=[-0.26±0.36(stat)±0.08(syst)]%, where ΔY constrains possible CP violation. Combining this result with a previous BABAR measurement of yCP obtained from a separate sample of D0→K-K+ events, we obtain yCP=[1.03±0.33(stat)±0.19(syst)]%.

  15. Measurement of the Omega0(c) lifetime

    SciTech Connect

    Iori, M.; Ayan, A.S.; Akgun, U.; Alkhazov, G.; Amaro-Reyes, J.; Atamantchouk, A.G.; Balatz, M.Y.; Blanco-Covarrubias, A.; Bondar, N.F.; Cooper, P.S.; Dauwe, L.J.; /Ball State U. /Bogazici U. /Carnegie Mellon U. /Rio de Janeiro, CBPF /Fermilab /Serpukhov, IHEP /Beijing, Inst. High Energy Phys. /Moscow, ITEP /Heidelberg, Max Planck Inst. /Moscow State U. /St. Petersburg, INP

    2007-01-01

    The authors report a precise measurement of the {Omega}{sub c}{sup 0} lifetime. The data were taken by the SELEX (E781) experiment using 600 GeV/c {Sigma}{sup -}, {pi}{sup -} and p beams. The measurement has been made using 83 {+-} 19 reconstructed {Omega}{sub c}{sup 0} in the {Omega}{sup -} {pi}{sup -}{pi}{sup +}{pi}{sup +} and {Omega}{sup -} {pi}{sup +} decay modes. The lifetime of the {Omega}{sub c}{sup 0} is measured to be 65 {+-} 13(stat) {+-} 9(sys) fs.

  16. B Physics Results from the Tevatron: Lifetimes and Rare Decays

    SciTech Connect

    Lewis, Jonathan; /Fermilab

    2009-01-01

    With data samples of up to 2 fb{sup -1} of p{bar p} interactions at {radical}s = 1960 GeV, the CDF and D0 experiments are beginning to make precision measurements of the lifetime of bottom hadrons not produced in e{sup +}e{sup -} colliders operating at the {Upsilon}(4S) and set limits on the branching ratios of many decay modes that are predicted to be rare or forbidden under the standard model. Both sets of measurements are providing limits on physics beyond the standard model.

  17. Measurements of heavy quark and lepton lifetimes

    SciTech Connect

    Jaros, J.A.

    1985-02-01

    The PEP/PETRA energy range has proved to be well-suited for the study of the lifetimes of hadrons containing the b and c quarks and the tau lepton for several reasons. First, these states comprise a large fraction of the total interaction rate in e/sup +/e/sup -/ annihilation and can be cleanly identified. Second, the storage rings have operated at high luminosity and so produced these exotic states copiously. And finally, thanks to the interplay of the Fermi coupling strength, the quark and lepton masses, and the beam energy, the expected decay lengths are in the 1/2 mm range and so are comparatively easy to measure. This pleasant coincidence of cleanly identified and abundant signal with potentially large effects has made possible the first measurements of two fundamental weak couplings, tau ..-->.. nu/sub tau/W and b ..-->.. cW. These measurements have provided a sharp test of the standard model and allowed, for the first time, the full determination of the magnitudes of the quark mixing matrix. This paper reviews the lifetime studies made at PEP during the past year. It begins with a brief review of the three detectors, DELCO, MAC and MARK II, which have reported lifetime measurements. Next it discusses two new measurements of the tau lifetime, and briefly reviews a measurement of the D/sup 0/ lifetime. Finally, it turns to measurements of the B lifetime, which are discussed in some detail. 18 references, 14 figures, 1 table.

  18. Measurement of the τ-lepton lifetime at Belle

    SciTech Connect

    Belous, K.; Shapkin, M.; Sokolov, A.; Adachi, I.; Aihara, H.; Asner, David M.; Aulchenko, V.; Bakich, A. M.; Bala, Anu; Bhuyan, Bipul; Bobrov, A.; Bondar, A.; Bonvicini, Giovanni; Bozek, A.; Bracko, Marko; Browder, Thomas E.; Cervenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, David A.; Dalseno, J.; Dolezal, Z.; Dutta, Deepanwita; Eidelman, S.; Epifanov, D.; Farhat, H.; Fast, James E.; Ferber, T.; Gaur, Vipin; Ganguly, Sudeshna; Garmash, A.; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hara, Takanori; Hayasaka, K.; Hayashii, H.; Hoshi, Y.; Hou, W. S.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwashita, T.; Jaegle, Igal; Julius, T.; Kato, E.; Kichimi, H.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, M. J.; Kim, Y. J.; Kinoshita, Kay; Ko, Byeong Rok; Kodys, P.; Korpar, S.; Krizan, Jean; Krokovny, Pavel; Kuhr, T.; Kuzmin, A.; Kwon, Y. J.; Lange, J. S.; Lee, S. H.; Libby, J.; Liventsev, Dmitri; Lukin, P.; Matvienko, D.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Mori, T.; Mussa, R.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Nayak, Minakshi; Nedelkovska, E.; Ng, C.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Olsen, Stephen L.; Ostrowicz, W.; Pakhlova, Galina; Park, C. W.; Park, H.; Park, H. K.; Pedlar, Todd; Pestotnik, Rok; Petric, Marko; Piilonen, Leo E.; Ritter, M.; Rohrken, M.; Rostomyan, A.; Ryu, S.; Sahoo, Himansu B.; Saito, Tomoyuki; Sakai, Yoshihide; Sandilya, Saurabh; Santel, Daniel; Santelj, Luka; Sanuki, T.; Savinov, Vladimir; Schneider, O.; Schnell, G.; Schwanda, C.; Semmler, D.; Senyo, K.; Seon, O.; Shebalin, V.; Shen, C. P.; Shibata, T. A.; Shiu, Jing-Ge; Shwartz, B.; Sibidanov, A.; Simon, F.; Sohn, Young-Soo; Stanic, S.; Stanic, M.; Steder, M.; Sumiyoshi, T.; Tamponi, Umberto; Tatishvili, Gocha; Teramoto, Y.; Trabelsi, K.; Tsuboyama, T.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Yuji; Uno, S.; Usov, Y.; Vahsen, Sven E.; Van Hulse, C.; Vanhoefer, P.; Varner, Gary; Varvell, K. E.; Vinokurova, A.; Vorobyev, V.; Wagner, M. N.; Wang, C. H.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamaoka, J.; Yamashita, Y.; Yashchenko, S.; Yook, Youngmin; Yuan, C. Z.; Zhang, Z. P.; Zhilich, V.; Zupanc, A.

    2014-01-23

    The lifetime of the Tau-lepton is measured using the process , where both leptons decay to . The result for the mean lifetime, based on of data collected with the Belle detector at the resonance and below, is . The first measurement of the lifetime difference between and is performed. The upper limit on the relative lifetime difference between positive and negative leptons is at 90% C.L. (That would make sense if ERICA could take RTF....)

  19. Measurement of the lifetime difference and cp-violating phase in B_s -> J/psi phi decays

    SciTech Connect

    Milnik, Michael; /Karlsruhe U., EKP

    2007-11-01

    Over the past decades the current theoretical description, the Standard Model of elementary particle physics, was solidified by many measurements as the basic theory describing fundamental particles and their interactions. It is extremely successful in explaining the high-precision data collected by experiments so far. The Standard Model includes several intrinsic parameters which have to be measured in experiments. Independent analyses of different physical processes can constrain those parameters. By combining those measurements physicists might be sensitive to physics beyond the Standard Model. If they are inconsistent it allows to get a hint on the theory that might supersede the Standard Model. The goal of the analysis presented in this thesis is to measure some of these parameters in the B{sub s} meson system. The B{sub s} meson, consisting of an anti-b and s quark, is not a pure mass eigenstate, thus allowing a B{sub s} meson to oscillate into its antiparticle via weak interacting processes. This is a general feature of any neutral meson. The history of meson mixing measurements is more then 50 years old. It was first observed in the kaon system. The oscillation in the B{sub d} system was measured very precisely by the B factories, whereas the oscillation frequency of the B{sub s} was measured with more than 5{sigma} significance last year by CDF and first evidence for mixing in the D0 system was presented only this year.

  20. Measurement of the Lambda(0)(b) lifetime in the exclusive decay Lambda(0)(b) -> J/psi Lambda(0) in p(p)over-bar collisions at root s=1.96 TeV

    SciTech Connect

    Abazov V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; et al.

    2012-06-07

    We measure the {Lambda}{sub b}{sup 0} lifetime in the fully reconstructed decay {Lambda}{sub b}{sup 0} {yields} J/{psi}{Lambda}{sup 0} using 10.4 fb{sup -1} of p{bar p} collisions collected with the D0 detector at {radical}s = 1.96 TeV. The lifetime of the topologically similar decay channel B{sup 0} {yields} J/{psi}K{sub S}{sup 0} is also measured. We obtain {tau}({Lambda}{sub b}{sup 0}) = 1.303 {+-} 0.075(stat) {+-} 0.035(syst) ps and {tau}(B{sup 0}) = 1.508 {+-} 0.025(stat) {+-} 0.043(syst) ps. Using these measurements, we determine the lifetime ratio of {tau}({Lambda}{sub b}{sup 0})/{tau}(B{sup 0}) = 0.864 {+-} 0.052(stat) {+-} 0.033(syst).

  1. Measurement of the Λb⁰ lifetime in the exclusive decay Λb⁰→J/ψΛ⁰ in pp̄ collisions at √s=1.96 TeV

    DOE PAGESBeta

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; et al

    2012-06-07

    We measure the Λ⁰b lifetime in the fully reconstructed decay Λ⁰b→J/ψΛ⁰ using 10.4 fb⁻¹ of pp̄ collisions collected with the D0 detector at √s=1.96 TeV. The lifetime of the topologically similar decay channel B⁰→J/ψK⁰S is also measured. We obtain τ(Λ⁰b)=1.303±0.075(stat)±0.035(syst) ps and τ(B⁰)=1.508±0.025(stat)±0.043(syst) ps. Using these measurements, we determine the lifetime ratio of τ(Λ⁰b)/τ(B⁰)=0.864±0.052(stat)±0.033(syst).

  2. Measurement of the Λblifetime in the exclusive decay Λb⁰→J/ψΛ⁰ in pp̄ collisions at √s=1.96 TeV

    SciTech Connect

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-González, J. A.; García-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nunnemann, T.; Obrant, G.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Sanghi, B.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Stutte, L.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.

    2012-06-07

    We measure the Λ⁰b lifetime in the fully reconstructed decay Λ⁰b→J/ψΛ⁰ using 10.4 fb⁻¹ of pp̄ collisions collected with the D0 detector at √s=1.96 TeV. The lifetime of the topologically similar decay channel B⁰→J/ψK⁰S is also measured. We obtain τ(Λ⁰b)=1.303±0.075(stat)±0.035(syst) ps and τ(B⁰)=1.508±0.025(stat)±0.043(syst) ps. Using these measurements, we determine the lifetime ratio of τ(Λ⁰b)/τ(B⁰)=0.864±0.052(stat)±0.033(syst).

  3. Determination of the b_s lifetime using hadronic decays

    SciTech Connect

    Deisher, A.J.; /LBL, Berkeley

    2008-07-01

    The authors present a measurement of the B{sub s}{sup 0} meson lifetime using fully and partially reconstructed hadronic decays B{sub s}{sup 0} {yields} D{sub s}{sup -} {pi}{sup +}(X) followed by D{sub s}{sup -} {yields} {phi}{pi}{sup -}. The data sample was recorded with the CDF II detector at the Fermilab Tevatron and corresponds to an integrated luminosity of 1.3 fb{sup -1} from p{bar p} collisions at {radical}s = 1.96 TeV.

  4. Measurement of the {tau} lifetime at SLD

    SciTech Connect

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Allen, N.J.; Ash, W.W.; Aston, D.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D`Oliveira, A.; Damerell, C.J.S.; Daoudi, M.; De Sangro, R.; De Simone, P.; Dell`Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Etzion, E.; Falciai, D.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jackson, D.J.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H.J.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, M.X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Reidy, J.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; (The SLD Collabor...

    1995-11-01

    A measurement of the lifetime of the {tau} lepton has been made using a sample of 1671 {ital Z}{sup 0}{r_arrow}{tau}{sup +}{tau}{sup {minus}} decays collected by the SLD detector at the SLC. The measurement benefits from the small and stable collision region at the SLC and the precision pixel vertex detector of the SLD. Three analysis techniques have been used: decay length, impact parameter, and impact parameter difference methods. The combined result is {tau}{sub {tau}}=297{plus_minus}9 (stat){plus_minus}5(syst) fs.

  5. A measurement of the b baryon lifetime

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Pacheco, A.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Atwood, W. B.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Bossi, F.; Boudreau, J.; Burnett, T. H.; Drevermann, H.; Forty, R. W.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lançon, E.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Mattison, T.; Meinhard, H.; Menary, S.; Meyer, T.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Roth, A.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; Bencheikh, A. M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Pietrzyk, B.; Proriol, J.; Prulhière, F.; Stimpfl, G.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Altoon, B.; Boyle, O.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geiges, R.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wolf, B.; Aubert, J.-J.; Benchouk, C.; Bernard, V.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Papalexiou, S.; Payre, P.; Qian, Z.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Bauer, C.; Blum, W.; Brown, D.; Cowan, G.; Dehning, B.; Dietl, H.; Dydak, F.; Fernandez-Bosman, M.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Takashima, M.; Thomas, J.; Wolf, G.; Bertin, V.; Boucrot, J.; Callot, O.; Chen, X.; Cordier, A.; Davier, M.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Zomer, F.; Abbaneo, D.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lemaire, M. C.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Reeves, P.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Grupen, C.; Mirabito, L.; Rivera, F.; Schäfer, U.; Ganis, G.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Whitney, M. H.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Aleph Collaboration

    1992-12-01

    In 451 000 hadronic Z 0 decays, recorded with the ALEPH detector at LEP, the yields of Λℓ - and Λℓ + combinations are measured. Semileptonic decays of b baryons result in a signal of 122± 18 (stat.) -23+22 (syst.) Λℓ - combinations. From a fit to the impact parameter distributions of the leptons in the Λℓ - sample, the lifetime of b baryons is measured to be 1.12 -0.29+0.32 (stat.) ±0.16 (syst.) ps.

  6. Measurement of the Bs0 lifetime

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Mattison, T.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Girone, M.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Johnson, S. D.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Fouque, G.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Levinthal, D.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Salomone, S.; Colrain, P.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thorn, S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Karger, C.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Drinkard, J.; Etienne, F.; Nicod, D.; Payre, P.; Ross, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Kimfn 19, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Valassi, A.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; Johnson, D. L.; March, P. V.; Medcalf, T.; Mir, Ll. M.; Quazi, I. S.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Pitis, L.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1994-02-01

    The lifetime of the Bs0 has been measured in a data sample of 8890000 hadronic events recorded with the ALEPH detector at LEP. After background subtraction 30.8 ± 6.9 events are attributed to the semileptonic decay of the Bs0 to a Ds- and an opposite-sign lepton. A maximum-likelihood fit to the distribution of the proper times of these events yields a Bs0 lifetime of τBs = 1.92 -0.35+0.45 ± 0.04 ps.

  7. B baryon production and decays and B hadron lifetimes

    SciTech Connect

    Donati, S.; /Pisa U. /INFN, Pisa

    2010-01-01

    In this paper we review the most recent results concerning B Baryons at CDF and D0, including the observation and the study of the properties of the {Omega}{sub b}{sup -}, {Xi}{sub b}{sup -} and {Sigma}{sub b}{sup {+-}(*)}, the observation of new {Lambda}{sub b}{sup 0} decay modes, and a new measurement of the lifetime of the b hadrons in decays with a J/{Psi}. The {Omega}{sub b}{sup -} baryon is observed through the decay chain {Omega}{sub b}{sup -} {yields} J/{Psi}{Omega}{sup -}, where J/{Psi} {yields} {mu}{sup +}{mu}{sup -}, {Omega}{sup -} {yields} {Lambda}K{sup -}, and {Lambda} {yields} pK{sup -}, using 4.2 fb{sup -1} of data. The {Omega}{sub b}{sup -} mass is measured to be 6054.4 {+-} 6.8(stat.) {+-} 0.9(syst.) MeV/c{sup 2}, and the lifetime 1.13{sub -0.40}{sup +0.53}(stat.) {+-} 0.02(syst.) ps. For the {Xi}{sub b}{sup -} the mass is measured 5790.9 {+-} 2.6(stat.) {+-} 0.8(syst.) MeV/c{sup 2} and the lifetime 1.56{sub -0.25}{sup +0.27}(stat.) {+-} 0.02(syst.) ps. A new accurate measurement of the properties of the resonances {Sigma}{sub b}{sup +}, {Sigma}{sub b}{sup -}, {Sigma}*{sub b}{sup +}, and {Sigma}*{sub b}{sup -} has been performed in 6 fb{sup -1} of data, and the masses have been determined, m({Sigma}{sub b}{sup +}) = 5811.2{sub -0.8}{sup +0.9}(stat.) {+-} 1.7(syst.), m({Sigma}{sub b}{sup -}) = 5815.5{sub -0.5}{sup +0.6}(stat.) {+-} 1.7(syst.), m({Sigma}*{sub b}{sup +}) = 5832.0 {+-} 0.7(stat.) {+-} 1.8(syst.), and m({Sigma}*{sub b}{sup -}) = 5835.0 {+-} 0.6(stat.) {+-} 1.8(syst.). The {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, and {Lambda}{sub b}{sup 0} {yields} {Sigma

  8. Lifetime Measurements in 162Dy

    NASA Astrophysics Data System (ADS)

    Casarella, Clark; Aprahamian, A.; Lesher, S.; Crider, B.; Lowe, M.; Peters, E.; Prados-Estevez, F.; Ross, T.; Tully, Z.; Yates, S.

    2015-10-01

    Historically, the rare-earth region of nuclei has been a fountainhead for nuclear structure phenomena. One of the more debated structure effects is the nature of excited 0+ bands in nuclei, and continues to be an outstanding challenge in nuclear structure physics; several interpretations exist, and we hope that lifetime measurements can help distinguish between them. 162Dy has an abundance of 0+ states with limited lifetime data; we have measured excitation functions, mean lifetimes, and angular distributions of gamma rays for excited states in 162Dy at the University of Kentucky Accelerator Laboratory. Low lying excited states were populated up to an excitation energy of E < 3.2 MeV, where we will discuss the implications of the lifetimes under this energy threshold. This work was supported by the NSF under contract numbers PHY-1068192, PHY-1205412, and PHY-0956310.

  9. Measurement of the tau lifetime

    SciTech Connect

    Jaros, J.A.

    1982-10-01

    If the tau lepton couples to the charged weak current with universal strength, its lifetime can be expressed in terms of the muon's lifetime, the ratio of the masses of the muon and the tau, and the tau's branching ratio into e anti nu/sub e/ nu/sub tau/ as tau/sub tau/ = tau/sub ..mu../ (m/sub ..mu..//m/sub tau/)/sup 5/ B(tau ..-->.. e anti nu/sub e/nu/sub tau/) = 2.8 +- 0.2 x 10/sup -13/ s. This paper describes the measurement of the tau lifetime made by the Mark II collaboration, using a new high precision drift chamber in contunction with the Mark II detector at PEP. The results of other tau lifetime measurements are summarized.

  10. Measurement of the Bs0 Lifetime in Fully and Partially Reconstructed Bs0 -> Ds- (phi pi-)X Decays in pp¯ Collisions at √s = 1.96 TeV

    DOE PAGESBeta

    Aaltonen, T.

    2011-12-29

    The authors present a measurement of the Bs0 lifetime in fully and partially reconstructed Bs0 = Ds0(φπ-)X decays in 1.3 fb-1 collected in pp¯ collisions at √s = 1.96 Tev by the CDF II detector at the Fermilab Tevatron. They measure τ(Bs0) = 1.518 ± 0.041 (stat.) ± 0.027 (syst.) ps. The ratio of this result and the world average B0 lifetime yields τ(Bs0)/τ(B0) = 0.99 ± 0.03, which is in agreement with recent theoretical predictions.

  11. Measurement of the B0s lifetime using the semileptonic decay channel B0s → D-sμ+vX

    SciTech Connect

    Lizarraga, Marco Antonio Carrasco

    2009-11-01

    We report a measurement of the B0s lifetime in the semileptonic decay channel BB0s → D-sμ+vX (and its charge conjugate), using approximately 0.4 fb-1 of data collected with the DØ detector during 2002–2004. Using 5176 reconstructed D-s μ+ signal events, we have measured the B0s lifetime to be τ (B0s) = 1.398 ± 0.044 (stat)+0.028 -0.025 (syst) ps. This is the most precise measurement of the B0s lifetime to date.

  12. Mass and Lifetime Measurements in Storage Rings

    SciTech Connect

    Weick, H.; Beckert, K.; Beller, P.; Bosch, F.; Dimopoulou, C.; Kozhuharov, C.; Kurcewicz, J.; Mazzocco, M.; Nociforo, C.; Nolden, F.; Steck, M.; Sun, B.; Winkler, M.; Brandau, C.; Chen, L.; Geissel, H.; Knoebel, R.; Litvinov, S. A.; Litvinov, Yu. A.; Scheidenberger, C.

    2007-05-22

    Masses of nuclides covering a large area of the chart of nuclides can be measured in storage rings where many ions circulate at the same time. In this paper the recent progress in the analysis of Schottky mass spectrometry data is presented as well as the technical improvements leading to higher accuracy for isochronous mass measurements with a time-of-flight detector. The high sensitivity of the Schottky method down to single ions allows to measure lifetimes of nuclides by observing mother and daughter nucleus simultaneously. In this way we investigated the decay of bare and H-like 140Pr. As we could show the lifetime can be even shortened compared to those of atomic nuclei despite of a lower number of electrons available for internal conversion or electron capture.All these techniques will be implemented with further improvements at the storage rings of the new FAIR facility at GSI in the future.

  13. Measurement of the Neutron Lifetime by Counting Trapped Protons

    PubMed Central

    Wietfeldt, F. E.; Dewey, M. S.; Gilliam, D. M.; Nico, J. S.; Fei, X.; Snow, W. M.; Greene, G. L.; Pauwels, J.; Eykens, R.; Lamberty, A.; Van Gestel, J.

    2005-01-01

    We measured the neutron decay lifetime by counting in-beam neutron decay recoil protons trapped in a quasi-Penning trap. The absolute neutron beam fluence was measured by capture in a thin 6LiF foil detector with known efficiency. The combination of these measurements gives the neutron lifetime: τn = (886.8 ± 1.2 ± 3.2) s, where the first (second) uncertainty is statistical (systematic) in nature. This is the most precise neutron lifetime determination to date using an in-beam method. PMID:27308145

  14. A precise measurement of the average b hadron lifetime

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Casper, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Knobloch, J.; Lehraus, I.; Markou, C.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Dorris, S. J.; Halley, A. W.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Morton, W. T.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; van Gemmeren, P.; Wanke, R.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Thulasidas, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Stierlin, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, Ll. M.; Perrodo, P.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Sau Lan Wu; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    An improved measurement of the average b hadron lifetime is performed using a sample of 1.5 million hadronic Z decays, collected during the 1991-1993 runs of ALEPH, with the silicon vertex detector fully operational. This uses the three-dimensional impact parameter distribution of lepton tracks coming from semileptonic b decays and yields an average b hadron lifetime of 1.533 ± 0.013 ± 0.022 ps.

  15. Updated measurement of the average b hadron lifetime

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Bossi, F.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lançon, E.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; Bencheikh, A. M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrad, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Pietrzyk, B.; Proriol, J.; Prulhière, F.; Stimpfl, G.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Altoon, B.; Boyle, O.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wolf, B.; Aubert, J.-J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Papalexiou, S.; Payre, P.; Qian, Z.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Cowan, G.; Dehning, B.; Dietl, H.; Dydak, F.; Fernandez-Bosman, M.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Takashima, M.; Thomas, J.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lemaire, M. C.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Reeves, P.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Grupen, C.; Mirabito, L.; Rivera, F.; Schäfer, U.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Whitney, M. H.; Sau Lan Wu; Wu, X.; Zobernig, G.; Aleph Collaboration

    1992-11-01

    An improved measurement of the average lifetime of b hadrons has been performed with the ALEPH detector. From a sample of 260 000 hadronic Z 0 decays, recorded during the 1991 LEP run with the silicon vertex detector fully operational, a fit to the impact parameter distribution of lepton tracks coming from semileptonic decays yields an average b hadron lifetime of 1.49 ± 0.03 ± 0.06 ps.

  16. Strange b baryon production and lifetime in Z decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    In a data sample of approximately four million hadronic Z decays recorded with the ALEPH detector from 1990 to 1995, a search for the strange b baryon Ξb is performed with a study of Ξ-lepton correlations. Forty-four events with same sign Ξ-ℓ - combinations are found whereas 8.4 are expected based on the rate of opposite sign Ξ-ℓ + combinations. This significant excess is interpreted as evidence for Ξb semileptonic decays. The measured product branching ratio is Br(b → Ξ b) × Br(Ξ b → X cXℓ -overlineν ℓ) × Br(X c → Ξ -X‧) = (5.4±1.1(stat) ± 0.8(syst)) × 10 -4 per lepton species, averaged over electrons and muons, with X c a charmed baryon. The Ξb lifetime is measured to be τΞb = 1.35 -0.28+0.37(stat) -0.17+0.15(syst) ps.

  17. Lifetime measurements in neutral alkalis

    NASA Astrophysics Data System (ADS)

    Diberardino, Diana

    1998-12-01

    Precision measurements of transition probabilities and energies provide a means for testing atomic structure calculations. The most accurate atomic structure calculations employ many-body perturbation theory (MBPT) and are used for the interpretation of atomic parity nonconservation (PNC) measurements and for testing of quantum electrodynamics (QED). Our group's measurement of the 6p/ 2P3/2,1/2 state lifetimes in atomic cesium provides constraints for recent MBPT calculations in cesium and electric dipole (E1) matrix elements. These E1 matrix elements contribute a large fraction to the weak-interaction-induced 6S[-]7S transition amplitude in cesium. Part of this thesis has been motivated by our desire to reduce the uncertainties in the measured 6p/ 2P3/2,1/2 state lifetimes in atomic cesium using improvements in our fast-beam apparatus. Thus, a new fiber optic detector system is designed to provide better collection efficiency and reduce beam tracking errors. Also, a new method of measuring the atomic beam velocity using a solid etalon is demonstrated to improve the velocity precision by a factor of seven. Additionally, this thesis describes measurements of the cesium 5d/ 2D5/2,/ 5d/ 2D3/2, and 11s/ 2S1/2 state lifetimes using pulsed-dye laser excitation of cesium vapor. The 5d/ 2D3/2 lifetime measurement, along with its branching ratio, provides the electric dipole reduced matrix element between the 5d/ 2D3/2 state and the 6p/ 2P1/2 state. Furthermore, a previous 5d/ 2D5/2 experimental value is compared with our new value and recent theoretical calculations.

  18. On the method of positron lifetime measurement

    NASA Technical Reports Server (NTRS)

    Nishiyama, F.; Shizuma, K.; Nasai, H.; Nishi, M.

    1983-01-01

    A fast-slow coincidence system was constructed for the measurement of positron lifetimes in material. The time resolution of this system was 270 ps for the (60)Co gamma rays. Positron lifetime spectra for 14 kinds of alkali halides were measured with this system. Two lifetime components and their intensities were derived from analyses of the lifetime spectra.

  19. Masses, lifetimes, and decays of B hadrons at the Tevatron

    SciTech Connect

    L. Vacavant

    2003-10-31

    The latest results in B physics from the CDF and D0 experiments at the Tevatron are presented, including inclusive b lifetime measurement, exclusive lifetime measurement of the B{sub s}. Promising samples collected by CDF with its Secondary Vertex Trigger are shown as well.

  20. Lifetime measurement of the 9s level of atomic francium.

    PubMed

    Aubin, S; Gomez, E; Orozco, L A; Sprouse, G D

    2003-11-01

    We use two-photon resonant excitation and time-correlated single-photon counting techniques on a sample of 210Fr atoms confined and cooled in a magneto-optical trap to measure the lifetime of the 9s excited level. Direct measurement of the decay through the 7P(3/2) level at 851 nm yields a lifetime of 107.53 +/- 0.80 ns. PMID:14587813

  1. Measurement of the B0-bar Lifetime and the B0B0-bar Oscillation Frequency Using Partially Reconstructed B0-bar to D*+ l- nu-bar Decays

    SciTech Connect

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Stony Brook /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Vanderbilt U. /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2005-07-27

    The authors present a simultaneous measurement of the {bar B}{sup 0} lifetime {tau}{sub B{sup 0}} and B{sup 0}{bar B}{sup 0} oscillation frequency {Delta}m{sub d}. We use a sample of about 50,000 partially reconstructed {bar B}{sup 0} {yields} D*{sup +}{ell}{sup -}{bar {nu}}{sub {ell}} decays identified with the BABAR detector at the PEP-II e{sup +}e{sup -} storage ring at SLAC. The flavor of the other B meson in the event is determined from the charge of another high-momentum lepton.

  2. Quantitative Lifetime Unmixing of Multiexponentially Decaying Fluorophores Using Single-Frequency Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    Kremers, Gert-Jan; van Munster, Erik B.; Goedhart, Joachim; Gadella, Theodorus W. J.

    2008-01-01

    Fluorescence lifetime imaging microscopy (FLIM) is a quantitative microscopy technique for imaging nanosecond decay times of fluorophores. In the case of frequency-domain FLIM, several methods have been described to resolve the relative abundance of two fluorescent species with different fluorescence decay times. Thus far, single-frequency FLIM methods generally have been limited to quantifying two species with monoexponential decay. However, multiexponential decays are the norm rather than the exception, especially for fluorescent proteins and biological samples. Here, we describe a novel method for determining the fractional contribution in each pixel of an image of a sample containing two (multiexponentially) decaying species using single-frequency FLIM. We demonstrate that this technique allows the unmixing of binary mixtures of two spectrally identical cyan or green fluorescent proteins, each with multiexponential decay. Furthermore, because of their spectral identity, quantitative images of the relative molecular abundance of these fluorescent proteins can be generated that are independent of the microscope light path. The method is rigorously tested using samples of known composition and applied to live cell microscopy using cells expressing multiple (multiexponentially decaying) fluorescent proteins. PMID:18359789

  3. A precise measurement of the τ lepton lifetime

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Bossi, F.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lançon, E.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; Bencheikh, A. M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Pietrzyk, B.; Proriol, J.; Prulhiére, F.; Stimpfl, G.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Altoon, B.; Boyle, O.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Kreemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wolf, B.; Aubert, J.-J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Papalexiou, S.; Payre, P.; Qian, Z.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Cowan, G.; Dehning, B.; Dietl, H.; Dydak, F.; Fernandez-Bosman, M.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; St. Denis, R.; Takashima, M.; Thomas, J.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foá, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lemaire, M. C.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Reeves, P.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Grupen, C.; Rivera, F.; Schäfer, U.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Whitney, M. H.; Lan Wu, Sau; Wu, X.; Zobernig, G.; Aleph Collaboration

    1992-12-01

    Three different techniques are used to measure the mean decay length of the τ lepton with a high precision vertex detector in a sample of 11 800 τ pairs coming from Z decays, collected in1991 by ALEPH at LEP. Events in which both τ's decay into one charged track are analyzed using two largely independent methods. Displaced vertices in three-prong decays yield another independent measurement. The derived lifetime is 295.5 ± 5.9 ± 3.1 fs, using mτ = 1777.1 ± 0.5 MeV/ c2. Including previous (1989-1990) ALEPH measurements, the combined τ lifetime is 294.7 ± 5.4 ± 3.0 fs.

  4. Measurement of the (27)P lifetime

    NASA Astrophysics Data System (ADS)

    Freeman, Charles George

    The lifetime of 27P has been measured using the Recoil Mass Spectrometer (RMS) at the Nuclear Structure Research Laboratory (NSRL) at the University of Rochester. 27P was produced by bombarding a BeO target with a 24Mg beam at a lab energy of 118 MeV. A focal-plane detector system, consisting of a parallel-grid avalanche counter (PGAC) backed by an ionization counter (IC) and a silicon detector, was used to provide particle identification. A sodium iodide detector array was used to detect the 511 keV positron annihilation radiation produced by the decay of 27P. The result obtained for the half-life of 27P is 0.32 -0.15+0.22 s.

  5. Measurement of the lifetime difference between Bs mass eigenstates.

    PubMed

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, M L; Chuang, S; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Dörr, C; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ehlers, J; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Guenther, M; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Unel, M Karagoz; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; NcNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P A Movilla; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nigmanov, T; Nodulman, L; Norniella, O; Oesterberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2005-03-18

    We present measurements of the lifetimes and polarization amplitudes for B(0)(s)-->J/psiphi and B(0)(d)-->J/psiK(*0) decays. Lifetimes of the heavy and light mass eigenstates in the B(0)(s) system are separately measured for the first time by determining the relative contributions of amplitudes with definite CP as a function of the decay time. Using 203+/-15 B(0)(s) decays we obtain tau(L) = (1.05(+0.16)(-0.13) +/- 0.02) ps and tau(H) = (2.07(+0.58)(-0.46) +/- 0.03) ps. Expressed in terms of the difference DeltaGamma(s) and average Gamma(s), of the decay rates of the two eigenstates, the results are DeltaGamma(s)/Gamma(s) = (65(+25)(-33) +/- 1)% and DeltaGamma(s) = (0.47(+0.19)(-0.24) +/- 0.01) ps(-1). PMID:15783473

  6. A preliminary measurement of the average B hadron lifetime

    SciTech Connect

    Manly, S.L.; SLD Collaboration

    1994-09-01

    The average B hadron lifetime was measured using data collected with the SLD detector at the SLC in 1993. From a sample of {approximately}50,000 Z{sup 0} events, a sample enriched in Z{sup 0} {yields} b{bar b} was selected by applying an impact parameter tag. The lifetime was extracted from the decay length distribution of inclusive vertices reconstructed in three dimensions. A binned maximum likelihood method yielded an average B hadron lifetime of {tau}{sub B} = 1.577{plus_minus}0.032(stat.){plus_minus}0.046(syst.) ps.

  7. A preliminary, precise measurement of the average B hadron lifetime

    SciTech Connect

    SLD Collaboration

    1994-07-01

    The average B hadron lifetime was measured using data collected with the SLD detector at the SLC in 1993. From a sample of {approximately}50,000 Z{sup 0} events, a sample enriched in Z{sup 0} {yields} b{bar b} was selected by applying an impact parameter tag. The lifetime was extracted from the decay length distribution of inclusive vertices reconstructed in three dimensions. A binned maximum likelihood method yielded an average B hadron lifetime of {tau}{sub B} = 1.577 {plus_minus} 0.032(stat.) {plus_minus} 0.046(syst.) ps.

  8. Measurement of the b hadron lifetime with the dipole method

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Levinthal, D.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Walther, S. M.; Wanke, R.; Wolf, B.; Zimmermann, A.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; St. Denis, R.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Valassi, A.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barbeiro, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-09-01

    A measurement of the average lifetime of b hadrons has been performed with dipole method on a sample of 260 000 hadronic Z decays recorded with the ALEPH detector during 1991. The dipole is the distance between the vertices built in the opposite hemispheres. The mean dipole is extracted from all the events without attempting b enrichment. Comparing the average of the data dipole distribution with a Monte Carlo calibration curve obtained with different b lifetimes, an average b hadron lifetime of 1.51±0.08 ps is extracted.

  9. Temperature Behavior of the Photoluminescence Decay of Semiconducting Carbon Nanotubes: The Effective Lifetime

    SciTech Connect

    Karaiskaj, D.; Mascarenhas, A.; Choi, J. H.; Graff, R.; Strano, M. S.

    2007-01-01

    The temperature dependence of the photoluminescence decay of excitons in single-walled carbon nanotubes was measured for two nanotube species, (7,6) and (7,5), representative of the two nanotube (n-m)mod 3 families. A monotonic increase of the photoluminescence lifetime with decreasing temperature is observed. The external strain induced by lowering the temperature below the freezing point of the solution leads to an overall lowering of the photoluminescence lifetime. This effect indicates that the measured lifetime is defined by the intrinsic electronic properties of carbon nanotubes and could be understood as an exchange interaction between bright and dark excitonic states. We find the lifetime to vary between 223 and 319 ps between 290 and 5 K, obtained by a multiexponential fit, well in agreement with previous experiments.

  10. Recent measurements of the B hadron lifetime

    SciTech Connect

    Ong, R.A.

    1987-12-01

    Recent measurements of the B hadron lifetime from PEP and PETRA experiments are presented. These measurements firmly establish that the B lifetime is long (approx.1 psec), implying that the mixing between the third generation of quarks and the lighter quarks is much weaker that the mixing between the first two generations.

  11. Improved measurement of the B 0 and B + meson lifetimes

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J. P.; Lucotte, A.; Minard, M. N.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palla, F.; Pater, J. R.; Pusztaszeri, J. F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Wildish, T.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J. M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H. G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H. G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J. F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A. M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M. H.; Simion, S.; Veillet, J. J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J. F.; Roussarie, A.; Schuller, J. P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.

    1996-03-01

    The lifetimes of the B 0 and B + mesons have been measured with the Aleph detector at LEP, using approximately 3 million hadronic Z decays collected in the period 1991 1994. In the first of three methods, semileptonic decays of B 0 and B + mesons were partially reconstructed by identifying events containing a lepton with an associated D*- orbar D^0 meson. The second method used fully reconstructed B 0 and B + mesons. The third method, used to measure the B 0 lifetime, employed a partial reconstruction technique to identify B 0→ D*- π + X decays. The combined results are begin{gathered} tau _0 = 1.55 ± 0.06 ± 0.03 ps, \\ tau _ + = 1.58 ± 0.09 ± 0.03 ps, \\ tfrac{{tau _ + }}{{tau _0 }} = 1.03 ± 0.08 ± 0.02. \\ .

  12. Measurement of the B sup 0 -meson lifetime

    SciTech Connect

    Wagner, S.R.; Hinshaw, D.A.; Ong, R.A.; Snyder, A.; Abrams, G.; Adolphsen, C.E.; Akerlof, C.; Alexander, J.P.; Alvarez, M.; Amidei, D.; Baden, A.R.; Ballam, J.; Barish, B.C.; Barklow, T.; Barnett, B.A.; Bartelt, J.; Blockus, D.; Bonvicini, G.; Boyarski, A.; Boyer, J.; Brabson, B.; Breakstone, A.; Brom, J.M.; Bulos, F.; Burchat, P.R.; Burke, D.L.; Butler, F.; Calvino, F.; Cence, R.J.; Chapman, J.; Cords, D.; Coupal, D.P.; DeStaebler, H.C.; Dorfan, D.E.; Dorfan, J.M.; Drell, P.S.; Feldman, G.J.; Fernandez, E.; Field, R.C.; Ford, W.T.; Fordham, C.; Frey, R.; Fujino, D.; Gan, K.K.; Gidal, G.; Gladney, L.; Glanzman, T.; Gold, M.S.; Goldhaber, G.; Green, A.; Grosse-Wiesmann, P.; Haggerty, J.; Hanson, G.; Harr, R.; Harris, F.A.; Hawkes, C.M.; Hayes, K.; Herrup, D.; Heusch, C.A.; Himel, T.; Hollebeek, R.J.; Hutchinson, D.; Hylen, J.; Innes, W.R.; Jaffre, M.; Jaros, J.A.; Juricic, I.; Kadyk, J.A.; Karlen, D.; Kent, J.; Klein, S.R.; Koska, W.; Kozanecki, W.; Lankford, A.J.; Larsen, R.R.; LeClair

    1990-03-05

    We report a measurement of the lifetime of the {ital B}{sup 0} meson based upon 29-GeV {ital e}{sup +}{ital e}{sup {minus}} annihilation data taken with the Mark II detector at the SLAC storage ring PEP. The {ital B}{sup 0} mesons are tagged by their decays into {ital D}{sup *{minus}}{ital e}{sup +}{nu} and {ital D}{sup *{minus}}{mu}{sup +}{nu}, where the {ital D}{sup *{minus}} is tagged by its decay into {pi}{sup {minus}}{ital {bar D}}{sup 0}. We reconstruct the decay vertices of 15 {ital B}{sup 0}-meson candidates and measure the {ital B}{sup 0} lifetime to be 1.20{sup +0.52}{sub {minus}0.36}{sup +0.16}{sub 0.14} psec.

  13. Measurement of Metastable Lifetimes of Highly-Charged Ions

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Chutjian, A.; Lozano, J.

    2002-01-01

    The present work is part of a series of measurements of metastable lifetimes of highly-charged ions (HCIs) which contribute to optical absorption, emission and energy balance in the Interstellar Medium (ISM), stellar atmospheres, etc. Measurements were carried out using the 14-GHz electron cyclotron resonance ion source (ECRIS) at the JPL HCI facility. The ECR provides useful currents of charge states such as C(sup(1-6)+), Mg(sup(1-6)+) and Fe(sup(1-17)+). In this work the HCI beam is focused into a Kingdon electrostatic ion trap for measuring lifetimes via optical decays.

  14. Measurement of the Lambda_b Lifetime in Lambda_b -> Lambda_c+ pi- Decays in p-pbar Collisions at sqrt(s) = 1.96 TeV

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2009-12-01

    We report a measurement of the lifetime of the {Lambda}{sub b}{sup 0} baryon in decays to the {Lambda}{sub c}{sup +} {pi}{sup -} final state in a sample corresponding to 1.1 fb{sup -1} collected in p{bar p} collisions at {radical}s = 1.96 TeV by the CDF II detector at the Tevatron collider. Using a sample of about 3000 fully reconstructed {Lambda}{sub b}{sup 0} events we measure {tau}({Lambda}{sub b}{sup 0}) = 1.401 {+-} 0.046 (stat) {+-} 0.035 (syst) ps (corresponding to c{tau}({Lambda}{sub b}{sup 0}) = 420.1 {+-} 13.7 (stat) {+-} 10.6 (syst) {micro}m, where c is the speed of light). The ratio of this result and the world average B{sup 0} lifetime yields {tau}({Lambda}{sub b}{sup 0})/{tau}(B{sup 0}) = 0.918 {+-} 0.038 (stat and syst), in good agreement with recent theoretical predictions.

  15. Survival analysis approach to account for non-exponential decay rate effects in lifetime experiments

    NASA Astrophysics Data System (ADS)

    Coakley, K. J.; Dewey, M. S.; Huber, M. G.; Huffer, C. R.; Huffman, P. R.; Marley, D. E.; Mumm, H. P.; O`Shaughnessy, C. M.; Schelhammer, K. W.; Thompson, A. K.; Yue, A. T.

    2016-03-01

    In experiments that measure the lifetime of trapped particles, in addition to loss mechanisms with exponential survival probability functions, particles can be lost by mechanisms with non-exponential survival probability functions. Failure to account for such loss mechanisms produces systematic measurement error and associated systematic uncertainties in these measurements. In this work, we develop a general competing risks survival analysis method to account for the joint effect of loss mechanisms with either exponential or non-exponential survival probability functions, and a method to quantify the size of systematic effects and associated uncertainties for lifetime estimates. As a case study, we apply our survival analysis formalism and method to the Ultra Cold Neutron lifetime experiment at NIST. In this experiment, neutrons can escape a magnetic trap before they decay due to a wall loss mechanism with an associated non-exponential survival probability function.

  16. Real-time background suppression during frequency domain lifetime measurements.

    PubMed

    Herman, Petr; Maliwal, Badri P; Lakowicz, Joseph R; Maliwal, Baldri P

    2002-10-01

    We describe real time background suppression of autofluorescence from biological samples during frequency domain or phase modulation measurements of intensity decays. For these measurements the samples were excited with a train of light pulses with widths below 1 ps. The detector was gated off for a short time period of 10 to 40 ns during and shortly after the excitation pulse. The reference signal needed for the frequency domain measurement was provided by a long-lifetime reference fluorophore which continues to emit following the off-gating pulse. Both the sample and the reference were measured under identical optical and electronic conditions avoiding the need for correction of the photomultiplier tube signal for the gating sequence. We demonstrate frequency domain background suppression using a mixture of short- and long-lifetime probes and for a long-lifetime probe in human plasma with significant autofluorescence. PMID:12381357

  17. A high statistics measurement of the Lambda(+)(c) lifetime.

    PubMed

    Link, J M; Reyes, M; Yager, P M; Anjos, J C; Bediaga, I; Göbel, C; Magnin, J; Massafferi, A; de Miranda, J M; Pepe, I M; dos Reis, A C; Carrillo, S; Casimiro, E; Cuautle, E; Sánchez-Hernández, A; Uribe, C; Vazquez, F; Agostino, L; Cinquini, L; Cumalat, J P; O'Reilly, B; Ramirez, J E; Segoni, I; Butler, J N; Cheung, H W K; Gaines, I; Garbincius, P H; Garren, L A; Gottschalk, E; Kasper, P H; Kreymer, A E; Kutschke, R; Bianco, S; Fabbri, F L; Zallo, A; Cawlfield, C; Kim, D Y; Rahimi, A; Wiss, J; Gardner, R; Kryemadhi, A; Chung, Y S; Kang, J S; Ko, B R; Kwak, J W; Lee, K B; Park, H; Alimonti, G; Boschini, M; D'Angelo, P; DiCorato, M; Dini, P; Giammarchi, M; Inzani, P; Leveraro, F; Malvezzi, S; Menasce, D; Mezzadri, M; Milazzo, L; Moroni, L; Pedrini, D; Pontoglio, C; Prelz, F; Rovere, M; Sala, S; Davenport, T F; Arena, V; Boca, G; Bonomi, G; Gianini, G; Liguori, G; Merlo, M M; Pantea, D; Ratti, S P; Riccardi, C; Vitulo, P; Hernandez, H; Lopez, A M; Luiggi, E; Mendez, H; Mendez, L; Mirles, A; Montiel, E; Olaya, D; Paris, A; Quinones, J; Rivera, C; Xiong, W; Zhang, Y; Wilson, J R; Cho, K; Handler, T; Mitchell, R; Engh, D; Hosack, M; Johns, W E; Nehring, M; Sheldon, P D; Stenson, K; Vaandering, E W; Webster, M; Sheaff, M

    2002-04-22

    A high statistics measurement of the Lambda(+)(c) lifetime from the Fermilab fixed-target FOCUS photoproduction experiment is presented. We describe the analysis technique with particular attention to the determination of the systematic uncertainty. The measured value of 204.6 +/- 3.4 (stat) +/- 2.5 (syst) fs from 8034 +/- 122 Lambda(+)(c)-->pK(-)pi(+) decays represents a significant improvement over the present world average. PMID:11955226

  18. A Measurement of the D+(s) lifetime

    SciTech Connect

    Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferi, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P. /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Rio de Janeiro, Pont. U. Catol. /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison

    2005-04-01

    A high statistics measurement of the D{sub s}{sup +} lifetime from the Fermilab fixed-target FOCUS photoproduction experiment is presented. They describe the analysis of the two decay modes, D{sub s}{sup +} {yields} {phi}(1020){pi}{sup +} and D{sub s}{sup +} {yields} {bar K}*(892){sup 0}K{sup +}, used for the measurement. The measured lifetime is 507.4 {+-} 5.5(stat.) {+-} 5.1(syst.) is using 8961 {+-} 105 D{sub s}{sup +} {yields} {phi}(1020){pi}{sup +} and 4680 {+-} 90 D{sub s}{sup +} {yields} {bar K}*(892){sup 0} K{sup +} decays. This is a significant improvement over the present world average.

  19. Measurement of Rydberg positronium fluorescence lifetimes

    NASA Astrophysics Data System (ADS)

    Deller, A.; Alonso, A. M.; Cooper, B. S.; Hogan, S. D.; Cassidy, D. B.

    2016-06-01

    We report measurements of the fluorescence lifetimes of positronium (Ps) atoms with principal quantum numbers n =10 -19 . Ps atoms in Rydberg-Stark states were produced via a two-color two-step 1 3S→2 3P→n 3S/n measured time-of-flight distributions were used to determine the mean lifetimes of the Rydberg levels, yielding values ranging from 3 μ s to 26 μ s . Our data are in accord with the expected radiative lifetimes of Rydberg-Stark states of Ps.

  20. Characterization of ZnSe(Te) scintillators by frequency domain luminescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Mickevičius, J.; Tamulaitis, G.; Vitta, P.; Žukauskas, A.; Starzhinskiy, N.; Ryzhikov, V.

    2009-10-01

    Dynamics of photoluminescence (PL) decay in Te-doped ZnSe scintillator crystal is studied using frequency domain luminescence lifetime measurement technique, which enables simultaneous characterization of components in multicomponent PL decay in a wide time window ranging from millisecond to nanosecond domain. Evolution of decay times and relative contributions of the decay components corresponding to different PL decay mechanisms was revealed as a function of temperature.

  1. Lifetime measurement of the 8s level in francium

    SciTech Connect

    Gomez, E.; Sprouse, G.D.; Orozco, L.A.; Galvan, A. Perez

    2005-06-15

    We measure the lifetime of the 8s level of {sup 210}Fr atoms on a magneto-optically trapped sample with time-correlated single-photon counting. The 7P{sub 1/2} state serves as the resonant intermediate level for two-step excitation of the 8s level completed with a 1.3-{mu}m laser. Analysis of the fluorescence decay through the 7P{sub 3/2} level gives 53.30{+-}0.44 ns for the 8s level lifetime.

  2. Lifetime measurement in ^170Yb

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Krücken, R.; Beausang, C. W.; Casten, R. F.; Cooper, J. R.; Cederkäll, J.; Caprio, M.; Novak, J. R.; Zamfir, N. V.; Barton, C.

    1999-10-01

    The nature of the low lying K^π=0^+ excitations in deformed nuclei have recently been subject of intense discussion. In this context we present results from a Coulomb excitation experiment on ^170Yb using a 70MeV ^16O beam on a gold backed, 1.5 mg/cm^2 thick ^170Yb target. The beam was delivered by the ESTU tandem accelerator of WNSL at Yale University. Gamma rays were detected by the YRAST Ball array in coincidence with back-scattered ^16O particles, which were detected in an array of 8 solar cells. Lineshapes were observed for several transitions from collective states in ^170Yb and the lifetimes for those states were extracted using a standard DSAM analysis. The results will be presented together with a short introduction to the solar cell array at Yale (SCARY) that was used to make angular selection of the excited ^170Yb nuclei. This work is supported by the US-DOE under grant numbers DE-FG02-91ER-40609 and DE-FG02-88ER-40417.

  3. Measurement of D^0-\\overline{D^0} Mixing using the Ratio of Lifetimes for the Decays D^0 \\to K^-\\pi^+, K^-K^+, and \\pi^-\\pi^+

    SciTech Connect

    Aubert, B

    2008-01-08

    The authors present a measurement of D{sup 0}-{bar D}{sup 0} mixing parameters using the ratios of lifetimes extracted from a sample of D{sup 0} mesons produced through the process D*{sup +} {yields} D{sup 0}{pi}{sup +}, that decay to K{sup -}{pi}{sup +}, I{sup -}K{sup +}, or {pi}{sup -}{pi}{sup +}. the Cabibbo-suppressed modes K{sup -}K{sup +} and {pi}{sup -}{pi}{sup +} are compared to the Cabibbo-favored mode K{sup -}{pi}{sup +} to obtain a measurement of ycp, which in the limit of CP conservation corresponds to the mixing parameter y. The analysis is based on a data sample of 384 fb{sup -1} collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider. They obtain ycp = [1.24 {+-} 0.39(stat) {+-} 0.13(syst)]%, which is evidence of D{sup 0}-{bar D}{sup 0} mixing at the 3{sigma} level, and {Delta}Y = [-0.26 {+-} 0.36(stat) {+-} 0.08(syst)]%, where {Delta}Y constrains possible CP violation. Combining this result with a previous BABAR measurement of ycp obtained from a separate sample of D{sup 0} {yields} K{sup -}K{sup +} events, they obtain ycp = [1.03 {+-} 0.33(stat) {+-} 0.19(syst)]%.

  4. Measurement of the Λ0b lifetime in the exclusive decay Λ0b→J/ψΛ0 in pp¯ collisions at √s =1.96 TeV

    SciTech Connect

    Abazov, Victor Mukhamedovich

    2012-06-01

    We measure the Λ0b lifetime in the fully reconstructed decay Λ0b → J/Ψ Λ0 using 10.4 fb-1 of pp¯ collisions collected with the D0 detector at √s = 1.96 TeV. The lifetime of the topologically similar decay channel B⁰ → J/Ψ KS⁰ is also measured. We obtain τ (Λ0b) = 1.303 ± 0.075 (stat.) ± 0.035 (syst.) ps and τ (B⁰) = 1.508 ± 0.025 (stat.) ± 0.043 (syst.) ps. Using these measurements, we determine the lifetime ratio of τ (Δb⁰)/τ (B⁰) = 0.864 ± 0.052 (stat.) ± 0.033 (syst.).

  5. Precision measurement of the Λb(0) baryon lifetime.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gorbounov, P; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palczewski, T; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-09-01

    The ratio of the Λb(0) baryon lifetime to that of the B(0) meson is measured using 1.0  fb(-1) of integrated luminosity in 7 TeV center-of-mass energy pp collisions at the LHC. The Λb(0) baryon is observed for the first time in the decay mode Λb(0)→J/ψpK-, while the B(0) meson decay used is the well known B(0)→J/ψπ+ K- mode, where the π+ K- mass is consistent with that of the K(*0)(892) meson. The ratio of lifetimes is measured to be 0.976±0.012±0.006, in agreement with theoretical expectations based on the heavy quark expansion. Using previous determinations of the B(0) meson lifetime, the Λb(0) lifetime is found to be 1.482±0.018±0.012  ps. In both cases, the first uncertainty is statistical and the second systematic. PMID:25166658

  6. Measurement of the Tau Lepton Lifetime at Opal

    NASA Astrophysics Data System (ADS)

    Janissen, Anna Cornelia

    1993-01-01

    This thesis describes a new measurement of the tau (tau) lepton lifetime using two statistically independent techniques each associated with one of the two principle decay topologies of the tau to one and three charged particles, respectively. The measurement was performed with data collected in 1990 and 1991 at the OPAL detector at the LEP e^+e ^- colliding beam accelerator at CERN. The LEP collider operates at a significantly higher energy than previous e^+e^- colliders. This presents a new experimental opportunity to investigate the physics associated with the tau<=pton in general and the tau lifetime in particular. The tau lepton is one of three similar electron -like particles: e, mu, and tau. These leptons exhibit a hierarchy of masses with: m_{e} < m_ {mu} < m_{tau}. While the electron is stable, the mu and the tau are unstable and decay via the weak interaction charged current. It is a fundamental feature of the standard model of fundamental particles and their interactions that this weak charged current has exactly the same strength for each of the three leptons; a phenomenon called lepton universality. The tau lifetime, tau_tau, can be related to the mu lifetime, tau_ mu, and the average leptonic branching ratio, BR(tau to lnu| nu), by:tau_ tau = tau_mu {G_mu G_{e}over G_tau G_ l} ({m_muover m_tau})^5 {rm BR}(tautolnu|nu)R where R is a calculable factor to account for phase space and radiative corrections, and G _l is the Fermi effective coupling strength of the weak charged current to the lepton l. Lepton universality implies that G _mu = G_{e} = G_tau. The experimentally measured tau lifetime, together with the measurements of the other quantities in the above relation, can be interpreted as a direct test of lepton universality. The tau lifetime measured with each of the two independent techniques is: eqalign{tau_1 &rm= 296.4+/-7.1(stat.)+/- 3.8(sys.) fscr tau_3 &rm= 286.3+/-7.4(stat.)+/-5.2(sys.) fs.}The systematic uncertainties for each of the

  7. Updated measurement of the τ lepton lifetime

    NASA Astrophysics Data System (ADS)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Becker, U.; Bazarko, A. O.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rizzo, G.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Stacey, A. M.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1997-11-01

    A new measurement of the mean lifetime of the τ lepton is presented. Three different analysis methods are applied to a sample of 90 000 τ pairs, collected in 1993 and 1994 with the ALEPH detector at LEP. The average of this measurement and those previously published by ALEPH is ττ=290.1+/-1.5+/-1.1 fs.

  8. B physics: measurement of the lifetime difference between b_s mass eigenstates

    SciTech Connect

    Acosta, D.; The CDF Collaboration

    2005-04-28

    We present measurements of the lifetimes and polarization amplitudes for B{sub s}{sup 0} {yields} J/{psi}{phi} and B{sub d}{sup 0} {yields} J/{psi} K*{sup 0} decays. Lifetimes of the heavy (H) and light (L) mass eigenstates in the B{sub s}{sup 0} system are separately measured for the first time by determining the relative contributions of amplitudes with definite CP as a function of the decay time.

  9. Measurement of the lifetime of excited-state electron bubbles in superfluid helium

    SciTech Connect

    Ghosh, Ambarish; Maris, Humphrey J.

    2005-08-01

    We report on the measurement of the lifetime of bubbles in superfluid helium that contain an electron in the 1P state. The 1P bubbles are produced by laser excitation of ground-state bubbles, and are detected by ultrasonic cavitation. Our measurements show that the lifetime of these excited bubbles is much less than the calculated lifetime for radiative decay and, hence, is determined by a nonradiative mechanism.

  10. Fluorescence lifetime as a new parameter in analytical cytology measurements

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.; Deka, Chiranjit; Lehnert, Bruce E.; Crissman, Harry A.

    1996-05-01

    A phase-sensitive flow cytometer has been developed to quantify fluorescence decay lifetimes on fluorochrome-labeled cells/particles. This instrument combines flow cytometry (FCM) and frequency-domain fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved lifetime measurements, while preserving conventional FCM capabilities. Cells are analyzed as they intersect a high-frequency, intensity-modulated (sine wave) laser excitation beam. Fluorescence signals are processed by conventional and phase-sensitive signal detection electronics and displayed as frequency distribution histograms. In this study we describe results of fluorescence intensity and lifetime measurements on fluorescently labeled particles, cells, and chromosomes. Examples of measurements on intrinsic cellular autofluorescence, cells labeled with immunofluorescence markers for cell- surface antigens, mitochondria stains, and on cellular DNA and protein binding fluorochromes will be presented to illustrate unique differences in measured lifetimes and changes caused by fluorescence quenching. This innovative technology will be used to probe fluorochrome/molecular interactions in the microenvironment of cells/chromosomes as a new parameter and thus expand the researchers' understanding of biochemical processes and structural features at the cellular and molecular level.

  11. A Measurement of the Bs Lifetime at CDF Run II

    SciTech Connect

    Farrington, Sinead

    2004-01-01

    This thesis describes a measurement of the proper lifetime of the B{sub s}{sup 0} mesons produced in proton-antiproton collisions at a center of mass energy of 1.96 TeV, collected by the CDF experiment at Fermilab. The B{sub s}{sup 0} meson lifetime is measured in its semileptonic decay mode, B{sub s}{sup 0} {yields} {ell}{sup +}{nu}{sub {ell}}D{sub s}{sup -}. The D{sub s}{sup -} meson candidates are reconstructed in the decay mode D{sub s}{sup -} {yields} {phi}{pi}, with {phi} {yields} K{sup +}K{sup -}, in a trigger sample which requires a muon or an electron and another track which has a large impact parameters. The large impact parameter track is required by the silicon vertex trigger which is an innovative triggering device which has not previously been used in lifetime measurements. A total of 905 {+-} B{sub s}{sup 0} candidates are reconstructed in a sample which has an integrated luminosity of 140 pb{sup -1} using data gathered between February 2002 and August 2003. The pseudo-proper lifetime distribution of these candidates is fitted with an unbinned maximum likelihood fit. This fit takes into account the missing momentum carried by the neutrino and the bias caused by requiring a track with large impact parameter by modeling these effects in simulations. The fit yields the result for the B{sub s}{sup 0} proper lifetime: c{tau}(B{sub s}{sup 0}) = 419 {+-} 28{sub -13}{sup +16} {micro}m and {tau}(B{sub s}{sup 0}) = 1.397 {+-} 0.093{sub -0.043}{sup +0.053} ps where the first error is statistical and the second is systematic.

  12. Fluorescence lifetime measurements in flow cytometry

    NASA Astrophysics Data System (ADS)

    Beisker, Wolfgang; Klocke, Axel

    1997-05-01

    Fluorescence lifetime measurements provide insights int eh dynamic and structural properties of dyes and their micro- environment. The implementation of fluorescence lifetime measurements in flow cytometric systems allows to monitor large cell and particle populations with high statistical significance. In our system, a modulated laser beam is used for excitation and the phase shift of the fluorescence signal recorded with a fast computer controlled digital oscilloscope is processed digitally to determine the phase shift with respect to a reference beam by fast fourier transform. Total fluorescence intensity as well as other parameters can be determined simultaneously from the same fluorescence signal. We use the epi-illumination design to allow the use of high numerical apertures to collect as much light as possible to ensure detection of even weak fluorescence. Data storage and processing is done comparable to slit-scan flow cytometric data using data analysis system. The results are stored, displayed, combined with other parameters and analyzed as normal listmode data. In our report we discuss carefully the signal to noise ratio for analog and digital processed lifetime signals to evaluate the theoretical minimum fluorescence intensity for lifetime measurements. Applications to be presented include DNA staining, parameters of cell functions as well as different applications in non-mammalian cells such as algae.

  13. Updated measurement of the tau lifetime at SLD

    SciTech Connect

    1996-07-23

    We present an updated measurement of the tau lifetime at SLD. 4316 {tau}-pair events, selected from a 150k Z{sup 0} data sample, are analyzed using three techniques: decay length, impact parameter, and impact parameter difference methods. The measurement benefits from the small and stable interaction region at the SLC and the precision CCD pixel vertex detector of the SLD. The combined result is: {tau}{sub {tau}} = 288.1 {+-} 6.1(stat) {+-} 3.3(syst) fs.

  14. Ratio of D/sup 0/ and D/sup +/ lifetimes from their semileptonic decays

    SciTech Connect

    Donaldson, G.J.

    1980-06-01

    The conventional expectation for the decays of D mesons assumes that the charm quark decays in the presence of light, spectator quarks and thus the lifetimes of both charged and uncharged states are equal. In this article, evidence is presented from DELCO (at SPEAR) that the D lifetimes are quite different for neutral and charged mesons, and the results which have also become available from other experiments are reviewed.

  15. On estimating mean lifetimes by a weighted sum of lifetime measurements

    NASA Astrophysics Data System (ADS)

    Prosper, Harrison Bertrand

    1987-10-01

    Given N lifetime measurements an estimate of the mean lifetime can be obtained from a weighted sum of these measurements. We derive exact expressions for the probability density function, the moment-generating function, and the cumulative distribution function for the weighted sum. We indicate how these results might be used in the estimation of particle lifetimes. The probability distribution function of Yost for the distribution of lifetime measurements with finite measurement error is our starting point.

  16. New Millisecond Isomer Lifetime Measurements at LANSCE

    SciTech Connect

    Devlin, M. Nelson, R.O.; Fotiades, N.; O'Donnell, J.M.

    2014-06-15

    New half-life measurements have been made of the millisecond isomers {sup 71m}Ge, {sup 114m2}I, {sup 208m}Bi, {sup 88m1}Y, {sup 88m2}Y, and {sup 75m}As populated in neutron-induced reactions. These measurements were made using the unique time structure of the LANSCE/WNR neutron source, by observing the γ-ray decays of the isomers during the time between the LANSCE proton macropulses. Two different LANSCE proton beam time structures were used. The GEANIE array of HPGe detectors was used to detect the γ-ray decays.

  17. Fluorescence lifetime measurements in heterogeneous scattering medium

    NASA Astrophysics Data System (ADS)

    Nishimura, Goro; Awasthi, Kamlesh; Furukawa, Daisuke

    2016-07-01

    Fluorescence lifetime in heterogeneous multiple light scattering systems is analyzed by an algorithm without solving the diffusion or radiative transfer equations. The algorithm assumes that the optical properties of medium are constant in the excitation and emission wavelength regions. If the assumption is correct and the fluorophore is a single species, the fluorescence lifetime can be determined by a set of measurements of temporal point-spread function of the excitation light and fluorescence at two different concentrations of the fluorophore. This method is not dependent on the heterogeneity of the optical properties of the medium as well as the geometry of the excitation-detection on an arbitrary shape of the sample. The algorithm was validated by an indocyanine green fluorescence in phantom measurements and demonstrated by an in vivo measurement.

  18. Lifetime Measurements of Levels in 160Gd

    NASA Astrophysics Data System (ADS)

    Casarella, Clark; Aprahamian, Ani; Crider, Ben; Lesher, Shelly; Marsh, Ian; Peters, Erin; Prados-Estevez, Francisco; Smith, Mallory; Vanhoy, Jeffrey; Yates, Steven

    2013-10-01

    The rare earth region of nuclei has been well established as a region of deformation for decades. However, the nature of vibrations built on a deformed ground state remain far from understood and present an oustanding challenge to nuclear structure physics. Studies of 158Gd has shown a preponderance of excited 0+ states with varying degrees of collectivity. We have measured level lifetimes, reduced transition probabilities and angular distributions of gamma-rays excited by inelastic neutron scattering and the use of the Doppler Shift Attenuation Method (DSAM) at the University of Kentucky 7 MV Van de Graaff Accelerator Facility. Low lying excited states of 160Gd were populated up to an excitation energy of E < 2 MeV. We will present and discuss the measured level lifetimes of 160Gd and their implied degrees of collectivity. This work was supported by the NSF under contract numbers PHY-1068192, PHY-12-05412, and PHY-0956310.

  19. A Superconducting Magnet UCN Trap for Precise Neutron Lifetime Measurements

    PubMed Central

    Picker, R.; Altarev, I.; Bröcker, J.; Gutsmiedl, E.; Hartmann, J.; Müller, A.; Paul, S.; Schott, W.; Trinks, U.; Zimmer, O.

    2005-01-01

    Finite-element methods along with Monte Carlo simulations were used to design a magnetic storage device for ultracold neutrons (UCN) to measure their lifetime. A setup was determined which should make it possible to confine UCN with negligible losses and detect the protons emerging from β-decay with high efficiency: stacked superconducting solenoids create the magnetic storage field, an electrostatic extraction field inside the storage volume assures high proton collection efficiency. Alongside with the optimization of the magnetic and electrostatic design, the properties of the trap were investigated through extensive Monte Carlo simulation. PMID:27308150

  20. CMS HF calorimeter PMTs and Xi(c)+ lifetime measurement

    SciTech Connect

    Akgun, Ugur; /Iowa U.

    2003-12-01

    This thesis consists of two parts: In the first part we describe the Photomultiplier Tube (PMT) selection and testing processes for the Hadronic Forward (HF) calorimeter of the CMS, a Large Hadron Collier (LHC) experiment at CERN. We report the evaluation process of the candidate PMTs from three different manufacturers, the complete tests performed on the 2300 Hamamatsu PMTs which will be used in the HF calorimeter, and the details of the PMT Test Station that is in University of Iowa CMS Laboratories. In the second part we report the {Xi}{sub c}{sup +} lifetime measurement from SELEX, the charm hadro-production experiment at Fermilab. Based upon 301 {+-} 31 events from three di.erent decay channels, by using the binned maximum likelihood technique, we observe the lifetime of {Xi}{sub c}{sup +} as 427 {+-} 31 {+-} 13 fs.

  1. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, C.; Steinkamp, J.A.

    1999-06-01

    Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

  2. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, Chiranjit; Steinkamp, John A.

    1999-01-01

    Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

  3. The determination of minority carrier lifetime in polycrystalline silicon by the photoconductivity decay method

    NASA Astrophysics Data System (ADS)

    Singh, S. N.; Kishore, R.; Arora, N. K.

    1985-04-01

    Experiments were carried out to investigate the possible sources of error in estimates of the time constant of apparent minority carrier lifetime (tau-asterisk) in polycrystalline silicon. Tau-asterisk was measured in both single-crystal and polycrystalline silicon rods as a function of: (1) the intensity of background illumination; and (2) the temperature of the specimens. The background illumination source for the experiments was a tungsten-halogen lamp which operated in the intensity range 0-85 mW per sq cm. The temperatures of the specimens under illumination were in the range 25-140 C. The experimental results were explained on the basis of a theoretical analysis. It is shown that the photoconductivity of the specimens was generally dependent on the minority carrier mobility lifetime, as long as potential barriers were present at the grain boundaries of the specimens. On the basis of the theoretical analysis, it is concluded that the absence of potential barriers at the grain boundaries in polycrystalline silicon is a major source of error in estimates of minority carrier mobility lifetime. The apparent minority carrier mobility decay curves are reproduced in graphic form.

  4. Measurements of the Bs0 and Λb0 lifetimes

    NASA Astrophysics Data System (ADS)

    OPAL Collaboration; Ackerstaff, K.; Alexander, G.; Allison, J.; Altekamp, N.; Anderson, K. J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S. F.; Axen, D.; Azuelos, G.; Ball, A. H.; Barberio, E.; Barlow, R. J.; Bartoldus, R.; Batley, J. R.; Baumann, S.; Bechtluft, J.; Beeston, C.; Behnke, T.; Bell, A. N.; Bell, K. W.; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S. D.; Blobel, V.; Bloodworth, I. J.; Bloomer, J. E.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, R. M.; Burckhart, H. J.; Burgard, C.; Bürgin, R.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrisman, D.; Clarke, P. E. L.; Cohen, I.; Conboy, J. E.; Cooke, O. C.; Couyoumtzelis, C.; Coxe, R. L.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G. M.; Davis, R.; de Jong, S.; del Pozo, L. A.; Desch, K.; Dienes, B.; Dixit, M. S.; Doucet, M.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Eatough, D.; Edwards, J. E. G.; Estabrooks, P. G.; Evans, H. G.; Evans, M.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A. A.; Feld, L.; Fiedler, F.; Fierro, M.; Fischer, H. M.; Fleck, I.; Folman, R.; Fong, D. G.; Foucher, M.; Fürtjes, A.; Futyan, D. I.; Gagnon, P.; Gary, J. W.; Gascon, J.; Gascon-Shotkin, S. M.; Geddes, N. I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W. R.; Gingrich, D. M.; Glenzinski, D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwé, M.; Hajdu, C.; Hanson, G. G.; Hansroul, M.; Hapke, M.; Hargrove, C. K.; Hart, P. A.; Hartmann, C.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Hemingway, R. J.; Herndon, M.; Herten, G.; Heuer, R. D.; Hildreth, M. D.; Hill, J. C.; Hillier, S. J.; Hobson, P. R.; Hocker, A.; Homer, R. J.; Honma, A. K.; Horváth, D.; Hossain, K. R.; Howard, R.; Hüntemeyer, P.; Hutchcroft, D. E.; Igo-Kemenes, P.; Imrie, D. C.; Ingram, M. R.; Ishii, K.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C. R.; Jones, G.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T. R.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P. I.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D. S.; Kokott, T. P.; Kolrep, M.; Komamiya, S.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G. D.; Lahmann, R.; Lai, W. P.; Lanske, D.; Lauber, J.; Lautenschlager, S. R.; Layter, J. G.; Lazic, D.; Lee, A. M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Long, G. D.; Losty, M. J.; Ludwig, J.; Lui, D.; Macchiolo, A.; MacPherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Markus, C.; Martin, A. J.; Martin, J. P.; Martinez, G.; Mashimo, T.; Mättig, P.; McDonald, W. J.; McKenna, J.; McKigney, E. A.; McMahon, T. J.; McPherson, R. A.; Meijers, F.; Menke, S.; Merritt, F. S.; Mes, H.; Meyer, J.; Michelini, A.; Mikenberg, G.; Miller, D. J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Müller, U.; Mihara, S.; Nagai, K.; Nakamura, I.; Neal, H. A.; Nellen, B.; Nisius, R.; O'Neale, S. W.; Oakham, F. G.; Odorici, F.; Ogren, H. O.; Oh, A.; Oldershaw, N. J.; Oreglia, M. J.; Orito, S.; Pálinkás, J.; Pásztor, G.; Pater, J. R.; Patrick, G. N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Rembser, C.; Robertson, S.; Robins, S. A.; Rodning, N.; Roney, J. M.; Rooke, A.; Rossi, A. M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D. R.; Rylko, R.; Sachs, K.; Saeki, T.; Sang, W. M.; Sarkisyan, E. K. G.; Sbarra, C.; Schaile, A. D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schöning, A.; Schröder, M.; Schultz-Coulon, H. C.; Schumacher, M.; Schwick, C.; Scott, W. G.; Shears, T. G.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Sherwood, P.; Siroli, G. P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A. M.; Snow, G. A.; Sobie, R.; Söldner-Rembold, S.; Springer, R. W.; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, D.; Ströhmer, R.; Szymanski, P.; Tafirout, R.; Talbot, S. D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M. A.; von Törne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trócsányi, Z.; Tsur, E.; Turcot, A. S.; Turner-Watson, M. F.; Utzat, P.; van Kooten, R.; Verzocchi, M.; Vikas, P.; Vokurka, E. H.; Voss, H.; Wäckerle, F.; Wagner, A.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wermes, N.; White, J. S.; Wilkens, B.; Wilson, G. W.; Wilson, J. A.; Wyatt, T. R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-04-01

    This paper presents updated measurements of the lifetimes of the Bs0 meson and the Λb0 baryon using 4.4 million hadronic Z0 decays recorded by the OPAL detector at LEP from 1990 to 1995. A sample of Bs0 decays is obtained using Ds-l+ combinations, where the Ds- is fully reconstructed in the φπ-, K*0K- and K-K0S decay channels and partially reconstructed in the φl-ν¯X decay mode. A sample of Λb0 decays is obtained using Λc+l- combinations, where the Λc+ is fully reconstructed in its decay to a pK-π+ final state and partially reconstructed in the Λl+νX decay channel. From 172+/-28 Ds-l+ combinations attributed to Bs0 decays, the measured lifetime is τ(Bs0)=1.50+0.16-0.15+/- 0.04 ps, where the errors are statistical and systematic, respectively. From the 129+/-25 Λc+l- combinations attributed to Λb0 decays, the measured lifetime is τ(Λb0)=1.29+0.24- 0.22+/-0.06 ps, where the errors are statistical and systematic, respectively.

  5. Measurements of Lifetimes and a Limit on the Lifetime Difference in the Neutral D-Meson System

    NASA Astrophysics Data System (ADS)

    Aitala, E. M.; Amato, S.; Anjos, J. C.; Appel, J. A.; Ashery, D.; Banerjee, S.; Bediaga, I.; Blaylock, G.; Bracker, S. B.; Burchat, P. R.; Burnstein, R. A.; Carter, T.; Carvalho, H. S.; Copty, N. K.; Cremaldi, L. M.; Darling, C.; Denisenko, K.; Fernandez, A.; Fox, G. F.; Gagnon, P.; Gobel, C.; Gounder, K.; Halling, A. M.; Herrera, G.; Hurvits, G.; James, C.; Kasper, P. A.; Kwan, S.; Langs, D. C.; Leslie, J.; Lundberg, B.; Maytal-Beck, S.; Meadows, B.; de Mello Neto, J. R.; Mihalcea, D.; Milburn, R. H.; de Miranda, J. M.; Napier, A.; Nguyen, A.; D'Oliveira, A. B.; O'Shaughnessy, K.; Peng, K. C.; Perera, L. P.; Purohit, M. V.; Quinn, B.; Radeztsky, S.; Rafatian, A.; Reay, N. W.; Reidy, J. J.; Dos Reis, A. C.; Rubin, H. A.; Sanders, D. A.; Santha, A. K.; Santoro, A. F.; Schwartz, A. J.; Sheaff, M.; Sidwell, R. A.; Slaughter, A. J.; Sokoloff, M. D.; Solano, J.; Stanton, N. R.; Stefanski, R. J.; Stenson, K.; Summers, D. J.; Takach, S.; Thorne, K.; Tripathi, A. K.; Watanabe, S.; Weiss-Babai, R.; Wiener, J.; Witchey, N.; Wolin, E.; Yang, S. M.; Yi, D.; Yoshida, S.; Zaliznyak, R.; Zhang, C.

    1999-07-01

    Using the large hadroproduced charm sample collected in experiment E791 at Fermilab, we report the first directly measured constraint on the decay-width difference Δγ for the mass eigenstates of the D0- D¯0 system. We obtain our result from lifetime measurements of the decays D0-->K-π+ and D0-->K-K+, under the assumption of CP invariance, which implies that the CP eigenstates and the mass eigenstates are the same. The lifetime of D0-->K-K+ (the CP-even final state) is τKK = 0.410+/-0.011+/-0.006 ps, and the lifetime of D0-->K-π+ (an equal mixture of CP-odd and CP-even final states) is τKπ = 0.413+/-0.003+/-0.004 ps. The decay-width difference is Δγ = 2\\(γKK-γKπ\\) = 0.04+/-0.14+/-0.05 ps-1. We relate these measurements to measurements of mixing in the neutral D-meson system.

  6. Level Lifetime Measurements in ^150Sm

    NASA Astrophysics Data System (ADS)

    Barton, C. J.; Krücken, R.; Beausang, C. W.; Caprio, M. A.; Casten, R. F.; Cooper, J. R.; Hecht, A. A.; Newman, H.; Novak, J. R.; Pietralla, N.; Wolf, A.; Zyromski, K. E.; Zamfir, N. V.; Börner, H. G.

    2000-10-01

    Shape/phase coexistence and the evolution of structure in the region around ^152Sm have recently been of great interest. Experiments performed at WNSL, Yale University, measured the lifetime of low spin states in a target of ^150Sm with the recoil distance method (RDM) and the Doppler-shift attenuation method (DSAM). The low spin states, both yrast and non-yrast, were populated via Coulomb excitation with a beam of ^16O. The experiments were performed with the NYPD plunger in conjunction with the SPEEDY γ-ray array. The SCARY array of solar cells was used to detect backward scattered projectiles, selecting forward flying Coulomb excited target nuclei. The measured lifetimes yield, for example, B(E2) values for transitions such as the 2^+2 arrow 2^+1 and the 2^+3 arrow 0^+_1. Data from the RDM measurment and the DSAM experiment will be presented. This work was supported by the US DOE under grants DE-FG02-91ER-40609 and DE-FG02-88ER-40417.

  7. Measuring the Neutron Lifetime using Magnetically Trapped Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Mumm, H. P.; Coakley, K. J.; Dewey, M. S.; Huber, M. G.; Hughes, P. P.; Thompson, A. K.; Golub, R.; Huffer, C. R.; Huffman, P. R.; O'Shaughnessy, C. M.; Schelhammer, K. W.

    2010-11-01

    The neutron beta-decay lifetime is important in both theoretical predictions of the primordial abundance of ^4He and providing a strong unitarity test of the CKM mixing matrix. We have previously demonstrated trapping of Ultracold Neutrons (UCN) in a magnetic trap, and, though statistically limited, measured a lifetime consistent with the world average. A major upgrade of the apparatus has now been completed at NIST. In our unique approach, a 0.89 nm neutron beam is incident on a superfluid ^4He target within the minimum field region of an Ioffe-type magnetic trap. Neutrons are downscattered by single phonon scattering in liquid helium to near rest and trapped; at sufficiently low temperatures, the low phonon density in the helium suppresses upscatter. The electron accompanying neutron decay produces scintillation in the superfluid helium and can be detected in real time. Previous statistical limitations as well as systematics related to neutron material bottling will be reduced by significant increases in field strength and trap volume. Details of analyses of the systematics as well as the initial performance benchmarks of the new apparatus will be presented.

  8. Combined results on b-hadron production rates, lifetimes, oscillations and semileptonic decays

    SciTech Connect

    WIllocq, stephane

    2000-08-02

    Combined results on b-hadron lifetimes, b-hadron production rates B{sub d}{sup 0}--Anti-B{sub d}{sup 0} and B{sub s}{sup 0}--Anti-B{sub s}{sup 0} oscillations, the decay width difference between the mass eigenstates of the B{sub s}{sup 0}--Anti-B{sub s}{sup 0} system, and the values of the CKM matrix elements {vert_bar}V{sub cb}{vert_bar} and {vert_bar}V{sub ub}{vert_bar} are obtained from published and preliminary measurements available in Summer 99 from the ALEPH, CDF, DELPHI, L3, OPAL and SLD Collaborations.

  9. Lifetime and diffusion length measurements on silicon material and solar cells

    NASA Technical Reports Server (NTRS)

    Othmer, S.; Chen, S. C.

    1978-01-01

    Experimental methods were evaluated for the determination of lifetime and diffusion length in silicon intentionally doped with potentially lifetime-degrading impurities found in metallurgical grade silicon, impurities which may be residual in low-cost silicon intended for use in terrestrial flat-plate arrays. Lifetime measurements were made using a steady-state photoconductivity method. Diffusion length determinations were made using short-circuit current measurements under penetrating illumination. Mutual consistency among all experimental methods was verified, but steady-state photoconductivity was found preferable to photoconductivity decay at short lifetimes and in the presence of traps. The effects of a number of impurities on lifetime in bulk material, and on diffusion length in cells fabricated from this material, were determined. Results are compared with those obtained using different techniques. General agreement was found in terms of the hierarchy of impurities which degrade the lifetime.

  10. Lifetime Difference and CP Asymmetry in the Bs -> J/psi phi decay

    SciTech Connect

    Kuhr, Thomas

    2007-10-01

    The B{sub s} meson is an interesting particle to study because a sizable mixing induced CP violation in the B{sub s} -- {bar B}{sub s} system would be an indication for physics beyond the Standard Model. In this paper we present a measurement of the lifetime difference {Delta}{Gamma} between the B{sub s} mass eigenstates and the CP violating phase in the decay B{sub s} {yields} J/{psi}{phi}. In 1.7 fb{sup -1} of data collected with the CDF II detector at the Tevatron p{bar p} collider we measure {Delta}{Gamma} = 0.076{sup +0.059}{sub -0.063} (stat.) {+-}0.006 (syst.) ps{sup -1}, well consistent with the Standard Model prediction, and a mean B{sub s} lifetime of c{sub tau}{sub s} = 456 {+-} 13 (stat.) {+-} (syst.) {micro}m. We find no evidence for CP violation.

  11. Measurement of the B0s lifetime in the flavor-specific decay channel B0s → D-sμ+νX

    SciTech Connect

    Abazov, Victor Mukhamedovich

    2015-02-09

    We present an updated measurement of the B0s lifetime using the semileptonic decays B0s → D-sμ+νX, with Ds → π and Φ → K+K (and the charge conjugate process). This measurement uses the full Tevatron Run II sample of proton-antiproton collisions at √s = 1.96 TeV, comprising an integrated luminosity of 10.4 fb–1. We find a flavor-specific lifetime τfs(B0s) = 1.479 ± 0.010(stat) ± 0.021(syst) ps. This technique is also used to determine the B0 lifetime using the analogous B0 → Dμ+νX decay with D → Φπ and Φ → K+K, yielding τ(B0) = 1.534 ± 0.019(stat) ± 0.021(syst) ps. Both measurements are consistent with the current world averages, and the B0s lifetime measurement is one of the most precise to date. As a result, taking advantage of the cancellation of systematic uncertainties, we determine the lifetime ratio τfs(B0s)/τ(B0) = 0.964 ± 0.013(stat) ± 0.007(syst).

  12. Plunger Lifetime Measurements in 102Pd

    SciTech Connect

    Kalyva, G.; Spyrou, A.; Axiotis, M.; Harissopulos, S.; Dewald, A.; Fitzler, A.; Saha, B.; Liennemann, A.; Vlastou, R.; Napoli, D. R.; Marginean, N.; Rusu, C.; De Angelis, G.; Ur, C.; Bazzacco, D.; Farnea, E.; Balabanski, D. L.; Julin, R.

    2006-04-26

    Recently, an intense experimental effort has been devoted to the search of empirical proofs of critical-point symmetries in nuclear structure. These symmetries describe shape-phase transitions and provide parameter-free predictions (up to over-all scale factors) for excitation spectra and B(E2) values. This contribution reports on recent plunger-lifetime measurements ON 102Pd carried out at LNL, Legnaro, with the Cologne plunger apparatus coupled to the GASP spectrometer and using the 92Zr(13C,3n)102Pd reaction at 48 MeV. According to the results of our measurements, 102Pd is so far the best known paradigm of the E(5) critical-point symmetry.

  13. Lifetime measurements in {sup 133}Ce

    SciTech Connect

    Emediato, L.G.; Rao, M.N.; Medina, N.H.; Seale, W.A.; Botelho, S.; Ribas, R.V.; Oliveira, J.R.; Cybulska, E.W.; Espinoza-Quinones, F.R.; Guimaraes, V.; Rizzutto, M.A.; Acquadro, J.C.

    1997-04-01

    Lifetimes of low-lying levels in the one- and three-quasiparticle bands in {sup 133}Ce have been measured using the recoil-distance Doppler-shift technique. The E2 transition strengths extracted for the negative parity yrast states are well described by the triaxial-rotor-plus-quasiparticle and the geometrical models, but the interacting-boson-plus-fermion predictions are too small by about a factor of 3. The B(M1) values extracted for the levels in the positive parity three-quasiparticle band are consistent with the previous {nu}h{sub 11/2}{circle_times}{pi}h{sub 11/2}{circle_times}{pi}g{sub 7/2} configuration assignment to this band. {copyright} {ital 1997} {ital The American Physical Society}

  14. Spectrally resolved fluorescence lifetime imaging of Nile red for measurements of intracellular polarity

    NASA Astrophysics Data System (ADS)

    Levitt, James A.; Chung, Pei-Hua; Suhling, Klaus

    2015-09-01

    Spectrally resolved confocal microscopy and fluorescence lifetime imaging have been used to measure the polarity of lipid-rich regions in living HeLa cells stained with Nile red. The emission peak from the solvatochromic dye in lipid droplets is at a shorter wavelength than other, more polar, stained internal membranes, and this is indicative of a low polarity environment. We estimate that the dielectric constant, ɛ, is around 5 in lipid droplets and 25<ɛ<40 in other lipid-rich regions. Our spectrally resolved fluorescence lifetime imaging microscopy (FLIM) data show that intracellular Nile red exhibits complex, multiexponential fluorescence decays due to emission from a short lifetime locally excited state and a longer lifetime intramolecular charge transfer state. We measure an increase in the average fluorescence lifetime of the dye with increasing emission wavelength, as shown using phasor plots of the FLIM data. We also show using these phasor plots that the shortest lifetime decay components arise from lipid droplets. Thus, fluorescence lifetime is a viable contrast parameter for distinguishing lipid droplets from other stained lipid-rich regions. Finally, we discuss the FLIM of Nile red as a method for simultaneously mapping both polarity and relative viscosity based on fluorescence lifetime measurements.

  15. Measurement of the ratio of B+ and B0 meson lifetimes.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J-L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Anderson, S; Andrieu, B; Arnoud, Y; Askew, A; Asman, B; Atramentov, O; Autermann, C; Avila, C; Badaud, F; Baden, A; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Boehnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burnett, T H; Busato, E; Butler, J M; Bystricky, J; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Cho, D K; Choi, S; Christiansen, T; Christofek, L; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M-C; Crépé-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; da Motta, H; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Dean, S; Déliot, F; Delsart, P A; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Feligioni, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Freeman, W; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gardner, J; Gavrilov, V; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Y; Ginther, G; Golling, T; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Gris, Ph; Grivaz, J-F; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Harder, K; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Huang, J; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jonsson, P; Jöstlein, H; Juste, A; Kado, M M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Kau, D; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A; Kharzheev, Y M; Kim, K H; Klima, B; Klute, M; Kohli, J M; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Krzywdzinski, S; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kurca, T; Lager, S; Lahrichi, N; Landsberg, G; Lazoflores, J; Le Bihan, A-C; Lebrun, P; Lee, S W; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipaev, V V; Lipton, R; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Lubatti, H J; Lueking, L; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magerkurth, A; Magnan, A-M; Makovec, N; Mal, P K; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; Meder, D; Melanson, H L; Melnitchouk, A; Merkin, M; Merritt, K W; Meyer, A; Miettinen, H; Mihalcea, D; Mitrevski, J; Mokhov, N; Molina, J; Mondal, N K; Montgomery, H E; Moore, R W; Muanza, G S; Mulders, M; Mutaf, Y D; Nagy, E; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Oliveira, N; Oshima, N; Otero y Garzón, G J; Padley, P; Parashar, N; Park, J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Perea, P M; Perez, E; Peters, O; Pétroff, P; Petteni, M; Phaf, L; Piegaia, R; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pope, B G; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Przybycien, M B; Qian, J; Quadt, A; Quinn, B; Rani, K J; Rapidis, P A; Ratoff, P N; Reay, N W; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Schellman, H; Schieferdecker, P; Schmitt, C; Schukin, A A; Schwartzman, A; Schwienhorst, R; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shephard, W D; Shpakov, D; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Song, Y; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Steinbrück, G; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tentindo-Repond, S; Thomas, E; Thooris, B; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vlimant, J-R; Von Toerne, E; Vreeswijk, M; Vu Anh, T; Wahl, H D; Walker, R; Wang, L; Wang, Z-M; Warchol, J; Warsinsky, M; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; Wermes, N; White, A; White, V; Whiteson, D; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xu, Q; Xuan, N; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G; Zylberstejn, A

    2005-05-13

    The ratio of the B+ and B0 meson lifetimes was measured using data collected in 2002-2004 by the D0 experiment in Run II of the Fermilab Tevatron Collider. These mesons were reconstructed in B-->mu(+)nuD(*-)X decays, which are dominated by B0 and B-->mu(+)nuD 0X decays, which are dominated by B+. The ratio of lifetimes is measured to be tau(+)/tau(0)=1.080+/-0.016(stat)+/-0.014(syst). PMID:15904361

  16. Cascade Problems in Some Atomic Lifetime Measurements at a Heavy-Ion Storage Ring

    SciTech Connect

    Trabert, E; Hoffmann, J; Krantz, C; Wolf, A; Ishikawa, Y; Santana, J

    2008-10-09

    Lifetimes of 3s{sup 2}3p{sup k} ground configuration levels of Al-, Si-, P-, and S-like ions of Be, Co, and Ni have been measured at a heavy-ion storage ring. Some of the observed decay curves show strong evidence of cascade repopulation from specific 3d levels that feature lifetimes in the same multi-millisecond range as the levels of the ground configuration.

  17. Measurement of Beam Lifetime and Applications for SPEAR3

    SciTech Connect

    Huang, Xiaobiao; Corbett, Jeff; /SLAC

    2011-04-05

    Beam lifetime studies for the SPEAR3 storage ring are presented. The three lifetime components are separated with lifetime measurements under various combinations of beam currents and fill patterns and vertical scraper scans. Touschek lifetime is studied with rf voltage scans and with the horizontal or vertical scrapers inserted. The measurements are explained with calculations based on the calibrated lattice model. Quantum lifetime measurements are performed with reduced longitudinal and horizontal apertures, respectively, from which we deduce the radiation energy loss down to a few keV per revolution and the horizontal beam size.

  18. Neutron beta decay measurements planned for the SNS

    NASA Astrophysics Data System (ADS)

    Pocanic, Dinko

    2009-10-01

    A cold neutron beam line, dedicated to fundamental neutron physics (FnPB), is presently being completed at the Oak Ridge, TN, Spallation Neutron Source. Among other experiments, the beamline will host a comprehensive set of precise studies of the neutron beta decay. Neutron beta decay is characterised by the decay rate (or its inverse, the neutron lifetime), and a set of decay parameters describing the kinematical and spin correlations among the participating particles. Within the standard model (SM), the neutron lifetime and three decay parameters (a, A, and B) are fixed by two parameters: the Vud element of the Cabibbo-Kobayashi-Maskawa mixing matrix, and λ=GA/GV, the ratio of axial vector and vector nucleon form factors. This overdetermined system provides a unique opportunity to explore possible departures from the simple SM, as well as the nature of such departures, e.g., left-right supersymmetric extensions, leptoquarks, non-(V-A) admixtures, etc., with broad implications in subatomic physics. The FnPB neutron beta decay program will include measurements of the neutron lifetime, continuing the present NIST experiment, a measurement of a, the electron-neutrino correlation, and b, the Fierz interference term, (the ``Nab'' experiment), along with measurements of A and B, the correlations between neutron spin and electron and neutrino momenta, respectively, (the ``abBA'' experiment). Current plans for these experiments will be discussed in detail.

  19. Emittance and lifetime measurement with damping wigglers.

    PubMed

    Wang, G M; Shaftan, T; Cheng, W X; Guo, W; Ilinsky, P; Li, Y; Podobedov, B; Willeke, F

    2016-03-01

    National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects in the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II. PMID:27036766

  20. Emittance and lifetime measurement with damping wigglers

    NASA Astrophysics Data System (ADS)

    Wang, G. M.; Shaftan, T.; Cheng, W. X.; Guo, W.; Ilinsky, P.; Li, Y.; Podobedov, B.; Willeke, F.

    2016-03-01

    National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects in the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.

  1. Lifetime Measurements of Trapped ^232Th^3+

    NASA Astrophysics Data System (ADS)

    Depalatis, Michael; Chapman, Michael

    2012-06-01

    In recent years, there has been considerable interest in the low lying nuclear isomer state of ^229Th which is only several eV above the nuclear ground state [1]. To date, several groups are taking a variety of approaches to finding and exciting this unique state [2], including the use of trapped Th^3+ ions. Despite this attention, few precise measurements have been made of atomic lifetimes. In this work we present experiments to measure the 6D3/2 and 6D5/2 states using laser cooled ^232Th^3+ confined in a linear Paul trap.[4pt] [1] E. Peik and Chr. Tamm, Europhys. Lett. 61, 181 (2003); V. V. Flambaum, Phys. Rev. Lett. 97, 092502 (2006); B. R. Beck et al., Phys. Rev. Lett. 98, 142501 (2007).[0pt] [2] W. G. Rellergert et al., Phys. Rev. Lett. 104, 200802 (2010); S. G. Porsev et al., Phys. Rev. Lett. 105, 182501 (2010); C. J. Campbell et al., Phys. Rev. Let. 106, 223001 (2011).

  2. Direct Lifetime Measurements of the Excited States in (72)Ni.

    PubMed

    Kolos, K; Miller, D; Grzywacz, R; Iwasaki, H; Al-Shudifat, M; Bazin, D; Bingham, C R; Braunroth, T; Cerizza, G; Gade, A; Lemasson, A; Liddick, S N; Madurga, M; Morse, C; Portillo, M; Rajabali, M M; Recchia, F; Riedinger, L L; Voss, P; Walters, W B; Weisshaar, D; Whitmore, K; Wimmer, K; Tostevin, J A

    2016-03-25

    The lifetimes of the first excited 2^{+} and 4^{+} states in ^{72}Ni were measured at the National Superconducting Cyclotron Laboratory with the recoil-distance Doppler-shift method, a model-independent probe to obtain the reduced transition probability. Excited states in ^{72}Ni were populated by the one-proton knockout reaction of an intermediate energy ^{73}Cu beam. γ-ray-recoil coincidences were detected with the γ-ray tracking array GRETINA and the S800 spectrograph. Our results provide evidence of enhanced transition probability B(E2;2^{+}→0^{+}) as compared to ^{68}Ni, but do not confirm the trend of large B(E2) values reported in the neighboring isotope ^{70}Ni obtained from Coulomb excitation measurement. The results are compared to shell model calculations. The lifetime obtained for the excited 4_{1}^{+} state is consistent with models showing decay of a seniority ν=4, 4^{+} state, which is consistent with the disappearance of the 8^{+} isomer in ^{72}Ni. PMID:27058074

  3. Direct Lifetime Measurements of the Excited States in 72Ni

    NASA Astrophysics Data System (ADS)

    Kolos, K.; Miller, D.; Grzywacz, R.; Iwasaki, H.; Al-Shudifat, M.; Bazin, D.; Bingham, C. R.; Braunroth, T.; Cerizza, G.; Gade, A.; Lemasson, A.; Liddick, S. N.; Madurga, M.; Morse, C.; Portillo, M.; Rajabali, M. M.; Recchia, F.; Riedinger, L. L.; Voss, P.; Walters, W. B.; Weisshaar, D.; Whitmore, K.; Wimmer, K.; Tostevin, J. A.

    2016-03-01

    The lifetimes of the first excited 2+ and 4+ states in 72>Ni were measured at the National Superconducting Cyclotron Laboratory with the recoil-distance Doppler-shift method, a model-independent probe to obtain the reduced transition probability. Excited states in 72Ni were populated by the one-proton knockout reaction of an intermediate energy 73Cu beam. γ -ray-recoil coincidences were detected with the γ -ray tracking array GRETINA and the S800 spectrograph. Our results provide evidence of enhanced transition probability B (E 2 ;2+→0+) as compared to 68Ni, but do not confirm the trend of large B (E 2 ) values reported in the neighboring isotope 70Ni obtained from Coulomb excitation measurement. The results are compared to shell model calculations. The lifetime obtained for the excited 41+ state is consistent with models showing decay of a seniority ν =4 , 4+ state, which is consistent with the disappearance of the 8+ isomer in 72Ni.

  4. Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration.

    PubMed

    Mayer, R H; Reynolds, J S; Sevick-Muraca, E M

    1999-08-01

    A method is presented to determine fluorescence decay lifetimes within tissuelike scattering media. Fluorescence lifetimes are determined for micromolar concentrations of the dyes 3,3'-Diethylthiatricarbocyanine Iodide and Indocyanine Green by frequency-domain investigations of light propagating in turbid media. Dual-wavelength photon-migration measurements that use intensity-modulated sources at excitation and emission wavelengths of the fluorophores provide optical parameters of the media as well as fluorescence properties of the dyes. The deduction of fluorescence lifetimes requires no calibration with reference fluorophores, and the results are shown to be independent of dye concentration. PMID:18323983

  5. Photon-counting phase-modulation fluorometer for lifetime measurements

    NASA Astrophysics Data System (ADS)

    Iwata, Tetsuo; Hori, Akio; Kamada, Takeshi

    2001-05-01

    We propose a phase-modulation fluorometer that is applicable to a very weak fluorescence intensity level. In order to counter the single-photon event situation, we have introduced a combination of a time-to-amplitude converter (TAC) and a pulse height analyzer (PHA) to the phase- modulation fluorometer, the combination of which is usually used in the single-photon correlation method to measure fluorescence decay waveforms by pulsed excitation. In the proposed fluorometer, a sinusoidal response waveform that is shifted in phase over the reference one is obtained statistically as a histogram in the PHA memory and then the fluorescence lifetime can be calculated by the same procedure as the conventional analog phase-modulation method. The excitation light source used was a current- modulated ultraviolet light-emitting diode (UV LED), whose center wavelength was 370 nm and its spectral bandwidth was 10 nm. Fluorescence lifetimes of 17.6 ns and 5.7 ns obtained for 10 ppb quinine sulfate in 0.1 N H2SO4 and for 10 ppb rhodamine 6G in ethanol, respectively, agreed well with those reported in the literature.

  6. Lifetime measurements in transitional nuclei by fast electronic scintillation timing

    NASA Astrophysics Data System (ADS)

    Caprio, M. A.; Zamfir, N. V.; Casten, R. F.; Amro, H.; Barton, C. J.; Beausang, C. W.; Cooper, J. R.; Gürdal, G.; Hecht, A. A.; Hutter, C.; Krücken, R.; McCutchan, E. A.; Meyer, D. A.; Novak, J. R.; Pietralla, N.; Ressler, J. J.; Berant, Z.; Brenner, D. S.; Gill, R. L.; Regan, P. H.

    2002-10-01

    A new generation of experiments studying nuclei in spherical-deformed transition regions has been motivated by the introduction of innovative theoretical approaches to the treatment of these nuclei. The important structural signatures in the transition regions, beyond the basic yrast level properties, involve γ-ray transitions between low-spin, non-yrast levels, and so information on γ-ray branching ratios and absolute matrix elements (or level lifetimes) for these transitions is crucial. A fast electronic scintillation timing (FEST) system [H. Mach, R. L. Gill, and M. Moszyński, Nucl. Instrum. Methods A 280, 49 (1989)], making use of BaF2 and plastic scintillation detectors, has been implemented at the Yale Moving Tape Collector for the measurement of lifetimes of states populated in β^ decay. Experiments in the A100 (Pd, Ru) and A150 (Dy, Yb) regions have been carried out, and a few examples will be presented. Supported by the US DOE under grants and contracts DE-FG02-91ER-40609, DE-FG02-88ER-40417, and DE-AC02-98CH10886 and by the German DFG under grant Pi 393/1.

  7. The Taser Induced Fluorescence Spectra And Decay Lifetime Of NI2+ Doped Chrysoberyl

    NASA Astrophysics Data System (ADS)

    Hanting, Ji; Genwang, Wen; Jun, Oian; Zhende, Chen; Wenbin, Gao; Songhao, Lui

    1985-12-01

    This paper reports the experimental results on the fluorescence spectra and decay lifetime of 3T2---3A2 vibronic transition of NI2+ : BeAl204 with LIFM. The center wavelength of fluorescence spectra is 1.33u , the bandwidth (FWHM) is 0.14u (1.26 - 1.40u), and the center red-shift of fluorescence spectra in relative to absorption spectra is 0.225u at room temperature (300k). The radiation lifetime is 3T2 band is 198 us.

  8. Measurement of short lifetimes in highly-charged ions using a two-foil target

    SciTech Connect

    Berry, H.G.; Dunford, R.W.; Gemmell, D.S.

    1995-08-01

    One of the frontiers in the study of the atomic physics of highly-charged ions is the measurement of lifetimes in the 100 fs to 10 ps regime. The standard technique for measuring lifetimes of states in highly-charged ions is the beam-foil time-of-flight method in which the intensity of an emission line is monitored as a function of the separation between the exciting foil and the portion of the beam being viewed by the detector. This method becomes increasingly difficult as the decay lengths of the states of interest become shorter. At a typical beam velocity of 10% of the speed of light, the beam travels 30 microns in a picosecond. The standard beam-foil time-of-flight method necessitates observation of the decay radiation within one or two decay lengths from the foil while preventing the detectors from observing the beam spot at the foil. For short-lived states this requires tight collimation of the detector with a resulting loss in solid angle. We are developing a method for measuring ultrashort atomic lifetimes utilizing a two-foil target. As a specific case to demonstrate the feasibility of our method, we are studying the decay of the 2 {sup 3}P{sub 2} level in helium-like Kr{sup 34+}. This level has a calculated lifetime of 9.5 ps which corresponds to a decay length of 380 {mu}m. For krypton, theory predicts that 90% of the 2 {sup 3}P{sub 2} states decay via M2 radiation to the ground state. A measurement of the lifetime of this state would contribute to an important current problem which concerns the understanding of atomic structure when both electron correlations and relativistic effects are simultaneously important.

  9. Measurement of the Ξb- and Ωb- baryon lifetimes

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Esen, S.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jezabek, M.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lu, H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Manzali, M.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Mountain, R.; Muheim, F.; Müller, K.; Muresan, R.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, G.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spinella, F.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2014-09-01

    Using a data sample of pp collisions corresponding to an integrated luminosity of 3 fb-1, the Ξb- and Ωb- baryons are reconstructed in the Ξb-→J/ψΞ- and Ωb-→J/ψΩ- decay modes and their lifetimes measured to be

  10. Lifetime measurement of high spin states in (75) Kr

    SciTech Connect

    Sheikh, Javid; Trivedi, T.; Maurya, K.; Mehrotra, I.; Palit, R.; Naik, Z.; Jain, H. C.; Negi, D.; Mahanto, G.; Kumar, R.; Singh, R.P.; Muralithar, S.; Pancholi, S.C.; Bhowmik, R.K.; Yang, Y-C; Sun, Y.; Dahl, A.; Raju, M.K.; Appannababu, S.; Kumar, S.; Choudhury, D.; Jain, A. K.

    2010-01-01

    The lifetimes of high spin states of {sup 75}Kr have been determined via {sup 50}Cr ({sup 28}Si, 2pn) {sup 75}Kr reaction in positive parity band using the Doppler-shift attenuation method. The transition quadrupole moments Q deduced from lifetime measurements have been compared with {sup 75}Br. Experimental results obtained from lifetime measurement are interpreted in the framework of projected shell model.

  11. Geometry-dependent lifetime of Interatomic coulombic decay using equation-of-motion coupled cluster method

    SciTech Connect

    Ghosh, Aryya; Vaval, Nayana

    2014-12-21

    Electronically excited atom or molecule in an environment can relax via transferring its excess energy to the neighboring atoms or molecules. The process is called Interatomic or Intermolecular coulombic decay (ICD). The ICD is a fast decay process in environment. Generally, the ICD mechanism predominates in weakly bound clusters. In this paper, we have applied the complex absorbing potential approach/equation-of-motion coupled cluster (CAP/EOMCCSD) method which is a combination of CAP and EOMCC approach to study the lifetime of ICD at various geometries of the molecules. We have applied this method to calculate the lifetime of ICD in Ne-X; X = Ne, Mg, Ar, systems. We compare our results with other theoretical and experimental results available in literature.

  12. Measurement of the Bs(0) → Ds-Ds+ and Bs(0) → D-Ds+ effective lifetimes.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorosz, P; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Farinelli, C; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Hafkenscheid, T W; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Khanji, B; Klaver, S; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Martynov, A; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, G; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Pessina, G; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szilard, D; Szumlak, T; T'jampens, S; Teklishyn, M; Tellarini, G; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Warrington, N; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2014-03-21

    The first measurement of the effective lifetime of the B(s)(0) meson in the decay B(s)(0) → Ds-Ds+ is reported using a proton-proton collision data set, corresponding to an integrated luminosity of 3 fb(-1), collected by the LHCb experiment. The measured value of the B(s)(0) → Ds-Ds+ effective lifetime is 1.379 ± 0.026 ± 0.017 ps, where the uncertainties are statistical and systematic, respectively. This lifetime translates into a measurement of the decay width of the light B(s)(0) mass eigenstate of ΓL = 0.725 ± 0.014 ± 0.009 ps(-1). The B(s)(0) lifetime is also measured using the flavor-specific B(s)(0)→ D-Ds+ decay to be 1.52 ± 0.15 ± 0.01 ps. PMID:24702350

  13. Lifetime measurements in the superdeformed band of sup 192 Hg

    SciTech Connect

    Moore, E.F.; Janssens, R.V.F.; Ahmad, I.; Carpenter, M.P.; Fernandez, P.B.; Khoo, T.L.; Ridley, S.L.; Wolfs, F.L.H. ); Ye, D.; Beard, K.B.; Garg, U. ); Drigert, M.W. ); Benet, P.; Daly, P.J. ); Wyss, R. Royal Institute of Technology, S-10444 Stockholm ); Nazarewicz, W. )

    1990-06-25

    Lifetimes were measured for transitions in the superdeformed band of {sup 192}Hg with the Doppler-shift attenuation method. The results yield an essentially constant quadrupole moment of 20{plus minus}2 {ital e} b and indicate that the sidefeeding lifetimes are of the same order as the state lifetimes. The data are consistent with calculations using the cranked Woods-Saxon Strutinsky method with pairing.

  14. New lifetime measurements in 109Pd and the onset of deformation at N =60

    NASA Astrophysics Data System (ADS)

    Bucher, B.; Mach, H.; Aprahamian, A.; Simpson, G. S.; Rissanen, J.; GhiÅ£ǎ, D. G.; Olaizola, B.; Kurcewicz, W.; ńystö, J.; Bentley, I.; Eronen, T.; Fraile, L. M.; Jokinen, A.; Karvonen, P.; Moore, I. D.; Penttilä, H.; Reponen, M.; Ruchowska, E.; Saastamoinen, A.; Smith, M. K.; Weber, C.

    2015-12-01

    Several new subnanosecond lifetimes were measured in 109Pd using the fast-timing β γ γ (t ) method. Fission fragments of the A =109 mass chain were produced by bombarding natural uranium with 30 MeV protons at the Jyväskylä Ion Guide Isotope Separator On-Line (IGISOL) facility. Lifetimes were obtained for excited states in 109Pd populated following β decay of 109Rh. The new lifetimes provide some insight into the evolution of nuclear structure in this mass region. In particular, the distinct structure of the two low-lying 7 /2+ states occurring systematically across the Pd isotopic chain is supported by the new lifetime measurements. The available nuclear data indicate a sudden increase in deformation at N =60 which is related to the strong p -n interaction between π g9 /2 and ν g7 /2 valence nucleons expected in this region.

  15. Measuring the free neutron lifetime to <= 0.3s via the beam method

    NASA Astrophysics Data System (ADS)

    Mulholland, Jonathan; Fomin, Nadia; BL3 Collaboration

    2015-10-01

    Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.

  16. Measuring the free neutron lifetime to <= 0.3s via the beam method

    NASA Astrophysics Data System (ADS)

    Fomin, Nadia; Mulholland, Jonathan

    2015-04-01

    Neutron beta decay is an archetype for all semi-leptonic charged-current weak processes. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial 4 He abundance from the theory of Big Bang Nucleosynthesis. An effort has begun for an in-beam measurement of the neutron lifetime with an projected <=0.3s uncertainty. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Recent advances in neutron fluence measurement techniques as well as new large area silicon detector technology address the two largest sources of uncertainty of in-beam measurements, paving the way for a new measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed. This work is supported by the DOE office of Science, NIST and NSF.

  17. Positron lifetime measurements in chiral nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Parmar, Devendra S.

    1991-01-01

    Positron lifetimes in the isotropic phases of chiral nematic liquid crystal formulations and their mixtures up to the racemic level were measured. The lifetime spectra for all liquid crystal systems were analyzed into three components. Although the individual spectra in the left- and right-handed components are identical, their racemic mixtures exhibit much larger orthopositronium lifetimes; these larger lifetimes indicate the presence of larger microvoids. This result is consistent with the reportedly higher thermodynamic stability and color play range in the racemic mixtures of chiral nematic liquid crystals.

  18. Dual-sensor technique for characterization of carrier lifetime decay transients in semiconductors

    SciTech Connect

    Ahrenkiel, R. K.; Johnston, S. W.; Kuciauskas, D.; Tynan, Jerry

    2014-12-07

    This work addresses the frequent discrepancy between transient photoconductive (PC) decay and transient photoluminescence (PL) decay. With this dual- sensor technique, one measures the transient PC and PL decay simultaneously with the same incident light pulse, removing injection-level uncertainty. Photoconductive decay measures the transient photoconductivity, Δσ(t). PCD senses carriers released from shallow traps as well as the photo-generated electron-hole pairs. In addition, variations in carrier mobility with injection level (and time) contribute to the decay time. PL decay senses only electron-hole recombination via photon emission. Theory and experiment will show that the time dependence of the two techniques can be quite different at high injection.

  19. MEASUREMENTS OF THE PROPERTIES OF D MESON DECAYS

    SciTech Connect

    Abrams, G.; Blocker, C.A.; Blondel, A.; Carithers, W.C.; Chinowsky, W.; Coles, M.W.; Cooper, S.; Dieterle, W.E.; Dillon, J.B.; Eaton, M.W.; Gidal, G.; Goldhaber, G.; Johnson, A.D.; Kadyk, J.A.; Lankford, A.J.; Millikan, R.E.; Nelson, M.E.; Pang, C.Y.; Patrick, J.F.; Strait, J.; Trilling, G.H.; Vella, E.N.; Videau, I.

    1980-05-01

    We present a study of the decay properties of charmed D mesons produced near the peak of the {psi}" (3770) resonance in e{sup +}e{sup -} annihilation. Branching fractions for nine Cabibbo-favored and three Cabibbo-suppressed decay modes are presented along with upper limits on one additional Cabibbo-favored and four additional Cabibbo-suppressed decay modes. A study of K{pi}{pi} decay mode Dalitz plots reveals a large quasi-two-body pseudoscalar-vector component for the D{sup 0} decays and an apparent nonuniform population an the Dalitz plot for the D{sup +} decay into K{sup -}{pi}{sup +}{pi}{sup +}. Using tagged events, we measure the charged particle multiplicity and strange particle content of D decays. A measurement of the D{sup +} and D{sup 0} semileptonic decay fractions indicates that the D{sup +} has a significantly longer lifetime than the D{sup 0}.

  20. Quantitative carrier lifetime images optically measured on rough silicon wafers

    NASA Astrophysics Data System (ADS)

    Schubert, Martin C.; Pingel, Sebastian; The, Manuel; Warta, Wilhelm

    2007-06-01

    Results of optical carrier lifetime measurements like carrier density imaging significantly depend on surface conditions of the sample under test. Rough or textured surfaces have a severe impact on the measurement quality since they cause blurring and overestimation of the lifetime measurement. We propose a correction method for both, the adjustment of the absolute value and the restoration of the spatial distribution of the recombination lifetime. The absolute value is corrected by taking the emissivity of the sample into account. The unblurred signal distribution is obtained by mathematical deconvolution via Wiener filtering. For this purpose an appropriate point spread function is experimentally determined.

  1. A magneto-gravitational neutron trap for the measurement of the neutron lifetime

    NASA Astrophysics Data System (ADS)

    Salvat, Daniel J.

    Neutron decay is the simplest example of nuclear beta-decay. The mean decay lifetime is a key input for predicting the abundance of light elements in the early universe. A precise measurement of the neutron lifetime, when combined with other neutron decay observables, can test for physics beyond the standard model in a way that is complimentary to, and potentially competitive with, results from high energy collider experiments. Many previous measurements of the neutron lifetime used ultracold neutrons (UCN) confined in material bottles. In a material bottle experiment, UCN are loaded into the apparatus, stored for varying times, and the surviving UCN are emptied and counted. These measurements are in poor agreement with experiments that use neutron beams, and new experiments are needed to resolve the discrepancy and precisely determine the lifetime. Here we present an experiment that uses a bowl-shaped array of NdFeB magnets to confine neutrons without material wall interactions. The trap shape is designed to rapidly remove higher energy UCN that might slowly leak from the top of the trap, and can facilitate new techniques to count surviving UCN within the trap. We review the scientific motivation for a precise measurement of the neutron lifetime, and present the commissioning of the trap. Data are presented using a vanadium activation technique to count UCN within the trap, providing an alternative method to emptying neutrons from the trap and into a counter. Potential systematic effects in the experiment are then discussed and estimated using analytical and numerical techniques. We also investigate solid nitrogen-15 as a source of UCN using neutron time-of-flight spectroscopy. We conclude with a discussion of forthcoming research and development for UCN detection and UCN sources.

  2. Photoconductive Decay Lifetime and Suns-Voc Diagnostics of Efficient Heterojunction Solar Cells: Preprint

    SciTech Connect

    Page, M. R.; Iwaniczko, E.; Xu, Y.; Roybal L.; Bauer, R.; Yan, H.-C.; Wang, Q.; Meier, D. L.

    2008-05-01

    We report results of minority carrier lifetime measurements for double-sided p-type Si heterojunction devices and compare Suns-Voc results to Light I-V measurements on 1 cm2 solar cell devices measured on an AM1.5 calibrated XT-10 solar simulator.

  3. Statistical properties of amplitude and decay parameter estimators for fluorescence lifetime imaging.

    PubMed

    Kim, Jeongtae; Seok, Jiyeong

    2013-03-11

    We analyze the statistical properties of the maximum likelihood estimator, least squares estimator, and Pearson's χ(2)-based and Neyman's χ(2)-based estimators for the estimation of decay constants and amplitudes for fluorescence lifetime imaging. Our analysis is based on the linearization of the gradient of the objective functions around true parameters. The analysis shows that only the maximum likelihood estimator based on the Poisson likelihood function yields unbiased and efficient estimation. All other estimators yield either biased or inefficient estimations. We validate our analysis by using simulations. PMID:23482174

  4. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  5. Quantum well intersubband lifetimes measured by mid-IR pump-probe experiments

    SciTech Connect

    Woods, G.L.; Sung, B.; Proctor, M.

    1995-12-31

    Semiconductor quantum wells exhibit quantum-confined electronic energy levels, or subbands, that are similar to one-dimensional {open_quotes}particle in a box{close_quotes} wavefunctions. The light effective mass of electrons allows large spatial extents of the wavefunctions and concomitantly large dipole overlaps between states. These large dipoles have been exploited in a variety of experiments including nonlinear frequency conversion, infrared photodetection, and lasing. A key parameter for many devices is the upper state lifetime. The decay of carriers in the upper state is believed to be dominated by optical phonon scattering and lifetimes on-the order of 1ps are expected. While Raman and saturation measurements have shown good agreement with theory, direct pump-probe measurements have reported longer lifetimes, partially due to carrier heating. In this paper, we discuss our mid-IR (5{mu}m) pump-probe measurements of intersubband lifetimes, performed at the Stanford Picosecond Free Electron Laser Center. At low excitation densities we observe lifetimes of about 1.5 ps, in good agreement with phonon theory. At high excitation densities the lifetime increases to 3.5 ps, demonstrating the transition from the low- to high-excitation agree.

  6. Temperature Dependent Fluorescence Lifetime Measurements in a Phosphor

    NASA Astrophysics Data System (ADS)

    Nettles, Charles J.; Smith, R. Seth; Heath, Jonathan J.

    2012-03-01

    This poster will describe an undergraduate senior research project involving fluorescence lifetime measurements in a LaSO4:Eu phosphor compound. Specifically, this project seeks to determine the temperature dependence of the lifetime. The temperature of the phosphor will be varied using a heater block with temperature control. The phosphor will be excited with the 337 nm output of a Nitrogen Laser. An Oriel Monochromator will be used to disperse the fluorescence, and the lifetime for a particular wavelength will be determined from a photomultiplier tube signal. At the time of the presentation, this project will be nearing completion; and I will discuss my progress, successes, and challenges.

  7. Measurements of Rare B Decays at BABAR

    SciTech Connect

    Bloom, Paul C.

    2003-03-05

    We present the results of searches for rare B meson decays. The measurements use all or part of a data sample of about 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric energy B Factory at the Stanford Linear Accelerator Center. We study a variety of decays dominated by electromagnetic, electroweak and gluonic penguin transitions, and report measurements of branching fractions.

  8. Spectral and lifetime domain measurements of rat brain tumours

    NASA Astrophysics Data System (ADS)

    Abi Haidar, D.; Leh, B.; Allaoua, K.; Genoux, A.; Siebert, R.; Steffenhagen, M.; Peyrot, D.; Sandeau, N.; Vever-Bizet, C.; Bourg-Heckly, G.; Chebbi, I.; Collado-Hilly, M.

    2012-02-01

    During glioblastoma surgery, delineation of the brain tumour margins remains difficult especially since infiltrated and normal tissues have the same visual appearance. This problematic constitutes our research interest. We developed a fibre-optical fluorescence probe for spectroscopic and time domain measurements. First measurements of endogenous tissue fluorescence were performed on fresh and fixed rat tumour brain slices. Spectral characteristics, fluorescence redox ratios and fluorescence lifetime measurements were analysed. Fluorescence information collected from both, lifetime and spectroscopic experiments, appeared promising for tumour tissue discrimination. Two photon measurements were performed on the same fixed tissue. Different wavelengths are used to acquire two-photon excitation-fluorescence of tumorous and healthy sites.

  9. Precision lifetime measurements by single-proton counting

    SciTech Connect

    Young, L.; Hill, W.T. III; Leone, S.R.

    1995-08-01

    There is renewed interest in the accurate measurement of lifetimes of excited states in alkalis in order to test ab initio theories which are needed for the interpretation of atomic parity nonconservation measurements. While it is often assumed that the fast-beam laser method yields the most accurate lifetimes, we demonstrated that an alternative technique, time-correlated single-photon counting, is capable of achieving comparable accuracy. Using this method at JILA, we measured the lifetimes of the 6p {sup 2}p{sub 1/2} and 6p {sup 2}P{sub 3/2} levels in atomic Cs with accuracies {approx}0.2-0.3%. A high-repetition rate, femtosecond, self-modelocked Ti:sapphire laser is used to excite Cs produced in a well-collimated atomic beam. The time interval between the excitation pulse and the arrival of a fluorescence photon is measured repetitively until the desired statistics are obtained. The lifetime results are 34.75(7) ns and 30.41(10) ns for the 6p {sup 2}P{sub 1/2} and 6p {sup 2}P{sub 3/2} levels, respectively. These lifetimes are in agreement with those extracted from ab initio many-ody perturbation theory calculations at the sub 1% level. The measurement errors are dominated by systematic effects, and methods to alleviate these and approach an accuracy of 0.1% were determined.

  10. RDDS lifetime measurements of low-lying superdeformed states in {sup 194}Hg

    SciTech Connect

    Kuehn, R.; Dewald, A.; Kruecken, R.

    1996-12-31

    The lifetimes of three low-lying states in the superdeformed (SD) yrast band of {sup 194}Hg were measured by the recoil-distance Doppler-shift method. The deduced transition quadrupole moments, Q{sub t}, equal those extracted from a DSAM measurement for the high-lying states of the band corroborate the assumption that the decay out of SD bands does not strongly affect the structure of the corresponding states. By a simple mixing-model the decay can be described assuming a very small admixture of normal-deformed (ND) states to the decaying SD states. The deduced ND mixing amplitudes for the yrast SD bands in {sup 192,194}Hg and {sup 194}Pb are presented along with average transition quadrupole moments for the lower parts of the excited SD bands.

  11. Measuring Carrier Lifetime in GaAs by Luminescence

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1986-01-01

    Luminescence proposed as nondestructive technique for measuring Shockley-Read-Hall (SRH) recombination lifetime GaAs. Sample irradiated, and luminescence escapes through surface. Measurement requires no mechanical or electrical contact with sample. No ohmic contacts or p/n junctions needed. Sample not scrapped after tested.

  12. On the measurement the neutron lifetime using ultra-cold neutrons in a vacuum quadrupole trap

    SciTech Connect

    Bowman, J. D.; Penttila, S. I.

    2004-01-01

    We present a conceptual design for an experiment to measure the neutron lifetime ({approx}882 s) with an accuracy of 10{sup -4}. The lifetime will be measured by observing the decay rate of a sample of UCNs confined in vacuum in a magnetic trap. The UCN collaboration at LANL has developed a prototype ultra-cold neutron UCN source that is expected to produce a bottled UCN density of more than 100 UCN/cm{sup 3}. The availability of such an intense source makes it possible to approach the measurement of the neutron lifetime in a new way. We argue below that it is possible to measure the neutron lifetime to 10{sup -4} in a vacuum magnetic trap. The measurement involves no new technology beyond the expected UCN density. If even higher densities are available, the experiment can be made better and/or less expensive. We present the design and methodology for the measurement. The slow loss of neutrons that have stable orbits, but are not energetically trapped would produce a systematic error in the measurement. We discuss a new approach, chaotic cleaning, to the elimination of quasi-neutrons from the trap by breaking the rotational symmetry of the quadrupole trap. The neutron orbits take on a chaotic character and mode mixing causes the neutrons on the quasi-bound orbits to leave the trap.

  13. On the Measurement of the Neutron Lifetime Using Ultracold Neutrons in a Vacuum Quadrupole Trap

    PubMed Central

    Bowman, J. David; Penttila, S. I.

    2005-01-01

    We present a conceptual design for an experiment to measure the neutron lifetime (~886 s) with an accuracy of 10−4. The lifetime will be measured by observing the decay rate of a sample of ultracold neutrons (UCN) confined in vacuum in a magnetic trap. The UCN collaboration at Los Alamos National Laboratory has developed a prototype UCN source that is expected to produce a bottled UCN density of more than 100/cm3 [1]. The availability of such an intense source makes it possible to approach the measurement of the neutron lifetime in a new way. We argue below that it is possible to measure the neutron lifetime to 10−4 in a vacuum magnetic trap. The measurement involves no new technology beyond the expected UCN density. If even higher densities are available, the experiment can be made better and/or less expensive. We present the design and methodology for the measurement. The slow loss of neutrons that have stable orbits, but are not energetically trapped would produce a systematic uncertainty in the measurement. We discuss a new approach, chaotic cleaning, to the elimination of quasi-neutrons from the trap by breaking the rotational symmetry of the quadrupole trap. The neutron orbits take on a chaotic character and mode mixing causes the neutrons on the quasi-bound orbits to leave the trap. PMID:27308151

  14. Measurement of femtosecond atomic lifetimes using ion traps

    NASA Astrophysics Data System (ADS)

    Träbert, Elmar

    2014-01-01

    Two types of experiment are described that both employ an electron beam ion trap for the production of highly charged ion species with the aim of then measuring atomic level lifetimes in the femtosecond range. In one experiment (done by Beiersdorfer et al. some time ago), the lifetime measurement depends on the associated line broadening. In a recent string of experiments at Linac Coherent Light Source Stanford, the HI-LIGHT collaboration employed pump-probe excitation using the FEL as a short-pulse X-ray laser.

  15. Lifetimes Measurement for High Spin States in 107Ag

    NASA Astrophysics Data System (ADS)

    Yao, S. H.; Wu, X. G.; He, C. Y.; Zhang, B.; Zheng, Y.; Li, G. S.; Li, C. B.; Hu, S. P.; Cao, X. P.; Yu, B. B.; Zhu, L. H.; Xu, C.; Cheng, Y. Y.

    2013-11-01

    The excited states in 107Ag were populated through the heavy-ion fusion-evaporation reaction 100Mo (11B, 4n) 107Ag at a beam energy of 46 MeV. 12 Compton suppressed HPGe detectors and 2 planar HPGe detectors were employed to detect the de-excited γ rays from the reaction residues. Lifetimes of high spin states in 107Ag have been measured using the Doppler shift attenuation method (DSAM) and the deduced B(M1) and B(E2) transition probabilities have been derived from the measured lifetimes.

  16. Wafer Preparation and Iodine-Ethanol Passivation Procedure for Reproducible Minority-Carrier Lifetime Measurement (Poster)

    SciTech Connect

    Sopori, B.; Rupnowski, P.; Appel, J.; Mehta, V.; Li, C.; Johnston, S.

    2008-05-01

    Measurement of the bulk minority-carrier lifetime (T{sub b}) by optical methods, such as photocurrent decay or quasi-steady-state photoconductance (QSSPC), is strongly influenced by surface recombination. Several techniques are known to lower the effective surface recombination velocity, including the following: use of oxidation, floating N/P junction, SiN:H layer, HF immersion, and use of iodine in ethanol or methanol (I-E solution). Using I-E appears to be very simple and does not require any high-temperature treatment such as oxidation, diffusion, or nitridation processes, which can change T{sub b}. However, this is not a preferred procedure within the photovoltaic community because it is difficult to obtain same T{sub b} values reproducibly, particularly when the wafer lifetime is long. The objectives are: (1) Investigate various reasons why lifetime measurements may be irreproducible using I-E solution passivation. (2) Study the influence of the strength of iodine in the ethanol solution, wafer-cleaning procedures, influence of the wafer container during lifetime measurements, and the stability of I-E. (3) Compare lifetimes of wafers (having different T{sub b}) by various techniques such as QSSPC and transient photoconductive decay using short laser pulses of different light intensity; (4) Make minority-carrier diffusion length (L) measurements by a surface photovoltage technique, and to use T{sub b} and L data to determine diffusivity (D) values for various impurity and defect concentrations, using the relationship L{sup 2} = D* T{sub b}.

  17. Spatially resolved measurements of charge carrier lifetimes in CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Kraft, C.; Hempel, H.; Buschmann, V.; Siebert, T.; Heisler, C.; Wesch, W.; Ronning, C.

    2013-03-01

    The lifetime of the minority charge carriers in polycrystalline Cadmium Telluride (pc-CdTe) for solar cell applications is a crucial material parameter and has been determined by analysis of the decay curves of the luminescence signal. Both the lateral and the transversal distributions of the carrier lifetime on the surface and in the bulk of pc-CdTe material as well as the respective solar cell characteristics were measured as a function of the deposition technique, the activation treatment, and the incorporation of additional group-V elements. The results are compared to prior studies. It was found that an activation process passivates grain boundaries and increases the carrier lifetime, which is then higher at the pn-junction than at the surface. Furthermore, nitrogen and phosphorus doping of the CdTe absorber material influences the charge carrier lifetime. The results show that the spatial resolved measurement of the carrier lifetime in pc-CdTe gives an important insight to the charge carrier dynamics of the material.

  18. Measurement of luminescence decays: High performance at low cost

    NASA Astrophysics Data System (ADS)

    Sulkes, Mark; Sulkes, Zoe

    2011-11-01

    The availability of inexpensive ultra bright LEDs spanning the visible and near-ultraviolet combined with the availability of inexpensive electronics equipment makes it possible to construct a high performance luminescence lifetime apparatus (˜5 ns instrumental response or better) at low cost. A central need for time domain measurement systems is the ability to obtain short (˜1 ns or less) excitation light pulses from the LEDs. It is possible to build the necessary LED driver using a simple avalanche transistor circuit. We describe first a circuit to test for small signal NPN transistors that can avalanche. We then describe a final optimized avalanche mode circuit that we developed on a prototyping board by measuring driven light pulse duration as a function of the circuit on the board and passive component values. We demonstrate that the combination of the LED pulser and a 1P28 photomultiplier tube used in decay waveform acquisition has a time response that allows for detection and lifetime determination of luminescence decays down to ˜5 ns. The time response and data quality afforded with the same components in time-correlated single photon counting are even better. For time-correlated single photon counting an even simpler NAND-gate based LED driver circuit is also applicable. We also demonstrate the possible utility of a simple frequency domain method for luminescence lifetime determinations.

  19. Precision Measurement of the Mass and Lifetime of the Ξb- Baryon

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Brown, H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H.-M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, RF; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianı, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Orlandea, M.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiedner, D.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilschut, H. W.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; LHCb Collaboration

    2014-12-01

    We report on measurements of the mass and lifetime of the Ξb- baryon using about 1800 Ξb- decays reconstructed in a proton-proton collision data set corresponding to an integrated luminosity of 3.0 fb-1 collected by the LHCb experiment. The decays are reconstructed in the Ξb-→Ξc0π-, Ξc0→p K-K-π+ channel and the mass and lifetime are measured using the Λb0→Λc+π- mode as a reference. We measure M (Ξb-)-M (Λb0)=178.36 ±0.46 ±0.16 MeV /c2 , (τΞb-/τΛb0)=1.089 ±0.026 ±0.011 , where the uncertainties are statistical and systematic, respectively. These results lead to a factor of 2 better precision on the Ξb- mass and lifetime compared to previous best measurements, and are consistent with theoretical expectations.

  20. Precision measurement of the mass and lifetime of the Ξb⁻ baryon.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R F; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Geraci, A; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Moggi, N; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A-B; Mountain, R; Muheim, F; Müller, K; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Orlandea, M; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Pepe Altarelli, M; Perazzini, S; Perret, P; Perrin-Terrin, M; Pescatore, L; Pesen, E; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Polci, F; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, N A; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Subbiah, V K; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wilkinson, G; Williams, M P; Williams, M; Wilschut, H W; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    2014-12-12

    We report on measurements of the mass and lifetime of the Ξ(b)⁻ baryon using about 1800 Ξ(b)⁻ decays reconstructed in a proton-proton collision data set corresponding to an integrated luminosity of 3.0  fb⁻¹ collected by the LHCb experiment. The decays are reconstructed in the Ξ(b)⁻→Ξ(c)⁰π⁻, Ξ(c)⁰→pK⁻K⁻π⁺ channel and the mass and lifetime are measured using the Λ(b)⁰→Λ(c)⁺π⁻ mode as a reference. We measure M(Ξ(b)⁻)-M(Λ(b)⁰)=178.36±0.46±0.16  MeV/c², (τ(Ξ(b)⁻)/τ(Λ(b)⁰)=1.089±0.026±0.011, where the uncertainties are statistical and systematic, respectively. These results lead to a factor of 2 better precision on the Ξ(b)⁻ mass and lifetime compared to previous best measurements, and are consistent with theoretical expectations. PMID:25541768

  1. Determination of biological activity from fluorescence-lifetime measurements in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Rudek, F.; Baselt, T.; Lempe, B.; Taudt, C.; Hartmann, P.

    2015-03-01

    The importance of fluorescence lifetime measurement as an optical analysis tool is growing. Many applications already exist in order to determine the fluorescence lifetime, but the majority of these require the addition of fluorescence-active substances to enable measurements. Every usage of such foreign materials has an associated risk. This paper investigates the use of auto-fluorescing substances in Saccharomyces cerevisiae (Baker's yeast) as a risk free alternative to fluorescence-active substance enabled measurements. The experimental setup uses a nitrogen laser with a pulse length of 350 ps and a wavelength of 337 nm. The excited sample emits light due to fluorescence of NADH/NADPH and collagen. A fast photodiode collects the light at the output of an appropriate high-pass edge-filter at 400 nm. Fluorescence lifetimes can be determined from the decay of the measurement signals, which in turn characterizes the individual materials and their surrounding environment. Information about the quantity of the fluorescence active substances can also be measured based on the received signal intensity. The correlation between the fluorescence lifetime and the metabolic state of Saccharomyces cerevisiae was investigated and is presented here.

  2. Measuring Luminescence Lifetime With Help of a DSP

    NASA Technical Reports Server (NTRS)

    Danielson, J. D. S.

    2009-01-01

    An instrument for measuring the lifetime of luminescence (fluorescence or phosphorescence) includes a digital signal processor (DSP) as the primary means of control, generation of excitation signals, and analysis of response signals. The DSP hardware in the present instrument makes it possible to switch among a variety of operating modes by making changes in software only.

  3. Lifetime measurement of excited states in 105Ag

    NASA Astrophysics Data System (ADS)

    Mittal, V. K.; Govil, I. M.

    1986-11-01

    The levels up to about 2.1 MeV in 105Ag were excited via 105Pd(p,nγ) reaction. For the first time, lifetimes of energy levels at 1023, 1042, 1097, 1166, 1243, 1295, 1328, 1386, 1442, 1543, 1558, 1587, 1719, 1923, and 2081 keV have been measured using the Doppler shift attenuation technique.

  4. Measurement of masses and lifetimes of B hadrons

    SciTech Connect

    Filthaut, F.; /Nijmegen U.

    2007-05-01

    We present recent measurements by the CDF and D{O} Collaborations at the Tevatron Collider on the masses and lifetimes of B hadrons. The results are compared to predictions based on Heavy Quark Effective Theory, lattice gauge theory, and quark models.

  5. Lifetime measurement of excited states in /sup 105/Ag

    SciTech Connect

    Mittal, V.K.; Govil, I.M.

    1986-11-01

    The levels up to about 2.1 MeV in /sup 105/Ag were excited via /sup 105/Pd(p,n..gamma..) reaction. For the first time, lifetimes of energy levels at 1023, 1042, 1097, 1166, 1243, 1295, 1328, 1386, 1442, 1543, 1558, 1587, 1719, 1923, and 2081 keV have been measured using the Doppler shift attenuation technique.

  6. Carrier Lifetime Measurement for Characterization of Ultraclean Thin p/p+ Silicon Epitaxial Layers

    NASA Astrophysics Data System (ADS)

    Elhami Khorasani, Arash

    Carrier lifetime is one of the few parameters which can give information about the low defect densities in today's semiconductors. In principle there is no lower limit to the defect density determined by lifetime measurements. No other technique can easily detect defect densities as low as 10 -9 - 10-10 cm-3 in a simple, contactless room temperature measurement. However in practice, recombination lifetime τ r measurements such as photoconductance decay (PCD) and surface photovoltage (SPV) that are widely used for characterization of bulk wafers face serious limitations when applied to thin epitaxial layers, where the layer thickness is smaller than the minority carrier diffusion length Ln. Other methods such as microwave photoconductance decay (µ-PCD), photoluminescence (PL), and frequency-dependent SPV, where the generated excess carriers are confined to the epitaxial layer width by using short excitation wavelengths, require complicated configuration and extensive surface passivation processes that make them time-consuming and not suitable for process screening purposes. Generation lifetime τg, typically measured with pulsed MOS capacitors (MOS-C) as test structures, has been shown to be an eminently suitable technique for characterization of thin epitaxial layers. It is for these reasons that the IC community, largely concerned with unipolar MOS devices, uses lifetime measurements as a "process cleanliness monitor." However when dealing with ultraclean epitaxial wafers, the classic MOS-C technique measures an effective generation lifetime τgeff which is dominated by the surface generation and hence cannot be used for screening impurity densities. I have developed a modified pulsed MOS technique for measuring generation lifetime in ultraclean thin p/p+ epitaxial layers which can be used to detect metallic impurities with densities as low as 10-10 cm-3. The widely used classic version has been shown to be unable to effectively detect such low impurity

  7. Measurement of the $B^-$ lifetime using a simulation free approach for trigger bias correction

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.; Apresyan, A.; /Purdue U. /Waseda U.

    2010-04-01

    The collection of a large number of B hadron decays to hadronic final states at the CDF II detector is possible due to the presence of a trigger that selects events based on track impact parameters. However, the nature of the selection requirements of the trigger introduces a large bias in the observed proper decay time distribution. A lifetime measurement must correct for this bias and the conventional approach has been to use a Monte Carlo simulation. The leading sources of systematic uncertainty in the conventional approach are due to differences between the data and the Monte Carlo simulation. In this paper they present an analytic method for bias correction without using simulation, thereby removing any uncertainty between data and simulation. This method is presented in the form of a measurement of the lifetime of the B{sup -} using the mode B{sup -} {yields} D{sup 0}{pi}{sup -}. The B{sup -} lifetime is measured as {tau}{sub B{sup -}} = 1.663 {+-} 0.023 {+-} 0.015 ps, where the first uncertainty is statistical and the second systematic. This new method results in a smaller systematic uncertainty in comparison to methods that use simulation to correct for the trigger bias.

  8. Search for CPT Violation with the FOCUS Experiment and Measurement of Lambda(b) lifetime in the decay Lambda(b) --> J / psi Lambda with the D0 Experiment

    SciTech Connect

    Kryemadhi, Abaz

    2004-12-01

    This dissertation describes two different projects from two different experiments. We have performed a search for CPT violation in neutral charm meson oscillations using data from the FOCUS Experiment. While flavor mixing in the charm sector is predicted to be small in the Standard Model, it is still possible to investigate CPT violation through a study of the proper time dependence of a CPT asymmetry in right-sign decay rates for D{sup 0} {yields} K{sup -} {pi}{sup +} and {bar D}{sup 0} {yields} K{sup +}{pi}{sup -}. This asymmetry is related to the CPT violating complex parameter {xi} and the mixing parameters x and y: A{sub CPT} {infinity} Re{xi}y - Im{xi}x. We determine a 95% confidence level limit of -0.0068 < Re{xi}y - Im{xi}x < 0.0234. Within the framework of the Standard Model Extension incorporating general CPT violation, we also find 95% confidence level limits for the expressions involving coefficients of Lorentz violation of (-2.8 < N(x,y,{delta}))({Delta}a{sub 0} + 0.6 {Delta}a{sub Z} < 4.8) x 10{sup -16} GeV, (-7.0 < N(x,y,{delta}){Delta}a{sub x} < 3.8) x 10{sup -16} GeV, and (-7.0 < N(x,y,{delta}){Delta}a{sub y} < 3.8) x 10{sup -16} GeV, where N(x,y,{delta}) is a normalization factor that incorporates mixing parameters x, y and the doubly Cabibbo suppressed to Cabibbo favored relative strong phase {delta}.

  9. Outdoor measurements of spherical acoustic shock decay.

    PubMed

    Young, Sarah M; Gee, Kent L; Neilsen, Tracianne B; Leete, Kevin M

    2015-09-01

    Prior anechoic measurements of a small acetylene-oxygen balloon explosion were used to study spherical weak-shock decay over short ranges [Muhlestein et al., J. Acoust. Soc. Am. 131, 2422-2430 (2012)]. Here, longer-range measurements conducted at the Bonneville Salt Flats with a larger balloon are described. Waveform and spectral characteristics and comparisons of the peak pressure decay with an analytical weak-shock model are presented. Weak shocks persist to at least 305 m, with an amplitude decay that is predicted reasonably well using the model. Deviations are discussed in the context of atmospheric effects and nonlinear ground reflections. PMID:26428831

  10. High-throughput measurement of the long excited-state lifetime of quantum dots in flow cytometry

    NASA Astrophysics Data System (ADS)

    Dahal, Eshan; Cao, Ruofan; Jenkins, Patrick; Houston, Jessica P.

    2014-03-01

    The long fluorescence lifetime of quantum dots (QDs) is not often utilized in high-throughput bioassays, despite of the potential for the lifetime to be an optimum parameter for multiplexing with spectrally overlapping excitable species that have short fluorescence lifetimes. The limitation of currently available instruments that can rapidly resolve complex decay kinetics of QDs contributes to this dearth. Therefore work in our laboratory is focused on developing unique and reliable frequency-domain flow cytometry (FDFC) systems as well as QDs applications where fluorescence dynamics are exploited. In this paper we demonstrate both by simulation and experimental validation, the viability of rapidly capturing the fluorescence lifetime of QDs from single QDs-labeled cells and microspheres by employing a home-built FDFC system. With FDFC theory we simulated measurements of long-lived QDs decays and evaluated the potential to discriminate multi-exponential decay profiles of QDs from typical cellular autofluorescence lifetimes. Our FDFC simulation work included calculations of fluorescence phase-shifts at multiple modulation frequencies extracted from square wave modulation signals (i.e. similar to heterodyning frequency-domain spectroscopy). Experimental work to support the result from our simulations involved acquiring measurements from real samples and processing them for multi-frequency phase shifts. Additionally the average excited-state lifetimes of QDs (streptavidin conjugated CdSe/Zns and oleic acid coated CdSxSe1-x/ZnS) measured were found to be greater than 15 ns. The average lifetime results were consistent with published literature values as well as verified with independent time domain measurements. This work opens the possibility of developing powerful bioassays using FDFC based on the long fluorescence lifetime of QDs.

  11. Inhomogeneous dephasing masks coherence lifetimes in ensemble measurements

    SciTech Connect

    Pelzer, Kenley M.; Griffin, Graham B.; Engel, Gregory S.; Gray, Stephen K.

    2012-04-28

    An open question at the forefront of modern physical sciences is what role, if any, quantum effects may play in biological sensing and energy transport mechanisms. One area of such research concerns the possibility of coherent energy transport in photosynthetic systems. Spectroscopic evidence of long-lived quantum coherence in photosynthetic light-harvesting pigment protein complexes (PPCs), along with theoretical modeling of PPCs, has indicated that coherent energy transport might boost efficiency of energy transport in photosynthesis. Accurate assessment of coherence lifetimes is crucial for modeling the extent to which quantum effects participate in this energy transfer, because such quantum effects can only contribute to mechanisms proceeding on timescales over which the coherences persist. While spectroscopy is a useful way to measure coherence lifetimes, inhomogeneity in the transition energies across the measured ensemble may lead to underestimation of coherence lifetimes from spectroscopic experiments. Theoretical models of antenna complexes generally model a single system, and direct comparison of single system models to ensemble averaged experimental data may lead to systematic underestimation of coherence lifetimes, distorting much of the current discussion. In this study, we use simulations of the Fenna-Matthews-Olson complex to model single complexes as well as averaged ensembles to demonstrate and roughly quantify the effect of averaging over an inhomogeneous ensemble on measured coherence lifetimes. We choose to model the Fenna-Matthews-Olson complex because that system has been a focus for much of the recent discussion of quantum effects in biology, and use an early version of the well known environment-assisted quantum transport model to facilitate straightforward comparison between the current model and past work. Although ensemble inhomogeneity is known to lead to shorter lifetimes of observed oscillations (simply inhomogeneous spectral

  12. Measurement of the overlineB0 and B- meson lifetimes

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-06-01

    The lifetimes of the overlineB0 and B- mesons have been measured with the ALEPH detector at LEP. Semileptonic decays of overlineB0 and B- mesons were partially reconstructed by identifying events containing a lepton with an associated D ∗+or D 0 meson. The proper time of the B meson was estimated from the measured decay length and the momentum and mass of the D-lepton system. A fit to the proper time of 77 D ∗+ℓ - and 77 D0ℓ - candidates, combined with a constraint on the lifetime ratio ( {τ -}/{τ 0}) arising from the relative rates of observed D ∗+ℓ - and D0ℓ - events, yielded the following lifetimes: τ 0=1.52 -0.18+0.20( stat.) -0.13+0.07( syst.) ps, τ - = 1.47 -0.19+0.22( stat.) -0.14+0.15( syst.) ps, {τ -}/{τ 0} = 0.96 -0.15+0.19( stat.) -0.12+0.18( syst.) .

  13. Robust Bayesian Fluorescence Lifetime Estimation, Decay Model Selection and Instrument Response Determination for Low-Intensity FLIM Imaging

    PubMed Central

    Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.

    2016-01-01

    We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322

  14. DSAM lifetime measurements for the chiral bands in 194Tl

    NASA Astrophysics Data System (ADS)

    Masiteng, P. L.; Pasternak, A. A.; Lawrie, E. A.; Shirinda, O.; Lawrie, J. J.; Bark, R. A.; Bvumbi, S. P.; Kheswa, N. Y.; Lindsay, R.; Lieder, E. O.; Lieder, R. M.; Madiba, T. E.; Mullins, S. M.; Murray, S. H. T.; Ndayishimye, J.; Ntshangase, S. S.; Papka, P.; Sharpey-Schafer, J. F.

    2016-06-01

    When a left-handed and a right-handed nuclear system form in angular momentum space, a pair of nearly degenerate rotational bands is observed. To identify chiral symmetry most important is to establish near-degeneracy not only in excitation energies of the partner bands, but also in their intra-band and inter-band B(M1) and B(E2) transition probabilities. This needs dedicated lifetime measurements. Such measurements were performed for four bands of 194Tl. Two of these have very close near-degeneracy and form a prime candidate for best chiral pair. The lifetime measurements confirm the excellent near-degeneracy in this chiral pair.

  15. Design and construction of a Vertex Chamber and measurement of the average B-Hadron lifetime

    SciTech Connect

    Nelson, H.N.

    1987-10-01

    Four parameters describe the mixing of the three quark generations in the Standard Model of the weak charged current interaction. These four parameters are experimental inputs to the model. A measurement of the mean lifetime of hadrons containing b-quarks, or B-Hadrons, constrains the magnitudes of two of these parameters. Measurement of the B-Hadron lifetime requires a device that can measure the locations of the stable particles that result from B-Hadron decay. This device must function reliably in an inaccessible location, and survive high radiation levels. We describe the design and construction of such a device, a gaseous drift chamber. Tubes of 6.9 mm diameter, having aluminized mylar walls of 100 ..mu..m thickness are utilized in this Vertex Chamber. It achieves a spatial resolution of 45 ..mu..m, and a resolution in extrapolation to the B-Hadron decay location of 87 ..mu..m. Its inner layer is 4.6 cm from e/sup +/e/sup -/ colliding beams. The Vertex Chamber is situated within the MAC detector at PEP. We have analyzed botht he 94 pb/sup -1/ of integrated luminosity accumulated at ..sqrt..s = 29 GeV with the Vertex Chamber in place as well as the 210 pb/sup -1/ accumulated previously. We require a lepton with large momentum transverse to the event thrust axis to obtain a sample of events enriched in B-Hadron decays. The distribution of signed impact parameters of all tracks in these events is used to measure the B-Hadron flight distance, and hence lifetime. 106 refs., 79 figs., 20 tabs.

  16. Measurement of the B{sup +} and B{sup 0} lifetimes with topological vertexing at SLD

    SciTech Connect

    Abe, K.; Abe, K.; Abt, I.; SLD Collaboration

    1996-07-01

    The lifetimes of the B{sup +} (B{sub u}) and B{sup 0} (B{sub d}) mesons have been measured using a sample of 150,000 hadronic Z{sup 0} decays collected by the SLD experiment at the SLC between 1993 and 1995. The analysis reconstructs the decay length and charge of the B meson using a novel topological technique. This method results in a high statistics sample of 6,033 (3,665) charged (neutral) vertices. The ratio of B{sup +}:B{sup 0} decays in the charged (neutral) sample is 1.8:1 (1:2.3).

  17. New lifetime measurements in Pd109 and the onset of deformation at N=60

    DOE PAGESBeta

    Bucher, B.; Mach, H.; Aprahamian, A.; Simpson, G. S.; Rissanen, J.; Ghiţă, D. G.; Olaizola, B.; Kurcewicz, W.; Äystö, J.; Bentley, I.; et al

    2015-12-14

    We measured several new subnanosecond lifetimes in 109Pd using the fast-timing βγ γ (t ) method. Fission fragments of the A = 109 mass chain were produced by bombarding natural uranium with 30 MeV protons at the Jyväskylä Ion Guide Isotope Separator On-Line (IGISOL) facility. We obtained lifetimes for excited states in 109Pd populated following β decay of 109Rh. The new lifetimes provide some insight into the evolution of nuclear structure in this mass region. In particular, the distinct structure of the two low-lying 7/2+ states occurring systematically across the Pd isotopic chain is supported by the new lifetime measurements.more » Finally, the available nuclear data indicate a sudden increase in deformation at N = 60 which is related to the strong p-n interaction between πg9/2 and νg7/2 valence nucleons expected in this region.« less

  18. Lifetime Measurements of Tagged Exotic- and Unbound Nuclear States

    SciTech Connect

    Cullen, D. M.

    2011-11-30

    A new Differential Plunger device for measuring pico-second lifetimes of Unbound Nuclear States (DPUNS) is being built at The University of Manchester. DPUNS has been designed to work with alpha-, beta- and isomer-tagging methods using the existing JUROGAM II--RITU--GREAT infrastructure at the University of Jyvaskyla, Finland. The importance of proton emission from nuclei is that it provides valuable nuclear-structure information as direct input to nuclear models beyond the drip line. New experimental data beyond the drip line can provide new extensions to these models especially with the possible coupling of weakly bound and unbound states to the continuum. The results of the first experiments to measure lifetimes of unbound nuclear states with this method was discussed along with possible future experiments which can be addressed with DPUNS using proton-, isomer- and alpha-tagging.

  19. Measurement of the lifetime difference in the B0(s) system.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J-L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Arnoud, Y; Arov, M; Askew, A; Asman, B; Jesus, A C S Assis; Atramentov, O; Autermann, C; Avila, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Balm, P W; Banerjee, P; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Begalli, M; Begel, M; Bellavance, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Blumenschein, U; Boehnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Cho, D K; Choi, S; Choudhary, B; Christiansen, T; Christofek, L; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cothenet, A; Cousinou, M-C; Cox, B; Crépé-Renaudin, S; Cutts, D; Motta, H da; Das, M; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; Martins, C De Oliveira; Dean, S; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Feligioni, L; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Golling, T; Gollub, N; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Gris, Ph; Grivaz, J-F; Groer, L; Grünendahl, S; Grünewald, M W; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Hagopian, S; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Huang, J; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A; Kharzheev, Y M; Kim, H; Kim, T J; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Krzywdzinski, S; Kulik, Y; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lager, S; Lahrichi, N; Landsberg, G; Lazoflores, J; Le Bihan, A-C; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Leonidopoulos, C; Leveque, J; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J; Lipaev, V V; Lipton, R; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lueking, L; Luo, L; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A-M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; Meder, D; Melnitchouk, A; Mendes, A; Mendoza, D; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Mitrevski, J; Molina, J; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mundim, L; Mutaf, Y D; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Oliveira, N; Oshima, N; Otero y Garzón, G J; Padley, P; Parashar, N; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perez, E; Pétroff, P; Petteni, M; Piegaia, R; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Silva, W L Prado da; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rani, K J; Ranjan, K; Rapidis, P A; Ratoff, P N; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Rud, V I; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shephard, W D; Shivpuri, R K; Shpakov, D; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stanton, N R; Stark, J; Steele, J; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Titov, M; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vlimant, J-R; Von Toerne, E; Vreeswijk, M; Vu Anh, T; Wahl, H D; Wang, L; Warchol, J; Watts, G; Wayne, M; Weber, M; Weerts, H; Wermes, N; Wetstein, M; White, A; White, V; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xie, Y; Xu, Q; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G

    2005-10-21

    We present a study of the decay B0(s) --> J/psiphi. We obtain the CP-odd fraction in the final state at time zero, Rperpendicular = 0.16 +/- 0.10(stat) +/- 0.02 (syst), the average lifetime of the (B0(s), B0(s)) system, tau(B0(s)) = 1.39(+0.13)(-0.16)(stat)(+0.01)(-0.02)(syst) ps, and the relative width difference between the heavy and light mass eigenstates, DeltaGamma/Gamma tripple bond (GammaL - GammaH)/Gamma = 0.24(+0.28)(-0.38)(stat)(+0.03)(-0.04)(syst). With the additional constraint from the world average of the lifetime measurements using semileptonic decays, we find tau(B0(s)) = 1.39 +/- 0.06 ps and DeltaGamma/Gamma = 0.25(+0.14)(-0.15). For the ratio of the B0(s) and B0 lifetimes we obtain tau(B0(s))/tau(B0) = 0.91 +/- 0.09(stat) +/- 0.003(syst). PMID:16383817

  20. Measurement of the lifetimes of the neutral and charged D mesons

    SciTech Connect

    Gladney, L.D.

    1985-03-01

    Results are presented on the use of a high-resolution drift chamber in the Mark II Detector at PEP to measure the lifetimes of D/sup 0/ and D/sup + -/ mesons produced in e/sup +/e/sup -/ annihilations at 29 GeV. Based on a sample of 74 events for the D/sup 0/ mesons and 23 events for the D/sup + -/ mesons, the lifetimes are found to be tau/sub D/sup 0/ = 4.7/sub -0.8//sup +0.9/ +- 0.5 x 10/sup -13/ s; tau/sub D/sup + -// = 8.9/sub -2.7//sup +3.8/ +- 1.3 x 10/sup -13/ s. The ratio of these lifetimes, tau/sub D/sup 0///tau/sub D/sup + -// = 1.9/sub -0.7//sup +0.9/ +- 0.3, indicates that the decays of these mesons cannot be explained by the simple spectator model of charmed particle decay.

  1. Near-infrared spark source excitation for fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Birch, D. J. S.; Hungerford, G.; Imhof, R. E.

    1991-10-01

    We have extended the range of excitation wavelengths from spark sources used in single photon timing fluorometry into the near infrared by means of the all-metal coaxial flashlamp filled with an argon-hydrogen gas mixture. At 750 nm this mixture gives ˜15 times the intensity available from pure hydrogen for a comparable pulse duration. Measurements are demonstrated by using the laser dye IR-140 in acetone, for which a fluorescence lifetime of 1.20 ns is recorded.

  2. Fluorescence lifetime measurements of boronate derivatives to determine glucose concentration

    SciTech Connect

    Gable, J H

    2000-06-01

    A novel investigation into the fluorescence lifetimes of molecules, both established and newly designed, was performed. These molecules are the basis of a continuous, minimally invasive, glucose sensor based on fluorescence lifetime measurements. This sensor, if coupled with an automated insulin delivery device, would effectively create an artificial pancreas allowing for the constant monitoring and control of glucose levels in a person with diabetes. The proposed sensor includes a fluorescent molecule that changes its' fluorescence properties upon binding selectively and reversibly to glucose. One possible sensor molecule is N-methyl-N-(9-methylene anthryl)-2-methylenephenylboronic acid (AB). The fluorescence intensity of AB was shown to change in response to changing glucose concentrations. (James, 1994) James proposed that when glucose binds to AB the fluorescence intensity increases due to an enhancement of the N{yields}B dative bond which prevents photoinduced electron transfer (PET). PET from the amine (N) to the fluorophore (anthracene) quenches the fluorescence. The dative bond between the boron and the amine can prevent PET by involving the lone pair of electrons on the amine in interactions with the boron rather than allowing them to be transferred to the fluorophore. Results of this research show the average fluorescence lifetime of AB also changes with glucose concentration. It is proposed that fluorescence is due to two components: (1) AB with an enhanced N{yields}B interaction, and no PET, and (2) AB with a weak N{yields}B interaction, resulting in fluorescence quenching by PET. Lifetime measurements of AB as a function of both the pH of the solvent and glucose concentration in the solution were made to characterize this two component system and investigate the nature of the N{yields}B bond. Measurements of molecules similar to AB were also performed in order to isolate behavior of specific AB constituents. These molecules are 9-(Methylaminomethyl

  3. Atmospheric lifetime of caesium-137 as an estimate of aerosol lifetime -quantified from global measurements in the months after the Fukushima Dai-ichi nuclear accident

    NASA Astrophysics Data System (ADS)

    Iren Kristiansen, Nina; Stohl, Andreas; Wotawa, Gerhard

    2013-04-01

    Radionuclides like caesium-137 (137Cs) can be emitted to the atmosphere in great quantities during nuclear accidents and are of significant health impact. A global set of radionuclide measurements collected over several months after the accidental release from the Fukushima Dai-ichi nuclear power plant in March 2011 has been used to estimate the atmospheric lifetime of 137Cs. Lifetime is here defined as the e-folding time scale (the time interval in which the exponential decay of the 137Cs quantity has decreased by factor of e). The estimated atmospheric lifetime of 137Cs can also be used as an estimate of the lifetime of aerosols in the atmosphere. This is based on the fact that 137Cs attaches to the ambient accumulation-mode (AM) aerosols and trace their fate in the atmosphere. The 137Cs "tags" the AM aerosols and both the 137Cs and AM aerosols are removed simultaneously from the atmosphere by scavenging within clouds, precipitation and dry deposition. The 137Cs emitted from Fukushima attached mainly to sulphate aerosols in the size range 0.1-2 μm diameter. Measured 137Cs activity concentrations from several stations spread mostly over the Northern Hemisphere were evaluated, and the decrease in activity concentrations over time (after correction for radioactive decay) reflects the removal of aerosols by wet and dry deposition. Corrections for air mass transport were made using measurements of the noble gas xenon-133 (133Xe) which was also released during the accident. This noble gas does not attach to the aerosols and was thus used as a passive tracer of air mass transport. The atmospheric lifetime of 137Cs was estimated to 10.0-13.9 days during April and May 2011. This represents the atmospheric lifetime of a "background" AM aerosol well mixed in the extratropical northern hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of fresh AM aerosols directly emitted from surface sources

  4. Experimentally Measured Radiative Lifetimes and Oscillator Strengths in Neutral Vanadium

    NASA Astrophysics Data System (ADS)

    Holmes, C. E.; Pickering, J. C.; Ruffoni, M. P.; Blackwell-Whitehead, R.; Nilsson, H.; Engström, L.; Hartman, H.; Lundberg, H.; Belmonte, M. T.

    2016-06-01

    We report a new study of the V i atom using a combination of time-resolved laser-induced fluorescence and Fourier transform spectroscopy that contains newly measured radiative lifetimes for 25 levels between 24,648 cm‑1 and 37,518 cm‑1 and oscillator strengths for 208 lines between 3040 and 20000 Å from 39 upper energy levels. Thirteen of these oscillator strengths have not been reported previously. This work was conducted independently of the recent studies of neutral vanadium lifetimes and oscillator strengths carried out by Den Hartog et al. and Lawler et al., and thus serves as a means to verify those measurements. Where our data overlap with their data, we generally find extremely good agreement in both level lifetimes and oscillator strengths. However, we also find evidence that Lawler et al. have systematically underestimated oscillator strengths for lines in the region of 9000 ± 100 Å. We suggest a correction of 0.18 ± 0.03 dex for these values to bring them into agreement with our results and those of Whaling et al. We also report new measurements of hyperfine structure splitting factors for three odd levels of V i lying between 24,700 and 28,400 cm‑1.

  5. Decay Properties and State Lifetimes in 128Te from an Inelastic Neutron Scattering (n,ng) Reaction.

    NASA Astrophysics Data System (ADS)

    Boehringer, John

    2002-03-01

    Gamma-ray spectroscopy following inelastic neutron scattering has been used to study the low-lying level structure of the 128Te nucleus. Measurements were made at the University of Kentucky Van de Graaff Laboratory; excited levels to 3.3 MeV excitation were studied. Gamma-ray angular distributions and Doppler shifts were measured at 2.2, 2.8 and 3.3 MeV, and g-ray excitation functions were measured between 2 MeV and 3.4 MeV in 90 keV steps. These data have been used to compile a level and decay scheme, deduce level spins and parities, lifetimes, branching ratios and multipole-mixing ratios. Electromagnetic transition rates determined from these data will be presented. Experimental results will be compared to model calculations from the interacting boson model and the particle-core coupling model. This work was supported in part by a grant from the National Science Foundation.

  6. Apparatus for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Ahrenkiel, Richard K.

    1999-01-01

    An apparatus for determining the minority carrier lifetime of a semiconductor sample includes a positioner for moving the sample relative to a coil. The coil is connected to a bridge circuit such that the impedance of one arm of the bridge circuit is varied as sample is positioned relative to the coil. The sample is positioned relative to the coil such that any change in the photoconductance of the sample created by illumination of the sample creates a linearly related change in the input impedance of the bridge circuit. In addition, the apparatus is calibrated to work at a fixed frequency so that the apparatus maintains a consistently high sensitivity and high linearly for samples of different sizes, shapes, and material properties. When a light source illuminates the sample, the impedance of the bridge circuit is altered as excess carriers are generated in the sample, thereby producing a measurable signal indicative of the minority carrier lifetimes or recombination rates of the sample.

  7. Bloodstain age analysis: toward solid state fluorescent lifetime measurements

    NASA Astrophysics Data System (ADS)

    Guo, Kevin; Zhegalova, Natalia; Achilefu, Samuel; Berezin, Mikhail Y.

    2013-03-01

    One of the most pressing unsolved challenges in forensic science is the determination of time since deposition (TSD) of bloodstains at crime scenes. Despite a number of high profile cases over the past couple hundred years involving controversy over TSD methods, no reliable quantitative method has been established. We present here an approach that has yet to be explored by forensic scientist: measuring the fluorescence lifetime of solid-state blood. Such a method would allow for on-site measurements of bloodstains utilizing the appropriate device, and would allow for rapid results returned in real-time to investigators.

  8. Measurement of the mass and lifetime of the Ωb- baryon

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hongming, L.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusardi, N.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Niess, V.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhong, L.; Zhukov, V.; Zucchelli, S.; LHCb Collaboration

    2016-05-01

    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb-1 collected by LHCb at √{s }=7 and 8 TeV, is used to reconstruct 63 ±9 Ωb-→Ωc0π-, Ωc0→p K-K-π+ decays. Using the Ξb-→Ξc0π-, Ξc0→p K-K-π+ decay mode for calibration, the lifetime ratio and the absolute lifetime of the Ωb- baryon are measured to be τΩb-/τΞb-=1.11 ±0.16 ±0.03 , τΩb-=1.78 ±0.26 ±0.05 ±0.06 ps , where the uncertainties are statistical, systematic and from the calibration mode (for τΩb- only). A measurement is also made of the mass difference, mΩb--mΞb-, and the corresponding Ωb- mass, which yields mΩb--mΞb-=247.4 ±3.2 ±0.5 MeV /c2 , mΩb-=6045.1 ±3.2 ±0.5 ±0.6 MeV /c2 . These results are consistent with previous measurements.

  9. Recent Progress Towards a Measurement of the Neutron Lifetime Using Magnetically Trapped Ultracold Neutrons

    NASA Astrophysics Data System (ADS)

    Schelhammer, K. W.; Huffer, C. R.; Huffman, P. R.; Marley, D. E.; Coakley, K. J.; Huber, Michael; Hughes, P. P.; Mumm, H. P.; Thompson, A. K.; Yue, A. T.; Abrams, N. C.

    2012-03-01

    Free neutron beta decay is a fundamental process in the Standard Model that can be used to test the weak interaction as well as provide information about primordial ^4He abundance. Recent precision measurements of the neutron lifetime have led to reduced confidence in the absolute value of this parameter; due presumably to unknown systematic effects. This work seeks to measure the neutron lifetime using a different technique that employs a superconducting magnetic trap to confine ultracold neutrons. Neutrons are loaded into the trap through the superthermal technique where 1 mEv neutrons down scatter from phonons in liquid helium losing the majority of their energy. Neutrons in the appropriate spin state are then confined by the static magnetic field. During the past year, over 400 run cycles of data were collected using the upgraded apparatus. Analysis of previous data sets was limited due to large numbers of background events relative to the neutron decay signal. An increased number of trapped neutrons as well as a analysis using pulse shape discrimination allows one to significantly increase the overall precision of the measurement. Details of this ongoing analysis will be presented with preliminary results.

  10. Measurement of the B¯(s)(0) effective lifetime in the J/ψf0(980) final state.

    PubMed

    Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-10-12

    The effective lifetime of the B ¯(s)(0) meson in the decay mode B¯(s)(0)→J/ψf(0)(980) is measured using 1.0 fb(-1) of data collected in pp collisions at √s=7 TeV with the LHCb detector. The result is 1.700±0.040±0.026 ps, where the first uncertainty is statistical and the second systematic. As the final state is CP-odd, and CP violation in this mode is measured to be small, the lifetime measurement can be translated into a measurement of the decay width of the heavy B¯(s)(0) mass eigenstate, Γ(H)=0.588±0.014±0.009 ps(-1). PMID:23102295

  11. Limits on the Higgs boson lifetime and width from its decay to four charged leptons

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.

    2015-10-01

    Constraints on the lifetime and width of the Higgs boson are obtained from H →Z Z →4 ℓ events using data recorded by the CMS experiment during the LHC run 1 with an integrated luminosity of 5.1 and 19.7 fb-1 at a center-of-mass energy of 7 and 8 TeV, respectively. The measurement of the Higgs boson lifetime is derived from its flight distance in the CMS detector with an upper bound of τH<1.9 ×10-13 s at the 95% confidence level (C.L.), corresponding to a lower bound on the width of ΓH>3.5 ×10-9 MeV . The measurement of the width is obtained from an off-shell production technique, generalized to include anomalous couplings of the Higgs boson to two electroweak bosons. From this measurement, a joint constraint is set on the Higgs boson width and a parameter fΛ Q that expresses an anomalous coupling contribution as an on-shell cross-section fraction. The limit on the Higgs boson width is ΓH<46 MeV with fΛ Q unconstrained and ΓH<26 MeV for fΛ Q=0 at the 95% C.L. The constraint fΛ Q<3.8 ×10-3 at the 95% C.L. is obtained for the expected standard model Higgs boson width.

  12. Measurement of the inclusive b-lifetime using Jp's at the CDF-experiment.

    NASA Astrophysics Data System (ADS)

    Wenzel, Hans; Benjamin, Doug

    1996-05-01

    We present the measurement of the average lifetime of b-hadrons produced in pbarp collisions at √s = 1.8 TeV weighted by their branching ratios into J/ψ We use dimuon data which corresponds to an integrated luminosity of ≈ 90 pb-1 recorded with the CDF-detector during the 1994 to 95 running period. After all selection cuts and background subtraction we are left with a high statistics sample of 62656 J/ψ decaying into μ^+μ^- reconstructed in the CDF Silicon VerteX detector (SVX) where 17.8% of these events come from b-decays. We measure the average B lifetime to be 1.52 ; ± 0.015; (stat);^+0.038_-0.027;(sys); ps (preliminary). The precision of this measurement is significantly improved compared to the inclusive lifetime measurement published previously using ≈ 10 pb-1 of data recorded in 91-92. ^ Supported by U.S. DOE DE-AC03-76SF00098. ^ Supported by U.S. DOE DEFG03-95-ER-40938. ^*We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; and the A. P. Sloan Foundation.

  13. Precision lifetime measurements of the 2p levels in lithium

    SciTech Connect

    Berry, H.G.; Kurtz, C.; Tanner, C.E.

    1995-08-01

    These measurements are motivated by the theoretical challenges posed by lithium. The three-electron lithium atom is one of the simplest atomic systems with which to test atomic structure calculations. Recently, there were several ab initio calculations of the lithium 2s-2p oscillator strengths, which agree to 0.15%. However, the theoretical results differ by 5 sigma from the precise fast-beam-laser lifetime measurement of Gaupp and Andra (Berlin). Hence the need for a new independent and precise measurement. Improvements were added to the fast beam laser techniques developed for cesium in order to measure the lithium 2p state lifetime. Although the technique is similar to that of cesium, the lithium atom presents a few new complications. Since the atom is lighter, it travels more quickly through the interaction and detection regions. Therefore, the 670 nm wavelength requires a dye laser to produce sufficient intensity to populate the excited state. Unfortunately, the intensity of the dye laser is inherently less stable than that of a diode laser. Another complication is that the ion-beam intensity is much more sensitive to fluctuations in the accelerating voltage. Two detectors were added: one to monitor the ion-beam intensity, and the other to monitor the laser power. With the information from the additional detectors, a new data analysis scheme was developed. Sufficient data were taken to evaluate the benefits of the new detectors. No additional work is planned at Argonne for this experiment.

  14. Measurement of β --decay continuum spectrum of 138La

    NASA Astrophysics Data System (ADS)

    Giaz, Agnese; Gosta, Giulia; Camera, Franco; Riboldi, Stefano; Blasi, Nives; Bracco, Angela; Brambilla, Sergio; Million, Benedicte

    2015-05-01

    The LaBr3:Ce scintillator offers the unique opportunity to study the β - radioactive decay of 138La. The 138La isotope is one of the rarest isotopes on Earth (it is present as 0.09% in natural lanthanum) and because of its extremely long lifetime, of the order of 1011 years, large amounts of 138La are needed for the measurement of the β --decay spectrum. In the literature, only one dedicated experimental measurement is present and the results seem not to be reproduced by the nuclear theory. A second measurement of the β - continuum spectrum is presented in this work. For this measurement, two LaBr3:Ce scintillators (3''×3'') and two different experimental techniques were used. The shape of the β - continuum spectrum, measured down to the energy of 10 keV, is found to be very similar to the one previously measured and published, but it is different from the theoretical published spectrum.

  15. Measurement of indirect CP asymmetries in D 0 → K - K + and D 0 → π - π + decays using semileptonic B decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R. C. M.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Domenico, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, KD; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lowdon, P.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Moggi, N.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A.-B.; Mountain, R.; Muheim, F.; Müller, K.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Pesen, E.; Petridis, K.; Petrolini, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M. P.; Williams, M.; Wilschut, H. W.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-04-01

    Time-dependent CP asymmetries in the decay rates of the singly Cabibbo-suppressed decays D 0 → K - K + and D 0 → π - π + are measured in pp collision data corresponding to an integrated luminosity of 3.0 fb-1 collected by the LHCb experiment. The D 0 mesons are produced in semileptonic b-hadron decays, where the charge of the accompanying muon is used to determine the initial state as D 0 or . The asymmetries in effective lifetimes between D 0 and decays, which are sensitive to indirect CP violation, are determined to be

  16. New observations on the luminescence decay lifetime of Mn2+ in ZnS :Mn2+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Aguekian, Vadim F.; Vassiliev, Nikolai; Serov, A. Yu.; Filosofov, N. G.

    2005-09-01

    A fast decay emission peaking at 645nm with a decay lifetime within the experimental resolution of 0.14μs is observed in ZnS :Mn2+ nanoparticles. This short-lived signal is also observed in pure ZnS and MgS :Eu3+ nanoparticles, which has nothing to do with Mn2+-doped ions but is from the deep trap states of the host materials. The short-lived component decreases in intensity relative to the Mn2+ emission at higher excitation powers, while it increases in intensity at low temperatures and shifts to longer wavelengths at longer time delays. Our observations demonstrated further that the emission of Mn2+ in ZnS :Mn2+ nanoparticles behaves basically the same as in bulk ZnS :Mn2+; the fast decay component is actually from the intrinsic and defect-related emission in sulfide compounds.

  17. B(S) LIFETIME DIFFERENCE MEASUREMENTS FROM THE TEVATRON.

    SciTech Connect

    YIP, K.

    2006-07-02

    The two collider experiments at the Tevatron, CDF and D0, have made a lot of progress in B{sub s} lifetime difference measurements. Here, they have included 3 different channels of measurements, namely, B{sub s} {yields} J/{psi} + {phi}, B{sub s} {yields} K{sup +}K{sup -} and B{sub s} {yields} D{sub s}{sup (*)+}D{sub s}{sup (*)-}. Combining all the available measurements, they have obtained {Delta}{Lambda}{sub s} = 0.097{sub -0.042}{sup +0.041} ps{sup -1} and {bar {tau}} = 1/{Lambda}{sub s} = 1.461 {+-} 0.030 ps. {Delta}{Lambda}{sub s} is now 2.3 {sigma} away from zero.

  18. Lifetime measurements in 166Re: Collective versus magnetic rotation

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Cederwall, B.; Doncel, M.; Peng, J.; Chen, Q. B.; Zhang, S. Q.; Zhao, P. W.; Meng, J.; Bäck, T.; Jakobsson, U.; Auranen, K.; Bönig, S.; Drummond, M.; Grahn, T.; Greenlees, P.; HerzáÅ, A.; Joss, D. T.; Julin, R.; Juutinen, S.; Konki, J.; Kröll, T.; Leino, M.; McPeake, C.; O'Donnell, D.; Page, R. D.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayǧı, B.; Scholey, C.; Sorri, J.; Stolze, S.; Taylor, M. J.; Thornthwaite, A.; Uusitalo, J.; Xiao, Z. G.

    2016-03-01

    Lifetimes of excited states in the neutron-deficient odd-odd nucleus 166Re have been measured for the first time using the recoil distance Doppler-shift method. The measured lifetime for the (8-) state; τ =480 (80) ps, enabled an assessment of the multipolarities of the γ rays depopulating this state. Information on electromagnetic transition strengths were deduced for the γ -ray transitions from the (9-),(10-), and (11-) states, and in the case of the (10-) and (11-) states limits on the B (M 1 ) and B (E 2 ) strengths were estimated. The results are compared with total Routhian surface predictions and semiclassical calculations. Tilted-axis cranking calculations based on a relativistic mean-field approach (TAC-RMF) have also been performed in order to test the possibility of magnetic rotation in the 166Re nucleus. While the TAC-RMF calculations predict a quadrupole-deformed nuclear shape with similar β2 deformation as obtained by using the TRS model, it was found that the experimental electromagnetic transition rates are in better agreement with a collective-rotational description.

  19. Limits on D0-macro D0 mixing and CP violation from the ratio of lifetimes for decay to K-pi+, K-K+, and pi- pi+.

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Barlow, N R; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Mackay, C; Wilson, F F; Abe, K; Cuhadar-Donszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; McMahon, S; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Schwanke, U; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Grothe, M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Barillari, T; Blanc, F; Bloom, P; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Tinslay, J; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Pastore, F C; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Aspinwall, M L; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Grenier, G J; Lee, S-J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljević, V; Cheng, C H; Lange, D J; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, E; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Strother, P; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, R J; Forti, A C; Hart, P A; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Milek, M; Patel, P M; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Hast, C; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Pulliam, T; Brau, J; Frey, R; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; John, M J J; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Manfredi, P F; Re, V; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Hryn'ova, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Robertson, S H; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Tanaka, H A; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Edwards, A J; Meyer, T I; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Hu, H; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihalyi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H

    2003-09-19

    We present a measurement of D0-macro D0 mixing parameters using the ratios of lifetimes extracted from samples of D0 mesons decaying to K-pi(+), K-K+, and pi(-)pi(+). Using 91 fb(-1) of data collected by the BABAR detector at the PEP-II asymmetric-energy B Factory, we obtain a value Y=[0.8+/-0.4(stat.)(+0.5)(-0.4)(syst.)]%, which, in the limit of CP conservation, corresponds to the mixing parameter y=Delta Gamma/2 Gamma. Using the difference in lifetimes of D0 and macro D0 mesons, we obtain the CP-violation parameter Delta Y=[-0.8+/-0.6(stat.)+/-0.2(syst.)]%. PMID:14525353

  20. Measurement of the B(c)+ meson lifetime using B(c)+ ---> J/psi e+ nu(e)

    SciTech Connect

    Abulencia, A.; Acosta, D.; Adelman, Jahred A.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria Inst. of Phys.

    2006-03-01

    The authors present a measurement of the B{sub c}{sup +} meson lifetime in the semileptonic decay mode B{sub c}{sup +} {yields} J/{psi}e{sup +}{nu}{sub e} using the CDF II detector at the Fermilab Tevatron Collider. From a sample of about 360 pb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, they reconstruct J/{psi}e{sup +} pairs with invariant mass in the kinematically allowed range 4 < M{sub J/{psi}e} < 6 GeV/c{sup 2}. A fit to the decay-length distribution of 238 signal events yields a measured B{sub c}{sup +} meson lifetime of 0.463{sub -0.065}{sup +0.073}(stat) {+-} 0.036(syst) ps.

  1. Measurement of the bottom hadron lifetime at the Z{sup 0} resonancce

    SciTech Connect

    Fujino, D.H.

    1992-06-01

    We have measured the bottom hadron lifetime from b{bar b} events produced at the Z{sup 0} resonance. Using the precision vertex detectors of the Mark II detector at the Stanford Linear Collider, we developed an impact parameter tag to identify bottom hadrons. The vertex tracking system resolved impact parameters to 30 {mu}m for high momentum tracks, and 70 {mu}m for tracks with a momentum of 1 GeV. We selected B hadrons with an efficiency of 40% and a sample purity of 80%, by requiring there be at least two tracks in a single jet that significantly miss the Z{sup 0} decay vertex. From a total of 208 hadronic Z{sup 0} events collected by the Mark II detector in 1990, we tagged 53 jets, of which 22 came from 11 double-tagged events. The jets opposite the tagged ones, referred as the ``untagged`` sample, are rich in B hadrons and unbiased in B decay times. The variable {Sigma}{delta} is the sum of impact parameters from tracks in the jet, and contains vital information on the B decay time. We measured the B lifetime from a one-parameter likelihood fit to the untagged {Sigma}{delta} distribution, obtaining {tau}{sub b} = 1.53{sub {minus}0.45}{sup +0.55}{plus_minus}0.16 ps which agrees with the current world average. The first error is statistical and the second is systematic. The systematic error was dominated by uncertainties in the track resolution function. As a check, we also obtained consistent results using the {Sigma}{delta} distribution from the tagged jets and from the entire hadronic sample without any bottom enrichment.

  2. Measurement of the bottom hadron lifetime at the Z sup 0 resonancce

    SciTech Connect

    Fujino, D.H.

    1992-06-01

    We have measured the bottom hadron lifetime from b{bar b} events produced at the Z{sup 0} resonance. Using the precision vertex detectors of the Mark II detector at the Stanford Linear Collider, we developed an impact parameter tag to identify bottom hadrons. The vertex tracking system resolved impact parameters to 30 {mu}m for high momentum tracks, and 70 {mu}m for tracks with a momentum of 1 GeV. We selected B hadrons with an efficiency of 40% and a sample purity of 80%, by requiring there be at least two tracks in a single jet that significantly miss the Z{sup 0} decay vertex. From a total of 208 hadronic Z{sup 0} events collected by the Mark II detector in 1990, we tagged 53 jets, of which 22 came from 11 double-tagged events. The jets opposite the tagged ones, referred as the untagged'' sample, are rich in B hadrons and unbiased in B decay times. The variable {Sigma}{delta} is the sum of impact parameters from tracks in the jet, and contains vital information on the B decay time. We measured the B lifetime from a one-parameter likelihood fit to the untagged {Sigma}{delta} distribution, obtaining {tau}{sub b} = 1.53{sub {minus}0.45}{sup +0.55}{plus minus}0.16 ps which agrees with the current world average. The first error is statistical and the second is systematic. The systematic error was dominated by uncertainties in the track resolution function. As a check, we also obtained consistent results using the {Sigma}{delta} distribution from the tagged jets and from the entire hadronic sample without any bottom enrichment.

  3. Apparatus for measuring minority carrier lifetimes in semiconductor materials

    DOEpatents

    Ahrenkiel, R.K.

    1999-07-27

    An apparatus for determining the minority carrier lifetime of a semiconductor sample includes a positioner for moving the sample relative to a coil. The coil is connected to a bridge circuit such that the impedance of one arm of the bridge circuit is varied as sample is positioned relative to the coil. The sample is positioned relative to the coil such that any change in the photoconductance of the sample created by illumination of the sample creates a linearly related change in the input impedance of the bridge circuit. In addition, the apparatus is calibrated to work at a fixed frequency so that the apparatus maintains a consistently high sensitivity and high linearly for samples of different sizes, shapes, and material properties. When a light source illuminates the sample, the impedance of the bridge circuit is altered as excess carriers are generated in the sample, thereby producing a measurable signal indicative of the minority carrier lifetimes or recombination rates of the sample. 17 figs.

  4. Microburst measurements by SAMPEX HILT: Micro and Macro temporal coupling of electron decay

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Baker, D. N.; Fennell, J. F.; Klecker, B.; Summerlin, E. J.

    2012-12-01

    We use data collected by the HILT sensor on SAMPEX, to explore relationship between micro and macro temporal processes pertaining to relativistic electron decay. Electron microbursts are rapid short lived precipitation on millisecond time scales which have been suggested as a major loss mechanism of relativistic electrons. We identify and quantify electron microburst characteristics using high resolution measurements made by the HILT sensor. Relativistic electron fluxes can be observed to decay on macroscopic times scales of days as well. We have investigated the correlation between macroscopic electron lifetimes and electron microbursts by quantifying the microburst activity and measuring flux lifetimes. These investigations are carried out during the recovery periods of several geomagnetic storms. We report on the preliminary results our investigations of the interconnection between flux decay times and microbursts.

  5. Measurement of the B meson Lifetimes with the Collider Detector at Fermilab

    SciTech Connect

    Uozumi, Satoru; /Tsukuba U.

    2006-01-01

    The lifetimes of the B{sup -}, B{sup 0} and B{sub s}{sup 0} mesons are measured using partially reconstructed semileptonic decays. Following semileptonic decay processes and their charge conjugates are used for this analysis: B{sup -}/B{sup 0} {yields} {ell}{sup -}{nu}D{sup 0}X; B{sup -}/B{sup 0} {yields} {ell}{sup -}{nu}D*{sup +}X; B{sub s}{sup 0} {yields} {ell}{sup -}{nu}D{sub s}{sup +}x, where {ell}{sup -} denotes either a muon or electron. The data are collected during 2002-2004 by the 8 GeV single lepton triggers in CDF Run II at the Fermilab Tevatron Collider. Corresponding integrated luminosity is about 260 and 360 pb{sup -1} used for the B{sup -}/B{sup 0} and B{sub s}{sup 0} lifetime analyses, respectively. With the single lepton triggers, events which contain a muon or electron with a transverse momentum greater than 8 GeV/c are selected. For these lepton candidates, further lepton identification cuts are applied to improve purity of the B semileptonic decay signal. After the lepton selection, three types of charm mesons associated with the lepton candidates are reconstructed. Following exclusive decay modes are used for the charm meson reconstruction: D{sup 0} {yields} K{sup -}{pi}{sup +}; D*{sup +} {yields} D{sup 0}{pi}{sub s}{sup +}, followed by D{sup 0} {yields} K{sup -}{pi}{sup +}; D{sub s}{sup +} {yields} {phi}{pi}{sup +}, followed by {phi} {yields} K{sup +}K{sup -}. Here {pi}{sub s}{sup +} denotes a slow pion from D*{sup +} decay. Species of the reconstructed charm meson identify the parent B meson species. However in the B{sup -}/B{sup 0} semileptonic decays, both mesons decay into the identical lepton + D{sup 0} final state. To solve this mixture of the B components in the D{sup 0} sample, they adopt the following method: First among the inclusive D{sup 0} sample, they look for the D*{sup +} {yields} D{sup 0} {pi}{sub s}{sup +} signal. The inclusive D{sup 0} sample is then split into the two samples of D{sup 0} mesons which are from the D

  6. Modern Measurements of Uranium Decay Rates

    NASA Astrophysics Data System (ADS)

    Parsons-Moss, T.; Faye, S. A.; Williams, R. W.; Wang, T. F.; Renne, P. R.; Mundil, R.; Harrison, M.; Bandong, B. B.; Moody, K.; Knight, K. B.

    2015-12-01

    It has been widely recognized that accurate and precise decay constants (λ) are critical to geochronology as highlighted by the EARTHTIME initiative, particularly the calibration benchmarks λ235U and λ238U. [1] Alpha counting experiments in 1971[2] measured λ235U and λ238U with ~0.1% precision, but have never been independently validated. We are embarking on new direct measurements of λ235U, λ238U, λ234Th, and λ234U using independent approaches for each nuclide. For the measurement of λ235U, highly enriched 235U samples will be chemically purified and analyzed for U concentration and isotopic composition by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Thin films will be electrodeposited from these solutions and the α activity will be measured in an α-γ coincidence counting apparatus, which allows reduced uncertainty in counting efficiency while achieving adequate counting statistics. For λ238U measurement we will measure ingrowth of 234Th in chemically purified, isotopically enriched 238U solutions, by quantitatively separating the Th and allowing complete decay to 234U. All of the measurements will be done using MC-ICP-MS aiming at 0.05% precision. This approach is expected to result in values of λ238U with less than 0.1% uncertainty, if combined with improved λ234Th measements. These will be achieved using direct decay measurements with an E-∆E charged particle telescope in coincidence with a gamma detector. This system allows measurement of 234Th β-decay and simultaneous detection and identification of α particles emitted by the 234U daughter, thus observing λ234U at the same time. The high-precision λ234U obtained by the direct activity measurements can independently verify the commonly used values obtained by indirect methods.[3] An overarching goal of the project is to ensure the quality of results including metrological traceability in order to facilitate implementation across diverse disciplines. [1] T

  7. Measurement of the strong coupling constant using τ decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-06-01

    The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.

  8. Lifetime and Polarization of the Radiative Decay of Excitons, Biexcitons, and Trions in CdSe Nanocrystal Quantum Dots

    SciTech Connect

    Califano, M.; Franceschetti, A.; Zunger, A.

    2007-01-01

    Using the pseudopotential configuration-interaction method, we calculate the intrinsic lifetime and polarization of the radiative decay of single excitons (X), positive and negative trions (X{sup +} and X{sup -}), and biexcitons (XX) in CdSe nanocrystal quantum dots. We investigate the effects of the inclusion of increasingly more complex many-body treatments, starting from the single-particle approach and culminating with the configuration-interaction scheme. Our configuration-interaction results for the size dependence of the single-exciton radiative lifetime at room temperature are in excellent agreement with recent experimental data. We also find the following. (i) Whereas the polarization of the bright exciton emission is always perpendicular to the hexagonal c axis, the polarization of the dark exciton switches from perpendicular to parallel to the hexagonal c axis in large dots, in agreement with experiment. (ii) The ratio of the radiative lifetimes of mono- and biexcitons (X):(XX) is {approx}1:1 in large dots (R=19.2 {angstrom}). This ratio increases with decreasing nanocrystal size, approaching 2 in small dots (R=10.3 {angstrom}). (iii) The calculated ratio (X{sup +}):(X{sup -}) between positive and negative trion lifetimes is close to 2 for all dot sizes considered.

  9. Measurement of psi2S radiative decays.

    PubMed

    Ablikim, M; Bai, J Z; Ban, Y; Cai, X; Chen, H F; Chen, H S; Chen, H X; Chen, J C; Chen, Jin; Chen, Y B; Chu, Y P; Dai, Y S; Diao, L Y; Deng, Z Y; Dong, Q F; Du, S X; Fang, J; Fang, S S; Fu, C D; Gao, C S; Gao, Y N; Gu, S D; Gu, Y T; Guo, Y N; Guo, Z J; Harris, F A; He, K L; He, M; Heng, Y K; Hou, J; Hu, H M; Hu, J H; Hu, T; Huang, G S; Huang, X T; Ji, X B; Jiang, X S; Jiang, X Y; Jiao, J B; Jin, D P; Jin, S; Lai, Y F; Li, G; Li, H B; Li, J; Li, R Y; Li, S M; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Liang, Y F; Liao, H B; Liu, B J; Liu, C X; Liu, F; Liu, Fang; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, Jian Liu Q; Liu, R G; Liu, Z A; Lou, Y C; Lu, F; Lu, G R; Lu, J G; Luo, C L; Ma, F C; Ma, H L; Ma, L L; Ma, Q M; Mao, Z P; Mo, X H; Nie, J; Olsen, S L; Ping, R G; Qi, N D; Qin, H; Qiu, J F; Ren, Z Y; Rong, G; Ruan, X D; Shan, L Y; Shang, L; Shen, C P; Shen, D L; Shen, X Y; Sheng, H Y; Sun, H S; Sun, S S; Sun, Y Z; Sun, Z J; Tang, X; Tong, G L; Varner, G S; Wang, D Y; Wang, L; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Y F; Wang, Z; Wang, Z Y; Wang, Zheng; Wei, C L; Wei, D H; Weng, Y; Wu, N; Xia, X M; Xie, X X; Xu, G F; Xu, X P; Xu, Y; Yan, M L; Yang, H X; Yang, Y X; Ye, M H; Ye, Y X; Yu, G W; Yuan, C Z; Yuan, Y; Zang, S L; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C C; Zhang, D H; Zhang, H Q; Zhang, H Y; Zhang, J W; Zhang, J Y; Zhang, S H; Zhang, X Y; Zhang, Yiyun; Zhang, Z X; Zhang, Z P; Zhao, D X; Zhao, J W; Zhao, M G; Zhao, P P; Zhao, W R; Zhao, Z G; Zheng, H Q; Zheng, J P; Zheng, Z P; Zhou, L; Zhu, K J; Zhu, Q M; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, B A; Zhuang, X A; Zou, B S

    2007-07-01

    Using 14 x 10(6) psi(2S) events accumulated at the BESII detector, we report first measurements of branching fractions or upper limits for psi(2S) decays into gammapp, gamma2(pi+pi-), gammaKS0K+pi-+c.c., gammaK+K-pi+pi-, gammaK*0K-pi++c.c., gammaK*0K*0, gammapi+pi-pp, gamma2(K+K-), gamma3(pi+pi-), and gamma2(pi+pi-)K+K- with the invariant mass of hadrons below 2.9 GeV/c2. We also report branching fractions of psi(2S) decays into 2(pi+pi-)pi0, omegapi+pi-, omegaf2(1270), b1+/-pi-/+, and pi02(pi+pi-)K+K-. PMID:17678148

  10. A measurement of the lambda_b lifetime at the D0 experiment

    SciTech Connect

    Lewin, Marcus Philip; /Lancaster U.

    2007-07-01

    This thesis describes a measurement of the lifetime of the {Lambda}{sub b}{sup 0} baryon, performed using data from proton-antiproton collisions at a centre of mass energy of 1.96 TeV. The decay {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +}{mu}{sup -}{ovr P{nu}}{sub {mu}}X was reconstructed in approximately 1.3 fb{sup -1} of data recorded by the D0 detector in 2002-2006 during Run II of the Fermilab Tevatron collider. A signal of 4437 {+-} 329 {Lambda}{sub c}{sup +}{mu}{sup -} pairs was obtained, and the {Lambda}{sub b}{sup 0} lifetime was measured using a binned {chi}{sup 2} fit, which gives a value {tau}({Lambda}{sub b}{sup 0}) = 1.290{sub -0.110}{sup +0.119}(stat){sub -0.091}{sup +0.085}(syst) ps. This result is consistent with the world average and is one of the most precise measurements of this quantity.

  11. Atomic Oscillator Strengths by Emission Spectroscopy and Lifetime Measurements

    NASA Astrophysics Data System (ADS)

    Wiese, W. L.; Griesmann, U.; Kling, R.; Musielok, J.

    2002-11-01

    Over the last seven years, we have carried out numerous oscillator strength measurements for some light and medium heavy elements (Musielok et al. 1995, 1996, 1997, 1999, 2000; Veres & Wiese 1996; Griesmann et al. 1997; Bridges & Wiese 1998; Kling et al. 2001; Kling & Gries- mann 2000; Bridges & Wiese to be published). Most recently we have determined numerous transitions of Mu II (Kling et al. 2001; Kling & Griesmann 2000) and are now working on Cl I (Bridges & Wiese to be published). See the summary statement at the end of the text. For the emission measurements, we have applied either a high-current wall-stabilized arc (described for example, in Musielok et al. (1999)), or a high-current hollow cathode, or a Penning discharge. The latter two sources were used for branching ratio measurements from common upper 1ev- els, while the wall-stabilized arc was operated at atmospheric pressure under the condition of partial local thermodynamic equilibrium, which allows the measurement of relative transition probabilities. Absolute data were obtained by combining the emission results with lifetime data measured by other research groups, especially the University of Hannover, with which we have closely collaborated. This group uses the laser induced fluorescence (LIF) technique. Our emission spectra were recorded for the light elements with a 2 m grating spectrometer, or, for Mu II, with an FT 700 vacuum ultraviolet Fourier transform spectrometer. The radiometric calibration was carried out with a tungsten strip lamp for the visible part of the spectrum and with a deuterium lamp for the ultraviolet. All measurements were made under optically thin conditions, which was checked by doubling the path length with a focusing mirror setup. Typical uncertainties of the measured oscillator strengths are estimated to be in the range 15%-20% (one-standard deviation). However, discrepancies with advanced atomic structure theories are sometimes much larger. In Tables 1-3 and Fig. 1, we

  12. Measurement of Λ polarization from Z decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajlatouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Aleppo, M.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The polarization of Λ baryons from Z decays is studied with the ALEPH apparatus. Evidence of longitudinal polarization of s quarks from Z decay is observed for the first time. The measured longitudinal Λ polarization is PLΛ = -0.32 ± 0.07 for z = {p}/{p beam} > 0.3 . This agrees with the prediction of -0.39 ± 0.08 from the standard model and the constituent quark model, where the error is due to uncertainties in the mechanism for Λ production. The observed Λ polarization is diluted with respect to the primary s quark polarization by Λ baryons without a primary s quark. Measurements of the Λ forward-backward asymmetry and of the correlation between back-to-back Λ overlineΛ pairs are used to check this dilution. In addition the transverse Λ polarization is measured. An indication of transverse polarization, more than two standard deviations away from zero, is found along the normal to the plane defined by the thrust axis and the Λ direction.

  13. The Lifetime of a beautiful and charming meson: Bc lifetime measured using the D0 detector

    SciTech Connect

    Welty-Rieger, Leah Christine

    2008-09-01

    Using approximately 1.3 fb-1 of data collected by the D0 detector between 2002 and 2006, the lifetime of the Bc± meson is studied in the Bc± → J/Ψμ± + X final state. Using an unbinned likelihood simultaneous fit to J/Ψ + μ invariant mass and lifetime distributions, a signal of 810 ± 80(stat.) candidates is estimated and a lifetime measurement made of: τ(Bc±) = 0.448-0.036+0.038(stat) ± 0.032(sys) ps.

  14. Measurement of the B(0) and B(+) meson lifetimes with fully reconstructed hadronic final states.

    PubMed

    Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Gill, M S; Gritsan, A; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Best, D; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Barillari, T; Bloom, P; Dima, M O; Fahey, S; Ford, W T; Johnson, D R; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Borean, C; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; LePeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Moore, T B; Staengle, H; Willocq, S; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Brau, J; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; De la Vaissière, C; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, P; Lory, J; Roos, L; Stark, J; Versillé, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Elmer, P; Lu, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yeche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Bloom, E; Boyarski, A M; Bulos, F; Calderini, G; Claus, R; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Doser, M; Dunwoodie, W; Field, R C; Glanzman, T; Godfrey, G L; Gowdy, S J; Grosso, P; Himel, T; Huffer, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Muller, D R; O'Grady, C P; Perl, M; Petrak, S; Quinn, H; Ratcliff, B N; Robertson S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Serbo, V V; Snyder, A; Soha, A; Spanier, S M; Stelzer, J; Su, D; Sullivan, M K; Tanaka, H A; Va'vra, J; Wagner, S R; Weinstein, A J; Wisniewski, W J; Wright, D W; Young, C C; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Weideman, A W; Izen, J M; Kitayama, L; Lou, X C; Turcotte, M; Bona, M; Di Girolamo, B; Gamba, D; Smol, A; Zanin, D; Lanceri, L; Pompili, A; Vaugnin, G; Panvini, R S; Brown, C M; De Silva, A; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Di Lodovico, F; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Zobernig, H; Kordich, T M; Neal, H

    2001-11-12

    The B(0) and B(+) meson lifetimes have been measured in e(+)e(-) annihilation data collected in 1999 and 2000 with the BABAR detector at center-of-mass energies near the Upsilon(4S) resonance. Events are selected in which one B meson is fully reconstructed in a hadronic final state while the second B meson is reconstructed inclusively. A combined fit to the B(0) and the B(+) decay time difference distributions yields tau(B(0)) = 1.546+/-0.032(stat)+/-0.022(syst) ps, tau(B(+)) = 1.673+/-0.032(stat)+/-0.023(syst) ps, and tau(B(+))/tau(B(0)) = 1.082+/-0.026(stat)+/-0.012(syst). PMID:11690464

  15. Measurement of the B+- lifetime and top quark identification using secondary vertex b-tagging

    SciTech Connect

    Schwartzman, Ariel G

    2004-02-01

    This dissertation presents a preliminary measurement of the B{sup {+-}} lifetime through the full reconstruction of its decay chain, and the identification of top quark production in the electron plus jets channel using the displaced vertex b-tagging method. Its main contribution is the development, implementation and optimization of the Kalman filter algorithm for vertex reconstruction, and of the displaced vertex technique for tagging jets arising from b quark fragmentation, both of which have now become part of the standard D0 reconstruction package. These two algorithms fully exploit the new state-of-the-art tracking detectors, recently installed as part of the Run 2 D0 upgrade project. The analysis is based on data collected during Run 2a at the Fermilab Tevatron p{bar p} Hadron Collider up to April 2003, corresponding to an integrated luminosity of 60 pb{sup -1}. The measured B meson lifetime of {tau} = 1.57 {+-} 0.18 ps is in agreement with the current world average, with a competitive level of precision expected when the full data sample becomes available.

  16. Absolute decay width measurements in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2012-09-01

    The reaction 126C(63Li, d)168O* at a 6Li bombarding energy of 42 MeV has been used to populate excited states in 16O. The deuteron ejectiles were measured using the high-resolution Munich Q3D spectrograph. A large-acceptance silicon-strip detector array was used to register the recoil and break-up products. This complete kinematic set-up has enabled absolute α-decay widths to be measured with high-resolution in the 13.9 to 15.9 MeV excitation energy regime in 16O; many for the first time. This energy region spans the 14.4 MeV four-α breakup threshold. Monte-Carlo simulations of the detector geometry and break-up processes yield detection efficiencies for the two dominant decay modes of 40% and 37% for the α+12C(g.s.) and a+12C(2+1) break-up channels respectively.

  17. c, b, and tau lifetime measurements in e/sup +/e/sup -/ interactions

    SciTech Connect

    Jaros, J.A.

    1983-01-01

    Experiments at e/sup +/e/sup -/ storage rings have successfully measured the tau and D/sup 0/ lifetimes and set interesting limits on the B lifetime. So far, the conventional wisdom has prevailed. The tau lifetime is consistent with prediction; there is no sign (but little sensitivity) of a violation of universality. The charmed particle lifetimes are roughly as expected, but richer in their phenomenology than anticipated. The B lifetime is still unknown. The experimental art is developing rapidly. Several experiments have by now installed vertex detectors. Measurements of charmed particle lifetimes from e/sup +/e/sup -/ experiments will complement the work that has been done at fixed target machines. Measurements of tau and B lifetimes may be the exclusive province of e/sup +/e/sup -/ experiments for the next few years. (WHK)

  18. Lifetime measurements of normal deformed states in {sub 71}{sup 165}Lu

    SciTech Connect

    Andgren, K.; Podolyak, Zs.; Gelletly, W.; Walker, P. M.; Wheldon, C.; Dewald, A.; Fitzler, A.; Moeller, O.; Pissulla, T.; Xu, F.R.; Algora, A.; Axiotis, M.; Angelis, G. de; Farnea, E.; Gadea, A.; Marginean, N.; Martinez, T.; Rusu, C.; Bazzacco, D.; Lunardi, S.

    2005-01-01

    Picosecond lifetimes of medium spin states in {sup 165}Lu were measured for the first time. The reaction used to populate the nucleus of interest was {sup 139}La({sup 30}Si,4n){sup 165}Lu at a beam energy of 135 MeV. The beam was provided by the XTU-tandem accelerator of Laboratori Nazionali di Legnaro, Italy. By using the differential decay curve method, lifetimes of 19 states in four different rotational bands were obtained. Therefrom the B(E2) values and the transitional quadrupole moments were deduced. The obtained Q{sub t} for the different bands are compared with total Routhian surface (TRS) calculations and particle-rotor-model calculations. The TRS calculations predict different axial symmetric shapes for the bands built on the 9/2{sup -}[514], 9/2{sup +}[404], and 1/2{sup -}[541] configurations, with a {gamma} softness for the 9/2{sup -}[514] configuration. This band has also been studied using the particle-rotor model, the results of which, however, are consistent with a triaxial shape with a {gamma} value of -15 degrees.

  19. Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime Using Controlled Calorimetry

    SciTech Connect

    Don W. Miller; Andrew Kauffmann; Eric Kreidler; Dongxu Li; Hanying Liu; Daniel Mills; Thomas D. Radcliff; Joseph Talnagi

    2001-12-31

    A comprehensive description of the accomplishments of the DOE grant titled, ''Local Measurement of Fuel Energy Deposition and Heat Transfer Environment During Fuel Lifetime using Controlled Calorimetry''.

  20. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    SciTech Connect

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  1. Measurement of the lifetimes of the lowest {sup 3}P{sub 1} state of neutral Ba and Ra

    SciTech Connect

    Scielzo, N. D.; Guest, J. R.; Schulte, E. C.; Ahmad, I.; Bailey, K.; Holt, R. J.; O'Connor, T. P.; Potterveld, D. H.; Bowers, D. L.; Lu, Z.-T.

    2006-01-15

    The lifetimes of the lowest {sup 3}P{sub 1} states of Ba and Ra were determined to be 1345{+-}14 ns and 422{+-}20 ns, respectively, by measuring the exponential decay of fluorescence after illuminating a thermal atomic beam with pulses of laser light. In addition, the {sup 1}S{sub 0}(F=1/2)-{sup 3}P{sub 1}(F=3/2) transition frequency in {sup 225}Ra was measured to be 13 999.269{+-}0.001 cm{sup -1} by referencing a nearby I{sub 2} transition.

  2. Measurements of the lifetime of the lowest {sup 3}P{sub 1} state of neutral Ba and Ra.

    SciTech Connect

    Scielzo, N. D.; Guest, J. R.; Schulte, E. C.; Ahmad, I.; Bailey, K.; Bowers, D. L.; Holt, R. J.; Lu, Z.-T.; O'Connor, T.; Potterveld, D. H.; Univ. of Chicago

    2006-01-01

    The lifetimes of the lowest {sup 3}P{sub 1} states of Ba and Ra were determined to be 1345 {+-} 14 ns and 422 {+-} 20 ns, respectively, by measuring the exponential decay of fluorescence after illuminating a thermal atomic beam with pulses of laser light. In addition, the {sup 1}S{sub 0}(F=1/2)-{sup 3}P{sub 1}(F=3/2) transition frequency in {sup 225}Ra was measured to be 13 999.269 {+-} 0.001 cm{sup -1} by referencing a nearby I{sub 2} transition.

  3. Picosecond planar laser-induced fluorescence measurements of OH A 2 ( 2) lifetime and energy transfer in atmospheric pressure flames

    NASA Astrophysics Data System (ADS)

    Bormann, Frank C.; Nielsen, Tim; Burrows, Michael; Andresen, Peter

    1997-08-01

    A picosecond, excimer-Raman laser (268 nm, 400 ps FWHM) was used for laser sheet excitation of OH in the (2, 0) band. The fluorescence was detected with a fast-gated, intensified camera (400-ps gate width). The effective collisional lifetime of the spectrally integrated fluorescence was measured in two dimensions by shifting the intensifier gate across the decay curve. The average lifetime is 2.0 ns for a stoichiometric methane air flame with spatial variations of 10 . Shorter collisional lifetimes were measured for rich flame conditions that are due to a higher number density of the quenchers. Vibrational energy transfer (VET) was observed in premixed methane air and methane oxygen flames by putting the fast-gated camera behind a spectrometer. The spectrum of the methane air flame shows strong VET in contrast with the methane oxygen flame. This is because N 2 is a weak electronic quencher but a strong VET agent. By fitting the measured time dependence of the different vibrational populations ( 2, 1, 0) to a four-level model, rate constants for quenching and VET were determined. For the lower states ( 0, 1) our results are in good agreement with literature values. For a prediction of a spectrally integrated, collisional lifetime in a known collisional environment it is important to consider not only the quenching but also the amount of energy transfer in the excited state as well as the spectral detection sensitivity.

  4. A measurement of the gluon splitting rate into pairs in hadronic Z decays

    NASA Astrophysics Data System (ADS)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Merle, E.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Alemany, R.; Boix, G.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Graugès, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Park, I. C.; Pascual, A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Bright-Thomas, P.; Casper, D.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Halley, A. W.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Ranjard, F.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I. R.; Wachsmuth, H.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.-C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Marinelli, N.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Buck, P. G.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Robertson, N. A.; Williams, M. I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Etienne, F.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Büscher, V.; Cowan, G.; Dietl, H.; Ganis, G.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Tenchini, R.; Tonelli, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1998-08-01

    A measurement of the fraction of hadronic Z decays in which a gluon splits into a bb¯ pair, gbb¯, is presented using data collected by ALEPH from 1992 to 1995 at the Z resonance. The selection is based on four-jet events. Events are selected by means of topological cuts and a lifetime tag. The result is gbb¯=(2.77+/-0.42(stat)+/-0.57(syst))x10- 3.

  5. Net merit as a measure of lifetime profit: 2010 revision

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2010 revision of net merit (NM$) updates a number of key economic values as well as milk utilization statistics. Members of Project S-1040, Genetic Selection and Crossbreeding To Enhance Reproduction and Survival of Dairy Cattle, provided updated incomes and expenses used to estimate lifetime pr...

  6. Lifetime difference in the Bs0 system from untagged Bs0 ---> J/psi phi decay at s**(1/2) = 1.96 TeV at D0 detector

    SciTech Connect

    Chandra, Avdhesh; /Tata Inst.

    2006-11-01

    In this dissertation, they present a study of the untagged decay of B{sub s}{sup 0} {yields} J/{psi}{phi}, the final state of which is a superposition of the CP-even and CP-odd states. Within the framework of the standard model (SM), to a good approximation, the two CP eigenstates of the (B{sub s}{sup 0}, {bar B}{sub s}{sup 0}) system are equivalent to mass eigenstates. The data collected by the D0 detector between June 2002 to August 2004 (an integrated luminosity of approximately 450 pb{sup -1}) has been used for the analysis presented in this thesis. From a simultaneous fit to the B{sub s}{sup 0} candidate mass, lifetime, and the angular distribution of the decay products, they obtain the CP-odd fraction in the final state at production time to be 0.16 {+-} 0.10(stat) {+-} 0.02(syst). The average lifetime of the (B{sub s}{sup 0}, {bar B}{sub s}{sup 0}) system is measured to be 1.39{sub -0.16}{sup +0.13}(stat){sub -0.02}{sup +0.01}(syst) ps, with the relative width difference between the heavy and light mass eigenstates, {Delta}{Gamma}/{bar {Gamma}} = ({Gamma}{sup L}/{Gamma}{sup H})/{bar {Gamma}} = 0.24{sub -0.38}{sup +0.28}(stat){sub -0.04}{sup +0.03}(syst). With the additional constraint from the world average of the B{sub s}{sup 0} lifetime measurements using semileptonic decays, they find average lifetime of the (B{sub s},{sup 0}, {bar B}{sub s}{sup 0}) system 1.39 {+-} 0.06 ps with {Delta}{Gamma}/{bar {Gamma}} = 0.25{sub -0.15}{sup +0.14}. They have also done B{sup 0} lifetime measurement for its analogous decay mode to J/{psi}K*. With this measurement they get B{sup 0} lifetime 1.530 {+-} 0.043(stat) {+-} 0.023(syst) ps. Using above results, they get 0.91 {+-} 0.09(stat) {+-} 0.003(syst), for the ratio of the B{sub s}{sup 0} and B{sup 0} lifetimes ({bar {Gamma}}(B{sub s}{sup 0})/{Gamma}(B{sup 0})). These measurements are consistent with the predictions of SM within the measurement uncertainty.

  7. A Measurement of the Lifetime of the Lambda_b Baryon with the CDF Detector at the Tevatron Run II

    SciTech Connect

    Unverhau, Tatjana Alberta Hanna; /Glasgow U.

    2004-12-01

    In March 2001 the Tevatron accelerator entered its Run II phase, providing colliding proton and anti-proton beams with an unprecedented center-of-mass energy of 1.96 TeV. The Tevatron is currently the only accelerator to produce {Lambda}{sub b} baryons, which provides a unique opportunity to measure the properties of these particles. This thesis presents a measurement of the mean lifetime of the {Lambda}{sub b} baryon in the semileptonic channel {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +} {mu}{sup -} {bar {nu}}{sub {mu}}. In total 186 pb{sup -1} of data were used for this analysis, collected with the CDF detector between February 2002 and September 2003. To select the long-lived events from b-decays, the secondary vertex trigger was utilized. This significant addition to the trigger for Run II allows, for the first time, the selection of events with tracks displaced from the primary interaction vertex at the second trigger level. After the application of selection cuts this trigger sample contains approximately 991 {Lambda}{sub b} candidates. To extract the mean lifetime of {Lambda}{sub b} baryons from this sample, they transverse decay length of the candidates is fitted with an unbinned maximum likelihood fit under the consideration of the missing neutrino momentum and the bias introduced by the secondary vertex trigger. The mean lifetime of the {Lambda}{sub b} is measured to be {tau} = 1.29 {+-} 0.11(stat.) {+-} 0.07(syst.) ps equivalent to a mean decay length of c{tau} = 387 {+-} 33(stat.) {+-} 21 (syst.) {micro}m.

  8. Novel method for minority-carrier mobility measurement using photoconductance decay with chemically passivated and plasma damaged surfaces

    NASA Astrophysics Data System (ADS)

    Stephens, A. W.; Green, M. A.

    1996-10-01

    A method for measuring minority-carrier mobility using microwave-detected photoconductance decay without requiring bulk lifetime, estimates is presented. Three different measurements on a single sample yield values for surface recombination velocity, bulk lifetime, and diffusivity. For each measurement the surface conditions of the sample are changed, allowing extraction of different parameters. The usefulness of 0.08 molar ethanol/iodine solution as a means of achieving such good surface passivation is demonstrated. The following procedure was used to achieve high surface recombination. A CF4 plasma surface etch was shown to achieve the same level of surface damage as mechanical abrasion. The advantage of the new method is that it completely eliminates the chance of breaking samples during the abrasion process, which is of particular advantage for thin samples. The new experimental method for minority-carrier mobility measurement is evaluated using carrier lifetime measurements made on a commercially available Leo Giken ``Wafer-τ'' lifetime tester.

  9. Picosecond excite-and-probe absorption measurement of the 4T2 state nonradiative lifetime in ruby

    NASA Technical Reports Server (NTRS)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Dorsinville, R.; Alfano, R. R.

    1985-01-01

    In a picosecond excite-and-probe absorption measurement, a 527-nm picosecond pulse excites the 4T2 state of the Cr(3+) ion in ruby and a 3.4-micron picosecond probe pulse monitors the growth and decay of population in the 2E state as a function of pump-probe delay. From the growth of population in the metastable 2E state, an upper limit of 7 ps for the nonradiative lifetime of the 4T2 state is determined.

  10. Lifetime measurements in 102Pd: Searching for empirical proof of the E(5) critical-point symmetry in nuclear structure

    NASA Astrophysics Data System (ADS)

    Konstantinopoulos, T.; Ashley, S. F.; Axiotis, M.; Spyrou, A.; Harissopulos, S.; Dewald, A.; Litzinger, J.; Möller, O.; Müller-Gatterman, C.; Petkov, P.; Napoli, D. R.; Marginean, N.; de Angelis, G.; Ur, C. A.; Bazzacco, D.; Farnea, E.; Lenzi, S. M.; Vlastou, R.; Balabanski, D.

    2016-01-01

    Lifetimes of yrast and nonyrast states of 102Pd populated via the 92Zr(13C, 3 n ) reaction are measured by means of the recoil distance Doppler-shift technique with a Cologne plunger coupled to a GASP spectrometer. The event-by-event data accumulated at 24 plunger distances in the range of 0.1 μ m to 9 mm are analyzed using the differential decay curve method. The resulting B (E 2 ) values of the γ transitions depopulating yrast-band members up to the Iπ=8+ state are found to deviate significantly from the corresponding predictions of the E(5) critical-point symmetry.

  11. Contactless Spectral-dependent Charge Carrier Lifetime Measurements in Silicon Photovoltaic Materials

    NASA Astrophysics Data System (ADS)

    Roller, John; Hamadani, Behrang; Dagenais, Mario

    Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV-grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.

  12. Measurement of the Neutron Lifetime Using a Gravitational Trap and a Low-Temperature Fomblin Coating

    PubMed Central

    Serebrov, A.; Varlamov, V.; Kharitonov, A.; Fomin, A.; Pokotilovski, Yu.; Geltenbort, P.; Butterworth, J.; Krasnoschekova, I.; Lasakov, M.; Tal’daev, R.; Vassiljev, A.; Zherebtsov, O.

    2005-01-01

    We present a new value for the neutron lifetime of 878.5 ± 0.7stat. ± 0.3syst. This result differs from the world average value by 6.5 standard deviations and by 5.6 standard deviations from the previous most precise result. However, this new value for the neutron lifetime together with a β-asymmetry in neutron decay, A0, of −0.1189(7) is in a good agreement with the Standard Model. PMID:27308146

  13. A chemical/microwave technique for the measurement of bulk minority carrier lifetime in silicon wafers

    NASA Technical Reports Server (NTRS)

    Luke, Keung L.; Cheng, Li-Jen

    1988-01-01

    A chemical/microwave technique for the measurement of bulk minority carrier lifetime in silicon wafers is described. This method consists of a wet chemical treatment (surface cleaning, oxidation in solution, and measurement in HF solution) to passivate the silicon surfaces, a laser diode array for carrier excitation, and a microwave bridge measuring system which is more sensitive than the microwave systems used previously for lifetime measurement. Representative experimental data are presented to demonstrate this technique. The result reveals that this method is useful for the determination of bulk lifetime of commercial silicon wafers.

  14. Colloquium: The neutron lifetime

    SciTech Connect

    Greene, Geoffrey L; Wietfeldt, F

    2011-01-01

    The decay of the free neutron into a proton, electron, and antineutrino is the prototype semileptonic weak decay and is the simplest example of nuclear beta decay. It played a key role in the early Universe as it determined the ratio of neutrons to protons during the era of primordial light element nucleosynthesis. Neutron decay is physically related to important processes in solar physics and neutrino detection. The mean neutron lifetime has been the subject of more than 20 major experiments done, using a variety of methods, between 1950 and the present. The most precise recent measurements have stated accuracies approaching 0.1%, but are not in good agreement as they differ by as much as 5 sigma using quoted uncertainties. The history of neutron lifetime measurements is reviewed and the different methods used are described, giving important examples of each. The discrepancies and some systematic issues in the experiments that may be responsible are discussed, and it is shown by means of global averages that the neutron lifetime is likely to lie in the range of 880 884 s. Plans and prospects for future experiments are considered that will address these systematic issues and improve our knowledge of the neutron lifetime.

  15. Measurement of Inner Bremsstrahlung in Polarized Muon Decay with MEG

    NASA Astrophysics Data System (ADS)

    Adam, J.; Bai, X.; Baldini, A. M.; Baracchini, E.; Bemporad, C.; Boca, G.; Cattaneo, P. W.; Cavoto, G.; Cei, F.; Cerri, C.; de Bari, A.; De Gerone, M.; Doke, T.; Dussoni, S.; Egger, J.; Fratini, K.; Fujii, Y.; Galli, G.; Gallucci, L.; Gatti, F.; Golden, B.; Grassi, M.; Grigoriev, D. N.; Haruyama, T.; Hildebrandt, M.; Hisamatsu, Y.; Ignatov, F.; Iwamoto, T.; Kettle, P.-R.; Khazin, B. I.; Kiselev, O.; Korenchenko, A.; Kravchuk, N.; Maki, A.; Mihara, S.; Molzon, W.; Mori, T.; Mzavia, D.; Natori, H.; Nicolò, D.; Nishiguchi, H.; Nishimura, Y.; Ootani, W.; Panareo, M.; Papa, A.; Pazzi, R.; Piredda, G.; Popov, A.; Renga, F.; Ritt, S.; Rossella, M.; Sawada, R.; Sergiampietri, F.; Signorelli, G.; Suzuki, S.; Tenchini, F.; Topchyan, C.; Uchiyama, Y.; Valle, R.; Voena, C.; Xiao, F.; Yamada, S.; Yamamoto, A.; Yamashita, S.; Yudin, Yu. V.; Zanello, D.

    2014-03-01

    A muon decay accompanied by a photon through the inner Bremmstrahlung process (μ→eννbarγ, radiative muon decay) produces a time-correlated pair of positron and photon which becomes one of the main backgrounds in the search for μ→eγ decay. This channel is also an important probe of timing calibration and cross-check of whole the experiment. We identified a large sample (∼ 13000) of radiative muon decays in MEG data sample. The measured branching ratio in a region of interest in the μ→eγ search is consistent with the standard model prediction. It is also the first measurement of the decay from polarized muons. The precision measurement of this mode enables us to use it as one of the normalization channels of μ→eγ decay successfully reducing its uncertainty to less than 5%.

  16. Lifetimes of (214)Po and (212)Po measured with Counting Test Facility at Gran Sasso National Laboratory.

    PubMed

    Miramonti, L; Bellini, G; Benziger, J; Bick, D; Bonfini, G; Bravo, D; Buizza Avanzini, M; Caccianiga, B; Cadonati, L; Calaprice, F; Carraro, C; Cavalcante, P; Chavarria, A; Chubakov, V; D'Angelo, D; Davini, S; Derbin, A; Etenko, A; Fomenko, K; Franco, D; Galbiati, C; Gazzana, S; Ghiano, C; Giammarchi, M; Göger-Neff, M; Goretti, A; Grandi, L; Guardincerri, E; Hardy, S; Ianni, Aldo; Ianni, Andrea; Kobychev, V; Korablev, D; Korga, G; Koshio, Y; Kryn, D; Laubenstein, M; Lewke, T; Lissia, M; Litvinovich, E; Loer, B; Lombardi, F; Lombardi, P; Ludhova, L; Machulin, I; Manecki, S; Maneschg, W; Mantovani, F; Manuzio, G; Meindl, Q; Meroni, E; Misiaszek, M; Montanari, D; Mosteiro, P; Muratova, V; Nisi, S; Oberauer, L; Obolensky, M; Ortica, F; Otis, K; Pallavicini, M; Papp, L; Perasso, L; Perasso, S; Pocar, A; Ranucci, G; Razeto, A; Re, A; Romani, A; Rossi, N; Sabelnikov, A; Saldanha, R; Salvo, C; Schönert, S; Simgen, H; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Sukhotin, S; Suvorov, Y; Tartaglia, R; Testera, G; Vignaud, D; Vogelaar, R B; von Feilitzsch, F; Winter, J; Wojcik, M; Wright, A; Wurm, M; Xhixha, G; Xu, J; Zaimidoroga, O; Zavatarelli, S; Zuzel, G

    2014-12-01

    The decays of (214)Po into (210)Pb and of (212)Po into (208)Pb tagged by the previous decays from (214)Bi and (212)Bi have been studied inserting quartz vials inside the Counting Test Facility (CTF) at the underground laboratory in Gran Sasso (LNGS). We find that the mean lifetime of (214)Po is (236.00 ± 0.42(stat) ± 0.15(syst)) μs and that of (212)Po is (425.1 ± 0.9(stat) ± 1.2(syst)) ns. Our results are compatible with previous measurements, have a much better signal to background ratio, and reduce the overall uncertainties. PMID:24725806

  17. Comparison of Minority Carrier Lifetime Measurements in Superstrate and Substrate CdTe PV Devices: Preprint

    SciTech Connect

    Gessert, T. A.; Dhere, R. G.; Duenow, J. N.; Kuciauskas, D.; Kanevce, A.; Bergeson, J. D.

    2011-07-01

    We discuss typical and alternative procedures to analyze time-resolved photoluminescence (TRPL) measurements of minority carrier lifetime (MCL) with the hope of enhancing our understanding of how this technique may be used to better analyze CdTe photovoltaic (PV) device functionality. Historically, TRPL measurements of the fast recombination rate (t1) have provided insightful correlation with broad device functionality. However, we have more recently found that t1 does not correlate as well with smaller changes in device performance, nor does it correlate well with performance differences observed between superstrate and substrate CdTe PV devices. This study presents TRPL data for both superstrate and substrate CdTe devices where both t1 and the slower TRPL decay (t2) are analyzed. The study shows that changes in performance expected from small changes in device processing may correlate better with t2. Numerical modeling further suggests that, for devices that are expected to have similar drift field in the depletion region, effects of changes in bulk MCL and interface recombination should be more pronounced in t2. Although this technique may provide future guidance to improving CdS/CdTe device performance, it is often difficult to extract statistically precise values for t2, and therefore t2 data may demonstrate significant scatter when correlated with performance parameters.

  18. Background-free beta-decay half-life measurements by in-trap decay and high-resolution MR-ToF mass analysis

    NASA Astrophysics Data System (ADS)

    Wolf, R. N.; Atanasov, D.; Blaum, K.; Kreim, S.; Lunney, D.; Manea, V.; Rosenbusch, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.; Zuber, K.

    2016-06-01

    In-trap decay in ISOLTRAP's radiofrequency quadrupole (RFQ) ion beam cooler and buncher was used to determine the lifetime of short-lived nuclides. After various storage times, the remaining mother nuclides were mass separated from accompanying isobaric contaminations by the multi-reflection time-of-flight mass separator (MR-ToF MS), allowing for a background-free ion counting. A feasibility study with several online measurements shows that the applications of the ISOLTRAP setup can be further extended by exploiting the high resolving power of the MR-ToF MS in combination with in-trap decay and single-ion counting.

  19. Measurement of lifetimes in {sup 46}V with the EUROBALL {gamma}-ray spectrometer

    SciTech Connect

    Jessen, K.; Moeller, O.; Dewald, A.; Brentano, P. von; Fitzler, A.; Jolie, J.; Saha, B.; Petkov, P.; Brandolini, F.; Gadea, A.; Lenzi, S. M.; De Angelis, G.; Farnea, E.; Napoli, D. R.; Gall, B. J. P.

    2006-08-15

    In {sup 46}V picosecond lifetimes were determined using the recoil distance Doppler-shift technique with the Cologne plunger device coupled to the EUROBALL IV spectrometer. The experiment was carried out using the {sup 24}Mg({sup 28}Si, {alpha}pn) reaction at 110 MeV at the Strasbourg VIVITRON accelerator. Subsequently the differential decay curve method in coincidence mode was employed to derive lifetimes for four excited states in the K{sup {pi}}=0{sup -} band. The resulting transition probabilities give a comparison of isospin allowed and forbidden E1 transitions, which clarifies the decay properties of the 2{sup -},T=0 state. Furthermore the B(E2) values within the K{sup {pi}}=0{sup -} band are discussed.

  20. Precision measurements of tau lepton decays

    NASA Astrophysics Data System (ADS)

    Nugent, Ian M.

    Using data collected with the BABAR detector at the SLAC PEP-II electron-positron storage ring operating at a centre-of-mass energy near 10.58 GeV, the branching fractions B (tau-- → pi--pi --pi+nutau) = (8.83 +/- 0.01 +/- 0.13)%, B (tau-- → K--pi --pi+nutau) = (0.273 +/- 0.002 +/- 0.009)%, B (tau-- → K--pi --K+nutau) = (0.1346 +/- 0.0010 +/- 0.0036)%, and B (tau-- → K-- K--K +nutau) = (1.58 +/- 0.13 +/- 0.12) x 10--5 are measured where the uncertainties are statistical and systematic, respectively. The invariant mass distribution for the tau -- → pi--pi--pi +nutau, tau-- → K--pi--pi+nu tau, tau-- → K --pi--K+nu tau and tau-- → K --K--K +nutau decays are unfolded to correct for detector effects. A measurement of B (tau-- → φpi--nu tau) = (3.42 +/- 0.55 +/- 0.25) x 10--5 , a measurement of B (tau-- → φK --nutau) = (3.39 +/- 0.20 +/- 0.28) x 10--5 and an upper limit on B (tau-- → K-- K--K +nutau [ex.φ]) ≤ 2.5 x 10--6 90%CL are determined from a binned maximum likelihood fit of the tau-- → K-- pi--K+nu tau and tau-- → K --K--K +nutau K+K -- invariant mass distributions. The branching ratio Bt-→K -nt Bt-→p -nt is measured to be (6.531 +/- 0.056 +/- 0.093) x 10 --2 from which |Vus| is determined to be 0.2255 +/- 0.0023. The branching ratio Bt-→m -ntn¯ mB t-→e-nt n¯e = (9.796 +/- 0.016 +/- 0.035) x 10--1 is measured enabling a precision test of the Standard Model assumption of charged current lepton universality, gmge = 1.0036 +/- 0.0020. The branching ratios Bt-→K -nt Bt-→e- ntn¯ e = (3.882 +/- 0.032 +/- 0.056) x 10--2 , and Bt-→p -nt Bt-→e- ntn¯ e = (5.945 +/- 0.014 +/- 0.061) x 10--1 are measured which provide additional tests of charged current lepton universality, gtgm p = 0.9856 +/- 0.0057 and gtgm K = 0.9827 +/- 0.0086 which can be combined to give gtgm p/K = 0.9850 +/- 0.0054. Any deviation of these measurements from the expected Standard Model values would be an indication of new physics.

  1. Using Minority Carrier Lifetime Measurement to Determine Saw Damage Characteristics on Si Wafer Surfaces

    SciTech Connect

    Sopori, Bhushan; Devayajanam, Srinivas; Basnyat, Prakash

    2015-06-14

    The damage on the Si wafer surfaces, caused by ingot cutting, is determined from measurement of minority carrier lifetime (..tau..eff). Samples are sequentially etched to remove thin layers from each surface and lifetime is measured after each etch step. The thickness-removed at which the lifetime reaches a peak value corresponds to the damage depth. This technique also allows the depth distribution of the damage to be quantified in terms of surface recombination velocity (SRV). An accurate measurement of ..tau..eff requires corrections to optical reflection, and transmission to account for changes in the surface morphology and in the wafer thickness.

  2. Mass measurement using energy spectra in three-body decays

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; Wardlow, Kyle

    2016-05-01

    In previous works we have demonstrated how the energy distribution of massless decay products in two body decays can be used to measure the mass of decaying particles. In this work we show how such results can be generalized to the case of multi-body decays. The key ideas that allow us to deal with multi-body final states are an extension of our previous results to the case of massive decay products and the factorization of the multi-body phase space. The mass measurement strategy that we propose is distinct from alternative methods because it does not require an accurate reconstruction of the entire event, as it does not involve, for instance, the missing transverse momentum, but rather requires measuring only the visible decay products of the decay of interest. To demonstrate the general strategy, we study a supersymmetric model wherein pair-produced gluinos each decay to a stable neutralino and a bottom quark-antiquark pair via an off -shell bottom squark. The combinatorial background stemming from the indistinguishable visible final states on both decay sides can be treated by an "event mixing" technique, the performance of which is discussed in detail. Taking into account dominant backgrounds, we are able to show that the mass of the gluino and, in favorable cases, that of the neutralino can be determined by this mass measurement strategy.

  3. Phonon Lifetime Measurement by Stimulated Brillouin Scattering Slow Light Technique in Optical Fiber

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Meng, Zhou; Zhou, Hui-Juan

    2013-07-01

    Phonon lifetime is a significant parameter in the process of stimulated Brillouin scattering (SBS). In the present study, SBS slow light technique is used to measure phonon lifetime. Brillouin bandwidth is divided into natural, spontaneous and stimulated bandwidth. Compared with the traditional heterodyne-detection and pump-probe techniques, the natural Brillouin bandwidth can be obtained by SBS slow light technique, which equals the reciprocal of phonon lifetime and has no relations with the pump power. Another advantage of this technique is that the effect of polarization can be excluded. The natural Brillouin bandwidth is measured to be ~50 MHz and the phonon lifetime ~3.2 ns in the conventional single-mode fiber (SMF) at room temperature and zero strain. The obtained results are guidable in applications where the phonon lifetime information is a requisite such as phase conjugation and pulse compression.

  4. Alpha- and EC-decay measurements of 257Rf

    NASA Astrophysics Data System (ADS)

    Heßberger, F. P.; Antalic, S.; Mistry, A. K.; Ackermann, D.; Andel, B.; Block, M.; Kalaninova, Z.; Kindler, B.; Kojouharov, I.; Laatiaoui, M.; Lommel, B.; Piot, J.; Vostinar, M.

    2016-07-01

    Alpha- and Electron capture (EC) decay properties of 257 Rf were investigated by measuring α - γ coincidences and correlations between conversion electrons (CE) emitted during the process of EC decay of 257Rf and α decays of the daughter isotope 257Lr. So far, previously unobserved α (8296 keV)- γ (557 keV) coincidences were measured and interpreted as decays of 257mRf ( 11/2-[725] into the 7/2-[743] level in 253No. A search of delayed coincidences between α particles and signals at E ≤ 1000 keV, which are interpreted as being due to CE emission, revealed a clear correlation between CE and α particles from the decay of 257Lr, which is regarded as a direct proof of the EC decay of 257gRf and 257mRf.

  5. Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement

    PubMed Central

    Hirakawa, Yosuke; Yoshihara, Toshitada; Kamiya, Mako; Mimura, Imari; Fujikura, Daichi; Masuda, Tsuyoshi; Kikuchi, Ryohei; Takahashi, Ippei; Urano, Yasuteru; Tobita, Seiji; Nangaku, Masaomi

    2015-01-01

    Hypoxia appears to have an important role in pathological conditions in many organs such as kidney; however, a method to quantify intracellular oxygen tension in vivo has not been well established. In this study, we established an optical method to quantify oxygen tension in mice kidneys using a cationic lipophilic phosphorescence probe, BTPDM1, which has an intracellular oxygen concentration-sensitive phosphorescence lifetime. Since this probe is distributed inside the tubular cells of the mice kidney, we succeeded in detecting acute renal hypoxic conditions and chronic kidney disease. This technique enabled us to estimate intracellular partial pressures of oxygen in vivo by extrapolating the calibration curve generated from cultured tubular cells. Since intracellular oxygen tension is directly related to cellular hypoxic reactions, such as the activation of hypoxia-inducible factors, our method will shed new light on hypoxia research in vivo. PMID:26644023

  6. A lifetime in photochemistry; some ultrafast measurements on singlet states

    PubMed Central

    Phillips, David

    2016-01-01

    We describe here the development of time-correlated single-photon counting techniques from the early use of spark discharge lamps as light sources through to the use of femtosecond mode-locked lasers through the personal work of the author. We used laser-excited fluorescence in studies on energy migration and rotational relaxation in synthetic polymer solutions, in biological probe molecules and in supersonic jet expansions. Time-correlated single-photon counting was the first method used in early fluorescence lifetime imaging microscopy (FLIM), and we outline the development of this powerful technique, with a comparison of techniques including wide-field microscopy. We employed these modern forms of FLIM to study single biological cells, and applied FLIM also to gain an understanding the distribution in tissue, and fates of photosensitizer molecules used in photodynamic therapy. We also describe the uses and instrumental design of laser systems for the study of ultrafast time-resolved vibrational spectroscopy. PMID:27436979

  7. Precision Excited State Lifetime Measurements for Atomic Parity Violation and Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Sell, Jerry; Patterson, Brian; Gearba, Alina; Snell, Jeremy; Knize, Randy

    2016-05-01

    Measurements of excited state atomic lifetimes provide a valuable test of atomic theory, allowing comparisons between experimental and theoretical transition dipole matrix elements. Such tests are important in Rb and Cs, where atomic parity violating experiments have been performed or proposed, and where atomic structure calculations are required to properly interpret the parity violating effect. In optical lattice clocks, precision lifetime measurements can aid in reducing the uncertainty of frequency shifts due to the surrounding blackbody radiation field. We will present our technique for precisely measuring excited state lifetimes which employs mode-locked ultrafast lasers interacting with two counter-propagating atomic beams. This method allows the timing in the experiment to be based on the inherent timing stability of mode-locked lasers, while counter-propagating atomic beams provides cancellation of systematic errors due to atomic motion to first order. Our current progress measuring Rb excited state lifetimes will be presented along with future planned measurements in Yb.

  8. Measuring and Sorting Cell Populations Expressing Isospectral Fluorescent Proteins with Different Fluorescence Lifetimes

    PubMed Central

    Naivar, Mark; Houston, Jessica P.; Brent, Roger

    2014-01-01

    Study of signal transduction in live cells benefits from the ability to visualize and quantify light emitted by fluorescent proteins (XFPs) fused to different signaling proteins. However, because cell signaling proteins are often present in small numbers, and because the XFPs themselves are poor fluorophores, the amount of emitted light, and the observable signal in these studies, is often small. An XFP's fluorescence lifetime contains additional information about the immediate environment of the fluorophore that can augment the information from its weak light signal. Here, we constructed and expressed in Saccharomyces cerevisiae variants of Teal Fluorescent Protein (TFP) and Citrine that were isospectral but had shorter fluorescence lifetimes, ∼1.5 ns vs ∼3 ns. We modified microscopic and flow cytometric instruments to measure fluorescence lifetimes in live cells. We developed digital hardware and a measure of lifetime called a “pseudophasor” that we could compute quickly enough to permit sorting by lifetime in flow. We used these abilities to sort mixtures of cells expressing TFP and the short-lifetime TFP variant into subpopulations that were respectively 97% and 94% pure. This work demonstrates the feasibility of using information about fluorescence lifetime to help quantify cell signaling in living cells at the high throughput provided by flow cytometry. Moreover, it demonstrates the feasibility of isolating and recovering subpopulations of cells with different XFP lifetimes for subsequent experimentation. PMID:25302964

  9. Volatility of organic molecular markers used for source apportionment analysis: measurements and implications for atmospheric lifetime.

    PubMed

    May, Andrew A; Saleh, Rawad; Hennigan, Christopher J; Donahue, Neil M; Robinson, Allen L

    2012-11-20

    Molecular markers are organic species used to define fingerprints for source apportionment of ambient fine particulate matter. Traditionally, these markers have been assumed to be stable in the atmosphere. This work investigates the gas-particle partitioning of eight organic species used as molecular markers in receptor models for biomass burning (levoglucosan), motor vehicles (5α-cholestane, n-hexacosane, n-triacontane, 1,2-benz[a]anthracene, coronene), and meat cooking (cholesterol, oleic acid). Experiments were conducted using a thermodenuder to measure the evaporation of single component particles. The data were analyzed using the integrated volume method to determine saturation concentrations and enthalpies of vaporization for each compound. The results indicate that appreciable quantities (>10%) of most of these markers exist in the gas phase under typical atmospheric conditions. Therefore, these species should be considered semivolatile. Predictions from a chemical kinetics model indicate that gas-particle partitioning has important effects on the atmospheric lifetime of these species. The atmospheric decay of semivolatile compounds proceeds much more rapidly than nonvolatile compounds because gas-phase oxidation induces evaporation of particle-phase material. Therefore, both gas-particle partitioning and chemical reactions need to be accounted for when semivolatile molecular markers are used for source apportionment studies. PMID:23013599

  10. Optimized streak-camera system: wide excitation range and extended time scale for fluorescence lifetime measurement

    NASA Astrophysics Data System (ADS)

    Graf, Urs; Buehler, Christof; Betz, Michael; Zuber, Herbert; Anliker, M.

    1994-08-01

    A new versatile system for the measurement of time-resolved fluorescence emission spectra of biomolecules is presented. Frequency doubling and tripling of a Ti:Sapphire laser allows excitation over a wide wavelength range. The influence of increasing the spectral resolution on the time resolution has been investigated. System performance can be optimized for best resolution in the spectral or time domain, respectively. System performance can be optimized for best resolution in the spectral or time domain, respectively. The currently achieved temporal resolution is 6 psec, and the best spectral resolution is 3 nm. Long fluorescence decays can be resolved with optimal time resolution by way of taking into account the flyback of the streak camera. With the system described, the core complex ((alpha) (beta) )3APCLC8.9 of the phycobilisome from the photosynthetic cyanobacteria Mastigocladus laminosus has been analyzed. Lifetime analysis clearly demonstrated the influence of the linker polypeptide on the phycobiliprotein complex and the identity of native and reconstituted complex.

  11. Monticello BWR spent fuel assembly decay heat predictions and measurements

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Heeb, C.M.; Creer, J.M.

    1986-06-01

    This report compares pre-calorimetry predictions of rates of six 7 x 7 boiling water reactor (BWR) spent fuel assemblies with measured decay heat rates. The assemblies were from Northern States Power Company's Monticello Nuclear Generating Plant and had burnups of 9 to 21 GWd/MTU and cooling times of 9 to 10 years. Conclusions are: The agreement between ORIGEN2 predictions and decay heat measurements of Monticello spent fuel is dependent on the method used to calibrate the calorimeter and to make the decay heat measurements. The agreement between predictions and measurements of decay heat rates of Monticello fuel is the same as that for Cooper and Dresden fuel if the same measurement method is used. The predictions are within a standard deviation of +-15 W of the measurements. Using a different measurement method, ORIGEN2 underpredicts the measured decay heat output of Monticello fuel assemblies by a constant 20 +- 2 W. The 20-W offset appears to be an artifact of the calibration procedure. The constant term in the calibration curve (i.e., q/sub DH/ = mx + b) can account for measurement differences of 40 W based on the 1983, 1984, and 1985 calibration curves. The difference between ORIGEN2 predictions and calorimeter decay heat measurements does not appear to be dependent on the magnitude of decay heat output. Predicted axial decay heat profiles are in good agreement with measured axial gamma radiation profiles. Recommendations are: Predictions using other decay heat codes should be compared to experimental data contained in this report, to evaluate prediction capabilities. The source of the differences that exist among calorimeter calibration curves needs to be determined. Calorimeter operational methods need to be investigated further to determine cause and effect relationships between operational method and calorimeter precision and accuracy.

  12. In Pursuit of Highly Accurate Atomic Lifetime Measurements of Multiply Charged Ions

    SciTech Connect

    Trabert, E

    2009-06-01

    Accurate atomic lifetime data are useful for terrestrial and astrophysical plasma diagnostics. At accuracies higher than those required for these applications, lifetime measurements test atomic structure theory in ways complementary to spectroscopic energy determinations. At the highest level of accuracy, the question arises whether such tests reach the limits of modern theory, a combination of quantum mechanics and QED, adn possibly point to physics beyond the Standard Model. If high-precision atomic lifetime measurements, especially on multiply charged ions, have not quite reached this high accuracy yet, then what is necessary to attain this goal?

  13. Collectivity in A ∼ 70 nuclei studied via lifetime measurements in 70Br and 68,70Se

    NASA Astrophysics Data System (ADS)

    Nichols, A. J.; Wadsworth, R.; Iwasaki, H.; Kaneko, K.; Lemasson, A.; de Angelis, G.; Bader, V. M.; Baugher, T.; Bazin, D.; Bentley, M. A.; Berryman, J. S.; Braunroth, T.; Davies, P. J.; Dewald, A.; Fransen, C.; Gade, A.; Hackstein, M.; Henderson, J.; Jenkins, D. G.; Miller, D.; Morse, C.; Paterson, I.; Simpson, E. C.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wimmer, K.

    2014-06-01

    Transition strengths for decays from low-lying states in A ∼ 70 nuclei have been deduced from lifetime measurements using the recoil distance Doppler shift technique. The results confirm the collectivity previously reported for the 21+ → 0gs+ decay in 68Se and reveal a relative decrease in collectivity in 70Br. This trend is reproduced by shell model calculations using the GXPF1A interaction in an fp model space including the Coulomb, spin-orbit and isospin non-conserving interactions. The 31+→ 21+ decay in 70Br is found to have a very small B(M1) value, which is consistent with the configuration of the state being dominated by the coupling of f5/2 protons and neutrons. The results suggest that the g9/2 orbit does not play an important role at low spin in these nuclei. The B(E2) values for the decays of the (T = 1) 21+ states in 70Br and 70Se are almost identical, suggesting there is no major shape change between the two nuclei at low spin.

  14. Spectroscopy and lifetime measurements in 66Ge,69Se, and 65Ga using fragmentation reactions

    NASA Astrophysics Data System (ADS)

    Nichols, A. J.; Wadsworth, R.; Bentley, M. A.; Davies, P. J.; Henderson, J.; Jenkins, D. G.; Paterson, I.; Iwasaki, H.; Lemasson, A.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Gade, A.; Morse, C.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wimmer, K.; de Angelis, G.; Dewald, A.; Braunroth, T.; Fransen, C.; Hackstein, M.; Miller, D.

    2015-01-01

    Lifetimes of low-lying excited states have been measured in 66Ge,69Se, and 65Ga using a γ -ray lineshape method. The results confirm the previously reported 71- state lifetime in 66Ge. The lifetime of the yrast 5 /2- state in 65Ga is measured for the first time. Lifetime measurements of two excited 3 /2- states in 69Se are also reported. Two previously unobserved γ rays have been identified in 69Se. γ -γ coincidence measurements have been used to place one of these in the level scheme. 69Se excited state populations are compared to shell-model calculations using the GXPF1A interaction in the fp model space. Theoretical spectroscopic factors to excited states in 69Se have identified three candidate levels for the origin of one of the new transitions.

  15. Lifetime measurements of high-lying short lived states in {sup 69}As

    SciTech Connect

    Matejska-Minda, M.; Bednarczyk, P.; Fornal, B.; Ciemala, M.; Kmiecik, M.; Krzysiek, M.; Maj, A.; Meczynski, W.; Myalski, S.; Styczen, J.; Zieblinski, M.; Angelis, G. de; Huyuk, T.; Michelagnoli, C.; Sahin, E.; Aydin, S.; Farnea, E.; Menegazzo, R.; Recchia, F.; Ur, C. A.; and others

    2012-10-20

    Lifetimes of high-spin states in {sup 69}As have been measured using Doppler shift attenuation technique with the GASP and RFD setup. The determined transition probabilities indicate large deformation associated with some rotational bands in this nucleus.

  16. Lifetime measurements of high-lying short lived states in 69As

    NASA Astrophysics Data System (ADS)

    Matejska-Minda, M.; Bednarczyk, P.; Fornal, B.; Ciemała, M.; Kmiecik, M.; Krzysiek, M.; Maj, A.; Meczyński, W.; Myalski, S.; Styczén, J.; Ziebliński, M.; de Angelis, G.; Huyuk, T.; Michelagnoli, C.; Sahin, E.; Aydin, S.; Farnea, E.; Menegazzo, R.; Recchia, F.; Ur, C. A.; Brambilla, S.; Leoni, S.; Montanari, D.; Jaworski, G.; Palacz, M.; Wadsworth, R.

    2012-10-01

    Lifetimes of high-spin states in 69As have been measured using Doppler shift attenuation technique with the GASP and RFD setup. The determined transition probabilities indicate large deformation associated with some rotational bands in this nucleus.

  17. Precision Measurements of Tau Lepton Decays

    SciTech Connect

    Nugent, Ian M.

    2008-01-01

    Using data collected with the BABAR detector at the SLAC PEP-II electron-positron storage ring operating at a centre-of-mass energy near 10.58 GeV, the branching fractions B(τ- → π-π-π+ντ) =(8.83±0.01±0.13)%, B(τ- → K-π-π+ντ) =(0.273± 0.002 ± 0.009)%, B(τ- → K-π-K+ντ) =(0.1346 ± 0.0010 ± 0.0036)%, and B(τ- → K-K-K+ντ) =(1.58 ± 0.13 ± 0.12) × 10-5 are measured where the uncertainties are statistical and systematic, respectively. The invariant mass distribution for the τ- → π-π-π+ντ , τ- → K-π-π+ντ , τ- → K-π-K+ντ and τ- → K-K-K+ντ decays are unfolded to correct for detector effects. A measurement of B(τ- → φπ-ντ ) =(3.42±0.55±0.25)×10-5, a measurement of B(τ- → φK-ντ) =(3.39±0.20±0.28)× 10-5 and an upper limit on B(τ- → K-K-K+ντ [ex.φ]) ≤ 2.5 × 10-6@90%CL are determined from a binned maximum likelihood fit of the τ- → K-π-K+ντ and τ- → K-K-K+ντ K+K- invariant mass distributions. The branching ratio B(τ-→K-ντ )/ B(τ-→π-ντ ) is measured to be (6.531±0.056±0.093)×10-2 from which |Vus| is determined to be 0.2255 ± 0.0023. The branching ratio B(τ-→μ-ντ $\\bar{v}$μ)/ B(τ-→e-ντ $\\bar{v}$e) =(9.796 ± 0.016 ± 0.035) × 10-1 is measured enabling a precision test of the Standard Model assumption of

  18. Double Beta Decay Measurement with COBRA

    NASA Astrophysics Data System (ADS)

    Wilson, Jeanne R.

    2011-12-01

    The COBRA experiment aims to use a large array of CdZnTe semiconductor detectors to search for neutrinoless double beta decay. Extensive simulation studies and data collected with a small proto-type experiment have been used to address the major design specifications for a large scale experiment sensitive to 116Cd half-lives in excess of 1026 years. The current and future prospects of the COBRA experiment are presented.

  19. Measurements of Rare B Decays at Tevatron

    SciTech Connect

    Aoki, Masato

    2009-06-01

    Both CDF and D0 experiments have been searching for evidence of physics beyond the standard model (SM) using the Tevatron p{bar p} collider at Fermilab. We report on recent searches in the B flavor sector, especially decays via flavor changing neutral current processes (FCNC), B{sub (s)}{sup 0} {yields} e{sup +}{mu}{sup -} and B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -}, at the Tevatron.

  20. Photon-counting technique for rapid fluorescence-decay measurement.

    PubMed

    Pack, S D; Renfro, M W; King, G B; Laurendeau, N M

    1998-08-01

    We report on a novel laser-induced fluorescence triple-integration method (LIFTIME) that is capable of making rapid, continuous fluorescence lifetime measurements by a unique photon-counting technique. The LIFTIME has been convolved with picosecond time-resolved laser-induced fluorescence, which employs a high-repetition-rate mode-locked laser, permitting the eventual monitoring of instantaneous species concentrations in turbulent flames. We verify the technique by application of the LIFTIME to two known fluorescence media, diphenyloxazole (PPO) and quinine sulfate monohydrate (QSM). PPO has a fluorescence lifetime of 1.28 ns, whereas QSM has a fluorescence lifetime that can be varied from 1.0 to 3.0 ns. From these liquid samples we demonstrate that fluorescence lifetime can currently be monitored at a sampling rate of up to 500 Hz with less than 10% uncertainty (1 sigma) . PMID:18087478

  1. Precision measurement of the mass and lifetime of the Ξ(b)(0) baryon.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreassen, R; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Brown, H; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, S; Cheung, S-F; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H-M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gavardi, L; Gavrilov, G; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Giani', S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Hunt, P; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lowdon, P; Lu, H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M

    2014-07-18

    Using a proton-proton collision data sample corresponding to an integrated luminosity of 3 fb(-1) collected by LHCb at center-of-mass energies of 7 and 8 TeV, about 3800 Ξ(b)(0) → Ξ(c)(+)π(-), Ξ(c)(+)) → pK(-)π(+) signal decays are reconstructed. From this sample, the first measurement of the Ξ(b)(0) baryon lifetime is made, relative to that of the Λ(b)(0) baryon. The mass differences M(Ξ(b)(0))-M(Λ(b)(0)) and M(Ξ(c)(+))-M(Λ(c)(+)) are also measured with precision more than 4 times better than the current world averages. The resulting values are τ(Ξ(b)(0))/τ(Λ)(b)(0)) = 1.006 ± 0.018 ± 0.010,M(Ξ(b)(0))-M(Λ(b)(0)) = 172.44 ± 0.39 ± 0.17 MeV/c(2),M(Ξ(c)(+))-M(Λ(c)(+)) = 181.51 ± 0.14 ± 0.10 MeV/c(2),where the first uncertainty is statistical and the second is systematic. The relative rate of Ξ(b)(0) to Λ(b)(0) baryon production is measured to be f(Ξ)(b)(0))/f(Λ)(b)(0))B(Ξ(b)(0) → Ξ(c)(+)π(-))/B(Λ(b)(0) → Λ(c)(+)π(-))B(Ξ(c)(+) → pK(-)π(+))/B(Λ(c)(+) → pK(-)}π(+)) = (1.88 ± 0.04 ± 0.03) × 10(-2),where the first factor is the ratio of fragmentation fractions, b → Ξ(b)(0) relative to b → Λ(b)(0). Relative production rates as functions of transverse momentum and pseudorapidity are also presented. PMID:25083633

  2. Long-lifetime Ru(II) complexes for the measurement of high molecular weight protein hydrodynamics.

    PubMed

    Szmacinski, H; Castellano, F N; Terpetschnig, E; Dattelbaum, J D; Lakowicz, J R; Meyer, G J

    1998-03-01

    We describe the synthesis and characterization of two asymmetrical ruthenium(II) complexes, [Ru(dpp)2(dcbpy)]2+ and [Ru(dpp)2(mcbpy)]2+, as well as the water soluble sulfonated derivatives [Ru(dpp(SO3Na)2)2(dcbpy)]2+ and [Ru(dpp(SO3Na)2)2(mcbpy)]2+ (dpp is 4,7-diphenyl-1,10-phenanthroline, dcbpy is 4,4'-dicarboxylic acid-2,2'-bipyridine, mcbpy is 4-methyl,4'-carboxylic acid-2,2'-bipyridine, and dpp(SO3Na)2 is the disulfonated derivative of dpp) as probes for the measurement of the rotational motions of proteins. The spectral (absorption, emission, and anisotropy) and photophysical (time-resolved intensity and anisotropy decays) properties of these metal-ligand complexes were determined in solution, in both the presence and absence of human serum albumin (HSA). These complexes display lifetimes ranging from 345 ns to 3.8 microseconds in deoxygenated aqueous solutions under a variety of conditions. The carboxylic acid groups on these complexes were activated to form N-hydroxysuccinimide (NHS) esters which were used to covalently lable HSA, and were characterized spectroscopically in the same manner as above. Time-resolved anisotropy measurements were performed to demonstrate the utility of these complexes in measuring long rotational correlation times of bioconjugates between HSA and antibody to HSA. The potential usefulness of these probes in fluorescence polarization immunoassays was demonstrated by an association assay of the Ru(II)-labeled HSA with polyclonal antibody. PMID:9546056

  3. Standard reference for instrument response function in fluorescence lifetime measurements in visible and near infrared

    NASA Astrophysics Data System (ADS)

    Chib, Rahul; Shah, Sunil; Gryczynski, Zygmunt; Fudala, Rafal; Borejdo, Julian; Zelent, Bogumil; Corradini, Maria G.; Ludescher, Richard D.; Gryczynski, Ignacy

    2016-02-01

    Allura red (AR) fluorophore, a common dye in the food industry, displays a broad emission spectrum in water (visible-to-near infrared region of the electromagnetic spectrum) and has a remarkably short fluorescence lifetime of about 10 ps. This short lifetime does not depend on the emission (observation) wavelength. We examined time responses of AR fluorescence across emission wavelengths from 550 nm to 750 nm and found that it is an ideal candidate for impulse response functions in fluorescence lifetime measurements.

  4. Frequency domain fluorescence lifetime microwell-plate platform for respirometry measurements

    NASA Astrophysics Data System (ADS)

    Chatni, M. R.; Yale, G.; Van Ryckeghem, A.; Porterfield, D. M.

    2010-04-01

    Traditionally micro-well plate based platforms used in biology utilize fluorescence intensity based methods to measure processes of biological relevance. However, fluorescence intensity measurements suffer from calibration drift due to a variety of factors. Photobleaching and self-quenching of the fluorescent dyes cause the intensity signal to drop over the lifetime of sensor immobilized inside the well. Variation in turbidity of the sample during the course of the measurement affects the measured fluorescence intensity. In comparison, fluorescence lifetime measurements are not significantly affected by these factors because fluorescence lifetime is a physico-chemical property of the fluorescent dye. Reliable and inexpensive frequency domain fluorescence lifetime instrumentation platforms are possible because the greater tolerance for optical alignment, and because they can be performed using inexpensive light sources such as LEDs. In this paper we report the development of a frequency domain fluorescence lifetime well-plate platform utilizing an oxygen sensitive transition-metal ligand complex fluorophore with a lifetime in the microsecond range. The fluorescence lifetime dye is incorporated in a polymer matrix and immobilized on the base of micro-well of a 60 well micro-well plate. Respiration measurements are performed in both aqueous and non-aqueous environment. Respirometry measurements were recorded from single Daphnia magna egg in hard water. Daphnia is an aquatic organism, important in environmental toxicology as a standard bioassay and early warning indicator for water quality monitoring. Also respirometry measurements were recorded from Tribolium castaneum eggs, which are common pests in the processed flour industry. These eggs were subjected to mitochondrial electron transport chain inhibitor such as potassium cyanide (KCN) and its effects on egg respiration were measured in real-time.

  5. A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements

    SciTech Connect

    Wang, Hongtao; Salthouse, Christopher D.; Qi, Ying; Mountziaris, T. J.

    2014-05-15

    Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve the peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.

  6. Lifetime measurement of the 6.79 MeV state in {sup 15}O with the AGATA demonstrator

    SciTech Connect

    Michelagnoli, C.; Depalo, R.; Ur, C. A.; Menegazzo, R.; Broggini, C.; Bazzacco, D.; Caciolli, A.; Farnea, E.; Lunardi, S.; Bemmerer, D.; Keeley, N.; Erhard, M.; Fueloep, Zs.; Gottardo, A.; Marta, M.; Mengoni, D.; Mijatovic, T.; Recchia, F.; Rossi-Alvarez, C.; Szuecs, T.; and others

    2012-11-12

    The preliminary results of a new direct measurement of the lifetime of the first excited 3/2{sup +} state in {sup 15}O are discussed. An accurate evaluation of this lifetime is of paramount importance for the determination of the cross section of the {sup 14}N(p,{gamma}){sup 15}O reaction, the slowest one in the CNO cycle, at the energies of the solar Gamow peak. The {sup 2}H({sup 14}N,{sup 15}O)n reaction in inverse kinematics at 32MeV beam energy (XTU Tandem, LNL) was used to populate the level of interest, which decays via a 6.79 MeV E1 gamma-ray transition to the ground state. Gamma rays were detected with 4 triple clusters of HPGe detectors of the AGATA Demonstrator array. The energy resolution and position sensitivity of this state-of-the-art gamma-ray spectrometer have been exploited to investigate the Doppler Shift Attenuation effect on the lineshape of the gamma-ray peak in the energy spectrum. The deconvolution of the lifetime effects from those due to the kinematics of the emitting nuclei has been performed using detailed Monte Carlo simulations of the gamma emission and detection. CDCC-CRC calculations for the nucleon transfer process have been used for this purpose and preliminary results are shown.

  7. Lifetime measurement of the 6.79 MeV state in 15O with the AGATA demonstrator

    NASA Astrophysics Data System (ADS)

    Depalo, R.; Michelagnoli, C.; Menegazzo, R.; Ur, C. A.; Bazzacco, D.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Erhard, M.; Farnea, E.; Fülöp, Zs.; Gottardo, A.; Keeley, N.; Lunardi, S.; Marta, M.; Mengoni, D.; Mijatović, T.; Recchia, F.; Rossi-Alvarez, C.; Szücs, T.; Valiente-Dobon, J. J.; Agata Collaboration

    2012-11-01

    The 14N(p,γ)15O reaction is the slowest process of the CN cycle, and thus it is of high astrophysical interest since it regulates the total rate of energy and neutrinos production through the cycle. The 14N+p ground state capture is strongly influenced by a sub-threshold resonance corresponding to the 6.79 MeV state in 15O. The width of this resonance is a major source of uncertainty in the extrapolation of the reaction cross section in the Gamow energy window. Preliminary results of a new Doppler Shift Attenuation measurement of the lifetime of the 6.79 MeV state in 15O are discussed. The level of interest was populated via the 2H(14N,n)15O reaction in inverse kinematics at 32 MeV beam energy. The gamma-rays emitted in the decay of the 6.79 MeV level to the ground state were detected with the AGATA Demonstrator array of high-purity germanium detectors. The sensitivity of the shape of the peak in the gamma-ray energy spectrum to the level lifetime is investigated comparing the experimental peaks with detailed Monte Carlo simulations of the reaction mechanisms and the gamma-ray emission and detection. Nuclear levels in 15N (also populated in the 14N+2H reaction) for which the lifetimes are known in the literature provided a test of the analysis technique.

  8. Lifetime measurement of the 6.79 MeV state in 15O with the AGATA demonstrator

    NASA Astrophysics Data System (ADS)

    Michelagnoli, C.; Depalo, R.; Ur, C. A.; Menegazzo, R.; Broggini, C.; Bazzacco, D.; Caciolli, A.; Farnea, E.; Lunardi, S.; Bemmerer, D.; Keeley, N.; Erhard, M.; Fülöp, Zs.; Gottardo, A.; Marta, M.; Mengoni, D.; Mijatović, T.; Recchia, F.; Rossi-Alvarez, C.; Szücs, T.; Valiente-Dobon, J. J.

    2012-11-01

    The preliminary results of a new direct measurement of the lifetime of the first excited 3/2+ state in 15O are discussed. An accurate evaluation of this lifetime is of paramount importance for the determination of the cross section of the 14N(p,γ)15O reaction, the slowest one in the CNO cycle, at the energies of the solar Gamow peak. The 2H(14N,15O)n reaction in inverse kinematics at 32MeV beam energy (XTU Tandem, LNL) was used to populate the level of interest, which decays via a 6.79 MeV E1 gamma-ray transition to the ground state. Gamma rays were detected with 4 triple clusters of HPGe detectors of the AGATA Demonstrator array. The energy resolution and position sensitivity of this state-of-the-art gamma-ray spectrometer have been exploited to investigate the Doppler Shift Attenuation effect on the lineshape of the gamma-ray peak in the energy spectrum. The deconvolution of the lifetime effects from those due to the kinematics of the emitting nuclei has been performed using detailed Monte Carlo simulations of the gamma emission and detection. CDCC-CRC calculations for the nucleon transfer process have been used for this purpose and preliminary results are shown.

  9. Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode

    PubMed Central

    Sugiyama, Atsushi; Morimoto, Ryoichi; Osaka, Tetsuya; Mogi, Iwao; Asanuma, Miki; Miura, Makoto; Oshikiri, Yoshinobu; Yamauchi, Yusuke; Aogaki, Ryoichi

    2016-01-01

    The lifetimes of ionic vacancies created in ferricyanide-ferrocyanide redox reaction have been first measured by means of cyclotron magnetohydrodynamic electrode, which is composed of coaxial cylinders partly exposed as electrodes and placed vertically in an electrolytic solution under a vertical magnetic field, so that induced Lorentz force makes ionic vacancies circulate together with the solution along the circumferences. At low magnetic fields, due to low velocities, ionic vacancies once created become extinct on the way of returning, whereas at high magnetic fields, in enhanced velocities, they can come back to their initial birthplaces. Detecting the difference between these two states, we can measure the lifetime of ionic vacancy. As a result, the lifetimes of ionic vacancies created in the oxidation and reduction are the same, and the intrinsic lifetime is 1.25 s, and the formation time of nanobubble from the collision of ionic vacancies is 6.5 ms. PMID:26791269

  10. Lifetime Measurements Using the Jefferson Lab Load-Lock Electron Gun

    NASA Astrophysics Data System (ADS)

    Grames, J.; Adderley, P.; Baylac, M.; Brittian, J.; Charles, D.; Clark, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.; Surles-Law, K.

    2005-08-01

    Lifetime measurements of bulk GaAs using a 100 kV load-lock electron gun and beam line were made. Initial tests used anodized samples to study lifetime under various conditions (gun vacuum, laser spot location, activated area). Subsequent tests used a mechanical mask to limit the active area and included improved monitoring of the gun chamber and beam line vacuum pressure. Results of these measurements support claims made at past workshops, namely photocathode lifetime improves when gun vacuum is enhanced and when electron emission from the edge of the photocathode is eliminated. The dependence upon laser spot location is less certain. Tests studying lifetime at higher beam intensity (I ~ 8 mA) have begun.

  11. Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode.

    PubMed

    Sugiyama, Atsushi; Morimoto, Ryoichi; Osaka, Tetsuya; Mogi, Iwao; Asanuma, Miki; Miura, Makoto; Oshikiri, Yoshinobu; Yamauchi, Yusuke; Aogaki, Ryoichi

    2016-01-01

    The lifetimes of ionic vacancies created in ferricyanide-ferrocyanide redox reaction have been first measured by means of cyclotron magnetohydrodynamic electrode, which is composed of coaxial cylinders partly exposed as electrodes and placed vertically in an electrolytic solution under a vertical magnetic field, so that induced Lorentz force makes ionic vacancies circulate together with the solution along the circumferences. At low magnetic fields, due to low velocities, ionic vacancies once created become extinct on the way of returning, whereas at high magnetic fields, in enhanced velocities, they can come back to their initial birthplaces. Detecting the difference between these two states, we can measure the lifetime of ionic vacancy. As a result, the lifetimes of ionic vacancies created in the oxidation and reduction are the same, and the intrinsic lifetime is 1.25 s, and the formation time of nanobubble from the collision of ionic vacancies is 6.5 ms. PMID:26791269

  12. Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode

    NASA Astrophysics Data System (ADS)

    Sugiyama, Atsushi; Morimoto, Ryoichi; Osaka, Tetsuya; Mogi, Iwao; Asanuma, Miki; Miura, Makoto; Oshikiri, Yoshinobu; Yamauchi, Yusuke; Aogaki, Ryoichi

    2016-01-01

    The lifetimes of ionic vacancies created in ferricyanide-ferrocyanide redox reaction have been first measured by means of cyclotron magnetohydrodynamic electrode, which is composed of coaxial cylinders partly exposed as electrodes and placed vertically in an electrolytic solution under a vertical magnetic field, so that induced Lorentz force makes ionic vacancies circulate together with the solution along the circumferences. At low magnetic fields, due to low velocities, ionic vacancies once created become extinct on the way of returning, whereas at high magnetic fields, in enhanced velocities, they can come back to their initial birthplaces. Detecting the difference between these two states, we can measure the lifetime of ionic vacancy. As a result, the lifetimes of ionic vacancies created in the oxidation and reduction are the same, and the intrinsic lifetime is 1.25 s, and the formation time of nanobubble from the collision of ionic vacancies is 6.5 ms.

  13. Laser measurements of the radiative lifetime of the B state of CN

    NASA Technical Reports Server (NTRS)

    Jackson, W. M.

    1974-01-01

    A turnable dye laser was used to measure the radiative lifetime of the individual rotational levels of the B2 Sigma (+) state of CN. The radiative lifetime of the unperturbed rotational levels is 65.6 plus or minus 1.0 nsec. A longer radiative lifetime of 72 plus or minus 1 nsec is observed for the Kaon prime = 4 level of the B state. The measured values of the perturbed and unperturbed levels support the longer lifetimes for the A2 meson pion state of CN. The quenching cross section of the B2 Sigma state of CN is 41 plus or minus 20 Angstroms squared and is independent of the rotational energy of the B state.

  14. Measurement of D0 lifetime with the BaBar detector

    SciTech Connect

    Simi, Gabriele; /Pisa U. /SLAC

    2009-12-17

    This work is the result of the researchers carried out during a three years Ph.D. period in the BABAR experiment. The first chapter consists in an introduction to the theoretical aspects of the D{sup 0} meson lifetime determination and CP violation parameters, as well as an overview of the CP violation in the B sector, which is the main topic of the experiment. The description of the experimental apparatus follows with particular attention to the Silicon Vertex Tracker detector, the most critical detector for the determination of decay vertices and thus of lifetimes and time dependent CP violation asymmetries. In the fourth chapter the operation and running of the vertex detector is described, as a result from the experience as Operation Manager of the SVT, with particular attention to the safety of the device and the data quality assurance. The last chapter is dedicated to the determination of the D{sup 0} meson lifetime with the BABAR detector, which is the main data analysis carried out by the candidate. The analysis is characterized by the selection of an extremely pure sample of D{sup 0} mesons for which the decay flight length and proper time is reconstructed. The description of the unbinned maximum likelihood fit follows, as well as the discussion of the possible sources of systematic uncertainties. In the appendix is also presented a preliminary study of a possible development regarding the determination of mixing and CP violation parameters for the D{sup 0} meson.

  15. Measurement of the Λb polarization in Z decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Farilla, A.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palazzi, P.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; Wanke, R.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Thulasidas, M.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The Λb polarization in hadronic Z decays is measured in semileptonic decays from the average energies of the charged lepton and the neutrino. In a data sample of approximately 3 million hadronic Z decays collected by the ALEPH detector at LEP between 1991 and 1994, 462 ± 31 Λb candidates are selected using ( Λπ+)-lepton correlations. From this event sample, the Λb polarization is measured to be PΛ b = -0.23 -0.20+0.24(stat.) -0.07+0.08(syst.).

  16. Standardization, decay data measurements and evaluation of 64Cu.

    PubMed

    Bé, M-M; Cassette, P; Lépy, M C; Amiot, M-N; Kossert, K; Nähle, O J; Ott, O; Wanke, C; Dryak, P; Ratel, G; Sahagia, M; Luca, A; Antohe, A; Johansson, L; Keightley, J; Pearce, A

    2012-09-01

    The purposes of this study were to create national activity standards of (64)Cu, to make possible the definition of an international key comparison reference value and to determine the decay data in order to improve the decay scheme. Four laboratories measured the activity of a (64)Cu solution; these results were compared through the International Reference System. Moreover, the laboratories carried out new measurements of the photon emission intensities and of the half-life. A new decay scheme was derived from these new values and the previously published ones. PMID:22406222

  17. Detecting and Quantifying Biomolecular Interactions of a Dendritic Polyglycerol Sulfate Nanoparticle Using Fluorescence Lifetime Measurements.

    PubMed

    Boreham, Alexander; Pikkemaat, Jens; Volz, Pierre; Brodwolf, Robert; Kuehne, Christian; Licha, Kai; Haag, Rainer; Dernedde, Jens; Alexiev, Ulrike

    2015-01-01

    Interactions of nanoparticles with biomaterials determine the biological activity that is key for the physiological response. Dendritic polyglycerol sulfates (dPGS) were found recently to act as an inhibitor of inflammation by blocking selectins. Systemic application of dPGS would present this nanoparticle to various biological molecules that rapidly adsorb to the nanoparticle surface or lead to adsorption of the nanoparticle to cellular structures such as lipid membranes. In the past, fluorescence lifetime measurements of fluorescently tagged nanoparticles at a molecular and cellular/tissue level have been proven to reveal valuable information on the local nanoparticle environment via characteristic fluorescent lifetime signatures of the nanoparticle bound dye. Here, we established fluorescence lifetime measurements as a tool to determine the binding affinity to fluorescently tagged dPGS (dPGS-ICC; ICC: indocarbocyanine). The binding to a cell adhesion molecule (L-selectin) and a human complement protein (C1q) to dPGS-ICC was evaluated by the concentration dependent change in the unique fluorescence lifetime signature of dPGS-ICC. The apparent binding affinity was found to be in the nanomolar range for both proteins (L-selectin: 87 ± 4 nM and C1q: 42 ± 12 nM). Furthermore, the effect of human serum on the unique fluorescence lifetime signature of dPGS-ICC was measured and found to be different from the interactions with the two proteins and lipid membranes. A comparison between the unique lifetime signatures of dPGS-ICC in different biological environments shows that fluorescence lifetime measurements of unique dPGS-ICC fluorescence lifetime signatures are a versatile tool to probe the microenvironment of dPGS in cells and tissue. PMID:26712722

  18. Carrier lifetime measurements using free carrier absorption transients. I. Principle and injection dependence

    NASA Astrophysics Data System (ADS)

    Linnros, Jan

    1998-07-01

    A contactless, all-optical technique for semiconductor charge carrier lifetime characterization is reviewed. The technique is based upon measurements of free carrier absorption transients by an infrared probe beam following electron-hole pair excitation by a pulsed laser beam. Main features are a direct probing of the excess carrier density coupled with a homogeneous carrier distribution within the sample, enabling precision studies of different recombination mechanisms. We show that the method is capable of measuring the lifetime over a broad range of injections (1013-1018 cm-3) probing both the minority carrier lifetime, the high injection lifetime and Auger recombination, as well as the transition between these ranges. Performance and limitations of the technique, such as lateral resolution, are addressed while application of the technique for lifetime mapping and effects of surface recombination is outlined in a companion article [J. Appl. Phys. 84, 284 (1998), part II]. Results from detailed studies of the injection dependence yield good agreement with the Shockley-Read-Hall theory, whereas the coefficient for Auger recombination shows an apparent shift to a higher value, with respect to the traditionally accepted value, at carrier densities below ˜2-5×1017 cm-3. Data also indicate an increased value of the coefficient for bimolecular recombination (radiative or trap-assisted Auger) from the generally accepted value. Measurements on an electron irradiated wafer and wafers of exceptionally high carrier lifetimes are also discussed within the framework of different recombination mechanisms.

  19. Lifetime measurements of normally deformed and superdeformed states in 82Sr

    NASA Astrophysics Data System (ADS)

    Yu, C.-H.; Baktash, C.; Brinkman, M. J.; Jin, H.-Q.; Rudolph, D.; Gross, C. J.; Devlin, M.; Lafosse, D. R.; Lerma, F.; Sarantites, D. G.; Sylvan, G. N.; Tabor, S. L.; Birriel, I.; Saladin, J. X.; Winchell, D. F.; Wood, V. Q.; Clark, R. M.; Fallon, P.; Lee, I. Y.; Macchiavelli, A. O.; Wells, J. C.; Petrovici, A.; Schmid, K. W.; Faessler, A.

    1998-01-01

    Lifetimes of a superdeformed band in 82Sr were measured with the centroid shift method. The measured average quadrupole moment of this band corresponds to a quadrupole deformation of β2~0.49, which is slightly smaller than both the theoretical prediction, and the measured deformation of the SD band in the neighboring isotone 84Zr. Lifetimes of high spin states of three normally deformed rotational bands in 82Sr were also measured with the Doppler shift attenuation method technique. The quadrupole moments of these normally deformed bands show a decrease at the highest spins, supporting the predicted band terminations.

  20. Carrier lifetimes in thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  1. Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergei A.; Fernandez-Searra, Maria A.; Dugan, Benjamin W.; Wilson, David F.

    2001-08-01

    The luminescence lifetime distribution can be used to determine the distribution of quencher concentrations in a heterogeneous sample. We describe a frequency domain instrument for real-time measurements of phosphorescence lifetime distributions in microheterogeneous objects. In this system (1) an array of harmonics (typically 100-200 frequencies) is used to modulate the excitation source, a light emitting diode. Due to the relatively long triplet state lifetimes, the frequencies required for the modulation are typically below 40 000 kHz, which allows direct digitization of both excitation and emission signals. (2) The dependence of the phase/amplitude factor on the modulation frequency is determined by linear least-squares analysis of the emission signal, which is sampled and summed over the multiple excitation cycles. (3) The phase/amplitude relationship obtained is analyzed in real time using a "light" version of the maximum entropy algorithm, which provides a complete phosphorescence lifetime distribution. (4) The lifetime distribution is converted into the distribution of quencher concentrations using an appropriate model of quenching. The instrument is also capable of measuring phosphorescence in "single-frequency" mode, which is useful for rapid evaluation of apparent luminescence lifetimes. In this mode, a correction for an in-phase signal, which is due to backscattering and fluorescence, is applied to improve the accuracy of lifetime measurements. The instruments were tested in Stern-Volmer calibrations of Pd-porphyrin based phosphors for oxygen measurements and used for preliminary evaluation of oxygen distributions in rat tumor tissues. The instruments were found to be capable of accurate determination of lifetimes in the range of 10-3000 μs. The average duration of a single lifetime distribution measurement was about 15 s, depending on the sample and on the density of the lifetime grid in the maximum entropy method analysis. In the single

  2. Charge Lifetime Measurements at High Average Current Using a K{sub 2}CsSb Photocathode inside a DC High Voltage Photogun

    SciTech Connect

    Mammei, Russell; Feingold, Joshua; Adderley, Philip; Clark, James; Covert, Steven; Grames, Joseph; Hansknecht, John; Machie, Danny; Poelker, Benard; Rao, Triveni; Smedley, John; Walsh, John; McCarter, James; Ruiz-Oses, M

    2013-03-01

    Two K{sub 2}CsSb photocathodes were manufactured at Brookhaven National Lab and delivered to Jefferson Lab within a compact vacuum apparatus at pressure ~ 10{sup -11} Torr. These photocathodes were evaluated using a dc high voltage photogun biased at voltages up to 200 kV, and illuminated with laser light at wavelengths 440 or 532 nm, to generate dc electron beams at currents up to 20 mA. Some conditions produced exceptionally large photocathode charge lifetimes, without measurable quantum efficiency (QE) decay, even from the center of the photocathode where operation using GaAs photocathodes is precluded due to ion bombardment. Under other conditions the charge lifetime was poor, suggesting a complex QE decay mechanism likely related to chemistry and localized heating via the laser beam. Following beam delivery, the photocathodes were evaluated using a scanning electron microscope with energy dispersive x-ray spectroscopy capability, to determine surface morphology and chemical composition.

  3. A Direct Measurement of the $W$ Decay Width

    SciTech Connect

    Vine, Troy

    2008-08-01

    A direct measurement of the W boson total decay width is presented in proton-antiproton collisions at √s = 1.96 TeV using data collected by the CDF II detector. The measurement is made by fitting a simulated signal to the tail of the transverse mass distribution in the electron and muon decay channels. An integrated luminosity of 350 pb-1 is used, collected between February 2002 and August 2004. Combining the results from the separate decay channels gives the decay width as 2.038 ± 0.072 GeV in agreement with the theoretical prediction of 2.093 ± 0.002 GeV. A system is presented for the management of detector calibrations using a relational database schema. A description of the implementation and monitoring of a procedure to provide general users with a simple interface to the complete set of calibrations is also given.

  4. Whitecap lifetime stages from infrared imagery with implications for microwave radiometric measurements of whitecap fraction

    NASA Astrophysics Data System (ADS)

    Potter, Henry; Smith, Geoffrey B.; Snow, Charlotte M.; Dowgiallo, David J.; Bobak, Justin P.; Anguelova, Magdalena D.

    2015-11-01

    Quantifying active and residual whitecap fractions separately can improve parameterizations of air-sea fluxes associated with breaking waves. We use data from a multi-instrumental field campaign on Floating Instrument Platform (FLIP) to simultaneously capture the signatures of active and residual whitecaps at visible, infrared (IR), and microwave wavelengths using, respectively, video camera, mid-IR camera, and a radiometer at 10 GHz. We present results from processing and analyzing IR images and correlating this information with radiometric time series of brightness temperature at horizontal and vertical polarizations TBH and TBV. The results provide evidence that breaking crests and decaying foam appear in mid-IR as bright and dark pixels clearly distinguishing active from residual whitecaps. We quantify the durations of whitecap lifetime stages from the IR images and identify their corresponding signatures in TB time series. Results show that TBH and TBV vary in phase during the active and in antiphase during the residual whitecap stages. A methodology to distinguish active and residual whitecaps in radiometric time series without a priori IR information has been developed and verified with corresponding IR and video images. The method uses the degree of polarization P (the ratio between the sum and difference of TBV and TBH) to capture whitecaps as prominent spikes. The maximum and zero-crossing of the first derivative of P serve to identify the presence of active whitecaps, while the minimum of dP marks the transition from active to residual whitecap stage. The findings have implications for radiometric measurements of active and total whitecap fractions.

  5. Apparatus and methods of measuring minority carrier lifetime using a liquid probe

    DOEpatents

    Li, Jian

    2016-04-12

    Methods and apparatus for measuring minority carrier lifetimes using liquid probes are provided. In one embodiment, a method of measuring the minority carrier lifetime of a semiconductor material comprises: providing a semiconductor material having a surface; forming a rectifying junction at a first location on the surface by temporarily contacting the surface with a conductive liquid probe; electrically coupling a second junction to the semiconductor material at a second location, wherein the first location and the second location are physically separated; applying a forward bias to the rectifying junction causing minority carrier injection in the semiconductor material; measuring a total capacitance as a function of frequency between the rectifying junction and the second junction; determining an inflection frequency of the total capacitance; and determining a minority lifetime of the semiconductor material from the inflection frequency.

  6. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    NASA Astrophysics Data System (ADS)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  7. A Precision Measurement Of The Neutral Pion Lifetime: The PRIMEX Experiment

    SciTech Connect

    Miskimen, Rory

    2008-10-13

    The PRIMEX collaboration at Jefferson Lab is completing an experimental analysis to obtain a precision measurement of the neutral pion lifetime. Results from the experiment will be presented and comparisons made with the chiral anomaly prediction and NLO calculations. An extension of the experiment to 12 GeV for measurements of the {eta} and {eta}' radiative widths is discussed.

  8. Fluorescence lifetime measurement via a radionuclide-scintillation light source and analog cross correlation.

    PubMed

    Burden, D L; Hobbs, S E; Hieftje, G M

    1997-05-15

    beta-Emitting 90Sr is used with a plastic scintillator to produce excitation-light pulses for fluorescence lifetime analysis. This light source is less expensive, more compact, and much more reliable than traditionally employed excitation sources such as lasers or pulsed flash lamps. The pulse train from this light source varies randomly in amplitude and time. Cross-correlation signal analysis is ideal for such a source because, unlike other time domain techniques, cross correlation takes complete advantage of its random nature. Here we report on the construction of an instrument and the methods employed to make fluorescence lifetime measurements via the new source and an analog correlation processor. Although the light intensity of the scintillator-based excitation source is comparatively low, an adequate signal level can be generated. The fluorescence lifetimes of three fluorophores are measured with a 1-mCi radionuclide to demonstrate a lifetime range from less than 1.5 to 28 ns. Long-lifetime measurements require an extra calibration step in order to compensate for delay cable energy loss. The light collection efficiency of the current instrument was found to be undesirably low; improvements in the instrument optics are suggested that will increase the collection efficiency and enhance the detection capability. PMID:9164162

  9. Direct measurement of W boson decay width at DO

    NASA Astrophysics Data System (ADS)

    Xu, Qichun

    This thesis presents the first direct measurement of the W boson decay width, ΓW, with the W decay into an electron and neutrino final state using data collected by the DØ detector at the Tevatran collider. This analysis has used the W event sample collected in the Run I physics program. Backgrounds that contaminate the W sample are estimated using additional DØ data samples. Detailed Monte Carlo samples are used to template the transverse mass spectrum of the W events to extract the W decay width. Various sources of the systematic uncertainties of this measurement are investigated. The direct measurement result obtained in this thesis work is ΓW = 2.231+0.145-0.138(stat) +/- 0.092(sys) GeV. This result is consistent with the prediction of the Standard Model and the result from the indirect measurement from the DØ experiment.

  10. Excitation and Charge Exchange Phenomena in Astronomical Objects: Measurement of Cross Sections and Lifetimes

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Smith, S.; Lozano, J.; Cadez, I.; Greewnood, J.; Mawhovter, R.; Williams, I.; Niimura, M.

    2003-01-01

    This document addresses extreme ultraviolet radiation and X-ray emissions from comets, planets and heliospheric gases focusing on the measurement of charge-exchange cross sections and radiative lifetimes. Highly-charged heavy ions present in the solar wind, and their abundance relative to the total oxygen-ion abundance are detailed. The plan for the Jet Propulsion Laboratory high-charge ion facility is outlined detailing its ability to measure absolute collisional excitation cross sections, absolute charge-exchange cross sections, lifetimes of metastable ion levels, and X-ray emission spectra following charge changes.

  11. New lifetime measurements in the stable semimagic Sn isotopes using the Doppler-shift attenuation technique

    NASA Astrophysics Data System (ADS)

    Jungclaus, A.; Walker, J.; Leske, J.; Speidel, K.-H.; Stuchbery, A. E.; East, M.; Boutachkov, P.; Cederkäll, J.; Doornenbal, P.; Egido, J. L.; Ekström, A.; Gerl, J.; Gernhäuser, R.; Goel, N.; Górska, M.; Kojouharov, I.; Maier-Komor, P.; Modamio, V.; Naqvi, F.; Pietralla, N.; Pietri, S.; Prokopowicz, W.; Schaffner, H.; Schwengner, R.; Wollersheim, H.-J.

    2011-09-01

    Precise measurements of lifetimes in the picosecond range of excited states in the stable even-A Sn isotopes 112,114,116,122Sn have been performed using the Doppler shift attenuation technique. For the first excited 2+ states in 112Sn, 114Sn and 116Sn the E2 transition strengths deduced from the measured lifetimes are in disagreement with the previously adopted values. They indicate a shallow minimum at N = 66 in contrast to the maximum at mid-shell predicted by modern shell model calculations.

  12. Determination of AFBb using jet charge measurements in Z decays

    NASA Astrophysics Data System (ADS)

    ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Merle, E.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Alemany, R.; Boix, G.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Graugès, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Bright-Thomas, P.; Casper, D.; Cattaneo, M.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Lehraus, I.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I. R.; Wachsmuth, H.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.-C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Halley, A. W.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Marinelli, N.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Buck, P. G.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Robertson, N. A.; Williams, M. I.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Carr, J.; Coyle, P.; Etienne, F.; Leroy, O.; Motsch, F.; Payre, P.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Ganis, G.; Kroha, H.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Tenchini, R.; Tonelli, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Reeve, J.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1998-04-01

    An improved measurement of the forward-backward asymmetry in decays is presented, based on a sample of 4.1 million hadronic Z decays collected by ALEPH between 1991 and 1995. Data are analysed as a function of polar angle of the event axis and b purity. The event tagging efficiency and mean b-jet hemisphere charge are measured directly from data. From the measured forward-backward jet charge asymmetry, the b quark asymmetry at is determined to be: . In the context of the Standard Model this corresponds to a value of the effective weak mixing angle of .

  13. Measuring pion beta decay with high-energy pion beams

    SciTech Connect

    McFarlane, W.K. Temple Univ., Philadelphia, PA ); Hoffman, C.M. )

    1993-01-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay [pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon] is predicted by the Standard Model (SM) to be R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.3999[plus minus]0.0005 s[sup [minus]1]. The best experimental number, obtained using in-flight decays, is R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.394 [plus minus] 0.015 s[sup [minus]1]. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.

  14. Measuring pion beta decay with high-energy pion beams

    SciTech Connect

    McFarlane, W.K. |; Hoffman, C.M.

    1993-02-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay {pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon} is predicted by the Standard Model (SM) to be R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.3999{plus_minus}0.0005 s{sup {minus}1}. The best experimental number, obtained using in-flight decays, is R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.394 {plus_minus} 0.015 s{sup {minus}1}. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.

  15. Lifetime measurement of excited low-spin states via the (p, p‧ γ) reaction

    NASA Astrophysics Data System (ADS)

    Hennig, A.; Derya, V.; Mineva, M. N.; Petkov, P.; Pickstone, S. G.; Spieker, M.; Zilges, A.

    2015-09-01

    In this paper a method for lifetime measurements in the sub-picosecond regime via the Doppler-shift attenuation method (DSAM) following the inelastic proton scattering reaction is presented. In a pioneering experiment we extracted the lifetimes of 30 excited low-spin states of 96Ru, taking advantage of the coincident detection of scattered protons and de-exciting γ-rays as well as the large number of particle and γ-ray detectors provided by the SONIC@HORUS setup at the University of Cologne. The large amount of new experimental data shows that this technique is suited for the measurement of lifetimes of excited low-spin states, especially for isotopes with a low isotopic abundance, where (n ,n‧ γ) or - in case of investigating dipole excitations - (γ ,γ‧) experiments are not feasible due to the lack of sufficient isotopically enriched target material.

  16. Lifetime measurement of 2+- state in 74Zn by recoil-distance Doppler-shift method

    NASA Astrophysics Data System (ADS)

    Niikura, M.; Mouginot, B.; Azaiez, F.; Franchoo, S.; Matea, I.; Stefan, I.; Verney, D.; Assie, M.; Bednarczyk, P.; Borcea, C.; Burger, A.; Burgunder, G.; Buta, A.; Cáceres, L.; Cléement, E.; Coquard, L.; de Angelis, G.; de France, G.; de Oliveira Santos, F.; Dewald, A.; Dijon, A.; Dombradi, Z.; Fiori, E.; Fransen, C.; Friessner, G.; Gaudefroy, L.; Georgiev, G.; Grévy, S.; Hackstein, M.; Harakeh, M. N.; Ibrahim, F.; Kamalou, O.; Kmiecik, M.; Lozeva, R.; Maj, A.; Mihai, C.; Möller, O.; Myalski, S.; Negoita, F.; Pantelica, D.; Perrot, L.; Pissulla, Th.; Rotaru, F.; Rother, W.; Scarpaci, J. A.; Stodel, C.; Thomas, J. C.; Ujic, P.

    2013-09-01

    We have performed the first direct lifetime measurement of the 2+- state in 74Zn. The neutron-rich 74Zn beam was produced by in-flight fragmentation of 76Ge at the Grand Accélérateur National d'Ions Lourds and separated with the LISE spectrometer. The lifetime of the 2+- state was measured by the recoil-distance Doppler-shift method with the Cologne plunger device combined with the EXOGAM detectors. The lifetime of the 2+- state in 74Zn was determined to be 27.0(24) ps, which corresponds to a reduced transition probability B(E2; 2+- -> 0+) = 370(33) e2fm4.

  17. Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements

    NASA Astrophysics Data System (ADS)

    Croft, B.; Pierce, J. R.; Martin, R. V.

    2014-04-01

    Aerosol removal processes control global aerosol abundance, but the rate of that removal remains uncertain. A recent study of aerosol-bound radionuclide measurements after the Fukushima Daiichi nuclear power plant accident documents 137Cs removal (e-folding) times of 10.0-13.9 days, suggesting that mean aerosol lifetimes in the range of 3-7 days in global models might be too short by a factor of two. In this study, we attribute this discrepancy to differences between the e-folding and mean aerosol lifetimes. We implement a simulation of 137Cs and 133Xe into the GEOS-Chem chemical transport model and examine the removal rates for the Fukushima case. We find a general consistency between modelled and measured e-folding times. The simulated 137Cs global burden e-folding time is about 14 days. However, the simulated mean lifetime of aerosol-bound 137Cs over a 6-month post-accident period is only 1.8 days. We find that the mean lifetime depends strongly on the removal rates in the first few days after emissions, before the aerosols leave the boundary layer and are transported to altitudes and latitudes where lifetimes with respect to wet removal are longer by a few orders of magnitude. We present sensitivity simulations that demonstrate the influence of differences in altitude and location of the radionuclides on the mean lifetime. Global mean lifetimes are shown to strongly depend on the altitude of injection. The global mean 137Cs lifetime is more than one order of magnitude greater for the injection at 7 km than into the boundary layer above the Fukushima site. Instantaneous removal rates are slower during the first few days after the emissions for a free tropospheric versus boundary layer injection and this strongly controls the mean lifetimes. Global mean aerosol lifetimes for the GEOS-Chem model are 3-6 days, which is longer than that for the 137Cs injected at the Fukushima site (likely due to precipitation shortly after Fukushima emissions), but similar to the

  18. Measurement of the lifetime of the B{sup o}{sub s} meson from D{sup minus}{sub s}{ell}{sup plus} correlations

    SciTech Connect

    Burkett, K; Paulini, M.

    1996-07-01

    The lifetime of the B{sub s}{sup 0} meson is measured using the semileptonic decay B{sub s}{sup 0} {r_arrow} D{sub s}{sup {minus}}l{sup {plus}}{nu}X. The data sample consists of approximately 110 pb{sup {minus}1} of p{ovr p} collisions at {radical}s = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider. There are 254{plus_minus}21 D{sub s}{sup {minus}}l{sup {plus}} signal events where the D{sub s}{sup {plus}} is reconstructed through its decay mode D{sub s}{sup {minus}} {r_arrow} {phi}{pi}{sup {minus}}, {phi} {r_arrow} K{sup {plus}}K{sup {minus}}. Using these events, the B{sub s}{sup 0} meson lifetime is determined to be {tau}(B{sub s}{sup 0}) {equals} 1.37{sup {plus}0.14}{sub {minus}0.12}(stat.){plus_minus}0.04(syst.) ps. The B{sub s}{sup 0} meson proper decay length distribution has been examined for a lifetime difference between the two CP eigenstates of the B{sub s}{sup 0} meson, B{sub s}{sup H} and B{sub s}{sup L}. 12 refs., 3 figs., 1 tab.

  19. Lifetime of heavy flavour particles

    SciTech Connect

    Lueth, V.

    1985-10-01

    Recent measurements of the lifetime of the tau leptons and charm and beauty hadrons are reviewed and their significance for the couplings of the charged weak current, flavour mixing, and models relating quarks to hadron decay are discussed. 70 refs., 17 figs., 5 tabs.

  20. Measurements of CP violation and mixing in charm decays

    NASA Astrophysics Data System (ADS)

    Contu, A.; LHCb Collaboration

    2016-07-01

    LHCb has collected the world's largest sample of charmed hadrons. This sample is used to search for direct and indirect CP violation in charm, and to measure D0 mixing parameters. New and updated measurements are presented, with complementary time-dependent and time-integrated analyses of D0 meson decays.

  1. Improved measurement precision in decay time-based phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Abou Nada, F.; Knappe, C.; Aldén, M.; Richter, M.

    2016-06-01

    This study comprises a continuation of the previous efforts of the authors to characterize different sources of errors in phosphor thermometry based on the determination of luminescence decays from thermographic phosphors. Whereas earlier investigations focused on point detectors utilizing different sensor technology, this work presents a comparison of four PMTs that are identical in terms of their product type. These detectors are supposedly identical, but the investigations revealed that their response is strictly individual. This study also shows a linear excitation energy dependence for the decay time of cadmium tungstate (CdWO4), the phosphor being used in this work. In addition, the potential influence of the intense and short fluorescence peak preceding the weaker and longer exponential decay in some phosphor materials was investigated using the electrical signal gating capability of the PMT. Finally, the evaluated decay time also appeared to be affected by the oscilloscope settings used when recording the phosphorescence signals. The presented results indicate that all operating parameters from the calibration measurement need to be rigorously reproduced in order to avoid systematic temperature errors in phosphor thermometry experiments that are based on reproducible measurements of the decay time. These results should be of more general interest also outside the phosphor community as the findings, presented herein, in principal concern all kinds of measurements that are dependent on reproducible measurements of signal shapes or time transients.

  2. Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes

    DOEpatents

    Buican, Tudor N.

    1993-01-01

    Apparatus and method for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochomes in the sample.

  3. Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes

    DOEpatents

    Buican, T.N.

    1993-05-04

    Apparatus and method is described for measuring intensities at a plurality of wavelengths and lifetimes. A source of multiple-wavelength electromagnetic radiation is passed through a first interferometer modulated at a first frequency, the output thereof being directed into a sample to be investigated. The light emitted from the sample as a result of the interaction thereof with the excitation radiation is directed into a second interferometer modulated at a second frequency, and the output detected and analyzed. In this manner excitation, emission, and lifetime information may be obtained for a multiplicity of fluorochromes in the sample.

  4. LASER COOLING: Measurement of the lifetime of rubidium atoms in a dark magneto-optical trap

    NASA Astrophysics Data System (ADS)

    Permyakova, O. I.; Yakovlev, A. V.; Chapovskii, P. L.

    2008-09-01

    The lifetimes of rubidium atoms in a dark magneto-optical trap are measured at different populations of the 'bright' and 'dark' hyperfine states of captured atoms. It is found that the lifetime of atoms in the trap decreases if they spend more time in the bright state. A simple explanation of this effect is proposed which is based on the increase in the transport cross section for collisions of thermal rubidium atoms surrounding the trap with cold rubidium atoms upon their electronic excitation.

  5. Accurate lifetime measurements for the noble gases by the electron beam alignment technique

    NASA Astrophysics Data System (ADS)

    Gorny, M. B.; Kazantsev, S. A.; Matisov, B. G.; Polezhaevs, N. T.

    1985-03-01

    Accurate lifetime measurement for the 41 P 1, 41 D 2, 51 D 2 helium and the atomic 2 p and 3 p states of other noble gases was performed by the low energy electron beam alignment technique. An account of the influence of magnetic field on the electron path was made to obtain the real Hanle signal shape. The influence of the radiation trapping in the collision chamber was analysed with regard to the metastables diffusion. The experimental data were compared with the results of other methods of the lifetime determination.

  6. Measurement of the lifetime of rubidium atoms in a dark magneto-optical trap

    SciTech Connect

    Permyakova, O I; Yakovlev, A V; Chapovskii, P L

    2008-09-30

    The lifetimes of rubidium atoms in a dark magneto-optical trap are measured at different populations of the 'bright' and 'dark' hyperfine states of captured atoms. It is found that the lifetime of atoms in the trap decreases if they spend more time in the bright state. A simple explanation of this effect is proposed which is based on the increase in the transport cross section for collisions of thermal rubidium atoms surrounding the trap with cold rubidium atoms upon their electronic excitation. (laser cooling)

  7. Measurement of the Masses and Lifetimes of B Hadrons at the Tevatron

    SciTech Connect

    Catastini, Pierluigi; /Pisa U. /INFN, Pisa

    2006-05-01

    The latest results for the B Hadron sector at the Tevatron Collider are summarized. The properties of B hadrons can be precisely measured at the Tevatron. In particularly they will focus on the masses and lifetimes. The new Tevatron results for the CP violation in B Hadrons are also discussed.

  8. Ultracold neutron detector for the spectrometer of a neutron lifetime measuring

    NASA Astrophysics Data System (ADS)

    Andreev, V. A.; Vasiljev, A. V.; Ivanov, E. A.; Ilyin, D. S.; Krivshich, A. G.; Serebrov, A. P.

    2016-04-01

    The gas-discharge detector is designed for the neutron lifetime spectrometer. The detector is intended for ultracold neutron flux monitoring in measurement cycles at the specrtometer (ILL, Grenoble, France). The detector has been successively tested with a Pu-Be neutron source under laboratory conditions and as a part of the spectrometer.

  9. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements.

    PubMed

    George Abraham, Bobin; Sarkisyan, Karen S; Mishin, Alexander S; Santala, Ville; Tkachenko, Nikolai V; Karp, Matti

    2015-01-01

    Fluorescence Resonance Energy Transfer (FRET) using fluorescent protein variants is widely used to study biochemical processes in living cells. FRET detection by fluorescence lifetime measurements is the most direct and robust method to measure FRET. The traditional cyan-yellow fluorescent protein based FRET pairs are getting replaced by green-red fluorescent protein variants. The green-red pair enables excitation at a longer wavelength which reduces cellular autofluorescence and phototoxicity while monitoring FRET. Despite the advances in FRET based sensors, the low FRET efficiency and dynamic range still complicates their use in cell biology and high throughput screening. In this paper, we utilized the higher lifetime of NowGFP and screened red fluorescent protein variants to develop FRET pairs with high dynamic range and FRET efficiency. The FRET variations were analyzed by proteolytic activity and detected by steady-state and time-resolved measurements. Based on the results, NowGFP-tdTomato and NowGFP-mRuby2 have shown high potentials as FRET pairs with large fluorescence lifetime dynamic range. The in vitro measurements revealed that the NowGFP-tdTomato has the highest Förster radius for any fluorescent protein based FRET pairs yet used in biological studies. The developed FRET pairs will be useful for designing FRET based sensors and studies employing Fluorescence Lifetime Imaging Microscopy (FLIM). PMID:26237400

  10. Measurement of natural radiative lifetime of excited levels of Tm atom

    SciTech Connect

    Wang Chengfei; Jiang Zhankui; Zhou Dafan; Liang Xiuqing

    1988-10-01

    The natural radiative lifetime of some low-lying excited levels in Tm atoms have been determined from measurements of time-resolved laser-induced fluorescence in atomic beam. The levels were selectively populated by the light from a pulsed tunable dye laser pumped by an excimer laser or a Nd:YAG laser.

  11. An Undergraduate Experiment on Nuclear Lifetime Measurement Using the Doppler Effect

    ERIC Educational Resources Information Center

    Campbell, J. L.; And Others

    1972-01-01

    While designed for a senior undergraduate laboratory, the experiment illustrates the principles involved in the various Doppler techniques currently used in nuclear lifetime studies and demonstrates the versatility of the Ge(Li) detector in applications other than direct energy or intensity measurement. (Author/TS)

  12. Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements

    NASA Astrophysics Data System (ADS)

    Croft, B.; Pierce, J. R.; Martin, R. V.

    2013-12-01

    Aerosol removal processes control global aerosol abundance, but the rate of that removal remains uncertain. A recent study of aerosol-bound radionuclide measurements after the Fukushima Dai-Ichi nuclear power plant accident documents 137Cs removal (e-folding) times of 10.0 to 13.9 days, suggesting that mean aerosol lifetimes in the range of 3-7 days in global models might be too short by a factor of two. In this study, we attribute this discrepancy to differences between the e-folding and mean aerosol lifetimes. We implement a~simulation of 137Cs and 133Xe into the GEOS-Chem chemical transport model and examine the removal rates for the Fukushima case. We find a~general consistency between modelled and measured e-folding times. The simulated 137Cs global burden e-folding time is about 14 days. However, the simulated mean lifetime of aerosol-bound 137Cs over a 6 month post-accident period is only 1.8 days. We find that the mean lifetime depends strongly on the removal rates in the first few days after emissions, before the aerosols leave the boundary layer and are transported to altitudes and latitudes where lifetimes with respect to wet removal are longer by a few orders of magnitude. We present sensitivity simulations that demonstrate the influence of differences in altitude and location of the radionuclides on the mean lifetime. Global mean lifetimes are shown to strongly depend on the altitude of injection. The global mean 137Cs lifetime is more than one order of magnitude greater for the injection at 7 km than into the boundary layer above the Fukushima site. Instantaneous removal rates are slower during the first few days after the emissions for a free tropospheric vs. boundary layer injection and this strongly controls the mean lifetimes. Global mean aerosol lifetimes for the GEOS-Chem model are 3-6 days, which is longer than for the 137Cs injected at the Fukushima site (likely due to precipitation shortly after Fukushima emissions), but about the same as the

  13. Measurement of the charge asymmetry in semileptonic Bs0 decays.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cox, B; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Das, M; Davies, B; Davies, G; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Feligioni, L; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, A; Gay, P; Geist, W; Gelé, D; Gelhaus, R; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Holubyev, K; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Le Bihan, A-C; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Oguri, V; Oliveira, N; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vlimant, J-R; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Weerts, H; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G

    2007-04-13

    We have performed the first direct measurement of the time-integrated flavor untagged charge asymmetry in semileptonic Bs0 decays ASLs,unt by comparing the decay rate of Bs0-->micro+Ds-nuX, where Ds- -->phipi- and phi-->K+K-, with the charge-conjugate Bs0 decay rate. This sample was selected from 1.3 fb-1 of data collected by the D0 experiment in run II of the Fermilab Tevatron collider. We obtain ASLs,unt=[1.23+/-0.97(stat)+/-0.17(syst)]x10(-2). Assuming that Deltam(s)/Gamma(s)>1, this result can be translated into a measurement of the CP-violating phase in Bs0 mixing: DeltaGamma(s)/Deltam(s)tanphi(s)=[2.45+/-1.93(stat)+/-0.35(syst)]x10(-2). PMID:17501335

  14. Development of vertexing and lifetime triggers and a study of B(s) mixing using hadronic decays at D0

    SciTech Connect

    Barnes, Christopher P

    2005-03-01

    The D0 detector underwent a major upgrade to maximize its ability to fully exploit Run II at the Fermilab Tevatron, the world's highest energy collider. The upgrade included a completely new central tracking system with an outer scintillating fiber tracker and an inner silicon vertex detector all within a 2T superconducting solenoid. This thesis describes the development of high level trigger algorithms including vertexing, impact parameter significance and invariant mass, that utilize tracks from these detectors. One of the main physics goals of Run II is the observation of B{sub s} oscillations. This measurement, which cannot be performed at the B factories, will significantly constrain the ''unitarity triangle'' associated with Cp violation and so probe the Standard Model of particle physics. Furthermore this is an interesting measurement as the study of mixing in meson systems has a long history for revealing new physics. The second part of this thesis presents a study of the hadronic decay B{sub s} {yields} D{sub s}{pi}. This important mode provides the best proper time resolution for B{sub s} mixing and is reconstructed for the first time at D0. Projections on the sensitivity to B{sub s} oscillations are then presented.

  15. Decay data: review of measurements, evaluations and compilations.

    PubMed

    Nichols, A L

    2001-07-01

    Decay data represent an important means of characterising and quantifying radioactive material, as well as providing an important route to our understanding of the structure of the nucleus. The principle decay parameters are defined in this review, prior to undertaking an applications-based assessment of the most relevant contemporary measurements, evaluations and compilations. Emphasis has been placed on the demands of a series of IAEA Co-ordinated Research Programmes that focus on decay data and gamma-ray standards. Some of the more important decay-data issues are also reviewed with respect to recent measurements that address the anomalies associated with intermediate- and long-lived radionuclides. Short-lived fission products pose significant characterisation problems due to their high degree of instability, although a combination of mass separation and complex detector arrays has resulted in rapid analyses and major advances in our understanding of their nuclear properties and structure. Finally, a select number of decay-data evaluations and compilations are discussed in terms of the powerful manipulation and communication capabilities of PCs, CD-ROMs and the Internet. PMID:11339533

  16. Precision lifetime measurements of exotic nuclei based on Doppler-shift techniques

    SciTech Connect

    Iwasaki, Hironori

    2013-04-19

    A recent progress in precision lifetime measurements of exotic nuclei at the National Superconducting Cyclotron Laboratory (NSCL), Michigan State University is presented. The Recoil Distance Doppler-shift (RDDS) technique has been applied to nuclear reactions involving intermediate-energy rare isotope (RI) beams, to determine absolute transition strengths between nuclear states model independently from level lifetimes of interest. As such an example, recent lifetime measurements of the first 2{sup +} states in the neutron-rich {sup 62,64,66}Fe isotopes at and around N=40 are introduced. The experiment was performed at the Coupled Cyclotron Facility at NSCL using a unique combination of several experimental instruments; the Segmented Germanium Array (SeGA), the plunger device, and the S800 spectrograph. The reduced E2 transition probabilities B(E2) are determined directly from the measured lifetimes. The observed trend of B(E2) clearly demonstrates that an enhanced collectivity persists in {sup 66}Fe despite the harmonic-oscillator magic number N=40. The present results are also discussed in comparison with the large-scale shell model calculations, pointing to a possible extension of the deformation region beyond N=40.

  17. Lifetime measurements of normally deformed and superdeformed states in {sup 82}Sr

    SciTech Connect

    Yu, C.; Baktash, C.; Brinkman, M.J.; Jin, H.; Rudolph, D.; Gross, C.J.; Devlin, M.; LaFosse, D.R.; Lerma, F.; Sarantites, D.G.; Sylvan, G.N.; Tabor, S.L.; Birriel, I.; Saladin, J.X.; Winchell, D.F.; Wood, V.Q.; Clark, R.M.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; Wells, J.C. |; Petrovici, A.; Schmid, K.W.; Faessler, A.

    1998-01-01

    Lifetimes of a superdeformed band in {sup 82}Sr were measured with the centroid shift method. The measured average quadrupole moment of this band corresponds to a quadrupole deformation of {beta}{sub 2}{approx}0.49, which is slightly smaller than both the theoretical prediction, and the measured deformation of the SD band in the neighboring isotone {sup 84}Zr. Lifetimes of high spin states of three normally deformed rotational bands in {sup 82}Sr were also measured with the Doppler shift attenuation method technique. The quadrupole moments of these normally deformed bands show a decrease at the highest spins, supporting the predicted band terminations. {copyright} {ital 1998} {ital The American Physical Society}

  18. Fluorescent lifetime measurements of rare-earth elements in gallium arsenide. Master's thesis

    SciTech Connect

    Topp, D.J.

    1990-12-01

    Lifetime measurements of the excited states of three GaAs semiconductors doped with the rare earth elements Erbium (Er), Praseodymium (Pr), and Thulium (Tm) has been studied using a pulsed nitrogen laser and germanium detector. The measurements were made with an experimental set up with a system response time of 0.34 microseconds. A 330 milliwatt nitrogen laser with a wavelength of 3370 angstroms was used to excite transitions of the rare earth elements.

  19. Initial measurements of O-ion and He-ion decay rates observed from the Van Allen probes RBSPICE instrument

    PubMed Central

    Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro

    2014-01-01

    H-ion (∼45 keV to ∼600 keV), He-ion (∼65 keV to ∼520 keV), and O-ion (∼140 keV to ∼1130 keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first 9 months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L shells, on the order of ∼0.8 day at L shells of 3–4, and decay more slowly with higher L shell, on the order of ∼1.7 days at L shells of 5–6. Conversely, O-ions decay very rapidly (∼1.5 h) across all L shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher-energy (> 500 keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high-energy O-ion loss rates, which have not been adequately studied in the literature to date. Key Points We report initial observations of ring current ions We show that He-ion decay rates are consistent with theory We show that O-ions with energies greater than 500 keV decay very rapidly PMID:26167435

  20. Three-dimensional printed miniaturized spectral system for collagen fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Zou, Luwei; Koslakiewicz, Ronald; Mahmoud, Mohamad; Fahs, Mehdi; Liu, Rui; Lo, Joe Fujiou

    2016-07-01

    Various types of collagens, e.g., type I and III, represent the main load-bearing components in biological tissues. Their composition changes during processes such as wound healing and fibrosis. When excited by ultraviolet light, collagens exhibit autofluorescence distinguishable by their unique fluorescent lifetimes across a range of emission wavelengths. Here, we designed a miniaturized spectral-lifetime detection system as a noninvasive probe for monitoring tissue collagen compositions. A sine-modulated LED illumination was applied to enable frequency domain fluorescence lifetime measurements under three wavelength bands, separated via a series of longpass dichroics at 387, 409, and 435 nm. We employed a lithography-based three-dimensional (3-D) printer with <50 μm resolution to create a custom designed optomechanics in a handheld form factor. We examined the characteristics of the optomechanics with finite element modeling to simulate the effect of thermal (from LED) and mechanical (from handling) strain on the optical system. The geometry was further optimized with ray tracing to form the final 3-D printed structure. Using this device, the phase shift and demodulation of collagen types were measured, where the separate spectral bands enhanced the differentiation of their lifetimes. This system represents a low cost, handheld probe for clinical tissue monitoring applications.

  1. 3D printed miniaturized spectral system for tissue fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Zou, Luwei; Mahmoud, Mohamad; Fahs, Mehdi; Liu, Rui; Lo, Joe F.

    2016-04-01

    Various types of collagens, e.g. type I and III, represent the main load-bearing components in biological tissues. Their composition changes during processes like wound healing and fibrosis. Collagens exhibit autofluorescence when excited by ultra-violet light, distinguishable by their unique fluorescent lifetimes across a range of emission wavelengths. Therefore, we designed a miniaturized spectral-lifetime detection system for collagens as a non-invasive probe for monitoring tissue in wound healing and scarring applications. A sine modulated LED illumination was applied to enable frequency domain (FD) fluorescence lifetime measurements under different wavelengths bands, separated via a series of longpass dichroics at 387nm, 409nm and 435nm. To achieve the minute scale of optomechanics, we employed a stereolithography based 3D printer with <50 μm resolution to create a custom designed optical mount in a hand-held form factor. We examined the characteristics of the 3D printed optical system with finite element modeling to simulate the effect of thermal (LED) and mechanical (handling) strain on the optical system. Using this device, the phase shift and demodulation of collagen types were measured, where the separate spectral bands enhanced the differentiation of their lifetimes.

  2. Fluorescence lifetime imaging to quantify sub-cellular oxygen measurements in live macrophage during bacterial invasion

    NASA Astrophysics Data System (ADS)

    Dragavon, Joe; Amiri, Megdouda; Marteyn, Benoit; Sansonetti, Philipe; Shorte, Spencer

    2011-03-01

    Fluorophore concentration, the surrounding microenvironment, and photobleaching greatly influence the fluorescence intensity of a fluorophore, increasing the difficulty to directly observe micro-environmental factors such as pH and oxygen. However, the fluorescence lifetime of a fluorophore is essentially independent of both the fluorophore concentration and photobleaching, providing a viable alternative to intensity measurements. The development of fluorescence lifetime imaging (FLI) allows for the direct measurement of the microenvironment surrounding a fluorophore. Pt-porphyrin is a fluorophore whose optical properties include a very stable triplet excited state. This energy level overlaps strongly with the ground triplet state of oxygen, making the phosphorescent lifetime directly proportional to the surrounding oxygen concentration. Initial experiments using this fluorophore involved the use of individual microwells coated with the porphyrin. Cells were allowed to enter the micro-wells before being sealed to create a diffusionally isolated volume. The decrease in the extracellular oxygen concentration was observed using FLI. However, this isolation technique provides only the consumption rate but cannot indicate the subcellular oxygen distribution. To improve upon this, live macrophages are loaded with the porphyrin and the fluorescence lifetime determined using a Lambert Instruments Lifa-X FLI system. Initial results indicate that an increase in subcellular oxygen is observed upon initial exposure to invasive bacteria. A substantial decrease in oxygen is observed after about 1 hour of exposure. The cells remain in this deoxygenated state until the bacteria are removed or cell death occurs.

  3. 137 Ba Double Gamma Decay Measurement with GAMMASPHERE

    DOE PAGESBeta

    Merchán, E.; Moran, K.; Lister, C. J.; Chowdhury, P.; McCutchan, E. A.; Greene, J. P.; Zhu, S.; Lauritsen, T.; Carpenter, M. P.; Shearman, R.

    2015-05-28

    The study of the electromagnetic moments (EM), and decay probability, provides detailed information about nuclear wave functions. The well-know properties of EM interactions are good for extracting information about the motion of nucleons. Higher order EM processes always occur, but are usually too weak to be measured. In the case of a 0+ → 0+ transitions, where a single gamma transition is forbidden, the simultaneous emission of two γ-rays has been studied. An interesting opportunity to further investigate 2-photon emission phenomena is by using a standard 137Cs source populating, via β-decay, the Jπ = 11/2- isomeric state at 662 keVmore » in 137Ba. In this case, two photon process can have contributions from quadrupole-quadrupole or dipole-octupole multipolarities in direct competition with the high multipolarity M4 decay. Since the yield of the double gamma decay is around six orders of magnitude less than the first order transition, very good statistics are needed in order to observe the phenomena and great care must be taken to suppress the first-order decay. The Gammasphere array is ideal since its configuration allows a good coverage of the angular distribution and the Compton events can be suppressed. Nevertheless the process to understand and eliminate the Compton background is a challenge. Geant4 simulations were carried out to help understand and correct for those factors.« less

  4. 137 Ba Double Gamma Decay Measurement with GAMMASPHERE

    SciTech Connect

    Merchán, E.; Moran, K.; Lister, C. J.; Chowdhury, P.; McCutchan, E. A.; Greene, J. P.; Zhu, S.; Lauritsen, T.; Carpenter, M. P.; Shearman, R.

    2015-05-28

    The study of the electromagnetic moments (EM), and decay probability, provides detailed information about nuclear wave functions. The well-know properties of EM interactions are good for extracting information about the motion of nucleons. Higher order EM processes always occur, but are usually too weak to be measured. In the case of a 0+ → 0+ transitions, where a single gamma transition is forbidden, the simultaneous emission of two γ-rays has been studied. An interesting opportunity to further investigate 2-photon emission phenomena is by using a standard 137Cs source populating, via β-decay, the Jπ = 11/2- isomeric state at 662 keV in 137Ba. In this case, two photon process can have contributions from quadrupole-quadrupole or dipole-octupole multipolarities in direct competition with the high multipolarity M4 decay. Since the yield of the double gamma decay is around six orders of magnitude less than the first order transition, very good statistics are needed in order to observe the phenomena and great care must be taken to suppress the first-order decay. The Gammasphere array is ideal since its configuration allows a good coverage of the angular distribution and the Compton events can be suppressed. Nevertheless the process to understand and eliminate the Compton background is a challenge. Geant4 simulations were carried out to help understand and correct for those factors.

  5. Beta-decay measurements of neutron-deficient cesium isotopes

    SciTech Connect

    Parry, R.F.

    1983-03-01

    Beta decay endpoint energy measurements of the neutron deficient cesium isotopes were done using an energy spectrum shape fitting technique. This was a departure from the typical method of endpoint energy analysis, the Fermi-Kurie plot. A discussion of the shape fitting procedure and its improved features are discussed. These beta endpoint measurements have led to total decay energies (Q/sub EC/) of the neutron deficient /sup 119/ /sup 123/Cs isotopes. The total decay energies of /sup 122m/Cs (Q/sub EC/ = 6.95 +- 0.25 MeV) and /sup 119/Cs (Q/sub EC/ = 6.26 +- 0.29 MeV) were new measurements. The total decay energies of /sup 123/Cs (Q/sub EC/ = 4.05 +- 0.18 MeV), /sup 122g/Cs (Q/sub EC/ = 7.05 +- 0.18 MeV), /sup 121/Cs (Q/sub EC/ = 5.21 +- 0.22 MeV), and /sup 120/Cs (Q/sub EC/ = 7.38 +- 0.23 MeV) were measurements with significantly improved uncertainties as compared to the literature. Further, a combination of the energy levels derived from previous literature gamma-gamma coincident measurements and the experimental beta-coincident gamma decay energies has supported an improved level scheme for /sup 121/Xe and the proposal of three new energy levels in /sup 119/Xe. Comparison of the experimental cesium mass excesses (determined with our Q/sub EC/ values and known xenon mass excesses) with both the literature and theoretical predicted values showed general agreement except for /sup 120/Cs. Possible explanations for this deviation are discussed.

  6. Charge Exchange Contribution to the Decay of the Ring Current, Measured by Energetic Neutral Atoms (ENAs)

    NASA Technical Reports Server (NTRS)

    Jorgensen, A. M.; Henderson, M. G.; Roelof, E. C.; Reeves, G. D.; Spence, H. E.

    2001-01-01

    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases.

  7. Lifetime measurement of the Ar XIV 1s{sup 2}2s{sup 2}2p {sup 2}P{sub 3/2}{sup o} metastable level at the Heidelberg electron-beam ion trap

    SciTech Connect

    Lapierre, A.; Crespo Lopez-Urrutia, J. R.; Braun, J.; Brenner, G.; Bruhns, H.; Fischer, D.; Gonzalez Martinez, A. J.; Mironov, V.; Osborne, C.; Sikler, G.; Soria Orts, R.; Tawara, H.; Ullrich, J.; Shabaev, V. M.; Tupitsyn, I. I.; Volotka, A.

    2006-05-15

    We present the details of an accurate lifetime measurement of the 1s{sup 2}2s{sup 2}2p {sup 2}P{sub 3/2}{sup o} metastable level in boronlike Ar XIV performed at the Heidelberg electron beam ion trap [A. Lapierre et al., Phys. Rev. Lett. 95, 183001 (2005)]. The lifetime was inferred from decay curves resulting from deexcitation of the metastable level to its {sup 2}P{sub 1/2}{sup o} ground state through a magnetic-dipole (M1) transition upon cyclically turning on and off the electron beam. The measured lifetime of 9.573(4)((+12/-5)) ms (stat)(syst) is in disagreement with a trend of theoretical predictions of 9.53(1) ms, which include the effect of the electron anomalous magnetic moment. Systematic effects were investigated by studying with high statistical significance the dependence of the decay times of the curves on various trapping conditions. The asymptotic trend of the decay times observed for increasingly high trapping potentials, which indicates negligible ion losses within a ms time scale, is in agreement with a theoretical model describing the ion escape rate in electrostatic ion traps. However, for high trapping potentials, we observed an unexpected slowly decaying component suggesting the presence of trapped low-energy electrons. Their origin, dynamics, and temperature, as well as their possible effects on the measured lifetime were investigated.

  8. Analysis techniques for the evaluation of the neutrinoless double-β decay lifetime in 130Te with the CUORE-0 detector

    NASA Astrophysics Data System (ADS)

    Alduino, C.; Alfonso, K.; Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Banks, T. I.; Bari, G.; Beeman, J. W.; Bellini, F.; Bersani, A.; Biassoni, M.; Brofferio, C.; Bucci, C.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Carbone, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; Dafinei, I.; Dally, A.; Davis, C. J.; Dell'Oro, S.; Deninno, M. M.; di Domizio, S.; di Vacri, M. L.; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Fernandes, G.; Ferri, E.; Ferroni, F.; Fiorini, E.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, H. Z.; Kadel, R.; Keppel, G.; Kolomensky, Yu. G.; Lim, K. E.; Liu, X.; Ma, Y. G.; Maino, M.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Nones, C.; Norman, E. B.; Nucciotti, A.; O'Donnell, T.; Orio, F.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pirro, S.; Pozzi, S.; Previtali, E.; Rosenfeld, C.; Rusconi, C.; Sala, E.; Sangiorgio, S.; Santone, D.; Scielzo, N. D.; Singh, V.; Sisti, M.; Smith, A. R.; Taffarello, L.; Tenconi, M.; Terranova, F.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Wilson, J.; Winslow, L. A.; Wise, T.; Woodcraft, A.; Zanotti, L.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.; Cuore Collaboration

    2016-04-01

    We describe in detail the methods used to obtain the lower bound on the lifetime of neutrinoless double-beta (0 ν β β ) decay in 130Te and the associated limit on the effective Majorana mass of the neutrino using the CUORE-0 detector. CUORE-0 is a bolometric detector array located at the Laboratori Nazionali del Gran Sasso that was designed to validate the background reduction techniques developed for CUORE, a next-generation experiment scheduled to come online in 2016. CUORE-0 is also a competitive 0 ν β β decay search in its own right and functions as a platform to further develop the analysis tools and procedures to be used in CUORE. These include data collection, event selection and processing, as well as an evaluation of signal efficiency. In particular, we describe the amplitude evaluation, thermal gain stabilization, energy calibration methods, and the analysis event selection used to create our final 0 ν β β search spectrum. We define our high level analysis procedures, with emphasis on the new insights gained and challenges encountered. We outline in detail our fitting methods near the hypothesized 0 ν β β decay peak and catalog the main sources of systematic uncertainty. Finally, we derive the 0 ν β β decay half-life limits previously reported for CUORE-0, T1/2 0 ν>2.7 ×1024yr , and in combination with the Cuoricino limit, T1/2 0 ν>4.0 ×1024yr .

  9. Determination of sin2 θ {w/eff} using jet charge measurements in hadronic Z decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J. P.; Lucotte, A.; Minard, M. N.; Odier, P.; Pietrzyk, B.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palla, F.; Pater, J. R.; Pusztaszeri, J. F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Wildish, T.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J. M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Ten Have, I.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H. G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H. G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J. F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A. M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M. H.; Simion, S.; Veillet, J. J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J. F.; Roussarie, A.; Schuller, J. P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Aleppo, M.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.

    1996-03-01

    The electroweak mixing angle is determined with high precision from measurements of the mean difference between forward and backward hemisphere charges in hadronic decays of the Z. A data sample of 2.5 million hadronic Z decays recorded over the period 1990 to 1994 in the ALEPH detector at LEP is used. The mean charge separation between event hemispheres containing the original quark and antiquark is measured forbbar b andcbar c events in subsamples selected by their long lifetimes or using fast D*’s. The corresponding average charge separation for light quarks is measured in an inclusive sample from the anticorrelation between charges of opposite hemispheres and agrees with predictions of hadronisation models with a precision of 2%. It is shown that differences between light quark charge separations and the measured average can be determined using hadronisation models, with systematic uncertainties constrained by measurements of inclusive production of kaons, protons and Λ’s. The separations are used to measure the electroweak mixing angle precisely as sin2 ϑ {w/eff}=0.2322±0.0008(exp.stat.) ±0.0007(exp.syst.)±0.0008(sep.). The first two errors are due to purely experimental sources whereas the third stems from uncertainties in the quark charge separations.

  10. Measurement of prompt photon production in hadronic Z decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Pacheco, A.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Atwood, W. B.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Bossi, F.; Boudreau, J.; Burnett, T. H.; Drevermann, H.; Forty, R. W.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lançon, E.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Mattison, T.; Meinhard, H.; Menary, S.; Meyer, T.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Roth, A.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschak, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; Bencheikh, A. M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Pietrzyk, B.; Proriol, J.; Prulhière, F.; Stimpfl, G.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Cerutti, F.; Chiarelli, V.; D'Ettorrepiazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Altoon, B.; Boyle, O.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnball, R. M.; Brandl, B.; Braun, O.; Geiges, R.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wolf, B.; Aubert, J.-J.; Benchouk, C.; Bernard, V.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Papalexiou, S.; Payre, P.; Qian, Z.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Cowan, G.; Dehning, B.; Dietl, H.; Dydak, F.; Fernandez-Bosman, M.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlein, U.; Stiegler, U.; Denis, R. St.; Takashima, T.; Thomas, J.; Wolf, G.; Bertin, V.; Boucrot, J.; Callot, O.; Chen, X.; Cordier, A.; Davier, M.; Grivas, J.-F.; Heusse, Ph.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Zomer, F.; Abbaneo, D.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lemaire, M. C.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Like, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Reeves, P.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Grupen, C.; Mirabito, L.; Rivera, F.; Schäfer, U.; Ganis, G.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Whitney, M. H.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1993-03-01

    The production of isolated photons in hadronic Z decays is measured with the ALEPH detector at LEP using a sample of 450 000 hadronic events. The corrected rate is given for several values of the minimum invariant mass squared cut between the photon and the jets. This measurement of final state radiation from the quarks is compared with the predictions of parton shower models JETSET, ARIADNE and HERWIG as well as with the predictions of QCD matrix element calculations.

  11. Real-Time Visualization of Tissue Surface Biochemical Features Derived From Fluorescence Lifetime Measurements.

    PubMed

    Gorpas, Dimitris; Ma, Dinglong; Bec, Julien; Yankelevich, Diego R; Marcu, Laura

    2016-08-01

    Fiber based fluorescence lifetime imaging has shown great potential for intraoperative diagnosis and guidance of surgical procedures. Here we describe a novel method addressing a significant challenge for the practical implementation of this technique, i.e., the real-time display of the quantified biochemical or functional tissue properties superimposed on the interrogated area. Specifically, an aiming beam (450 nm) generated by a continuous-wave laser beam was merged with the pulsed fluorescence excitation light in a single delivery/collection fiber and then imaged and segmented using a color-based algorithm. We demonstrate that this approach enables continuous delineation of the interrogated location and dynamic augmentation of the acquired frames with the corresponding fluorescence decay parameters. The method was evaluated on a fluorescence phantom and fresh tissue samples. Current results demonstrate that 34 frames per second can be achieved for augmenting videos of 640 × 512 pixels resolution. Also we show that the spatial resolution of the fluorescence lifetime map depends on the tissue optical properties, the scanning speed, and the frame rate. The dice similarity coefficient between the fluorescence phantom and the reconstructed maps was estimated to be as high as 93%. The reported method could become a valuable tool for augmenting the surgeon's field of view with diagnostic information derived from the analysis of fluorescence lifetime data in real-time using handheld, automated, or endoscopic scanning systems. Current method provides also a means for maintaining the tissue light exposure within safety limits. This study provides a framework for using an aiming beam with other point spectroscopy applications. PMID:26890641

  12. Probing electron correlation through radiative lifetime measurements upon inner-valence photoionization of Ne and Ar

    NASA Astrophysics Data System (ADS)

    Suzuki, Norihiro; Kosugi, Satoshi; Ito, Yumi; Inoue, Naoki; Nagoshi, Tatsuro; Kuze, Nobuhiko; Harries, James R.; Sullivan, James P.; Nagata, Tetsuo; Sokell, Emma; Koike, Fumihiro; Azuma, Yoshiro

    2016-07-01

    This work demonstrates that electron correlation can have a strong effect on the radiative lifetime of atoms. We report measurements of the radiative lifetimes of inner-valence hole states, the 3s3p6 2S1/2 state of Ar+ and the 2s2p6 2S1/2 state of Ne+ by using the time-correlated single photon counting technique combined with photoionization by synchrotron radiation. Theoretical calculations utilizing the multi-configuration Dirac–Fock method agreed well with the experimental results. In particular, the radiative lifetime was found to depend very sensitively on the mixing of valence excited state configurations. While the Ne+ 2s2p6 2S1/2 state only has relatively weak inter-shell correlation, Ar+ 3s3p6 2S1/2 state has strong intra-shell correlation within the M-shell. This intra-shell correlation enhances configuration mixing and causes the radiative lifetime of the Ar+ 3s3p6 2S1/2 state to become very much longer than that of the Ne+ 2s2p6 2S1/2 state.

  13. Implications of the first AMS-02 measurement for dark matter annihilation and decay

    SciTech Connect

    Jin, Hong-Bo; Wu, Yue-Liang; Zhou, Yu-Feng E-mail: ylwu@itp.ac.cn

    2013-11-01

    In light of the first measurement of the positron fraction by the AMS-02 experiment, we perform a detailed global analysis on the interpretation of the latest data of PAMELA, Fermi-LAT, and AMS-02 in terms of dark matter (DM) annihilation and decay in various propagation models. The allowed regions for the DM particle mass and annihilation cross section or decay life-time are obtained for channels with leptonic final states: 2e, 2μ, 2τ, 4e, 4μ and 4τ. We show that for the conventional astrophysical background the AMS-02 positron fraction data alone favour a DM particle mass ∼ 500(800) GeV if DM particles annihilate dominantly into 2μ(4μ) final states, which is significantly lower than that favoured by the Fermi-LAT data of the total flux of electrons and positrons. The allowed regions by the two experiments do not overlap at a high confidence level (99.99999%C.L.). We consider a number of propagation models with different halo height Z{sub h}, diffusion parameters D{sub 0} and δ{sub 1/2}, and power indices of primary nucleon sources γ{sub p1/p2}. The normalization and the slope of the electron background are also allowed to vary. We find that the tension between the two experiments can be only slightly reduced in the propagation model with large Z{sub h} and D{sub 0}. The consistency of fit is improved for annihilation channels with 2τ and 4τ final states which favour TeV scale DM particle with large cross sections above ∼ 10{sup −23} cm{sup 3}s{sup −1}. In all the considered leptonic channels, the current data favour the scenario of DM annihilation over DM decay. In the decay scenario, the charge asymmetric DM decay is slightly favoured.

  14. Measurement of B decays to phi K gamma

    SciTech Connect

    Aubert, B.

    2006-07-28

    We measure the branching fraction of the radiative B{sup -} decay {Beta}(B{sup -} {yields} {phi}K{sup -}{gamma}) = (3.46 {+-} 0.57{sub -0.37}{sup +0.39}) x 10{sup -6}, and set an upper limit on the radiative {bar B}{sup 0} decay {Beta}({bar B}{sup 0} {yields} {phi}{bar K}{sup 0}{gamma}) < 2.71 x 10{sup -6} at 90% confidence level. We also measure the direct CP asymmetry of the B{sup -} {yields} {phi}K{sup -}{gamma} mode {Alpha}{sub CP} = (-26.4 {+-} 14.3 {+-} 4.8)%. The uncertainties are statistical and systematic, respectively. These measurements are based on 207 fb{sup -1} of data collected at the {Upsilon}(4S) resonance with the BABAR detector.

  15. Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems

    SciTech Connect

    Tanner, Carol E.

    2005-03-04

    Financial support of this research project has lead to advances in the study of atomic structure through precision measurements of atomic lifetimes, energy splittings, and transitions energies. The interpretation of data from many areas of physics and chemistry requires an accurate understanding of atomic structure. For example, scientists in the fields of astrophysics, geophysics, and plasma fusion depend on transition strengths to determine the relative abundances of elements. Assessing the operation of discharges and atomic resonance line filters also depends on accurate knowledge of transition strengths. Often relative transition strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. Precision measurements of atomic lifetimes and energy splittings also provide fundamentally important atomic structure information. Lifetimes of allowed transitions depend most strongly on the electronic wave function far from the nucleus. Alternatively, hyperfine splittings give important information about the electronic wave function in the vicinity of the nucleus as well as the structure of the nucleus. Our main focus throughout this project has been the structure of atomic cesium because of its connection to the study of atomic parity nonconservation (PNC). The interpretation of atomic PNC experiments in terms of weak interaction coupling constants requires accurate knowledge of the electronic wave function near the nucleus as well as far from the nucleus. It is possible to address some of these needs theoretically with sophisticated many-electron atomic structure calculations. However, this program has been able to address these needs experimentally with a precision that surpasses current theoretical accuracy. Our measurements also play the important role of providing a means for testing the accuracy of many-electron calculations and guiding further theoretical development, Atomic systems such as cesium, with a single electron

  16. Improvements to TITAN's mass measurement and decay spectroscopy capabilities

    NASA Astrophysics Data System (ADS)

    Lascar, D.; Kwiatkowski, A. A.; Alanssari, M.; Chowdhury, U.; Even, J.; Finlay, A.; Gallant, A. T.; Good, M.; Klawitter, R.; Kootte, B.; Li, T.; Leach, K. G.; Lennarz, A.; Leistenschneider, E.; Mayer, A. J.; Schultz, B. E.; Schupp, R.; Short, D. A.; Andreoiu, C.; Dilling, J.; Gwinner, G.

    2016-06-01

    The study of nuclei farther from the valley of β -stability than ever before goes hand-in-hand with shorter-lived nuclei produced in smaller abundances than their less exotic counterparts. The measurement, to high precision, of nuclear masses therefore requires innovations in technique in order to keep up. TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) facility deploys three ion traps, with a fourth in the commissioning phase, to perform and support Penning trap mass spectrometry and in-trap decay spectroscopy on some of the shortest-lived nuclei ever studied. We report on recent advances and updates to the TITAN facility since the 2012 EMIS conference. TITAN's charge breeding capabilities have been improved and in-trap decay spectroscopy can be performed in TITAN's Electron Beam Ion Trap (EBIT). Higher charge states can improve the precision of mass measurements, reduce the beam-time requirements for a given measurement, improve beam purity, and open the door to access isotopes not available from the ISOL method via in-trap decay and recapture. This was recently demonstrated during TITAN's mass measurement of 30 Al. The EBIT's decay spectroscopy setup was commissioned with a successful branching ratio and half-life measurement of 124 Cs. Charge breeding in the EBIT increases the energy spread of the ion bunch sent to the Penning trap for mass measurement, so a new Cooler PEnning Trap (CPET), which aims to cool highly charged ions with an electron plasma, is undergoing offline commissioning. Already CPET has demonstrated the trapping and self-cooling of a room-temperature electron plasma that was stored for several minutes. A new detector has been installed inside the CPET magnetic field which will allow for in-magnet charged particle detection.

  17. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    NASA Astrophysics Data System (ADS)

    Guevara, Z. E.; Torres, D. A.

    2016-07-01

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of 106Cd to study excited states of 110Sn and the beam nuclei itself will be presented.

  18. Lifetime measurements using the CLARA-PRISMA setup around the {sup 48}Ca doubly-magic nucleus

    SciTech Connect

    Valiente-Dobon, J. J.; Gadea, A.; Stefanini, A. M.; Corradi, L.; De Angelis, G.; Fioretto, E.; Grodner, E.; Mason, P.; Napoli, D. R.; Recchia, F.; Sahin, E.; Mengoni, D.; Farnea, E.; Bazzacco, D.; Montagnoli, G.; Ur, C. A.; Lenzi, S. M.; Lunardi, S.; Scarlassara, F.; Dewald, A.

    2008-11-11

    The lifetimes of the first excited states of nuclei around the doubly-magic nucleus {sup 48}Ca have been determined using a novel method that combines the Recoil Distance Doppler Shift (RDDS) method with the CLARA-PRISMA spectrometers. This is the first time such a method is applied to measure lifetimes of neutron-rich nuclei populated via a multinucleon transfer reaction. This novel method and some preliminary results on lifetimes are presented.

  19. Study of excitation transfer in laser dye mixtures by direct measurement of fluorescence lifetime

    NASA Technical Reports Server (NTRS)

    Lin, C.; Dienes, A.

    1973-01-01

    By directly measuring the donor fluorescence lifetime as a function of acceptor concentration in the laser dye mixture Rhodamine 6G-Cresyl violet, we found that the Stern-Volmer relation is obeyed, from which the rate of excitation transfer is determined. The experimental results indicate that the dominant mechanism responsible for the efficient excitation transfer is that of resonance transfer due to long range dipole-dipole interaction.

  20. Line identification and lifetime measurements in the XUV and soft X-ray regions

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.

    1979-01-01

    A summary of the data acquired concerning line identification and lifetime measurements in the xuv and soft X-ray regions for a variety of both resonance transitions and forbidden transitions in ions of astrophysical interest is provided. Particular attention is called to a few papers which appeared in the Astrophysical Journal. These are of special relevance to specific astrophysical data needs. The many experiments completed in areas related to but somewhat outside the confines of the project title are mentioned.