Sample records for declarative memory deficits

  1. Declarative memory deficits and schizophrenia: problems and prospects.

    PubMed

    Stone, William S; Hsi, Xiaolu

    2011-11-01

    Cognitive deficits are among the most important factors leading to poor functional outcomes in schizophrenia, with deficits in declarative memory among the largest and most robust of these. Thus far, attempts to enhance cognition in schizophrenia have shown only modest success, which underlies increasing efforts to develop effective treatment strategies. This review is divided into three main parts. The first section delineates the nature and extent of the deficits in both patients with schizophrenia and in their adult, non-psychotic relatives. The second part focuses on structural and functional abnormalities in the hippocampus, both in people with schizophrenia and in animal studies that model relevant features of the illness. The third section views problems in declarative memory and hippocampal function from the perspective of elevated rates of common medical disorders in schizophrenia, with a focus on insulin insensitivity/diabetes. The likelihood that poor glucose regulation/availability contribute to declarative memory deficits and hippocampal abnormalities is considered, along with the possibility that schizophrenia and poor glucose regulation share common etiologic elements, and with clinical implications of this perspective for enhancing declarative memory. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Working, declarative and procedural memory in specific language impairment

    PubMed Central

    Lum, Jarrad A.G.; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T.

    2012-01-01

    According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children’s Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we

  3. Schizophrenia patients demonstrate a dissociation on declarative and non-declarative memory tests.

    PubMed

    Perry, W; Light, G A; Davis, H; Braff, D L

    2000-12-15

    Declarative memory refers to the recall and recognition of factual information. In contrast, non-declarative memory entails a facilitation of memory based on prior exposure and is typically assessed with priming and perceptual-motor sequencing tasks. In this study, schizophrenia patients were compared to normal comparison subjects on two computerized memory tasks: the Word-stem Priming Test (n=30) and the Pattern Sequence Learning Test (n=20). Word-stem Priming includes recall, recognition (declarative) and priming (non-declarative) components of memory. The schizophrenia patients demonstrated an impaired performance on recall of words with relative improvement during the recognition portion of the test. Furthermore, they performed normally on the priming portion of the test. Thus, on tests of declarative memory, the patients had retrieval deficits with intact performance on the non-declarative memory component. The Pattern Sequence Learning Test utilizes a serial reaction time paradigm to assess non-declarative memory. The schizophrenia patients' serial reaction time was significantly slower than that of comparison subjects. However, the patients' rate of acquisition was not different from the normal comparison group. The data suggest that patients with schizophrenia process more slowly than normal, but have an intact non-declarative memory. The schizophrenia patients' dissociation on declarative vs. non-declarative memory tests is discussed in terms of possible underlying structural impairment.

  4. Transcranial oscillatory direct current stimulation during sleep improves declarative memory consolidation in children with attention-deficit/hyperactivity disorder to a level comparable to healthy controls.

    PubMed

    Prehn-Kristensen, Alexander; Munz, Manuel; Göder, Robert; Wilhelm, Ines; Korr, Katharina; Vahl, Wiebke; Wiesner, Christian D; Baving, Lioba

    2014-01-01

    Slow oscillations (<1 Hz) during slow wave sleep (SWS) promote the consolidation of declarative memory. Children with attention-deficit/hyperactivity disorder (ADHD) have been shown to display deficits in sleep-dependent consolidation of declarative memory supposedly due to dysfunctional slow brain rhythms during SWS. Using transcranial oscillating direct current stimulation (toDCS) at 0.75 Hz, we investigated whether an externally triggered increase in slow oscillations during early SWS elevates memory performance in children with ADHD. 12 children with ADHD underwent a toDCS and a sham condition in a double-blind crossover study design conducted in a sleep laboratory. Memory was tested using a 2D object-location task. In addition, 12 healthy children performed the same memory task in their home environment. Stimulation enhanced slow oscillation power in children with ADHD and boosted memory performance to the same level as in healthy children. These data indicate that increasing slow oscillation power during sleep by toDCS can alleviate declarative memory deficits in children with ADHD. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. GLYX-13 (rapastinel) ameliorates subchronic phencyclidine- and ketamine-induced declarative memory deficits in mice

    PubMed Central

    Rajagopal, Lakshmi; Burgdorf, Jeffrey S.; Moskal, Joseph R.; Meltzer, Herbert Y.

    2016-01-01

    GLYX-13 (rapastinel), a tetrapeptide (Thr-Pro-Pro-Thr-amide), has been reported to have fast acting antidepressant properties in man based upon its N-methyl-d-aspartate receptor (NMDAR) glycine site functional partial agonism. Ketamine, a non-competitive NMDAR antagonist, also reported to have fast acting antidepressant properties, produces cognitive impairment in rodents and man, whereas rapastinel has been reported to have cognitive enhancing properties in rodents, without impairing cognition in man, albeit clinical testing has been limited. The goal of this study was to compare the cognitive impairing effects of rapastinel and ketamine in novel object recognition (NOR), a measure of declarative memory, in male C57BL/6J mice treated with phencyclidine (PCP), another NMDAR noncompetitive antagonist known to severely impair cognition, in both rodents and man. C57BL/6J mice given a single dose or subchronic ketamine (30 mg/kg. i.p.) showed acute or persistent deficits in NOR, respectively. Acute i.v. rapastinel (1.0 mg/kg), did not induce NOR deficit. Pre-treatment with rapastinel significantly prevented acute ketamine-induced NOR deficit. Rapastinel (1.0 mg/kg, but not 0.3 mg/kg, iv) significantly reversed both subchronic ketamine- and subchronic PCP-induced NOR deficits. Rapastinel also potentiated the atypical antipsychotic drug with antidepressant properties, lurasidone, to restore NOR in subchronic ketamine-treated mice. These findings indicate that rapastinel, unlike ketamine, does not induce a declarative memory deficit in mice, and can prevent or reverse the ketamine-induced NOR deficit. Further study is required to determine if these differences translate during clinical use of ketamine and rapastinel as fast acting antidepressant drugs and if rapastinel could have non-ionotropic effects as an add-on therapy with antipsychotic/antidepressant medications. PMID:26632337

  6. Sleep Restores Daytime Deficits in Procedural Memory in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Prehn-Kristensen, Alexander; Molzow, Ina; Munz, Manuel; Wilhelm, Ines; Muller, Kathrin; Freytag, Damaris; Wiesner, Christian D.; Baving, Lioba

    2011-01-01

    Sleep supports the consolidation of declarative and procedural memory. While prefrontal cortex (PFC) activity supports the consolidation of declarative memory during sleep, opposite effects of PFC activity are reported with respect to the consolidation of procedural memory during sleep. Patients with attention-deficit/hyperactivity disorder (ADHD)…

  7. Declarative memory.

    PubMed

    Riedel, Wim J; Blokland, Arjan

    2015-01-01

    Declarative Memory consists of memory for events (episodic memory) and facts (semantic memory). Methods to test declarative memory are key in investigating effects of potential cognition-enhancing substances--medicinal drugs or nutrients. A number of cognitive performance tests assessing declarative episodic memory tapping verbal learning, logical memory, pattern recognition memory, and paired associates learning are described. These tests have been used as outcome variables in 34 studies in humans that have been described in the literature in the past 10 years. Also, the use of episodic tests in animal research is discussed also in relation to the drug effects in these tasks. The results show that nutritional supplementation of polyunsaturated fatty acids has been investigated most abundantly and, in a number of cases, but not all, show indications of positive effects on declarative memory, more so in elderly than in young subjects. Studies investigating effects of registered anti-Alzheimer drugs, cholinesterase inhibitors in mild cognitive impairment, show positive and negative effects on declarative memory. Studies mainly carried out in healthy volunteers investigating the effects of acute dopamine stimulation indicate enhanced memory consolidation as manifested specifically by better delayed recall, especially at time points long after learning and more so when drug is administered after learning and if word lists are longer. The animal studies reveal a different picture with respect to the effects of different drugs on memory performance. This suggests that at least for episodic memory tasks, the translational value is rather poor. For the human studies, detailed parameters of the compositions of word lists for declarative memory tests are discussed and it is concluded that tailored adaptations of tests to fit the hypothesis under study, rather than "off-the-shelf" use of existing tests, are recommended.

  8. Long-Term Treatment with Paroxetine Increases Verbal Declarative Memory and Hippocampal Volume in Posttraumatic Stress Disorder

    PubMed Central

    Vermetten, Eric; Vythilingam, Meena; Southwick, Steven M.; Charney, Dennis S.; Bremner, J. Douglas

    2011-01-01

    Background Animal studies have shown that stress is associated with damage to the hippocampus, inhibition of neurogenesis, and deficits in hippocampal-based memory dysfunction. Studies in patients with posttraumatic stress disorder (PTSD) found deficits in hippocampal-based declarative verbal memory and smaller hippocampal volume, as measured with magnetic resonance imaging (MRI). Recent preclinical evidence has shown that selective serotonin reuptake inhibitors promote neurogenesis and reverse the effects of stress on hippocampal atrophy. This study assessed the effects of long-term treatment with paroxetine on hippocampal volume and declarative memory performance in PTSD. Methods Declarative memory was assessed with the Wechsler Memory Scale–Revised and Selective Reminding Test before and after 9–12 months of treatment with paroxetine in PTSD. Hippocampal volume was measured with MRI. Of the 28 patients who started the protocol, 23 completed the full course of treatment and neuropsychological testing. Twenty patients were able to complete MRI imaging. Results Patients with PTSD showed a significant improvement in PTSD symptoms with treatment. Treatment resulted in significant improvements in verbal declarative memory and a 4.6% increase in mean hippocampal volume. Conclusions These findings suggest that long-term treatment with paroxetine is associated with improvement of verbal declarative memory deficits and an increase in hippocampal volume in PTSD. PMID:14512209

  9. Methylphenidate significantly improves declarative memory functioning of adults with ADHD.

    PubMed

    Verster, Joris C; Bekker, Evelijne M; Kooij, J J Sandra; Buitelaar, Jan K; Verbaten, Marinus N; Volkerts, Edmund R; Olivier, Berend

    2010-10-01

    Declarative memory deficits are common in untreated adults with attention-deficit hyperactivity disorder (ADHD), but limited evidence exists to support improvement after treatment with methylphenidate. The objective of this study was to examine the effects of methylphenidate on memory functioning of adults with ADHD. Eighteen adults with ADHD who were clinical responders to methylphenidate participated in this randomized crossover trial. After 3 days of no treatment, patients received in random order either their usual methylphenidate dose (mean: 14.7 mg; range: 10-30 mg) or placebo, separated by a 6-7-day washout period. Patients performed an immediate word recall test 1 h after treatment administration. Three hours after intake, patients performed the second part of the memory test (delayed word recall and a recognition test). Delayed recognition and immediate recall was similar on treatment and on placebo. Delayed word recall was significantly better in the methylphenidate than in the placebo condition (F (1, 17) = 7.0, p <  0.017). A significant correlation was found between prestudy CES-D depression scores and difference scores on delayed recall (r = 0.602, p <  0.008). Methylphenidate improves declarative memory functioning in patients with ADHD. New studies should further examine whether subclinical depressive symptoms mediate the effect of methylphenidate on declarative memory.

  10. Procedural and Declarative Memory in Children with and without Specific Language Impairment

    ERIC Educational Resources Information Center

    Lum, Jarrad A. G.; Gelgic, Celin; Conti-Ramsden, Gina

    2010-01-01

    Background: Much evidence has accumulated to indicate memory deficits in children with specific language impairment. However, most research has focused on working memory impairments in these children. Less is known about the functioning of other memory systems in this population. Aims: This study examined procedural and declarative memory in young…

  11. A shared resource between declarative memory and motor memory

    PubMed Central

    Keisler, Aysha; Shadmehr, Reza

    2010-01-01

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and non-declarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/non-declarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system. PMID:21048140

  12. The relation between receptive grammar and procedural, declarative, and working memory in specific language impairment.

    PubMed

    Conti-Ramsden, Gina; Ullman, Michael T; Lum, Jarrad A G

    2015-01-01

    What memory systems underlie grammar in children, and do these differ between typically developing (TD) children and children with specific language impairment (SLI)? Whilst there is substantial evidence linking certain memory deficits to the language problems in children with SLI, few studies have investigated multiple memory systems simultaneously, examining not only possible memory deficits but also memory abilities that may play a compensatory role. This study examined the extent to which procedural, declarative, and working memory abilities predict receptive grammar in 45 primary school aged children with SLI (30 males, 15 females) and 46 TD children (30 males, 16 females), both on average 9;10 years of age. Regression analyses probed measures of all three memory systems simultaneously as potential predictors of receptive grammar. The model was significant, explaining 51.6% of the variance. There was a significant main effect of learning in procedural memory and a significant group × procedural learning interaction. Further investigation of the interaction revealed that procedural learning predicted grammar in TD but not in children with SLI. Indeed, procedural learning was the only predictor of grammar in TD. In contrast, only learning in declarative memory significantly predicted grammar in SLI. Thus, different memory systems are associated with receptive grammar abilities in children with SLI and their TD peers. This study is, to our knowledge, the first to demonstrate a significant group by memory system interaction in predicting grammar in children with SLI and their TD peers. In line with Ullman's Declarative/Procedural model of language and procedural deficit hypothesis of SLI, variability in understanding sentences of varying grammatical complexity appears to be associated with variability in procedural memory abilities in TD children, but with declarative memory, as an apparent compensatory mechanism, in children with SLI.

  13. A shared resource between declarative memory and motor memory.

    PubMed

    Keisler, Aysha; Shadmehr, Reza

    2010-11-03

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and nondeclarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/nondeclarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system.

  14. Developmental dissociation between the maturation of procedural memory and declarative memory.

    PubMed

    Finn, Amy S; Kalra, Priya B; Goetz, Calvin; Leonard, Julia A; Sheridan, Margaret A; Gabrieli, John D E

    2016-02-01

    Declarative memory and procedural memory are known to be two fundamentally different kinds of memory that are dissociable in their psychological characteristics and measurement (explicit vs. implicit) and in the neural systems that subserve each kind of memory. Declarative memory abilities are known to improve from childhood through young adulthood, but the developmental maturation of procedural memory is largely unknown. We compared 10-year-old children and young adults on measures of declarative memory and working memory capacity and on four measures of procedural memory that have been strongly dissociated from declarative memory (mirror tracing, rotary pursuit, probabilistic classification, and artificial grammar). Children had lesser declarative memory ability and lesser working memory capacity than adults, but children exhibited learning equivalent to adults on all four measures of procedural memory. Therefore, declarative memory and procedural memory are developmentally dissociable, with procedural memory being adult-like by age 10years and declarative memory continuing to mature into young adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Developmental Dissociation Between the Maturation of Procedural Memory and Declarative Memory

    PubMed Central

    Finn, Amy S.; Kalra, Priya B.; Goetz, Calvin; Leonard, Julia A.; Sheridan, Margaret A.; Gabrieli, John D. E.

    2015-01-01

    Declarative memory and procedural memory are known to be two fundamentally different kinds of memory that are dissociable in their psychological characteristics and measurement (explicit versus implicit) and in the neural systems that subserve each kind of memory. Declarative memory abilities are known to improve from childhood through young adulthood, but the developmental maturation of procedural memory is largely unknown. We compared 10-year-old children and young adults on measures of declarative memory, working memory capacity, and four measures of procedural memory that have been strongly dissociated from declarative memory (mirror tracing, rotary pursuit, probabilistic classification, and artificial grammar). Children had lesser declarative memory ability and lesser working memory capacity than the adults, but exhibited learning equivalent to adults on all four measures of procedural memory. Declarative and procedural memory are, therefore, developmentally dissociable, with procedural memory being adult-like by age 10 and declarative memory continuing to mature into young adulthood. PMID:26560675

  16. Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers.

    PubMed

    Linssen, A M W; Vuurman, E F P M; Sambeth, A; Riedel, W J

    2012-06-01

    Methylphenidate inhibits the reuptake of dopamine and noradrenaline and is used to treat children with attention deficit hyperactivity disorder (ADHD). Besides reducing behavioral symptoms, it improves their cognitive function. There are also observations of methylphenidate-induced cognition enhancement in healthy adults, although studies in this area are relatively sparse. We assessed the possible memory-enhancing properties of methylphenidate. In the current study, the possible enhancing effects of three doses of methylphenidate on declarative and working memory, attention, response inhibition and planning were investigated in healthy volunteers. In a double blind placebo-controlled crossover study, 19 healthy young male volunteers were tested after a single dose of placebo or 10, 20 or 40 mg of methylphenidate. Cognitive performance testing included a word learning test as a measure of declarative memory, a spatial working memory test, a set-shifting test, a stop signal test and a computerized version of the Tower of London planning test. Declarative memory consolidation was significantly improved relative to placebo after 20 and 40 mg of methylphenidate. Methylphenidate also improved set shifting and stopped signal task performance but did not affect spatial working memory or planning. To the best of our knowledge, this is the first study reporting enhanced declarative memory consolidation after methylphenidate in a dose-related fashion over a dose range that is presumed to reflect a wide range of dopamine reuptake inhibition.

  17. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder.

    PubMed

    Csábi, Eszter; Benedek, Pálma; Janacsek, Karolina; Zavecz, Zsófia; Katona, Gábor; Nemeth, Dezso

    2015-01-01

    Healthy sleep is essential in children's cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB) which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction time (ASRT) task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12 h offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline) and give us insight into how sleep disturbances affects developing brain.

  18. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder

    PubMed Central

    Csábi, Eszter; Benedek, Pálma; Janacsek, Karolina; Zavecz, Zsófia; Katona, Gábor; Nemeth, Dezso

    2016-01-01

    Healthy sleep is essential in children’s cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB) which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction time (ASRT) task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12 h offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline) and give us insight into how sleep disturbances affects developing brain. PMID:26793090

  19. Striatal contributions to declarative memory retrieval

    PubMed Central

    Scimeca, Jason M.; Badre, David

    2012-01-01

    Declarative memory is known to depend on the medial temporal lobe memory system. Recently, there has been renewed focus on the relationship between the basal ganglia and declarative memory, including the involvement of striatum. However, the contribution of striatum to declarative memory retrieval remains unknown. Here, we review neuroimaging and neuropsychological evidence for the involvement of the striatum in declarative memory retrieval. From this review, we propose that, along with the prefrontal cortex (PFC), the striatum primarily supports cognitive control of memory retrieval. We conclude by proposing three hypotheses for the specific role of striatum in retrieval: (1) Striatum modulates the re-encoding of retrieved items in accord with their expected utility (adaptive encoding), (2) striatum selectively admits information into working memory that is expected to increase the likelihood of successful retrieval (adaptive gating), and (3) striatum enacts adjustments in cognitive control based on the outcome of retrieval (reinforcement learning). PMID:22884322

  20. Declarative and nondeclarative memory: multiple brain systems supporting learning and memory.

    PubMed

    Squire, L R

    1992-01-01

    Abstract The topic of multiple forms of memory is considered from a biological point of view. Fact-and-event (declarative, explicit) memory is contrasted with a collection of non conscious (non-declarative, implicit) memory abilities including skills and habits, priming, and simple conditioning. Recent evidence is reviewed indicating that declarative and non declarative forms of memory have different operating characteristics and depend on separate brain systems. A brain-systems framework for understanding memory phenomena is developed in light of lesion studies involving rats, monkeys, and humans, as well as recent studies with normal humans using the divided visual field technique, event-related potentials, and positron emission tomography (PET).

  1. Subthalamic stimulation differentially modulates declarative and nondeclarative memory.

    PubMed

    Hälbig, Thomas D; Gruber, Doreen; Kopp, Ute A; Scherer, Peter; Schneider, Gerd-Helge; Trottenberg, Thomas; Arnold, Guy; Kupsch, Andreas

    2004-03-01

    Declarative memory has been reported to rely on the medial temporal lobe system, whereas non-declarative memory depends on basal ganglia structures. We investigated the functional role of the subthalamic nucleus (STN), a structure closely connected with the basal ganglia for both types of memory. Via deep brain high frequency stimulation (DBS) we manipulated neural activity of the STN in humans. We found that DBS-STN differentially modulated memory performance: declarative memory was impaired, whereas non-declarative memory was improved in the presence of STN-DBS indicating a specific role of the STN in the activation of memory systems. Copyright 2004 Lippincott Williams & Wilkins

  2. Revising psychoanalytic interpretations of the past. An examination of declarative and non-declarative memory processes.

    PubMed

    Davis, J T

    2001-06-01

    The author reviews a contemporary cognitive psychology perspective on memory that views memory as being composed of multiple separate systems. Most researchers draw a fundamental distinction between declarative/explicit and non-declarative/implicit forms of memory. Declarative memory is responsible for the conscious recollection of facts and events--what is typically meant by the everyday and the common psychoanalytic use of the word 'memory'. Non-declarative forms of memory, in contrast, are specialised processes that influence experience and behaviour without representing the past in terms of any consciously accessible content. They operate outside of an individual's awareness, but are not repressed or otherwise dynamically unconscious. Using this theoretical framework, the question of how childhood relationship experiences are carried forward from the past to influence the present is examined. It is argued that incorporating a conceptualisation of non-declarative memory processing into psychoanalytic theory is essential. Non-declarative memory processes are capable of forming complex and sophisticated representations of the interpersonal world. These non-declarative memory processes exert a major impact on interpersonal experience and behaviour that needs to be analysed on its own terms and not mistakenly viewed as a form of resistance.

  3. Procedural and declarative memory performance, and the memory consolidation function of sleep, in recent and abstinent Ecstasy/MDMA users

    PubMed Central

    Blagrove, Mark; Seddon, Jennifer; George, Sophie; Parrott, Andrew C.; Stickgold, Robert; Walker, Matthew; Jones, Katy; Morgan, Michael J.

    2013-01-01

    This study assessed the effects of ecstasy/MDMA on declarative memory (Rivermead Behavioral Memory task - RBMT), on procedural learning (Finger Tapping Task - FTT), and on the memory consolidation function of sleep for these two tasks. Testing occurred in 2 afternoon testing sessions, 24 hours apart so that a full period of sleep was allowed between them. Groups were: Non-drug taking Controls (n=24); Recent Ecstasy/MDMA users, who had taken ecstasy and/or MDMA 2–3 days before the first testing session (n=25), and Abstinent Ecstasy/MDMA users, who had not taken ecstasy/MDMA for at least 8 days before the first session (n=17). The recent ecstasy/MDMA users performed significantly worse than controls on the RBMT (mean recall 76.1% of control group recall), but did not differ from controls on FTT performance. Correspondingly there was a significant regression between the continuous variable of recency of ecstasy/MDMA use and RBMT performance. However, there was an interaction between ecstasy/MDMA use and subsequent other drug use. Controls had similar RBMT scores to recent ecstasy/MDMA users who did not take other drugs 48 – 24 hours before testing, but scored significantly better than recent ecstasy/MDMA users who took various other drugs (mainly cannabis) 48 – 24 hours before testing. For both tasks the control, recent ecstasy/MDMA and abstinent ecstasy/MDMA users did not differ in their change of performance across 24 hours; there was thus no evidence that ecstasy/MDMA impairs the memory consolidation function of sleep for either declarative or procedural memory. For participants in the two ecstasy/MDMA groups greater lifetime consumption of ecstasy tablets was associated with significantly more deficits in procedural memory. Furthermore, greater lifetime consumption of ecstasy tablets and of cocaine, were also associated with significantly more deficits in declarative memory. PMID:20615932

  4. Oscillatory Reinstatement Enhances Declarative Memory.

    PubMed

    Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J

    2017-10-11

    Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval

  5. Cue-independent memory impairment by reactivation-coupled interference in human declarative memory.

    PubMed

    Zhu, Zijian; Wang, Yingying; Cao, Zhijun; Chen, Biqing; Cai, Huaqian; Wu, Yanhong; Rao, Yi

    2016-10-01

    Memory is a dynamic process. While memory becomes increasingly resistant to interference after consolidation, a brief reactivation renders it unstable again. Previous studies have shown that interference, when applied upon reactivation, impairs the consolidated memory, presumably by disrupting the reconsolidation of the memory. However, attempts have failed in disrupting human declarative memory, raising a question about whether declarative memory becomes unstable upon reactivation. Here, we used a double-cue/one-target paradigm, which associated the same target with two different cues in initial memory formation. Only one cue/target association was later reactivated and treated with behavioral interference. Our results showed, for the first time, that reactivation-coupled interference caused cue-independent memory impairment that generalized to other cues associated with the memory. Critically, such memory impairment appeared immediately after interference, before the reconsolidation process was completed, suggesting that common manipulations of reactivation-coupled interference procedures might disrupt other processes in addition to the reconsolidation process in human declarative memory. Copyright © 2016. Published by Elsevier B.V.

  6. Selective sex differences in declarative memory.

    PubMed

    Maitland, Scott B; Herlitz, Agneta; Nyberg, Lars; Bäckman, Lars; Nilsson, Lars-Göran

    2004-10-01

    Sex invariance of a six-factor, higher order model of declarative memory (two second-order factors: episodic and semantic memory; and four first-order factors: recall, recognition, fluency, and knowledge) was established for 1,796 participants (35-85 years). Metric invariance of first- and second-order factor loadings across sex was demonstrated. At the second-order level, a female advantage was observed for both episodic and semantic memory. At the first-order level, sex differences in episodic memory were apparent for both recall and recognition, whereas the differences in semantic memory were driven by a female superiority in fluency. Additional tests of sex differences in three age groups (35-50, 55-65, and 70-85 years of age) indicated that the female superiority in declarative memory diminished with advancing age. The factor-specific sex differences are discussed in relation to sex differences in hippocampal function.

  7. Impairing existing declarative memory in humans by disrupting reconsolidation

    PubMed Central

    Chan, Jason C. K.; LaPaglia, Jessica A.

    2013-01-01

    During the past decade, a large body of research has shown that memory traces can become labile upon retrieval and must be restabilized. Critically, interrupting this reconsolidation process can abolish a previously stable memory. Although a large number of studies have demonstrated this reconsolidation associated amnesia in nonhuman animals, the evidence for its occurrence in humans is far less compelling, especially with regard to declarative memory. In fact, reactivating a declarative memory often makes it more robust and less susceptible to subsequent disruptions. Here we show that existing declarative memories can be selectively impaired by using a noninvasive retrieval–relearning technique. In six experiments, we show that this reconsolidation-associated amnesia can be achieved 48 h after formation of the original memory, but only if relearning occurred soon after retrieval. Furthermore, the amnesic effect persists for at least 24 h, cannot be attributed solely to source confusion and is attainable only when relearning targets specific existing memories for impairment. These results demonstrate that human declarative memory can be selectively rewritten during reconsolidation. PMID:23690586

  8. Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference.

    PubMed

    Ellenbogen, Jeffrey M; Hulbert, Justin C; Stickgold, Robert; Dinges, David F; Thompson-Schill, Sharon L

    2006-07-11

    Mounting behavioral evidence in humans supports the claim that sleep leads to improvements in recently acquired, nondeclarative memories. Examples include motor-sequence learning; visual-discrimination learning; and perceptual learning of a synthetic language. In contrast, there are limited human data supporting a benefit of sleep for declarative (hippocampus-mediated) memory in humans (for review, see). This is particularly surprising given that animal models (e.g.,) and neuroimaging studies (e.g.,) predict that sleep facilitates hippocampus-based memory consolidation. We hypothesized that we could unmask the benefits of sleep by challenging the declarative memory system with competing information (interference). This is the first study to demonstrate that sleep protects declarative memories from subsequent associative interference, and it has important implications for understanding the neurobiology of memory consolidation.

  9. Susceptibility to declarative memory interference is pronounced in primary insomnia.

    PubMed

    Griessenberger, Hermann; Heib, Dominik P J; Lechinger, Julia; Luketina, Nikolina; Petzka, Marit; Moeckel, Tina; Hoedlmoser, Kerstin; Schabus, Manuel

    2013-01-01

    Sleep has been shown to stabilize memory traces and to protect against competing interference in both the procedural and declarative memory domain. Here, we focused on an interference learning paradigm by testing patients with primary insomnia (N = 27) and healthy control subjects (N = 21). In two separate experimental nights with full polysomnography it was revealed that after morning interference procedural memory performance (using a finger tapping task) was not impaired in insomnia patients while declarative memory (word pair association) was decreased following interference. More specifically, we demonstrate robust associations of central sleep spindles (in N3) with motor memory susceptibility to interference as well as (cortically more widespread) fast spindle associations with declarative memory susceptibility. In general the results suggest that insufficient sleep quality does not necessarily show up in worse overnight consolidation in insomnia but may only become evident (in the declarative memory domain) when interference is imposed.

  10. Accounting for Change in Declarative Memory: A Cognitive Neuroscience Perspective

    ERIC Educational Resources Information Center

    Richmond, Jenny; Nelson, Charles A.

    2007-01-01

    The medial temporal lobe memory system matures relatively early and supports rudimentary declarative memory in young infants. There is considerable development, however, in the memory processes that underlie declarative memory performance during infancy. Here we consider age-related changes in encoding, retention, and retrieval in the context of…

  11. Prose memory deficits associated with schizophrenia.

    PubMed

    Lee, Tatia M C; Chan, Michelle W C; Chan, Chetwyn C H; Gao, Junling; Wang, Kai; Chen, Eric Y H

    2006-01-31

    Memory of contextual information is essential to one's quality of living. This study investigated if the different components of prose memory, across three recall conditions: first learning trial immediate recall, fifth learning trial immediate recall, and 30-min delayed recall, are differentially impaired in people with schizophrenia, relative to healthy controls. A total of 39 patients with schizophrenia and 39 matched healthy controls were recruited. Their prose memory, in terms of recall accuracy, temporal sequence, recognition accuracy and false positives, commission of distortions, and rates of learning, forgetting, and retention were tested and compared. After controlling for the level of intelligence and depression, the patients with schizophrenia were found to commit more distortions. Furthermore, they performed poorer on recall accuracy and temporal sequence accuracy only during the first initial immediate recall. On the other hand, the rates of forgetting/retention and recognition accuracy were comparable between the two groups. These findings suggest that people with schizophrenia could be benefited by repeated exposure to the materials to be remembered. These results may have important implications for rehabilitation of verbal declarative memory deficits in schizophrenia.

  12. Binge drinking and declarative memory in university students.

    PubMed

    Parada, María; Corral, Montserrat; Caamaño-Isorna, Francisco; Mota, Nayara; Crego, Alberto; Holguín, Socorro Rodríguez; Cadaveira, Fernando

    2011-08-01

    Binge drinking (BD), which is characterized by sporadic consumption of large quantities of alcohol in short periods, is prevalent among university students. Animal studies have shown that BD is associated with damage to the hippocampus, a region of the brain that plays a key role in learning and memory. The temporal cortex undergoes structural and functional changes during adolescence. The aim of the present study was to examine the association between BD and declarative memory in male and female university students. The participants were 122 students (between 18 and 20 years of age): 62 BD (30 women) and 60 non-BD (29 women). The neuropsychological assessment included the Rey Auditory Verbal Learning Test (RAVLT) and Weschler Memory Scale-3rd ed. (WMS-III) Logical Memory subtest, to evaluate verbal declarative memory, and the WMS-III Family Pictures subtest, to measure visual declarative memory. The BD students remembered fewer words in the interference list and displayed greater proactive interference in the RAVLT; they performed worse in the Logical Memory subtest, both on immediate and delayed recall. There were no differences between the groups in performance of the Family Pictures subtest. No significant interactions were observed between BD and sex. Binge drinking is associated with poorer verbal declarative memory, regardless of sex. The findings are consistent with the vulnerability of the adolescent hippocampus to the neurotoxic effects of alcohol. Longitudinal studies will help determine the nature of this relationship, the neurodevelopmental trajectories for each sex, and the repercussions on academic performance. Copyright © 2011 by the Research Society on Alcoholism.

  13. Stress enhances reconsolidation of declarative memory.

    PubMed

    Bos, Marieke G N; Schuijer, Jantien; Lodestijn, Fleur; Beckers, Tom; Kindt, Merel

    2014-08-01

    Retrieval of negative emotional memories is often accompanied by the experience of stress. Upon retrieval, a memory trace can temporarily return into a labile state, where it is vulnerable to change. An unresolved question is whether post-retrieval stress may affect the strength of declarative memory in humans by modulating the reconsolidation process. Here, we tested in two experiments whether post-reactivation stress may affect the strength of declarative memory in humans. In both experiments, participants were instructed to learn neutral, positive and negative words. Approximately 24h later, participants received a reminder of the word list followed by exposure to the social evaluative cold pressor task (reactivation/stress group, nexp1=20; nexp2=18) or control task (reactivation/no-stress group, nexp1=23; nexp2=18). An additional control group was solely exposed to the stress task, without memory reactivation (no-reactivation/stress group, nexp1=23; nexp2=21). The next day, memory performance was tested using a free recall and a recognition task. In the first experiment we showed that participants in the reactivation/stress group recalled more words than participants in the reactivation/no-stress and no-reactivation/stress group, irrespective of valence of the word stimuli. Furthermore, participants in the reactivation/stress group made more false recognition errors. In the second experiment we replicated our observations on the free recall task for a new set of word stimuli, but we did not find any differences in false recognition. The current findings indicate that post-reactivation stress can improve declarative memory performance by modulating the process of reconsolidation. This finding contributes to our understanding why some memories are more persistent than others. Copyright © 2014. Published by Elsevier Ltd.

  14. Sleep in Children Enhances Preferentially Emotional Declarative But Not Procedural Memories

    ERIC Educational Resources Information Center

    Prehn-Kristensen, Alexander; Goder, Robert; Chirobeja, Stefania; Bressman, Inka; Ferstl, Roman; Baving, Lioba

    2009-01-01

    Although the consolidation of several memory systems is enhanced by sleep in adults, recent studies suggest that sleep supports declarative memory but not procedural memory in children. In the current study, the influence of sleep on emotional declarative memory (recognition task) and procedural memory (mirror tracing task) in 20 healthy children…

  15. Hippocampal declarative memory supports gesture production: Evidence from amnesia

    PubMed Central

    Hilliard, Caitlin; Cook, Susan Wagner; Duff, Melissa C.

    2016-01-01

    Spontaneous co-speech hand gestures provide a visuospatial representation of what is being communicated in spoken language. Although it is clear that gestures emerge from representations in memory for what is being communicated (De Ruiter, 1998; Wesp, Hesse, Keutmann, & Wheaton, 2001), the mechanism supporting the relationship between gesture and memory is unknown. Current theories of gesture production posit that action – supported by motor areas of the brain – is key in determining whether gestures are produced. We propose that when and how gestures are produced is determined in part by hippocampally-mediated declarative memory. We examined the speech and gesture of healthy older adults and of memory-impaired patients with hippocampal amnesia during four discourse tasks that required accessing episodes and information from the remote past. Consistent with previous reports of impoverished spoken language in patients with hippocampal amnesia, we predicted that these patients, who have difficulty generating multifaceted declarative memory representations, may in turn have impoverished gesture production. We found that patients gestured less overall relative to healthy comparison participants, and that this was particularly evident in tasks that may rely more heavily on declarative memory. Thus, gestures do not just emerge from the motor representation activated for speaking, but are also sensitive to the representation available in hippocampal declarative memory, suggesting a direct link between memory and gesture production. PMID:27810497

  16. Normal-range verbal-declarative memory in schizophrenia.

    PubMed

    Heinrichs, R Walter; Parlar, Melissa; Pinnock, Farena

    2017-10-01

    Cognitive impairment is prevalent and related to functional outcome in schizophrenia, but a significant minority of the patient population overlaps with healthy controls on many performance measures, including declarative-verbal-memory tasks. In this study, we assessed the validity, clinical, and functional implications of normal-range (NR), verbal-declarative memory in schizophrenia. Performance normality was defined using normative data for 8 basic California Verbal Learning Test (CVLT-II; Delis, Kramer, Kaplan, & Ober, 2000) recall and recognition trials. Schizophrenia patients (n = 155) and healthy control participants (n = 74) were assessed for performance normality, defined as scores within 1 SD of the normative mean on all 8 trials, and assigned to normal- and below-NR memory groups. NR schizophrenia patients (n = 26) and control participants (n = 51) did not differ in general verbal ability, on a reading-based estimate of premorbid ability, across all 8 CVLT-II-score comparisons or in terms of intrusion and false-positive errors and auditory working memory. NR memory patients did not differ from memory-impaired patients (n = 129) in symptom severity, and both patient groups were significantly and similarly disabled in terms of functional status in the community. These results confirm a subpopulation of schizophrenia patients with normal, verbal-declarative-memory performance and no evidence of decline from higher premorbid ability levels. However, NR patients did not experience less severe psychopathology, nor did they show advantage in community adjustment relative to impaired patients. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Disrupted rapid eye movement sleep predicts poor declarative memory performance in post-traumatic stress disorder.

    PubMed

    Lipinska, Malgorzata; Timol, Ridwana; Kaminer, Debra; Thomas, Kevin G F

    2014-06-01

    Successful memory consolidation during sleep depends on healthy slow-wave and rapid eye movement sleep, and on successful transition across sleep stages. In post-traumatic stress disorder, sleep is disrupted and memory is impaired, but relations between these two variables in the psychiatric condition remain unexplored. We examined whether disrupted sleep, and consequent disrupted memory consolidation, is a mechanism underlying declarative memory deficits in post-traumatic stress disorder. We recruited three matched groups of participants: post-traumatic stress disorder (n = 16); trauma-exposed non-post-traumatic stress disorder (n = 15); and healthy control (n = 14). They completed memory tasks before and after 8 h of sleep. We measured sleep variables using sleep-adapted electroencephalography. Post-traumatic stress disorder-diagnosed participants experienced significantly less sleep efficiency and rapid eye movement sleep percentage, and experienced more awakenings and wake percentage in the second half of the night than did participants in the other two groups. After sleep, post-traumatic stress disorder-diagnosed participants retained significantly less information on a declarative memory task than controls. Rapid eye movement percentage, wake percentage and sleep efficiency correlated with retention of information over the night. Furthermore, lower rapid eye movement percentage predicted poorer retention in post-traumatic stress disorder-diagnosed individuals. Our results suggest that declarative memory consolidation is disrupted during sleep in post-traumatic stress disorder. These data are consistent with theories suggesting that sleep benefits memory consolidation via predictable neurobiological mechanisms, and that rapid eye movement disruption is more than a symptom of post-traumatic stress disorder. © 2014 European Sleep Research Society.

  18. Changes in Tryptophan Catabolite (TRYCAT) Pathway Patterning Are Associated with Mild Impairments in Declarative Memory in Schizophrenia and Deficits in Semantic and Episodic Memory Coupled with Increased False-Memory Creation in Deficit Schizophrenia.

    PubMed

    Kanchanatawan, Buranee; Hemrungrojn, Solaphat; Thika, Supaksorn; Sirivichayakul, Sunee; Ruxrungtham, Kiat; Carvalho, André F; Geffard, Michel; Anderson, George; Maes, Michael

    2018-06-01

    Evidence indicates that schizophrenia and in particular negative symptoms and deficit schizophrenia are accompanied by neurocognitive impairments and changes in the patterning of the tryptophan catabolite (TRYCAT) pathway. This cross-sectional study was carried out to examine the associations between cognitive functions (as measured with Consortium to Establish a Registry for Alzheimer's disease (CERAD)) and TRYCAT pathway patterning in patients with (n = 40) and without (n = 40) deficit schizophrenia and normal controls (n = 40). Cognitive measures were assessed with the Verbal Fluency Test (VFT), Boston Naming Test (BNT), Mini-Mental State Examination (MMSE), Word List Memory (WLM), Constructional Praxis, Word List Recall (WLRecall), and Word List Recognition (WLRecognition), while TRYCAT measurements assessed the IgA/IgM responses to noxious TRYCATs, namely quinolinic acid (QA), 3-OH-kynurenine (3HK), picolinic acid (PA), and xanthurenic (XA) acid, and more protective (PRO) TRYCATs, including kynurenic acid (KA) and anthranilic acid (AA). IgA NOX/PRO, IgM KA/3HK, and IgA/IgM NOX/PRO ratios were computed. Schizophrenia was accompanied by lower VFT and WLM, while BNT (dysnomia) and MMSE are significantly lower in multiple- than first-episode schizophrenia. Deficit schizophrenia is strongly associated with worse outcomes on VFT, MMSE, WLM, WLRecall, WLRecognition, and delayed recall savings and increased false memories. Around 40-50% of the variance in negative symptoms' scores was explained by VFT, WLM, WLRecall, and MMSE. Increases in IgA NOX/PRO, IgM KA/3HK, and/or IgA/IgM NOX/PRO ratios were associated with impairments in VFT, BNT, MMSE, WLM, WLRecall, WLRecognition, and false-memory creation. In conclusion, nondeficit schizophrenia is accompanied by mild memory impairments, while disease progression is accompanied by broader cognitive impairments. Deficit schizophrenia and negative symptoms are strongly associated with deficits in working memory, delayed

  19. A compensatory role for declarative memory in neurodevelopmental disorders

    PubMed Central

    Ullman, Michael T.; Pullman, Mariel Y.

    2015-01-01

    Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional, and because this system can learn and retain numerous types of information, functions, and tasks, it should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications. PMID:25597655

  20. Apolipoprotein ɛ4 breaks the association between declarative long-term memory and memory-based orienting of spatial attention in middle-aged individuals.

    PubMed

    Salvato, Gerardo; Patai, Eva Z; McCloud, Tayla; Nobre, Anna C

    2016-09-01

    Apolipoprotein (APOE) ɛ4 genotype has been identified as a risk factor for late-onset Alzheimer disease (AD). The memory system is mostly involved in AD, and memory deficits represent its key feature. A growing body of studies has focused on the earlier identification of cognitive dysfunctions in younger and older APOE ɛ4 carriers, but investigation on middle-aged individuals remains rare. Here we sought to investigate if the APOE ɛ4 genotype modulates declarative memory and its influences on perception in the middle of the life span. We tested 60 middle-aged individuals recruited according to their APOE allele variants (ɛ3/ɛ3, ɛ3/ɛ4, ɛ4/ɛ4) on a long-term memory-based orienting of attention task. Results showed that the APOE ɛ4 genotype impaired neither explicit memory nor memory-based orienting of spatial attention. Interestingly, however, we found that the possession of the ɛ4 allele broke the relationship between declarative long-term memory and memory-guided orienting of visuo-spatial attention, suggesting an earlier modulation exerted by pure genetic characteristics on cognition. These findings are discussed in light of possible accelerated brain ageing in middle-aged ɛ4-carriers, and earlier structural changes in the brain occurring at this stage of the lifespan. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Organizational and visual memory deficits in schizophrenia and bipolar psychoses using the Rey-Osterrieth complex figure: effects of duration of illness.

    PubMed

    Seidman, Larry J; Lanca, Margaret; Kremen, William S; Faraone, Stephen V; Tsuang, Ming T

    2003-10-01

    Verbal declarative memory deficits in schizophrenia are well documented whereas visual declarative memory is less studied. Moreover, there are limited data on whether organizational and visual memory deficits are specific to schizophrenic psychoses. We compared visual memory and organizational function in patients with chronic schizophrenia (n=79) and chronic bipolar psychotic disorder (n=14), and in healthy controls (n=84) using the Rey-Osterrieth Complex Figure (ROCF), testing whether organizational impairments (i.e., executive dysfunctions) account for the visual memory deficit. Groups were comparable on age, handedness and expected intellectual ability (based on single word reading). Using analyses of covariance with sex, parental SES and ethnicity as co-variates, patients with schizophrenia were significantly more impaired than controls on copy accuracy, on recall accuracy, and on percent accuracy of recall. Patients with schizophrenia used a more detail-oriented style on copy and recall and had significantly worse recognition memory. After co-varying IQ, copy organization was also significantly different between the groups. Results for accuracy of copy and recall were not significantly attenuated when controlling for copy organization. Duration of illness was associated with visual memory. Bipolar patients performed at an intermediate level between controls and patients with schizophrenia. The data suggest that in schizophrenia, patients have a visual memory disorder characterized by both organizational processing impairments and retention difficulties, and that there is a decline in visual memory functions with duration of illness. Further research is required to determine whether similar mechanisms underlie the neurocognitive deficits in these psychotic disorders.

  2. A compensatory role for declarative memory in neurodevelopmental disorders.

    PubMed

    Ullman, Michael T; Pullman, Mariel Y

    2015-04-01

    Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional in these disorders, and because it can learn and retain numerous types of information, functions, and tasks, this system should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. [Anterograde declarative memory and its models].

    PubMed

    Barbeau, E-J; Puel, M; Pariente, J

    2010-01-01

    Patient H.M.'s recent death provides the opportunity to highlight the importance of his contribution to a better understanding of the anterograde amnesic syndrome. The thorough study of this patient over five decades largely contributed to shape the unitary model of declarative memory. This model holds that declarative memory is a single system that cannot be fractionated into subcomponents. As a system, it depends mainly on medial temporal lobes structures. The objective of this review is to present the main characteristics of different modular models that have been proposed as alternatives to the unitary model. It is also an opportunity to present different patients, who, although less famous than H.M., helped make signification contribution to the field of memory. The characteristics of the five main modular models are presented, including the most recent one (the perceptual-mnemonic model). The differences as well as how these models converge are highlighted. Different possibilities that could help reconcile unitary and modular approaches are considered. Although modular models differ significantly in many aspects, all converge to the notion that memory for single items and semantic memory could be dissociated from memory for complex material and context-rich episodes. In addition, these models converge concerning the involvement of critical brain structures for these stages: Item and semantic memory, as well as familiarity, are thought to largely depend on anterior subhippocampal areas, while relational, context-rich memory and recollective experiences are thought to largely depend on the hippocampal formation. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  4. Declarative memory performance is associated with the number of sleep spindles in elderly women.

    PubMed

    Seeck-Hirschner, Mareen; Baier, Paul Christian; Weinhold, Sara Lena; Dittmar, Manuela; Heiermann, Steffanie; Aldenhoff, Josef B; Göder, Robert

    2012-09-01

    Recent evidence suggests that the sleep-dependent consolidation of declarative memory relies on the nonrapid eye movement rather than the rapid eye movement phase of sleep. In addition, it is known that aging is accompanied by changes in sleep and memory processes. Hence, the purpose of this study was to investigate the overnight consolidation of declarative memory in healthy elderly women. Sleep laboratory of University. Nineteen healthy elderly women (age range: 61-74 years). We used laboratory-based measures of sleep. To test declarative memory, the Rey-Osterrieth Complex Figure Test was performed. Declarative memory performance in elderly women was associated with Stage 2 sleep spindle density. Women characterized by high memory performance exhibited significantly higher numbers of sleep spindles and higher spindle density compared with women with generally low memory performance. The data strongly support theories suggesting a link between sleep spindle activity and declarative memory consolidation.

  5. The Simple Act of Choosing Influences Declarative Memory

    PubMed Central

    Murty, Vishnu P.; DuBrow, Sarah

    2015-01-01

    Individuals value the opportunity to make choices and exert control over their environment. This perceived sense of agency has been shown to have broad influences on cognition, including preference, decision-making, and valuation. However, it is unclear whether perceived control influences memory. Using a combined behavioral and functional magnetic resonance imaging approach, we investigated whether imbuing individuals with a sense of agency over their learning experience influences novel memory encoding. Participants encoded objects during a task that manipulated the opportunity to choose. Critically, unlike previous work on active learning, there was no relationship between individuals' choices and the content of memoranda. Despite this, we found that the opportunity to choose resulted in robust, reliable enhancements in declarative memory. Neuroimaging results revealed that anticipatory activation of the striatum, a region associated with decision-making, valuation, and exploration, correlated with choice-induced memory enhancements in behavior. These memory enhancements were further associated with interactions between the striatum and hippocampus. Specifically, anticipatory signals in the striatum when participants are alerted to the fact that they will have to choose one of two memoranda were associated with encoding success effects in the hippocampus on a trial-by-trial basis. The precedence of the striatal signal in these interactions suggests a modulatory relationship of the striatum over the hippocampus. These findings not only demonstrate enhanced declarative memory when individuals have perceived control over their learning but also support a novel mechanism by which these enhancements emerge. Furthermore, they demonstrate a novel context in which mesolimbic and declarative memory systems interact. PMID:25904779

  6. Long-term memory: A review and meta-analysis of studies of declarative and procedural memory in specific language impairment

    PubMed Central

    Lum, Jarrad A. G.; Conti-Ramsden, Gina

    2014-01-01

    This review examined the status of long-term memory systems in specific language impairment (SLI), in particular declarative memory and aspects of procedural memory. Studies included in the review were identified following a systematic search of the literature and findings combined using meta-analysis. This review showed individuals with SLI are poorer than age matched controls in the learning and retrieval of verbal information from the declarative memory. However, there is evidence to suggest that the problems with declarative learning and memory for verbal information in SLI might be due to difficulties with verbal working memory and language. The learning and retrieval of non-verbal information from declarative memory appears relatively intact. In relation to procedural learning and memory, evidence indicates poor implicit learning of verbal information. Findings pertaining to nonverbal information have been mixed. This review of the literature indicates there are now substantial grounds for suspecting that multiple memory systems may be implicated in the impairment. PMID:24748707

  7. Effects of dividing attention on memory for declarative and procedural aspects of tool use.

    PubMed

    Roy, Shumita; Park, Norman W

    2016-07-01

    Tool-related knowledge and skills are supported by a complex set of memory processes that are not well understood. Some aspects of tools are mediated by either declarative or procedural memory, while other aspects may rely on an interaction of both systems. Although motor skill learning is believed to be primarily supported by procedural memory, there is debate in the current literature regarding the role of declarative memory. Growing evidence suggests that declarative memory may be involved during early stages of motor skill learning, although findings have been mixed. In the current experiment, healthy, younger adults were trained to use a set of novel complex tools and were tested on their memory for various aspects of the tools. Declarative memory encoding was interrupted by dividing attention during training. Findings showed that dividing attention during training was detrimental for subsequent memory for tool attributes as well as accurate demonstration of tool use and tool grasping. However, dividing attention did not interfere with motor skill learning, suggesting that declarative memory is not essential for skill learning associated with tools.

  8. Does the cholinesterase inhibitor, donepezil, benefit both declarative and non-declarative processes in mild to moderate Alzheimer's disease?

    PubMed

    Winstein, Carolee J; Bentzen, Kirk R; Boyd, Lara; Schneider, Lon S

    2007-07-01

    Previous research suggests separate neural networks for implicit (non-declarative) and explicit (declarative) memory processes. A core cognitive impairment in mild to moderate Alzheimer's disease (AD) is a pronounced declarative memory and learning deficit with relative preservation of non-declarative memory. Cholinesterase inhibitors has been purported to enhance cognitive function, and previous clinical trials consistently showed that donepezil, a reversible inhibitor of acetylcholinesterase (AChE), led to statistically significant improvements in cognition and patient function. This prospective pilot study is a randomized, double blind, placebo-controlled clinical trial investigating 10 patients with AD. Our purpose was to examine the relationship between declarative and non-declarative capability with particular emphasis on implicit sequence learning. Patients were assessed at baseline and again at 4-weeks. After participants' baseline data were obtained, each was double-blindly randomized to one of two groups: donepezil or placebo. At baseline participants were tested with two outcome measures (Serial Reaction Time Task, Alzheimer's Disease Assessment Scale-Cognitive Subscale). Participants were given either 5 mg donepezil or an identically appearing placebo to be taken nightly for 4 weeks (28 tablets), and then retested. The donepezil group demonstrated a greater likelihood of increases in both non-declarative and declarative processes. The placebo group was mixed without clearly definable trends or patterns. When the data were examined for coincidental changes in the two outcome measures together they are suggestive of a benefit from donepezil treatment for non-declarative and declarative processes.

  9. The simple act of choosing influences declarative memory.

    PubMed

    Murty, Vishnu P; DuBrow, Sarah; Davachi, Lila

    2015-04-22

    Individuals value the opportunity to make choices and exert control over their environment. This perceived sense of agency has been shown to have broad influences on cognition, including preference, decision-making, and valuation. However, it is unclear whether perceived control influences memory. Using a combined behavioral and functional magnetic resonance imaging approach, we investigated whether imbuing individuals with a sense of agency over their learning experience influences novel memory encoding. Participants encoded objects during a task that manipulated the opportunity to choose. Critically, unlike previous work on active learning, there was no relationship between individuals' choices and the content of memoranda. Despite this, we found that the opportunity to choose resulted in robust, reliable enhancements in declarative memory. Neuroimaging results revealed that anticipatory activation of the striatum, a region associated with decision-making, valuation, and exploration, correlated with choice-induced memory enhancements in behavior. These memory enhancements were further associated with interactions between the striatum and hippocampus. Specifically, anticipatory signals in the striatum when participants are alerted to the fact that they will have to choose one of two memoranda were associated with encoding success effects in the hippocampus on a trial-by-trial basis. The precedence of the striatal signal in these interactions suggests a modulatory relationship of the striatum over the hippocampus. These findings not only demonstrate enhanced declarative memory when individuals have perceived control over their learning but also support a novel mechanism by which these enhancements emerge. Furthermore, they demonstrate a novel context in which mesolimbic and declarative memory systems interact. Copyright © 2015 the authors 0270-6474/15/356255-10$15.00/0.

  10. The role of working memory and declarative memory in trace conditioning

    PubMed Central

    Connor, David A.; Gould, Thomas J.

    2017-01-01

    Translational assays of cognition that are similarly implemented in both lower and higher-order species, such as rodents and primates, provide a means to reconcile preclinical modeling of psychiatric neuropathology and clinical research. To this end, Pavlovian conditioning has provided a useful tool for investigating cognitive processes in both lab animal models and humans. This review focuses on trace conditioning, a form of Pavlovian conditioning typified by the insertion of a temporal gap (i.e., trace interval) between presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US). This review aims to discuss pre-clinical and clinical work investigating the mnemonic processes recruited for trace conditioning. Much work suggests that trace conditioning involves unique neurocognitive mechanisms to facilitate formation of trace memories in contrast to standard Pavlovian conditioning. For example, the hippocampus and prefrontal cortex (PFC) appear to play critical roles in trace conditioning. Moreover, cognitive mechanistic accounts in human studies suggest that working memory and declarative memory processes are engaged to facilitate formation of trace memories. The aim of this review is to integrate cognitive and neurobiological accounts of trace conditioning from preclinical and clinical studies to examine involvement of working and declarative memory. PMID:27422017

  11. Declarative memory and skill-related knowledge: Evidence from a case study of amnesia and implications for theories of memory.

    PubMed

    Gregory, Emma; McCloskey, Michael; Ovans, Zoe; Landau, Barbara

    2016-01-01

    Theoretical and empirical studies of memory have long been framed by a distinction between declarative and non-declarative memory. We question the sharpness of the distinction by reporting evidence from amnesic L.S.J., who despite retrograde memory losses in declarative knowledge domains, shows sparing of declarative knowledge related to premorbid skill (e.g., playing an instrument). We previously showed that L.S.J. had severe losses of retrograde declarative knowledge across areas of premorbid expertise (e.g., artists of famous works) and everyday knowledge (e.g., company names for logos). Here we present evidence that L.S.J. has sparing of what we call skill-related declarative knowledge, in four domains in which she had premorbid skill (art, music, aviation, driving). L.S.J.'s pattern of loss and sparing raises questions about the strict separation between classically-defined memory types and aligns with a recent proposal by Stanley and Krakauer [2013. Motor skill depends on knowledge of facts. Frontiers in Human Neuroscience, 7,1-11].

  12. Short Sleep Makes Declarative Memories Vulnerable to Stress in Humans

    PubMed Central

    Cedernaes, Jonathan; Rångtell, Frida H.; Axelsson, Emil K.; Yeganeh, Adine; Vogel, Heike; Broman, Jan-Erik; Dickson, Suzanne L.; Schiöth, Helgi B.; Benedict, Christian

    2015-01-01

    Study Objective: This study sought to investigate the role of nocturnal sleep duration for the retrieval of oversleep consolidated memories, both prior to and after being cognitively stressed for ∼30 minutes the next morning. Design: Participants learned object locations (declarative memory task comprising 15 card pairs) and a finger tapping sequence (procedural memory task comprising 5 digits) in the evening. After learning, participants either had a sleep opportunity of 8 hours (between ∼23:00 and ∼07:00, full sleep condition) or they could sleep between ∼03:00 and ∼07:00 (short sleep condition). Retrieval of both memory tasks was tested in the morning after each sleep condition, both before (∼08:30) and after being stressed (∼09:50). Setting: Sleep laboratory. Participants: 15 healthy young men. Results: The analyses demonstrated that oversleep memory changes did not differ between sleep conditions. However, in their short sleep condition, following stress hallmarked by increased subjective stress feelings, the men were unable to maintain their pre-stress performance on the declarative memory task, whereas their performance on the procedural memory task remained unchanged. While men felt comparably subjectively stressed by the stress intervention, overall no differences between pre- and post-stress recalls were observed following a full night of sleep. Conclusions: The findings suggest that 8-h sleep duration, within the range recommended by the US National Sleep Foundation, may not only help consolidate newly learned procedural and declarative memories, but also ensure full access to both during periods of subjective stress. Citation: Cedernaes J, Rångtell FH, Axelsson EK, Yeganeh A, Vogel H, Broman JE, Dickson SL, Schiöth HB, Benedict C. Short sleep makes declarative memories vulnerable to stress in humans. SLEEP 2015;38(12):1861–1868. PMID:26158890

  13. Temporal binding function of dorsal CA1 is critical for declarative memory formation

    PubMed Central

    Sellami, Azza; Al Abed, Alice Shaam; Brayda-Bruno, Laurent; Etchamendy, Nicole; Valério, Stéphane; Oulé, Marie; Pantaléon, Laura; Lamothe, Valérie; Potier, Mylène; Bernard, Katy; Jabourian, Maritza; Herry, Cyril; Mons, Nicole; Piazza, Pier-Vincenzo; Eichenbaum, Howard; Marighetto, Aline

    2017-01-01

    Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment. PMID:28874586

  14. Temporal binding function of dorsal CA1 is critical for declarative memory formation.

    PubMed

    Sellami, Azza; Al Abed, Alice Shaam; Brayda-Bruno, Laurent; Etchamendy, Nicole; Valério, Stéphane; Oulé, Marie; Pantaléon, Laura; Lamothe, Valérie; Potier, Mylène; Bernard, Katy; Jabourian, Maritza; Herry, Cyril; Mons, Nicole; Piazza, Pier-Vincenzo; Eichenbaum, Howard; Marighetto, Aline

    2017-09-19

    Temporal binding, the process that enables association between discontiguous stimuli in memory, and relational organization, a process that enables the flexibility of declarative memories, are both hippocampus-dependent and decline in aging. However, how these two processes are related in supporting declarative memory formation and how they are compromised in age-related memory loss remain hypothetical. We here identify a causal link between these two features of declarative memory: Temporal binding is a necessary condition for the relational organization of discontiguous events. We demonstrate that the formation of a relational memory is limited by the capability of temporal binding, which depends on dorsal (d)CA1 activity over time intervals and diminishes in aging. Conversely, relational representation is successful even in aged individuals when the demand on temporal binding is minimized, showing that relational/declarative memory per se is not impaired in aging. Thus, bridging temporal intervals by dCA1 activity is a critical foundation of relational representation, and a deterioration of this mechanism is responsible for the age-associated memory impairment.

  15. The role of sleep in human declarative memory consolidation.

    PubMed

    Alger, Sara E; Chambers, Alexis M; Cunningham, Tony; Payne, Jessica D

    2015-01-01

    Through a variety of methods, researchers have begun unraveling the mystery of why humans spend one-third of their lives asleep. Though sleep likely serves multiple functions, it has become clear that the sleeping brain offers an ideal environment for solidifying newly learned information in the brain. Sleep , which comprises a complex collection of brain states, supports the consolidation of many different types of information. It not only promotes learning and memory stabilization, but also memory reorganization that can lead to various forms of insightful behavior. As this chapter will describe, research provides ample support for these crucial cognitive functions of sleep . Focusing on the declarative memory system in humans, we review the literature regarding the benefits of sleep for both neutral and emotionally salient declarative memory. Finally, we discuss the literature regarding the impact of sleep on emotion regulation.

  16. Declarative Memory Consolidation: Mechanisms Acting during Human Sleep

    ERIC Educational Resources Information Center

    Gais, Steffen; Born, Jan

    2004-01-01

    Of late, an increasing number of studies have shown a strong relationship between sleep and memory. Here we summarize a series of our own studies in humans supporting a beneficial influence of slow-wave sleep (SWS) on declarative memory formation, and try to identify some mechanisms that might underlie this influence. Specifically, these…

  17. Exploring the Effect of Sleep and Reduced Interference on Different Forms of Declarative Memory

    PubMed Central

    Schönauer, Monika; Pawlizki, Annedore; Köck, Corinna; Gais, Steffen

    2014-01-01

    Study Objectives: Many studies have found that sleep benefits declarative memory consolidation. However, fundamental questions on the specifics of this effect remain topics of discussion. It is not clear which forms of memory are affected by sleep and whether this beneficial effect is partly mediated by passive protection against interference. Moreover, a putative correlation between the structure of sleep and its memory-enhancing effects is still being discussed. Design: In three experiments, we tested whether sleep differentially affects various forms of declarative memory. We varied verbal content (verbal/nonverbal), item type (single/associate), and recall mode (recall/recognition, cued/free recall) to examine the effect of sleep on specific memory subtypes. We compared within-subject differences in memory consolidation between intervals including sleep, active wakefulness, or quiet meditation, which reduced external as well as internal interference and rehearsal. Participants: Forty healthy adults aged 18–30 y, and 17 healthy adults aged 24–55 y with extensive meditation experience participated in the experiments. Results: All types of memory were enhanced by sleep if the sample size provided sufficient statistical power. Smaller sample sizes showed an effect of sleep if a combined measure of different declarative memory scales was used. In a condition with reduced external and internal interference, performance was equal to one with high interference. Here, memory consolidation was significantly lower than in a sleep condition. We found no correlation between sleep structure and memory consolidation. Conclusions: Sleep does not preferentially consolidate a specific kind of declarative memory, but consistently promotes overall declarative memory formation. This effect is not mediated by reduced interference. Citation: Schönauer M, Pawlizki A, Köck C, Gais S. Exploring the effect of sleep and reduced interference on different forms of declarative memory

  18. Learning and Overnight Retention in Declarative Memory in Specific Language Impairment

    PubMed Central

    Lukács, Ágnes; Kemény, Ferenc; Lum, Jarrad A. G.; Ullman, Michael T.

    2017-01-01

    We examined learning and retention in nonverbal and verbal declarative memory in Hungarian children with (n = 21) and without (n = 21) SLI. Recognition memory was tested both 10 minutes and one day after encoding. On nonverbal items, only the children with SLI improved overnight, with no resulting group differences in performance. In the verbal domain, the children with SLI consistently showed worse performance than the typically-developing children, but the two groups showed similar overnight changes. The findings suggest the possibility of spared or even enhanced declarative memory consolidation in SLI. PMID:28046095

  19. Learning and Overnight Retention in Declarative Memory in Specific Language Impairment.

    PubMed

    Lukács, Ágnes; Kemény, Ferenc; Lum, Jarrad A G; Ullman, Michael T

    2017-01-01

    We examined learning and retention in nonverbal and verbal declarative memory in Hungarian children with (n = 21) and without (n = 21) SLI. Recognition memory was tested both 10 minutes and one day after encoding. On nonverbal items, only the children with SLI improved overnight, with no resulting group differences in performance. In the verbal domain, the children with SLI consistently showed worse performance than the typically-developing children, but the two groups showed similar overnight changes. The findings suggest the possibility of spared or even enhanced declarative memory consolidation in SLI.

  20. Short Sleep Makes Declarative Memories Vulnerable to Stress in Humans.

    PubMed

    Cedernaes, Jonathan; Rångtell, Frida H; Axelsson, Emil K; Yeganeh, Adine; Vogel, Heike; Broman, Jan-Erik; Dickson, Suzanne L; Schiöth, Helgi B; Benedict, Christian

    2015-12-01

    This study sought to investigate the role of nocturnal sleep duration for the retrieval of oversleep consolidated memories, both prior to and after being cognitively stressed for ∼30 minutes the next morning. Participants learned object locations (declarative memory task comprising 15 card pairs) and a finger tapping sequence (procedural memory task comprising 5 digits) in the evening. After learning, participants either had a sleep opportunity of 8 hours (between ∼23:00 and ∼07:00, full sleep condition) or they could sleep between ∼03:00 and ∼07:00 (short sleep condition). Retrieval of both memory tasks was tested in the morning after each sleep condition, both before (∼08:30) and after being stressed (∼09:50). Sleep laboratory. 15 healthy young men. The analyses demonstrated that oversleep memory changes did not differ between sleep conditions. However, in their short sleep condition, following stress hallmarked by increased subjective stress feelings, the men were unable to maintain their pre-stress performance on the declarative memory task, whereas their performance on the procedural memory task remained unchanged. While men felt comparably subjectively stressed by the stress intervention, overall no differences between pre- and post-stress recalls were observed following a full night of sleep. The findings suggest that 8-h sleep duration, within the range recommended by the US National Sleep Foundation, may not only help consolidate newly learned procedural and declarative memories, but also ensure full access to both during periods of subjective stress. © 2015 Associated Professional Sleep Societies, LLC.

  1. Altered Intrinsic Hippocmapus Declarative Memory Network and Its Association with Impulsivity in Abstinent Heroin Dependent Subjects

    PubMed Central

    Zhai, Tian-Ye; Shao, Yong-Cong; Xie, Chun-Ming; Ye, En-Mao; Zou, Feng; Fu, Li-Ping; Li, Wen-Jun; Chen, Gang; Chen, Guang-Yu; Zhang, Zheng-Guo; Li, Shi-Jiang; Yang, Zheng

    2014-01-01

    Converging evidence suggests that addiction can be considered a disease of aberrant learning and memory with impulsive decision-making. In the past decades, numerous studies have demonstrated that drug addiction is involved in multiple memory systems such as classical conditioned drug memory, instrumental learning memory and the habitual learning memory. However, most of these studies have focused on the contributions of non-declarative memory, and declarative memory has largely been neglected in the research of addiction. Based on a recent finding that hippocampus, as a core functioning region of declarative memory, was proved biased the decision-making process based on past experiences by spreading associated reward values throughout memory. Our present study focused on the hippocampus. By utilizing seed-based network analysis on the resting-state functional MRI datasets with the seed hippocampus we tested how the intrinsic hippocampal memory network altered towards drug addiction, and examined how the functional connectivity strength within the altered hippocampal network correlated with behavioral index ‘impulsivity’. Our results demonstrated that HD group showed enhanced coherence between hippocampus which represents declarative memory system and non-declarative rewardguided learning memory system, and also showed attenuated intrinsic functional link between hippocampus and top-down control system, compared to the CN group. This alteration was furthered found to have behavioral significance over the behavioral index ‘impulsivity’ measured with Barratt Impulsiveness Scale (BIS). These results provide insights into the mechanism of declarative memory underlying the impulsive behavior in drug addiction. PMID:25008351

  2. Exploring the effect of sleep and reduced interference on different forms of declarative memory.

    PubMed

    Schönauer, Monika; Pawlizki, Annedore; Köck, Corinna; Gais, Steffen

    2014-12-01

    Many studies have found that sleep benefits declarative memory consolidation. However, fundamental questions on the specifics of this effect remain topics of discussion. It is not clear which forms of memory are affected by sleep and whether this beneficial effect is partly mediated by passive protection against interference. Moreover, a putative correlation between the structure of sleep and its memory-enhancing effects is still being discussed. In three experiments, we tested whether sleep differentially affects various forms of declarative memory. We varied verbal content (verbal/nonverbal), item type (single/associate), and recall mode (recall/recognition, cued/free recall) to examine the effect of sleep on specific memory subtypes. We compared within-subject differences in memory consolidation between intervals including sleep, active wakefulness, or quiet meditation, which reduced external as well as internal interference and rehearsal. Forty healthy adults aged 18-30 y, and 17 healthy adults aged 24-55 y with extensive meditation experience participated in the experiments. All types of memory were enhanced by sleep if the sample size provided sufficient statistical power. Smaller sample sizes showed an effect of sleep if a combined measure of different declarative memory scales was used. In a condition with reduced external and internal interference, performance was equal to one with high interference. Here, memory consolidation was significantly lower than in a sleep condition. We found no correlation between sleep structure and memory consolidation. Sleep does not preferentially consolidate a specific kind of declarative memory, but consistently promotes overall declarative memory formation. This effect is not mediated by reduced interference. © 2014 Associated Professional Sleep Societies, LLC.

  3. Non-declarative memory in the rehabilitation of amnesia.

    PubMed

    Cavaco, S; Malec, J F; Bergquist, T

    2005-09-01

    The ability of amnesic patients to learn and retain non-declarative information has been consistently demonstrated in the literature. This knowledge provided by basic cognitive neuroscience studies has been widely neglected in neuropsychological rehabilitation of memory impaired patients. This study reports the case of a 43 year old man with severe amnesia following an anterior communicating artery (ACoA) aneurysm rupture. The patient integrated a comprehensive (holistic) day treatment programme for rehabilitation of brain injury. The programme explored the advantages of using preserved non-declarative memory capacities, in the context of commonly used rehabilitation approaches (i.e. compensation for lost function and domain-specific learning). The patient's ability to learn and retain new cognitive and perceptual-motor skills was found to be critical for the patient's improved independence and successful return to work.

  4. Altered intrinsic hippocmapus declarative memory network and its association with impulsivity in abstinent heroin dependent subjects.

    PubMed

    Zhai, Tian-Ye; Shao, Yong-Cong; Xie, Chun-Ming; Ye, En-Mao; Zou, Feng; Fu, Li-Ping; Li, Wen-Jun; Chen, Gang; Chen, Guang-Yu; Zhang, Zheng-Guo; Li, Shi-Jiang; Yang, Zheng

    2014-10-01

    Converging evidence suggests that addiction can be considered a disease of aberrant learning and memory with impulsive decision-making. In the past decades, numerous studies have demonstrated that drug addiction is involved in multiple memory systems such as classical conditioned drug memory, instrumental learning memory and the habitual learning memory. However, most of these studies have focused on the contributions of non-declarative memory, and declarative memory has largely been neglected in the research of addiction. Based on a recent finding that hippocampus, as a core functioning region of declarative memory, was proved biased the decision-making process based on past experiences by spreading associated reward values throughout memory. Our present study focused on the hippocampus. By utilizing seed-based network analysis on the resting-state functional MRI datasets with the seed hippocampus we tested how the intrinsic hippocampal memory network altered toward drug addiction, and examined how the functional connectivity strength within the altered hippocampal network correlated with behavioral index 'impulsivity'. Our results demonstrated that HD group showed enhanced coherence between hippocampus which represents declarative memory system and non-declarative reward-guided learning memory system, and also showed attenuated intrinsic functional link between hippocampus and top-down control system, compared to the CN group. This alteration was furthered found to have behavioral significance over the behavioral index 'impulsivity' measured with Barratt Impulsiveness Scale (BIS). These results provide insights into the mechanism of declarative memory underlying the impulsive behavior in drug addiction. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Fornix as an imaging marker for episodic memory deficits in healthy aging and in various neurological disorders

    PubMed Central

    Douet, Vanessa; Chang, Linda

    2015-01-01

    The fornix is a part of the limbic system and constitutes the major efferent and afferent white matter tracts from the hippocampi. The underdevelopment of or injuries to the fornix are strongly associated with memory deficits. Its role in memory impairments was suggested long ago with cases of surgical forniceal transections. However, recent advances in brain imaging techniques, such as diffusion tensor imaging, have revealed that macrostructural and microstructural abnormalities of the fornix correlated highly with declarative and episodic memory performance. This structure appears to provide a robust and early imaging predictor for memory deficits not only in neurodegenerative and neuroinflammatory diseases, such as Alzheimer's disease and multiple sclerosis, but also in schizophrenia and psychiatric disorders, and during neurodevelopment and “typical” aging. The objective of the manuscript is to present a systematic review regarding published brain imaging research on the fornix, including the development of its tracts, its role in various neurological diseases, and its relationship to neurocognitive performance in human studies. PMID:25642186

  6. Contributions of Memory Circuits to Language: The Declarative/Procedural Model

    ERIC Educational Resources Information Center

    Ullman, Michael T.

    2004-01-01

    The structure of the brain and the nature of evolution suggest that, despite its uniqueness, language likely depends on brain systems that also subserve other functions. The declarative/procedural (DP) model claims that the mental lexicon of memorized word-specific knowledge depends on the largely temporal-lobe substrates of declarative memory,…

  7. [Nondeclarative memory--neuropsychological findings and neuroanatomic principles].

    PubMed

    Daum, I; Ackermann, H

    1997-03-01

    The contents of long-term memory will influence behaviour, even if the acquired knowledge or the original learning episode are not remembered. These phenomena have been termed "non-declarative" or "implicit" memory, and they are contrasted with "declarative" or "explicit" memory which is characterised by conscious search and retrieval procedures. Non-declarative memory encompasses non-associative learning, simple conditioning, priming effects as well as motor, perceptual and cognitive skill acquisition. The dissociation of both forms of memory is documented by studies in health subjects which indicated that experimental manipulations or drugs may differentially affect declarative and non-declarative memory processes. Damage to the medial temporal or the medial thalamic regions is known to result in declarative memory deficits whereas non-declarative memory is largely unaffected by such lesions. Animal research and clinical findings indicate that several components of non-declarative memory such as motor and cognitive skill acquisition or certain types of classical conditioning are dependent upon the integrity of the basal ganglia or the cerebellum. These issues are therefore of increasing importance for the understanding of extrapyramidal and cerebellar diseases. This paper presents recent neuropsychological findings and neuroanatomical data relating to the issue of non-declarative memory.

  8. Hypothalamic-pituitary-adrenal axis reactivity to psychological stress and memory in middle-aged women: high responders exhibit enhanced declarative memory performance.

    PubMed

    Domes, G; Heinrichs, M; Reichwald, U; Hautzinger, M

    2002-10-01

    According to recent studies, elevated cortisol levels are associated with impaired declarative memory performance. This specific effect of cortisol has been shown in several studies using pharmacological doses of cortisol. The present study was designed to determine the effects of endogenously stimulated cortisol secretion on memory performance in healthy middle-aged women. For psychological stress challenging, we employed the Trier Social Stress Test (TSST). Subjects were assigned to either the TSST or a non-stressful control condition. Declarative and non-declarative memory performance was measured by a combined priming-free-recall-task. No significant group differences were found for memory performance. Post hoc analyses of variance indicated that regardless of experimental condition the subjects with remarkably high cortisol increase in response to the experimental procedure (high responders) showed increased memory performance in the declarative task compared to subjects with low cortisol response (low responders). The results suggest that stress-induced cortisol failed to impair memory performance. The results are discussed with respect to gender-specific effects and modulatory effects of the sympathetic nervous system and psychological variables. Copyright 2002 Elsevier Science Ltd.

  9. No effect of odor-induced memory reactivation during REM sleep on declarative memory stability

    PubMed Central

    Cordi, Maren J.; Diekelmann, Susanne; Born, Jan; Rasch, Björn

    2014-01-01

    Memory reactivations in hippocampal brain areas are critically involved in memory consolidation processes during sleep. In particular, specific firing patterns of hippocampal place cells observed during learning are replayed during subsequent sleep and rest in rodents. In humans, experimentally inducing hippocampal memory reactivations during slow-wave sleep (but not during wakefulness) benefits consolidation and immediately stabilizes declarative memories against future interference. Importantly, spontaneous hippocampal replay activity can also be observed during rapid eye movement (REM) sleep and some authors have suggested that replay during REM sleep is related to processes of memory consolidation. However, the functional role of reactivations during REM sleep for memory stability is still unclear. Here, we reactivated memories during REM sleep and examined its consequences for the stability of declarative memories. After 3 h of early, slow-wave sleep (SWS) rich sleep, 16 healthy young adults learned a 2-D object location task in the presence of a contextual odor. During subsequent REM sleep, participants were either re-exposed to the odor or to an odorless vehicle, in a counterbalanced within subject design. Reactivation was followed by an interference learning task to probe memory stability after awakening. We show that odor-induced memory reactivation during REM sleep does not stabilize memories against future interference. We propose that the beneficial effect of reactivation during sleep on memory stability might be critically linked to processes characterizing SWS including, e.g., slow oscillatory activity, sleep spindles, or low cholinergic tone, which are required for a successful redistribution of memories from medial temporal lobe regions to neocortical long-term stores. PMID:25225474

  10. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)?

    PubMed

    Elzinga, B M; Bremner, J D

    2002-06-01

    A model for the posttraumatic stress disorder (PTSD) as a disorder of memory is presented drawing both on psychological and neurobiological data. Evidence on intrusive memories and deficits in declarative memory function in PTSD-patients is reviewed in relation to three brain areas that are involved in memory functioning and the stress response: the hippocampus, amygdala, and the prefrontal cortex. Neurobiological studies have shown that the noradrenergic stress-system is involved in enhanced encoding of emotional memories, sensitization, and fear conditioning, by way of its effects on the amygdala. Chronic stress also affects the hippocampus, a brain area involved in declarative memories, suggesting that hippocampal dysfunction may partly account for the deficits in declarative memory in PTSD-patients. Deficits in the medial prefrontal cortex, a structure that normally inhibits the amygdala, may further enhance the effects of the amygdala, thereby increasing the frequency and intensity of the traumatic memories. Thus, by way of its influence on these brain structures, exposure to severe stress may simultaneously result in strong emotional reactions and in difficulties to recall the emotional event. This model is also relevant for understanding the distinction between declarative and non-declarative memory-functions in processing trauma-related information in PTSD. Implications of our model are reviewed.

  11. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)?

    PubMed Central

    Elzinga, B.M.; Bremner, J.D.

    2017-01-01

    A model for the posttraumatic stress disorder (PTSD) as a disorder of memory is presented drawing both on psychological and neurobiological data. Evidence on intrusive memories and deficits in declarative memory function in PTSD-patients is reviewed in relation to three brain areas that are involved in memory functioning and the stress response: the hippocampus, amygdala, and the prefrontal cortex. Neurobiological studies have shown that the noradrenergic stress-system is involved in enhanced encoding of emotional memories, sensitization, and fear conditioning, by way of its effects on the amygdala. Chronic stress also affects the hippocampus, a brain area involved in declarative memories, suggesting that hippocampal dysfunction may partly account for the deficits in declarative memory in PTSD-patients. Deficits in the medial prefrontal cortex, a structure that normally inhibits the amygdala, may further enhance the effects of the amygdala, thereby increasing the frequency and intensity of the traumatic memories. Thus, by way of its influence on these brain structures, exposure to severe stress may simultaneously result in strong emotional reactions and in difficulties to recall the emotional event. This model is also relevant for understanding the distinction between declarative and non-declarative memory-functions in processing trauma-related information in PTSD. Implications of our model are reviewed. PMID:12113915

  12. Investigating the Contribution of Procedural and Declarative Memory to the Acquisition of Past Tense Morphology: Evidence from Finnish

    ERIC Educational Resources Information Center

    Kidd, Evan; Kirjavainen, Minna

    2011-01-01

    The present paper reports on a study that investigated the role of procedural and declarative memory in the acquisition of Finnish past tense morphology. Two competing models were tested. Ullman's (2004) declarative/procedural model predicts that procedural memory supports the acquisition of regular morphology, whereas declarative memory supports…

  13. [Selective alteration of the declarative memory systems in patients treated with a high number of electroconvulsive therapy sessions].

    PubMed

    Rami-González, L; Boget-Llucià, T; Bernardo, M; Marcos, T; Cañizares-Alejos, S; Penadés, R; Portella, M J; Castelví, M; Raspall, T; Salamero, M

    The reversible electrochemical effects of electroconvulsive therapy (ECT) on specific areas of the brain enable the neuroanatomical bases of some cognitive functions to be studied. In research carried out on memory systems, a selective alteration of the declarative ones has been observed after treatment with ECT. Little work has been done to explore the differential alteration of the memory subsystems in patients with a high number of ECT sessions. AIM. To study the declarative and non declarative memory system in psychiatric patients submitted to maintenance ECT treatment, with a high number of previous ECT sessions. 20 patients submitted to treatment with ECT (10 diagnosed as having depression and 10 with schizophrenia) and 20 controls, who were paired by age, sex and psychopathological diagnosis. For the evaluation of the declarative memory system, the Wechsler Memory Scale (WMS) logical memory test was used. The Hanoi Tower procedural test was employed to evaluate the non declarative system. Patients treated with ECT performed worse in the WMS logical memory test, but this was only significant in patients diagnosed as suffering from depression. No significant differences were observed in the Hanoi Tower test. A selective alteration of the declarative systems was observed in patients who had been treated with a high number of ECT sessions, while the non declarative memory systems remain unaffected.

  14. Sleep facilitates consolidation of emotional declarative memory.

    PubMed

    Hu, Peter; Stylos-Allan, Melinda; Walker, Matthew P

    2006-10-01

    Both sleep and emotion are known to modulate processes of memory consolidation, yet their interaction is poorly understood. We examined the influence of sleep on consolidation of emotionally arousing and neutral declarative memory. Subjects completed an initial study session involving arousing and neutral pictures, either in the evening or in the morning. Twelve hours later, after sleeping or staying awake, subjects performed a recognition test requiring them to discriminate between these original pictures and novel pictures by responding "remember,"know" (familiar), or "new." Selective sleep effects were observed for consolidation of emotional memory: Recognition accuracy for know judgments of arousing stimuli improved by 42% after sleep relative to wake, and recognition bias for remember judgments of these stimuli increased by 58% after sleep relative to wake (resulting in more conservative responding). These findings hold important implications for understanding of human memory processing, suggesting that the facilitation of memory for emotionally salient information may preferentially develop during sleep.

  15. Implications of the Declarative/Procedural Model for Improving Second Language Learning: The Role of Memory Enhancement Techniques

    ERIC Educational Resources Information Center

    Ullman, Michael T.; Lovelett, Jarrett T.

    2018-01-01

    The declarative/procedural (DP) model posits that the learning, storage, and use of language critically depend on two learning and memory systems in the brain: declarative memory and procedural memory. Thus, on the basis of independent research on the memory systems, the model can generate specific and often novel predictions for language. Till…

  16. Visuospatial declarative learning despite profound verbal declarative amnesia in Korsakoff's syndrome.

    PubMed

    Oudman, Erik; Postma, Albert; Nijboer, Tanja C W; Wijnia, Jan W; Van der Stigchel, Stefan

    2017-03-20

    Korsakoff's syndrome (KS) is a neuropsychiatric disorder characterised by severe amnesia. Although the presence of impairments in memory has long been acknowledged, there is a lack of knowledge about the precise characteristics of declarative memory capacities in order to implement memory rehabilitation. In this study, we investigated the extent to which patients diagnosed with KS have preserved declarative memory capacities in working memory, long-term memory encoding or long-term memory recall operations, and whether these capacities are most preserved for verbal or visuospatial content. The results of this study demonstrate that patients with KS have compromised declarative memory functioning on all memory indices. Performance was lowest for the encoding operation compared to the working memory and delayed recall operation. With respect to the content, visuospatial memory was relatively better preserved than verbal memory. All memory operations functioned suboptimally, although the most pronounced disturbance was found in verbal memory encoding. Based on the preserved declarative memory capacities in patients, visuospatial memory can form a more promising target for compensatory memory rehabilitation than verbal memory. It is therefore relevant to increase the number of spatial cues in memory rehabilitation for KS patients.

  17. Declarative and Procedural Memory in Danish Speaking Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Lum, Jarrad A. G.; Bleses, Dorthe

    2012-01-01

    It has been proposed that the language problems in specific language impairment (SLI) arise from basal ganglia abnormalities that lead to impairments with procedural and working memory but not declarative memory. In SLI, this profile of memory functioning has been hypothesized to underlie grammatical impairment but leave lexical knowledge…

  18. Dorsal CA1 interneurons contribute to acute stress-induced spatial memory deficits.

    PubMed

    Yu, Jing-Ying; Fang, Ping; Wang, Chi; Wang, Xing-Xing; Li, Kun; Gong, Qian; Luo, Ben-Yan; Wang, Xiao-Dong

    2018-06-01

    Exposure to severely stressful experiences disrupts the activity of neuronal circuits and impairs declarative memory. GABAergic interneurons coordinate neuronal network activity, but their involvement in stress-evoked memory loss remains to be elucidated. Here, we provide evidence that interneurons in area CA1 of the dorsal hippocampus partially modulate acute stress-induced memory deficits. In adult male mice, both acute forced swim stress and restraint stress impaired hippocampus-dependent spatial memory and increased the density of c-fos-positive interneurons in the dorsal CA1. Selective activation of dorsal CA1 interneurons by chemogenetics disrupted memory performance in the spatial object recognition task. In comparison, anxiety-related behavior, spatial working memory and novel object recognition memory remained intact when dorsal CA1 interneurons were overactivated. Moreover, chemogenetic activation of dorsal CA1 interneurons suppressed the activity of adjacent pyramidal neurons, whereas a single exposure to forced swim stress but not restraint stress increased the activity of CA1 pyramidal neurons. However, chemogenetic inhibition of dorsal CA1 interneurons led to spatial memory impairments and failed to attenuate acute stress-induced memory loss. These findings suggest that acute stress may overactivate interneurons in the dorsal CA1, which reduces the activity of pyramidal neurons and in turn disrupts long-term memory. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Working and strategic memory deficits in schizophrenia

    NASA Technical Reports Server (NTRS)

    Stone, M.; Gabrieli, J. D.; Stebbins, G. T.; Sullivan, E. V.

    1998-01-01

    Working memory and its contribution to performance on strategic memory tests in schizophrenia were studied. Patients (n = 18) and control participants (n = 15), all men, received tests of immediate memory (forward digit span), working memory (listening, computation, and backward digit span), and long-term strategic (free recall, temporal order, and self-ordered pointing) and nonstrategic (recognition) memory. Schizophrenia patients performed worse on all tests. Education, verbal intelligence, and immediate memory capacity did not account for deficits in working memory in schizophrenia patients. Reduced working memory capacity accounted for group differences in strategic memory but not in recognition memory. Working memory impairment may be central to the profile of impaired cognitive performance in schizophrenia and is consistent with hypothesized frontal lobe dysfunction associated with this disease. Additional medial-temporal dysfunction may account for the recognition memory deficit.

  20. Impaired event memory and recollection in a case of developmental amnesia.

    PubMed

    Rosenbaum, R S; Carson, N; Abraham, N; Bowles, B; Kwan, D; Köhler, S; Svoboda, E; Levine, B; Richards, B

    2011-10-01

    A current debate in the literature is whether all declarative memories and associated memory processes rely on the same neural substrate. Here, we show that H.C., a developmental amnesic person with selective bilateral hippocampal volume loss, has a mild deficit in personal episodic memory, and a more pronounced deficit in public event memory; semantic memory for personal and general knowledge was unimpaired. This was accompanied by a subtle difference in impairment between recollection and familiarity on lab-based tests of recognition memory. Strikingly, H.C.'s recognition did not benefit from a levels-of-processing manipulation. Thus, not all types of declarative memory and related processes can exist independently of the hippocampus even if it is damaged early in life.

  1. Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory.

    PubMed

    Murty, Vishnu P; LaBar, Kevin S; Hamilton, Derek A; Adcock, R Alison

    2011-01-01

    The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed to navigate to correct platforms while avoiding incorrect platforms. To manipulate motivational states participants were either rewarded for navigating to correct locations (approach) or punished for navigating to incorrect platforms (avoidance). Participants' skin conductance levels (SCLs) were recorded during navigation to investigate the role of physiological arousal in motivated learning. Behavioral results revealed that, overall, approach motivation enhanced and avoidance motivation impaired memory performance compared to nonmotivated spatial learning. This advantage was evident across several performance indices, including accuracy, learning rate, path length, and proximity to platform locations during probe trials. SCL analysis revealed three key findings. First, within subjects, arousal interacted with approach motivation, such that high arousal on a given trial was associated with performance deficits. In addition, across subjects, high arousal negated or reversed the benefits of approach motivation. Finally, low-performing, highly aroused participants showed SCL responses similar to those of avoidance-motivation participants, suggesting that for these individuals, opportunities for reward may evoke states of learning similar to those typically evoked by threats of punishment. These results provide a novel characterization of how approach and avoidance motivation influence declarative memory and indicate a critical and selective role for arousal in determining how reinforcement influences goal-oriented learning.

  2. Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory

    PubMed Central

    Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison

    2011-01-01

    The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed to navigate to correct platforms while avoiding incorrect platforms. To manipulate motivational states participants were either rewarded for navigating to correct locations (approach) or punished for navigating to incorrect platforms (avoidance). Participants’ skin conductance levels (SCLs) were recorded during navigation to investigate the role of physiological arousal in motivated learning. Behavioral results revealed that, overall, approach motivation enhanced and avoidance motivation impaired memory performance compared to nonmotivated spatial learning. This advantage was evident across several performance indices, including accuracy, learning rate, path length, and proximity to platform locations during probe trials. SCL analysis revealed three key findings. First, within subjects, arousal interacted with approach motivation, such that high arousal on a given trial was associated with performance deficits. In addition, across subjects, high arousal negated or reversed the benefits of approach motivation. Finally, low-performing, highly aroused participants showed SCL responses similar to those of avoidance–motivation participants, suggesting that for these individuals, opportunities for reward may evoke states of learning similar to those typically evoked by threats of punishment. These results provide a novel characterization of how approach and avoidance motivation influence declarative memory and indicate a critical and selective role for arousal in determining how reinforcement influences goal-oriented learning. PMID:22021253

  3. Verbal Memory Deficits Are Correlated with Prefrontal Hypometabolism in 18FDG PET of Recreational MDMA Users

    PubMed Central

    Bosch, Oliver G.; Wagner, Michael; Jessen, Frank; Kühn, Kai-Uwe; Joe, Alexius; Seifritz, Erich; Maier, Wolfgang; Biersack, Hans-Jürgen; Quednow, Boris B.

    2013-01-01

    Introduction 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a recreational club drug with supposed neurotoxic effects selectively on the serotonin system. MDMA users consistently exhibit memory dysfunction but there is an ongoing debate if these deficits are induced mainly by alterations in the prefrontal or mediotemporal cortex, especially the hippocampus. Thus, we investigated the relation of verbal memory deficits with alterations of regional cerebral brain glucose metabolism (rMRGlu) in recreational MDMA users. Methods Brain glucose metabolism in rest was assessed using 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18FDG PET) in 19 male recreational users of MDMA and 19 male drug-naïve controls. 18FDG PET data were correlated with memory performance assessed with a German version of the Rey Auditory Verbal Learning Test. Results As previously shown, MDMA users showed significant impairment in verbal declarative memory performance. PET scans revealed significantly decreased rMRGlu in the bilateral dorsolateral prefrontal and inferior parietal cortex, bilateral thalamus, right hippocampus, right precuneus, right cerebellum, and pons (at the level of raphe nuclei) of MDMA users. Among MDMA users, learning and recall were positively correlated with rMRGlu predominantly in bilateral frontal and parietal brain regions, while recognition was additionally related to rMRGlu in the right mediotemporal and bihemispheric lateral temporal cortex. Moreover, cumulative lifetime dose of MDMA was negatively correlated with rMRGlu in the left dorsolateral and bilateral orbital and medial PFC, left inferior parietal and right lateral temporal cortex. Conclusions Verbal learning and recall deficits of recreational MDMA users are correlated with glucose hypometabolism in prefrontal and parietal cortex, while word recognition was additionally correlated with mediotemporal hypometabolism. We conclude that memory deficits of MDMA users arise from combined

  4. Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice.

    PubMed

    Mingaud, Frédérique; Mormede, Cécile; Etchamendy, Nicole; Mons, Nicole; Niedergang, Betty; Wietrzych, Marta; Pallet, Véronique; Jaffard, Robert; Krezel, Wojciech; Higueret, Paul; Marighetto, Aline

    2008-01-02

    An increasing body of evidence indicates that the vitamin A metabolite retinoic acid (RA) plays a role in adult brain plasticity by activating gene transcription through nuclear receptors. Our previous studies in mice have shown that a moderate downregulation of retinoid-mediated transcription contributed to aging-related deficits in hippocampal long-term potentiation and long-term declarative memory (LTDM). Here, knock-out, pharmacological, and nutritional approaches were used in a series of radial-arm maze experiments with mice to further assess the hypothesis that retinoid-mediated nuclear events are causally involved in preferential degradation of hippocampal function in aging. Molecular and behavioral findings confirmed our hypothesis. First, a lifelong vitamin A supplementation, like short-term RA administration, was shown to counteract the aging-related hippocampal (but not striatal) hypoexpression of a plasticity-related retinoid target-gene, GAP43 (reverse transcription-PCR analyses, experiment 1), as well as short-term/working memory (STWM) deterioration seen particularly in organization demanding trials (STWM task, experiment 2). Second, using a two-stage paradigm of LTDM, we demonstrated that the vitamin A supplementation normalized memory encoding-induced recruitment of (hippocampo-prefrontal) declarative memory circuits, without affecting (striatal) procedural memory system activity in aged mice (Fos neuroimaging, experiment 3A) and alleviated their LTDM impairment (experiment 3B). Finally, we showed that (knock-out, experiment 4) RA receptor beta and retinoid X receptor gamma, known to be involved in STWM (Wietrzych et al., 2005), are also required for LTDM. Hence, aging-related retinoid signaling hypoexpression disrupts hippocampal cellular properties critically required for STWM organization and LTDM formation, and nutritional vitamin A supplementation represents a preventive strategy. These findings are discussed within current neurobiological

  5. Altered declarative memory in introverted middle-aged adults carrying the BDNF val66met allele.

    PubMed

    De Beaumont, Louis; Fiocco, Alexandra J; Quesnel, Geneviève; Lupien, Sonia; Poirier, Judes

    2013-09-15

    The val66met polymorphism of the brain-derived neurotrophic factor gene (BDNFMet) is associated with impaired learning/memory function, affective dysregulation and maladaptive personality traits. Here, we examine the potential relationship between the BDNFMet allele, introversion and declarative memory in middle-age adults. A total of 132 middle-aged healthy adults took part in this study that included taking a blood sample for genetic profiling, a short battery of neuropsychological tests and the NEO-Five Factor Inventory (NEO-FFI), widely used to assess the Big Five personality. Controlling for age, level of education and sex, a multiple analysis of covariance (MANCOVA) computing the effect of BDNF polymorphism on extraversion and declarative memory revealed a significant association (D1,128=4.79; p=0.03; ηp(2)=0.053). Using the Sobel Goodman Mediation Test, it was found that 25.61% of the relationship between genotype and declarative memory performance was mediated by introversion. Subsequent correlational analyses yielded a strong and significant correlation (β=0.53; p<0.001) between introversion and declarative memory specific to BDNFMet individuals. this study highlights the pertinence of further investigating gene×personality×environment interactions to account for the significant variability that is observed in cognitive function in late life. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Long-Term Memory: A Review and Meta-Analysis of Studies of Declarative and Procedural Memory in Specific Language Impairment

    ERIC Educational Resources Information Center

    Lum, Jarrad A. G.; Conti-Ramsden, Gina

    2013-01-01

    This review examined the status of long-term memory systems in specific language impairment (SLI)--declarative memory and aspects of procedural memory in particular. Studies included in the review were identified following a systematic search of the literature and findings combined using meta-analysis. This review showed that individuals with SLI…

  7. Analogous Mechanisms of Selection and Updating in Declarative and Procedural Working Memory: Experiments and a Computational Model

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Souza, Alessandra S.; Druey, Michel D.; Gade, Miriam

    2013-01-01

    The article investigates the mechanisms of selecting and updating representations in declarative and procedural working memory (WM). Declarative WM holds the objects of thought available, whereas procedural WM holds representations of what to do with these objects. Both systems consist of three embedded components: activated long-term memory, a…

  8. Influence of reward motivation on human declarative memory.

    PubMed

    Miendlarzewska, Ewa A; Bavelier, Daphne; Schwartz, Sophie

    2016-02-01

    Motivational relevance can prioritize information for memory encoding and consolidation based on reward value. In this review, we pinpoint the possible psychological and neural mechanisms by which reward promotes learning, from guiding attention to enhancing memory consolidation. We then discuss how reward value can spill-over from one conditioned stimulus to a non-conditioned stimulus. Such generalization can occur across perceptually similar items or through more complex relations, such as associative or logical inferences. Existing evidence suggests that the neurotransmitter dopamine boosts the formation of declarative memory for rewarded information and may also control the generalization of reward values. In particular, temporally-correlated activity in the hippocampus and in regions of the dopaminergic circuit may mediate value-based decisions and facilitate cross-item integration. Given the importance of generalization in learning, our review points to the need to study not only how reward affects later memory but how learned reward values may generalize to related representations and ultimately alter memory structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. No persisting effect of partial sleep curtailment on cognitive performance and declarative memory recall in adolescents.

    PubMed

    Kopasz, Marta; Loessl, Barbara; Valerius, Gabriele; Koenig, Eva; Matthaeas, Nora; Hornyak, Magdolna; Kloepfer, Corinna; Nissen, Christoph; Riemann, Dieter; Voderholzer, Ulrich

    2010-03-01

    Growing evidence indicates that sleep facilitates learning and memory processing. Sleep curtailment is increasingly common in adolescents. The aim of this study was to examine the effects of short-term sleep curtailment on declarative memory consolidation in adolescents. A randomized, cross-over study design was chosen. Twenty-two healthy subjects, aged 14-16 years, spent three consecutive nights in the sleep laboratory with a bedtime of 9 h during the first night (adaptation), 4 h during the second (partial sleep curtailment) and 9 h during the third night (recovery). The control condition consisted of three consecutive nights with bedtimes of 9 h. Both experimental conditions were separated by at least 3 weeks. The acquisition phase for the declarative tests was between 16:00 and 18:00 hours before the second night. Memory performance was examined in the morning after the recovery night. Executive function, attention and concentration were also assessed to control for any possible effects of tiredness. During the 4-h night, we observed a curtailment of 50% of non-rapid eye movement (non-REM), 5% of slow wave sleep (SWS) and 70% of REM sleep compared with the control night. Partial sleep curtailment of one night did not influence declarative memory retrieval significantly. Recall in the paired-associate word list task was correlated positively with percentage of non-REM sleep in the recovery night. Declarative memory consolidation does not appear to be influenced by short-term sleep curtailment in adolescents. This may be explained by the high ability of adolescents to compensate for acute sleep loss. The correlation between non-REM sleep and declarative memory performance supports earlier findings.

  10. Tennessee Williams: the uses of declarative memory in The Glass Menagerie.

    PubMed

    Jacobs, Daniel

    2002-01-01

    Tennessee Williams called his first great work, The Glass Menagerie, his "memory play." The situation in which Williams found himself when he began writing the play is explored, as are the ways in which he used the declarative memory of his protagonist, Tom Wingfield, to express and deal with his own painful conflicts. Williams's use of stage directions, lighting, and music to evoke memory and render it three-dimensional is described. Through a close study of The Glass Menagerie, the many uses of memory for the purposes of wish fulfillment, conflict resolution, and resilience are examined.

  11. Slow Sleep Spindle Activity, Declarative Memory, and General Cognitive Abilities in Children

    PubMed Central

    Hoedlmoser, Kerstin; Heib, Dominik P.J.; Roell, Judith; Peigneux, Philippe; Sadeh, Avi; Gruber, Georg; Schabus, Manuel

    2014-01-01

    Study Objectives: Functional interactions between sleep spindle activity, declarative memory consolidation, and general cognitive abilities in school-aged children. Design: Healthy, prepubertal children (n = 63; mean age 9.56 ± 0.76 y); ambulatory all-night polysomnography (2 nights); investigating the effect of prior learning (word pair association task; experimental night) versus nonlearning (baseline night) on sleep spindle activity; general cognitive abilities assessed using the Wechsler Intelligence Scale for Children-IV (WISC-IV). Measurements and Results: Analysis of spindle activity during nonrapid eye movement sleep (N2 and N3) evidenced predominant peaks in the slow (11-13 Hz) but not in the fast (13-15 Hz) sleep spindle frequency range (baseline and experimental night). Analyses were restricted to slow sleep spindles. Changes in spindle activity from the baseline to the experimental night were not associated with the overnight change in the number of recalled words reflecting declarative memory consolidation. Children with higher sleep spindle activity as measured at frontal, central, parietal, and occipital sites during both baseline and experimental nights exhibited higher general cognitive abilities (WISC-IV) and declarative learning efficiency (i.e., number of recalled words before and after sleep). Conclusions: Slow sleep spindles (11-13 Hz) in children age 8–11 y are associated with inter-individual differences in general cognitive abilities and learning efficiency. Citation: Hoedlmoser K, Heib DPJ, Roell J, Peigneux P, Sadeh A, Gruber G, Schabus M. Slow sleep spindle activity, declarative memory, and general cognitive abilities in children. SLEEP 2014;37(9):1501-1512. PMID:25142558

  12. Disentangling the roles of arousal and amygdala activation in emotional declarative memory

    PubMed Central

    Fernández, Guillén; Hermans, Erno J.

    2016-01-01

    A large body of evidence in animals and humans implicates the amygdala in promoting memory for arousing experiences. Although the amygdala can trigger threat-related noradrenergic-sympathetic arousal, in humans amygdala activation and noradrenergic-sympathetic arousal do not always concur. This raises the question how these two processes play a role in enhancing emotional declarative memory. This study was designed to disentangle these processes in a combined subsequent-memory/fear-conditioning paradigm with neutral items belonging to two conceptual categories as conditioned stimuli. Functional MRI, skin conductance (index of sympathetic activity), and pupil dilation (indirect index of central noradrenergic activity) were acquired throughout procedures. Recognition memory for individual items was tested 24 h later. We found that pupil dilation and skin conductance responses were higher on CS+ (associated with a shock) compared with CS− trials, irrespective of later memory for those items. By contrast, amygdala activity was only higher for CS+ items that were later confidently remembered compared with CS+ items that were later forgotten. Thus, amygdala activity and not noradrenergic-sympathetic arousal, predicted enhanced declarative item memory. This dissociation is in line with animal models stating that the amygdala integrates arousal-related neuromodulatory changes to alter mnemonic processes elsewhere in the brain. PMID:27217115

  13. Everyday and prospective memory deficits in ecstasy/polydrug users.

    PubMed

    Hadjiefthyvoulou, Florentia; Fisk, John E; Montgomery, Catharine; Bridges, Nikola

    2011-04-01

    The impact of ecstasy/polydrug use on real-world memory (i.e. everyday memory, cognitive failures and prospective memory [PM]) was investigated in a sample of 42 ecstasy/polydrug users and 31 non-ecstasy users. Laboratory-based PM tasks were administered along with self-reported measures of PM to test whether any ecstasy/polydrug-related impairment on the different aspects of PM was present. Self-reported measures of everyday memory and cognitive failures were also administered. Ecstasy/polydrug associated deficits were observed on both laboratory and self-reported measures of PM and everyday memory. The present study extends previous research by demonstrating that deficits in PM are real and cannot be simply attributed to self-misperceptions. The deficits observed reflect some general capacity underpinning both time- and event-based PM contexts and are not task specific. Among this group of ecstasy/polydrug users recreational use of cocaine was also prominently associated with PM deficits. Further research might explore the differential effects of individual illicit drugs on real-world memory.

  14. Bigger is better! Hippocampal volume and declarative memory performance in healthy young men.

    PubMed

    Pohlack, Sebastian T; Meyer, Patric; Cacciaglia, Raffaele; Liebscher, Claudia; Ridder, Stephanie; Flor, Herta

    2014-01-01

    The importance of the hippocampus for declarative memory processes is firmly established. Nevertheless, the issue of a correlation between declarative memory performance and hippocampal volume in healthy subjects still remains controversial. The aim of the present study was to investigate this relationship in more detail. For this purpose, 50 healthy young male participants performed the California Verbal Learning Test. Hippocampal volume was assessed by manual segmentation of high-resolution 3D magnetic resonance images. We found a significant positive correlation between putatively hippocampus-dependent memory measures like short-delay retention, long-delay retention and discriminability and percent hippocampal volume. No significant correlation with measures related to executive processes was found. In addition, percent amygdala volume was not related to any of these measures. Our data advance previous findings reported in studies of brain-damaged individuals in a large and homogeneous young healthy sample and are important for theories on the neural basis of episodic memory.

  15. CHARACTER OF THE CHANGES IN FEAR MOTIVATED DECLARATIVE MEMORY IN THE HIGH IMMOBILIZATION "DEPRESSIVE" RATS.

    PubMed

    Nachkebia, N; Shavgulidze, M; Babilodze, M; Chkhartishvili, E; Rogava, N

    2016-10-01

    Present study investigated possible differences in the learning and memory of declarative memory task in rats selected according to the differences in immobilization response that is in high immobilization "depressive" and low immobilization "non-depressive" rats. Understanding the character of learning and memory disturbances in basal conditions of animal models of depression is still very topical for more intimate definition of the pathophysiology of major depressive disorder and appropriate searching the ways of its correction. Experiments were carried out on the adult white wild rats (with the weight 200-250 g, n=20). Selection of rats according to the level of immobilization was made by means of forced swim test. Learning and memory disturbances were studied using passive avoidance test that is fear motivated one trial declarative memory task. It was shown by us that 100% of low immobilization "non-depressive" rats remember painful stimulation and therefore they are not enter in the dark compartment during whole period of observation during testing session. Behavior of high immobilization "depressive" rats is not similar in passive avoidance camera; 50% of "depressive" rats, with long escape latency during training session (92±10 sec), remember painful stimulation during testing session and therefore they are not enter in the dark compartment during whole observation period. The remaining 50%, that are not differ significantly from the low immobility "non-depressive" rats by the latency of escape (5±1 sec) during training session, are not able to remember painful stimulation during testing session and therefore they enter in the dark compartment with shortest escape latency (6±1 sec). In conclusion, high immobility "depressive" rats perform passive avoidance declarative memory task at the chance level that is a direct indicator for the serious disturbances of declarative memory mechanisms in "depressive" rats selected in forced swim test according to the

  16. Preterm Infant Hippocampal Volumes Correlate with Later Working Memory Deficits

    ERIC Educational Resources Information Center

    Beauchamp, Miriam H.; Thompson, Deanne K.; Howard, Kelly; Doyle, Lex W.; Egan, Gary F.; Inder, Terrie E.; Anderson, Peter J.

    2008-01-01

    Children born preterm exhibit working memory deficits. These deficits may be associated with structural brain changes observed in the neonatal period. In this study, the relationship between neonatal regional brain volumes and working memory deficits at age 2 years were investigated, with a particular interest in the dorsolateral prefrontal…

  17. Measuring Working Memory Deficits in Aphasia

    ERIC Educational Resources Information Center

    Mayer, Jamie F.; Murray, Laura L.

    2012-01-01

    Purpose: Many adults with aphasia demonstrate concomitant deficits in working memory (WM), but such deficits are difficult to quantify because of a lack of validated measures as well as the complex interdependence between language and WM. We examined the feasibility, reliability, and internal consistency of an "n"-back task for…

  18. Disentangling the roles of arousal and amygdala activation in emotional declarative memory.

    PubMed

    de Voogd, Lycia D; Fernández, Guillén; Hermans, Erno J

    2016-09-01

    A large body of evidence in animals and humans implicates the amygdala in promoting memory for arousing experiences. Although the amygdala can trigger threat-related noradrenergic-sympathetic arousal, in humans amygdala activation and noradrenergic-sympathetic arousal do not always concur. This raises the question how these two processes play a role in enhancing emotional declarative memory. This study was designed to disentangle these processes in a combined subsequent-memory/fear-conditioning paradigm with neutral items belonging to two conceptual categories as conditioned stimuli. Functional MRI, skin conductance (index of sympathetic activity), and pupil dilation (indirect index of central noradrenergic activity) were acquired throughout procedures. Recognition memory for individual items was tested 24 h later. We found that pupil dilation and skin conductance responses were higher on CS+ (associated with a shock) compared with CS- trials, irrespective of later memory for those items. By contrast, amygdala activity was only higher for CS+ items that were later confidently remembered compared with CS+ items that were later forgotten. Thus, amygdala activity and not noradrenergic-sympathetic arousal, predicted enhanced declarative item memory. This dissociation is in line with animal models stating that the amygdala integrates arousal-related neuromodulatory changes to alter mnemonic processes elsewhere in the brain. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict Success of Declarative Memory Formation.

    PubMed

    Kamiński, Jan; Mamelak, Adam N; Birch, Kurtis; Mosher, Clayton P; Tagliati, Michele; Rutishauser, Ueli

    2018-05-07

    The encoding of information into long-term declarative memory is facilitated by dopamine. This process depends on hippocampal novelty signals, but it remains unknown how midbrain dopaminergic neurons are modulated by declarative-memory-based information. We recorded individual substantia nigra (SN) neurons and cortical field potentials in human patients performing a recognition memory task. We found that 25% of SN neurons were modulated by stimulus novelty. Extracellular waveform shape and anatomical location indicated that these memory-selective neurons were putatively dopaminergic. The responses of memory-selective neurons appeared 527 ms after stimulus onset, changed after a single trial, and were indicative of recognition accuracy. SN neurons phase locked to frontal cortical theta-frequency oscillations, and the extent of this coordination predicted successful memory formation. These data reveal that dopaminergic neurons in the human SN are modulated by memory signals and demonstrate a progression of information flow in the hippocampal-basal ganglia-frontal cortex loop for memory encoding. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Event-Related Potential Correlates of Declarative and Non-Declarative Sequence Knowledge

    ERIC Educational Resources Information Center

    Ferdinand, Nicola K.; Runger, Dennis; Frensch, Peter A.; Mecklinger, Axel

    2010-01-01

    The goal of the present study was to demonstrate that declarative and non-declarative knowledge acquired in an incidental sequence learning task contributes differentially to memory retrieval and leads to dissociable ERP signatures in a recognition memory task. For this purpose, participants performed a sequence learning task and were classified…

  1. Analogous selection processes in declarative and procedural working memory: N-2 list-repetition and task-repetition costs.

    PubMed

    Gade, Miriam; Souza, Alessandra S; Druey, Michel D; Oberauer, Klaus

    2017-01-01

    Working memory (WM) holds and manipulates representations for ongoing cognition. Oberauer (Psychology of Learning and Motivation, 51, 45-100, 2009) distinguishes between two analogous WM sub-systems: a declarative WM which handles the objects of thought, and a procedural WM which handles the representations of (cognitive) actions. Here, we assessed whether analogous effects are observed when participants switch between memory sets (declarative representations) and when they switch between task sets (procedural representations). One mechanism assumed to facilitate switching in procedural WM is the inhibition of previously used, but currently irrelevant task sets, as indexed by n-2 task-repetition costs (Mayr & Keele, Journal of Experimental Psychology: General, 129(1), 4-26, 2000). In this study we tested for an analogous effect in declarative WM. We assessed the evidence for n-2 list-repetition costs across eight experiments in which participants switched between memory lists to perform speeded classifications, mental arithmetic, or a local recognition test. N-2 list-repetition costs were obtained consistently in conditions assumed to increase interference between memory lists, and when lists formed chunks in long-term memory. Further analyses across experiments revealed a substantial contribution of episodic memory to n-2 list-repetition costs, thereby questioning the interpretation of n-2 repetition costs as reflecting inhibition. We reanalyzed the data of eight task-switching experiments, and observed that episodic memory also contributes to n-2 task-repetition costs. Taken together, these results show analogous processing principles in declarative and procedural WM, and question the relevance of inhibitory processes for efficient switching between mental sets.

  2. Enhancing effects of acute psychosocial stress on priming of non-declarative memory in healthy young adults.

    PubMed

    Hidalgo, Vanesa; Villada, Carolina; Almela, Mercedes; Espín, Laura; Gómez-Amor, Jesús; Salvador, Alicia

    2012-05-01

    Social stress affects cognitive processes in general, and memory performance in particular. However, the direction of these effects has not been clearly established, as it depends on several factors. Our aim was to determine the impact of the hypothalamus-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS) reactivity to psychosocial stress on short-term non-declarative memory and declarative memory performance. Fifty-two young participants (18 men, 34 women) were subjected to the Trier Social Stress Task (TSST) and a control condition in a crossover design. Implicit memory was assessed by a priming test, and explicit memory was assessed by the Rey Auditory Verbal Learning Test (RAVLT). The TSST provoked greater salivary cortisol and salivary alpha-amylase (sAA) responses than the control task. Men had a higher cortisol response to stress than women, but no sex differences were found for sAA release. Stress was associated with an enhancement of priming but did not affect declarative memory. Additionally, the enhancement on the priming test was higher in those whose sAA levels increased more in response to stress (r(48) = 0.339, p = 0.018). Our results confirm an effect of acute stress on priming, and that this effect is related to SNS activity. In addition, they suggest a different relationship between stress biomarkers and the different memory systems.

  3. Examining procedural working memory processing in obsessive-compulsive disorder.

    PubMed

    Shahar, Nitzan; Teodorescu, Andrei R; Anholt, Gideon E; Karmon-Presser, Anat; Meiran, Nachshon

    2017-07-01

    Previous research has suggested that a deficit in working memory might underlie the difficulty of obsessive-compulsive disorder (OCD) patients to control their thoughts and actions. However, a recent meta-analyses found only small effect sizes for working memory deficits in OCD. Recently, a distinction has been made between declarative and procedural working memory. Working memory in OCD was tested mostly using declarative measurements. However, OCD symptoms typically concerns actions, making procedural working-memory more relevant. Here, we tested the operation of procedural working memory in OCD. Participants with OCD and healthy controls performed a battery of choice reaction tasks under high and low procedural working memory demands. Reaction-times (RT) were estimated using ex-Gaussian distribution fitting, revealing no group differences in the size of the RT distribution tail (i.e., τ parameter), known to be sensitive to procedural working memory manipulations. Group differences, unrelated to working memory manipulations, were found in the leading-edge of the RT distribution and analyzed using a two-stage evidence accumulation model. Modeling results suggested that perceptual difficulties might underlie the current group differences. In conclusion, our results suggest that procedural working-memory processing is most likely intact in OCD, and raise a novel, yet untested assumption regarding perceptual deficits in OCD. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. The application of rules in morphology, syntax and number processing: a case of selective deficit of procedural or executive mechanisms?

    PubMed

    Macoir, Joël; Fossard, Marion; Nespoulous, Jean-Luc; Demonet, Jean-François; Bachoud-Lévi, Anne-Catherine

    2010-08-01

    Declarative memory is a long-term store for facts, concepts and words. Procedural memory subserves the learning and control of sensorimotor and cognitive skills, including the mental grammar. In this study, we report a single-case study of a mild aphasic patient who showed procedural deficits in the presence of preserved declarative memory abilities. We administered several experiments to explore rule application in morphology, syntax and number processing. Results partly support the differentiation between declarative and procedural memory. Moreover, the patient's performance varied according to the domain in which rules were to be applied, which underlines the need for more fine-grained distinctions in cognition between procedural rules.

  5. Salience of working-memory maintenance and manipulation deficits in schizophrenia

    PubMed Central

    Hill, S. K.; Griffin, G. B.; Miura, T. Kazuto; Herbener, E. S.; Sweeney, J. A.

    2011-01-01

    Background Encoding and maintenance of information in working memory, followed by internal manipulation of that information for planning adaptive behavior, are two key components of working-memory systems. Both processes have been reported to be impaired in schizophrenia, but few studies have directly compared the relative severity of these abnormalities, or the degree to which manipulation deficits might be secondary to alterations in maintenance processes. Method Clinically stable schizophrenia patients (n=25) and a demographically similar healthy comparison group (n=24) were administered a verbal span task with three levels of working-memory load. Maintenance was assessed using sequential position questions. Manipulation processes were assessed by requiring comparison of the relative sequential position of test items, which entailed simultaneous serial search strategies regarding item order. Results Both groups showed reduced accuracy and increased reaction time for manipulation compared with maintenance processing. There were significant patient impairments across working-memory loads. There was no differential deficit in manipulation processing, and effect sizes of relative deficit in the patient group were higher for maintenance than manipulation processing. Conclusions The strong correlation for maintenance and manipulation deficits suggest that impairments in the ability to internally manipulate information stored in working-memory systems are not greater than alterations in the encoding and maintaining of information in working memory and that disturbances in maintenance processing may contribute to deficits in higher-order working-memory operations. PMID:20214839

  6. The organization and neural substrates of human memory.

    PubMed

    Squire, L R

    The neurology of memory has been illuminated by parallel studies of patients with circumscribed memory impairment and animal models of human amnesia. Human amnesia can occur as an isolated cognitive deficit that impairs the ability to learn new facts and episodes. In addition, memory can be affected for material learned many years prior to the onset of amnesia. The finding that some memory abilities are intact in amnesia (e.g., skill learning, word priming, and adaptation-level effects) has suggested that memory can be divided into two or more separate processes. Declarative memory affords the ability to store information explicitly and to retrieve it later as a conscious recollection. This form of memory depends on the integrity of the structures damaged in amnesia. Other, non-declarative kinds of memory afford the ability to change as the result of experience, but the information is available only through performance. Recent studies of a favorable human case provided strong evidence that the hippocampus is a critical component of the declarative memory system. Extensive convergent and divergent projections link the hippocampus to many areas of neocortex where processing and storage of new information is likely to occur. It is perhaps by way of these connections that the hippocampus operates upon and participates in declarative representations.

  7. A flavanoid component of chocolate quickly reverses an imposed memory deficit.

    PubMed

    Knezevic, Bogdan; Komatsuzaki, Yoshimasa; de Freitas, Emily; Lukowiak, Ken

    2016-03-01

    The ability to remember is influenced by environmental and lifestyle factors, such as stress and diet. A flavanol contained in chocolate, epicatechin (Epi), has been shown to enhance long-term memory (LTM) formation in Lymnaea. Combining two stressors (low-calcium pond water and crowding) blocks learning and all forms of memory; that is, this combination of environmentally relevant stressors creates a memory-unfriendly state. We tested the hypothesis that Epi will immediately reverse the memory-unfriendly state, i.e. that snails in the memory-deficit state when trained in Epi will immediately become competent to learn and form memory. We found that Epi not only reverses the memory-deficit state but also further enhances LTM formation. Thus, a naturally occurring bioactive plant compound can overcome a memory-unfriendly state. This supports the idea that bioactive substances may mitigate memory-making deficits that, for example, occur with ageing. © 2016. Published by The Company of Biologists Ltd.

  8. Revealing past memories: proactive interference and ketamine-induced memory deficits.

    PubMed

    Chrobak, James J; Hinman, James R; Sabolek, Helen R

    2008-04-23

    Memories of events that occur often are sensitive to interference from memories of similar events. Proactive interference plays an important and often unexamined role in memory testing for spatially and temporally unique events ("episodes"). Ketamine (NMDA receptor antagonist) treatment in humans and other mammals induces a constellation of cognitive deficits, including impairments in working and episodic memory. We examined the effects of the ketamine (2.5-100 mg/kg) on the acquisition, retrieval, and retention of memory in a delayed-match-to-place radial water maze task that can be used to assess proactive interference. Ketamine (2.5-25 mg/kg, i.p.) given 20 min before the sample trial, impaired encoding. The first errors made during the test trial were predominantly to arms located spatially adjacent to the goal arm, suggesting an established albeit weakened representation. Ketamine (25-100 mg/kg) given immediately after the sample trial had no effect on retention. Ketamine given before the test trial impaired retrieval. First errors under the influence of ketamine were predominantly to the goal location of the previous session. Thus, ketamine treatment promoted proactive interference. These memory deficits were not state dependent, because ketamine treatment at both encoding and retrieval only increased the number of errors during the test session. These data demonstrate the competing influence of distinct memory representations during the performance of a memory task in the rat. Furthermore, they demonstrate the subtle disruptive effects of the NMDA antagonist ketamine on both encoding and retrieval. Specifically, ketamine treatment disrupted retrieval by promoting proactive interference from previous episodic representations.

  9. A randomized, placebo-controlled proof-of-concept, crossover trial of phenytoin for hydrocortisone-induced declarative memory changes

    PubMed Central

    Brown, E. Sherwood; Lu, Hanzhang; Denniston, Daren; Uh, Jinsoo; Thomas, Binu P.; Carmody, Thomas J.; Auchus, Richard J.; Diaz-Arrastia, Ramon; Tamminga, Carol

    2013-01-01

    Background Corticosteroid excess is associated with declarative memory impairment and hippocampal atrophy. These findings are clinically important because approximately 1% of the population receives prescription corticosteroids at any time, and major depressive disorder is associated with elevated cortisol levels and hippocampal atrophy. In animals, hippocampal changes with corticosteroids are blocked by phenytoin. The objective of the current study was to extend these preclinical findings to humans. We examined whether phenytoin attenuated the effects of hydrocortisone on declarative memory. Functional magnetic resonance imaging (fMRI) assessed task-related hippocampal activation. Methods A randomized, double-blind, placebo-controlled, within-subject crossover study was conducted in 17 healthy adult volunteers. Participants received hydrocortisone (2.5 days), phenytoin (3.5 days), both medications together, or placebo, with 21-day washouts between conditions. Differences between treatments were estimated using a mixed-effects repeated measures analysis. Results Fifteen participants had data from at least two treatment conditions and were used in the analysis. Basal cortisol levels negatively correlated with fMRI BOLD activation in the para-hippocampus with a similar trend observed in the hippocampus. Decrease in declarative memory with hydrocortisone was blocked with concomitant phenytoin administration. Relative to the placebo condition, a significant decrease in hippocampal BOLD activation was observed with hydrocortisone and phenytoin alone, and the two medications in combination. Declarative memory did not show significant correlations with hippocampal activation. Limitations The modest sample size, which limited our statistical power, was a limitation. Conclusions Findings from this pilot study suggest phenytoin attenuated effects of corticosteroids memory in humans, but potentiated the reduction in hippocampal activation. PMID:23453674

  10. Non-Declarative Sequence Learning does not Show Savings in Relearning

    PubMed Central

    Keisler, Aysha; Willingham, Daniel T.

    2007-01-01

    Researchers have utilized the savings in relearning paradigm in a variety of settings since Ebbinghaus developed the tool over a century ago. In spite of its widespread use, we do not yet understand what type(s) of memory are measurable by savings. Specifically, can savings measure both declarative and non-declarative memories? The lack of conscious recollection of the encoded material in some studies indicates that non-declarative memories may show savings effects, but as all studies to date have used declarative tasks, we cannot be certain. Here, we administer a non-declarative task and then measure savings in relearning the material declaratively. Our results show that while material outside of awareness may show savings effects, non-declarative sequence memory does not. These data highlight the important distinction between memory without awareness and non-declarative memory. PMID:17343944

  11. Non-declarative sequence learning does not show savings in relearning.

    PubMed

    Keisler, Aysha; Willingham, Daniel T

    2007-04-01

    Researchers have utilized the savings in relearning paradigm in a variety of settings since Ebbinghaus developed the tool over a century ago. In spite of its widespread use, we do not yet understand what type(s) of memory are measurable by savings. Specifically, can savings measure both declarative and non-declarative memories? The lack of conscious recollection of the encoded material in some studies indicates that non-declarative memories may show savings effects, but as all studies to date have used declarative tasks, we cannot be certain. Here, we administer a non-declarative task and then measure savings in relearning the material declaratively. Our results show that while material outside of awareness may show savings effects, non-declarative sequence memory does not. These data highlight the important distinction between memory without awareness and non-declarative memory.

  12. The Impact of Visual Memory Deficits on Academic Achievement in Children and Adolescents

    ERIC Educational Resources Information Center

    Larsen, Jessica Maria

    2011-01-01

    Memory assessment can often alert practitioners and educators to learning problems children may be experiencing. Results of a memory assessment may indicate that a child has a specific memory deficit in verbal memory, visual memory, or both. Deficits in visual or verbal modes of memory could potentially have adverse effects on academic…

  13. Memory deficit in patients with schizophrenia and posttraumatic stress disorder: relational vs item-specific memory

    PubMed Central

    Jung, Wookyoung; Lee, Seung-Hwan

    2016-01-01

    It has been well established that patients with schizophrenia have impairments in cognitive functioning and also that patients who experienced traumatic events suffer from cognitive deficits. Of the cognitive deficits revealed in schizophrenia or posttraumatic stress disorder (PTSD) patients, the current article provides a brief review of deficit in episodic memory, which is highly predictive of patients’ quality of life and global functioning. In particular, we have focused on studies that compared relational and item-specific memory performance in schizophrenia and PTSD, because measures of relational and item-specific memory are considered the most promising constructs for immediate tangible development of clinical trial paradigm. The behavioral findings of schizophrenia are based on the tasks developed by the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative and the Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia (CNTRACS) Consortium. The findings we reviewed consistently showed that schizophrenia and PTSD are closely associated with more severe impairments in relational memory compared to item-specific memory. Candidate brain regions involved in relational memory impairment in schizophrenia and PTSD are also discussed. PMID:27274250

  14. The interaction of rhinal cortex and hippocampus in human declarative memory formation.

    PubMed

    Fell, Jürgen; Klaver, Peter; Elger, Christian E; Fernández, Guillén

    2002-01-01

    Human declarative memory formation crucially depends on processes within the medial temporal lobe (MTL). These processes can be monitored in real-time by recordings from depth electrodes implanted in the MTL of patients with epilepsy who undergo presurgical evaluation. In our studies, patients performed a word memorization task during depth EEG recording. Afterwards, the difference between event-related potentials (ERPs) corresponding to subsequently remembered versus forgotten words was analyzed. These kind of studies revealed that successful memory encoding is characterized by an early process generated by the rhinal cortex within 300 ms following stimulus onset. This rhinal process precedes a hippocampal process, which starts about 200 ms later. Further investigation revealed that the rhinal process seems to be a correlate of semantic preprocessing which supports memory formation, whereas the hippocampal process appears to be a correlate of an exclusively mnemonic operation. These studies yielded only indirect evidence for an interaction of rhinal cortex and hippocampus. Direct evidence for a memory related cooperation between both structures, however, has been found in a study analyzing so called gamma activity, EEG oscillations of around 40 Hz. This investigation showed that successful as opposed to unsuccessful memory formation is accompanied by an initial enhancement of rhinal-hippocampal phase synchronization, which is followed by a later desynchronization. Present knowledge about the function of phase synchronized gamma activity suggests that this phase coupling and decoupling initiates and later terminates communication between the two MTL structures. Phase synchronized rhinal-hippocampal gamma activity may, moreover, accomplish Hebbian synaptic modifications and thus provide an initial step of declarative memory formation on the synaptic level.

  15. Event-related potential correlates of declarative and non-declarative sequence knowledge.

    PubMed

    Ferdinand, Nicola K; Rünger, Dennis; Frensch, Peter A; Mecklinger, Axel

    2010-07-01

    The goal of the present study was to demonstrate that declarative and non-declarative knowledge acquired in an incidental sequence learning task contributes differentially to memory retrieval and leads to dissociable ERP signatures in a recognition memory task. For this purpose, participants performed a sequence learning task and were classified as verbalizers, partial verbalizers, or nonverbalizers according to their ability to verbally report the systematic response sequence. Thereafter, ERPs were recorded in a recognition memory task time-locked to sequence triplets that were either part of the previously learned sequence or not. Although all three groups executed old sequence triplets faster than new triplets in the recognition memory task, qualitatively distinct ERP patterns were found for participants with and without reportable knowledge. Verbalizers and, to a lesser extent, partial verbalizers showed an ERP correlate of recollection for parts of the incidentally learned sequence. In contrast, nonverbalizers showed a different ERP effect with a reverse polarity that might reflect priming. This indicates that an ensemble of qualitatively different processes is at work when declarative and non-declarative sequence knowledge is retrieved. By this, our findings favor a multiple-systems view postulating that explicit and implicit learning are supported by different and functionally independent systems. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Effects of medicinal plants on Alzheimer's disease and memory deficits

    PubMed Central

    Akram, Muhammad; Nawaz, Allah

    2017-01-01

    Alzheimer's disease is an age-related neurodegenerative disorder characterized by memory deficits. Various studies have been carried out to find therapeutic approaches for Alzheimer's disease. However, the proper treatment option is still not available. There is no cure for Alzheimer's disease, but symptomatic treatment may improve the memory and other dementia related problems. Traditional medicine is practiced worldwide as memory enhancer since ancient times. Natural therapy including herbs and medicinal plants has been used in the treatment of memory deficits such as dementia, amnesia, as well as Alzheimer's disease since a long time. Medicinal plants have been used in different systems of medicine, particularly Unani system of medicines and exhibited their powerful roles in the management and cure of memory disorders. Most of herbs and plants have been chemically evaluated and their efficacy has also been proven in clinical trials. However, the underlying mechanisms of actions are still on the way. In this paper, we have reviewed the role of different medicinal plants that play an important role in the treatment of Alzheimer's disease and memory deficits using conventional herbal therapy. PMID:28553349

  17. Working memory - not processing speed - mediates fluid intelligence deficits associated with attention deficit/hyperactivity disorder symptoms.

    PubMed

    Brydges, Christopher R; Ozolnieks, Krista L; Roberts, Gareth

    2017-09-01

    Attention deficit/hyperactivity disorder (ADHD) is a psychological condition characterized by inattention and hyperactivity. Cognitive deficits are commonly observed in ADHD patients, including impaired working memory, processing speed, and fluid intelligence, the three of which are theorized to be closely associated with one another. In this study, we aimed to determine if decreased fluid intelligence was associated with ADHD, and was mediated by deficits in working memory and processing speed. This study tested 142 young adults from the general population on a range of working memory, processing speed, and fluid intelligence tasks, and an ADHD self-report symptoms questionnaire. Results showed that total and hyperactive ADHD symptoms correlated significantly and negatively with fluid intelligence, but this association was fully mediated by working memory. However, inattentive symptoms were not associated with fluid intelligence. Additionally, processing speed was not associated with ADHD symptoms at all, and was not uniquely predictive of fluid intelligence. The results provide implications for working memory training programs for ADHD patients, and highlight potential differences between the neuropsychological profiles of ADHD subtypes. © 2015 The British Psychological Society.

  18. The neuroscience of positive memory deficits in depression

    PubMed Central

    Dillon, Daniel G.

    2015-01-01

    Adults with unipolar depression typically show poor episodic memory for positive material, but the neuroscientific mechanisms responsible for this deficit have not been characterized. I suggest a simple hypothesis: weak memory for positive material in depression reflects disrupted communication between the mesolimbic dopamine pathway and medial temporal lobe (MTL) memory systems during encoding. This proposal draws on basic research showing that dopamine release in the hippocampus is critical for the transition from early- to late-phase long-term potentiation (LTP) that marks the conversion of labile, short-term memories into stable, long-term memories. Neuroimaging and pharmacological data from healthy humans paint a similar picture: activation of the mesolimbic reward circuit enhances encoding and boosts retention. Unipolar depression is characterized by anhedonia–loss of pleasure–and reward circuit dysfunction, which is believed to reflect negative effects of stress on the mesolimbic dopamine pathway. Thus, I propose that the MTL is deprived of strengthening reward signals in depressed adults and memory for positive events suffers accordingly. Although other mechanisms are important, this hypothesis holds promise as an explanation for positive memory deficits in depression. PMID:26441703

  19. Repeated Labilization-Reconsolidation Processes Strengthen Declarative Memory in Humans

    PubMed Central

    Forcato, Cecilia; Rodríguez, María L. C.; Pedreira, María E.

    2011-01-01

    The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical constrains

  20. Contributions of the Medial Temporal Lobe to Declarative Memory Retrieval: Manipulating the Amount of Contextual Retrieval

    ERIC Educational Resources Information Center

    Tendolkar, Indira; Arnold, Jennifer; Petersson, Karl Magnus; Weis, Susanne; Brockhaus-Dumke, Anke; van Eijndhoven, Philip; Buitelaar, Jan; Fernandez, Guillen

    2008-01-01

    We investigated how the hippocampus and its adjacent mediotemporal structures contribute to contextual and noncontextual declarative memory retrieval by manipulating the amount of contextual information across two levels of the same contextual dimension in a source memory task. A first analysis identified medial temporal lobe (MTL) substructures…

  1. Attention and memory deficits in breast cancer survivors: implications for nursing practice and research.

    PubMed

    Frank, Jennifer Sandson; Vance, David E; Jukkala, Angela; Meneses, Karen M

    2014-10-01

    Breast cancer survivors (BCSs) commonly report deficits in attention and memory, cognitive functions crucial for daily optimal functioning. Perceived deficits are reported before, during, and after adjuvant therapy and affect quality of life throughout survivorship. Deficits of attention and memory are particularly disruptive for BCSs working or attending school who report that subtle impairment diminishes their confidence and their performance at all levels of occupation. Chemotherapy and endocrine therapy contribute to attention and memory deficits, but research findings have not fully established the extent or timing of that influence. Fortunately, potential interventions for attention and memory deficits in BCSs are promising. These include cognitive remediation therapies aimed at training for specific areas of deficit, cognitive behavioral therapies aimed at developing compensatory strategies for areas of deficit, complementary therapies, and pharmacologic therapies.

  2. Discrete memory impairments in largely pure chronic users of MDMA.

    PubMed

    Wunderli, Michael D; Vonmoos, Matthias; Fürst, Marina; Schädelin, Katrin; Kraemer, Thomas; Baumgartner, Markus R; Seifritz, Erich; Quednow, Boris B

    2017-10-01

    Chronic use of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") has repeatedly been associated with deficits in working memory, declarative memory, and executive functions. However, previous findings regarding working memory and executive function are inconclusive yet, as in most studies concomitant stimulant use, which is known to affect these functions, was not adequately controlled for. Therefore, we compared the cognitive performance of 26 stimulant-free and largely pure (primary) MDMA users, 25 stimulant-using polydrug MDMA users, and 56 MDMA/stimulant-naïve controls by applying a comprehensive neuropsychological test battery. Neuropsychological tests were grouped into four cognitive domains. Recent drug use was objectively quantified by 6-month hair analyses on 17 substances and metabolites. Considerably lower mean hair concentrations of stimulants (amphetamine, methamphetamine, methylphenidate, cocaine), opioids (morphine, methadone, codeine), and hallucinogens (ketamine, 2C-B) were detected in primary compared to polydrug users, while both user groups did not differ in their MDMA hair concentration. Cohen's d effect sizes for both comparisons, i.e., primary MDMA users vs. controls and polydrug MDMA users vs. controls, were highest for declarative memory (d primary =.90, d polydrug =1.21), followed by working memory (d primary =.52, d polydrug =.96), executive functions (d primary =.46, d polydrug =.86), and attention (d primary =.23, d polydrug =.70). Thus, primary MDMA users showed strong and relatively discrete declarative memory impairments, whereas MDMA polydrug users displayed broad and unspecific cognitive impairments. Consequently, even largely pure chronic MDMA use is associated with decreased performance in declarative memory, while additional deficits in working memory and executive functions displayed by polydrug MDMA users are likely driven by stimulant co-use. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  3. Emotional and neutral declarative memory impairments and associated white matter microstructural abnormalities in adults with type 2 diabetes.

    PubMed

    Yau, Po Lai; Javier, David; Tsui, Wai; Sweat, Victoria; Bruehl, Hannah; Borod, Joan C; Convit, Antonio

    2009-12-30

    Declarative memory impairment is frequently reported among adults with type 2 diabetes mellitus (T2DM), who also demonstrate hippocampal volume reduction. Our goals were to ascertain whether emotional memory, which is mediated by neural circuits overlapping those of declarative memory, is also affected. In addition we wanted to characterize cerebral white matter (WM) involvement in T2DM. We studied 24 middle-aged and elderly patients with T2DM who were free of obvious vascular pathology or a psychiatric disorder, and 17 age- and education-matched healthy individuals with no evidence of insulin resistance. We examined emotional and neutral memory and performed a whole-brain voxelwise WM assessment utilizing diffusion tensor imaging (DTI). We found clear evidence of impairment in declarative memory among diabetic subjects and in addition found some preliminary support to suggest a possible blunting of the memory facilitation by emotional material among female but not male diabetics. This report is also the first DTI assessment among individuals with T2DM, which after accounting for overt WM damage, revealed diffuse but predominantly frontal and temporal WM microstructural abnormalities, with extensive involvement of the temporal stem. Hierarchical regression analyses demonstrated that immediate, but not delayed, emotional memory performance was explained by temporal stem FA, independent of age, poor metabolic regulation, and systolic blood pressure. Given that the temporal lobe memory networks appear to be particularly vulnerable to the deleterious effects of T2DM, this may help explain the observed memory impairments among diabetics. Future efforts should better clarify, with a larger sample, whether emotional memory is affected in adults with T2DM and whether there are clear gender effects.

  4. Visuospatial deficits in schizophrenia: central executive and memory subsystems impairments.

    PubMed

    Leiderman, Eduardo A; Strejilevich, Sergio A

    2004-06-01

    Object and spatial visual working memory are impaired in schizophrenic patients. It is not clear if the impairments reside in each memory subsystem alone or also in the central executive component that coordinates these processes. In order to elucidate which memory component is impaired, we developed a paradigm with single spatial and object working memory tasks and dual ones with two different delays (5 and 30 s). Fifteen schizophrenic patients and 14 control subjects performed these tests. Schizophrenic patients had a poorer performance compared to normal controls in all tasks and in all time delays. Both schizophrenics and controls performed significantly worse in the object task than in the spatial task. The performance was even worse in the dual task compared to the singles ones in schizophrenic patients but not in controls. These data suggest that visuospatial performance deficits in schizophrenia are due to both visuospatial memory subsystems impairments and central executive ones. The pattern of deficits observed points to a codification or evocation deficit and not to a maintenance one.

  5. Encoding, Memory, and Transcoding Deficits in Childhood Apraxia of Speech

    PubMed Central

    Shriberg, Lawrence D.; Lohmeier, Heather L.; Strand, Edythe A.; Jakielski, Kathy J.

    2013-01-01

    Purpose A central question in Childhood Apraxia of Speech (CAS) is whether the core phenotype is limited to transcoding (planning/programming) deficits or if speakers with CAS also have deficits in auditory-perceptual encoding (representational) and/or memory (storage and retrieval of representations) processes. We addressed this and other questions using responses to the Syllable Repetition Task (SRT: Shriberg et al., 2009). Method The SRT was administered to 369 individuals in four groups: (a) Typical Speech-Language (119), (b) Speech Delay-Typical Language (140), (c) Speech Delay-Language Impairment (70), and (d) idiopathic or neurogenetic CAS (40). Results CAS participants had significantly lower SRT competence, encoding, memory, and transcoding scores than controls. They were 8.3 times more likely than controls to have SRT transcoding scores below 80%. Conclusions Speakers with CAS have speech processing deficits in encoding, memory, and transcoding. The SRT currently has moderate diagnostic accuracy to identify transcoding deficits, the signature feature of CAS. PMID:22489736

  6. Working memory deficits affect risky decision-making in methamphetamine users with attention-deficit/hyperactivity disorder.

    PubMed

    Duarte, Nichole A; Woods, Steven Paul; Rooney, Alexandra; Atkinson, J Hampton; Grant, Igor

    2012-04-01

    Methamphetamine (MA) use and Attention-Deficit/Hyperactivity Disorder (ADHD) commonly co-occur and are independently associated with dysregulation of frontostriatal loops and risky decision-making; however, whether their comorbidity exacerbates risky decision-making is not known. This study evaluated 23 participants with histories of MA dependence and ADHD (MA+ADHD+), 25 subjects with MA dependence alone (MA+ADHD-), and 22 healthy adults (MA-ADHD-), who completed the Iowa Gambling Task (IGT) as part of a larger neuropsychiatric research evaluation. Results showed a significant interaction between ADHD, MA, and working memory, such that individuals with working memory deficits in the MA+ADHD+ cohort demonstrated the strongest propensity to select cards from "disadvantageous" versus "advantageous" decks on the IGT. This effect was not better explained by other psychiatric, substance use, neuromedical, or cognitive factors. Findings suggest that working memory deficits may moderate the expression of risky decision-making in MA users with ADHD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A Role for Central Nervous Growth Hormone-Releasing Hormone Signaling in the Consolidation of Declarative Memories

    PubMed Central

    Michel, Christian; Perras, Boris; Born, Jan

    2011-01-01

    Contributions of somatotropic hormonal activity to memory functions in humans, which are suggested by clinical observations, have not been systematically examined. With previous experiments precluding a direct effect of systemic growth hormone (GH) on acute memory formation, we assessed the role of central nervous somatotropic signaling in declarative memory consolidation. We examined the effect of intranasally administered growth hormone releasing-hormone (GHRH; 600 µg) that has direct access to the brain and suppresses endogenous GHRH via an ultra-short negative feedback loop. Twelve healthy young men learned word-pair associates at 2030 h and were administered GHRH and placebo, respectively, at 2100 h. Retrieval was tested after 11 hours of wakefulness. Compared to placebo, intranasal GHRH blunted GH release within 3 hours after substance administration and reduced the number of correctly recalled word-pairs by ∼12% (both P<0.05). The impairment of declarative memory consolidation was directly correlated to diminished GH concentrations (P<0.05). Procedural memory consolidation as examined by the parallel assessment of finger sequence tapping performance was not affected by GHRH administration. Our findings indicate that intranasal GHRH, by counteracting endogenous GHRH release, impairs hippocampal memory processing. They provide first evidence for a critical contribution of central nervous somatotropic activity to hippocampus-dependent memory consolidation. PMID:21850272

  8. Early postnatal effects of noopept and piracetam on declarative and procedural memory of adult male and female rats.

    PubMed

    Trofimov, S S; Voronina, T A; Guzevatykh, L S

    2005-06-01

    We studied the effect of a new nootropic dipeptide Noopept and reference nootropic preparation piracetam injected subcutaneously on days 8-20 of life on learning of alternative feeding response in a 6-arm-maze in male and female rats. Early postnatal administration of Noopept disturbed the dynamics of learning by parameters of declarative and procedural memory. Piracetam impaired learning by parameters of procedural, but not declarative memory (only in males). Both preparations decreased the ratio of successfully learned males (but not females). The observed effects were not associated with changes in locomotor activity.

  9. Working memory deficits in boys with attention-deficit/hyperactivity disorder (ADHD): the contribution of central executive and subsystem processes.

    PubMed

    Rapport, Mark D; Alderson, R Matt; Kofler, Michael J; Sarver, Dustin E; Bolden, Jennifer; Sims, Valerie

    2008-08-01

    The current study investigated contradictory findings from recent experimental and meta-analytic studies concerning working memory deficits in ADHD. Working memory refers to the cognitive ability to temporarily store and mentally manipulate limited amounts of information for use in guiding behavior. Phonological (verbal) and visuospatial (nonverbal) working memory were assessed across four memory load conditions in 23 boys (12 ADHD, 11 typically developing) using tasks based on Baddeley's (Working memory, thought, and action, Oxford University Press, New York, 2007) working memory model. The model posits separate phonological and visuospatial storage and rehearsal components that are controlled by a single attentional controller (CE: central executive). A latent variable approach was used to partial task performance related to three variables of interest: phonological buffer/rehearsal loop, visuospatial buffer/rehearsal loop, and the CE attentional controller. ADHD-related working memory deficits were apparent across all three cognitive systems--with the largest magnitude of deficits apparent in the CE--even after controlling for reading speed, nonverbal visual encoding, age, IQ, and SES.

  10. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    PubMed

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Memantine Protects Rats Treated with Intrathecal Methotrexate from Developing Spatial Memory Deficits

    PubMed Central

    Cole, Peter D.; Vijayanathan, Veena; Ali, Nafeeza F.; Wagshul, Mark E.; Tanenbaum, Eric J.; Price, Jeremy; Dalal, Vidhi; Gulinello, Maria E.

    2014-01-01

    Purpose To test whether memantine can prevent methotrexate-induced cognitive deficits in a preclinical model. Experimental Design After noting that methotrexate exposure induces prolonged elevations of the glutamate analog homocysteic acid (HCA) within cerebrospinal fluid, we tested whether intrathecal injection of HCA would produce memory deficits similar to those observed after intrathecal methotrexate. We then tested whether memantine, an antagonist of the N-methyl-D-aspartate (NMDA) subclass of glutamate receptors, could protect animals treated with clinically relevant doses of intrathecal methotrexate against developing memory deficits. Finally, we asked whether memantine affected this pathway beyond inhibiting the NMDA receptor by altering expression of the NMDA receptor or affecting concentrations of HCA or glutamate within the central nervous system. Results Four intrathecal doses of methotrexate induced deficits in spatial memory, persisting at least one month following the final injection. Intrathecal HCA was sufficient to reproduce this deficit. Concurrent administration of memantine during the period of methotrexate exposure was protective, decreasing the incidence of methotrexate-induced spatial memory deficits from 56% to 20% (P < 0.05). Memantine neither altered expression of NMDA receptors within the hippocampus nor blunted the methotrexate-induced increases in glutamate or HCA. Conclusions Excitotoxic glutamate analogs including HCA contribute to cognitive deficits observed after intrathecal methotrexate. Memantine, an NMDA receptor antagonist, reduces the incidence of cognitive deficits in rats treated with intrathecal methotrexate, and may therefore benefit patients with cancer receiving similar treatment. PMID:23833301

  12. Positive modulation of a neutral declarative memory by a threatening social event.

    PubMed

    Fernández, Rodrigo S; Bavassi, Luz; Campos, Jorge; Allegri, Ricardo F; Molina, Victor A; Forcato, Cecilia; Pedreira, María E

    2015-12-01

    Memories can be altered by negative or arousing experiences due to the activation of the stress-responsive sympatho-adrenal-medullary axis (SYM). Here, we used a neutral declarative memory that was acquired during multi-trial training to determine the effect of a threatening event on memory without emotional valence. To this end, participants received a new threatening social protocol before learning pairs of meaningless syllables and were tested either 15 min, 2 days or 8 days after acquisition. We first demonstrated that this threatening social situation activates not only the SYM axis (Experiment 1) and the hypothalamus-pituitary-adrenal axis (HPA; Experiment 2), but also, it improves the acquisition or early consolidation of the syllable pairs (Experiment 3). This improvement is not a transient effect; it can be observed after the memory is consolidated. Furthermore, this modulation increases the persistence of memory (Experiment 4). Thus, it is possible to affect memories with specific events that contain unrelated content and a different valence. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Patterns of Brain-Electrical Activity during Declarative Memory Performance in 10-Month-Old Infants

    ERIC Educational Resources Information Center

    Morasch, Katherine C.; Bell, Martha Ann

    2009-01-01

    This study of infant declarative memory concurrently examined brain-electrical activity and deferred imitation performance in 10-month-old infants. Continuous electroencephalogram (EEG) measures were collected throughout the activity-matched baseline, encoding (modeling) and retrieval (delayed test) phases of a within-subjects deferred imitation…

  14. SU30. Long-Term Memory Deficits in Schizophrenia: Are All Things Equal?

    PubMed Central

    Rossell, Susan

    2017-01-01

    Abstract Background: Kraepelin and Bleulernoted that patients with schizophrenia had significant cognitive deficits over a century ago; however, their observations with regard to long-term memory have not born out within empirical studies. They reported that episodic memory was intact but indicated that organization of memories, or semantic memory, was disordered. This study aimed to synthesize a century of research in the 2 long-term memory processes of episodic and semantic memory across the psychosis continuum: chronic patients, first-episode patients, high risk for psychosis cohorts, and persons with high schizotypy. Methods: A systematic review and meta-analysis was completed within the 2 domains of long-term memory across the psychosis continuum. Search terms included long-term memory, episodic, semantic, and derivations of these terms. The data were synthesized independently for episodic and semantic memory. Four independent populations were investigated: chronic patients, first-episode patients, high risk for psychosis cohorts, and persons with high schizotypy. Our approach followed the PRISMA guidelines. Thus, the pooled mean effect sizes are reported for 8 analyses. These effect sizes represent case cohort in comparison to a healthy control cohort. Results: The results were as follows, for episodic memory: chronic patients d = 1.12, first-episode patients d = 1.12, high risk d = 1.14, and high schizotypy d = 0.13. Thus, establishing that there is poor evidence of episodic memory deficits in persons with high schizotypy. For semantic memory, the literature showed a different pattern: chronic patients d = 1.2, first-episode patients d = 1.08, high risk d = 1.16, and high schizotypy d = 0.95. Thus, a consistent degree of semantic memory deficits across the continuum. Conclusion: The literature suggests a dissociated pattern of long-term memory deficits; whereby semantic memory abnormalities are more likely to be considered endophenotypes or

  15. Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning.

    PubMed

    Nikolin, Stevan; Loo, Colleen K; Bai, Siwei; Dokos, Socrates; Martin, Donel M

    2015-08-15

    Declarative verbal learning and memory are known to be lateralised to the dominant hemisphere and to be subserved by a network of structures, including those located in frontal and temporal regions. These structures support critical components of verbal memory, including working memory, encoding, and retrieval. Their relative functional importance in facilitating declarative verbal learning and memory, however, remains unclear. To investigate the different functional roles of these structures in subserving declarative verbal learning and memory performance by applying a more focal form of transcranial direct current stimulation, "High Definition tDCS" (HD-tDCS). Additionally, we sought to examine HD-tDCS effects and electrical field intensity distributions using computer modelling. HD-tDCS was administered to the left dorsolateral prefrontal cortex (LDLPFC), planum temporale (PT), and left medial temporal lobe (LMTL) to stimulate the hippocampus, during learning on a declarative verbal memory task. Sixteen healthy participants completed a single blind, intra-individual cross-over, sham-controlled study which used a Latin Square experimental design. Cognitive effects on working memory and sustained attention were additionally examined. HD-tDCS to the LDLPFC significantly improved the rate of verbal learning (p=0.03, η(2)=0.29) and speed of responding during working memory performance (p=0.02, η(2)=0.35), but not accuracy (p=0.12, η(2)=0.16). No effect of tDCS on verbal learning, retention, or retrieval was found for stimulation targeted to the LMTL or the PT. Secondary analyses revealed that LMTL stimulation resulted in increased recency (p=0.02, η(2)=0.31) and reduced mid-list learning effects (p=0.01, η(2)=0.39), suggesting an inhibitory effect on learning. HD-tDCS to the LDLPFC facilitates the rate of verbal learning and improved efficiency of working memory may underlie performance effects. This focal method of administrating tDCS has potential for probing

  16. Common Cognitive Deficits in Children with Attention-Deficit/Hyperactivity Disorder and Autism: Working Memory and Visual-Motor Integration

    ERIC Educational Resources Information Center

    Englund, Julia A.; Decker, Scott L.; Allen, Ryan A.; Roberts, Alycia M.

    2014-01-01

    Cognitive deficits in working memory (WM) are characteristic features of Attention-Deficit/Hyperactivity Disorder (ADHD) and autism. However, few studies have investigated cognitive deficits using a wide range of cognitive measures. We compared children with ADHD ("n" = 49) and autism ("n" = 33) with a demographically matched…

  17. Bombesin administration impairs memory and does not reverse memory deficit caused by sleep deprivation.

    PubMed

    Ferreira, L B T; Oliveira, S L B; Raya, J; Esumi, L A; Hipolide, D C

    2017-07-28

    Sleep deprivation impairs performance in emotional memory tasks, however this effect on memory is not completely understood. Possible mechanisms may involve an alteration in neurotransmission systems, as shown by the fact that many drugs that modulate neural pathways can prevent memory impairment by sleep loss. Gastrin releasing peptide (GRP) is a neuropeptide that emerged as a regulatory molecule of emotional memory through the modulation of other neurotransmission systems. Thus, the present study addressed the effect of intraperitoneal (IP) administration of bombesin (BB) (2.5, 5.0 and 10.0μg/kg), a GRP agonist, on the performance of Wistar rats in a multiple trail inhibitory avoidance (MTIA) task, after sleep deprivation, using the modified multiple platforms method (MMPM). Sleep deprived animals exhibited acquisition and retention impairment that was not prevented by BB injection. In addition, non-sleep deprived animals treated with BB before and after the training session, but not before the test, have shown a retention deficit. In summary, BB did not improve the memory impairment by sleep loss and, under normal conditions, produced a memory consolidation deficit. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The role of reduced working memory storage and processing resources in the associative memory deficit of older adults: simulation studies with younger adults.

    PubMed

    Hara, Yoko; Naveh-Benjamin, Moshe

    2015-01-01

    Previous research indicates that relative to younger adults, older adults show a larger decline in long-term memory (LTM) for associations than for the components that make up these associations. The purpose of the present study was to investigate whether we can impair associative memory performance in young adults by reducing their working memory (WM) resources, hence providing potential clues regarding the underlying causes of the associative memory deficit in older adults. With two experiments, we investigated whether we can reduce younger adults' long-term associative memory using secondary tasks in which either storage or processing WM loads were manipulated, while participants learned name-face pairs and then remembered the names, the faces, and the name-face associations. Results show that reducing either the storage or the processing resources of WM produced performance patterns of an associative long-term memory deficit in young adults. Furthermore, younger adults' associative memory deficit was a function of their performance on a working memory span task. These results indicate that one potential reason older adults have an associative deficit is a reduction in their WM resources but further research is needed to assess the mechanisms involved in age-related associative memory deficits.

  19. Memory deficits in abstinent MDMA (ecstasy) users: neuropsychological evidence of frontal dysfunction.

    PubMed

    Quednow, Boris B; Jessen, Frank; Kuhn, Kai-Uwe; Maier, Wolfgang; Daum, Irene; Wagner, Michael

    2006-05-01

    Chronic administration of the common club drug 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is associated with long-term depletion of serotonin (5-HT) and loss of 5-HT axons in the brains of rodents and non-human primates, and evidence suggests that recreational MDMA consumption may also affect the human serotonergic system. Moreover, it was consistently shown that abstinent MDMA users have memory deficits. Recently, it was supposed that these deficits are an expression of a temporal or rather hippocampal dysfunction caused by the serotonergic neurotoxicity of MDMA. The aim of this study is to examine the memory deficits of MDMA users neuropsychologically in order to evaluate the role of different brain regions. Nineteen male abstinent MDMA users, 19 male abstinent cannabis users and 19 male drug-naive control subjects were examined with a German version of the Rey Auditory Verbal Learning Test (RAVLT). MDMA users showed widespread and marked verbal memory deficits, compared to drug-naive controls as well as compared to cannabis users, whereas cannabis users did not differ from control subjects in their memory performance. MDMA users revealed impairments in learning, consolidation, recall and recognition. In addition, they also showed a worse recall consistency and strong retroactive interference whereby both measures were previously associated with frontal lobe function. There was a significant correlation between memory performance and the amount of MDMA taken. These results suggest that the memory deficits of MDMA users are not only the result of a temporal or hippocampal dysfunction, but also of a dysfunction of regions within the frontal cortex.

  20. Chronic methamphetamine exposure produces a delayed, long-lasting memory deficit.

    PubMed

    North, Ashley; Swant, Jarod; Salvatore, Michael F; Gamble-George, Joyonna; Prins, Petra; Butler, Brittany; Mittal, Mukul K; Heltsley, Rebecca; Clark, John T; Khoshbouei, Habibeh

    2013-05-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment. Whether this is due to long-term deficits in short-term memory and/or hippocampal plasticity remains unclear. Recently, we reported that METH increases baseline synaptic transmission and reduces LTP in an ex vivo preparation of the hippocampal CA1 region from young mice. In the current study, we tested the hypothesis that a repeated neurotoxic regimen of METH exposure in adolescent mice decreases hippocampal synaptic plasticity and produces a deficit in short-term memory. Contrary to our prediction, there was no change in the hippocampal plasticity or short-term memory when measured after 14 days of METH exposure. However, we found that at 7, 14, and 21 days of drug abstinence, METH-exposed mice exhibited a deficit in spatial memory, which was accompanied by a decrease in hippocampal plasticity. Our results support the interpretation that the deleterious cognitive consequences of neurotoxic levels of METH exposure may manifest and persist after drug abstinence. Therefore, therapeutic strategies should consider short-term as well as long-term consequences of methamphetamine exposure. Copyright © 2012 Wiley Periodicals, Inc.

  1. Memory functioning in children with reading disabilities and/or attention deficit/hyperactivity disorder: a clinical investigation of their working memory and long-term memory functioning.

    PubMed

    Kibby, Michelle Y; Cohen, Morris J

    2008-11-01

    We examined memory functioning in children with reading disabilities (RD), Attention deficit/hyperactivity disorder (ADHD), and RD/ADHD using a clinic sample with a clinical instrument: the Children's Memory Scale, enhancing its generalizability. Participants included 23 children with RD, 30 with ADHD, 30 with RD/ADHD, and 30 controls. Children with RD presented with reduced verbal short-term memory (STM) but intact visual STM, central executive (CE), and long-term memory (LTM) functioning. Their deficit in STM appeared specific to tasks requiring phonetic coding of material. Children with ADHD displayed intact CE and LTM functioning but reduced visual-spatial STM, especially when off stimulant medication. Children with RD/ADHD had deficits consistent with both disorders.

  2. Memory Impairment in Multiple Sclerosis is Due to a Core Deficit in Initial Learning

    PubMed Central

    DeLuca, John; Leavitt, Victoria M.; Chiaravalloti, Nancy; Wylie, Glenn

    2013-01-01

    Persons with multiple sclerosis (MS) suffer memory impairment, but research on the nature of MS-related memory problems is mixed. Some have argued for a core deficit in retrieval, while others have identified deficient initial learning as the core deficit. We used a selective reminding paradigm to determine whether deficient initial learning or delayed retrieval represents the primary memory deficit in 44 persons with MS. Brain atrophy was measured from high-resolution MRIs. Regression analyses examined the impact of brain atrophy on (a) initial learning and delayed retrieval separately, and then (b) delayed retrieval controlling for initial learning. Brain atrophy was negatively associated with both initial learning and delayed retrieval (ps < .01), but brain atrophy was unrelated to retrieval when controlling for initial learning (p > .05). In addition, brain atrophy was associated with inefficient learning across initial acquisition trials, and brain atrophy was unrelated to delayed recall among MS subjects who successfully acquired the word list (although such learning frequently required many exposures). Taken together, memory deficits in MS are a result of deficits in initial learning; moreover, initial learning mediates the relationship between brain atrophy and subsequent retrieval, thereby supporting the core learning-deficit hypothesis of memory impairment in MS. PMID:23832311

  3. Impact of Education on Memory Deficits in Subclinical Depression

    PubMed Central

    McLaren, Molly E.; Szymkowicz, Sarah M.; Kirton, Joshua W.; Dotson, Vonetta M.

    2015-01-01

    Elevated depressive symptoms are associated with cognitive deficits, while higher education protects against cognitive decline. This study was conducted to test if education level moderates the relationship between depressive symptoms and cognitive function. Seventy-three healthy, dementia-free adults aged 18–81 completed neuropsychological tests, as well as depression and anxiety questionnaires. Controlling for age, sex, and state anxiety, we found a significant interaction of depressive symptoms and education for immediate and delayed verbal memory, such that those with a higher education level performed well regardless of depressive symptomatology, whereas those with lower education and high depressive symptoms had worse performance. No effects were found for executive functioning or processing speed. Results suggest that education protects against verbal memory deficits in individuals with elevated depressive symptoms. Further research on cognitive reserve in depression-related cognitive deficits and decline is needed to understand the mechanisms behind this phenomenon. PMID:26109434

  4. The Role and Dynamic of Strengthening in the Reconsolidation Process in a Human Declarative Memory: What Decides the Fate of Recent and Older Memories?

    PubMed Central

    Pedreira, María E.

    2013-01-01

    Several reports have shown that after specific reminders are presented, consolidated memories pass from a stable state to one in which the memory is reactivated. This reactivation implies that memories are labile and susceptible to amnesic agents. This susceptibility decreases over time and leads to a re-stabilization phase usually known as reconsolidation. With respect to the biological role of reconsolidation, two functions have been proposed. First, the reconsolidation process allows new information to be integrated into the background of the original memory; second, it strengthens the original memory. We have previously demonstrated that both of these functions occur in the reconsolidation of human declarative memories. Our paradigm consisted of learning verbal material (lists of five pairs of nonsense syllables) acquired by a training process (L1-training) on Day 1 of our experiment. After this declarative memory is consolidated, it can be made labile by presenting a specific reminder. After this, the memory passes through a subsequent stabilization process. Strengthening creates a new scenario for the reconsolidation process; this function represents a new factor that may transform the dynamic of memories. First, we analyzed whether the repeated labilization-reconsolidation processes maintained the memory for longer periods of time. We showed that at least one labilization-reconsolidation process strengthens a memory via evaluation 5 days after its re-stabilization. We also demonstrated that this effect is not triggered by retrieval only. We then analyzed the way strengthening modified the effect of an amnesic agent that was presented immediately after repeated labilizations. The repeated labilization-reconsolidation processes made the memory more resistant to interference during re-stabilization. Finally, we evaluated whether the effect of strengthening may depend on the age of the memory. We found that the effect of strengthening did depend on the age of

  5. The role and dynamic of strengthening in the reconsolidation process in a human declarative memory: what decides the fate of recent and older memories?

    PubMed

    Forcato, Cecilia; Fernandez, Rodrigo S; Pedreira, María E

    2013-01-01

    Several reports have shown that after specific reminders are presented, consolidated memories pass from a stable state to one in which the memory is reactivated. This reactivation implies that memories are labile and susceptible to amnesic agents. This susceptibility decreases over time and leads to a re-stabilization phase usually known as reconsolidation. With respect to the biological role of reconsolidation, two functions have been proposed. First, the reconsolidation process allows new information to be integrated into the background of the original memory; second, it strengthens the original memory. We have previously demonstrated that both of these functions occur in the reconsolidation of human declarative memories. Our paradigm consisted of learning verbal material (lists of five pairs of nonsense syllables) acquired by a training process (L1-training) on Day 1 of our experiment. After this declarative memory is consolidated, it can be made labile by presenting a specific reminder. After this, the memory passes through a subsequent stabilization process. Strengthening creates a new scenario for the reconsolidation process; this function represents a new factor that may transform the dynamic of memories. First, we analyzed whether the repeated labilization-reconsolidation processes maintained the memory for longer periods of time. We showed that at least one labilization-reconsolidation process strengthens a memory via evaluation 5 days after its re-stabilization. We also demonstrated that this effect is not triggered by retrieval only. We then analyzed the way strengthening modified the effect of an amnesic agent that was presented immediately after repeated labilizations. The repeated labilization-reconsolidation processes made the memory more resistant to interference during re-stabilization. Finally, we evaluated whether the effect of strengthening may depend on the age of the memory. We found that the effect of strengthening did depend on the age of

  6. Opposite effects depending on learning and memory demands in dorsomedial prefrontal cortex lesioned rats performing an olfactory task.

    PubMed

    Chaillan, F A; Marchetti, E; Delfosse, F; Roman, F S; Soumireu-Mourat, B

    1997-01-01

    In this study, the functional properties of the dorsomedial prefrontal cortex (dmPFC) of the rat were examined in two olfactory tasks. In a successive cue olfactory discrimination task, dmPFC lesioned animals improved performance across sessions more rapidly than operated control animals. In an olfactory task using fixed interval training, animals with similar lesions were impaired. Both effects, although opposite, can be explained by a temporal processing deficit. The present results seem to indicate that the dmPFC is required for timing, classified as part of non-declarative memory. As reference memory improved in the lesioned animals, the finding is that the dmPFC supports non-declarative memory and thus interacts with declarative memory in the long-term formation of the associations between a particular stimulus (olfactory cue) and particular responses.

  7. Guanfacine ameliorates hypobaric hypoxia induced spatial working memory deficits.

    PubMed

    Kauser, H; Sahu, S; Kumar, S; Panjwani, U

    2014-01-17

    Hypobaric hypoxia (HH) observed at high altitude causes mild cognitive impairment specifically affecting attention and working memory. Adrenergic dysregulation and neuronal damage in prefrontal cortex (PFC) has been implicated in hypoxia induced memory deficits. Optimal stimulation of alpha 2A adrenergic receptor in PFC facilitates the spatial working memory (SWM) under the conditions of adrenergic dysregulation. Therefore the present study was designed to test the efficacy of alpha 2A adrenergic agonist, Guanfacine (GFC), to restore HH induced SWM deficits and PFC neuronal damage. The rats were exposed to chronic HH equivalent to 25,000ft for 7days in an animal decompression chamber and received daily treatment of GFC at a dose of 1mg/kg body weight via the intramuscular route during the period of exposure. The cognitive performance was assessed by Delayed Alternation Task (DAT) using T-Maze and PFC neuronal damage was studied by apoptotic and neurodegenerative markers. Percentage of correct choice decreased significantly while perseverative errors showed a significant increase after 7days HH exposure, GFC significantly ameliorated the SWM deficits and perseveration. There was a marked and significant increase in chromatin condensation, DNA fragmentation, neuronal pyknosis and fluoro Jade positive cells in layer II of the medial PFC in hypoxia exposed group, administration of GFC significantly reduced the magnitude of these changes. Modulation of adrenergic mechanisms by GFC may serve as an effective countermeasure in amelioration of prefrontal deficits and neurodegenerative changes during HH. © 2013.

  8. Assessing the associative deficit of older adults in long-term and short-term/working memory.

    PubMed

    Chen, Tina; Naveh-Benjamin, Moshe

    2012-09-01

    Older adults exhibit a deficit in associative long-term memory relative to younger adults. However, the literature is inconclusive regarding whether this deficit is attenuated in short-term/working memory. To elucidate the issue, three experiments assessed younger and older adults' item and interitem associative memory and the effects of several variables that might potentially contribute to the inconsistent pattern of results in previous studies. In Experiment 1, participants were tested on item and associative recognition memory with both long-term and short-term retention intervals in a single, continuous recognition paradigm. There was an associative deficit for older adults in the short-term and long-term intervals. Using only short-term intervals, Experiment 2 utilized mixed and blocked test designs to examine the effect of test event salience. Blocking the test did not attenuate the age-related associative deficit seen in the mixed test blocks. Finally, an age-related associative deficit was found in Experiment 3, under both sequential and simultaneous presentation conditions. Even while accounting for some methodological issues, the associative deficit of older adults is evident in short-term/working memory.

  9. Long-term consolidation of declarative memory: insight from temporal lobe epilepsy.

    PubMed

    Tramoni, Eve; Felician, Olivier; Barbeau, Emmanuel J; Guedj, Eric; Guye, Maxime; Bartolomei, Fabrice; Ceccaldi, Mathieu

    2011-03-01

    Several experiments carried out with a subset of patients with temporal lobe epilepsy have demonstrated normal memory performance at standard delays of recall (i.e. minutes to hours) but impaired performance over longer delays (i.e. days or weeks), suggesting altered long-term consolidation mechanisms. These mechanisms were specifically investigated in a group of five adult-onset pharmaco-sensitive patients with temporal lobe epilepsy, exhibiting severe episodic memory complaints despite normal performance at standardized memory assessment. In a first experiment, the magnitude of autobiographical memory loss was evaluated using retrograde personal memory tasks based on verbal and visual cues. In both conditions, results showed an unusual U-shaped pattern of personal memory impairment, encompassing most of the patients' life, sparing however, periods of the childhood, early adulthood and past several weeks. This profile was suggestive of a long-term consolidation impairment of personal episodes, adequately consolidated over 'short-term' delays but gradually forgotten thereafter. Therefore, in a subsequent experiment, patients were submitted to a protocol specifically devised to investigate short and long-term consolidation of contextually-bound experiences (episodic memory) and context-free information (semantic knowledge and single-items). In the short term (1 h), performance at both contextually-free and contextually-bound memory tasks was intact. After a 6-week delay, however, contextually-bound memory performance was impaired while contextually-free memory performance remained preserved. This effect was independent of task difficulty and the modality of retrieval (recall and recognition). Neuroimaging studies revealed the presence of mild metabolic changes within medial temporal lobe structures. Taken together, these results show the existence of different consolidation systems within declarative memory. They suggest that mild medial temporal lobe dysfunction

  10. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    PubMed

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-25

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  11. Deficits in Long-Term Recognition Memory Reveal Dissociated Subtypes in Congenital Prosopagnosia

    PubMed Central

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-01

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception. PMID:21283572

  12. Encoding, Memory, and Transcoding Deficits in Childhood Apraxia of Speech

    ERIC Educational Resources Information Center

    Shriberg, Lawrence D.; Lohmeier, Heather L.; Strand, Edythe A.; Jakielski, Kathy J.

    2012-01-01

    A central question in Childhood Apraxia of Speech (CAS) is whether the core phenotype is limited to transcoding (planning/programming) deficits or if speakers with CAS also have deficits in auditory-perceptual "encoding" (representational) and/or "memory" (storage and retrieval of representations) processes. We addressed this and other questions…

  13. Early declarative memory predicts productive language: A longitudinal study of deferred imitation and communication at 9 and 16months.

    PubMed

    Sundqvist, Annette; Nordqvist, Emelie; Koch, Felix-Sebastian; Heimann, Mikael

    2016-11-01

    Deferred imitation (DI) may be regarded as an early declarative-like memory ability shaping the infant's ability to learn about novelties and regularities of the surrounding world. In the current longitudinal study, infants were assessed at 9 and 16months. DI was assessed using five novel objects. Each infant's communicative development was measured by parental questionnaires. The results indicate stability in DI performance and early communicative development between 9 and 16months. The early achievers at 9months were still advanced at 16months. Results also identified a predictive relationship between the infant's gestural development at 9months and the infant's productive and receptive language at 16months. Moreover, the results show that declarative memory, measured with DI, and gestural communication at 9months independently predict productive language at 16months. These findings suggest a connection between the ability to form non-linguistic and linguistic mental representations. These results indicate that the child's DI ability when predominantly preverbal might be regarded as an early domain-general declarative memory ability underlying early productive language development. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Hippocampal atrophy in people with memory deficits: results from the population-based IPREA study.

    PubMed

    Ferrarini, Luca; van Lew, Baldur; Reiber, Johan H C; Gandin, Claudia; Galluzzo, Lucia; Scafato, Emanuele; Frisoni, Giovanni B; Milles, Julien; Pievani, Michela

    2014-07-01

    Clinical studies have shown that hippocampal atrophy is present before dementia in people with memory deficits and can predict dementia development. The question remains whether this association holds in the general population. This is of interest for the possible use of hippocampal atrophy to screen population for preventive interventions. The aim of this study was to assess hippocampal volume and shape abnormalities in elderly adults with memory deficits in a cross-sectional population-based study. We included individuals participating in the Italian Project on the Epidemiology of Alzheimer Disease (IPREA) study: 75 cognitively normal individuals (HC), 31 individuals with memory deficits (MEM), and 31 individuals with memory deficits not otherwise specified (MEMnos). Hippocampal volumes and shape were extracted through manual tracing and the growing and adaptive meshes (GAMEs) shape-modeling algorithm. We investigated between-group differences in hippocampal volume and shape, and correlations with memory deficits. In MEM participants, hippocampal volumes were significantly smaller than in HC and were mildly associated with worse memory scores. Memory-associated shape changes mapped to the anterior hippocampus. Shape-based analysis detected no significant difference between MEM and HC, while MEMnos showed shape changes in the posterior hippocampus compared with HC and MEM groups. These findings support the discriminant validity of hippocampal volumetry as a biomarker of memory impairment in the general population. The detection of shape changes in MEMnos but not in MEM participants suggests that shape-based biomarkers might lack sensitivity to detect Alzheimer's-like pathology in the general population.

  15. Working memory deficits in children with reading difficulties: memory span and dual task coordination.

    PubMed

    Wang, Shinmin; Gathercole, Susan E

    2013-05-01

    The current study investigated the cause of the reported problems in working memory in children with reading difficulties. Verbal and visuospatial simple and complex span tasks, and digit span and reaction times tasks performed singly and in combination, were administered to 46 children with single word reading difficulties and 45 typically developing children matched for age and nonverbal ability. Children with reading difficulties had pervasive deficits in the simple and complex span tasks and had poorer abilities to coordinate two cognitive demanding tasks. These findings indicate that working memory problems in children with reading difficulties may reflect a core deficit in the central executive. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Suppressing Irrelevant Information from Working Memory: Evidence for Domain-Specific Deficits in Poor Comprehenders

    ERIC Educational Resources Information Center

    Pimperton, Hannah; Nation, Kate

    2010-01-01

    Previous research has suggested that children with specific reading comprehension deficits (poor comprehenders) show an impaired ability to suppress irrelevant information from working memory, with this deficit detrimentally impacting on their working memory ability, and consequently limiting their reading comprehension performance. However, the…

  17. Faster forgetting contributes to impaired spatial memory in the PDAPP mouse: Deficit in memory retrieval associated with increased sensitivity to interference?

    PubMed Central

    Daumas, Stephanie; Sandin, Johan; Chen, Karen S.; Kobayashi, Dione; Tulloch, Jane; Martin, Stephen J.; Games, Dora; Morris, Richard G.M.

    2008-01-01

    Two experiments were conducted to investigate the possibility of faster forgetting by PDAPP mice (a well-established model of Alzheimer’s disease as reported by Games and colleagues in an earlier paper). Experiment 1, using mice aged 13–16 mo, confirmed the presence of a deficit in a spatial reference memory task in the water maze by hemizygous PDAPP mice relative to littermate controls. However, after overtraining to a criterion of equivalent navigational performance, a series of memory retention tests revealed faster forgetting in the PDAPP group. Very limited retraining was sufficient to reinstate good memory in both groups, indicating that their faster forgetting may be due to retrieval failure rather than trace decay. In Experiment 2, 6-mo-old PDAPP and controls were required to learn each of a series of spatial locations to criterion with their memory assessed 10 min after learning each location. No memory deficit was apparent in the PDAPP mice initially, but a deficit built up through the series of locations suggestive of increased sensitivity to interference. Faster forgetting and increased interference may each reflect a difficulty in accessing memory traces. This interpretation of one aspect of the cognitive deficit in human mutant APP mice has parallels to deficits observed in patients with Alzheimer’s disease, further supporting the validity of transgenic models of the disease. PMID:18772249

  18. Long-Term Episodic Memory in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Skowronek, Jeffrey S.; Leichtman, Michelle D.; Pillemer, David B.

    2008-01-01

    Twenty-nine grade-matched 4th-8th-grade males, 12 with attention-deficit/hyperactivity disorder (ADHD) (age M = 12.2 years, SD = 1.48), and 17 without (age M = 11.5, SD = 1.59), completed two working memory tasks (digit span and the Simon game) and three long-term episodic memory tasks (a personal event memory task, story memory task, and picture…

  19. Exploring the Effects of Working Memory on Time Perception in Attention Deficit Hyperactivity Disorder.

    PubMed

    Lee, Hom-Yi; Yang, En-Lin

    2018-01-01

    Children with attention deficit hyperactivity disorder (ADHD) are often reported to have deficits of time perception. However, there is a strong relation between performance on tasks of working memory and time perception. Thus, it is possible that the poor performance of children with ADHD on time perception results from their deficit of working memory. In this study, the working memory of participants was separately assessed; therefore, we could explore the relationship between working memory and time perception of children with ADHD. Fifty-six children with ADHD and those of healthy controls completed tasks measuring working memory and time perception. The results showed that the time discrimination ability of children with ADHD was poorer than that of controls. However, there was a strong association between time perception and working memory. After controlling working memory and intelligence, the time discrimination ability of children with ADHD was not significantly poorer than that of controls. We suggest that there is an interdependent relationship between time perception and working memory for children with ADHD.

  20. Short-term memory binding deficits in Alzheimer's disease.

    PubMed

    Parra, Mario A; Abrahams, Sharon; Fabi, Katia; Logie, Robert; Luzzi, Simona; Della Sala, Sergio

    2009-04-01

    Alzheimer's disease impairs long term memories for related events (e.g. faces with names) more than for single events (e.g. list of faces or names). Whether or not this associative or 'binding' deficit is also found in short-term memory has not yet been explored. In two experiments we investigated binding deficits in verbal short-term memory in Alzheimer's disease. Experiment 1: 23 patients with Alzheimer's disease and 23 age and education matched healthy elderly were recruited. Participants studied visual arrays of objects (six for healthy elderly and four for Alzheimer's disease patients), colours (six for healthy elderly and four for Alzheimer's disease patients), unbound objects and colours (three for healthy elderly and two for Alzheimer's disease patients in each of the two categories), or objects bound with colours (three for healthy elderly and two for Alzheimer's disease patients). They were then asked to recall the items verbally. The memory of patients with Alzheimer's disease for objects bound with colours was significantly worse than for single or unbound features whereas healthy elderly's memory for bound and unbound features did not differ. Experiment 2: 21 Alzheimer's disease patients and 20 matched healthy elderly were recruited. Memory load was increased for the healthy elderly group to eight items in the conditions assessing memory for single or unbound features and to four items in the condition assessing memory for the binding of these features. For Alzheimer's disease patients the task remained the same. This manipulation permitted the performance to be equated across groups in the conditions assessing memory for single or unbound features. The impairment in Alzheimer's disease patients in recalling bound objects reported in Experiment 1 was replicated. The binding cost was greater than that observed in the healthy elderly group, who did not differ in their performance for bound and unbound features. Alzheimer's disease grossly impairs the

  1. MDMA, serotonergic neurotoxicity, and the diverse functional deficits of recreational 'Ecstasy' users.

    PubMed

    Parrott, Andrew C

    2013-09-01

    Serotonergic neurotoxicity following MDMA is well-established in laboratory animals, and neuroimaging studies have found lower serotonin transporter (SERT) binding in abstinent Ecstasy/MDMA users. Serotonin is a modulator for many different psychobiological functions, and this review will summarize the evidence for equivalent functional deficits in recreational users. Declarative memory, prospective memory, and higher cognitive skills are often impaired. Neurocognitive deficits are associated with reduced SERT in the hippocampus, parietal cortex, and prefrontal cortex. EEG and ERP studies have shown localised reductions in brain activity during neurocognitive performance. Deficits in sleep, mood, vision, pain, psychomotor skill, tremor, neurohormonal activity, and psychiatric status, have also been demonstrated. The children of mothers who take Ecstasy/MDMA during pregnancy have developmental problems. These psychobiological deficits are wide-ranging, and occur in functions known to be modulated by serotonin. They are often related to lifetime dosage, with light users showing slight changes, and heavy users displaying more pronounced problems. In summary, abstinent Ecstasy/MDMA users can show deficits in a wide range of biobehavioral functions with a serotonergic component. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Speech Perception and Short Term Memory Deficits in Persistent Developmental Speech Disorder

    PubMed Central

    Kenney, Mary Kay; Barac-Cikoja, Dragana; Finnegan, Kimberly; Jeffries, Neal; Ludlow, Christy L.

    2008-01-01

    Children with developmental speech disorders may have additional deficits in speech perception and/or short-term memory. To determine whether these are only transient developmental delays that can accompany the disorder in childhood or persist as part of the speech disorder, adults with a persistent familial speech disorder were tested on speech perception and short-term memory. Nine adults with a persistent familial developmental speech disorder without language impairment were compared with 20 controls on tasks requiring the discrimination of fine acoustic cues for word identification and on measures of verbal and nonverbal short-term memory. Significant group differences were found in the slopes of the discrimination curves for first formant transitions for word identification with stop gaps of 40 and 20 ms with effect sizes of 1.60 and 1.56. Significant group differences also occurred on tests of nonverbal rhythm and tonal memory, and verbal short-term memory with effect sizes of 2.38, 1.56 and 1.73. No group differences occurred in the use of stop gap durations for word identification. Because frequency-based speech perception and short-term verbal and nonverbal memory deficits both persisted into adulthood in the speech-impaired adults, these deficits may be involved in the persistence of speech disorders without language impairment. PMID:15896836

  3. Memory systems in schizophrenia: Modularity is preserved but deficits are generalized.

    PubMed

    Haut, Kristen M; Karlsgodt, Katherine H; Bilder, Robert M; Congdon, Eliza; Freimer, Nelson B; London, Edythe D; Sabb, Fred W; Ventura, Joseph; Cannon, Tyrone D

    2015-10-01

    Schizophrenia patients exhibit impaired working and episodic memory, but this may represent generalized impairment across memory modalities or performance deficits restricted to particular memory systems in subgroups of patients. Furthermore, it is unclear whether deficits are unique from those associated with other disorders. Healthy controls (n=1101) and patients with schizophrenia (n=58), bipolar disorder (n=49) and attention-deficit-hyperactivity-disorder (n=46) performed 18 tasks addressing primarily verbal and spatial episodic and working memory. Effect sizes for group contrasts were compared across tasks and the consistency of subjects' distributional positions across memory domains was measured. Schizophrenia patients performed poorly relative to the other groups on every test. While low to moderate correlation was found between memory domains (r=.320), supporting modularity of these systems, there was limited agreement between measures regarding each individual's task performance (ICC=.292) and in identifying those individuals falling into the lowest quintile (kappa=0.259). A general ability factor accounted for nearly all of the group differences in performance and agreement across measures in classifying low performers. Pathophysiological processes involved in schizophrenia appear to act primarily on general abilities required in all tasks rather than on specific abilities within different memory domains and modalities. These effects represent a general shift in the overall distribution of general ability (i.e., each case functioning at a lower level than they would have if not for the illness), rather than presence of a generally low-performing subgroup of patients. There is little evidence that memory impairments in schizophrenia are shared with bipolar disorder and ADHD. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Memory systems in schizophrenia: Modularity is preserved but deficits are generalized

    PubMed Central

    Haut, Kristen M.; Karlsgodt, Katherine H.; Bilder, Robert M.; Congdon, Eliza; Freimer, Nelson; London, Edythe D.; Sabb, Fred W.; Ventura, Joseph; Cannon, Tyrone D.

    2015-01-01

    Objective Schizophrenia patients exhibit impaired working and episodic memory, but this may represent generalized impairment across memory modalities or performance deficits restricted to particular memory systems in subgroups of patients. Furthermore, it is unclear whether deficits are unique from those associated with other disorders. Method Healthy controls (n=1101) and patients with schizophrenia (n=58), bipolar disorder (n=49) and attention-deficit-hyperactivity-disorder (n=46) performed 18 tasks addressing primarily verbal and spatial episodic and working memory. Effect sizes for group contrasts were compared across tasks and the consistency of subjects’ distributional positions across memory domains was measured. Results Schizophrenia patients performed poorly relative to the other groups on every test. While low to moderate correlation was found between memory domains (r=.320), supporting modularity of these systems, there was limited agreement between measures regarding each individual’s task performance (ICC=.292) and in identifying those individuals falling into the lowest quintile (kappa=0.259). A general ability factor accounted for nearly all of the group differences in performance and agreement across measures in classifying low performers. Conclusions Pathophysiological processes involved in schizophrenia appear to act primarily on general abilities required in all tasks rather than on specific abilities within different memory domains and modalities. These effects represent a general shift in the overall distribution of general ability (i.e., each case functioning at a lower level than they would have if not for the illness), rather than presence of a generally low-performing subgroup of patients. There is little evidence that memory impairments in schizophrenia are shared with bipolar disorder and ADHD. PMID:26299707

  5. A selective memory deficit caused by autoimmune encephalopathy associated with Hashimoto thyroiditis.

    PubMed

    Koros, Christos; Economou, Alexandra; Mastorakos, George; Bonakis, Anastasios; Kalfakis, Nikolaos; Papageorgiou, Sokratis G

    2012-09-01

    We report a longstanding selective memory deficit in a euthyroid 45-year-old woman who was being treated with levothyroxine for Hashimoto thyroiditis. The patient had complained of memory problems and deterioration of her concentration skills for about 2 years. Her endocrinologist thought that she was depressed. The patient's physical examination was normal. She scored a full 30 points on the Mini-Mental State Examination, but neuropsychological evaluation showed a significant deficit in her verbal memory. Routine blood tests and cerebrospinal fluid analysis showed only antithyroid peroxidase antibodies. Brain magnetic resonance imaging was normal. Electroencephalogram showed scarce intermittent bilateral multifocal theta waves. We increased the patient's daily dose of levothyroxine and started her on dexamethasone therapy. Five months later, we repeated the entire evaluation and found both her cognitive function and her electroencephalogram to be normal. Autoimmune encephalopathy associated with Hashimoto thyroiditis is already known to present with either stroke-like episodes or diffuse progressive deterioration. Our patient shows that the encephalopathy can present as a chronic selective memory deficit that can spare executive functions and short-term memory. This presentation can be missed or mistaken for depression, but can be diagnosed with a detailed neuropsychological evaluation.

  6. Verbal memory in drug-naive, newly diagnosed Parkinson's disease. The retrieval deficit hypothesis revisited.

    PubMed

    Brønnick, Kolbjørn; Alves, Guido; Aarsland, Dag; Tysnes, Ole-Bjørn; Larsen, Jan Petter

    2011-01-01

    The retrieval deficit hypothesis on memory impairment in patients with Parkinson's disease (PD) implies a selective impairment in recall of learned material with normal encoding, retention, and recognition. This hypothesis has been challenged by new data. We have therefore investigated verbal memory and learning in a large sample of newly diagnosed, drug naïve, non-demented patients with PD. From a sample of patients with PD from the Norwegian ParkWest study, 133 PD patients and 133 controls matched on sex, age, and education were included. The California Verbal Learning Test-2 (CVLT-2) was used to assess verbal memory. Patients performed significantly worse than controls on free and cued recall as well as on recognition memory. Patients used the semantic clustering learning strategy significantly less extensively than the controls and the learning slope of the PD patients was significantly less steep. There was no difference in retention when controlling for encoding. Patients did not perform better on the recognition measure or on cued recall (d-prime), as compared to free recall. Executive functions explained a substantial part of the memory deficits. This study suggests that memory impairment in drug naïve early PD to a large degree is a deficit of learning/ encoding and not of retention or retrieval. An implication is that the retrieval deficit hypothesis should be moderated in its general form. Executive deficits and less extensive use of the efficient semantic clustering learning strategy had a strong impact on learning and memory. (c) 2010 APA, all rights reserved.

  7. Emerging depression is associated with face memory deficits in adolescent girls.

    PubMed

    Guyer, Amanda E; Choate, Victoria R; Grimm, Kevin J; Pine, Daniel S; Keenan, Kate

    2011-02-01

    To examine the association between memory for previously encoded emotional faces and depression symptoms assessed over 4 years in adolescent girls. Investigating the interface between memory deficits and depression in adolescent girls may provide clues about depression pathophysiology. Participants were 213 girls recruited from a longitudinal, community-based study; the majority were African American. Scores on depressive screening measures at age 8 were used to increase the base rate of depression. Depression symptoms and diagnoses were assessed annually for 4 years. In year 4, when the girls were 12 to 13 years old, a face emotion encoding task was administered during which ratings were generated in response to sad, fearful, angry, and happy faces. A surprise memory task followed whereby participants identified which of two faces, displaying neutral expressions, they had seen previously. Girls with higher depression symptom levels from ages 9 to 12 years evidenced lower accuracy in identifying previously encoded emotional faces. Controlling for IQ, higher depression symptom level was associated with a memory deficit specific to previously encoded sad and happy faces. These effects were not moderated by race. Individual differences in face memory deficits relate to individual differences in emerging, early adolescent depression, and may be vulnerability markers for depression. Copyright © 2011 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    PubMed Central

    Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel

    2016-01-01

    The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685

  9. Working memory deficits in adults with ADHD: is there evidence for subtype differences?

    PubMed Central

    Schweitzer, Julie B; Hanford, Russell B; Medoff, Deborah R

    2006-01-01

    Background Working memory performance is important for maintaining functioning in cognitive, academic and social activities. Previous research suggests there are prevalent working memory deficits in children with attention deficit hyperactivity disorder (ADHD). There is now a growing body of literature characterizing working memory functioning according to ADHD subtypes in children. The expression of working memory deficits in adults with ADHD and how they vary according to subtype, however, remains to be more fully documented. Methods This study assessed differences in working memory functioning between Normal Control (NC) adults (N = 18); patients with ADHD, Combined (ADHD-CT) Type ADHD (N = 17); and ADHD, Inattentive (ADHD-IA) Type (N = 16) using subtests from the Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-III and the Paced Auditory Serial Addition Task (PASAT). Results The ADHD groups displayed significant weaknesses in contrast to the NC group on working memory tests requiring rapid processing and active stimulus manipulation. This included the Letter-Number-Sequencing test of the Wechsler scales, PASAT omission errors and the longest sequence of consecutive correct answers on the PASAT. No overall ADHD group subtype differences emerged; however differences between the ADHD groups and the NC group varied depending on the measure and the gender of the participants. Gender differences in performance were evident on some measures of working memory, regardless of group, with males performing better than females. Conclusion In general, the data support a dimensional interpretation of working memory deficits experienced by the ADHD-CT and ADHD-IA subtypes, rather than an absolute difference between subtypes. Future studies should test the effects of processing speed and load on subtype performance and how those variables interact with gender in adults with ADHD. PMID:17173676

  10. Short-Term Memory Limitations in Children: Capacity or Processing Deficits?

    ERIC Educational Resources Information Center

    Chi, Michelene T. H.

    1976-01-01

    Evaluates the assertion that short-term memory (STM) capacity increases with age and concludes that the STM capacity limitation in children is due to the deficits in the processing strategies and speeds, which presumably improve with age through cumulative learning. (JM) Available from: Memory and Cognition, Psychonomic Society, 1018 West 34…

  11. Is All Motivation Good for Learning? Dissociable Influences of Approach and Avoidance Motivation in Declarative Memory

    ERIC Educational Resources Information Center

    Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison

    2011-01-01

    The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed…

  12. Impact of Education on Memory Deficits in Subclinical Depression.

    PubMed

    McLaren, Molly E; Szymkowicz, Sarah M; Kirton, Joshua W; Dotson, Vonetta M

    2015-08-01

    Elevated depressive symptoms are associated with cognitive deficits, while higher education protects against cognitive decline. This study was conducted to test if education level moderates the relationship between depressive symptoms and cognitive function. Seventy-three healthy, dementia-free adults aged 18-81 completed neuropsychological tests, as well as depression and anxiety questionnaires. Controlling for age, sex, and state anxiety, we found a significant interaction of depressive symptoms and education for immediate and delayed verbal memory, such that those with a higher education level performed well regardless of depressive symptomatology, whereas those with lower education and high depressive symptoms had worse performance. No effects were found for executive functioning or processing speed. Results suggest that education protects against verbal memory deficits in individuals with elevated depressive symptoms. Further research on cognitive reserve in depression-related cognitive deficits and decline is needed to understand the mechanisms behind this phenomenon. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Memory-guided saccades in youth-onset psychosis and attention deficit hyperactivity disorder (ADHD).

    PubMed

    White, Tonya; Mous, Sabine; Karatekin, Canan

    2014-08-01

    Working memory deficits have been shown to be present in children and adolescents with schizophrenia and attention deficit hyperactivity disorder. Considering the differences in clinical characteristics between these disorders, it was the goal of this study to assess differences in the specific components of working memory in children and adolescents with psychosis and attention deficit hyperactivity disorder. Children and adolescents (age range 8-20 years) with either a non-affective psychotic disorder (n = 25), attention deficit hyperactivity disorder (n = 33) and controls (n = 58) were administered an oculomotor delayed-response task using both a recall and a control condition. Memory-guided saccades were measured during delay periods of 2, 8 and 20 s. Although both clinical groups were less accurate than controls, there was no evidence of a disproportionate impairment in recall. In addition, there was no evidence of a delay-dependent impairment in psychosis; however, there was a delay-dependent impairment in attention deficit hyperactivity disorder when corrective saccades were included. Speed of information processing was correlated with distance errors in psychosis, suggesting that speed of encoding the stimulus location may have constrained the accuracy of the saccades. Our findings support impairments during encoding in the psychosis group and a delay-dependent deficit in the attention deficit hyperactivity disorder group. © 2013 Wiley Publishing Asia Pty Ltd.

  14. Robust training attenuates TBI-induced deficits in reference and working memory on the radial 8-arm maze

    PubMed Central

    Sebastian, Veronica; Diallo, Aissatou; Ling, Douglas S. F.; Serrano, Peter A.

    2013-01-01

    Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI. PMID:23653600

  15. Auditory and Visual Working Memory Functioning in College Students with Attention-Deficit/Hyperactivity Disorder and/or Learning Disabilities.

    PubMed

    Liebel, Spencer W; Nelson, Jason M

    2017-12-01

    We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p < .001, d = -0.85. Within the attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups. © The Author 2017

  16. Episodic and working memory deficits in alcoholic Korsakoff patients: the continuity theory revisited.

    PubMed

    Pitel, Anne Lise; Beaunieux, Hélène; Witkowski, Thomas; Vabret, François; de la Sayette, Vincent; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2008-07-01

    The exact nature of episodic and working memory impairments in alcoholic Korsakoff patients (KS) remains unclear, as does the specificity of these neuropsychological deficits compared with those of non-Korsakoff alcoholics (AL). The goals of the present study were therefore to (1) specify the nature of episodic and working memory impairments in KS, (2) determine the specificity of the KS neuropsychological profile compared with the AL profile, and (3) observe the distribution of individual performances within the 2 patient groups. We investigated episodic memory (encoding and retrieval abilities, contextual memory and state of consciousness associated with memories), the slave systems of working memory (phonological loop, visuospatial sketchpad and episodic buffer) and executive functions (inhibition, flexibility, updating and integration abilities) in 14 strictly selected KS, 40 AL and 55 control subjects (CS). Compared with CS, KS displayed impairments of episodic memory encoding and retrieval, contextual memory, recollection, the slave systems of working memory and executive functions. Although episodic memory was more severely impaired in KS than in AL, the single specificity of the KS profile was a disproportionately large encoding deficit. Apart from organizational and updating abilities, the slave systems of working memory and inhibition, flexibility and integration abilities were impaired to the same extent in both alcoholic groups. However, some KS were unable to complete the most difficult executive tasks. There was only a partial overlap of individual performances by KS and AL for episodic memory and a total mixture of the 2 groups for working memory. Korsakoff's syndrome encompasses impairments of the different episodic and working memory components. AL and KS displayed similar profiles of episodic and working memory deficits, in accordance with neuroimaging investigations showing similar patterns of brain damage in both alcoholic groups.

  17. Depressive Mood and Testosterone Related to Declarative Verbal Memory Decline in Middle-Aged Caregivers of Children with Eating Disorders.

    PubMed

    Romero-Martínez, Ángel; Ruiz-Robledillo, Nicolás; Moya-Albiol, Luis

    2016-03-04

    Caring for children diagnosed with a chronic psychological disorder such as an eating disorder (ED) can be used as a model of chronic stress. This kind of stress has been reported to have deleterious effects on caregivers' cognition, particularly in verbal declarative memory of women caregivers. Moreover, high depressive mood and variations in testosterone (T) levels moderate this cognitive decline. The purpose of this study was to characterize whether caregivers of individuals with EDs (n = 27) show declarative memory impairments compared to non-caregivers caregivers (n = 27), using for this purpose a standardized memory test (Rey's Auditory Verbal Learning Test). Its purpose was also to examine the role of depressive mood and T in memory decline. Results showed that ED caregivers presented high depressive mood, which was associated to worse verbal memory performance, especially in the case of women. In addition, all caregivers showed high T levels. Nonetheless, only in the case of women caregivers did T show a curvilinear relationship with verbal memory performance, meaning that the increases of T were associated to the improvement in verbal memory performance, but only up to a certain point, as after such point T continued to increase and memory performance decreased. Thus, chronic stress due to caregiving was associated to disturbances in mood and T levels, which in turn was associated to verbal memory decline. These findings should be taken into account in the implementation of intervention programs for helping ED caregivers cope with caregiving situations and to prevent the risk of a pronounced verbal memory decline.

  18. Working memory deficits in boys with attention deficit/hyperactivity disorder (ADHD): An examination of orthographic coding and episodic buffer processes.

    PubMed

    Alderson, R Matt; Kasper, Lisa J; Patros, Connor H G; Hudec, Kristen L; Tarle, Stephanie J; Lea, Sarah E

    2015-01-01

    The episodic buffer component of working memory was examined in children with attention deficit/hyperactivity disorder (ADHD) and typically developing peers (TD). Thirty-two children (ADHD = 16, TD = 16) completed three versions of a phonological working memory task that varied with regard to stimulus presentation modality (auditory, visual, or dual auditory and visual), as well as a visuospatial task. Children with ADHD experienced the largest magnitude working memory deficits when phonological stimuli were presented via a unimodal, auditory format. Their performance improved during visual and dual modality conditions but remained significantly below the performance of children in the TD group. In contrast, the TD group did not exhibit performance differences between the auditory- and visual-phonological conditions but recalled significantly more stimuli during the dual-phonological condition. Furthermore, relative to TD children, children with ADHD recalled disproportionately fewer phonological stimuli as set sizes increased, regardless of presentation modality. Finally, an examination of working memory components indicated that the largest magnitude between-group difference was associated with the central executive. Collectively, these findings suggest that ADHD-related working memory deficits reflect a combination of impaired central executive and phonological storage/rehearsal processes, as well as an impaired ability to benefit from bound multimodal information processed by the episodic buffer.

  19. Methylphenidate Improves Visual-Spatial Memory in Children with Attention-Deficit- hyperactivity Disorder

    ERIC Educational Resources Information Center

    Bedard, Anne-Claude; Martinussen, Rhonda; Ickowicz, Abel; Tannock, Rosemary

    2004-01-01

    Objective: To investigate the effect of methylphenidate (MPH) on visual-spatial memory, as measured by subtests of the Cambridge Neuropsychological Testing Automated Battery (CANTAB), in children with attention-deficit/hyperactivity disorder (ADHD). Visual-spatial memory is a core component of working memory that has been shown to be impaired in…

  20. Emerging Depression Is Associated with Face Memory Deficits in Adolescent Girls

    ERIC Educational Resources Information Center

    Guyer, Amanda E.; Choate, Victoria R.; Grimm, Kevin J.; Pine, Daniel S.; Keenan, Kate

    2011-01-01

    Objective: To examine the association between memory for previously encoded emotional faces and depression symptoms assessed over 4 years in adolescent girls. Investigating the interface between memory deficits and depression in adolescent girls may provide clues about depression pathophysiology. Method: Participants were 213 girls recruited from…

  1. Working memory deficits in adults with attention-deficit/hyperactivity disorder (ADHD): an examination of central executive and storage/rehearsal processes.

    PubMed

    Alderson, R Matt; Hudec, Kristen L; Patros, Connor H G; Kasper, Lisa J

    2013-05-01

    The current study was the first to use a regression approach to examine the unique contributions of central executive (CE) and storage/rehearsal processes to working memory (WM) deficits in adults with ADHD. Thirty-seven adults (ADHD = 21, HC = 16) completed phonological (PH) and visuospatial (VS) working memory tasks. While both groups performed significantly better during the PH task relative to the VS task, adults with ADHD exhibited significant deficits across both working memory modalities. Further, the ADHD group recalled disproportionately fewer PH and VS stimuli as set-size demands increased. Overall, the CE and PH storage/rehearsal processes of adults with ADHD were both significantly impaired relative to those of the healthy control adults; however, the magnitude of the CE effect size was much smaller compared to previous studies of children with the disorder. Collectively, results provide support for a lifelong trajectory of WM deficits in ADHD. © 2013 American Psychological Association

  2. Preventive and therapeutic effect of treadmill running on chronic stress-induced memory deficit in rats.

    PubMed

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-04-01

    Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Visual short-term memory deficits in REM sleep behaviour disorder mirror those in Parkinson's disease.

    PubMed

    Rolinski, Michal; Zokaei, Nahid; Baig, Fahd; Giehl, Kathrin; Quinnell, Timothy; Zaiwalla, Zenobia; Mackay, Clare E; Husain, Masud; Hu, Michele T M

    2016-01-01

    Individuals with REM sleep behaviour disorder are at significantly higher risk of developing Parkinson's disease. Here we examined visual short-term memory deficits--long associated with Parkinson's disease--in patients with REM sleep behaviour disorder without Parkinson's disease using a novel task that measures recall precision. Visual short-term memory for sequentially presented coloured bars of different orientation was assessed in 21 patients with polysomnography-proven idiopathic REM sleep behaviour disorder, 26 cases with early Parkinson's disease and 26 healthy controls. Three tasks using the same stimuli controlled for attentional filtering ability, sensorimotor and temporal decay factors. Both patients with REM sleep behaviour disorder and Parkinson's disease demonstrated a deficit in visual short-term memory, with recall precision significantly worse than in healthy controls with no deficit observed in any of the control tasks. Importantly, the pattern of memory deficit in both patient groups was specifically explained by an increase in random responses. These results demonstrate that it is possible to detect the signature of memory impairment associated with Parkinson's disease in individuals with REM sleep behaviour disorder, a condition associated with a high risk of developing Parkinson's disease. The pattern of visual short-term memory deficit potentially provides a cognitive marker of 'prodromal' Parkinson's disease that might be useful in tracking disease progression and for disease-modifying intervention trials. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  4. Arctigenin isolated from the seeds of Arctium lappa ameliorates memory deficits in mice.

    PubMed

    Lee, In-Ah; Joh, Eun-Ha; Kim, Dong-Hyun

    2011-09-01

    The seeds of Arctium lappa L. (AL, family Asteraceae), the main constituents of which are arctiin and arctigenin, have been used as an herbal medicine or functional food to treat inflammatory diseases. These main constituents were shown to inhibit acetylcholinesterase (AChE) activity. Arctigenin more potently inhibited AChE activity than arctiin. Arctigenin at doses of 30 and 60 mg/kg (p. o.) potently reversed scopolamine-induced memory deficits by 62 % and 73 %, respectively, in a passive avoidance test. This finding is comparable with that of tacrine (10 mg/kg p. o.). Arctigenin also significantly reversed scopolamine-induced memory deficits in the Y-maze and Morris water maze tests. On the basis of these findings, arctigenin may ameliorate memory deficits by inhibiting AChE. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Endogenous Cortisol Exposure and Declarative Verbal Memory: A Longitudinal Study of Healthy Older Adults.

    PubMed

    Segerstrom, Suzanne C; Geiger, Paul J; Boggero, Ian A; Schmitt, Fredrick A; Sephton, Sandra E

    2016-01-01

    Exposure to endogenous cortisol is associated with hippocampal degeneration and may contribute to problems with declarative memory, but effects of persistent versus phasic cortisol elevations have not been established. The present longitudinal investigation examined persistent individual differences and phasic changes in cortisol as they related to verbal memory, executive functions, and subjective cognitive function. Older adults (n = 132, aged 60-93 years) were followed up for up to 5 years. They were assessed annually for verbal memory and every 6 months for executive functions, subjective cognitive function, and cortisol area under the curve (averaged over 3 days). In multilevel models, persistently but not phasically higher cortisol was associated with worse verbal memory in both learning (t(181) = 2.99, p = .003) and recall (t(280) = 3.10, p = .002). This effect withstood adjustment for stress, depression, metabolic health, and age. There was evidence for attenuated primacy in learning with higher persistent cortisol. Phasic increases in cortisol were not associated with changes in memory, and cortisol was not related to executive functions or subjective cognitive function. Higher secretion of cortisol may, over time, contribute to memory dysfunction in older adults.

  6. Does Post-task Declarative Learning Have an Influence on Early Motor Memory Consolidation Over Day? An fMRI Study

    PubMed Central

    Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G.; Pedersen, Anya; Witt, Karsten

    2018-01-01

    Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence – random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our

  7. Does Post-task Declarative Learning Have an Influence on Early Motor Memory Consolidation Over Day? An fMRI Study.

    PubMed

    Rothkirch, Inken; Wolff, Stephan; Margraf, Nils G; Pedersen, Anya; Witt, Karsten

    2018-01-01

    Previous studies demonstrated the influence of the post-learning period on procedural motor memory consolidation. In an early period after the acquisition, motor skills are vulnerable to modifications during wakefulness. Indeed, specific interventions such as world-list learning within this early phase of motor memory consolidation seem to enhance motor performance as an indicator for successful consolidation. This finding highlights the idea that manipulations of procedural and declarative memory systems during the early phase of memory consolidation over wakefulness may influence off-line consolidation. Using functional magnetic resonance imaging (fMRI) during initial motor sequence learning and motor sequence recall, we indirectly assess the influence of a secondary task taken place in the early phase of memory consolidation. All participants were scanned using fMRI during the learning phase of a serial reaction time task (SRTT) at 8 a.m. Afterwards, they were randomly assigned to one of five conditions. One group performed a declarative verbal, one a declarative nonverbal learning task. Two groups worked on attention tasks. A control group passed a resting condition. Participants stayed awake the whole day and performed the SRTT in the MRI scanner 12 h later at 8 p.m. At the behavioral level, the analysis of the reaction times failed to show a significant group difference. The primary analysis assessing fMRI data based on the contrast (sequence - random) between learning and retrieval also did not show any significant group differences. Therefore, our main analysis do not support the hypothesis that a secondary task influences the retrieval of the SRTT. In a more liberal fMRI analysis, we compared only the sequence blocks of the SRTT from learning to recall. BOLD signal decreased in the ipsilateral cerebellum and the supplementary motor area solely in the verbal learning group. Although our primary analysis failed to show significant changes between our groups

  8. Declarative verbal memory impairments in middle-aged women who are caregivers of offspring with autism spectrum disorders: The role of negative affect and testosterone.

    PubMed

    Romero-Martínez, A; González-Bono, E; Salvador, A; Moya-Albiol, L

    2016-01-01

    Caring for offspring diagnosed with a chronic psychological disorder such as autism spectrum disorder (ASD) is used in research as a model of chronic stress. This chronic stress has been reported to have deleterious effects on caregivers' cognition, particularly in verbal declarative memory. Moreover, such cognitive decline may be mediated by testosterone (T) levels and negative affect, understood as depressive mood together with high anxiety and anger. This study aimed to compare declarative memory function in middle-aged women who were caregivers for individuals with ASD (n = 24; mean age = 45) and female controls (n = 22; mean age = 45), using a standardised memory test (Rey's Auditory Verbal Learning Test). It also sought to examine the role of care recipient characteristics, negative mood and T levels in memory impairments. ASD caregivers were highly sensitive to proactive interference and verbal forgetting. In addition, they had higher negative affect and T levels, both of which have been associated with poorer verbal memory performance. Moreover, the number of years of caregiving affected memory performance and negative affect, especially, in terms of anger feelings. On the other hand, T levels in caregivers had a curvilinear relationship with verbal memory performance; that is, increases in T were associated with improvements in verbal memory performance up to a certain point, but subsequently, memory performance decreased with increasing T. Chronic stress may produce disturbances in mood and hormonal levels, which in turn might increase the likelihood of developing declarative memory impairments although caregivers do not show a generalised decline in memory. These findings should be taken into account for understanding the impact of cognitive impairments on the ability to provide optimal caregiving.

  9. Working Memory Deficits in Boys with Attention-Deficit/Hyperactivity Disorder (ADHD): The Contribution of Central Executive and Subsystem Processes

    ERIC Educational Resources Information Center

    Rapport, Mark D.; Alderson, R. Matt; Kofler, Michael J.; Sarver, Dustin E.; Bolden, Jennifer; Sims, Valerie

    2008-01-01

    The current study investigated contradictory findings from recent experimental and meta-analytic studies concerning working memory deficits in ADHD. Working memory refers to the cognitive ability to temporarily store and mentally manipulate limited amounts of information for use in guiding behavior. Phonological (verbal) and visuospatial…

  10. Longitudinal deficits to attention, executive, and working memory in subtypes of mild cognitive impairment.

    PubMed

    Saunders, Nichole L J; Summers, Mathew J

    2011-03-01

    Mild cognitive impairment (MCI) has emerged as a classification for a prodromal phase of cognitive decline that may precede the emergence of Alzheimer's disease (AD). Recent research suggests that attention, executive, and working memory deficits may appear much earlier in the progression of AD than traditionally conceptualized, and may be more consistently associated with the later development of AD than memory processing deficits. The present study longitudinally tracked attention, executive and working memory functions in subtypes of MCI. In a longitudinal study, 52 amnestic MCI (a-MCI), 29 nonamnestic MCI (na-MCI), and 25 age- and education-matched controls undertook neuropsychological assessment of visual and verbal memory, attentional processing, executive functioning, working memory capacity, and semantic language at 10 month intervals. Analysis by repeated measures ANOVA indicate that the a-MCI and na-MCI groups displayed a decline in simple sustained attention (ηp² = .054) with a significant decline on a task of divided attention (ηp² = .053) being evident in the a-MCI group. Stable deficits were found on other measures of attention, working memory and executive function in the a-MCI and na-MCI groups. The a-MCI group displayed stable impairments to visual and verbal memory. The results indicate that a-MCI and na-MCI display a stable pattern of deficits to attention, working memory, and executive function. The decline in simple sustained attention in a-MCI and n-MCI groups and to divided attention in a-MCI may be early indicators of possible transition to dementia from MCI. However, further research is required to determine this. (c) 2011 APA, all rights reserved

  11. Theory of mind and verbal working memory deficits in parents of autistic children.

    PubMed

    Gokcen, Sezen; Bora, Emre; Erermis, Serpil; Kesikci, Hande; Aydin, Cahide

    2009-03-31

    The objective of this study was to investigate the potential values of executive function and social cognition deficits as endophenotypes of autism. While theory of mind (ToM) is generally accepted as a unitary concept, some have suggested that ToM may be separated into two components (mental state reasoning and decoding). In this study, both aspects of ToM and verbal working memory abilities were investigated with relatively demanding tasks. The authors used a neurocognitive battery to compare the executive function and social cognition skills of 76 parents of autistic probands with 41 parents of healthy children. Both groups were matched for IQ, age and gender. Index parents had verbal working memory deficits. They had also low performance on a mental state reasoning task. Index parents had difficulties in reasoning about others' emotions. In contrast to findings in the control group, low performance of mental state reasoning ability was not associated with working memory deficit in index parents. Social cognition and working memory impairments may represent potential endophenotypes, related to an underlying vulnerability for autistic spectrum disorders.

  12. Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson's disease.

    PubMed

    Lewis, Simon J G; Slabosz, Aleksandra; Robbins, Trevor W; Barker, Roger A; Owen, Adrian M

    2005-01-01

    Although Parkinson's disease is a common neurodegenerative disorder characterised by its motoric symptoms, there is an increasing recognition of accompanying impairments in cognition that have a profound impact on the quality of life of these patients. These deficits predominantly affect executive function and impairments of working memory have been frequently reported. However, the underlying neurochemical and pathological basis for these deficits are not well understood. In this study, 20 patients were tested 'on' and 'off' levodopa (L-dopa) medication on a task that allowed different aspects of working memory function such as maintenance, retrieval and manipulation to be tested within the same general paradigm as well as on an unrelated test of attentional set-shifting, which is known to be sensitive to deficits in early Parkinson's disease. Compared to healthy volunteers, PD patients were impaired at manipulation more than maintenance or retrieval of information within working memory. The patients were also impaired at the attentional set-shifting task. However, whereas L-dopa ameliorated the working memory deficit in manipulation (improving both accuracy and cognitive response time), it had no effect on the attentional set-shifting impairment. These results confirm that working memory deficits in PD are both psychologically specific and related to dopamine depletion. It is anticipated that greater understanding of these mechanisms will lead to future therapeutic improvements.

  13. A Specific Deficit in Visuospatial Simultaneous Working Memory in Down Syndrome

    ERIC Educational Resources Information Center

    Lanfranchi, S.; Carretti, B.; Spano, G.; Cornoldi, C.

    2009-01-01

    Background: Recent studies have demonstrated that individuals with Down syndrome (DS) present both central and verbal working memory deficits compared with controls matched for mental age, whereas evidence on visuospatial working memory (VSWM) has remained ambiguous. The present paper uses a battery of VSWM tasks to test the hypothesis that…

  14. Theory of Mind Deficit versus Faulty Procedural Memory in Autism Spectrum Disorders.

    PubMed

    Romero-Munguía, Miguel Ángel

    2013-01-01

    Individuals with autism spectrum disorders (ASD) have impairments in social interaction, communicative capacity, and behavioral flexibility (core triad). Three major cognitive theories (theory of mind deficit, weak central coherence, and executive dysfunction) seem to explain many of these impairments. Currently, however, the empathizing-systemizing (a newer version of the theory of mind deficit account) and mnesic imbalance theories are the only ones that attempt to explain all these core triadic symptoms of ASD On the other hand, theory of mind deficit in empathizing-systemizing theory is the most influential account for ASD, but its counterpart in the mnesic imbalance theory, faulty procedural memory, seems to occur earlier in development; consequently, this might be a better solution to the problem of the etiology of ASD, if it truly meets the precedence criterion. Hence, in the present paper I review the reasoning in favor of the theory of mind deficit but with a new interpretation based on the mnesic imbalance theory, which posits that faulty procedural memory causes deficits in several cognitive skills, resulting in poor performance in theory of mind tasks.

  15. Theory of Mind Deficit versus Faulty Procedural Memory in Autism Spectrum Disorders

    PubMed Central

    Romero-Munguía, Miguel Ángel

    2013-01-01

    Individuals with autism spectrum disorders (ASD) have impairments in social interaction, communicative capacity, and behavioral flexibility (core triad). Three major cognitive theories (theory of mind deficit, weak central coherence, and executive dysfunction) seem to explain many of these impairments. Currently, however, the empathizing-systemizing (a newer version of the theory of mind deficit account) and mnesic imbalance theories are the only ones that attempt to explain all these core triadic symptoms of ASD On the other hand, theory of mind deficit in empathizing-systemizing theory is the most influential account for ASD, but its counterpart in the mnesic imbalance theory, faulty procedural memory, seems to occur earlier in development; consequently, this might be a better solution to the problem of the etiology of ASD, if it truly meets the precedence criterion. Hence, in the present paper I review the reasoning in favor of the theory of mind deficit but with a new interpretation based on the mnesic imbalance theory, which posits that faulty procedural memory causes deficits in several cognitive skills, resulting in poor performance in theory of mind tasks. PMID:23862063

  16. Visuospatial working memory underlies choice-impulsivity in boys with attention-deficit/hyperactivity disorder.

    PubMed

    Patros, Connor H G; Alderson, R Matt; Lea, Sarah E; Tarle, Stephanie J; Kasper, Lisa J; Hudec, Kristen L

    2015-03-01

    The present study examined the directional relationship between choice-impulsivity and separate indices of phonological and visuospatial working memory performance in boys (aged 8-12 years) with (n=16) and without ADHD (n=19). Results indicated that high ratings of overall ADHD, inattention, and hyperactivity were significantly associated with increased impulsivity and poorer phonological and visuospatial working memory performance. Further, results from bias-corrected bootstrapped mediation analyses revealed a significant indirect effect of visuospatial working memory performance, through choice-impulsivity, on overall ADHD, inattention, and hyperactivity/impulsivity. Collectively, the findings suggest that deficits of visuospatial working memory underlie choice-impulsivity, which in turn contributes to the ADHD phenotype. Moreover, these findings are consistent with a growing body of literature that identifies working memory as a central neurocognitive deficit of ADHD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Retrograde amnesia: a study of its relation to anterograde amnesia and semantic memory deficits.

    PubMed

    Schmidtke, K; Vollmer, H

    1997-04-01

    This group study of 24 amnesic patients and 40 control subjects examined the hypothesis that retrograde memory deficits result from a combination of two impairment mechanisms: (1) a deficit in the retrieval of contents that is related to dysfunctioning of the hippocampal anterograde memory system, and (2) a deficit in the storage and/or retrieval of contents that is related to concomitant neocortical lesions. Retrograde amnesia was evaluated with the use of new Famous Persons and Autobiographical Memory Tests. The postulated components of retrograde memory impairment were assessed using the Wechsler Memory Scale and a new Semantic Memory Test, respectively. Regression analyses showed that recent episodic autobiography was exclusively related to the hippocampal component, while memory for famous persons and childhood autobiography was related to the neocortical component. In the case of details concerning people of recent fame, both components were identified as independent determinants. The temporal gradient of patients' impairment at the Famous Persons Test was marked for detailed knowledge, but small for overlearned knowledge. The present results thus support the combination hypothesis. They conform to the view that the transition from a hippocampus-dependent to a neocortex-dependent mnemonic representation of new contents is mediated by reiteration, and occurs within 5-10 years.

  18. Phosphodiesterase 10A inhibition attenuates sleep deprivation-induced deficits in long-term fear memory.

    PubMed

    Guo, Lengqiu; Guo, Zhuangli; Luo, Xiaoqing; Liang, Rui; Yang, Shui; Ren, Haigang; Wang, Guanghui; Zhen, Xuechu

    2016-12-02

    Sleep, particularly rapid eye movement (REM) sleep, is implicated in the consolidation of emotional memories. In the present study, we investigated the protective effects of a phosphodiesterase 10A (PDE10A) inhibitor MP-10 on deficits in long-term fear memory induced by REM sleep deprivation (REM-SD). REM-SD caused deficits in long-term fear memory, however, MP-10 administration ameliorated the deleterious effects of REM-SD on long term fear memory. Brain-derived neurotropic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) were altered in specific brain regions associated with learning and memory in REM-SD rats. Accordingly, REM-SD caused a significant decrease of pCREB in hippocampus and striatum and a significant decrease of BDNF in the hippocampus, striatum and amygdala, however, MP-10 reversed the effects of REM-SD in a dose-dependent manner. Our findings suggest that REM-SD disrupts the consolidation of long-term fear memory and that administration of MP-10 protects the REM-SD-induced deficits in fear memory, which may be due to the MP-10-induced expression of BDNF in the hippocampus, striatum and amygdala, and phosphorylation of CREB in the hippocampus and striatum. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Rapamycin Reverses Status Epilepticus-Induced Memory Deficits and Dendritic Damage

    PubMed Central

    Brewster, Amy L.; Lugo, Joaquin N.; Patil, Vinit V.; Lee, Wai L.; Qian, Yan; Vanegas, Fabiola; Anderson, Anne E.

    2013-01-01

    Cognitive impairments are prominent sequelae of prolonged continuous seizures (status epilepticus; SE) in humans and animal models. While often associated with dendritic injury, the underlying mechanisms remain elusive. The mammalian target of rapamycin complex 1 (mTORC1) pathway is hyperactivated following SE. This pathway modulates learning and memory and is associated with regulation of neuronal, dendritic, and glial properties. Thus, in the present study we tested the hypothesis that SE-induced mTORC1 hyperactivation is a candidate mechanism underlying cognitive deficits and dendritic pathology seen following SE. We examined the effects of rapamycin, an mTORC1 inhibitor, on the early hippocampal-dependent spatial learning and memory deficits associated with an episode of pilocarpine-induced SE. Rapamycin-treated SE rats performed significantly better than the vehicle-treated rats in two spatial memory tasks, the Morris water maze and the novel object recognition test. At the molecular level, we found that the SE-induced increase in mTORC1 signaling was localized in neurons and microglia. Rapamycin decreased the SE-induced mTOR activation and attenuated microgliosis which was mostly localized within the CA1 area. These findings paralleled a reversal of the SE-induced decreases in dendritic Map2 and ion channels levels as well as improved dendritic branching and spine density in area CA1 following rapamycin treatment. Taken together, these findings suggest that mTORC1 hyperactivity contributes to early hippocampal-dependent spatial learning and memory deficits and dendritic dysregulation associated with SE. PMID:23536771

  20. Early deficits in spatial memory and theta rhythm in experimental temporal lobe epilepsy.

    PubMed

    Chauvière, Laetitia; Rafrafi, Nadia; Thinus-Blanc, Catherine; Bartolomei, Fabrice; Esclapez, Monique; Bernard, Christophe

    2009-04-29

    Patients with temporal lobe epilepsy (TLE), the most common form of epilepsy in adults, often display cognitive deficits. The time course and underlying mechanisms of cognitive decline remain unknown during epileptogenesis (the process leading to epilepsy). Using the rat pilocarpine model of TLE, we performed a longitudinal study to assess spatial and nonspatial cognitive performance during epileptogenesis. In parallel, we monitored interictal-like activity (ILA) in the hippocampal CA1 region, as well as theta oscillations, a brain rhythm central to numerous cognitive processes. Here, we report that spatial memory was altered soon after pilocarpine-induced status epilepticus, i.e., already during the seizure-free, latent period. Spatial deficits correlated with a decrease in the power of theta oscillations but not with the frequency of ILA. Spatial deficits persisted when animals had spontaneous seizures (chronic stage) without further modification. In contrast, nonspatial memory performances remained unaffected throughout. We conclude that the reorganization of hippocampal circuitry that immediately follows the initial insult can affect theta oscillation mechanisms, in turn, resulting in deficits in hippocampus-dependent memory tasks. These deficits may be dissociated from the process that leads to epilepsy itself but could instead constitute, as ILA, early markers in at-risk patients and/or provide beneficial therapeutic targets.

  1. Memory Inhibition, Aging, and the Executive Deficit Hypothesis

    ERIC Educational Resources Information Center

    Ortega, Almudena; Gomez-Ariza, Carlos J.; Roman, Patricia; Bajo, M. Teresa

    2012-01-01

    Although memory inhibition seems to underlie retrieval-induced forgetting (RIF), there is some controversy about the precise nature of this effect. Because normal RIF is observed in people with deficits in executive control (i.e., older adults), some have proposed that an automatic-like inhibitory process is responsible for the effect. On the…

  2. Congenital amusia: a short-term memory deficit for non-verbal, but not verbal sounds.

    PubMed

    Tillmann, Barbara; Schulze, Katrin; Foxton, Jessica M

    2009-12-01

    Congenital amusia refers to a lifelong disorder of music processing and is linked to pitch-processing deficits. The present study investigated congenital amusics' short-term memory for tones, musical timbres and words. Sequences of five events (tones, timbres or words) were presented in pairs and participants had to indicate whether the sequences were the same or different. The performance of congenital amusics confirmed a memory deficit for tone sequences, but showed normal performance for word sequences. For timbre sequences, amusics' memory performance was impaired in comparison to matched controls. Overall timbre performance was found to be correlated with melodic contour processing (as assessed by the Montreal Battery of Evaluation of Amusia). The present findings show that amusics' deficits extend to non-verbal sound material other than pitch, in this case timbre, while not affecting memory for verbal material. This is in line with previous suggestions about the domain-specificity of congenital amusia.

  3. Memory Deficit Recovery after Chronic Vanadium Exposure in Mice.

    PubMed

    Folarin, Oluwabusayo; Olopade, Funmilayo; Onwuka, Silas; Olopade, James

    2016-01-01

    Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal.

  4. True memory, false memory, and subjective recollection deficits after focal parietal lobe lesions.

    PubMed

    Drowos, David B; Berryhill, Marian; André, Jessica M; Olson, Ingrid R

    2010-07-01

    There is mounting evidence that the posterior parietal cortex (PPC) plays an important role in episodic memory. We previously found that patients with PPC damage exhibit retrieval-related episodic memory deficits. Here we assess whether parietal lobe damage affects episodic memory on a different task: the Deese-Roediger-McDermott (DRM) false-memory paradigm. Two patients with bilateral PPC damage and a group of matched controls were tested. In Experiment 1, the task was to remember words; in Experiment 2 the task was to remember pictures of common objects. Prior studies have shown that normal participants have high levels of false memory to words, low levels to pictures. The patients exhibited significantly lower levels of false memory to words. One patient showed significantly elevated levels of false memory to pictures. The patients' false memories were accompanied by reduced levels of recollection, as tested by a Remember/Know procedure. PPC damage causes decreased levels of false memories and an abnormal Remember/Know profile. Their false memory rate is similar to the rate exhibited by patients with medial temporal lobe damage. These results support the view that portions of the PPC play a critical role in objective and subjective aspects of recollection.

  5. Memory deficits associated with sublethal cyanide poisoning relative to cyanate toxicity in rodents

    PubMed Central

    Kimani, S.; Sinei, K.; Bukachi, F.; Tshala-Katumbay, D.; Maitai, C.

    2014-01-01

    Background Food (cassava) linamarin is metabolized into neurotoxicants cyanide and cyanate, metabolites of which we sought to elucidate the differential toxicity effects on memory. Methods Young 6-8 weeks old male rats were treated intraperitoneally with either 2.5 mg/kg body weight (bw) cyanide (NaCN), or 50 mg/kg bw cyanate (NaOCN), or 1 μl/g bw saline, daily for 6 weeks. Short-term and long-term memories were assessed using a radial arm maze (RAM) testing paradigm. Results Toxic exposures had an influence on short-term working memory with fewer correct arm entries (F 2, 19 = 4.57 p <0.05), higher working memory errors (WME) (F 2, 19 = 5.09, p <0.05) and longer RAM navigation time (F2, 19 = 3.91, p <0.05) for NaOCN relative to NaCN and saline treatments. The long-term working memory was significantly impaired by cyanide with fewer correct arm entries (F 2, 19 = 7.45, p <0.01) and increased working memory errors (F 2, 19 = 9.35 p <0.05) in NaCN relative to NaOCN or vehicle treated animals. Reference memory was not affected by either cyanide or cyanate. Conclusion Our study findings provide an experimental evidence for the biological plausibility that cassava cyanogens may induce cognition deficits. Differential patterns of memory deficits may reflect the differences in toxicity mechanisms of NaOCN relative to NaCN. Cognition deficits associated with cassava cyanogenesis may reflect a dual toxicity effect of cyanide and cyanate. PMID:24293006

  6. Semantic memory in object use.

    PubMed

    Silveri, Maria Caterina; Ciccarelli, Nicoletta

    2009-10-01

    We studied five patients with semantic memory disorders, four with semantic dementia and one with herpes simplex virus encephalitis, to investigate the involvement of semantic conceptual knowledge in object use. Comparisons between patients who had semantic deficits of different severity, as well as the follow-up, showed that the ability to use objects was largely preserved when the deficit was mild but progressively decayed as the deficit became more severe. Naming was generally more impaired than object use. Production tasks (pantomime execution and actual object use) and comprehension tasks (pantomime recognition and action recognition) as well as functional knowledge about objects were impaired when the semantic deficit was severe. Semantic and unrelated errors were produced during object use, but actions were always fluent and patients performed normally on a novel tools task in which the semantic demand was minimal. Patients with severe semantic deficits scored borderline on ideational apraxia tasks. Our data indicate that functional semantic knowledge is crucial for using objects in a conventional way and suggest that non-semantic factors, mainly non-declarative components of memory, might compensate to some extent for semantic disorders and guarantee some residual ability to use very common objects independently of semantic knowledge.

  7. A cognitive psychometric model for the psychodiagnostic assessment of memory-related deficits.

    PubMed

    Alexander, Gregory E; Satalich, Timothy A; Shankle, W Rodman; Batchelder, William H

    2016-03-01

    Clinical tests used for psychodiagnostic purposes, such as the well-known Alzheimer's Disease Assessment Scale: Cognitive subscale (ADAS-Cog), include a free-recall task. The free-recall task taps into latent cognitive processes associated with learning and memory components of human cognition, any of which might be impaired with the progression of Alzheimer's disease (AD). A Hidden Markov model of free recall is developed to measure latent cognitive processes used during the free-recall task. In return, these cognitive measurements give us insight into the degree to which normal cognitive functions are differentially impaired by medical conditions, such as AD and related disorders. The model is used to analyze the free-recall data obtained from healthy elderly participants, participants diagnosed as having mild cognitive impairment, and participants diagnosed with early AD. The model is specified hierarchically to handle item differences because of the serial position curve in free recall, as well as within-group individual differences in participants' recall abilities. Bayesian hierarchical inference is used to estimate the model. The model analysis suggests that the impaired patients have the following: (1) long-term memory encoding deficits, (2) short-term memory (STM) retrieval deficits for all but very short time intervals, (3) poorer transfer into long-term memory for items successfully retrieved from STM, and (4) poorer retention of items encoded into long-term memory after longer delays. Yet, impaired patients appear to have no deficit in immediate recall of encoded words in long-term memory or for very short time intervals in STM. (c) 2016 APA, all rights reserved).

  8. Clinical correlates of working memory deficits in youth with and without ADHD: A controlled study.

    PubMed

    Fried, Ronna; Chan, James; Feinberg, Leah; Pope, Amanda; Woodworth, K Yvonne; Faraone, Stephen V; Biederman, Joseph

    2016-01-01

    Both working memory (WM; a brain system that provides temporary storage and manipulation of the information) and attention-deficit/hyperactivity disorder (ADHD) have been associated with educational deficits. Since WM deficits are prevalent in children with ADHD, the main aim of the present study was to examine whether educational deficits are driven by working memory deficits or driven by the effect of ADHD itself. Participants were referred youth with (N = 276) and without (N = 241) ADHD ascertained from pediatric and psychiatric sources. Assessment included measures of psychiatric, psychosocial, educational, and cognitive functioning. Education deficits were defined as grade retention or placement in special classes and were assessed using interviews and written rating scales. Working memory was assessed using the Wechsler Intelligence Scale for Children-Revised (WISC-R) Freedom from Distractibility (FFD) factor based on Digit Span, Arithmetic, and Coding. Significantly more youth with ADHD had WM deficits than controls (31.9% vs. 13.7%, p < .05). In ADHD children, WM deficits were significantly (p < .01) associated with an increased risk for grade retention and placement in special classes as well as lower scores on reading and math achievement tests than for ADHD children without WM deficits. In contrast, no other differences were noted in other areas of functioning. Although WM deficits also had some adverse impact on educational and cognitive correlates in non-ADHD controls, these differences failed to attain statistical significance. WM deficits significantly and selectively increase the risk for academic deficits and cognitive dysfunction in children with ADHD beyond those conferred by ADHD. Screening for WM deficits may help identify children with ADHD at high risk for academic and cognitive dysfunction.

  9. Clinical Correlates of Working Memory Deficits in Youth With and Without ADHD: A Controlled Study

    PubMed Central

    Fried, Ronna; Chan, James; Feinberg, Leah; Pope, Amanda; Woodworth, K. Yvonne; Faraone, Stephen V.; Biederman, Joseph

    2016-01-01

    Objective Both working memory (WM) (a brain system that provides temporary storage and manipulation of the information) and attention-deficit/hyperactivity disorder (ADHD) have been associated with educational deficits. Since WM deficits are prevalent in children with ADHD, the main aim of the present study was to examine whether educational deficits are driven by working memory deficits or driven by the effect of ADHD itself. Method Participants were referred youth with (N=276) and without (N=241) ADHD ascertained from pediatric and psychiatric sources. Assessment included measures of psychiatric, psychosocial, educational, and cognitive functioning. Education deficits were defined as grade retention or placement in special classes, and were assessed using interviews and written rating scales. Working memory was assessed using the WISC-R Freedom from Distractibility (FFD) factor based on digit span, arithmetic and coding. Results Significantly more youth with ADHD had WM deficits than controls (31.9% vs. 13.7%, p< 0.05). In ADHD children, WM deficits were significantly (p<0.01) associated with an increased risk for grade retention and placement in special classes as well as lower scores on reading and math achievement tests, relative to ADHD children without WM deficits. In contrast, no other differences were noted in other areas of functioning. Although WM deficits also had some adverse impact on educational and cognitive correlates in non ADHD controls, these differences failed to attain statistical significance. Conclusion WM deficits significantly and selectively increase the risk for academic deficits and cognitive dysfunction in children with ADHD beyond those conferred by ADHD. Screening for WM deficits may help identify children with ADHD at high risk for academic and cognitive dysfunction. PMID:26902180

  10. Syntactic Versus Memory Accounts of the Sentence Comprehension Deficits of Specific Language Impairment: Looking Back, Looking Ahead.

    PubMed

    Montgomery, James W; Gillam, Ronald B; Evans, Julia L

    2016-12-01

    Compared with same-age typically developing peers, school-age children with specific language impairment (SLI) exhibit significant deficits in spoken sentence comprehension. They also demonstrate a range of memory limitations. Whether these 2 deficit areas are related is unclear. The present review article aims to (a) review 2 main theoretical accounts of SLI sentence comprehension and various studies supporting each and (b) offer a new, broader, more integrated memory-based framework to guide future SLI research, as we believe the available evidence favors a memory-based perspective of SLI comprehension limitations. We reviewed the literature on the sentence comprehension abilities of English-speaking children with SLI from 2 theoretical perspectives. The sentence comprehension limitations of children with SLI appear to be more fully captured by a memory-based perspective than by a syntax-specific deficit perspective. Although a memory-based view appears to be the better account of SLI sentence comprehension deficits, this view requires refinement and expansion. Current memory-based perspectives of adult sentence comprehension, with proper modification, offer SLI investigators new, more integrated memory frameworks within which to study and better understand the sentence comprehension abilities of children with SLI.

  11. Syntactic Versus Memory Accounts of the Sentence Comprehension Deficits of Specific Language Impairment: Looking Back, Looking Ahead

    PubMed Central

    Gillam, Ronald B.; Evans, Julia L.

    2016-01-01

    Purpose Compared with same-age typically developing peers, school-age children with specific language impairment (SLI) exhibit significant deficits in spoken sentence comprehension. They also demonstrate a range of memory limitations. Whether these 2 deficit areas are related is unclear. The present review article aims to (a) review 2 main theoretical accounts of SLI sentence comprehension and various studies supporting each and (b) offer a new, broader, more integrated memory-based framework to guide future SLI research, as we believe the available evidence favors a memory-based perspective of SLI comprehension limitations. Method We reviewed the literature on the sentence comprehension abilities of English-speaking children with SLI from 2 theoretical perspectives. Results The sentence comprehension limitations of children with SLI appear to be more fully captured by a memory-based perspective than by a syntax-specific deficit perspective. Conclusions Although a memory-based view appears to be the better account of SLI sentence comprehension deficits, this view requires refinement and expansion. Current memory-based perspectives of adult sentence comprehension, with proper modification, offer SLI investigators new, more integrated memory frameworks within which to study and better understand the sentence comprehension abilities of children with SLI. PMID:27973643

  12. Memory loss versus memory distortion: the role of encoding and retrieval deficits in Korsakoff patients' false memories.

    PubMed

    Van Damme, Ilse; d'Ydewalle, Gery

    2009-05-01

    Recent studies with the Deese/Roediger-McDermott (DRM) paradigm have revealed that Korsakoff patients show reduced levels of false recognition and different patterns of false recall compared to controls. The present experiment examined whether this could be attributed to an encoding deficit, or rather to problems with explicitly retrieving thematic information at test. In a variation on the DRM paradigm, both patients and controls were presented with associative as well as categorised word lists, with the order of recall and recognition tests manipulated between-subjects. The results point to an important role for the automatic/controlled retrieval distinction: Korsakoff patients' false memory was only diminished compared to controls' when automatic or short-term memory processes could not be used to fulfil the task at hand. Hence, the patients' explicit retrieval deficit appears to be crucial in explaining past and present data. Results are discussed in terms of fuzzy-trace and activation-monitoring theories.

  13. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain.

    PubMed

    Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E

    2016-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.

  14. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain

    PubMed Central

    Mattfeld, Aaron T.; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D.E.

    2015-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567

  15. The Item-Specific Deficit Approach to evaluating verbal memory dysfunction: rationale, psychometrics, and application.

    PubMed

    Wright, Matthew J; Woo, Ellen; Schmitter-Edgecombe, Maureen; Hinkin, Charles H; Miller, Eric N; Gooding, Amanda L

    2009-10-01

    In the current study, we introduce the Item-Specific Deficit Approach (ISDA), a novel method for characterizing memory process deficits in list-learning data. To meet this objective, we applied the ISDA to California Verbal Learning Test (CVLT) data collected from a sample of 132 participants (53 healthy participants and 79 neurologically compromised participants). Overall, the ISDA indices measuring encoding, consolidation, and retrieval deficits demonstrated advantages over some traditional indices and indicated acceptable reliability and validity. Currently, the ISDA is intended for experimental use, although further research may support its utility for characterizing memory impairments in clinical assessments.

  16. Visual short-term memory binding deficit in familial Alzheimer's disease.

    PubMed

    Liang, Yuying; Pertzov, Yoni; Nicholas, Jennifer M; Henley, Susie M D; Crutch, Sebastian; Woodward, Felix; Leung, Kelvin; Fox, Nick C; Husain, Masud

    2016-05-01

    Long-term episodic memory deficits in Alzheimer's disease (AD) are well characterised but, until recently, short-term memory (STM) function has attracted far less attention. We employed a recently-developed, delayed reproduction task which requires participants to reproduce precisely the remembered location of items they had seen only seconds previously. This paradigm provides not only a continuous measure of localization error in memory, but also an index of relational binding by determining the frequency with which an object is misplaced to the location of one of the other items held in memory. Such binding errors in STM have previously been found on this task to be sensitive to medial temporal lobe (MTL) damage in focal lesion cases. Twenty individuals with pathological mutations in presenilin 1 or amyloid precursor protein genes for familial Alzheimer's disease (FAD) were tested together with 62 healthy controls. Participants were assessed using the delayed reproduction memory task, a standard neuropsychological battery and structural MRI. Overall, FAD mutation carriers were worse than controls for object identity as well as in gross localization memory performance. Moreover, they showed greater misbinding of object identity and location than healthy controls. Thus they would often mislocalize a correctly-identified item to the location of one of the other items held in memory. Significantly, asymptomatic gene carriers - who performed similarly to healthy controls on standard neuropsychological tests - had a specific impairment in object-location binding, despite intact memory for object identity and location. Consistent with the hypothesis that the hippocampus is critically involved in relational binding regardless of memory duration, decreased hippocampal volume across FAD participants was significantly associated with deficits in object-location binding but not with recall precision for object identity or localization. Object-location binding may therefore

  17. True Memory, False Memory, and Subjective Recollection Deficits after Focal Parietal Lobe Lesions

    PubMed Central

    Drowos, David B.; Berryhill, Marian; André, Jessica M.; Olson, Ingrid R.

    2010-01-01

    Objective There is mounting evidence that the posterior parietal cortex (PPC) plays an important role in episodic memory. We previously found that patients with PPC damage exhibit retrieval-related episodic memory deficits. Our objective was to assess whether parietal lobe damage affects episodic memory on a different task: the Deese-Roediger-McDermott (DRM) false-memory paradigm. Method Two patients with bilateral PPC damage and matched controls were tested. In Experiment 1, the task was to remember words; in Experiment 2 the task was to remember pictures of common objects. Prior studies have shown that normal participants have high levels of false memory to words, low levels to pictures. Results The patients exhibited significantly lower levels of false memory to words. The patients' false memories were accompanied by reduced levels of recollection, as tested by a Remember/Know procedure. It is unlikely that a failure of gist processing accounts for these results, as patients accurately remembered thematic elements of short vignettes, but failed to remember details. These results support the view that portions of the PPC play a critical role in objective and subjective aspects of recollection. PMID:20604621

  18. Association between Early Attention-Deficit/Hyperactivity Symptoms and Current Verbal and Visuo-Spatial Short-Term Memory

    ERIC Educational Resources Information Center

    Gau, Susan Shur-Fen; Chiang, Huey-Ling

    2013-01-01

    Deficits in short-term memory are common in adolescents with attention-deficit/hyperactivity disorder (ADHD), but their current ADHD symptoms cannot well predict their short-term performance. Taking a developmental perspective, we wanted to clarify the association between ADHD symptoms at early childhood and short-term memory in late childhood and…

  19. Memory deficits associated with sublethal cyanide poisoning relative to cyanate toxicity in rodents.

    PubMed

    Kimani, S; Sinei, K; Bukachi, F; Tshala-Katumbay, D; Maitai, C

    2014-03-01

    Food (cassava) linamarin is metabolized into neurotoxicants cyanide and cyanate, metabolites of which we sought to elucidate the differential toxicity effects on memory. Young 6-8 weeks old male rats were treated intraperitoneally with either 2.5 mg/kg body weight (bw) cyanide (NaCN), or 50 mg/kg bw cyanate (NaOCN), or 1 μl/g bw saline, daily for 6 weeks. Short-term and long-term memories were assessed using a radial arm maze (RAM) testing paradigm. Toxic exposures had an influence on short-term working memory with fewer correct arm entries (F(2, 19) = 4.57 p < 0.05), higher working memory errors (WME) (F(2, 19) = 5.09, p < 0.05) and longer RAM navigation time (F(2, 19) = 3.91, p < 0.05) for NaOCN relative to NaCN and saline treatments. The long-term working memory was significantly impaired by cyanide with fewer correct arm entries (F(2, 19) = 7.45, p < 0.01) and increased working memory errors (F(2, 19) = 9.35 p < 0.05) in NaCN relative to NaOCN or vehicle treated animals. Reference memory was not affected by either cyanide or cyanate. Our study findings provide an experimental evidence for the biological plausibility that cassava cyanogens may induce cognition deficits. Differential patterns of memory deficits may reflect the differences in toxicity mechanisms of NaOCN relative to NaCN. Cognition deficits associated with cassava cyanogenesis may reflect a dual toxicity effect of cyanide and cyanate.

  20. Declarative long-term memory and the mesial temporal lobe: Insights from a 5-year postsurgery follow-up study on refractory temporal lobe epilepsy.

    PubMed

    Salvato, Gerardo; Scarpa, Pina; Francione, Stefano; Mai, Roberto; Tassi, Laura; Scarano, Elisa; Lo Russo, Giorgio; Bottini, Gabriella

    2016-11-01

    It is largely recognized that the mesial temporal lobe and its substructure support declarative long-term memory (LTM). So far, different theories have been suggested, and the organization of declarative verbal LTM in the brain is still a matter of debate. In the current study, we retrospectively selected 151 right-handed patients with temporal lobe epilepsy with and without hippocampal sclerosis, with a homogeneous (seizure-free) clinical outcome. We analyzed verbal memory performance within a normalized scores context, by means of prose recall and word paired-associate learning tasks. Patients were tested at presurgical baseline, 6months, 2 and 5years after anteromesial temporal lobe surgery, using parallel versions of the neuropsychological tests. Our main finding revealed a key involvement of the left temporal lobe and, in particular, of the left hippocampus in prose recall rather than word paired-associate task. We also confirmed that shorter duration of epilepsy, younger age, and withdrawal of antiepileptic drugs would predict a better memory outcome. When individual memory performance was taken into account, data showed that females affected by left temporal lobe epilepsy for longer duration were more at risk of presenting a clinically pathologic LTM at 5years after surgery. Taken together, these findings shed new light on verbal declarative memory in the mesial temporal lobe and on the behavioral signature of the functional reorganization after the surgical treatment of temporal lobe epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Correlates of self-reported, autobiographical, and mini-mental status examination defined memory deficits following electroconvulsive therapy in South India.

    PubMed

    Rajkumar, Anto P; Petit, Cheryl P; Rachana, Arun; Deinde, Funmi; Shyamsundar, G; Thangadurai, P; Jacob, Kuruthukulangara S

    2018-04-01

    Cognitive deficits, self-reported or found following electroconvulsive therapy (ECT), and their correlates are diverse. Despite the characteristics of people receiving ECT in Asia differ widely from the west, pertinent research from Asia remains sparse. We investigated the correlates of self-reported, mini-mental status examination (MMSE) defined, and autobiographical memory deficits in a cohort that received ECT in a south Indian tertiary-care setting. 76 consecutive consenting people were recruited within seven days of completing their ECT course. Memory was assessed by a subjective Likert scale, MMSE, and an autobiographical memory scale (AMS). Psychopathology was assessed by brief psychiatric rating scale, and serum cortisol levels were estimated by chemi-luminescence immunoassays. Relevant sociodemographic and clinical data were collected from the participants, and their medical records. The correlates were analysed using generalised linear models after adjusting for the effects of potential confounders. Self-reported, MMSE-defined, and autobiographical memory deficits were present in 27.6% (95%CI 17.6-37.7%), 42.1% (95%CI 31.0-53.2%), and 36.8% (95%CI 26.0-47.7%) of participants, respectively. Agreement between the memory deficits was poor. Age, less education, duration of illness, hypothyroidism, and past history of another ECT course were significantly associated with MMSE-defined deficits. Age, anaemia, past ECT course, and pre-ECT blood pressure were significantly associated with autobiographical memory deficits, while residual psychopathology and cortisol levels were significantly associated with self-reported memory deficits. Self-reported, MMSE-defined, and autobiographical memory deficits are common at the completion of ECT course, and their correlates differ. All service users receiving ECT need periodic cognitive assessments evaluating multiple cognitive domains. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Oscillating Square Wave Transcranial Direct Current Stimulation (tDCS) Delivered During Slow Wave Sleep Does Not Improve Declarative Memory More Than Sham: A Randomized Sham Controlled Crossover Study.

    PubMed

    Sahlem, Gregory L; Badran, Bashar W; Halford, Jonathan J; Williams, Nolan R; Korte, Jeffrey E; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L; Runion, Jennifer; Bachman, David L; Uhde, Thomas W; Borckardt, Jeffery J; George, Mark S

    2015-01-01

    A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current waveform (square in our study, nearly sinusoidal in the original). Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517 mA/cm(2), and oscillated between zero and maximal current at a frequency of 0.75 Hz. Stimulation occurred during five-five minute blocks with 1-min inter-block intervals (25 min total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1 ± 3.0 SD more associations) (sham = 3.8 ± 3.1 SD more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6 ± 2.7 SD correctly typed sequences) compared to sham stimulation (2.3 ± 2.2 SD correctly typed

  3. The effects of attention on age-related relational memory deficits: Evidence from a novel attentional manipulation

    PubMed Central

    Kim, So-Yeon; Giovanello, Kelly S.

    2011-01-01

    Healthy aging is often accompanied by episodic memory decline. Prior studies have consistently demonstrated that older adults show disproportionate deficits in relational memory (RM) relative to item memory (IM). Despite rich evidence of an age-related RM deficit, the source of this deficit remains unspecified. One of the most widely investigated factors of age-related RM impairment is a reduction in attentional resources. However, no prior studies have demonstrated that reduced attentional resources are the critical source of age-related RM deficits. Here, we utilized qualitatively different attention tasks, and tested whether reduced attention for relational processing underlies the RM deficit observed in aging. In Experiment 1, we imposed either item-detection or relation-detection attention tasks on young adults during episodic memory encoding, and found that only the concurrent attention task involving relational processing disproportionately impaired RM performance in young adults. Moreover, by ruling out the possible confound of task-difficulty on the disproportionate RM impairment, we further demonstrated that reduced relational attention is a key factor for the age-related RM deficit. In Experiment 2, we replicated the results from Experiment 1 using different materials of stimuli and found that the effect of relational attention on RM is material-general. The results of Experiment 2 also showed that reducing attentional resources for relational processing in young adults strikingly equated their RM performance to that of older adults. Thus, the current study documents the first evidence that reduced attentional resources for relational processing are a critical factor for the relational memory impairment observed in aging. PMID:21707178

  4. Shared Etiology of Phonological Memory and Vocabulary Deficits in School-Age Children

    ERIC Educational Resources Information Center

    Peterson, Robin L.; Pennington, Bruce F.; Samuelsson, Stefan; Byrne, Brian; Olson, Richard K.

    2013-01-01

    Purpose: The goal of this study was to investigate the etiologic basis for the association between deficits in phonological memory (PM) and vocabulary in school-age children. Method: Children with deficits in PM or vocabulary were identified within the International Longitudinal Twin Study (ILTS; Samuelsson et al., 2005). The ILTS includes 1,045…

  5. The diagnostic utility of behavioral checklists in identifying children with ADHD and children with working memory deficits.

    PubMed

    Alloway, Tracy Packiam; Gathercole, Susan E; Holmes, Joni; Place, Maurice; Elliott, Julian G; Hilton, Kerry

    2009-09-01

    The present study investigated whether children with ADHD and those with working memory impairments have a common behavioral profile in the classroom. Three teacher checklists were used: the Conners' teacher rating scale (CTRS), the behavior rating inventory of executive function (BRIEF), and the working memory rating scale. The Conners' continuous performance test (CPT) was also included to determine whether there is a correspondence between performance on this widely used cognitive measure of attention deficits and teacher ratings of classroom behavior. All three behavior scales, but not the CPT, were able to successfully discriminate children with ADHD and those with working memory deficits from typically-developing children. Both the CTRS and the BRIEF discriminated a significant proportion of the children with ADHD from those with working memory deficits, indicating that while both groups exhibit behavioral problems in the classroom, they are characterized by differential attention profiles. The children with ADHD were identified on the basis of oppositional and hyperactive behavior, while those with working memory deficits were more inattentive.

  6. Memory Deficit Recovery after Chronic Vanadium Exposure in Mice

    PubMed Central

    Folarin, Oluwabusayo; Olopade, Funmilayo; Onwuka, Silas; Olopade, James

    2016-01-01

    Vanadium is a transitional metal with an ability to generate reactive oxygen species in the biological system. This work was designed to assess memory deficits in mice chronically exposed to vanadium. A total of 132 male BALB/c mice (4 weeks old) were used for the experiment and were divided into three major groups of vanadium treated, matched controls, and animals exposed to vanadium for three months and thereafter vanadium was withdrawn. Animals were tested using Morris water maze and forelimb grip test at 3, 6, 9, and 12 months of age. The results showed that animals across the groups showed no difference in learning but had significant loss in memory abilities after 3 months of vanadium exposure and this trend continued in all vanadium-exposed groups relative to the controls. Animals exposed to vanadium for three months recovered significantly only 9 months after vanadium withdrawal. There was no significant difference in latency to fall in the forelimb grip test between vanadium-exposed groups and the controls in all age groups. In conclusion, we have shown that chronic administration of vanadium in mice leads to memory deficit which is reversible but only after a long period of vanadium withdrawal. PMID:26962395

  7. Memory deficits due to brain injury: unique PET findings and dream alterations

    PubMed Central

    Nishida, Masaki; Nariai, Tadashi; Hiura, Mikio; Ishii, Kenji; Nishikawa, Toru

    2011-01-01

    The authors herein report the case of a young male with memory deficits due to a traumatic head injury, who presented with sleep-related symptoms such as hypersomnia and dream alterations. Although MRI and polysomnography showed no abnormalities, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and 11C flumazenil (FMZ)-PET revealed findings consistent with cerebral damage to the affected temporal region. The memory deficit of the patient gradually improved in parallel with the relief of the sleep-related symptoms. FDG-PET showed considerable improvement in glucose metabolism when he had recovered, however, evidence of neural loss remained in the FMZ-PET findings. PMID:22674950

  8. Recollecting, recognizing, and other acts of remembering: an overview of human memory.

    PubMed

    LaVoie, Donna J; Cobia, Derin J

    2007-09-01

    The question of whether memory is important to human existence is simple to answer: life without memory would be devoid of any meaning. The question of what memory is, however, is much more difficult to answer. The main purpose of this article is to provide an overview of memory function, by drawing distinctions between different memory systems, specifically declarative (ie, conscious) versus nondeclarative (ie, nonconscious) memory systems. To distinguish between these larger systems and their various components, we include discussion of deficits in memory that occur as a consequence of brain injury and normative aging processes. Included in these descriptions is discussion of the neuroanatomical correlates of each memory component described to illustrate the importance of particular brain regions to different aspects of memory function.

  9. Memory deficits associated with khat (Catha edulis) use in rodents.

    PubMed

    Kimani, S T; Patel, N B; Kioy, P G

    2016-02-01

    Khat products and chewing practices are common in East Africa, Middle East for centuries with concomitant socio-economic and public health repercussions. We assessed memory deficits associated with khat use in rodents. Young male CBA mice, 5-7 weeks old (n = 20), weighing 25-35 g were used. Mice were treated with either 40, 120 or 360 mg/kg body weight (bw) methanolic khat extract, or 0.5 ml saline for 10 days. Spatial acquisition, reversal and reference memory were assessed using modified Morris Water maze (MMWM). Mice treated with 40 mg/kg khat extract had longer (t4 = 4.12 p = 0.015) and t4 = 2.28 p = 0.065) escape latency on first and second day during reversal relative to the baseline. Under 120 mg/kg khat dose, the escape latency was shorter (t4 = -2.49 p = 0.05) vs (t3 = -2.5 p = 0.05) on third and fourth day. Further, treatment with 360 mg/kg khat extract resulted in significantly longer time (49.13, 33.5, 40.2 and 35.75) vs. (23.5 s), compared to baseline. Mice treated with khat or control preferred the target quadrant post acquisition while differential pattern was seen during reversal phase. Mice treated with 40 or 120 mg/kg khat showed significant preference for target quadrant. Substantial time (19.9) was spent in the old target compared to the new (16.9 s) by animals treated with highest dose however, the difference was not significant. There is a biological plausibility that chronic khat use may induce memory deficits and impair cognitive flexibility. The differential patterns of memory deficits may reflect the differences in dose effect as well as time dependent impairment.

  10. Disordered Connectivity Associated with Memory Deficits in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Chan, Agnes S.; Han, Yvonne M. Y.; Sze, Sophia L.; Cheung, Mei-chun; Leung, Winnie Wing-man; Chan, Raymond C. K.; To, Cho Yee

    2011-01-01

    The present study examined the memory performance and cortical connectivity of children with ASD, and investigated whether the memory deficits exhibited by these children were associated with the cortical connectivity. Twenty-one children with ASD and 21 children with normal development (NC), aged 5-14 years, participated in the study. Each child…

  11. Implicit and Explicit Memory Performance in Children with Attention Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Aloisi, Bruno A.; McKone, Elinor; Heubeck, Bernd G.

    2004-01-01

    The present investigation examined implicit and explicit memory in 20 children diagnosed with attention deficit/hyperactivity disorder (AD/HD) and 20 matched controls. Consistent with previous research, children with AD/HD performed more poorly than controls on an explicit test of long-term memory for pictures. New results were that (a) there was…

  12. Sleep-related memory consolidation in primary insomnia.

    PubMed

    Nissen, Christoph; Kloepfer, Corinna; Feige, Bernd; Piosczyk, Hannah; Spiegelhalder, Kai; Voderholzer, Ulrich; Riemann, Dieter

    2011-03-01

    It has been suggested that healthy sleep facilitates the consolidation of newly acquired memories and underlying brain plasticity. The authors tested the hypothesis that patients with primary insomnia (PI) would show deficits in sleep-related memory consolidation compared to good sleeper controls (GSC). The study used a four-group parallel design (n=86) to investigate the effects of 12 h of night-time, including polysomnographically monitored sleep ('sleep condition' in PI and GSC), versus 12 h of daytime wakefulness ('wake condition' in PI and GSC) on procedural (mirror tracing task) and declarative memory consolidation (visual and verbal learning task). Demographic characteristics and memory encoding did not differ between the groups at baseline. Polysomnography revealed a significantly disturbed sleep profile in PI compared to GSC in the sleep condition. Night-time periods including sleep in GSC were associated with (i) a significantly enhanced procedural and declarative verbal memory consolidation compared to equal periods of daytime wakefulness in GSC and (ii) a significantly enhanced procedural memory consolidation compared to equal periods of daytime wakefulness and night-time sleep in PI. Across retention intervals of daytime wakefulness, no differences between the experimental groups were observed. This pattern of results suggests that healthy sleep fosters the consolidation of new memories, and that this process is impaired for procedural memories in patients with PI. Future work is needed to investigate the impact of treatment on improving sleep and memory. © 2010 European Sleep Research Society.

  13. A biased competition account of attention and memory in Alzheimer's disease

    PubMed Central

    Finke, Kathrin; Myers, Nicholas; Bublak, Peter; Sorg, Christian

    2013-01-01

    The common view of Alzheimer's disease (AD) is that of an age-related memory disorder, i.e. declarative memory deficits are the first signs of the disease and associated with progressive brain changes in the medial temporal lobes and the default mode network. However, two findings challenge this view. First, new model-based tools of attention research have revealed that impaired selective attention accompanies memory deficits from early pre-dementia AD stages on. Second, very early distributed lesions of lateral parietal networks may cause these attention deficits by disrupting brain mechanisms underlying attentional biased competition. We suggest that memory and attention impairments might indicate disturbances of a common underlying neurocognitive mechanism. We propose a unifying account of impaired neural interactions within and across brain networks involved in attention and memory inspired by the biased competition principle. We specify this account at two levels of analysis: at the computational level, the selective competition of representations during both perception and memory is biased by AD-induced lesions; at the large-scale brain level, integration within and across intrinsic brain networks, which overlap in parietal and temporal lobes, is disrupted. This account integrates a large amount of previously unrelated findings of changed behaviour and brain networks and favours a brain mechanism-centred view on AD. PMID:24018724

  14. A biased competition account of attention and memory in Alzheimer's disease.

    PubMed

    Finke, Kathrin; Myers, Nicholas; Bublak, Peter; Sorg, Christian

    2013-10-19

    The common view of Alzheimer's disease (AD) is that of an age-related memory disorder, i.e. declarative memory deficits are the first signs of the disease and associated with progressive brain changes in the medial temporal lobes and the default mode network. However, two findings challenge this view. First, new model-based tools of attention research have revealed that impaired selective attention accompanies memory deficits from early pre-dementia AD stages on. Second, very early distributed lesions of lateral parietal networks may cause these attention deficits by disrupting brain mechanisms underlying attentional biased competition. We suggest that memory and attention impairments might indicate disturbances of a common underlying neurocognitive mechanism. We propose a unifying account of impaired neural interactions within and across brain networks involved in attention and memory inspired by the biased competition principle. We specify this account at two levels of analysis: at the computational level, the selective competition of representations during both perception and memory is biased by AD-induced lesions; at the large-scale brain level, integration within and across intrinsic brain networks, which overlap in parietal and temporal lobes, is disrupted. This account integrates a large amount of previously unrelated findings of changed behaviour and brain networks and favours a brain mechanism-centred view on AD.

  15. Deficits in temporal order memory induced by interferon-alpha (IFN-α) treatment are rescued by aerobic exercise.

    PubMed

    Barlow, Sally; Fahey, Briana; Smith, Kimberley J; Passecker, Johannes; Della-Chiesa, Andrea; Hok, Vincent; Day, Jennifer S; Callaghan, Charlotte K; O'Mara, Shane M

    2018-05-18

    Patients receiving cytokine immunotherapy with IFN-α frequently present with neuropsychiatric consequences and cognitive impairments, including a profound depressive-like symptomatology. While the neurobiological substrates of the dysfunction that leads to adverse events in IFN-α-treated patients remains ill-defined, dysfunctions of the hippocampus and prefrontal cortex (PFC) are strong possibilities. To date, hippocampal deficits have been well-characterised; there does however remain a lack of insight into the nature of prefrontal participation. Here, we used a PFC-supported temporal order memory paradigm to examine if IFN-α treatment induced deficits in performance; additionally, we used an object recognition task to assess the integrity of the perirhinal cortex (PRH). Finally, the utility of exercise as an ameliorative strategy to recover temporal order deficits in rats was also explored. We found that IFN-α-treatment impaired temporal order memory discriminations, whereas recognition memory remained intact, reflecting a possible dissociation between recognition and temporal order memory processing. Further characterisation of temporal order memory impairments using a longitudinal design revealed that deficits persisted for 10 weeks following cessation of IFN-α-treatment. Finally, a 6 week forced exercise regime reversed IFN-α-induced deficits in temporal order memory. These data provide further insight into the circuitry involved in cognitive impairments arising from IFN-α-treatment. Here we suggest that PFC (or the hippocampo-prefrontal pathway) may be compromised whilst the function of the PRH is preserved. Deficits may persist after cessation of IFN-α-treatment which suggests that extended patient monitoring is required. Aerobic exercise may be restorative and could prove beneficial for patients treated with IFN-α. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Proactive interference and concurrent inhibitory processes do not differentially affect item and associative recognition: Implication for the age-related associative memory deficit.

    PubMed

    Guez, Jonathan; Naveh-Benjamin, Moshe

    2016-09-01

    Previous studies have suggested an associative deficit hypothesis [Naveh-Benjamin, M. ( 2000 ). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1170-1187] to explain age-related episodic memory declines. The hypothesis attributes part of the deficient episodic memory performance in older adults to a difficulty in creating and retrieving cohesive episodes. In this article, we further evaluate this hypothesis by testing two alternative processes that potentially mediate associative memory deficits in older adults. Four experiments are presented that assess whether failure of inhibitory processes (proactive interference in Experiments 1 and 2), and concurrent inhibition (in Experiments 3 and 4) are mediating factors in age-related associative deficits. The results suggest that creating conditions that require the operation of inhibitory processes, or that interfere with such processes, cannot simulate associative memory deficit in older adults. Instead, such results support the idea that associative memory deficits reflect a unique binding failure in older adults. This failure seems to be independent of other cognitive processes, including inhibitory and other resource-demanding processes.

  17. Visual short-term memory deficits associated with GBA mutation and Parkinson's disease.

    PubMed

    Zokaei, Nahid; McNeill, Alisdair; Proukakis, Christos; Beavan, Michelle; Jarman, Paul; Korlipara, Prasad; Hughes, Derralynn; Mehta, Atul; Hu, Michele T M; Schapira, Anthony H V; Husain, Masud

    2014-08-01

    Individuals with mutation in the lysosomal enzyme glucocerebrosidase (GBA) gene are at significantly high risk of developing Parkinson's disease with cognitive deficit. We examined whether visual short-term memory impairments, long associated with patients with Parkinson's disease, are also present in GBA-positive individuals-both with and without Parkinson's disease. Precision of visual working memory was measured using a serial order task in which participants observed four bars, each of a different colour and orientation, presented sequentially at screen centre. Afterwards, they were asked to adjust a coloured probe bar's orientation to match the orientation of the bar of the same colour in the sequence. An additional attentional 'filtering' condition tested patients' ability to selectively encode one of the four bars while ignoring the others. A sensorimotor task using the same stimuli controlled for perceptual and motor factors. There was a significant deficit in memory precision in GBA-positive individuals-with or without Parkinson's disease-as well as GBA-negative patients with Parkinson's disease, compared to healthy controls. Worst recall was observed in GBA-positive cases with Parkinson's disease. Although all groups were impaired in visual short-term memory, there was a double dissociation between sources of error associated with GBA mutation and Parkinson's disease. The deficit observed in GBA-positive individuals, regardless of whether they had Parkinson's disease, was explained by a systematic increase in interference from features of other items in memory: misbinding errors. In contrast, impairments in patients with Parkinson's disease, regardless of GBA status, was explained by increased random responses. Individuals who were GBA-positive and also had Parkinson's disease suffered from both types of error, demonstrating the worst performance. These findings provide evidence for dissociable signature deficits within the domain of visual short

  18. Relations between Short-term Memory Deficits, Semantic Processing, and Executive Function

    PubMed Central

    Allen, Corinne M.; Martin, Randi C.; Martin, Nadine

    2012-01-01

    Background Previous research has suggested separable short-term memory (STM) buffers for the maintenance of phonological and lexical-semantic information, as some patients with aphasia show better ability to retain semantic than phonological information and others show the reverse. Recently, researchers have proposed that deficits to the maintenance of semantic information in STM are related to executive control abilities. Aims The present study investigated the relationship of executive function abilities with semantic and phonological short-term memory (STM) and semantic processing in such patients, as some previous research has suggested that semantic STM deficits and semantic processing abilities are critically related to specific or general executive function deficits. Method and Procedures 20 patients with aphasia and STM deficits were tested on measures of short-term retention, semantic processing, and both complex and simple executive function tasks. Outcome and Results In correlational analyses, we found no relation between semantic STM and performance on simple or complex executive function tasks. In contrast, phonological STM was related to executive function performance in tasks that had a verbal component, suggesting that performance in some executive function tasks depends on maintaining or rehearsing phonological codes. Although semantic STM was not related to executive function ability, performance on semantic processing tasks was related to executive function, perhaps due to similar executive task requirements in both semantic processing and executive function tasks. Conclusions Implications for treatment and interpretations of executive deficits are discussed. PMID:22736889

  19. Functional anatomy of autobiographical memory recall deficits in depression

    PubMed Central

    Young, K. D.; Erickson, K.; Nugent, A. C.; Fromm, S. J.; Mallinger, A. G.; Furey, M. L.; Drevets, W. C.

    2012-01-01

    Background Major depressive disorder (MDD) is associated with deficits in recalling specific autobiographical memories (AMs). Extensive research has examined the functional anatomical correlates of AM in healthy humans, but no studies have examined the neurophysiological underpinnings of AM deficits in MDD. The goal of the present study was to examine the differences in the hemodynamic response between patients with MDD and controls while they engage in AM recall. Method Participants (12 unmedicated MDD patients; 14 controls) underwent functional magnetic resonance imaging (fMRI) scanning while recalling AMs in response to positive, negative and neutral cue words. The hemodynamic response during memory recall versus performing subtraction problems was compared between MDD patients and controls. Additionally, a parametric linear analysis examined which regions correlated with increasing arousal ratings. Results Behavioral results showed that relative to controls, the patients with MDD had fewer specific (p=0.013), positive (p=0.030), highly arousing (p=0.036) and recent (p=0.020) AMs, and more categorical (p<0.001) AMs. The blood oxygen level-dependent (BOLD) response in the parahippocampus and hippocampus was higher for memory recall versus subtraction in controls and lower in those with MDD. Activity in the anterior insula was lower for specific AM recall versus subtraction, with the magnitude of the decrement greater in MDD patients. Activity in the anterior cingulate cortex was positively correlated with arousal ratings in controls but not in patients with MDD. Conclusions We replicated previous findings of fewer specific and more categorical AMs in patients with MDD versus controls. We found differential activity in medial temporal and prefrontal lobe structures involved in AM retrieval between MDD patients and controls as they engaged in AM recall. These neurophysiological deficits may underlie AM recall impairments seen in MDD. PMID:21798113

  20. Metamemory Ability in Learning Disabled Children with and without a Memory Deficit.

    ERIC Educational Resources Information Center

    Goldstein, David; Golding, Jonathan

    Normal children (N=8) and two groups of 8 learning disabled (LD) elementary grade children, one with and one without a short-term memory deficit, were administered a battery of questions concerning knowledge of how their memories function (metamemory). Metamemory was found to be deficient only in the subgroup of LD children with a short-term…

  1. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory

    PubMed Central

    Heisler, Jillian M.; O’Connor, Jason C.

    2015-01-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057

  2. Oscillating square wave Transcranial Direct Current Stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: A randomized sham controlled crossover study

    PubMed Central

    Sahlem, Gregory L.; Badran, Bashar W.; Halford, Jonathan J.; Williams, Nolan R.; Korte, Jeffrey E.; Leslie, Kimberly; Strachan, Martha; Breedlove, Jesse L.; Runion, Jennifer; Bachman, David L.; Uhde, Thomas W.; Borckardt, Jeffery J.; George, Mark S.

    2015-01-01

    Background A 2006 trial in healthy medical students found that anodal slow oscillating tDCS delivered bi-frontally during slow wave sleep had an enhancing effect in declarative, but not procedural memory. Although there have been supporting animal studies, and similar findings in pathological groups, this study has not been replicated, or refuted, in the intervening years. We therefore tested these earlier results for replication using similar methods with the exception of current wave form (square in our study, nearly sinusoidal in the original). Objective/Hypothesis Our objective was to test the findings of a 2006 trial suggesting bi-frontal anodal tDCS during slow wave sleep enhances declarative memory. Methods Twelve students (mean age 25, 9 women) free of medical problems underwent two testing conditions (active, sham) in a randomized counterbalanced fashion. Active stimulation consisted of oscillating square wave tDCS delivered during early Non-Rapid Eye Movement (NREM) sleep. The sham condition consisted of setting-up the tDCS device and electrodes, but not turning it on during sleep. tDCS was delivered bi-frontally with anodes placed at F3/F4, and cathodes placed at mastoids. Current density was 0.517mA/CM2, and oscillated between zero and maximal current at a frequency of 0.75Hz. Stimulation occurred during five-five minute blocks with one-minute inter-block intervals (25 minutes total stimulation). The primary outcomes were both declarative memory consolidation measured by a paired word association test (PWA), and non-declarative memory, measured by a non-dominant finger-tapping test (FTT). We also recorded and analyzed sleep EEG. Results There was no difference in the number of paired word associations remembered before compared to after sleep [(active = 3.1±3.0SD more associations) (sham = 3.8±3.1S.D more associations)]. Finger tapping improved, (non-significantly) following active stimulation [(3.6±2.7 S.D. correctly typed sequences) compared to

  3. Working memory and attention deficits in adolescent offspring of schizophrenia or bipolar patients: comparing vulnerability markers.

    PubMed

    Diwadkar, Vaibhav A; Goradia, Dhruman; Hosanagar, Avinash; Mermon, Diana; Montrose, Debra M; Birmaher, Boris; Axelson, David; Rajarathinem, R; Haddad, Luay; Amirsadri, Ali; Zajac-Benitez, Caroline; Rajan, Usha; Keshavan, Matcheri S

    2011-07-01

    Working memory deficits abound in schizophrenia and attention deficits have been documented in schizophrenia and bipolar disorder. Adolescent offspring of patients may inherit vulnerabilities in brain circuits that subserve these cognitive domains. Here we assess impairments in offspring of schizophrenia (SCZ-Offspring) or bipolar (BP-Offspring) patients compared to controls (HC) with no family history of mood or psychotic disorders to the second degree. Three groups (n=100 subjects; range: 10-20 yrs) of HC, SCZ-Offspring and BP-Offspring gave informed consent. Working memory was assessed using a delayed spatial memory paradigm with two levels of delay (2s & 12s); sustained attention processing was assessed using the Continuous Performance Task-Identical Pairs version. SCZ-Offspring (but not BP-Offspring) showed impairments in working memory (relative to HC) at the longer memory delay indicating a unique deficit. Both groups showed reduced sensitivity during attention but only BP-Offspring significantly differed from controls. These results suggest unique (working memory/dorsal frontal cortex) and potentially overlapping (attention/fronto-striatal cortex) vulnerability pathways in adolescent offspring of patients with schizophrenia and bipolar disorder. Working memory and attention assessments in these offspring may assist in the clinical characterization of the adolescents vulnerable to SCZ or BP. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Long term verbal memory recall deficits in fragile X premutation females.

    PubMed

    Shelton, Annie L; Cornish, Kim; Fielding, Joanne

    2017-10-01

    Carriers of a FMR1 premutation allele (between 55 and 199 CGG repeats) are at risk of developing a wide range of medical, psychiatric and cognitive disorders, including executive dysfunction. These cognitive deficits are often less severe for female premutation carriers compared to male premutation carriers, albeit similar in nature. However, it remains unclear whether female premutation carriers who exhibit executive dysfunction also report verbal learning and memory deficits like those of their male counterparts. Here we employed the CVLT to assess verbal learning and memory function in 19 female premutation carriers, contrasting performance with 19 age- and IQ-matched controls. Group comparisons revealed similar performance during the learning and short delay recall phases of the CVLT. However, after a long delay period, female premutation carriers remembered fewer words for both free and cued recall trials, but not during recognition trials. These findings are consistent with reports for male premutation carriers, and suggest that aspects of long term memory may be adversely affect in a subgroup of premutation carriers with signs of executive dysfunction. Copyright © 2017. Published by Elsevier Inc.

  5. Gypenosides ameliorate memory deficits in MPTP-lesioned mouse model of Parkinson's disease treated with L-DOPA.

    PubMed

    Zhao, Ting Ting; Kim, Kyung Sook; Shin, Keon Sung; Park, Hyun Jin; Kim, Hyun Jeong; Lee, Kyung Eun; Lee, Myung Koo

    2017-09-06

    Previous studies have revealed that gypenosides (GPS) improve the symptoms of anxiety disorders in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned rat model of Parkinson's disease (PD). The present study aimed to investigate the effects of GPS on memory deficits in an MPTP-lesioned mouse model of PD treated with L-3,4-dihydroxyphenylalanine (L-DOPA). MPTP (30 mg/kg/day, 5 days)-lesioned mice were treated with GPS (50 mg/kg) and/or L-DOPA (10 and 25 mg/kg) for 21 days. After the final treatments, behavioral changes were assessed in all mice using passive avoidance and elevated plus-maze tests. We then evaluated the biochemical influences of GPS treatment on levels of tyrosine hydroxylase (TH), dopamine, N-methyl-D-aspartate (NMDA) receptors, extracellular signal-regulated kinase (ERK1/2), and cyclic AMP-response element binding protein (CREB) phosphorylation. MPTP-lesioned mice exhibited deficits associated with habit learning and spatial memory, which were further aggravated by treatment with L-DOPA (25 mg/kg). However, treatment with GPS (50 mg/kg) ameliorated memory deficits. Treatment with GPS (50 mg/kg) also improved L-DOPA (25 mg/kg)-treated MPTP lesion-induced decreases in retention latency on the passive avoidance test, as well as levels of TH-immunopositive cells and dopamine in the substantia nigra and striatum. GPS treatment also attenuated increases in retention transfer latency on the elevated plus-maze test and in NMDA receptor expression, as well as decreases in the phosphorylation of ERK1/2 and CREB in the hippocampus. Treatment with L-DOPA (10 mg/kg) also ameliorated deficits in habit learning and spatial memory in MPTP-lesioned mice, and this effect was further enhanced by treatment with GPS (50 mg/kg). GPS ameliorate deficits in habit learning and spatial memory by modulating the dopaminergic neuronal and N-methyl-D-aspartate receptor-mediated signaling systems in MPTP-lesioned mice treated with L-DOPA. GPS may serve as an adjuvant

  6. Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation.

    PubMed

    Larrosa, Pablo Nicolás Fernández; Ojea, Alejandro; Ojea, Ignacio; Molina, Victor Alejandro; Zorrilla-Zubilete, María Aurelia; Delorenzi, Alejandro

    2017-07-01

    Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder

  7. Cdk5 Contributes to Huntington's Disease Learning and Memory Deficits via Modulation of Brain Region-Specific Substrates.

    PubMed

    Alvarez-Periel, Elena; Puigdellívol, Mar; Brito, Verónica; Plattner, Florian; Bibb, James A; Alberch, Jordi; Ginés, Silvia

    2017-12-29

    Cognitive deficits are a major hallmark of Huntington's disease (HD) with a great impact on the quality of patient's life. Gaining a better understanding of the molecular mechanisms underlying learning and memory impairments in HD is, therefore, of critical importance. Cdk5 is a proline-directed Ser/Thr kinase involved in the regulation of synaptic plasticity and memory processes that has been associated with several neurodegenerative disorders. In this study, we aim to investigate the role of Cdk5 in learning and memory impairments in HD using a novel animal model that expresses mutant huntingtin (mHtt) and has genetically reduced Cdk5 levels. Genetic reduction of Cdk5 in mHtt knock-in mice attenuated both corticostriatal learning deficits as well as hippocampal-dependent memory decline. Moreover, the molecular mechanisms by which Cdk5 counteracts the mHtt-induced learning and memory impairments appeared to be differentially regulated in a brain region-specific manner. While the corticostriatal learning deficits are attenuated through compensatory regulation of NR2B surface levels, the rescue of hippocampal-dependent memory was likely due to restoration of hippocampal dendritic spine density along with an increase in Rac1 activity. This work identifies Cdk5 as a critical contributor to mHtt-induced learning and memory deficits. Furthermore, we show that the Cdk5 downstream targets involved in memory and learning decline differ depending on the brain region analyzed suggesting that distinct Cdk5 effectors could be involved in cognitive impairments in HD.

  8. Memory deficits for facial identity in patients with amnestic mild cognitive impairment (MCI).

    PubMed

    Savaskan, Egemen; Summermatter, Daniel; Schroeder, Clemens; Schächinger, Hartmut

    2018-01-01

    Faces are among the most relevant social stimuli revealing an encounter's identity and actual emotional state. Deficits in facial recognition may be an early sign of cognitive decline leading to social deficits. The main objective of the present study is to investigate if individuals with amnestic mild cognitive impairment show recognition deficits in facial identity. Thirty-seven individuals with amnestic mild cognitive impairment, multiple-domain (15 female; age: 75±8 yrs.) and forty-one healthy volunteers (24 female; age 71±6 yrs.) participated. All participants completed a human portrait memory test presenting unfamiliar faces with happy and angry emotional expressions. Five and thirty minutes later, old and new neutral faces were presented, and discrimination sensitivity (d') and response bias (C) were assessed as signal detection parameters of cued facial identity recognition. Memory performance was lower in amnestic mild cognitive impairment as compared to control subjects, mainly because of an altered response bias towards an increased false alarm rate (favoring false OLD ascription of NEW items). In both groups, memory performance declined between the early and later testing session, and was always better for acquired happy than angry faces. Facial identity memory is impaired in patients with amnestic mild cognitive impairment. Liberalization of the response bias may reflect a socially motivated compensatory mechanism maintaining an almost identical recognition hit rate of OLD faces in individuals with amnestic mild cognitive impairment.

  9. Learning and Memory Impairments in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Andersen, Per N.; Egeland, Jens; Øie, Merete

    2013-01-01

    There are relatively few studies on learning and delayed memory with attention-deficit/hyperactivity disorder (ADHD). The objective of the present study was to examine acquisition, free delayed memory, and recognition skills in medication naive children and adolescents aged 8-16 years with ADHD combined subtype (36 participants) and inattentive…

  10. Traumatic stress is linked to a deficit in associative episodic memory.

    PubMed

    Guez, Jonathan; Naveh-Benjamin, Moshe; Yankovsky, Yan; Cohen, Jonathan; Shiber, Asher; Shalev, Hadar

    2011-06-01

    Individuals with posttraumatic stress disorder (PTSD) are haunted by persistent memories of the trauma, but ironically are impaired in memories of daily life. The current set of 4 experiments compared new learning and memory of emotionally neutral content in 2 groups of patients and aged- and education-matched controls: 20 patients diagnosed with chronic posttraumatic stress disorder (C-PTSD) and 20 patients diagnosed with acute stress disorder (ASD). In all experiments, participants studied a list of stimuli pairs (words or pictures) and were then tested for their memory of the items, or for the association between items in each pair. Results indicated that both types of patients showed associative memory impairment compared to a control group, although their item memory performance was relatively intact. Potential mechanisms underlying such associative memory deficits in posttraumatic patients are discussed. Copyright © 2011 International Society for Traumatic Stress Studies.

  11. Working memory deficits in high-functioning adolescents with autism spectrum disorders: neuropsychological and neuroimaging correlates.

    PubMed

    Barendse, Evelien M; Hendriks, Marc Ph; Jansen, Jacobus Fa; Backes, Walter H; Hofman, Paul Am; Thoonen, Geert; Kessels, Roy Pc; Aldenkamp, Albert P

    2013-06-04

    Working memory is a temporary storage system under attentional control. It is believed to play a central role in online processing of complex cognitive information and may also play a role in social cognition and interpersonal interactions. Adolescents with a disorder on the autism spectrum display problems in precisely these domains. Social impairments, communication difficulties, and repetitive interests and activities are core domains of autism spectrum disorders (ASD), and executive function problems are often seen throughout the spectrum. As the main cognitive theories of ASD, including the theory of mind deficit hypotheses, weak central coherence account, and the executive dysfunction theory, still fail to explain the broad spectrum of symptoms, a new perspective on the etiology of ASD is needed. Deficits in working memory are central to many theories of psychopathology, and are generally linked to frontal-lobe dysfunction. This article will review neuropsychological and (functional) brain imaging studies on working memory in adolescents with ASD. Although still disputed, it is concluded that within the working memory system specific problems of spatial working memory are often seen in adolescents with ASD. These problems increase when information is more complex and greater demands on working memory are made. Neuroimaging studies indicate a more global working memory processing or connectivity deficiency, rather than a focused deficit in the prefrontal cortex. More research is needed to relate these working memory difficulties and neuroimaging results in ASD to the behavioral difficulties as seen in individuals with a disorder on the autism spectrum.

  12. Differences in Memory Functioning between Children with Attention-Deficit/Hyperactivity Disorder and/or Focal Epilepsy

    PubMed Central

    Lee, Sylvia E.; Kibby, Michelle Y.; Cohen, Morris J.; Stanford, Lisa; Park, Yong; Strickland, Suzanne

    2016-01-01

    Prior research has shown that attention-deficit/hyperactivity disorder (ADHD) and epilepsy are frequently comorbid and that both disorders are associated with various attention and memory problems. Nonetheless, limited research has been conducted comparing the two disorders in one sample to determine unique versus shared deficits. Hence, we investigated differences in working memory and short-term and delayed recall between children with ADHD, focal epilepsy of mixed foci, comorbid ADHD/epilepsy and controls. Participants were compared on the Core subtests and the Picture Locations subtest of the Children’s Memory Scale (CMS). Results indicated that children with ADHD displayed intact verbal working memory and long-term memory (LTM), as well as intact performance on most aspects of short-term memory (STM). They performed worse than controls on Numbers Forward and Picture Locations, suggesting problems with focused attention and simple span for visual-spatial material. Conversely, children with epilepsy displayed poor focused attention and STM regardless of modality assessed, which affected encoding into LTM. The only loss over time was found for passages (Stories). Working memory was intact. Children with comorbid ADHD/epilepsy displayed focused attention and STM/LTM problems consistent with both disorders, having the lowest scores across the four groups. Hence, focused attention and visual-spatial span appear to be affected in both disorders, whereas additional STM/encoding problems are specific to epilepsy. Children with comorbid ADHD/epilepsy have deficits consistent with both disorders, with slight additive effects. This study suggests that attention and memory testing should be a regular part of the evaluation of children with epilepsy and ADHD. PMID:26156331

  13. A neurocognitive perspective on language: the declarative/procedural model.

    PubMed

    Ullman, M T

    2001-10-01

    What are the psychological, computational and neural underpinnings of language? Are these neurocognitive correlates dedicated to language? Do different parts of language depend on distinct neurocognitive systems? Here I address these and other issues that are crucial for our understanding of two fundamental language capacities: the memorization of words in the mental lexicon, and the rule-governed combination of words by the mental grammar. According to the declarative/procedural model, the mental lexicon depends on declarative memory and is rooted in the temporal lobe, whereas the mental grammar involves procedural memory and is rooted in the frontal cortex and basal ganglia. I argue that the declarative/procedural model provides a new framework for the study of lexicon and grammar.

  14. A Meta-Analysis of Working Memory Impairments in Children with Attention-Deficit/hyperactivity Disorder.

    ERIC Educational Resources Information Center

    Martinussen, Rhonda; Hayden, Jill; Hogg-Johnson, Sheilah; Tannock, Rosemary

    2005-01-01

    Objective: To determine the empirical evidence for deficits in working memory (WM) processes in children and adolescents with attention-deficit/hyperactivity disorder (ADHD). Method: Exploratory meta-analytic procedures were used to investigate whether children with ADHD exhibit WM impairments. Twenty-six empirical research studies published from…

  15. Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation.

    PubMed

    Neves, Ben-Hur; Menezes, Jefferson; Souza, Mauren Assis; Mello-Carpes, Pâmela B

    2015-12-01

    It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.

  16. Set shifting and working memory in adults with attention-deficit/hyperactivity disorder.

    PubMed

    Rohlf, Helena; Jucksch, Viola; Gawrilow, Caterina; Huss, Michael; Hein, Jakob; Lehmkuhl, Ulrike; Salbach-Andrae, Harriet

    2012-01-01

    Compared to the high number of studies that investigated executive functions (EF) in children with attention-deficit/hyperactivity disorder (ADHD), a little is known about the EF performance of adults with ADHD. This study compared 37 adults with ADHD (ADHD(total)) and 32 control participants who were equivalent in age, intelligence quotient (IQ), sex, and years of education, in two domains of EF--set shifting and working memory. Additionally, the ADHD(total) group was subdivided into two subgroups: ADHD patients without comorbidity (ADHD(-), n = 19) and patients with at least one comorbid disorder (ADHD(+), n = 18). Participants fulfilled two measures for set shifting (i.e., the trail making test, TMT and a computerized card sorting test, CKV) and one measure for working memory (i.e., digit span test, DS). Compared to the control group the ADHD(total) group displayed deficits in set shifting and working memory. The differences between the groups were of medium-to-large effect size (TMT: d = 0.48; DS: d = 0.51; CKV: d = 0.74). The subgroup comparison of the ADHD(+) group and the ADHD(-) group revealed a poorer performance in general information processing speed for the ADHD(+) group. With regard to set shifting and working memory, no significant differences could be found between the two subgroups. These results suggest that the deficits of the ADHD(total) group are attributable to ADHD rather than to comorbidity. An influence of comorbidity, however, could not be completely ruled out as there was a trend of a poorer performance in the ADHD(+) group on some of the outcome measures.

  17. Short-Term Memory of Children with Mental Retardation: Structural Defects or Control Deficits.

    ERIC Educational Resources Information Center

    Katims, David S.

    The short-term memory of 24 retarded and 24 nonretarded individuals, aged 10 to 14, under conditions of restricted cognitive strategy use was investigated. An attempt was made to determine whether short-term memory difficulties of persons with mental retardation are caused by deficits in voluntary cognitive strategies, such as the organization and…

  18. Organizational Learning Strategies and Verbal Memory Deficits in Bipolar Disorder.

    PubMed

    Nitzburg, George C; Cuesta-Diaz, Armando; Ospina, Luz H; Russo, Manuela; Shanahan, Megan; Perez-Rodriguez, Mercedes; Larsen, Emmett; Mulaimovic, Sandra; Burdick, Katherine E

    2017-04-01

    Verbal memory (VM) impairment is prominent in bipolar disorder (BD) and is linked to functional outcomes. However, the intricacies of VM impairment have not yet been studied in a large sample of BD patients. Moreover, some have proposed VM deficits that may be mediated by organizational strategies, such as semantic or serial clustering. Thus, the exact nature of VM break-down in BD patients is not well understood, limiting remediation efforts. We investigated the intricacies of VM deficits in BD patients versus healthy controls (HCs) and examined whether verbal learning differences were mediated by use of clustering strategies. The California Verbal Learning Test (CVLT) was administered to 113 affectively stable BD patients and 106 HCs. We compared diagnostic groups on all CVLT indices and investigated whether group differences in verbal learning were mediated by clustering strategies. Although BD patients showed significantly poorer attention, learning, and memory, these indices were only mildly impaired. However, BD patients evidenced poorer use of effective learning strategies and lower recall consistency, with these indices falling in the moderately impaired range. Moreover, relative reliance on semantic clustering fully mediated the relationship between diagnostic category and verbal learning, while reliance on serial clustering partially mediated this relationship. VM deficits in affectively stable bipolar patients were widespread but were generally mildly impaired. However, patients displayed inadequate use of organizational strategies with clear separation from HCs on semantic and serial clustering. Remediation efforts may benefit from education about mnemonic devices or "chunking" techniques to attenuate VM deficits in BD. (JINS, 2017, 23, 358-366).

  19. Deficits of long-term memory in ecstasy users are related to cognitive complexity of the task.

    PubMed

    Brown, John; McKone, Elinor; Ward, Jeff

    2010-03-01

    Despite animal evidence that methylenedioxymethamphetamine (ecstasy) causes lasting damage in brain regions related to long-term memory, results regarding human memory performance have been variable. This variability may reflect the cognitive complexity of the memory tasks. However, previous studies have tested only a limited range of cognitive complexity. Furthermore, comparisons across different studies are made difficult by regional variations in ecstasy composition and patterns of use. The objective of this study is to evaluate ecstasy-related deficits in human verbal memory over a wide range of cognitive complexity using subjects drawn from a single geographical population. Ecstasy users were compared to non-drug using controls on verbal tasks with low cognitive complexity (stem completion), moderate cognitive complexity (stem-cued recall and word list learning) and high cognitive complexity (California Verbal Learning Test, Verbal Paired Associates and a novel Verbal Triplet Associates test). Where significant differences were found, both groups were also compared to cannabis users. More cognitively complex memory tasks were associated with clearer ecstasy-related deficits than low complexity tasks. In the most cognitively demanding task, ecstasy-related deficits remained even after multiple learning opportunities, whereas the performance of cannabis users approached that of non-drug using controls. Ecstasy users also had weaker deliberate strategy use than both non-drug and cannabis controls. Results were consistent with the proposal that ecstasy-related memory deficits are more reliable on tasks with greater cognitive complexity. This could arise either because such tasks require a greater contribution from the frontal lobe or because they require greater interaction between multiple brain regions.

  20. Using attribute amnesia to test the limits of hyper-binding and associative deficits in working memory.

    PubMed

    McCormick-Huhn, John M; Chen, Hui; Wyble, Bradley P; Dennis, Nancy A

    2018-02-01

    Previous work has shown mixed evidence regarding age-related deficits for binding in working memory. The current study used the newly developed attribute amnesia effect (H. Chen & Wyble, 2015a) to test the associative-deficit hypothesis during working memory and to probe whether hyper-binding extends to include binding of de-selected information. In studies of attribute amnesia, participants use target attributes (e.g., identity, color) to demonstrate near ceiling levels of reporting of a second target attribute (e.g., location) across a series of trials (H. Chen & Wyble, 2015a, 2016). Yet, despite having just processed the target-defining attribute, they have difficulty reporting it on a surprise trial. This effect provides several predictions for associative binding in aging. The associative-deficit hypothesis predicts age-related decline on the surprise trial, whereas an extension of hyper-binding predicts age-related increase in performance in older adults. In Experiment 1, when working memory load was low, older adults demonstrated attribute amnesia equal to that found in younger adults. When load increased in Experiment 2, older adults again demonstrated attribute amnesia as well as an age deficit for reporting target attributes. In lieu of spontaneous binding, results suggest that expectancy plays a critical role in older adults' propensity to encode and bind target attributes in working memory. Results further suggest that expectancy alone is not enough for older adults to form bound representations when task demands are high. Taken together results revealed a boundary condition of hyper-binding and further provided conditional support for the associative-deficit hypothesis in working memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice.

    PubMed

    Andrews-Zwilling, Yaisa; Bien-Ly, Nga; Xu, Qin; Li, Gang; Bernardo, Aubrey; Yoon, Seo Yeon; Zwilling, Daniel; Yan, Tonya Xue; Chen, Ligong; Huang, Yadong

    2010-10-13

    Apolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimer's disease. However, the underlying mechanisms are unclear. We found that female apoE4 knock-in (KI) mice had an age-dependent decrease in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined in the Morris water maze, in aged mice. Treating apoE4-KI mice with daily peritoneal injections of the GABA(A) receptor potentiator pentobarbital at 20 mg/kg for 4 weeks rescued the learning and memory deficits. In neurotoxic apoE4 fragment transgenic mice, hilar GABAergic interneuron loss was even more pronounced and also correlated with the extent of learning and memory deficits. Neurodegeneration and tauopathy occurred earliest in hilar interneurons in apoE4 fragment transgenic mice; eliminating endogenous Tau prevented hilar GABAergic interneuron loss and the learning and memory deficits. The GABA(A) receptor antagonist picrotoxin abolished this rescue, while pentobarbital rescued learning deficits in the presence of endogenous Tau. Thus, apoE4 causes age- and Tau-dependent impairment of hilar GABAergic interneurons, leading to learning and memory deficits in mice. Consequently, reducing Tau and enhancing GABA signaling are potential strategies to treat or prevent apoE4-related Alzheimer's disease.

  2. 29 CFR 18.804 - Hearsay exceptions; declarant unavailable.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Testifies to a lack of memory of the subject matter of the declarant's statement; or (4) Is unable to be... unavailable as a witness if exemption, refusal, claim of lack of memory, inability, or absence is due to the...

  3. Effects of dimethylaminoethanol pyroglutamate (DMAE p-Glu) against memory deficits induced by scopolamine: evidence from preclinical and clinical studies.

    PubMed

    Blin, Olivier; Audebert, Christine; Pitel, Séverine; Kaladjian, Arthur; Casse-Perrot, Catherine; Zaim, Mohammed; Micallef, Joelle; Tisne-Versailles, Jacky; Sokoloff, Pierre; Chopin, Philippe; Marien, Marc

    2009-12-01

    Dimethylaminoethanol pyroglutamate (DMAE p-Glu) is a compound resulting from the reaction between dimethylaminoethanol (an indirect precursor of acetylcholine) and pyroglutamic acid (a cyclic derivative of glutamic acid having procholinergic properties and promnesic effects in both animals and man). The present study undertook preclinical and clinical evaluations to test a potential therapeutic utility for DMAE p-Glu in cognitive impairments related to central cholinergic deficit. In preclinical study, DMAE p-Glu was studied in rats by intracerebral microdialysis in conscious freely moving animals, on performance of rats in the Morris water maze test of spatial memory, and on the deficit in passive avoidance behavior induced by scopolamine. The clinical study examined the effect of DMAE p-Glu on cognitive deficits induced by an intravenous injection of scopolamine in healthy young male subjects. In rat experiments, DMAE p-Glu increased the extracellular levels of choline and acetylcholine in the medial prefrontal cortex, as assessed by intracerebral microdialysis, improved performance in a test of spatial memory, and reduced scopolamine-induced memory deficit in passive avoidance behavior. Clinical study results show that scopolamine induced a memory deficit and that DMAE p-Glu produced a significant positive effect on scores in the Buschke test, as well as a slight but significant difference on choice reaction time. These results indicate that DMAE p-Glu reduces the deleterious effect of scopolamine on long-term memory in healthy volunteers and suggest that DMAE p-Glu might be effective in reducing memory deficits in patients with cognitive impairment.

  4. Higher body mass index is associated with episodic memory deficits in young adults.

    PubMed

    Cheke, Lucy G; Simons, Jon S; Clayton, Nicola S

    2016-11-01

    Obesity has become an international health crisis. There is accumulating evidence that excess bodyweight is associated with changes to the structure and function of the brain and with a number of cognitive deficits. In particular, research suggests that obesity is associated with hippocampal and frontal lobe dysfunction, which would be predicted to impact memory. However, evidence for such memory impairment is currently limited. We hypothesised that higher body mass index (BMI) would be associated with reduced performance on a test of episodic memory that assesses not only content, but also context and feature integration. A total of 50 participants aged 18-35 years, with BMIs ranging from 18 to 51, were tested on a novel what-where-when style episodic memory test: the "Treasure-Hunt Task". This test requires recollection of object, location, and temporal order information within the same paradigm, as well as testing the ability to integrate these features into a single event recollection. Higher BMI was associated with significantly lower performance on the what-where-when (WWW) memory task and all individual elements: object identification, location memory, and temporal order memory. After controlling for age, sex, and years in education, the effect of BMI on the individual what, where, and when tasks remained, while the WWW dropped below significance. This finding of episodic memory deficits in obesity is of concern given the emerging evidence for a role for episodic cognition in appetite regulation.

  5. Higher body mass index is associated with episodic memory deficits in young adults

    PubMed Central

    Cheke, Lucy G.; Simons, Jon S.; Clayton, Nicola S.

    2016-01-01

    Obesity has become an international health crisis. There is accumulating evidence that excess bodyweight is associated with changes to the structure and function of the brain and with a number of cognitive deficits. In particular, research suggests that obesity is associated with hippocampal and frontal lobe dysfunction, which would be predicted to impact memory. However, evidence for such memory impairment is currently limited. We hypothesised that higher body mass index (BMI) would be associated with reduced performance on a test of episodic memory that assesses not only content, but also context and feature integration. A total of 50 participants aged 18–35 years, with BMIs ranging from 18 to 51, were tested on a novel what–where–when style episodic memory test: the “Treasure-Hunt Task”. This test requires recollection of object, location, and temporal order information within the same paradigm, as well as testing the ability to integrate these features into a single event recollection. Higher BMI was associated with significantly lower performance on the what–where–when (WWW) memory task and all individual elements: object identification, location memory, and temporal order memory. After controlling for age, sex, and years in education, the effect of BMI on the individual what, where, and when tasks remained, while the WWW dropped below significance. This finding of episodic memory deficits in obesity is of concern given the emerging evidence for a role for episodic cognition in appetite regulation. PMID:26447832

  6. Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity.

    PubMed

    Prado Lima, Mariza G; Schimidt, Helen L; Garcia, Alexandre; Daré, Letícia R; Carpes, Felipe P; Izquierdo, Ivan; Mello-Carpes, Pâmela B

    2018-03-06

    Recently, nongenetic animal models to study the onset and development of Alzheimer's disease (AD) have appeared, such as the intrahippocampal infusion of peptides present in Alzheimer amyloid plaques [i.e., amyloid-β (Aβ)]. Nonpharmacological approaches to AD treatment also have been advanced recently, which involve combinations of behavioral interventions whose specific effects are often difficult to determine. Here we isolate the neuroprotective effects of three of these interventions-environmental enrichment (EE), anaerobic physical exercise (AnPE), and social enrichment (SE)-on Aβ-induced oxidative stress and on impairments in learning and memory induced by Aβ. Wistar rats were submitted to 8 wk of EE, AnPE, or SE, followed by Aβ infusion in the dorsal hippocampus. Short-term memory (STM) and long-term memory (LTM) of object recognition (OR) and social recognition (SR) were evaluated. Biochemical assays determined hippocampal oxidative status: reactive oxygen species, lipid peroxidation by thiobarbituric acid reactive substance (TBARS) test, and total antioxidant capacity by ferric reducing/antioxidant power (FRAP), as well as acetylcholinesterase activity. Aβ infusion resulted in memory deficits and hippocampal oxidative damage. EE and AnPE prevented all memory deficits (STM and LTM of OR and SR) and lipid peroxidation (i.e., TBARS). SE prevented only the SR memory deficits and the decrease of total antioxidant capacity decrease (i.e., FRAP). Traditionally, findings obtained with EE protocols do not allow discrimination of the roles of the three individual factors involved. Here we demonstrate that EE and physical exercise have better neuroprotective effects than SE in memory deficits related to Aβ neurotoxicity in the AD model tested.

  7. Hierarchical control of procedural and declarative category-learning systems

    PubMed Central

    Turner, Benjamin O.; Crossley, Matthew J.; Ashby, F. Gregory

    2017-01-01

    Substantial evidence suggests that human category learning is governed by the interaction of multiple qualitatively distinct neural systems. In this view, procedural memory is used to learn stimulus-response associations, and declarative memory is used to apply explicit rules and test hypotheses about category membership. However, much less is known about the interaction between these systems: how is control passed between systems as they interact to influence motor resources? Here, we used fMRI to elucidate the neural correlates of switching between procedural and declarative categorization systems. We identified a key region of the cerebellum (left Crus I) whose activity was bidirectionally modulated depending on switch direction. We also identified regions of the default mode network (DMN) that were selectively connected to left Crus I during switching. We propose that the cerebellum—in coordination with the DMN—serves a critical role in passing control between procedural and declarative memory systems. PMID:28213114

  8. Detecting spatial memory deficits beyond blindness in tg2576 Alzheimer mice.

    PubMed

    Yassine, Nour; Lazaris, Anelise; Dorner-Ciossek, Cornelia; Després, Olivier; Meyer, Laurence; Maitre, Michel; Mensah-Nyagan, Ayikoe Guy; Cassel, Jean-Christophe; Mathis, Chantal

    2013-03-01

    The retinal degeneration Pde6b(rd1) (rd) mutation can be a major pitfall in behavioral studies using tg2576 mice bred on a B6:SJL genetic background, 1 of the most widely used models of Alzheimer's disease. After a pilot study in wild type mice, performance of 8- and 16-month-old tg2576 mice were assessed in several behavioral tasks with the challenge of selecting 1 or more task(s) showing robust memory deficits on this genetic background. Water maze acquisition was impossible in rd homozygotes, whereas Y-maze alternation, object recognition, and olfactory discrimination were unaffected by both the transgene and the rd mutation. Spatial memory retention of 8- and 16-month-old tg2576 mice, however, was dramatically affected independently of the rd mutation when mice had to recognize a spatial configuration of objects or to perform the Barnes maze. Thus, the latter tasks appear extremely useful to evaluate spatial memory deficits and to test cognitive therapies in tg2576 mice and other mouse models bred on a background susceptible to visual impairment. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Working Memory Deficits and Social Problems in Children with ADHD

    ERIC Educational Resources Information Center

    Kofler, Michael J.; Rapport, Mark D.; Bolden, Jennifer; Sarver, Dustin E.; Raiker, Joseph S.; Alderson, R. Matt

    2011-01-01

    Social problems are a prevalent feature of ADHD and reflect a major source of functional impairment for these children. The current study examined the impact of working memory deficits on parent- and teacher-reported social problems in a sample of children with ADHD and typically developing boys (N = 39). Bootstrapped, bias-corrected mediation…

  10. Willughbeia cochinchinensis prevents scopolamine-induced deficits in memory, spatial learning, and object recognition in rodents.

    PubMed

    Can, Mao Van; Tran, Anh Hai; Pham, Dam Minh; Dinh, Bao Quoc; Le, Quan Van; Nguyen, Ba Van; Nguyen, Mai Thanh Thi; Nguyen, Hai Xuan; Nguyen, Nhan Trung; Nishijo, Hisao

    2018-03-25

    Willughbeia cochinchinensis (WC) has been used in Vietnamese traditional medicine for the treatment of dementia as well as diarrhea, heartburn, and cutaneous abscess and as a diuretic. Alzheimer's disease (AD) is one of the most prevalent diseases in elderly individuals. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors have been widely used to treat patients with AD. In the present study, we investigated anti-AChE and anti-BChE activities of a natural product, WC, for its potential applications in therapies to prevent/treat dementia. First, compounds extracted from WC were tested for their AChE and BChE inhibitory activities in vitro. Second, in vivo behavioral experiments were performed to investigate the effects of WC at doses of 100, 150, and 200mg/kg on scopolamine (1.5mg/kg)-induced memory and cognitive deficits in mice. The behavior of mice treated with and without WC and/or scopolamine was tested using the Y-maze, Morris water maze, and novel object recognition task. The results of the in vitro assay demonstrated anti-AChE and anti-BChE activities of the compounds extracted from WC. The results of behavioral experiments showed that the administration of WC prevented 1) scopolamine-induced decrease in spontaneous alternation (%) behavior in the Y-maze, 2) scopolamine-induced deficits in spatial learning and memory in the Morris water maze, and 3) scopolamine-induced deficits in novel object recognition. These results indicate that WC prevents cognitive and memory deficits induced by scopolamine injection. Our findings suggest that WC may represent a novel candidate for the treatment of memory and cognitive deficits in humans with dementia. Copyright © 2017. Published by Elsevier B.V.

  11. Visual Working Memory and Number Sense: Testing the Double Deficit Hypothesis in Mathematics

    ERIC Educational Resources Information Center

    Toll, Sylke W. M.; Kroesbergen, Evelyn H.; Van Luit, Johannes E. H.

    2016-01-01

    Background: Evidence exists that there are two main underlying cognitive factors in mathematical difficulties: working memory and number sense. It is suggested that real math difficulties appear when both working memory and number sense are weak, here referred to as the double deficit (DD) hypothesis. Aims: The aim of this study was to test the DD…

  12. Biomarker validation of a cued recall memory deficit in prodromal Alzheimer disease.

    PubMed

    Wagner, M; Wolf, S; Reischies, F M; Daerr, M; Wolfsgruber, S; Jessen, F; Popp, J; Maier, W; Hüll, M; Frölich, L; Hampel, H; Perneczky, R; Peters, O; Jahn, H; Luckhaus, C; Gertz, H-J; Schröder, J; Pantel, J; Lewczuk, P; Kornhuber, J; Wiltfang, J

    2012-02-07

    To compare cued recall measures with other memory and nonmemory tests regarding their association with a biomarker profile indicative of Alzheimer disease (AD) in CSF among patients with mild cognitive impairment (MCI). Data were obtained by the German Dementia Competence Network. A total of 185 memory clinic patients fulfilling broad criteria for MCI (1 SD deficit in memory tests or in nonmemory tests) were assessed with an extended neuropsychological battery, which included the Free and Cued Selective Reminding Test (FCSRT), the word list learning task from the Consortium to Establish a Registry for Alzheimer's Disease neuropsychological battery (CERAD-NP), and the Logical Memory (LM) paragraph recall test from the Wechsler Memory Scale-Revised. CSF was obtained from all patients. A total of 74 out of 185 subjects with MCI (40%) had a CSF profile consistent with AD (Aβ(1-42)/tau ratio; CSF AD+ group). FCSRT measures reflecting both free and cued recall discriminated best between CSF AD+ and CSF AD- patients, and significantly improved CSF AD classification accuracy, as compared with CERAD delayed recall and LM delayed recall. Cued recall deficits are most closely associated with CSF biomarkers indicative of AD in subjects with MCI. This novel finding complements results from prospective clinical studies and provides further empirical support for cued recall as a specific indicator of prodromal AD, in line with recently proposed research criteria.

  13. Sleep stages, memory and learning.

    PubMed Central

    Dotto, L

    1996-01-01

    Learning and memory can be impaired by sleep loss during specific vulnerable "windows" for several days after new tasks have been learned. Different types of tasks are differentially vulnerable to the loss of different stages of sleep. Memory required to perform cognitive procedural tasks is affected by the loss of rapid-eye-movement (REM) sleep on the first night after learning occurs and again on the third night after learning. REM-sleep deprivation on the second night after learning does not produce memory deficits. Declarative memory, which is used for the recall of specific facts, is not similarly affected by REM-sleep loss. The learning of procedural motor tasks, including those required in many sports, is impaired by the loss of stage 2 sleep, which occurs primarily in the early hours of the morning. These findings have implications for the academic and athletic performance of students and for anyone whose work involves ongoing learning and demands high standards of performance. Images p1194-a PMID:8612256

  14. Declarative memory: sleep protects new memories from interference.

    PubMed

    Norman, Kenneth A

    2006-08-08

    Interference is one of the most fundamental phenomena in memory research: acquiring new memories causes forgetting of other, related memories. A new study shows that sleep, interposed between learning episodes, can mitigate the extent to which new (post-sleep) learning interferes with recall of previously acquired knowledge.

  15. Signed reward prediction errors drive declarative learning

    PubMed Central

    Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning–a quintessentially human form of learning–remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; “better-than-expected” signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli. PMID:29293493

  16. Signed reward prediction errors drive declarative learning.

    PubMed

    De Loof, Esther; Ergo, Kate; Naert, Lien; Janssens, Clio; Talsma, Durk; Van Opstal, Filip; Verguts, Tom

    2018-01-01

    Reward prediction errors (RPEs) are thought to drive learning. This has been established in procedural learning (e.g., classical and operant conditioning). However, empirical evidence on whether RPEs drive declarative learning-a quintessentially human form of learning-remains surprisingly absent. We therefore coupled RPEs to the acquisition of Dutch-Swahili word pairs in a declarative learning paradigm. Signed RPEs (SRPEs; "better-than-expected" signals) during declarative learning improved recognition in a follow-up test, with increasingly positive RPEs leading to better recognition. In addition, classic declarative memory mechanisms such as time-on-task failed to explain recognition performance. The beneficial effect of SRPEs on recognition was subsequently affirmed in a replication study with visual stimuli.

  17. Individual differences in children's memory and reading comprehension: an investigation of semantic and inhibitory deficits.

    PubMed

    Cain, Kate

    2006-07-01

    Three experiments compared the verbal memory skills of children with poor reading comprehension with that of same-age good comprehenders. The aims were to determine if semantic and/or inhibitory deficits explained comprehenders' problems on measures of verbal short-term memory and verbal working memory. In Experiment 1 there were no group differences on word- and number-based measures of short-term storage and no evidence that semantic knowledge mediated word recall. In Experiment 2 poor comprehenders were impaired on word- and number-based assessments of working memory, the greatest deficit found on the word-based task. Error analysis of both word-based tasks revealed that poor comprehenders were more likely to recall items that should have been inhibited than were good comprehenders. Experiment 3 extended this finding: Poor comprehenders were less able to inhibit information that was no longer relevant. Together, these findings suggest that individual differences in inhibitory processing influence the ability to regulate the contents of working memory, which may contribute to the differential memory performance of good and poor comprehenders.

  18. Explaining Semantic Short-Term Memory Deficits: Evidence for the Critical Role of Semantic Control

    ERIC Educational Resources Information Center

    Hoffman, Paul; Jefferies, Elizabeth; Lambon Ralph, Matthew A.

    2011-01-01

    Patients with apparently selective short-term memory (STM) deficits for semantic information have played an important role in developing multi-store theories of STM and challenge the idea that verbal STM is supported by maintaining activation in the language system. We propose that semantic STM deficits are not as selective as previously thought…

  19. Attention and working memory deficits in a perinatal nicotine exposure mouse model.

    PubMed

    Zhang, Lin; Spencer, Thomas J; Biederman, Joseph; Bhide, Pradeep G

    2018-01-01

    Cigarette smoking by pregnant women is associated with a significant increase in the risk for cognitive disorders in their children. Preclinical models confirm this risk by showing that exposure of the developing brain to nicotine produces adverse behavioral outcomes. Here we describe behavioral phenotypes resulting from perinatal nicotine exposure in a mouse model, and discuss our findings in the context of findings from previously published studies using preclinical models of developmental nicotine exposure. Female C57Bl/6 mice received drinking water containing nicotine (100μg/ml) + saccharin (2%) starting 3 weeks prior to breeding and continuing throughout pregnancy, and until 3 weeks postpartum. Over the same period, female mice in two control groups received drinking water containing saccharin (2%) or plain drinking water. Offspring from each group were weaned at 3-weeks of age and subjected to behavioral analyses at 3 months of age. We examined spontaneous locomotor activity, anxiety-like behavior, spatial working memory, object based attention, recognition memory and impulsive-like behavior. We found significant deficits in attention and working memory only in male mice, and no significant changes in the other behavioral phenotypes in male or female mice. Exposure to saccharin alone did not produce significant changes in either sex. The perinatal nicotine exposure produced significant deficits in attention and working memory in a sex-dependent manner in that the male but not female offspring displayed these behaviors. These behavioral phenotypes are associated with attention deficit hyperactivity disorder (ADHD) and have been reported in other studies that used pre- or perinatal nicotine exposure. Therefore, we suggest that preclinical models of developmental nicotine exposure could be useful tools for modeling ADHD and related disorders.

  20. Gestures make memories, but what kind? Patients with impaired procedural memory display disruptions in gesture production and comprehension

    PubMed Central

    Klooster, Nathaniel B.; Cook, Susan W.; Uc, Ergun Y.; Duff, Melissa C.

    2015-01-01

    Hand gesture, a ubiquitous feature of human interaction, facilitates communication. Gesture also facilitates new learning, benefiting speakers and listeners alike. Thus, gestures must impact cognition beyond simply supporting the expression of already-formed ideas. However, the cognitive and neural mechanisms supporting the effects of gesture on learning and memory are largely unknown. We hypothesized that gesture's ability to drive new learning is supported by procedural memory and that procedural memory deficits will disrupt gesture production and comprehension. We tested this proposal in patients with intact declarative memory, but impaired procedural memory as a consequence of Parkinson's disease (PD), and healthy comparison participants with intact declarative and procedural memory. In separate experiments, we manipulated the gestures participants saw and produced in a Tower of Hanoi (TOH) paradigm. In the first experiment, participants solved the task either on a physical board, requiring high arching movements to manipulate the discs from peg to peg, or on a computer, requiring only flat, sideways movements of the mouse. When explaining the task, healthy participants with intact procedural memory displayed evidence of their previous experience in their gestures, producing higher, more arching hand gestures after solving on a physical board, and smaller, flatter gestures after solving on a computer. In the second experiment, healthy participants who saw high arching hand gestures in an explanation prior to solving the task subsequently moved the mouse with significantly higher curvature than those who saw smaller, flatter gestures prior to solving the task. These patterns were absent in both gesture production and comprehension experiments in patients with procedural memory impairment. These findings suggest that the procedural memory system supports the ability of gesture to drive new learning. PMID:25628556

  1. A Differential Deficit in Time- versus Event-based Prospective Memory in Parkinson's Disease

    PubMed Central

    Raskin, Sarah A.; Woods, Steven Paul; Poquette, Amelia J.; McTaggart, April B.; Sethna, Jim; Williams, Rebecca C.; Tröster, Alexander I.

    2010-01-01

    Objective The aim of the current study was to clarify the nature and extent of impairment in time- versus event-based prospective memory in Parkinson's disease (PD). Prospective memory is thought to involve cognitive processes that are mediated by prefrontal systems and are executive in nature. Given that individuals with PD frequently show executive dysfunction, it is important to determine whether these individuals may have deficits in prospective memory that could impact daily functions, such as taking medications. Although it has been reported that individuals with PD evidence impairment in prospective memory, it is still unclear whether they show a greater deficit for time- versus event-based cues. Method Fifty-four individuals with PD and 34 demographically similar healthy adults were administered a standardized measure of prospective memory that allows for a direct comparison of time-based and event-based cues. In addition, participants were administered a series of standardized measures of retrospective memory and executive functions. Results Individuals with PD demonstrated impaired prospective memory performance compared to the healthy adults, with a greater impairment demonstrated for the time-based tasks. Time-based prospective memory performance was moderately correlated with measures of executive functioning, but only the Stroop Neuropsychological Screening Test emerged as a unique predictor in a linear regression. Conclusions Findings are interpreted within the context of McDaniel and Einstein's (2000) multi-process theory to suggest that individuals with PD experience particular difficulty executing a future intention when the cue to execute the prescribed intention requires higher levels of executive control. PMID:21090895

  2. Persistent non-verbal memory impairment in remitted major depression - caused by encoding deficits?

    PubMed

    Behnken, Andreas; Schöning, Sonja; Gerss, Joachim; Konrad, Carsten; de Jong-Meyer, Renate; Zwanzger, Peter; Arolt, Volker

    2010-04-01

    While neuropsychological impairments are well described in acute phases of major depressive disorders (MDD), little is known about the neuropsychological profile in remission. There is evidence for episodic memory impairments in both acute depressed and remitted patients with MDD. Learning and memory depend on individuals' ability to organize information during learning. This study investigates non-verbal memory functions in remitted MDD and whether nonverbal memory performance is mediated by organizational strategies whilst learning. 30 well-characterized fully remitted individuals with unipolar MDD and 30 healthy controls matching in age, sex and education were investigated. Non-verbal learning and memory were measured by the Rey-Osterrieth-Complex-Figure-Test (RCFT). The RCFT provides measures of planning, organizational skills, perceptual and non-verbal memory functions. For assessing the mediating effects of organizational strategies, we used the Savage Organizational Score. Compared to healthy controls, participants with remitted MDD showed more deficits in their non-verbal memory function. Moreover, participants with remitted MDD demonstrated difficulties in organizing non-verbal information appropriately during learning. In contrast, no impairments regarding visual-spatial functions in remitted MDD were observed. Except for one patient, all the others were taking psychopharmacological medication. The neuropsychological function was solely investigated in the remitted phase of MDD. Individuals with MDD in remission showed persistent non-verbal memory impairments, modulated by a deficient use of organizational strategies during encoding. Therefore, our results strongly argue for additional therapeutic interventions in order to improve these remaining deficits in cognitive function. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Structural Anatomical Investigation of Long-Term Memory Deficit in Behavioral Frontotemporal Dementia.

    PubMed

    Bertoux, Maxime; Flanagan, Emma C; Hobbs, Matthew; Ruiz-Tagle, Amparo; Delgado, Carolina; Miranda, Marcelo; Ibáñez, Agustín; Slachevsky, Andrea; Hornberger, Michael

    2018-01-01

    Although a growing body of work has shown that behavioral variant frontotemporal dementia (bvFTD) could present with severe amnesia in approximately half of cases, memory assessment is currently the clinical standard to distinguish bvFTD from Alzheimer's disease (AD). Thus, the concept of "relatively preserved episodic memory" in bvFTD remains the basis of its clinical distinction from AD and a criterion for bvFTD's diagnosis. This view is supported by the idea that bvFTD is not characterized by genuine amnesia and hippocampal degeneration, by contrast to AD. In this multicenter study, we aimed to investigate the neural correlates of memory performance in bvFTD as assessed by the Free and Cued Selective Reminding Test (FCSRT). Imaging explorations followed a two-step procedure, first relying on a visual rating of atrophy of 35 bvFTD and 34 AD patients' MRI, contrasted with 29 controls; and then using voxel-based morphometry (VBM) in a subset of bvFTD patients. Results showed that 43% of bvFTD patients presented with a genuine amnesia. Data-driven analysis on visual rating data showed that, in bvFTD, memory recall & storage performances were significantly predicted by atrophy in rostral prefrontal and hippocampal/perihippocampal regions, similar to mild AD. VBM results in bvFTD (pFWE<0.05) showed similar prefrontal and hippocampal regions in addition to striatal and lateral temporal involvement. Our findings showed the involvement of prefrontal as well as medial/lateral temporal atrophy in memory deficits of bvFTD patients. This contradicts the common view that only frontal deficits explain memory impairment in this disease and plead for an updated view on memory dysfunctions in bvFTD.

  4. Memory Binding in Early Childhood: Evidence for a Retrieval Deficit

    ERIC Educational Resources Information Center

    Lloyd, Marianne E.; Doydum, Ayzit O.; Newcombe, Nora S.

    2009-01-01

    Previous research has suggested that performance for items requiring memory-binding processes improves between ages 4 and 6 (J. Sluzenski, N. Newcombe, & S. L. Kovacs, 2006). The present study suggests that much of this improvement is due to retrieval, as opposed to encoding, deficits for 4-year-olds. Four- and 6-year-old children (N = 48 per age)…

  5. Deficits of organizational strategy and visual memory in obsessive-compulsive disorder.

    PubMed

    Shin, M S; Park, S J; Kim, M S; Lee, Y H; Ha, T H; Kwon, J S

    2004-10-01

    This study was conducted to investigate the deficits of organizational strategy and visual memory in obsessive-compulsive disorder (OCD). Thirty OCD patients and 30 healthy controls aged 20-35 years participated. The Maudsley Obsessive-Compulsive Inventory, Beck Anxiety Inventory, Wechsler Adult Intelligence Scale, and Rey-Osterrieth Complex Figure (ROCF) test were administered to participants. The authors scored ROCF performances using the Boston Qualitative Scoring System. The OCD patients showed poorer planning ability and higher fragmentation than did healthy controls when copying the ROCF, and they showed even poorer performances in the immediate and delayed recall conditions. The authors found that the Organization score in the copy condition mediated the difference between the OCD group and the healthy group in immediate recall. The direct effect of diagnosis (OCD or healthy) on the immediate recall condition of the ROCF was also significant. This study indicates that people with OCD have poor memory function and organizational deficits.

  6. Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome

    PubMed Central

    Skirrow, Caroline; Cross, J. Helen; Harrison, Sue; Cormack, Francesca; Harkness, William; Coleman, Rosie; Meierotto, Ellen; Gaiottino, Johanna; Vargha-Khadem, Faraneh

    2015-01-01

    The temporal lobes play a prominent role in declarative memory function, including episodic memory (memory for events) and semantic memory (memory for facts and concepts). Surgical resection for medication-resistant and well-localized temporal lobe epilepsy has good prognosis for seizure freedom, but is linked to memory difficulties in adults, especially when the removal is on the left side. Children may benefit most from surgery, because brain plasticity may facilitate post-surgical reorganization, and seizure cessation may promote cognitive development. However, the long-term impact of this intervention in children is not known. We examined memory function in 53 children (25 males, 28 females) who were evaluated for epilepsy surgery: 42 underwent unilateral temporal lobe resections (25 left, 17 right, mean age at surgery 13.8 years), 11 were treated only pharmacologically. Average follow-up was 9 years (range 5–15). Post-surgical change in visual and verbal episodic memory, and semantic memory at follow-up were examined. Pre- and post-surgical T1-weighted MRI brain scans were analysed to extract hippocampal and resection volumes, and evaluate post-surgical temporal lobe integrity. Language lateralization indices were derived from functional magnetic resonance imaging. There were no significant pre- to postoperative decrements in memory associated with surgery. In contrast, gains in verbal episodic memory were seen after right temporal lobe surgery, and visual episodic memory improved after left temporal lobe surgery, indicating a functional release in the unoperated temporal lobe after seizure reduction or cessation. Pre- to post-surgical change in memory function was not associated with any indices of brain structure derived from MRI. However, better verbal memory at follow-up was linked to greater post-surgical residual hippocampal volumes, most robustly in left surgical participants. Better semantic memory at follow-up was associated with smaller resection

  7. Melatonin reverses H-89 induced spatial memory deficit: Involvement of oxidative stress and mitochondrial function.

    PubMed

    Sharif, Rojin; Aghsami, Mehdi; Gharghabi, Mehdi; Sanati, Mehdi; Khorshidahmad, Tina; Vakilzadeh, Gelareh; Mehdizadeh, Hajar; Gholizadeh, Shervin; Taghizadeh, Ghorban; Sharifzadeh, Mohammad

    2017-01-01

    Oxidative stress and mitochondrial dysfunction play indispensable role in memory and learning impairment. Growing evidences have shed light on anti-oxidative role for melatonin in memory deficit. We have previously reported that inhibition of protein kinase A by H-89 can induce memory impairment. Here, we investigated the effect of melatonin on H-89 induced spatial memory deficit and pursued their interactive consequences on oxidative stress and mitochondrial function in Morris Water Maze model. Rats received melatonin (50 and 100μg/kg/side) and H-89(10μM) intra-hippocampally 30min before each day of training. Animals were trained for 4 consecutive days, each containing one block from four trials. Oxidative stress indices, including thiobarbituric acid (TBARS), reactive oxygen species (ROS), thiol groups, and ferric reducing antioxidant power (FRAP) were assessed using spectrophotometer. Mitochondrial function was evaluated through measuring ROS production, mitochondrial membrane potential (MMP), swelling, outer membrane damage, and cytochrome c release. As expected from our previous report, H-89 remarkably impaired memory by increasing the escape latency and traveled distance. Intriguingly, H-89 significantly augmented TBARS and ROS levels, caused mitochondrial ROS production, swelling, outer membrane damage, and cytochrome c release. Moreover, H-89 lowered thiol, FRAP, and MMP values. Intriguingly, melatonin pre-treatment not only effectively hampered H-89-mediated spatial memory deficit at both doses, but also reversed the H-89 effects on mitochondrial and biochemical indices upon higher dose. Collectively, these findings highlight a protective role for melatonin against H-89-induced memory impairment and indicate that melatonin may play a therapeutic role in the treatment of oxidative- related neurodegenerative disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits.

    PubMed

    Righi, Stefania; Galli, Luca; Paganini, Marco; Bertini, Elisabetta; Viggiano, Maria Pia; Piacentini, Silvia

    2016-01-01

    Huntington's disease (HD) primarily affects striatum and prefrontal dopaminergic circuits which are fundamental neural correlates of the timekeeping mechanism. The few studies on HD mainly investigated motor timing performance in second durations. The present work explored time perception in early-to-moderate symptomatic HD patients for seconds and milliseconds with the aim to clarify which component of the scalar expectancy theory (SET) is mainly responsible for HD timing defect. Eleven HD patients were compared to 11 controls employing two separate temporal bisection tasks in second and millisecond ranges. Our results revealed the same time perception deficits for seconds and milliseconds in HD patients. Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits. Furthermore, both the non-systematical defect of temporal sensitivity and the main impairment of timing performance in the extreme value of the psychophysical curves suggested an HD deficit in the memory component of the SET. This result was further confirmed by the significant correlations between time perception performance and long-term memory test scores. Our findings added important preliminary data for both a deeper comprehension of HD time-keeping deficits and possible implications on neuro-rehabilitation practices.

  9. Acute memory deficits in chemotherapy-treated adults.

    PubMed

    Lindner, Oana C; Mayes, Andrew; McCabe, Martin G; Talmi, Deborah

    2017-11-01

    Data from research on amnesia and epilepsy are equivocal with regards to the dissociation, shown in animal models, between rapid and slow long-term memory consolidation. Cancer treatments have lasting disruptive effects on memory and on brain structures associated with memory, but their acute effects on synaptic consolidation are unknown. We investigated the hypothesis that cancer treatment selectively impairs slow synaptic consolidation. Cancer patients and their matched controls were administered a novel list-learning task modelled on the Rey Auditory Verbal Learning Test. Learning, forgetting, and retrieval were tested before, and one day after patients' first chemotherapy treatment. Due to difficulties recruiting cancer patients at that sensitive time, we were only able to study 10 patients and their matched controls. Patients exhibited treatment-dependent accelerated forgetting over 24 hours compared to their own pre-treatment performance and to the performance of control participants, in agreement with our hypothesis. The number of intrusions increased after treatment, suggesting retrieval deficits. Future research with larger samples should adapt our methods to distinguish between consolidation and retrieval causes for treatment-dependent accelerated forgetting. The presence of significant accelerated forgetting in our small sample is indicative of a potentially large acute effect of chemotherapy treatment on forgetting, with potentially clinically relevant implications.

  10. Hyperactivity in Boys with Attention-Deficit/Hyperactivity Disorder (ADHD): A Ubiquitous Core Symptom or Manifestation of Working Memory Deficits?

    ERIC Educational Resources Information Center

    Rapport, Mark D.; Bolden, Jennifer; Kofler, Michael J.; Sarver, Dustin E.; Raiker, Joseph S.; Alderson, R. Matt

    2009-01-01

    Hyperactivity is currently considered a core and ubiquitous feature of attention-deficit/hyperactivity disorder (ADHD); however, an alternative model challenges this premise and hypothesizes a functional relationship between working memory (WM) and activity level. The current study investigated whether children's activity level is functionally…

  11. Declarative memory in abused and neglected infants.

    PubMed

    Cheatham, Carol L; Larkina, Marina; Bauer, Patricia J; Toth, Sheree L; Cicchetti, Dante

    2010-01-01

    To summarize, all children interacted with the experimenter and actively participated in the imitation task. There was evidence of improvement in performance from baseline to recall as would be expected with attention to, and memory for, the actions that were modeled by the experimenter. All participants evidenced a decrease in performance as the difficulty of the task increased, as would be expected. When the maltreated children were compared to the nonmaltreated children in a 2-group design, there was no statistically significant difference in performance. However, when the maltreated group was divided into two subtypes of either neglected or abused, and performance was compared in a 3-group design, it was revealed that the neglected children experienced deficits in performance relative to abused children. For production of target actions, the neglected children's performance trended toward significance when compared to the nonmaltreated children's performance. However, there was no significant difference between the performance of the abused children and the nonmaltreated children for either production of target actions or productions of ordered pairs. The children in this longitudinal study were assessed previously at 12 months of age in a mother-child play situation (Valentino et al., 2006). Interactions during structured play between mother and child were evaluated for maternal directives and child responses. Interestingly, the difference in social interactions that was most reliable was the finding that the abused children imitated their mothers more often than did the nonmaltreated children. There was no difference between the imitative behaviors of the neglected children and the abused or nonmaltreated children. The researchers note that by imitating their mothers, the abused children might be attempting to prevent further abusive incidents. Limit setting behaviors of the mothers in response to child initiations were positively related to the children

  12. Deficits in episodic memory and mental time travel in patients with post-traumatic stress disorder.

    PubMed

    Zlomuzica, Armin; Woud, Marcella L; Machulska, Alla; Kleimt, Katharina; Dietrich, Lisa; Wolf, Oliver T; Assion, Hans-Joerg; Huston, Joseph P; De Souza Silva, Maria A; Dere, Ekrem; Margraf, Jürgen

    2018-04-20

    Post-traumatic stress disorder (PTSD) is characterized by impairments in mnestic functions, especially in the domain of episodic memory. These alterations might affect different aspects of episodic memory functioning. Here we tested PTSD patients and healthy controls (matched for age, sex and education) in a newly developed virtual reality episodic memory test (VR-EMT), a test for mental time travel, episodic future thinking, and prospective memory (M3xT). In a cross-validation experiment, their performance was further evaluated in the Rivermead Behavioral Memory Test (RBMT). PTSD patients demonstrated impairments in episodic memory formation and mental time travel and showed difficulties in utilizing information from episodic memory to solve problems. Diminished attention and concentration in PTSD did not account for performance deficits in these tasks but higher levels of negative arousal were found in PTSD patients. Furthermore, performance in the VR-EMT and RBMT in PTSD patients correlated negatively with self-reported measures of stress and depression. Our results suggest that deficits in episodic memory formation and mental time travel in PTSD lead to difficulties in utilizing the content of episodic memories for solving problems in the present or to plan future behavior. Clinical implications of these findings and suggestions for cognitive-behavioral treatment of PTSD are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Associative memory and its cerebral correlates in Alzheimer's disease: Evidence for distinct deficits of relational and conjunctive memory

    PubMed Central

    Bastin, Christine; Bahri, Mohamed Ali; Miévis, Frédéric; Lemaire, Christian; Collette, Fabienne; Genon, Sarah; Simon, Jessica; Guillaume, Bénédicte; Diana, Rachel A.; Yonelinas, Andrew P.; Salmon, Eric

    2014-01-01

    This study investigated the impact of Alzheimer's disease (AD) on conjunctive and relational binding in episodic memory. Mild AD patients and controls had to remember item-color associations by imagining color either as a contextual association (relational memory) or as a feature of the item to be encoded (conjunctive memory). Patients' performance in each condition was correlated with cerebral metabolism measured by FDG-PET. The results showed that AD patients had an impaired capacity to remember item-color associations, with deficits in both relational and conjunctive memory. However, performance in the two kinds of associative memory varied independently across patients. Partial least square analyses revealed that poor conjunctive memory was related to hypometabolism in an anterior temporal-posterior fusiform brain network, whereas relational memory correlated with metabolism in regions of the default mode network. These findings support the hypothesis of distinct neural systems specialized in different types of associative memory and point to heterogeneous profiles of memory alteration in Alzheimer's disease as a function of damage to the respective neural networks. PMID:25172390

  14. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation.

    PubMed

    Li, Xiao-Hong; Lv, Bing-Ling; Xie, Jia-Zhao; Liu, Jing; Zhou, Xin-Wen; Wang, Jian-Zhi

    2012-07-01

    Accumulation of β-amyloid and hyperphosphorylated tau with synapse damage and memory deterioration are hallmark lesions of Alzheimer disease (AD), but the upstream causative factors are elusive. The advanced glycation endproducts (AGEs) are elevated in AD brains and the AGEs can stimulate β-amyloid production. Whether and how AGEs may cause AD-like tau hyperphosphorylation and memory-related deficits is not known. Here we report that AGEs induce tau hyperphosphorylation, memory deterioration, decline of synaptic proteins, and impairment of long-term potentiation (LTP) in rats. In SK-NS-H cells, upregulation of AGEs receptor (RAGE), inhibition of Akt, and activation of glycogen synthase kinase-3 (GSK-3), Erk1/2, and p38 were observed after treatment with AGEs. In rats, blockage of RAGE attenuated the AGE-induced GSK-3 activation, tau hyperphosphorylation, and memory deficit with restoration of synaptic functions, and simultaneous inhibition of GSK-3 also antagonized the AGE-induced impairments. Our data reveal that AGEs can induce tau hyperphosphorylation and impair synapse and memory through RAGE-mediated GSK-3 activation and targeting RAGE/GSK-3 pathway can efficiently improve the AD-like histopathological changes and memory deterioration. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Memory Modality Differences in Children with Attention Deficit Hyperactive Disorder with and without Learning Disabilities.

    ERIC Educational Resources Information Center

    Webster, Raymond E.; And Others

    1996-01-01

    Assesses information processing and memory functioning in 50 children diagnosed with Attention Deficit Hyperactive Disorder (ADHD) with and without learning disabilities (LD). Both groups struggled with auditory ordered recall. The ADHD/LD group demonstrated more problems transferring information into short-term and long-term memory stores than…

  16. Visual working memory and number sense: Testing the double deficit hypothesis in mathematics.

    PubMed

    Toll, Sylke W M; Kroesbergen, Evelyn H; Van Luit, Johannes E H

    2016-09-01

    Evidence exists that there are two main underlying cognitive factors in mathematical difficulties: working memory and number sense. It is suggested that real math difficulties appear when both working memory and number sense are weak, here referred to as the double deficit (DD) hypothesis. The aim of this study was to test the DD hypothesis within a longitudinal time span of 2 years. A total of 670 children participated. The mean age was 4.96 years at the start of the study and 7.02 years at the end of the study. At the end of the first year of kindergarten, both visual-spatial working memory and number sense were measured by two different tasks. At the end of first grade, mathematical performance was measured with two tasks, one for math facts and one for math problems. Multiple regressions revealed that both visual working memory and symbolic number sense are predictors of mathematical performance in first grade. Symbolic number sense appears to be the strongest predictor for both math areas (math facts and math problems). Non-symbolic number sense only predicts performance in math problems. Multivariate analyses of variance showed that a combination of visual working memory and number sense deficits (NSDs) leads to the lowest performance on mathematics. Our DD hypothesis was confirmed. Both visual working memory and symbolic number sense in kindergarten are related to mathematical performance 2 years later, and a combination of visual working memory and NSDs leads to low performance in mathematical performance. © 2016 The British Psychological Society.

  17. Imaging evidence for disturbances in multiple learning and memory systems in persons with autism spectrum disorders.

    PubMed

    Goh, Suzanne; Peterson, Bradley S

    2012-03-01

    The aim of this article is to review neuroimaging studies of autism spectrum disorders (ASD) that examine declarative, socio-emotional, and procedural learning and memory systems. We conducted a search of PubMed from 1996 to 2010 using the terms 'autism,''learning,''memory,' and 'neuroimaging.' We limited our review to studies correlating learning and memory function with neuroimaging features of the brain. The early literature supports the following preliminary hypotheses: (1) abnormalities of hippocampal subregions may contribute to autistic deficits in episodic and relational memory; (2) disturbances to an amygdala-based network (which may include the fusiform gyrus, superior temporal cortex, and mirror neuron system) may contribute to autistic deficits in socio-emotional learning and memory; and (3) abnormalities of the striatum may contribute to developmental dyspraxia in individuals with ASD. Characterizing the disturbances to learning and memory systems in ASD can inform our understanding of the neural bases of autistic behaviors and the phenotypic heterogeneity of ASD. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  18. Attempting to model dissociations of memory.

    PubMed

    Reber, Paul J.

    2002-05-01

    Kinder and Shanks report simulations aimed at describing a single-system model of the dissociation between declarative and non-declarative memory. This model attempts to capture both Artificial Grammar Learning (AGL) and recognition memory with a single underlying representation. However, the model fails to reflect an essential feature of recognition memory - that it occurs after a single exposure - and the simulations may instead describe a potentially interesting property of over-training non-declarative memory.

  19. Is the frontal dysexecutive syndrome due to a working memory deficit? Evidence from patients with stroke.

    PubMed

    Roussel, Martine; Dujardin, Kathy; Hénon, Hilde; Godefroy, Olivier

    2012-07-01

    Although frontal dysexecutive disorders are frequently considered to be due to working memory deficit, this has not been systematically examined and very little evidence is available for impairment of working memory in frontal damage. The objective of this study was to examine the components of working memory, their anatomy and the relations with executive functions in patients with stroke involving the frontal or posterior cortex. The study population consisted of 29 patients (frontal: n=17; posterior: n=12) and 29 matched controls. Phonological loop (letter and word spans, phonological store; rehearsal process), visuospatial sketchpad (visuospatial span) and the central executive (working memory span, dual task and updating process) were examined. The group comparison analysis showed impairment in the frontal group of: (i) verbal spans (P<0.03); (ii) with a deficit of the rehearsal process (P=0.006); (iii) visuospatial span (P=0.04); (iv) working memory span (P=0.001) that disappeared after controlling for verbal span and (v) running memory (P=0.05) unrelated to updating conditions. The clinical anatomical correlation study showed that impairment of the central executive depended on frontal and posterior lesion. Cognitive dysexecutive disorders were observed in 11/20 patients with central executive deficit and an inverse dissociation was observed in two patients. Receiver operating characteristic curve analysis indicated that cognitive dysexecutive disorders had the highest ability to discriminate frontal lesions (area under curve=0.844, 95% confidence interval: 0.74-0.95; P=0.0001; central executive impairment: area under curve=0.732, 95% confidence interval: 0.57-0.82; P=0.006). This study reveals that frontal lesions induce mild impairment of short-term memory associated with a deficit of the rehearsal process supporting the role of the frontal lobe in this process; the central executive depends on lesions in the frontal lobe and posterior regions accounting

  20. The declarative/procedural model of lexicon and grammar.

    PubMed

    Ullman, M T

    2001-01-01

    Our use of language depends upon two capacities: a mental lexicon of memorized words and a mental grammar of rules that underlie the sequential and hierarchical composition of lexical forms into predictably structured larger words, phrases, and sentences. The declarative/procedural model posits that the lexicon/grammar distinction in language is tied to the distinction between two well-studied brain memory systems. On this view, the memorization and use of at least simple words (those with noncompositional, that is, arbitrary form-meaning pairings) depends upon an associative memory of distributed representations that is subserved by temporal-lobe circuits previously implicated in the learning and use of fact and event knowledge. This "declarative memory" system appears to be specialized for learning arbitrarily related information (i.e., for associative binding). In contrast, the acquisition and use of grammatical rules that underlie symbol manipulation is subserved by frontal/basal-ganglia circuits previously implicated in the implicit (nonconscious) learning and expression of motor and cognitive "skills" and "habits" (e.g., from simple motor acts to skilled game playing). This "procedural" system may be specialized for computing sequences. This novel view of lexicon and grammar offers an alternative to the two main competing theoretical frameworks. It shares the perspective of traditional dual-mechanism theories in positing that the mental lexicon and a symbol-manipulating mental grammar are subserved by distinct computational components that may be linked to distinct brain structures. However, it diverges from these theories where they assume components dedicated to each of the two language capacities (that is, domain-specific) and in their common assumption that lexical memory is a rote list of items. Conversely, while it shares with single-mechanism theories the perspective that the two capacities are subserved by domain-independent computational mechanisms

  1. Elevations of Endogenous Kynurenic Acid Produce Spatial Working Memory Deficits

    PubMed Central

    Chess, Amy C.; Simoni, Michael K.; Alling, Torey E.; Bucci, David J.

    2007-01-01

    Kynurenic acid (KYNA) is a tryptophan metabolite that is synthesized and released by astrocytes and acts as a competitive antagonist of the glycine site of N-methyl-D-aspartate receptors at high concentrations and as a noncompetitive antagonist of the α7-nicotinic acetylcholine receptor at low concentrations. The discovery of increased cortical KYNA levels in schizophrenia prompted the hypothesis that elevated KYNA concentration may underlie the working memory dysfunction observed in this population that has been attributed to altered glutamatergic and/or cholinergic transmission. The present study investigated the effect of elevated endogenous KYNA on spatial working memory function in rats. Increased KYNA levels were achieved with intraperitoneal administration of kynurenine (100 mg/kg), the precursor of KYNA synthesis. Rats were treated with either kynurenine or a vehicle solution prior to testing in a radial arm maze task at various delays. Elevations of endogenous KYNA resulted in increased errors in the radial arm maze. In separate experiments, assessment of locomotor activity in an open field and latency to retrieve food reward from one of the maze arms ruled out the possibility that deficits in the maze were attributable to altered locomotor activity or motivation to consume food. These results provide evidence that increased KYNA levels produce spatial working memory deficits and are among the first to demonstrate the influence of glia-derived molecules on cognitive function. The implications for psychopathological conditions such as schizophrenia are discussed. PMID:16920787

  2. A Comprehensive Investigation of Memory Impairment in Attention Deficit Hyperactivity Disorder and Oppositional Defiant Disorder

    ERIC Educational Resources Information Center

    Rhodes, Sinead M.; Park, Joanne; Seth, Sarah; Coghill, David R.

    2012-01-01

    Background: We conducted a comprehensive and systematic assessment of memory functioning in drug-naive boys with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). Methods: Boys performed verbal and spatial working memory (WM) component (storage and central executive) and verbal and spatial storage load tasks,…

  3. Conscious and Unconscious Memory Systems

    PubMed Central

    Squire, Larry R.; Dede, Adam J.O.

    2015-01-01

    The idea that memory is not a single mental faculty has a long and interesting history but became a topic of experimental and biologic inquiry only in the mid-20th century. It is now clear that there are different kinds of memory, which are supported by different brain systems. One major distinction can be drawn between working memory and long-term memory. Long-term memory can be separated into declarative (explicit) memory and a collection of nondeclarative (implicit) forms of memory that include habits, skills, priming, and simple forms of conditioning. These memory systems depend variously on the hippocampus and related structures in the parahippocampal gyrus, as well as on the amygdala, the striatum, cerebellum, and the neocortex. This work recounts the discovery of declarative and nondeclarative memory and then describes the nature of declarative memory, working memory, nondeclarative memory, and the relationship between memory systems. PMID:25731765

  4. Interference control, working memory, concept shifting, and verbal fluency in adults with attention-deficit/hyperactivity disorder (ADHD).

    PubMed

    Marchetta, Natalie D J; Hurks, Petra P M; Krabbendam, Lydia; Jolles, Jelle

    2008-01-01

    In this study, the authors aimed to examine 4 domains of executive functioning in adults with attention-deficit/hyperactivity disorder (ADHD)--namely interference control, concept shifting, verbal fluency, and verbal working memory. Four groups of participants were included: (a) adults diagnosed with ADHD (ADHD-super(-); n = 20), (b) adults diagnosed with both ADHD and 1 or more comorbid disorder(s) (ADHD-super(+); n = 22), (c) adults referred for ADHD because of ADHD symptomatology but not diagnosed as such (non-ADHD; n = 34), and (d) healthy controls (n = 136). ADHD-related deficits (independent of comorbidity) were revealed for concept shifting and verbal working memory. In addition, the ADHD-super(+) and non-ADHD groups displayed deficits in terms of general processing speed. Given that these deficits were not found in the ADHD-super(-) group, the authors contend that these deficits are likely attributable to comorbidity rather than ADHD itself. Contrary to the authors' expectations, these findings do not correspond with the cognitive subtype hypothesis.

  5. Rehabilitation in severe memory deficit: A case study

    PubMed Central

    Sousa, Nariana Mattos Figueiredo

    2017-01-01

    The term amnesia refers to a pathological state of mind in which memory and learning are affected to a greater extent than other cognitive functions in a patient without altered level of consciousness. The aim of the current study was to describe a case of severe amnesia in a patient during neurological rehabilitation and to report the importance of preserved cognitive functions to compensate for the mnemonic deficit. VJA presented a clinical condition suggestive of encephalopathy due to caloric-protein malnutrition following several abdominal surgical procedures for complicated choledocholithiasis. A descriptive analysis of the results was carried out to outline the goals attained and the factors limiting implementation of memory aids. After the intervention program, consisting of individual and group activities, VJA showed improvement in level of recall with repetition of tasks, but still required constant external monitoring. Longitudinal follow-up is necessary to obtain more consistent results. PMID:29213515

  6. Rehabilitation in severe memory deficit: A case study.

    PubMed

    Sousa, Nariana Mattos Figueiredo

    2017-01-01

    The term amnesia refers to a pathological state of mind in which memory and learning are affected to a greater extent than other cognitive functions in a patient without altered level of consciousness. The aim of the current study was to describe a case of severe amnesia in a patient during neurological rehabilitation and to report the importance of preserved cognitive functions to compensate for the mnemonic deficit. VJA presented a clinical condition suggestive of encephalopathy due to caloric-protein malnutrition following several abdominal surgical procedures for complicated choledocholithiasis. A descriptive analysis of the results was carried out to outline the goals attained and the factors limiting implementation of memory aids. After the intervention program, consisting of individual and group activities, VJA showed improvement in level of recall with repetition of tasks, but still required constant external monitoring. Longitudinal follow-up is necessary to obtain more consistent results.

  7. A heuristic model for working memory deficit in schizophrenia.

    PubMed

    Qi, Zhen; Yu, Gina P; Tretter, Felix; Pogarell, Oliver; Grace, Anthony A; Voit, Eberhard O

    2016-11-01

    The life of schizophrenia patients is severely affected by deficits in working memory. In various brain regions, the reciprocal interactions between excitatory glutamatergic neurons and inhibitory GABAergic neurons are crucial. Other neurotransmitters, in particular dopamine, serotonin, acetylcholine, and norepinephrine, modulate the local balance between glutamate and GABA and therefore regulate the function of brain regions. Persistent alterations in the balances between the neurotransmitters can result in working memory deficits. Here we present a heuristic computational model that accounts for interactions among neurotransmitters across various brain regions. The model is based on the concept of a neurochemical interaction matrix at the biochemical level and combines this matrix with a mobile model representing physiological dynamic balances among neurotransmitter systems associated with working memory. The comparison of clinical and simulation results demonstrates that the model output is qualitatively very consistent with the available data. In addition, the model captured how perturbations migrated through different neurotransmitters and brain regions. Results showed that chronic administration of ketamine can cause a variety of imbalances, and application of an antagonist of the D2 receptor in PFC can also induce imbalances but in a very different manner. The heuristic computational model permits a variety of assessments of genetic, biochemical, and pharmacological perturbations and serves as an intuitive tool for explaining clinical and biological observations. The heuristic model is more intuitive than biophysically detailed models. It can serve as an important tool for interdisciplinary communication and even for psychiatric education of patients and relatives. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Neural response to working memory demand predicts neurocognitive deficits in HIV.

    PubMed

    Cohen, Ronald A; Siegel, S; Gullett, J M; Porges, E; Woods, A J; Huang, H; Zhu, Y; Tashima, K; Ding, M-Z

    2018-06-01

    Human immunodeficiency virus (HIV) continues to have adverse effects on cognition and the brain in many infected people, despite a reduced incidence of HIV-associated dementia with combined antiretroviral therapy (cART). Working memory is often affected, along with attention, executive control, and cognitive processing speed. Verbal working memory (VWM) requires the interaction of each of the cognitive component processes along with a phonological loop for verbal repetition and rehearsal. HIV-related functional brain response abnormalities during VWM are evident in functional MRI (fMRI), though the neural substrate underlying these neurocognitive deficits is not well understood. The current study addressed this by comparing 24 HIV+ to 27 demographically matched HIV-seronegative (HIV-) adults with respect to fMRI activation on a VWM paradigm (n-back) relative to performance on two standardized tests of executive control, attention and processing speed (Stroop and Trail Making A-B). As expected, the HIV+ group had deficits on these neurocognitive tests compared to HIV- controls, and also differed in neural response on fMRI relative to neuropsychological performance. Reduced activation in VWM task-related brain regions on the 2-back was associated with Stroop interference deficits in HIV+ but not with either Trail Making A or B performance. Activation of the posterior cingulate cortex (PCC) of the default mode network during rest was associated with Hopkins Verbal Learning Test-2 (HVLT-2) learning in HIV+. These effects were not observed in the HIV- controls. Reduced dynamic range of neural response was also evident in HIV+ adults when activation on the 2-back condition was compared to the extent of activation of the default mode network during periods of rest. Neural dynamic range was associated with both Stroop and HVLT-2 performance. These findings provide evidence that HIV-associated alterations in neural activation induced by VWM demands and during rest

  9. Advances in memory research: single-neuron recordings from the human medial temporal lobe aid our understanding of declarative memory.

    PubMed

    Viskontas, Indre V

    2008-12-01

    To gain a complete understanding of how the brain functions, both in illness and good health, data from multiple levels of analysis must be integrated. Technical advances have made direct recordings of neuronal activity deep inside the human brain tractable, providing a rare glimpse into cellular processes during long-term memory formation. Recent findings using intracranial recordings in the medial temporal lobe inform current neural network models of memory, and may lead to a more comprehensive understanding of the neural basis of memory-related processes. These recordings have shown that cells in the hippocampus appear to support declarative learning by distinguishing novel and familiar stimuli via changes in firing patterns. Some cells with highly selective and invariant responses have also been described, and these responses seem to represent abstract concepts such as identity, rather than superficial perceptual features of items. Importantly, however, both selective and globally responsive cells are capable of changing their preferred stimulus depending on the conscious demands of the task. Firing patterns of human medial temporal lobe neurons indicate that cells can be both plastic and stable in terms of the information that they code; although some cells show highly selective and reproducible excitatory responses when presented with a familiar object, other cells change their receptive fields in line with changes in experience and the cognitive environment.

  10. Deficits in episodic memory are related to uncontrolled eating in a sample of healthy adults.

    PubMed

    Martin, A A; Davidson, T L; McCrory, M A

    2018-05-01

    Despite a substantial amount of animal data linking deficits in memory inhibition to the development of overeating and obesity, few studies have investigated the relevance of memory inhibition to uncontrolled eating in humans. Further, although memory for recent eating has been implicated as an important contributor to satiety and energy intake, the possibility that variations in episodic memory relate to individual differences in food intake control has been largely neglected. To examine these relationships, we recruited ninety-three adult subjects to attend a single lab session where we assessed body composition, dietary intake, memory performance, and eating behaviors (Three Factor Eating Questionnaire). Episodic recall and memory inhibition were assessed using a well-established measure of memory interference (Retrieval Practice Paradigm). Hierarchical regression analyses indicated that memory inhibition was largely unrelated to participants' eating behaviors; however, episodic recall was reliably predicted by restrained vs. uncontrolled eating: recall was positively associated with strategic dieting (β = 2.45, p = 0.02), avoidance of fatty foods (β = 3.41, p = 0.004), and cognitive restraint (β = 1.55, p = 0.04). In contrast, recall was negatively associated with uncontrolled eating (β = -1.15, p = 0.03) and emotional eating (β = -2.46, p = 0.04). These findings suggest that episodic memory processing is related to uncontrolled eating in humans. The possibility that deficits in episodic memory may contribute to uncontrolled eating by disrupting memory for recent eating is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Contribution of organizational strategy to verbal learning and memory in adults with attention-deficit/hyperactivity disorder.

    PubMed

    Roth, Robert M; Wishart, Heather A; Flashman, Laura A; Riordan, Henry J; Huey, Leighton; Saykin, Andrew J

    2004-01-01

    Statistical mediation modeling was used to test the hypothesis that poor use of a semantic organizational strategy contributes to verbal learning and memory deficits in adults with attention-deficit/hyperactivity disorder (ADHD). Comparison of 28 adults with ADHD and 34 healthy controls revealed lower performance by the ADHD group on tests of verbal learning and memory, sustained attention, and use of semantic organization during encoding. Mediation modeling indicated that state anxiety, but not semantic organization, significantly contributed to the prediction of both learning and delayed recall in the ADHD group. The pattern of findings suggests that decreased verbal learning and memory in adult ADHD is due in part to situational anxiety and not to poor use of organizational strategies during encoding. ((c) 2004 APA, all rights reserved)

  12. Short-term prospective memory deficits in chronic back pain patients.

    PubMed

    Ling, Jonathan; Campbell, Carol; Heffernan, Thomas M; Greenough, Charles G

    2007-01-01

    Chronic pain, particularly low back pain, is widespread. Although a great deal is known about the impact that this has on quality of life and physical activity, relatively little has been established regarding the more cognitive effects of pain. This study aims to find out whether individuals with chronic pain experience memory deficits in prospective memory (PM), the process of remembering to do things at some future point in time. Examples of PM include remembering to keep an appointment, such as a visit to a clinic, or to perform a particular task, such as paying a bill on time. The PM of 50 participants with chronic pain was compared with 50 pain-free participants. Each participant completed the Prospective Memory Questionnaire, which assesses three aspects of prospective memory (short-term habitual, long-term episodic, and internally cued), and records the use of strategies to aid remembering. In comparison to those not in pain, participants with chronic pain had significantly impaired short-term prospective memory, an effect which was evident even after co-varying use of analgesics and other drugs. These findings provide new insights into prospective memory dysfunction in people with chronic pain. Possible mechanisms for this dysfunction are discussed and suggestions for future research given.

  13. Sleep Promotes Consolidation of Emotional Memory in Healthy Children but Not in Children with Attention-Deficit Hyperactivity Disorder

    PubMed Central

    Prehn-Kristensen, Alexander; Munz, Manuel; Molzow, Ina; Wilhelm, Ines; Wiesner, Christian D.; Baving, Lioba

    2013-01-01

    Fronto-limbic brain activity during sleep is believed to support the consolidation of emotional memories in healthy adults. Attention deficit-hyperactivity disorder (ADHD) is accompanied by emotional deficits coincidently caused by dysfunctional interplay of fronto-limbic circuits. This study aimed to examine the role of sleep in the consolidation of emotional memory in ADHD in the context of healthy development. 16 children with ADHD, 16 healthy children, and 20 healthy adults participated in this study. Participants completed an emotional picture recognition paradigm in sleep and wake control conditions. Each condition had an immediate (baseline) and delayed (target) retrieval session. The emotional memory bias was baseline–corrected, and groups were compared in terms of sleep-dependent memory consolidation (sleep vs. wake). We observed an increased sleep-dependent emotional memory bias in healthy children compared to children with ADHD and healthy adults. Frontal oscillatory EEG activity (slow oscillations, theta) during sleep correlated negatively with emotional memory performance in children with ADHD. When combining data of healthy children and adults, correlation coefficients were positive and differed from those in children with ADHD. Since children displayed a higher frontal EEG activity than adults these data indicate a decline in sleep-related consolidation of emotional memory in healthy development. In addition, it is suggested that deficits in sleep-related selection between emotional and non-emotional memories in ADHD exacerbate emotional problems during daytime as they are often reported in ADHD. PMID:23734235

  14. Memory deficits with intact cognitive control in the methylazoxymethanol acetate (MAM) exposure model of neurodevelopmental insult.

    PubMed

    O'Reilly, Kally C; Perica, Maria I; Fenton, André A

    2016-10-01

    Cognitive impairments are amongst the most debilitating deficits of schizophrenia and the best predictor of functional outcome. Schizophrenia is hypothesized to have a neurodevelopmental origin, making animal models of neurodevelopmental insult important for testing predictions that early insults will impair cognitive function. Rats exposed to methylazoxymethanol acetate (MAM) at gestational day 17 display morphological, physiological and behavioral abnormalities relevant to schizophrenia. Here we investigate the cognitive abilities of adult MAM rats. We examined brain activity in MAM rats by histochemically assessing cytochrome oxidase enzyme activity, a metabolic marker of neuronal activity. To assess cognition, we used a hippocampus-dependent two-frame active place avoidance paradigm to examine learning and spatial memory, as well as cognitive control and flexibility using the same environment and evaluating the same set of behaviors. We confirmed that adult MAM rats have altered hippocampal morphology and brain function, and that they are hyperactive in an open field. The latter likely indicates MAM rats have a sensorimotor gating deficit that is common to many animal models used for schizophrenia research. On first inspection, cognitive control seems impaired in MAM rats, indicated by more errors during the two-frame active place avoidance task. Because MAM rats are hyperactive throughout place avoidance training, we considered the possibility that the hyperlocomotion may account for the apparent cognitive deficits. These deficits were reduced on the basis of measures of cognitive performance that account for motor activity differences. However, though other aspects of memory are intact, the ability of MAM rats to express trial-to-trial memory is delayed compared to control rats. These findings suggest that spatial learning and cognitive abilities are largely intact, that the most prominent cognitive deficit is specific to acquiring memory in the MAM

  15. How sodium arsenite improve amyloid β-induced memory deficit?

    PubMed

    Nassireslami, Ehsan; Nikbin, Parmida; Amini, Elham; Payandemehr, Borna; Shaerzadeh, Fatemeh; Khodagholi, Fariba; Yazdi, Behnoosh Bonakdar; Kebriaeezadeh, Abbas; Taghizadeh, Ghorban; Sharifzadeh, Mohammad

    2016-09-01

    Evidence has shown that arsenic exposure, besides its toxic effects results in impairment of learning and memory, but its molecular mechanisms are not fully understood. In the present study, we examined sodium arsenite (1, 5, 10, 100nM) effects on contextual and tone memory of male rats in Pavlovian fear conditioning paradigm alone and in co-administration with β-amyloid. We detected changes in the level of caspase-3, nuclear factor kappa-B (NF-κB), cAMP response element-binding (CREB), heme oxygenase-1 and NF-E2-related factor-2 (Nrf2) by Western blot. Sodium arsenite in high doses induced significant memory impairment 9 and 16days after infusion. By contrast, low doses of sodium arsenite attenuate memory deficit in Aβ injected rats after 16days. Our data revealed that treatment with high concentration of sodium arsenite increased caspase-3 cleavage and NF-κB level, 9days after injection. Whereas, low doses of sodium arsenite cause Nrf2 and HO-1 activation and increased CREB phosphorylation in the hippocampus. These findings suggest the concentration dependent effects of sodium arsenite on contextual and tone memory. Moreover, it seems that the neuroprotective effects of ultra-low concentrations of sodium arsenite on Aβ-induced memory impairment is mediated via an increase Nrf2, HO-1 and CREB phosphorylation levels and decrease caspase-3 and NF-κB amount. Copyright © 2016. Published by Elsevier Inc.

  16. Antiretroviral Non-Adherence is Associated With a Retrieval Profile of Deficits in Verbal Episodic Memory.

    PubMed

    Obermeit, Lisa C; Morgan, Erin E; Casaletto, Kaitlin B; Grant, Igor; Woods, Steven Paul

    2015-01-01

    HIV-associated deficits in verbal episodic memory are commonly associated with antiretroviral non-adherence; however, the specific aspects of memory functioning (e.g., encoding, consolidation, or retrieval) that underlie this established relationship are not well understood. This study evaluated verbal memory profiles of 202 HIV+ participants who underwent a 30-day electronic monitoring of antiretroviral adherence. At the group level, non-adherence was significantly associated with lower scores on immediate and delayed passage recall and word list learning. Retention and recognition of passages and word lists were not related to adherence. Participants were then classified as having either a normal verbal memory profile, a "subcortical" retrieval profile (i.e., impaired free recall with relatively spared recognition), or a "cortical" encoding profile (e.g., cued recall intrusions) based on the Massman et al. ( 1990 ) algorithm for the California Verbal Learning Test. HIV+ participants with a classic retrieval deficit had significantly greater odds of being non-adherent than participants with a normal or encoding profile. These findings suggest that adherence to prescribed antiretroviral regimens may be particularly vulnerable to disruption in HIV+ individuals due to deficits in the complex process of efficiently accessing verbal episodic information with minimal cues. A stronger relationship between non-adherence and passage (vs. word list) recall was also found and may reflect the importance of contextual features in remembering to take medications. Targeted interventions for enhancing and supporting episodic memory retrieval processes may improve antiretroviral adherence and overall health outcomes among persons living with HIV.

  17. 3,4-Methylenedioxymethamphetamine in Adult Rats Produces Deficits in Path Integration and Spatial Reference Memory

    PubMed Central

    Able, Jessica A.; Gudelsky, Gary A.; Vorhees, Charles V.; Williams, Michael T.

    2010-01-01

    Background ±3,4-Methylenedioxymethamphetamine (MDMA) is a recreational drug that causes cognitive deficits in humans. A rat model for learning and memory deficits has not been established, although some cognitive deficits have been reported. Methods Male Sprague-Dawley rats were treated with MDMA (15 mg/kg × 4 doses) or saline (SAL) (n = 20/treatment group) and tested in different learning paradigms: 1) path integration in the Cincinnati water maze (CWM), 2) spatial learning in the Morris water maze (MWM), and 3) novel object recognition (NOR). One week after drug administration, testing began in the CWM, then four phases of MWM, and finally NOR. Following behavioral testing, monoamine levels were assessed. Results ±3,4-Methylenedioxymethamphetamine-treated rats committed more CWM errors than did SAL-treated rats. ±3,4-Methylenedioxymethamphetamine-treated animals were further from the former platform position during each 30-second MWM probe trial but showed no differences during learning trials with the platform present. There were no group differences in NOR. ± 3,4-Methylenedioxymethamphetamine depleted serotonin in all brain regions and dopamine in the striatum. Conclusions ±3,4-Methylenedioxymethamphetamine produced MWM reference memory deficits even after complex learning in the CWM, where deficits in path integration learning occurred. Assessment of path integration may provide a sensitive index of MDMA-induced learning deficits. PMID:16324685

  18. Age-dependent and -independent changes in attention-deficit/hyperactivity disorder (ADHD) during spatial working memory performance.

    PubMed

    Bollmann, Steffen; Ghisleni, Carmen; Poil, Simon-Shlomo; Martin, Ernst; Ball, Juliane; Eich-Höchli, Dominique; Klaver, Peter; O'Gorman, Ruth L; Michels, Lars; Brandeis, Daniel

    2017-06-01

    Attention-deficit/hyperactivity disorder (ADHD) has been associated with spatial working memory as well as frontostriatal core deficits. However, it is still unclear how the link between these frontostriatal deficits and working memory function in ADHD differs in children and adults. This study examined spatial working memory in adults and children with ADHD, focussing on identifying regions demonstrating age-invariant or age-dependent abnormalities. We used functional magnetic resonance imaging to examine a group of 26 children and 35 adults to study load manipulated spatial working memory in patients and controls. In comparison to healthy controls, patients demonstrated reduced positive parietal and frontostriatal load effects, i.e., less increase in brain activity from low to high load, despite similar task performance. In addition, younger patients showed negative load effects, i.e., a decrease in brain activity from low to high load, in medial prefrontal regions. Load effect differences between ADHD and controls that differed between age groups were found predominantly in prefrontal regions. Age-invariant load effect differences occurred predominantly in frontostriatal regions. The age-dependent deviations support the role of prefrontal maturation and compensation in ADHD, while the age-invariant alterations observed in frontostriatal regions provide further evidence that these regions reflect a core pathophysiology in ADHD.

  19. Associative memory and its cerebral correlates in Alzheimer׳s disease: evidence for distinct deficits of relational and conjunctive memory.

    PubMed

    Bastin, Christine; Bahri, Mohamed Ali; Miévis, Frédéric; Lemaire, Christian; Collette, Fabienne; Genon, Sarah; Simon, Jessica; Guillaume, Bénédicte; Diana, Rachel A; Yonelinas, Andrew P; Salmon, Eric

    2014-10-01

    This study investigated the impact of Alzheimer׳s disease (AD) on conjunctive and relational binding in episodic memory. Mild AD patients and controls had to remember item-color associations by imagining color either as a contextual association (relational memory) or as a feature of the item to be encoded (conjunctive memory). Patients׳ performance in each condition was correlated with cerebral metabolism measured by FDG-PET. The results showed that AD patients had an impaired capacity to remember item-color associations, with deficits in both relational and conjunctive memory. However, performance in the two kinds of associative memory varied independently across patients. Partial Least Square analyses revealed that poor conjunctive memory was related to hypometabolism in an anterior temporal-posterior fusiform brain network, whereas relational memory correlated with metabolism in regions of the default mode network. These findings support the hypothesis of distinct neural systems specialized in different types of associative memory and point to heterogeneous profiles of memory alteration in Alzheimer׳s disease as a function of damage to the respective neural networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Reduced memory skills and increased hair cortisol levels in recent Ecstasy/MDMA users: significant but independent neurocognitive and neurohormonal deficits.

    PubMed

    Downey, Luke A; Sands, Helen; Jones, Lewis; Clow, Angela; Evans, Phil; Stalder, Tobias; Parrott, Andrew C

    2015-05-01

    The goals of this study were to measure the neurocognitive performance of recent users of recreational Ecstasy and investigate whether it was associated with the stress hormone cortisol. The 101 participants included 27 recent light users of Ecstasy (one to four times in the last 3 months), 23 recent heavier Ecstasy users (five or more times) and 51 non-users. Rivermead paragraph recall provided an objective measure for immediate and delayed recall. The prospective and retrospective memory questionnaire provided a subjective index of memory deficits. Cortisol levels were taken from near-scalp 3-month hair samples. Cortisol was significantly raised in recent heavy Ecstasy users compared with controls, whereas hair cortisol in light Ecstasy users was not raised. Both Ecstasy groups were significantly impaired on the Rivermead delayed word recall, and both groups reported significantly more retrospective and prospective memory problems. Stepwise regression confirmed that lifetime Ecstasy predicted the extent of these memory deficits. Recreational Ecstasy is associated with increased levels of the bio-energetic stress hormone cortisol and significant memory impairments. No significant relationship between cortisol and the cognitive deficits was observed. Ecstasy users did display evidence of a metacognitive deficit, with the strength of the correlations between objective and subjective memory performances being significantly lower in the Ecstasy users. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Non-Verbal Episodic Memory Deficits in Primary Progressive Aphasias are Highly Predictive of Underlying Amyloid Pathology.

    PubMed

    Ramanan, Siddharth; Flanagan, Emma; Leyton, Cristian E; Villemagne, Victor L; Rowe, Christopher C; Hodges, John R; Hornberger, Michael

    2016-01-01

    Diagnostic distinction of primary progressive aphasias (PPA) remains challenging, in particular for the logopenic (lvPPA) and nonfluent/agrammatic (naPPA) variants. Recent findings highlight that episodic memory deficits appear to discriminate these PPA variants from each other, as only lvPPA perform poorly on these tasks while having underlying amyloid pathology similar to that seen in amnestic dementias like Alzheimer's disease (AD). Most memory tests are, however, language based and thus potentially confounded by the prevalent language deficits in PPA. The current study investigated this issue across PPA variants by contrasting verbal and non-verbal episodic memory measures while controlling for their performance on a language subtest of a general cognitive screen. A total of 203 participants were included (25 lvPPA; 29 naPPA; 59 AD; 90 controls) and underwent extensive verbal and non-verbal episodic memory testing, with a subset of patients (n = 45) with confirmed amyloid profiles as assessed by Pittsburgh Compound B and PET. The most powerful discriminator between naPPA and lvPPA patients was a non-verbal recall measure (Rey Complex Figure delayed recall), with 81% of PPA patients classified correctly at presentation. Importantly, AD and lvPPA patients performed comparably on this measure, further highlighting the importance of underlying amyloid pathology in episodic memory profiles. The findings demonstrate that non-verbal recall emerges as the best discriminator of lvPPA and naPPA when controlling for language deficits in high load amyloid PPA cases.

  2. Hippocampal Sleep Features: Relations to Human Memory Function

    PubMed Central

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate

  3. A simple spatial working memory and attention test on paired symbols shows developmental deficits in schizophrenia patients.

    PubMed

    Song, Wei; Zhang, Kai; Sun, Jinhua; Ma, Lina; Jesse, Forrest Fabian; Teng, Xiaochun; Zhou, Ying; Bao, Hechen; Chen, Shiqing; Wang, Shuai; Yang, Beimeng; Chu, Xixia; Ding, Wenhua; Du, Yasong; Cheng, Zaohuo; Wu, Bin; Chen, Shanguang; He, Guang; He, Lin; Chen, Xiaoping; Li, Weidong

    2013-01-01

    People with neuropsychiatric disorders such as schizophrenia often display deficits in spatial working memory and attention. Evaluating working memory and attention in schizophrenia patients is usually based on traditional tasks and the interviewer's judgment. We developed a simple Spatial Working Memory and Attention Test on Paired Symbols (SWAPS). It takes only several minutes to complete, comprising 101 trials for each subject. In this study, we tested 72 schizophrenia patients and 188 healthy volunteers in China. In a healthy control group with ages ranging from 12 to 60, the efficiency score (accuracy divided by reaction time) reached a peak in the 20-27 age range and then declined with increasing age. Importantly, schizophrenia patients failed to display this developmental trend in the same age range and adults had significant deficits compared to the control group. Our data suggests that this simple Spatial Working Memory and Attention Test on Paired Symbols can be a useful tool for studies of spatial working memory and attention in neuropsychiatric disorders.

  4. [Memory characteristic in boys with attention deficit/hyperactivity disorder comorbid learning disability].

    PubMed

    Wu, Zhaomin; Wang, Na; Qian, Qiujin; Yang, Li; Qian, Ying; Liu, Lu; Liu, Yuxin; Cheng, Jia; Sun, Li; Cao, Qingjiu; Wang, Yufeng

    2014-06-10

    To explore the memory characteristic in boys with attention-deficit/hyperactivity disorder (ADHD) plus learning disability (LD). A total of 97 ADHD boys with comorbid LD (ADHD+LD), 97 ADHD boys without comorbid LD (ADHD-LD) and 97 healthy controls (based on the criteria of DSM-IV) were recruited from the outpatient clinic of Peking University Sixth Hospital from December 2003 to September 2012. Individuals across three groups were matched by ages, intelligence quotient (IQ) and ADHD subtypes. The Wechsler Memory Scale (WMS) was used to access the characteristics of several memory domains. ADHD +LD group performed the worst and control group the best in memory quotient (MQ) (90 ± 15 vs 98 ± 14 & 104 ± 14) and long-term memory domain ((36.0 ± 10.2) vs (42.1 ± 7.8) & (45.6 ± 6.7) score, all P < 0.05) . ADHD+LD group scored significantly lower than the control group in short-term memory ( (53.0 ± 9.2) vs (58.0 ± 9.7) score, P < 0.05) and immediate memory domains ((10.0 ± 3.3) vs (11.3 ± 3.5) score, P < 0.05). However, ADHD+LD group scored slightly but not significantly lower than the ADHD-LD group ((54.9 ± 10.7),(10.8 ± 3.2) score, P > 0.05). In most subscales of WMS, ADHD+LD group scored significantly lower than both ADHD-LD and control group in current information and orientation, mental control (1→100) , mental control (100→1) and associate learning subscales ( (8.8 ± 3.1) vs (10.0 ± 3.0) & (9.9 ± 2.3) score, (8.7 ± 4.1) vs (10.0 ± 3.9) & (11.1 ± 3.6) score, (10.7 ± 3.9) vs (12.9 ± 2.8) & (13.7 ± 2.2) score, (9.8 ± 3.1) vs (10.8 ± 2.6) & (11.1 ± 2.1) score, all P < 0.05) . In mental control (accumulation) subscale, all pairwise comparisons were statistically significant (all P < 0.05) . In subscales of figure memory, visual reproduction and digit span, ADHD+LD scored significantly lower than the control group (all P < 0.05), but not the ADHD-LD group (all P > 0.05). Boys with ADHD comorbid LD show deficits in overall memory function and

  5. Fast effects of glucocorticoids on memory-related network oscillations in the mouse hippocampus.

    PubMed

    Weiss, E K; Krupka, N; Bähner, F; Both, M; Draguhn, A

    2008-05-01

    Transient or lasting increases in glucocorticoids accompany deficits in hippocampus-dependent memory formation. Recent data indicate that the formation and consolidation of declarative and spatial memory are mechanistically related to different patterns of hippocampal network oscillations. These include gamma oscillations during memory acquisition and the faster ripple oscillations (approximately 200 Hz) during subsequent memory consolidation. We therefore analysed the effects of acutely applied glucocorticoids on network activity in mouse hippocampal slices. Evoked field population spikes and paired-pulse responses were largely unaltered by corticosterone or cortisol, respectively, despite a slight increase in maximal population spike amplitude by 10 microm corticosterone. Several characteristics of sharp waves and superimposed ripple oscillations were affected by glucocorticoids, most prominently the frequency of spontaneously occurring sharp waves. At 0.1 microm, corticosterone increased this frequency, whereas maximal (10 microm) concentrations led to a reduction. In addition, gamma oscillations became slightly faster and less regular in the presence of high doses of corticosteroids. The present study describes acute effects of glucocorticoids on sharp wave-ripple complexes and gamma oscillations in mouse hippocampal slices, revealing a potential background for memory deficits in the presence of elevated levels of these hormones.

  6. Memory Before and After Sleep in Patients with Moderate Obstructive Sleep Apnea

    PubMed Central

    Kloepfer, Corinna; Riemann, Dieter; Nofzinger, Eric A.; Feige, Bernd; Unterrainer, Josef; O'Hara, Ruth; Sorichter, Stephan; Nissen, Christoph

    2009-01-01

    Objective: The aim of this study was to investigate the effects of obstructive sleep apnea (OSA) on procedural and declarative memory encoding in the evening prior to sleep, on memory consolidation during subsequent sleep, and on retrieval in the morning after sleep. Methods: Memory performance (procedural mirror-tracing task, declarative visual and verbal memory task) and general neuropsychological performance were assessed before and after one night of polysomnographic monitoring in 15 patients with moderate OSA and 20 age-, sex-, and IQ-matched healthy subjects. Results: Encoding levels prior to sleep were similar across groups for all tasks. Conventional analyses of averaged mirror tracing performance suggested a significantly reduced overnight improvement in OSA patients. Single trial analyses, however, revealed that this effect was due to significantly flattened learning curves in the evening and morning session in OSA patients. OSA patients showed a significantly lower verbal retention rate and a non-significantly reduced visual retention rate after sleep compared to healthy subjects. Polysomnography revealed a significantly reduced REM density, increased frequency of micro-arousals, elevated apnea-hypopnea index, and subjectively disturbed sleep quality in OSA patients compared to healthy subjects. Conclusions: The results suggest that moderate OSA is associated with a significant impairment of procedural and verbal declarative memory. Future work is needed to further determine the contribution of structural or functional alterations in brain circuits relevant for memory, and to test whether OSA treatment improves or normalizes the observed deficits in learning. Citation: Kloepfer C; Riemann D; Nofzinger EA; Feige B; Unterrainer J; O'Hara R; Sorichter S; Nissen C. Memory before and after sleep in patients with moderate obstructive sleep apnea. J Clin Sleep Med 2009;5(6):540-548. PMID:20465021

  7. Is selective mutism associated with deficits in memory span and visual memory?: An exploratory case-control study.

    PubMed

    Kristensen, Hanne; Oerbeck, Beate

    2006-01-01

    Our main aim in this study was to explore the association between selective mutism (SM) and aspects of nonverbal cognition such as visual memory span and visual memory. Auditory-verbal memory span was also examined. The etiology of SM is unclear, and it probably represents a heterogeneous condition. SM is associated with language impairment, but nonspecific neurodevelopmental factors, including motor problems, are also reported in SM without language impairment. Furthermore, SM is described in Asperger's syndrome. Studies on nonverbal cognition in SM thus merit further investigation. Neuropsychological tests were administered to a clinical sample of 32 children and adolescents with SM (ages 6-17 years, 14 boys and 18 girls) and 62 nonreferred controls matched for age, gender, and socioeconomic status. We used independent t-tests to compare groups with regard to auditory-verbal memory span, visual memory span, and visual memory (Benton Visual Retention Test), and employed linear regression analysis to study the impact of SM on visual memory, controlling for IQ and measures of language and motor function. The SM group differed from controls on auditory-verbal memory span but not on visual memory span. Controlled for IQ, language, and motor function, the SM group did not differ from controls on visual memory. Motor function was the strongest predictor of visual memory performance. SM does not appear to be associated with deficits in visual memory span or visual memory. The reduced auditory-verbal memory span supports the association between SM and language impairment. More comprehensive neuropsychological studies are needed.

  8. Nondependent stimulant users of cocaine and prescription amphetamines show verbal learning and memory deficits.

    PubMed

    Reske, Martina; Eidt, Carolyn A; Delis, Dean C; Paulus, Martin P

    2010-10-15

    Stimulants are used increasingly to enhance social (cocaine) or cognitive performance (stimulants normally prescribed, prescription stimulants [e.g., methylphenidate, amphetamines]). Chronic use, by contrast, has been associated with significant verbal memory and learning deficits. This study sought to determine whether subtle learning and memory problems characterize individuals who exhibit occasional but not chronic use of stimulants. One hundred fifty-four young (age 18-25), occasional, nondependent stimulant users and 48 stimulant-naive comparison subjects performed the California Verbal Learning Test II. Lifetime uses of stimulants and co-use of marijuana were considered in correlation and median split analyses. Compared with stimulant-naive subjects, occasional stimulant users showed significant performance deficits, most pronounced in the verbal recall and recognition domains. Lifetime uses of stimulants and marijuana did not affect California Verbal Learning Test II performance. The type of stimulant used, however, was of major relevance: users of cocaine only were less impaired, whereas cumulative use of prescription stimulants was associated with impaired verbal learning and memory capacities. These results support the hypothesis of subtle and possibly pre-existing neurocognitive deficiencies in occasional users of stimulants, which might be related to the motivation for using these drugs. More importantly, despite beneficial short-term effects, cumulative use, particularly of prescription amphetamines and methylphenidate, intensifies these deficits. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice.

    PubMed

    Wang, Yongfu; Wu, Jing; Zhu, Bi; Li, Chaocui; Cai, Jing-Xia

    2012-03-01

    It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20 min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.

  10. Association between early attention-deficit/hyperactivity symptoms and current verbal and visuo-spatial short-term memory.

    PubMed

    Gau, Susan Shur-Fen; Chiang, Huey-Ling

    2013-01-01

    Deficits in short-term memory are common in adolescents with attention-deficit/hyperactivity disorder (ADHD), but their current ADHD symptoms cannot well predict their short-term performance. Taking a developmental perspective, we wanted to clarify the association between ADHD symptoms at early childhood and short-term memory in late childhood and adolescence. The participants included 401 patients with a clinical diagnosis of DSM-IV ADHD, 213 siblings, and 176 unaffected controls aged 8-17 years (mean age, 12.02 ± 2.24). All participants and their mothers were interviewed using the Chinese Kiddie Epidemiologic version of the Schedule for Affective Disorders and Schizophrenia to obtain information about ADHD symptoms and other psychiatric disorders retrospectively, at an earlier age first, then currently. The participants were assessed with the Wechsler Intelligence Scale for Children--3rd edition, including Digit Span, and the Spatial working memory task of the Cambridge Neuropsychological Test Automated Battery. Multi-level regression models were used for data analysis. Although crude analyses revealed that inattention, hyperactivity, and impulsivity symptoms significantly predicted deficits in short-term memory, only inattention symptoms had significant effects (all p<0.001) in a model that included all three ADHD symptoms. After further controlling for comorbidity, age of assessment, treatment with methylphenidate, and Full-scale IQ, the severity of childhood inattention symptoms was still significantly associated with worse verbal (p = 0.008) and spatial (p ranging from 0.017 to 0.002) short-term memory at the current assessment. Therefore, our findings suggest that earlier inattention symptoms are associated with impaired verbal and visuo-spatial short-term memory at a later development stage. Impaired short-term memory in adolescence can be detected earlier by screening for the severity of inattention in childhood. Copyright © 2012 Elsevier Ltd. All rights

  11. Cranial nerve clock. Part II: functional MR imaging of brain activation during a declarative memory task.

    PubMed

    Weiss, K L; Welsh, R C; Eldevik, P; Bieliauskas, L A; Steinberg, B A

    2001-12-01

    The authors performed this study to assess brain activation during encoding and successful recall with a declarative memory paradigm that has previously been demonstrated to be effective for teaching students about the cranial nerves. Twenty-four students underwent functional magnetic resonance (MR) imaging during encoding and recall of the name, number, and function of the 12 cranial nerves. The students viewed mnemonic graphic and text slides related to individual nerves, as well as their respective control slides. For the recall paradigm, students were prompted with the numbers 1-12 (test condition) intermixed with the number 14 (control condition). Subjects were tested about their knowledge of cranial nerves outside the MR unit before and after functional MR imaging. Students learned about the cranial nerves while undergoing functional MR imaging (mean post- vs preparadigm score, 8.1 +/- 3.4 [of a possible 12] vs 0.75 +/- 0.94, bilateral prefrontal cortex, left greater than right; P < 2.0 x 10(-12)) and maintained this knowledge at I week. The encoding and recall paradigms elicited distributed networks of brain activation. Encoding revealed statistically significant activation in the bilateral prefrontal cortex, left greater than right [corrected]; bilateral occipital and parietal associative cortices, parahippocampus region, fusiform gyri, and cerebellum. Successful recall activated the left much more than the right prefrontal, parietal associative, and anterior cingulate cortices; bilateral precuneus and cerebellum; and right more than the left posterior cingulate. A predictable pattern of brain activation at functional MR imaging accompanies the encoding and successful recall of the cranial nerves with this declarative memory paradigm.

  12. The Effects of Incentives on Visual-Spatial Working Memory in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Shiels, Keri; Hawk, Larry W., Jr.; Lysczek, Cynthia L.; Tannock, Rosemary; Pelham, William E., Jr.; Spencer, Sarah V.; Gangloff, Brian P.; Waschbusch, Daniel A.

    2008-01-01

    Working memory is one of several putative core neurocognitive processes in attention-deficit/hyperactivity disorder (ADHD). The present work seeks to determine whether visual-spatial working memory is sensitive to motivational incentives, a laboratory analogue of behavioral treatment. Participants were 21 children (ages 7-10) with a diagnosis of…

  13. Reconsolidation of Declarative Memory in Humans

    ERIC Educational Resources Information Center

    Forcato, Cecilia; Burgos, Valeria L.; Argibay, Pablo F.; Molina, Victor A.; Pedreira, Maria E.; Maldonado, Hector

    2007-01-01

    The reconsolidation hypothesis states that a consolidated memory could again become unstable and susceptible to facilitation or impairment for a discrete period of time after a reminder presentation. The phenomenon has been demonstrated in very diverse species and types of memory, including the human procedural memory of a motor skill task but not…

  14. Excess folate during adolescence suppresses thyroid function with permanent deficits in motivation and spatial memory

    PubMed Central

    Sittig, L. J.; Herzing, L. B. K.; Xie, H.; Batra, K. K.; Shukla, P. K.; Redei, E. E.

    2012-01-01

    Cognitive and memory deficits can be caused or exacerbated by dietary folate deficiency, which has been combatted by the addition of folate to grains and dietary supplements. The recommended dose of the B9 vitamin folate is 400 μg/day for adolescents and non-pregnant adults, and consumption above the recommended daily allowance is not considered to be detrimental. However, the effects of excess folate have not been tested in adolescence when neuro and endocrine development suggest possible vulnerability to long-term cognitive effects. We administered folate-supplemented (8.0 mg folic acid/kg diet) or control lab chow (2.7 mg folic acid/kg diet) to rats ad libitum from 30 to 60 days of age, and subsequently tested their motivation and learning and memory in the Morris water maze. We found that folate-supplemented animals had deficits in motivation and spatial memory, but they showed no changes of the learning- and memory-related molecules growth-associated protein-43 or Gs-α subunit protein in the hippocampus. They had decreased levels of thyroxine (T4) and triiodothyronine (T3) in the periphery and decreased protein levels of thyroid receptor-α1 and -α2 (TRα1 and TRα2) in the hippocampus. The latter may have been due to an observed increase of cytosine–phosphate–guanosine island methylation within the putative thyroid hormone receptor-α promoter, which we have mapped for the first time in the rat. Overall, folate supplementation in adolescence led to motivational and spatial memory deficits that may have been mediated by suppressed thyroid hormone function in the periphery and hippocampus. PMID:22050771

  15. Component deficits of visual neglect: "Magnetic" attraction of attention vs. impaired spatial working memory.

    PubMed

    Toba, Monica N; Rabuffetti, Marco; Duret, Christophe; Pradat-Diehl, Pascale; Gainotti, Guido; Bartolomeo, Paolo

    2018-01-31

    Visual neglect is a disabling consequence of right hemisphere damage, whereby patients fail to detect left-sided objects. Its precise mechanisms are debated, but there is some consensus that distinct component deficits may variously associate and interact in different patients. Here we used a touch-screen based procedure to study two putative component deficits of neglect, rightward "magnetic" attraction of attention and impaired spatial working memory, in a group of 47 right brain-damaged patients, of whom 33 had signs of left neglect. Patients performed a visual search task on three distinct conditions, whereby touched targets could (1) be tagged, (2) disappear or (3) show no change. Magnetic attraction of attention was defined as more left neglect on the tag condition than on the disappear condition, where right-sided disappeared targets could not capture patients' attention. Impaired spatial working memory should instead produce more neglect on the no change condition, where no external cue indicated that a target had already been explored, than on the tag condition. Using a specifically developed analysis algorithm, we identified significant differences of performance between the critical conditions. Neglect patients as a group performed better on the disappear condition than on the no change condition and also better in the tag condition comparing with the no change condition. No difference was found between the tag condition and the disappear condition. Some of our neglect patients had dissociated patterns of performance, with predominant magnetic attraction or impaired spatial working memory. Anatomical results issued from both grey matter analysis and fiber tracking were consistent with the typical patterns of fronto-parietal and occipito-frontal disconnection in neglect, but did not identify lesional patterns specifically associated with one or another deficit, thus suggesting the possible co-localization of attentional and working memory processes in

  16. The synthetic cannabinoid HU210 induces spatial memory deficits and suppresses hippocampal firing rate in rats.

    PubMed

    Robinson, L; Goonawardena, A V; Pertwee, R G; Hampson, R E; Riedel, G

    2007-07-01

    Previous work implied that the hippocampal cannabinoid system was particularly important in some forms of learning, but direct evidence for this hypothesis is scarce. We therefore assessed the effects of the synthetic cannabinoid HU210 on memory and hippocampal activity. HU210 (100 microg kg(-1)) was administered intraperitoneally to rats under three experimental conditions. One group of animals were pre-trained in spatial working memory using a delayed-matching-to-position task and effects of HU210 were assessed in a within-subject design. In another, rats were injected before acquisition learning of a spatial reference memory task with constant platform location. Finally, a separate group of animals was implanted with electrode bundles in CA1 and CA3 and single unit responses were isolated, before and after HU210 treatment. HU210 treatment had no effect on working or short-term memory. Relative to its control Tween 80, deficits in acquisition of a reference memory version of the water maze were obtained, along with drug-related effects on anxiety, motor activity and spatial learning. Deficits were not reversed by the CB(1) receptor antagonists SR141716A (3 mg kg(-1)) or AM281 (1.5 mg kg(-1)). Single unit recordings from principal neurons in hippocampal CA3 and CA1 confirmed HU210-induced attenuation of the overall firing activity lowering both the number of complex spikes fired and the occurrence of bursts. These data provide the first direct evidence that the underlying mechanism for the spatial memory deficits induced by HU210 in rats is the accompanying abnormality in hippocampal cell firing.

  17. Explaining semantic short-term memory deficits: Evidence for the critical role of semantic control

    PubMed Central

    Hoffman, Paul; Jefferies, Elizabeth; Lambon Ralph, Matthew A.

    2011-01-01

    Patients with apparently selective short-term memory (STM) deficits for semantic information have played an important role in developing multi-store theories of STM and challenge the idea that verbal STM is supported by maintaining activation in the language system. We propose that semantic STM deficits are not as selective as previously thought and can occur as a result of mild disruption to semantic control processes, i.e., mechanisms that bias semantic processing towards task-relevant aspects of knowledge and away from irrelevant information. We tested three semantic STM patients with tasks that tapped four aspects of semantic control: (i) resolving ambiguity between word meanings, (ii) sensitivity to cues, (iii) ignoring irrelevant information and (iv) detecting weak semantic associations. All were impaired in conditions requiring more semantic control, irrespective of the STM demands of the task, suggesting a mild, but task-general, deficit in regulating semantic knowledge. This mild deficit has a disproportionate effect on STM tasks because they have high intrinsic control demands: in STM tasks, control is required to keep information active when it is no longer available in the environment and to manage competition between items held in memory simultaneously. By re-interpreting the core deficit in semantic STM patients in this way, we are able to explain their apparently selective impairment without the need for a specialised STM store. Instead, we argue that semantic STM patients occupy the mildest end of spectrum of semantic control disorders. PMID:21195105

  18. Anterograde episodic memory in Korsakoff syndrome.

    PubMed

    Fama, Rosemary; Pitel, Anne-Lise; Sullivan, Edith V

    2012-06-01

    A profound anterograde memory deficit for information, regardless of the nature of the material, is the hallmark of Korsakoff syndrome, an amnesic condition resulting from severe thiamine (vitamin B1) deficiency. Since the late nineteenth century when the Russian physician, S. S. Korsakoff, initially described this syndrome associated with "polyneuropathy," the observed global amnesia has been a primary focus of neuroscience and neuropsychology. In this review we highlight the historical studies that examined anterograde episodic memory processes in KS, present a timeline and evidence supporting the myriad theories proffered to account for this memory dysfunction, and summarize what is known about the neuroanatomical correlates and neural systems presumed affected in KS. Rigorous study of KS amnesia and associated memory disorders of other etiologies provide evidence for distinct mnemonic component processes and neural networks imperative for normal declarative and nondeclarative memory abilities and for mnemonic processes spared in KS, from whence emerged the appreciation that memory is not a unitary function. Debate continues regarding the qualitative and quantitative differences between KS and other amnesias and what brain regions and neural pathways are necessary and sufficient to produce KS amnesia.

  19. Anterograde Episodic Memory in Korsakoff Syndrome

    PubMed Central

    Fama, Rosemary; Pitel, Anne-Lise; Sullivan, Edith V.

    2016-01-01

    A profound anterograde memory deficit for information, regardless of the nature of the material, is the hallmark of Korsakoff syndrome, an amnesic condition resulting from severe thiamine (vitamin B1) deficiency. Since the late nineteenth century when the Russian physician, S. S. Korsakoff, initially described this syndrome associated with “polyneuropathy,” the observed global amnesia has been a primary focus of neuroscience and neuropsychology. In this review we highlight the historical studies that examined anterograde episodic memory processes in KS, present a timeline and evidence supporting the myriad theories proffered to account for this memory dysfunction, and summarize what is known about the neuroanatomical correlates and neural systems presumed affected in KS. Rigorous study of KS amnesia and associated memory disorders of other etiologies provide evidence for distinct mnemonic component processes and neural networks imperative for normal declarative and nondeclarative memory abilities and for mnemonic processes spared in KS, from whence emerged the appreciation that memory is not a unitary function. Debate continues regarding the qualitative and quantitative differences between KS and other amnesias and what brain regions and neural pathways are necessary and sufficient to produce KS amnesia. PMID:22644546

  20. Memory outcomes following cognitive interventions in children with neurological deficits: A review with a focus on under-studied populations.

    PubMed

    Schaffer, Yael; Geva, Ronny

    2016-01-01

    Given the primary role of memory in children's learning and well-being, the aim of this review was to examine the outcomes of memory remediation interventions in children with neurological deficits as a function of the affected memory system and intervention method. Fifty-seven studies that evaluated the outcome of memory interventions in children were identified. Thirty-four studies met the inclusion criteria, and were included in a systematic review. Diverse rehabilitation methods for improving explicit and implicit memory in children were reviewed. The analysis indicates that teaching restoration strategies may improve, and result in the generalisation of, semantic memory and working memory performance in children older than 7 years with mild to moderate memory deficits. Factors such as longer protocols, emotional support, and personal feedback contribute to intervention efficacy. In addition, the use of compensation aids seems to be highly effective in prospective memory tasks. Finally, the review unveiled a lack of studies with young children and the absence of group interventions. These findings point to the importance of future evidence-based intervention protocols in these areas.

  1. Acute treatment with bis selenide, an organic compound containing the trace element selenium, prevents memory deficits induced by reserpine in rats.

    PubMed

    Bortolatto, Cristiani Folharini; Guerra Souza, Ana Cristina; Wilhelm, Ethel Antunes; Nogueira, Cristina Wayne

    2013-01-01

    Taking into account the promising pharmacological actions of (Z)-2,3-bis(4-chlorophenylselanyl) prop-2-en-1-ol) (bis selenide), an organic compound containing the trace element selenium, and the constant search for drugs that improve the cognitive performance, the objective of the present study was to investigate whether bis selenide treatment ameliorates memory deficits induced by reserpine in rats. For this aim, male adult rats received a single subcutaneous injection of reserpine (1 mg/kg), a biogenic amine-depleting agent used to induce memory deficit. After 24 h, bis selenide at doses of 25 and 50 mg/kg was administered to rats by intragastric route, and 1 h later, the animals were submitted to behavior tasks. The effects of acute administration of bis selenide on memory were evaluated by social recognition, step-down passive avoidance, and object recognition paradigms. Exploratory and locomotor activities of rats were determined using the open-field test. Analysis of data revealed that the social memory disruption caused by reserpine was reversed by bis selenide at both doses. In addition, bis selenide, at the highest dose, prevented the memory deficit resulting from reserpine administration to rats in step-down passive avoidance and object recognition tasks. No significant alterations in locomotor and exploratory behaviors were found in animals treated with reserpine and/or bis selenide. Results obtained from distinct memory behavioral paradigms revealed that an acute treatment with bis selenide attenuated memory deficits induced by reserpine in rats.

  2. Neuroprotective evidence of alpha-lipoic acid and desvenlafaxine on memory deficit in a neuroendocrine model of depression.

    PubMed

    de Sousa, Caren Nádia Soares; Meneses, Lucas Nascimento; Vasconcelos, Germana Silva; da Silva Medeiros, Ingridy; Silva, Márcia Calheiros Chaves; Mouaffak, Fayçal; Kebir, Oussama; da Silva Leite, Cláudio Manuel Gonçalves; Patrocinio, Manoel Cláudio Azevedo; Macedo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2018-05-07

    Cognitive impairment is present in patients with depression. We hypothesized that alpha-lipoic acid (ALA) can reduce cognitive impairment, especially when combined to antidepressants. Female mice received vehicle or corticosterone (CORT) 20 mg/kg, s.c. for 14 days. From the 15th to 21st day, the animals were divided in groups: vehicle, CORT, CORT+desvenlafaxine (DVS) 10 or 20 mg/kg, ALA 100 or 200 mg/kg, DVS10+ALA100, DVS20+ALA100, DVS10+ALA200, or DVS20+ALA200. Tail suspension (TST), social interaction (SIT), novel object recognition (NOR), and Y-maze tests were conducted. Acetylcholinesterase activity (AChE) was measured in the prefrontal cortex (PFC), hippocampus (HC), and striatum (ST). CORT caused depressive-like behavior, impairment in SIT, and cognitive deficits. Alpha-lipoic acid and DVS, alone or combined, reversed CORT effect on TST. In the NOR, ALA200 alone, DVS10+ALA100, or DVS10+ALA200 reversed the deficits in short-term memory, while DVS20 alone or DVS20+ALA200 reversed the deficits in long-term memory. In the Y-maze test, ALA200 alone, DVS20+ALA100, or DVS20+ALA200 reversed the deficits caused by CORT in the working memory. CORT increased AChE in the PFC, HC, and ST. ALA200 alone or DVS20+ALA200 reversed this effect in the PFC, while DVS20 or DVS20+ALA100 reversed this effect in the HC. In the ST, DVS10 or 20, alone or combined, and ALA100 reversed the effects of CORT. These results suggest that DVS+ALA, by reversing CORT-induced memory and social deficits, seems to be a promising therapy for the treatment of depression and reversal of cognitive impairment observed in this disorder.

  3. Memory deficits in amyotrophic lateral sclerosis are not exclusively caused by executive dysfunction: a comparative neuropsychological study of amnestic mild cognitive impairment.

    PubMed

    Machts, Judith; Bittner, Verena; Kasper, Elisabeth; Schuster, Christina; Prudlo, Johannes; Abdulla, Susanne; Kollewe, Katja; Petri, Susanne; Dengler, Reinhard; Heinze, Hans-Jochen; Vielhaber, Stefan; Schoenfeld, Mircea A; Bittner, Daniel M

    2014-06-30

    Recent work suggests that ALS and frontotemporal dementia can occur together and share at least in part the same underlying pathophysiology. However, it is unclear at present whether memory deficits in ALS stem from a temporal lobe dysfunction, or are rather driven by frontal executive dysfunction. In this study we sought to investigate the nature of memory deficits by analyzing the neuropsychological performance of 40 ALS patients in comparison to 39 amnestic mild cognitive impairment (aMCI) patients and 40 healthy controls (HC). The neuropsychological battery tested for impairment in executive functions, as well as memory and visuo-spatial skills, the results of which were compared across study groups. In addition, we calculated composite scores for memory (learning, recall, recognition) and executive functions (verbal fluency, cognitive flexibility, working memory). We hypothesized that the nature of memory impairment in ALS will be different from those exhibited by aMCI patients. Patient groups exhibited significant differences in their type of memory deficit, with the ALS group showing impairment only in recognition, whereas aMCI patients showed short and delayed recall performance deficits as well as reduced short-term capacity. Regression analysis revealed a significant impact of executive function on memory performance exclusively for the ALS group, accounting for one fifth of their memory performance. Interestingly, merging all sub scores into a single memory and an executive function score obscured these differences. The presented results indicate that the interpretation of neuropsychological scores needs to take the distinct cognitive profiles in ALS and aMCI into consideration. Importantly, the observed memory deficits in ALS were distinctly different from those observed in aMCI and can be explained only to some extent in the context of comorbid (coexisting) executive dysfunction. These findings highlight the qualitative differences in temporal lobe

  4. Down Syndrome and Short-Term Memory Impairment: A Storage or Retrieval Deficit?

    ERIC Educational Resources Information Center

    Adler, Sol; McDade, Hiram L.

    1980-01-01

    Three groups of eight Ss (Down's syndrome, CA control, and MA control) received a battery of tests to assess recall and recognition memory using either auditory or visual input with verbal and nonverbal responses. Results indicated that the Down's syndrome group possessed deficits in both storage and retrieval abilities, with storage of visually…

  5. Speech Perception and Short-Term Memory Deficits in Persistent Developmental Speech Disorder

    ERIC Educational Resources Information Center

    Kenney, Mary Kay; Barac-Cikoja, Dragana; Finnegan, Kimberly; Jeffries, Neal; Ludlow, Christy L.

    2006-01-01

    Children with developmental speech disorders may have additional deficits in speech perception and/or short-term memory. To determine whether these are only transient developmental delays that can accompany the disorder in childhood or persist as part of the speech disorder, adults with a persistent familial speech disorder were tested on speech…

  6. Tests of the DRYAD theory of the age-related deficit in memory for context: Not about context, and not about aging

    PubMed Central

    Benjamin, Aaron S.; Diaz, Michael; Matzen, Laura E.; Johnson, Benjamin

    2011-01-01

    Older adults exhibit a disproportionate deficit in their ability to recover contextual elements or source information about prior encounters with stimuli. A recent theoretical account, DRYAD (Benjamin, 2010), attributes this selective deficit to a global decrease in memory fidelity with age, moderated by weak representation of contextual information. The predictions of DRYAD are tested here in three experiments. We show that an age-related deficit obtains for whichever aspect of the stimulus subjects’ attention is directed away from during encoding (Experiment 1), suggesting a central role for attention in producing the age-related deficit in context. We also show that an analogous deficit can be elicited within young subjects with a manipulation of study time (Experiment 2), suggesting that any means of reducing memory fidelity yields an interaction of the same form as the age-related effect. Experiment 3 evaluates the critical prediction of DRYAD that endorsement probability in an exclusion task should vary nonmonotonically with memory strength. This prediction was confirmed by assessing the shape of the forgetting function in a continuous exclusion task. The results are consistent with the DRYAD account of aging and memory judgments and do not support the widely held view that aging entails the selective disruption of processes involved in encoding, storing, or retrieving contextual information. PMID:21875219

  7. Alzheimer's disease and memory-monitoring impairment: Alzheimer's patients show a monitoring deficit that is greater than their accuracy deficit.

    PubMed

    Dodson, Chad S; Spaniol, Maggie; O'Connor, Maureen K; Deason, Rebecca G; Ally, Brandon A; Budson, Andrew E

    2011-07-01

    We assessed the ability of two groups of patients with mild Alzheimer's disease (AD) and two groups of older adults to monitor the likely accuracy of recognition judgments and source identification judgments about who spoke something earlier. Alzheimer's patients showed worse performance on both memory judgments and were less able to monitor with confidence ratings the likely accuracy of both kinds of memory judgments, as compared to a group of older adults who experienced the identical study and test conditions. Critically, however, when memory performance was made comparable between the AD patients and the older adults (e.g., by giving AD patients extra exposures to the study materials), AD patients were still greatly impaired at monitoring the likely accuracy of their recognition and source judgments. This result indicates that the monitoring impairment in AD patients is actually worse than their memory impairment, as otherwise there would have been no differences between the two groups in monitoring performance when there were no differences in accuracy. We discuss the brain correlates of this memory-monitoring deficit and also propose a Remembrance-Evaluation model of memory-monitoring. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Environmental enrichment reverses histone methylation changes in the aged hippocampus and restores age-related memory deficits.

    PubMed

    Morse, Sarah J; Butler, Anderson A; Davis, Robin L; Soller, Ian J; Lubin, Farah D

    2015-04-01

    A decline in long-term memory (LTM) formation is a common feature of the normal aging process, which corresponds with abnormal expression of memory-related genes in the aged hippocampus. Epigenetic modulation of chromatin structure is required for proper transcriptional control of genes, such as the brain-derived neurotrophic factor (Bdnf) and Zif268 in the hippocampus during the consolidation of new memories. Recently, the view has emerged that aberrant transcriptional regulation of memory-related genes may be reflective of an altered epigenetic landscape within the aged hippocampus, resulting in memory deficits with aging. Here, we found that baseline resting levels for tri-methylation of histone H3 at lysine 4 (H3K4me3) and acetylation of histone H3 at lysine 9 and 14 (H3K9,K14ac) were altered in the aged hippocampus as compared to levels in the hippocampus of young adult rats. Interestingly, object learning failed to increase activity-dependent H3K4me3 and di-methylation of histone H3 at lysine 9 (H3K9me2) levels in the hippocampus of aged adults as compared to young adults. Treatment with the LSD-1 histone demethylase inhibitor, t-PCP, increased baseline resting H3K4me3 and H3K9,K14ac levels in the young adult hippocampus, while young adult rats exhibited similar memory deficits as observed in aged rats. After environmental enrichment (EE), we found that object learning induced increases in H3K4me3 levels around the Bdnf, but not the Zif268, gene region in the aged hippocampus and rescued memory deficits in aged adults. Collectively, these results suggest that histone lysine methylation levels are abnormally regulated in the aged hippocampus and identify histone lysine methylation as a transcriptional mechanism by which EE may serve to restore memory formation with aging.

  9. Working memory deficit in patients with restless legs syndrome: an event-related potential study.

    PubMed

    Kim, Sung Min; Choi, Jeong Woo; Lee, Chany; Lee, Byeong Uk; Koo, Yong Seo; Kim, Kyung Hwan; Jung, Ki-Young

    2014-07-01

    The aim of this study was to investigate whether there is a working memory (WM) deficit in restless legs syndrome (RLS) patients, by studying the Sternberg WM task of event-related potential (ERP). Thirteen drug-naive RLS patients and 13 healthy age-matched controls with no sleep disturbances participated in the present study. P300 ERP was recorded during Sternberg WM task using digits as mnemonic items. P300 amplitudes and reaction times were compared between groups (RLS vs. control) considering brain regions (frontal, central, and parietal) and memory load sizes (two, three, and four) as within-subject factors. Clinical and sleep-related variables were correlated with P300 amplitude. The reaction time in RLS patients was significantly longer than controls over all memory load sizes. The P300 amplitude at parietal regions in RLS patients was significantly lower than in controls regardless of memory load sizes, which was significantly negatively correlated with duration of RLS history in RLS patients. Our study suggests that patients with severe RLS have WM deficits. Furthermore, negative correlation of P300 amplitudes with the duration of RLS illness suggests that cerebral cortical dysfunction in RLS patients results from repeated RLS symptom attacks. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Neural correlates of visuospatial working memory in attention-deficit/hyperactivity disorder and healthy controls.

    PubMed

    van Ewijk, Hanneke; Weeda, Wouter D; Heslenfeld, Dirk J; Luman, Marjolein; Hartman, Catharina A; Hoekstra, Pieter J; Faraone, Stephen V; Franke, Barbara; Buitelaar, Jan K; Oosterlaan, Jaap

    2015-08-30

    Impaired visuospatial working memory (VSWM) is suggested to be a core neurocognitive deficit in attention-deficit/hyperactivity disorder (ADHD), yet the underlying neural activation patterns are poorly understood. Furthermore, it is unclear to what extent age and gender effects may play a role in VSWM-related brain abnormalities in ADHD. Functional magnetic resonance imaging (fMRI) data were collected from 109 individuals with ADHD (60% male) and 103 controls (53% male), aged 8-25 years, during a spatial span working memory task. VSWM-related brain activation was found in a widespread network, which was more widespread compared with N-back tasks used in the previous literature. Higher brain activation was associated with higher age and male gender. In comparison with controls, individuals with ADHD showed greater activation in the left inferior frontal gyrus (IFG) and the lateral frontal pole during memory load increase, effects explained by reduced activation on the low memory load in the IFG pars triangularis and increased activation during high load in the IFG pars opercularis. Age and gender effects did not differ between controls and individuals with ADHD. Results indicate that individuals with ADHD have difficulty in efficiently and sufficiently recruiting left inferior frontal brain regions with increasing task difficulty. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Transiently Increasing cAMP Levels Selectively in Hippocampal Excitatory Neurons during Sleep Deprivation Prevents Memory Deficits Caused by Sleep Loss

    PubMed Central

    Bruinenberg, Vibeke M.; Tudor, Jennifer C.; Ferri, Sarah L.; Baumann, Arnd; Meerlo, Peter

    2014-01-01

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object–location task. Five hours of total sleep deprivation directly following training impaired the formation of object–location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. PMID:25411499

  12. Persistent impairment in working memory following severe hyperglycemia in newly diagnosed type 2 diabetes.

    PubMed

    Cerasuolo, Joseph; Izzo, Anthony

    2017-01-01

    Acute hyperglycemia has been shown to cause cognitive impairments in animal models. There is growing appreciation of the numerous effects of hyperglycemia on neuronal function as well as blood-brain barrier function. In humans, hypoglycemia is well known to cause cognitive deficits acutely, but hyperglycemia has been less well studied. We present a case of selective neurocognitive deficits in the setting of acute hyperglycemia. A 60-year-old man was admitted to the hospital for an episode of acute hyperglycemia in the setting of newly diagnosed diabetes mellitus precipitated by steroid use. He was managed with insulin therapy and discharged home, and later, presented with complaints of memory impairment. Deficits included impairment in his declarative and working memory, to the point of significant impairment in his overall functioning. The patient had no structural lesions on MRI imaging of the brain or other systemic illnesses to explain his specific deficits. We suggest that his acute hyperglycemia may have caused neurological injury, and may be responsible for our patient's memory complaints. Acute hyperglycemia has been associated with poor outcomes in several different central nervous system injuries including cerebrovascular accident and hypoxic injury.Hyperglycemia is responsible for accumulation of reactive oxygen species in the brain, resulting in advanced glycosylated end products and a proinflammatory response that may lead to cellular injury.Further research is needed to define the impact of both acute and chronic hyperglycemia on cognitive impairment and memory.

  13. Memory reactivation and consolidation during sleep

    PubMed Central

    Paller, Ken A.; Voss, Joel L.

    2004-01-01

    Do our memories remain static during sleep, or do they change? We argue here that memory change is not only a natural result of sleep cognition, but further, that such change constitutes a fundamental characteristic of declarative memories. In general, declarative memories change due to retrieval events at various times after initial learning and due to the formation and elaboration of associations with other memories, including memories formed after the initial learning episode. We propose that declarative memories change both during waking and during sleep, and that such change contributes to enhancing binding of the distinct representational components of some memories, and thus to a gradual process of cross-cortical consolidation. As a result of this special form of consolidation, declarative memories can become more cohesive and also more thoroughly integrated with other stored information. Further benefits of this memory reprocessing can include developing complex networks of interrelated memories, aligning memories with long-term strategies and goals, and generating insights based on novel combinations of memory fragments. A variety of research findings are consistent with the hypothesis that cross-cortical consolidation can progress during sleep, although further support is needed, and we suggest some potentially fruitful research directions. Determining how processing during sleep can facilitate memory storage will be an exciting focus of research in the coming years. PMID:15576883

  14. Deficits of learning and memory in Hemojuvelin knockout mice.

    PubMed

    Li, Jinglong; Zhang, Peng; Liu, Hongju; Ren, Wei; Song, Jinjing; Rao, Elizabeth; Takahashi, Eiki; Zhou, Ying; Li, Weidong; Chen, Xiaoping

    2015-10-01

    Iron is involved in various physiological processes of the human body to maintain normal functions. Abnormal iron accumulation in brain has been reported as a pathogenesis of several neurodegenerative disorders and cognitive impairments. Hemojuvelin (HVJ) is a membrane-bound and soluble protein in mammals that is responsible for the iron overload condition known as juvenile hemochromatosis. Although iron accumulation in brain has been related to neurodegenerative diseases, it remains unknown the effect of mutation of HVJ gene on cognitive performance. In our studies, HJV(-/-) mice showed deficits in novel object recognition and Morris water maze tests. Furthermore, the expression ration of apoptotic marker Bax and anti-apoptotic marker Bcl-2 in the hippocampus and prefrontal cortex showed higher levels in HJV(-/-) mice. Our results suggested that deletion of HJV gene could increase apoptosis in brain which might contribute to learning and memory deficits in mutant mice. These results indicated that HJV(-/-) mice would be a useful model to study cognitive impairment induced by iron overload in brain.

  15. An ultra short episode of sleep is sufficient to promote declarative memory performance.

    PubMed

    Lahl, Olaf; Wispel, Christiane; Willigens, Bernadette; Pietrowsky, Reinhard

    2008-03-01

    Various studies have demonstrated that a night of sleep has a beneficial effect on the retention of previously acquired declarative material. In two experiments, we addressed the question of whether this effect extends to daytime naps. In the first experiment we assessed free recall of a list of 30 words after a 60 min retention interval that was either filled with daytime napping or waking activity. Memory performance was significantly enhanced after napping as opposed to waking but was not correlated with time spent in slow wave sleep or total sleep time within the napping condition. The second experiment was designed to clarify the role of total sleep time and therefore included an additional third group, which was allowed to nap for no longer than 6 min on average. In comparing word recall after conditions of no napping (waking), short napping, and long napping, we found superior recall for both nap conditions in contrast to waking as well as for long naps in contrast to short naps. These results demonstrate that even an ultra short period of sleep is sufficient to enhance memory processing. We suggest that the mere onset of sleep may initiate active processes of consolidation which - once triggered - remain effective even if sleep is terminated shortly thereafter.

  16. Comparative behavioral and neurochemical analysis of phenytoin and valproate treatment on epilepsy induced learning and memory deficit: Search for add on therapy.

    PubMed

    Mishra, Awanish; Goel, Rajesh Kumar

    2015-08-01

    Our previous work demonstrated, chronic epilepsy affects learning and memory of rodents along with peculiar neurochemical changes in discrete brain parts. Most commonly used antiepileptic drugs (phenytoin and sodium valproate) also worsen learning and memory in the patients with epilepsy. Therefore this study was designed to carry out comparison of behavioral and neurochemical changes with phenytoin and sodium valproate treatment in pentylenetetrazole-kindling induced learning and memory deficit to devise add on therapy for this menace. For the experimental epilepsy, animals were kindled using PTZ (35 mg/kg; i.p., at 48 ± 2 h intervals) and successful kindled animals were involved in the study. These kindled animals were treated with saline, phenytoin (30 mg/kg/day, i.p.) and sodium valproate (300 mg/kg/day, i.p.) for 20 days. These animals were challenged with PTZ challenging dose (35 mg/kg) on day 5, 10, 15 and 20 to evaluate the effect on seizure severity score on different days. Effect on learning and memory was evaluated using elevated plus maze and passive shock avoidance paradigm. On day 20, after behavioral evaluations, animals were sacrificed to analyze glutamate, GABA, norepinephrine, dopamine, serotonin, total nitrite level and acetylcholinesterase level in cortex and hippocampus. Behavioral evaluations suggested that phenytoin and sodium valproate treatment significantly reduced seizure severity in the kindled animals, while sodium valproate treatment controls seizures with least memory deficit in comparison to phenytoin. Neurochemical findings revealed that elevated cortical acetylcholinesterase level could be one of the responsible factors leading to memory deficit in phenytoin treated animals. However sodium valproate treatment reduced cortical acetylcholinesterase level and had least debilitating consequences on memory deficit. Therefore, attenuation of elevated AChE activity can be one of add-on approach for management of memory deficit

  17. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    PubMed Central

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    Brief periods of sleep loss have long-lasting consequences such as impaired memory consolidation. Structural changes in synaptic connectivity have been proposed as a substrate of memory storage. Here, we examine the impact of brief periods of sleep deprivation on dendritic structure. In mice, we find that five hours of sleep deprivation decreases dendritic spine numbers selectively in hippocampal area CA1 and increased activity of the filamentous actin severing protein cofilin. Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation. The elevated cofilin activity is caused by cAMP-degrading phosphodiesterase-4A5 (PDE4A5), which hampers cAMP-PKA-LIMK signaling. Attenuating PDE4A5 function prevents changes in cAMP-PKA-LIMK-cofilin signaling and cognitive deficits associated with sleep deprivation. Our work demonstrates the necessity of an intact cAMP-PDE4-PKA-LIMK-cofilin activation-signaling pathway for sleep deprivation-induced memory disruption and reduction in hippocampal spine density. DOI: http://dx.doi.org/10.7554/eLife.13424.001 PMID:27549340

  18. Syntactic Versus Memory Accounts of the Sentence Comprehension Deficits of Specific Language Impairment: Looking Back, Looking Ahead

    ERIC Educational Resources Information Center

    Montgomery, James W.; Gillam, Ronald B.; Evans, Julia L.

    2016-01-01

    Purpose: Compared with same-age typically developing peers, school-age children with specific language impairment (SLI) exhibit significant deficits in spoken sentence comprehension. They also demonstrate a range of memory limitations. Whether these 2 deficit areas are related is unclear. The present review article aims to (a) review 2 main…

  19. Object location and object recognition memory impairments, motivation deficits and depression in a model of Gulf War illness.

    PubMed

    Hattiangady, Bharathi; Mishra, Vikas; Kodali, Maheedhar; Shuai, Bing; Rao, Xiolan; Shetty, Ashok K

    2014-01-01

    Memory and mood deficits are the enduring brain-related symptoms in Gulf War illness (GWI). Both animal model and epidemiological investigations have indicated that these impairments in a majority of GW veterans are linked to exposures to chemicals such as pyridostigmine bromide (PB, an antinerve gas drug), permethrin (PM, an insecticide) and DEET (a mosquito repellant) encountered during the Persian Gulf War-1. Our previous study in a rat model has shown that combined exposures to low doses of GWI-related (GWIR) chemicals PB, PM, and DEET with or without 5-min of restraint stress (a mild stress paradigm) causes hippocampus-dependent spatial memory dysfunction in a water maze test (WMT) and increased depressive-like behavior in a forced swim test (FST). In this study, using a larger cohort of rats exposed to GWIR-chemicals and stress, we investigated whether the memory deficiency identified earlier in a WMT is reproducible with an alternative and stress free hippocampus-dependent memory test such as the object location test (OLT). We also ascertained the possible co-existence of hippocampus-independent memory dysfunction using a novel object recognition test (NORT), and alterations in mood function with additional tests for motivation and depression. Our results provide new evidence that exposure to low doses of GWIR-chemicals and mild stress for 4 weeks causes deficits in hippocampus-dependent object location memory and perirhinal cortex-dependent novel object recognition memory. An open field test performed prior to other behavioral analyses revealed that memory impairments were not associated with increased anxiety or deficits in general motor ability. However, behavioral tests for mood function such as a voluntary physical exercise paradigm and a novelty suppressed feeding test (NSFT) demonstrated decreased motivation levels and depression. Thus, exposure to GWIR-chemicals and stress causes both hippocampus-dependent and hippocampus-independent memory

  20. Excess folate during adolescence suppresses thyroid function with permanent deficits in motivation and spatial memory.

    PubMed

    Sittig, L J; Herzing, L B K; Xie, H; Batra, K K; Shukla, P K; Redei, E E

    2012-03-01

    Cognitive and memory deficits can be caused or exacerbated by dietary folate deficiency, which has been combatted by the addition of folate to grains and dietary supplements. The recommended dose of the B9 vitamin folate is 400 µg/day for adolescents and non-pregnant adults, and consumption above the recommended daily allowance is not considered to be detrimental. However, the effects of excess folate have not been tested in adolescence when neuro and endocrine development suggest possible vulnerability to long-term cognitive effects. We administered folate-supplemented (8.0 mg folic acid/kg diet) or control lab chow (2.7 mg folic acid/kg diet) to rats ad libitum from 30 to 60 days of age, and subsequently tested their motivation and learning and memory in the Morris water maze. We found that folate-supplemented animals had deficits in motivation and spatial memory, but they showed no changes of the learning- and memory-related molecules growth-associated protein-43 or Gs-α subunit protein in the hippocampus. They had decreased levels of thyroxine (T4) and triiodothyronine (T3) in the periphery and decreased protein levels of thyroid receptor-α1 and -α2 (TRα1 and TRα2) in the hippocampus. The latter may have been due to an observed increase of cytosine-phosphate-guanosine island methylation within the putative thyroid hormone receptor-α promoter, which we have mapped for the first time in the rat. Overall, folate supplementation in adolescence led to motivational and spatial memory deficits that may have been mediated by suppressed thyroid hormone function in the periphery and hippocampus. © 2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  1. Disproportionately severe memory deficit in relation to normal intellectual functioning after closed head injury.

    PubMed Central

    Levin, H S; Goldstein, F C; High, W M; Eisenberg, H M

    1988-01-01

    The presence of disproportionate memory impairment with relatively preserved intellectual functioning was examined in 87 survivors of moderate or severe closed head injury. Approximately one-fourth of the patients tested at 5 to 15 and/or 16 to 42 months after injury manifested defective memory on both auditory and pictorial measures despite obtaining Wechsler Verbal and Performance Intelligence Quotients within the average range. The findings indicate that disproportionately severe memory deficit persists in a subgroup of closed head injured survivors which is reminiscent in some cases of the amnesic disturbance arising from other causes. Evaluation of long term memory in relation to cognitive ability could potentially identify important distinctions for prognosis and rehabilitation in head injured patients. PMID:3225586

  2. Attention and memory deficits in crack-cocaine users persist over four weeks of abstinence.

    PubMed

    Almeida, Priscila P; de Araujo Filho, Gerardo M; Malta, Stella M; Laranjeira, Ronaldo R; Marques, Ana Cecilia R P; Bressan, Rodrigo A; Lacerda, Acioly L T

    2017-10-01

    Crack-cocaine addiction is an important public health problem worldwide. Although there is not a consensus, preliminary evidence has suggested that cognitive impairments in patients with crack-cocaine dependence persist during abstinence, affecting different neuropsychological domains. However, few studies have prospectively evaluated those deficits in different phases of abstinence. The main aim of present study was to examine neuropsychological performance of patients with crack-cocaine dependence during early abstinence and after four weeks, comparing with matched controls. Thirty-five males with crack-cocaine dependence, aged 18 to 50years, who met DSM-IV criteria for cocaine dependence and a control group of 33 healthy men were enrolled. They were assessed through Block Design, Digit Span and Vocabulary of Wechsler Adult Intelligence Scale (WAIS-III), the Rey Auditory Learning Test (RAVLT) and the Verbal Fluency (FAS) between 3 and 10days (mean of 6.1±2.0days) and after 4weeks of abstinence. Compared to controls, the crack-cocaine dependent group exhibited deficits in cognitive performance affecting attention, verbal memory and learning tasks in early withdrawal. Most of the cognitive deficits persisted after four weeks of abstinence. Present results observed that the group of patients with crack-cocaine dependence presented persistent deficits affecting memory and attention even after four weeks of abstinence, confirming previous studies that had disclosed such cognitive impairments. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Efficiency of the Prefrontal Cortex during Working Memory in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Sheridan, Margaret A.; Hinshaw, Stephen; D'Esposito, Mark

    2007-01-01

    Objective: Previous research has demonstrated that during task conditions requiring an increase in inhibitory function or working memory, children and adults with attention-deficit/hyperactivity disorder (ADHD) exhibit greater and more varied prefrontal cortical(PFC) activation compared to age-matched control participants. This pattern may reflect…

  4. Inhibition of γ-secretase worsens memory deficits in a genetically congruous mouse model of Danish dementia

    PubMed Central

    2012-01-01

    Background A mutation in the BRI2/ITM2b gene causes familial Danish dementia (FDD). BRI2 is an inhibitor of amyloid-β precursor protein (APP) processing, which is genetically linked to Alzheimer’s disease (AD) pathogenesis. The FDD mutation leads to a loss of BRI2 protein and to increased APP processing. APP haplodeficiency and inhibition of APP cleavage by β-secretase rescue synaptic/memory deficits of a genetically congruous mouse model of FDD (FDDKI). β-cleavage of APP yields the β-carboxyl-terminal (β-CTF) and the amino-terminal-soluble APPβ (sAPPβ) fragments. γ-secretase processing of β-CTF generates Aβ, which is considered the main cause of AD. However, inhibiting Aβ production did not rescue the deficits of FDDKI mice, suggesting that sAPPβ/β-CTF, and not Aβ, are the toxic species causing memory loss. Results Here, we have further analyzed the effect of γ-secretase inhibition. We show that treatment with a γ-secretase inhibitor (GSI) results in a worsening of the memory deficits of FDDKI mice. This deleterious effect on memory correlates with increased levels of the β/α-CTFs APP fragments in synaptic fractions isolated from hippocampi of FDDKI mice, which is consistent with inhibition of γ-secretase activity. Conclusion This harmful effect of the GSI is in sharp contrast with a pathogenic role for Aβ, and suggests that the worsening of memory deficits may be due to accumulation of synaptic-toxic β/α-CTFs caused by GSI treatment. However, γ-secretase cleaves more than 40 proteins; thus, the noxious effect of GSI on memory may be dependent on inhibition of cleavage of one or more of these other γ-secretase substrates. These two possibilities do not need to be mutually exclusive. Our results are consistent with the outcome of a clinical trial with the GSI Semagacestat, which caused a worsening of cognition, and advise against targeting γ-secretase in the therapy of AD. Overall, the data also indicate that FDDKI is a valuable mouse

  5. Inhibition of γ-secretase worsens memory deficits in a genetically congruous mouse model of Danish dementia.

    PubMed

    Tamayev, Robert; D'Adamio, Luciano

    2012-04-26

    A mutation in the BRI2/ITM2b gene causes familial Danish dementia (FDD). BRI2 is an inhibitor of amyloid-β precursor protein (APP) processing, which is genetically linked to Alzheimer's disease (AD) pathogenesis. The FDD mutation leads to a loss of BRI2 protein and to increased APP processing. APP haplodeficiency and inhibition of APP cleavage by β-secretase rescue synaptic/memory deficits of a genetically congruous mouse model of FDD (FDDKI). β-cleavage of APP yields the β-carboxyl-terminal (β-CTF) and the amino-terminal-soluble APPβ (sAPPβ) fragments. γ-secretase processing of β-CTF generates Aβ, which is considered the main cause of AD. However, inhibiting Aβ production did not rescue the deficits of FDDKI mice, suggesting that sAPPβ/β-CTF, and not Aβ, are the toxic species causing memory loss. Here, we have further analyzed the effect of γ-secretase inhibition. We show that treatment with a γ-secretase inhibitor (GSI) results in a worsening of the memory deficits of FDDKI mice. This deleterious effect on memory correlates with increased levels of the β/α-CTFs APP fragments in synaptic fractions isolated from hippocampi of FDDKI mice, which is consistent with inhibition of γ-secretase activity. This harmful effect of the GSI is in sharp contrast with a pathogenic role for Aβ, and suggests that the worsening of memory deficits may be due to accumulation of synaptic-toxic β/α-CTFs caused by GSI treatment. However, γ-secretase cleaves more than 40 proteins; thus, the noxious effect of GSI on memory may be dependent on inhibition of cleavage of one or more of these other γ-secretase substrates. These two possibilities do not need to be mutually exclusive. Our results are consistent with the outcome of a clinical trial with the GSI Semagacestat, which caused a worsening of cognition, and advise against targeting γ-secretase in the therapy of AD. Overall, the data also indicate that FDDKI is a valuable mouse model to study AD pathogenesis and

  6. Peripheral Nerve Injury Leads to Working Memory Deficits and Dysfunction of the Hippocampus by Upregulation of TNF-α in Rodents

    PubMed Central

    Ren, Wen-Jie; Liu, Yong; Zhou, Li-Jun; Li, Wei; Zhong, Yi; Pang, Rui-Ping; Xin, Wen-Jun; Wei, Xu-Hong; Wang, Jun; Zhu, He-Quan; Wu, Chang-You; Qin, Zhi-Hai; Liu, Guosong; Liu, Xian-Guo

    2011-01-01

    Patients with chronic pain usually suffer from working memory deficits, which may decrease their intellectual ability significantly. Despite intensive clinical studies, the mechanism underlying this form of memory impairment remains elusive. In this study, we investigated this issue in the spared nerve injury (SNI) model of neuropathic pain, a most common form of chronic pain. We found that SNI impaired working memory and short-term memory in rats and mice. To explore the potential mechanisms, we studied synaptic transmission/plasticity in hippocampus, a brain region critically involved in memory function. We found that frequency facilitation, a presynaptic form of short-term plasticity, and long-term potentiation at CA3–CA1 synapses were impaired after SNI. Structurally, density of presynaptic boutons in hippocampal CA1 synapses was reduced significantly. At the molecular level, we found that tumor necrosis factor-α (TNF-α) increased in cerebrospinal fluid, in hippocampal tissue and in plasma after SNI. Intracerebroventricular or intrahippocampal injection of recombinant rat TNF mimicked the effects of SNI in naive rats, whereas inhibition of TNF-α or genetic deletion of TNF receptor 1 prevented both memory deficits and synaptic dysfunction induced by SNI. As TNF-α is critical for development of neuropathic pain, we suggested that the over-production of TNF-α following peripheral nerve injury might lead to neuropathic pain and memory deficits, simultaneously. PMID:21289602

  7. Non-Dependent Stimulant Users of Cocaine and Prescription Amphetamines Show Verbal Learning and Memory Deficits

    PubMed Central

    Reske, Martina; Eidt, Carolyn A.; Delis, Dean C.; Paulus, Martin P.

    2010-01-01

    Background Stimulants are used increasingly to enhance social (cocaine) or cognitive performance (stimulants normally prescribed, prescription stimulants, e.g. methylphenidate, amphetamines). Chronic use, on the other hand, has been associated with significant verbal memory and learning deficits. This study sought to determine whether subtle learning and memory problems characterize individuals who exhibit occasional but not chronic use of stimulants. Methods 154 young (age 18–25) occasional, non-dependent stimulant users and 48 stimulant naïve comparison subjects performed the California Verbal Learning test (CVLT-II). Lifetime uses of stimulants and co-use of marijuana were considered in correlation and median split analyses. Results Compared to stimulant naïve subjects, occasional stimulant users showed significant performance deficits, most pronounced in the verbal recall and recognition domains. Lifetime uses of stimulants and marijuana did not affect CVLT-II performance. The type of stimulant used, however, was of major relevance: users of cocaine only were less impaired, while cumulative use of prescription stimulants was associated with impaired verbal learning and memory capacities. Conclusions These results support the hypothesis of subtle and possibly pre-existing neurocognitive deficiencies in occasional users of stimulants, which may be related to the motivation of using these drugs. More importantly, despite beneficial short-term effects, cumulative use, particularly of prescription amphetamines and methylphenidate, intensifies these deficits. PMID:20605137

  8. The Nature of Episodic Memory Deficits in MCI with and without Vascular Burden

    ERIC Educational Resources Information Center

    Villeneuve, Sylvia; Massoud, Fadi; Bocti, Christian; Gauthier, Serge; Belleville, Sylvie

    2011-01-01

    This study measured episodic memory deficits in individuals with mild cognitive impairment (MCI) as a function of their vascular burden. Vascular burden was determined clinically by computing the number of vascular risk factors and diseases and neuroradiologically by assessing the presence and severity of white matter lesions (WML). Strategic…

  9. Training of attention and memory deficits in children with acquired brain injury.

    PubMed

    Sjö, N Madsen; Spellerberg, S; Weidner, S; Kihlgren, M

    2010-02-01

    This pilot study concerns cognitive rehabilitation of children with acquired brain injury (ABI). The aim is threefold; to determine (1) whether the Amsterdam Memory and Attention Training for Children (AMAT-C) programme for children with ABI can be integrated in the child's school, (2) whether supervision in the school-setting maintains the child's motivation throughout the training programme and (3) whether positive changes in memory, attention and executive functions are found with this implementation of the training method. Seven children with memory and/or attention deficits after ABI were trained with AMAT-C. Measures used were programme evaluation questions, neuropsychological tests and a questionnaire concerning executive functions. Overall, children, parents and trainers were satisfied with the programme and the children were motivated throughout the programme. The children showed significant improvements in neuropsychological subtests, primarily in tests of learning and memory. No overall change in executive functions was noted. Provision of AMAT-C training and supervision at the child's school appears to ensure (1) satisfaction with the programme, (2) sustaining of motivation and (3) improvements in learning and memory.

  10. Tests of the DRYAD theory of the age-related deficit in memory for context: not about context, and not about aging.

    PubMed

    Benjamin, Aaron S; Diaz, Michael; Matzen, Laura E; Johnson, Benjamin

    2012-06-01

    Older adults exhibit a disproportionate deficit in their ability to recover contextual elements or source information about prior encounters with stimuli. A recent theoretical account, DRYAD, attributes this selective deficit to a global decrease in memory fidelity with age, moderated by weak representation of contextual information. The predictions of DRYAD are tested here in three experiments. We show that an age-related deficit obtains for whichever aspect of the stimulus subjects' attention is directed away from during encoding (Experiment 1), suggesting a central role for attention in producing the age-related deficit in context. We also show that an analogous deficit can be elicited within young subjects with a manipulation of study time (Experiment 2), suggesting that any means of reducing memory fidelity yields an interaction of the same form as the age-related effect. Experiment 3 evaluates the critical prediction of DRYAD that endorsement probability in an exclusion task should vary nonmonotonically with memory strength. This prediction was confirmed by assessing the shape of the forgetting function in a continuous exclusion task. The results are consistent with the DRYAD account of aging and memory judgments and do not support the widely held view that aging entails the selective disruption of processes involved in encoding, storing, or retrieving contextual information. PsycINFO Database Record (c) 2012 APA, all rights reserved

  11. Transiently increasing cAMP levels selectively in hippocampal excitatory neurons during sleep deprivation prevents memory deficits caused by sleep loss.

    PubMed

    Havekes, Robbert; Bruinenberg, Vibeke M; Tudor, Jennifer C; Ferri, Sarah L; Baumann, Arnd; Meerlo, Peter; Abel, Ted

    2014-11-19

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object-location task. Five hours of total sleep deprivation directly following training impaired the formation of object-location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. Copyright © 2014 the authors 0270-6474/14/3415715-07$15.00/0.

  12. Hippocampal place cell and inhibitory neuron activity in disrupted-in-schizophrenia-1 mutant mice: implications for working memory deficits

    PubMed Central

    Mesbah-Oskui, Lia; Georgiou, John; Roder, John C

    2015-01-01

    Background: Despite the prevalence of working memory deficits in schizophrenia, the neuronal mechanisms mediating these deficits are not fully understood. Importantly, deficits in spatial working memory are identified in numerous mouse models that exhibit schizophrenia-like endophenotypes. The hippocampus is one of the major brain regions that actively encodes spatial location, possessing pyramidal neurons, commonly referred to as ‘place cells’, that fire in a location-specific manner. This study tests the hypothesis that mice with a schizophrenia-like endophenotype exhibit impaired encoding of spatial location in the hippocampus. Aims: To characterize hippocampal place cell activity in mice that exhibit a schizophrenia-like endophenotype. Methods: We recorded CA1 place cell activity in six control mice and six mice that carry a point mutation in the disrupted-in-schizophrenia-1 gene (Disc1-L100P) and have previously been shown to exhibit deficits in spatial working memory. Results: The spatial specificity and stability of Disc1-L100P place cells were similar to wild-type place cells. Importantly, however, Disc1-L100P place cells exhibited a higher propensity to increase their firing rate in a single, large location of the environment, rather than multiple smaller locations, indicating a generalization in their spatial selectivity. Alterations in the signaling and numbers of CA1 putative inhibitory interneurons and decreased hippocampal theta (5–12 Hz) power were also identified in the Disc1-L100P mice. Conclusions: The generalized spatial selectivity of Disc1-L100P place cells suggests a simplification of the ensemble place codes that encode individual locations and subserve spatial working memory. Moreover, these results suggest that deficient working memory in schizophrenia results from an impaired ability to uniquely code the individual components of a memory sequence. PMID:27280123

  13. Polygalae Radix Extract Prevents Axonal Degeneration and Memory Deficits in a Transgenic Mouse Model of Alzheimer’s Disease

    PubMed Central

    Kuboyama, Tomoharu; Hirotsu, Keisuke; Arai, Tetsuya; Yamasaki, Hiroo; Tohda, Chihiro

    2017-01-01

    Memory impairments in Alzheimer’s disease (AD) occur due to degenerated axons and disrupted neural networks. Since only limited recovery is possible after the destruction of neural networks, preventing axonal degeneration during the early stages of disease progression is necessary to prevent AD. Polygalae Radix (roots of Polygala tenuifolia; PR) is a traditional herbal medicine used for sedation and amnesia. In this study, we aimed to clarify and analyze the preventive effects of PR against memory deficits in a transgenic AD mouse model, 5XFAD. 5XFAD mice demonstrated memory deficits at the age of 5 months. Thus, the water extract of Polygalae Radix (PR extract) was orally administered to 4-month-old 5XFAD mice that did not show signs of memory impairment. After consecutive administrations for 56 days, the PR extract prevented cognitive deficit and axon degeneration associated with the accumulation of amyloid β (Aβ) plaques in the perirhinal cortex of the 5XFAD mice. PR extract did not influence the formation of Aβ plaques in the brain of the 5XFAD mice. In cultured neurons, the PR extract prevented axonal growth cone collapse and axonal atrophy induced by Aβ. Additionally, it prevented Aβ-induced endocytosis at the growth cone of cultured neurons. Our previous study reported that endocytosis inhibition was enough to prevent Aβ-induced growth cone collapse, axonal degeneration, and memory impairments. Therefore, the PR extract possibly prevented axonal degeneration and memory impairment by inhibiting endocytosis. PR is the first preventive drug candidate for AD that inhibits endocytosis in neurons. PMID:29184495

  14. [Formula: see text]Differences in memory functioning between children with attention-deficit/hyperactivity disorder and/or focal epilepsy.

    PubMed

    Lee, Sylvia E; Kibby, Michelle Y; Cohen, Morris J; Stanford, Lisa; Park, Yong; Strickland, Suzanne

    2016-01-01

    Prior research has shown that attention-deficit/hyperactivity disorder (ADHD) and epilepsy are frequently comorbid and that both disorders are associated with various attention and memory problems. Nonetheless, limited research has been conducted comparing the two disorders in one sample to determine unique versus shared deficits. Hence, we investigated differences in working memory (WM) and short-term and delayed recall between children with ADHD, focal epilepsy of mixed foci, comorbid ADHD/epilepsy and controls. Participants were compared on the Core subtests and the Picture Locations subtest of the Children's Memory Scale (CMS). Results indicated that children with ADHD displayed intact verbal WM and long-term memory (LTM), as well as intact performance on most aspects of short-term memory (STM). They performed worse than controls on Numbers Forward and Picture Locations, suggesting problems with focused attention and simple span for visual-spatial material. Conversely, children with epilepsy displayed poor focused attention and STM regardless of the modality assessed, which affected encoding into LTM. The only loss over time was found for passages (Stories). WM was intact. Children with comorbid ADHD/epilepsy displayed focused attention and STM/LTM problems consistent with both disorders, having the lowest scores across the four groups. Hence, focused attention and visual-spatial span appear to be affected in both disorders, whereas additional STM/encoding problems are specific to epilepsy. Children with comorbid ADHD/epilepsy have deficits consistent with both disorders, with slight additive effects. This study suggests that attention and memory testing should be a regular part of the evaluation of children with epilepsy and ADHD.

  15. Interleukin-1β overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents.

    PubMed

    Gui, Wen-Shan; Wei, Xiao; Mai, Chun-Lin; Murugan, Madhuvika; Wu, Long-Jun; Xin, Wen-Jun; Zhou, Li-Jun; Liu, Xian-Guo

    2016-01-01

    Chronic pain is often accompanied by short-term memory deficit and depression. Currently, it is believed that short-term memory deficit and depression are consequences of chronic pain. Here, we test the hypothesis that the symptoms might be caused by overproduction of interleukin-1beta (IL-1β) in the injured nerve independent of neuropathic pain following spared nerve injury in rats and mice. Mechanical allodynia, a behavioral sign of neuropathic pain, was not correlated with short-term memory deficit and depressive behavior in spared nerve injury rats. Spared nerve injury upregulated IL-1β in the injured sciatic nerve, plasma, and the regions in central nervous system closely associated with pain, memory and emotion, including spinal dorsal horn, hippocampus, prefrontal cortex, nucleus accumbens, and amygdala. Importantly, the spared nerve injury-induced memory deficits, depressive, and pain behaviors were substantially prevented by peri-sciatic administration of IL-1β neutralizing antibody in rats or deletion of IL-1 receptor type 1 in mice. Furthermore, the behavioral abnormalities induced by spared nerve injury were mimicked in naïve rats by repetitive intravenous injection of re combinant rat IL-1β (rrIL-1β) at a pathological concentration as determined from spared nerve injury rats. In addition, microglia were activated by both spared nerve injury and intravenous injection of rrIL-1β and the effect of spared nerve injury was substantially reversed by peri-sciatic administration of anti-IL-1β. Neuropathic pain was not necessary for the development of cognitive and emotional disorders, while the overproduction of IL-1β in the injured sciatic nerve following peripheral nerve injury may be a common mechanism underlying the generation of neuropathic pain, memory deficit, and depression. © The Author(s) 2016.

  16. Olfactory discrimination and memory deficits in the Flinders Sensitive Line rodent model of depression.

    PubMed

    Cook, A; Pfeiffer, L-M; Thiele, S; Coenen, V A; Döbrössy, M D

    2017-10-01

    Major Depressive Disorder (MDD) is a heterogeneous psychiatric disorder with broad symptomatic manifestations. The current study examined, for the first time, olfactory memory and discrimination in the Flinders Sensitive Line (FSL) rodent model of depression. Male FSL rats and controls were trained on an Olfactory Discrimination (OD) and a Social Interaction (SI) test. On the OD test, the FSL and controls performed similarly at the shortest inter-trial interval (5min), however, with extended delay of 30min, the FSLs had a recall and odour discrimination deficit. At the longest delay (60min) both groups performed poorly. The FSL rats i.) had a deficit in olfactory discrimination suggesting impairment in olfactory memory and recall; ii.) were less likely to socialize with unfamiliar rats. The data suggests that FSL animals have an impaired olfactory information processing capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Self-initiated encoding facilitates object working memory in schizophrenia: implications for the etiology of working memory deficit.

    PubMed

    Kim, Jejoong; Park, Sohee; Shin, Yong-Wook; Jin Lee, Kyung; Kwon, Jun Soo

    2006-02-15

    Working memory (WM) deficit is present in a majority of patients with schizophrenia but it is unclear which components of WM are impaired. Past studies suggest that encoding may be compromised. One important determinant of encoding is the deployment of selective attention to the target stimulus. In addition, attention and encoding are modulated by motivational factors. In this study, we investigated the effects of self-initiated encoding (i.e., voluntary attention) on WM. 19 patients with schizophrenia and 19 matched control subjects participated in visual WM and control tasks. Encoding was manipulated by asking subjects to select from two face targets and memorize 1) one of the two identical faces (Non-preference condition), 2) one that is marked (Non-choice condition), and 3) one they prefer (Preference condition). WM accuracy for both location (spatial) and identity (object) was measured. Overall, patients with schizophrenia were less accurate and slower than the control subjects but the deficit was greater for object WM. However, patients were more accurate in object WM when they selected a preferred face as their target during encoding (preference condition) compared with the other two conditions. This effect was not significant for spatial WM. These results suggest that voluntary, self-initiated attention may facilitate object encoding especially if the selection of the target involves affective choice, and that attention may play different roles in encoding 'what' versus 'where' in WM. Since encoding affects all forms of memory, these results may have a more general implication for memory.

  18. The influence of the hippocampus and declarative memory on word use: Patients with amnesia use less imageable words

    PubMed Central

    Hilverman, Caitlin; Cook, Susan Wagner; Duff, Melissa C.

    2018-01-01

    Hippocampal functioning contributes to our ability to generate multifaceted, imagistic event representations. Patients with hippocampal damage produce event narratives that contain fewer details and fewer imagistic features. We hypothesized that impoverished memory representations would influence language at the word level, yielding words lower in imageability and concreteness. We tested this by examining language produced by patients with bilateral hippocampal damage and severe declarative memory impairment, and brain-damaged and healthy comparison groups. Participants described events from the real past, imagined past, imagined present, and imagined future. We analyzed the imageability and concreteness of words used. Patients with amnesia used words that were less imageable than those of comparison groups across time periods, even when accounting for the amount of episodic detail in narratives. Moreover, all participants used words that were relatively more imageable when discussing real past events than other time periods. Taken together, these findings suggest that the memory that we have for an event affects how we talk about that event, and this extends all the way to the individual words that we use. PMID:28970108

  19. Protective effect of ascorbic acid and Ginkgo biloba against learning and memory deficits caused by fluoride.

    PubMed

    Jetti, Raghu; Raghuveer, C V; Mallikarjuna, Rao C

    2016-01-01

    Fluoride is present in the ground water, World Health Organization permitted level of fluoride in the ground water is 0.5 ppm. Tooth pastes, mouth washes, tea and sea fish are the sources of fluoride. Exposure to these multiple sources results in several adverse effects in addition to the fluorosis. The present study aimed to test the effect of vitamin C and Ginkgo biloba against the behavioural deficits caused by fluoride. Rats were divided into five groups with six animals in each group (n = 6). Control group received ordinary tap water with 0.5 ppm of fluoride, the remaining groups received 100 ppm of fluoride for 30 days prior to fluoride exposure. Two groups of animals received 100 mg/kg body weight of vitamin C and G. biloba for 15 days prior to fluoride exposure. After 45 days, behavioural studies (T-Maze, passive avoidance) were conducted on the experimental animals. The results of the present study showed no behavioural deficits in the control group of animals however, the rats that received fluoride water exhibited impairment in their spatial learning and memory deficits. The deficits are not marked in the vitamin C and G. biloba groups. To conclude chronic exposure to high levels of fluoride causes severe impairment in the spatial learning and memory, these deficits can be ameliorated with the vitamin C and G. biloba. © The Author(s) 2013.

  20. Autobiographical and episodic memory deficits in mild traumatic brain injury.

    PubMed

    Wammes, Jeffrey D; Good, Tyler J; Fernandes, Myra A

    2017-02-01

    Those who have suffered a concussion, otherwise known as a mild traumatic brain injury (mTBI), often complain of lingering memory problems. However, there is little evidence in the behavioral literature reliably demonstrating memory deficits. Thus, in the present study, cognitive profiles including measures of general executive functioning and processing speed, as well as episodic and semantic memory were collected in younger and older adult participants with or without a remote (>1year prior to testing) mTBI. We first investigated whether there were observable episodic and autobiographical memory impairments associated with mTBI within an otherwise healthy young group. Next, because previous work had demonstrated some overlap in patterns of behavioral impairment in normally aging adults and younger adults with a history of mTBI (e.g. Ozen, Fernandes, Clark, & Roy, 2015), we sought to determine whether these groups displayed similar cognitive profiles. Lastly, we conducted an exploratory analysis to test whether having suffered an mTBI might exacerbate age-related cognitive decline. Results showed the expected age-related decline in episodic memory performance, coupled with a relative preservation of semantic memory in older adults. Importantly, this pattern was also present in younger adults with a history of remote mTBI. No differences were observed across older adult groups based on mTBI status. Logistic regression analyses, using each measure in our battery as a predictor, successfully classified mTBI status in younger participants with a high degree of specificity (79.5%). These results indicate that those who have had an mTBI demonstrate a distinct cognitive signature, characterized by impairment in episodic and autobiographical memory, coupled with a relative preservation of semantic memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Prefrontal cortical volume loss is associated with stress-related deficits in verbal learning and memory in HIV-infected women.

    PubMed

    Rubin, Leah H; Meyer, Vanessa J; J Conant, Rhoda; Sundermann, Erin E; Wu, Minjie; Weber, Kathleen M; Cohen, Mardge H; Little, Deborah M; Maki, Pauline M

    2016-08-01

    Deficits in verbal learning and memory are a prominent feature of neurocognitive function in HIV-infected women, and are associated with high levels of perceived stress. To understand the neurobiological factors contributing to this stress-related memory impairment, we examined the association between stress, verbal memory, and brain volumes in HIV-infected women. Participants included 38 HIV-infected women (Mean age=43.9years) from the Chicago Consortium of the Women's Interagency HIV Study (WIHS). Participants underwent structural magnetic resonance imaging (MRI) and completed standardized measures of verbal learning and memory and stress (Perceived Stress Scale-10; PSS-10). Brain volumes were evaluated in a priori regions of interest, including the medial temporal lobe (MTL) and prefrontal cortex (PFC). Compared to HIV-infected women with lower stress (PSS-10 scores in lower two tertiles), HIV-infected women with higher stress (scores in the top tertile), performed worse on measures of verbal learning and memory and showed smaller volumes bilaterally in the parahippocampal gyrus, superior frontal gyrus, middle frontal gyrus, and inferior frontal gyrus (p's<0.05). Reduced volumes in the inferior frontal gyrus, middle frontal gyrus, and superior frontal gyrus (all right hemisphere) were negatively associated with verbal learning and memory performance. Prefrontal cortical atrophy is associated with stress-related deficits in verbal learning and memory in HIV-infected women. The time course of these volume losses in relation to memory deficits has yet to be elucidated, but the magnitude of the volumetric differences between women with higher versus lower stress suggests a prolonged vulnerability due to chronic stress and/or early life trauma. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Comparative studies using the Morris water maze to assess spatial memory deficits in two transgenic mouse models of Alzheimer's disease.

    PubMed

    Edwards, Stephen R; Hamlin, Adam S; Marks, Nicola; Coulson, Elizabeth J; Smith, Maree T

    2014-10-01

    Evaluation of the efficacy of novel therapeutics for potential treatment of Alzheimer's disease (AD) requires an animal model that develops age-related cognitive deficits reproducibly between independent groups of investigators. Herein we assessed comparative temporal changes in spatial memory function in two commercially available transgenic mouse models of AD using the Morris water maze (MWM), incorporating both visible and hidden platform training. Individual cohorts of cDNA-based 'line 85'-derived double-transgenic mice coexpressing the 'Swedish' mutation of amyloid precursor protein (APPSwe) and the presenillin 1 (PS1) 'dE9' mutation were assessed in the MWM at mean ages of 3.6, 9.3 and 14.8 months. We found significant deficits in spatial memory retention in APPSwe/PS1dE9 mice aged 3.6 months and robust deficits in spatial memory acquisition and retention in APPSwe/PS1dE9 mice aged 9.3 months, with a further significant decline by age 14.8 months. β-Amyloid deposits were present in brain sections by 7.25 months of age. In contrast, MWM studies with individual cohorts (aged 4-21 months) of single-transgenic genomic-based APPSwe mice expressing APPSwe on a yeast artificial chromosomal (YAC) construct showed no significant deficits in spatial memory acquisition until 21 months of age. There were no significant deficits in spatial memory retention up to 21 months of age and β-amyloid deposits were not present in brain sections up to 24 months of age. These data, generated using comprehensive study designs, show that APPSwe/PS1dE9 but not APPSwe YAC mice appear to provide a suitably robust model of AD for efficacy assessment of novel AD treatments in development. © 2014 Wiley Publishing Asia Pty Ltd.

  3. Working memory arrest in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder: results from a 2-year longitudinal study.

    PubMed

    Andersen, Per N; Skogli, Erik W; Hovik, Kjell T; Geurts, Hilde; Egeland, Jens; Øie, Merete

    2015-05-01

    The aim of this study was to analyse the development of verbal working memory in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder and typically developing children. A total of 34 children with high-functioning autism, 72 children with attention-deficit/hyperactivity disorder and 45 typically developing children (age 9-16 years) were included at baseline and followed up approximately 25 months later. The children were given a letter/number sequencing task to assess verbal working memory. The performance of children with high-functioning autism on verbal working memory did not improve after 2 years, while improvement was observed in children with attention-deficit/hyperactivity disorder and typically developing children. The results indicate a different developmental trajectory for verbal working memory in children with high-functioning autism compared to children with attention-deficit/hyperactivity disorder and typically developing children. More research is needed to construct a developmental framework more suitable for children with autism spectrum disorder. © The Author(s) 2014.

  4. Impact of emotional salience on episodic memory in attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study.

    PubMed

    Krauel, Kerstin; Duzel, Emrah; Hinrichs, Hermann; Santel, Stephanie; Rellum, Thomas; Baving, Lioba

    2007-06-15

    Patients with attention-deficit/hyperactivity disorder (ADHD) show episodic memory deficits especially in complex memory tasks. We investigated the neural correlates of memory formation in ADHD and their modulation by stimulus salience. We recorded event-related functional magnetic resonance imaging during an episodic memory paradigm with neutral and emotional pictures in 12 male ADHD subjects and 12 healthy adolescents. Emotional salience did significantly augment memory performance in ADHD patients. Successful encoding of neutral pictures was associated with activation of the anterior cingulate cortex (ACC) in healthy adolescents but with activation of the superior parietal lobe (SPL) and precuneus in ADHD patients. Successful encoding of emotional pictures was associated with prefrontal and inferior temporal cortex activation in both groups. Healthy adolescents, moreover, showed deactivation in the inferior parietal lobe. From a pathophysiological point of view, the most striking functional differences between healthy adolescents and ADHD patients were in the ACC and SPL. We suggest that increased SPL activation in ADHD reflected attentional compensation for low ACC activation during the encoding of neutral pictures. The higher salience of emotional stimuli, in contrast, regulated the interplay between ACC and SPL in conjunction with improving memory to the level of healthy adolescents.

  5. D-Serine rescues the deficits of hippocampal long-term potentiation and learning and memory induced by sodium fluoroacetate.

    PubMed

    Han, Huili; Peng, Yan; Dong, Zhifang

    2015-06-01

    It is well known that bidirectional glia-neuron interactions play important roles in the neurophysiological and neuropathological processes. It is reported that impairing glial functions with sodium fluoroacetate (FAC) impaired hippocampal long-term depression (LTD) and spatial memory retrieval. However, it remains unknown whether FAC impairs hippocampal long-term potentiation (LTP) and learning and/or memory, and if so, whether pharmacological treatment with exogenous d-serine can recuse the impairment. Here, we reported that systemic administration of FAC (3mg/kg, i.p.) before training resulted in dramatic impairments of spatial learning and memory in water maze and fear memory in contextual fear conditioning. Furthermore, the behavioral deficits were accompanied by impaired LTP induction in the hippocampal CA1 area of brain slices. More importantly, exogenous d-serine treatment succeeded in recusing the deficits of hippocampal LTP and learning and memory induced by FAC. Together, these results suggest that astrocytic d-serine may be essential for hippocampal synaptic plasticity and memory, and that alteration of its levels may be relevant to the induction and potentially treatment of psychiatric and neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Telling true from false: cannabis users show increased susceptibility to false memories.

    PubMed

    Riba, J; Valle, M; Sampedro, F; Rodríguez-Pujadas, A; Martínez-Horta, S; Kulisevsky, J; Rodríguez-Fornells, A

    2015-06-01

    Previous studies on the neurocognitive impact of cannabis use have found working and declarative memory deficits that tend to normalize with abstinence. An unexplored aspect of cognitive function in chronic cannabis users is the ability to distinguish between veridical and illusory memories, a crucial aspect of reality monitoring that relies on adequate memory function and cognitive control. Using functional magnetic resonance imaging, we show that abstinent cannabis users have an increased susceptibility to false memories, failing to identify lure stimuli as events that never occurred. In addition to impaired performance, cannabis users display reduced activation in areas associated with memory processing within the lateral and medial temporal lobe (MTL), and in parietal and frontal brain regions involved in attention and performance monitoring. Furthermore, cannabis consumption was inversely correlated with MTL activity, suggesting that the drug is especially detrimental to the episodic aspects of memory. These findings indicate that cannabis users have an increased susceptibility to memory distortions even when abstinent and drug-free, suggesting a long-lasting compromise of memory and cognitive control mechanisms involved in reality monitoring.

  7. Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit.

    PubMed

    Takeda, Atsushi; Takada, Shunsuke; Nakamura, Masatoshi; Suzuki, Miki; Tamano, Haruna; Ando, Masaki; Oku, Naoto

    2011-01-01

    The translocation of synaptic Zn(2+) to the cytosolic compartment has been studied to understand Zn(2+) neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn(2+) in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn(2+) in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn(2+) delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn(2+) levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl(2) into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn(2+) in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn(2+) and/or the preferential vulnerability to Zn(2+) in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn(2+) in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn(2+). The present study indicates that the transient increase in cytosolic Zn(2+) in CA1 pyramidal neurons reversibly impairs object recognition memory.

  8. Transient Increase in Zn2+ in Hippocampal CA1 Pyramidal Neurons Causes Reversible Memory Deficit

    PubMed Central

    Takeda, Atsushi; Takada, Shunsuke; Nakamura, Masatoshi; Suzuki, Miki; Tamano, Haruna; Ando, Masaki; Oku, Naoto

    2011-01-01

    The translocation of synaptic Zn2+ to the cytosolic compartment has been studied to understand Zn2+ neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn2+ in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn2+ in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn2+ delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn2+ levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl2 into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn2+ in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn2+ and/or the preferential vulnerability to Zn2+ in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn2+ in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn2+. The present study indicates that the transient increase in cytosolic Zn2+ in CA1 pyramidal neurons reversibly impairs object recognition memory. PMID:22163318

  9. Weight Rich-Club Analysis in the White Matter Network of Late-Life Depression with Memory Deficits

    PubMed Central

    Mai, Naikeng; Zhong, Xiaomei; Chen, Ben; Peng, Qi; Wu, Zhangying; Zhang, Weiru; Ouyang, Cong; Ning, Yuping

    2017-01-01

    Patients with late-life depression (LLD) have a higher incident of developing dementia, especially individuals with memory deficits. However, little is known about the white matter characteristics of LLD with memory deficits (LLD-MD) in the human connectome, especially for the rich-club coefficient, which is an indicator that describes the organization pattern of hub in the network. To address this question, diffusion tensor imaging of 69 participants [15 LLD-MD patients; 24 patients with LLD with intact memory (LLD-IM); and 30 healthy controls (HC)] was applied to construct a brain network for each individual. A full-scale battery of neuropsychological tests were used for grouping, and evaluating executive function, processing speed and memory. Rich-club analysis and global network properties were utilized to describe the topological features in each group. Network-based statistics (NBS) were calculated to identify the impaired subnetwork in the LLD-MD group relative to that in the LLD-IM group. We found that compared with HC participants, patients with LLD (LLD-MD and LLD-IM) had relatively impaired rich-club organizations and rich-club connectivity. In addition, LLD-MD group exhibited lower feeder and local connective average strength than LLD-IM group. Furthermore, global network properties, such as the shortest path length, connective strength, efficiency and fault tolerant efficiency, were significantly decreased in the LLD-MD group relative to those in the LLD-IM and HC groups. According to NBS analysis, a subnetwork, including right cognitive control network (CCN) and corticostriatal circuits, were disrupted in LLD-MD patients. In conclusion, the disease effects of LLD were prevalent in rich-club organization. Feeder and local connections, especially in the subnetwork including right CCN and corticostriatal circuits, were further impaired in those with memory deficits. Global network properties were disrupted in LLD-MD patients relative to those in LLD

  10. Weight Rich-Club Analysis in the White Matter Network of Late-Life Depression with Memory Deficits.

    PubMed

    Mai, Naikeng; Zhong, Xiaomei; Chen, Ben; Peng, Qi; Wu, Zhangying; Zhang, Weiru; Ouyang, Cong; Ning, Yuping

    2017-01-01

    Patients with late-life depression (LLD) have a higher incident of developing dementia, especially individuals with memory deficits. However, little is known about the white matter characteristics of LLD with memory deficits (LLD-MD) in the human connectome, especially for the rich-club coefficient, which is an indicator that describes the organization pattern of hub in the network. To address this question, diffusion tensor imaging of 69 participants [15 LLD-MD patients; 24 patients with LLD with intact memory (LLD-IM); and 30 healthy controls (HC)] was applied to construct a brain network for each individual. A full-scale battery of neuropsychological tests were used for grouping, and evaluating executive function, processing speed and memory. Rich-club analysis and global network properties were utilized to describe the topological features in each group. Network-based statistics (NBS) were calculated to identify the impaired subnetwork in the LLD-MD group relative to that in the LLD-IM group. We found that compared with HC participants, patients with LLD (LLD-MD and LLD-IM) had relatively impaired rich-club organizations and rich-club connectivity. In addition, LLD-MD group exhibited lower feeder and local connective average strength than LLD-IM group. Furthermore, global network properties, such as the shortest path length, connective strength, efficiency and fault tolerant efficiency, were significantly decreased in the LLD-MD group relative to those in the LLD-IM and HC groups. According to NBS analysis, a subnetwork, including right cognitive control network (CCN) and corticostriatal circuits, were disrupted in LLD-MD patients. In conclusion, the disease effects of LLD were prevalent in rich-club organization. Feeder and local connections, especially in the subnetwork including right CCN and corticostriatal circuits, were further impaired in those with memory deficits. Global network properties were disrupted in LLD-MD patients relative to those in LLD

  11. Impaired cue identification and intention retrieval underlie prospective memory deficits in patients with first-episode schizophrenia.

    PubMed

    Liu, Dengtang; Ji, Chengfeng; Zhuo, Kaiming; Song, Zhenhua; Wang, Yingchan; Mei, Li; Zhu, Dianming; Xiang, Qiong; Chen, Tianyi; Yang, Zhilei; Zhu, Guang; Wang, Ya; Cheung, Eric Fc; Xiang, Yu-Tao; Fan, Xiaoduo; Chan, Raymond Ck; Xu, Yifeng; Jiang, Kaida

    2017-03-01

    Schizophrenia is associated with impairment in prospective memory, the ability to remember to carry out an intended action in the future. It has been established that cue identification (detection of the cue event signaling that an intended action should be performed) and intention retrieval (retrieval of an intention from long-term memory following the recognition of a prospective cue) are two important processes underlying prospective memory. The purpose of this study was to examine prospective memory deficit and underlying cognitive processes in patients with first-episode schizophrenia. This study examined cue identification and intention retrieval components of event-based prospective memory using a dual-task paradigm in 30 patients with first-episode schizophrenia and 30 healthy controls. All participants were also administered a set of tests assessing working memory and retrospective memory. Both cue identification and intention retrieval were impaired in patients with first-episode schizophrenia compared with healthy controls ( ps < 0.05), with a large effect size for cue identification (Cohen's d = 0.98) and a medium effect size for intention retrieval (Cohen's d = 0.62). After controlling for working memory and retrospective memory, the difference in cue identification between patients and healthy controls remained significant. However, the difference in intention retrieval between the two groups was no longer significant. In addition, there was a significant inverse relationship between cue identification and negative symptoms ( r = -0.446, p = 0.013) in the patient group. These findings suggest that both cue identification and intention retrieval in event-based prospective memory are impaired in patients with first-episode schizophrenia. Cue identification and intention retrieval could be potentially used as biomarkers for early detection and treatment prognosis of schizophrenia. In addition, addressing cue identification deficit

  12. Free and Cued Recall Memory Performance in Children with Attention Deficit-Hyperactivity Disorder.

    ERIC Educational Resources Information Center

    Hager, Lisa D.

    This study investigated the effects of organization at input and cued retrieval on the free- and cued-recall memory performance of children (all male and between the ages of 8 and 12) with and without attention deficit/hyperactivity disorder (ADHD). Children with ADHD (N=20) recalled significantly fewer words/pictures than children without ADHD…

  13. Working memory impairment in probands with schizoaffective disorder and first degree relatives of schizophrenia probands extend beyond deficits predicted by generalized neuropsychological impairment.

    PubMed

    Kristian Hill, S; Buchholz, Alison; Amsbaugh, Hayley; Reilly, James L; Rubin, Leah H; Gold, James M; Keefe, Richard S E; Pearlson, Godfrey D; Keshavan, Matcheri S; Tamminga, Carol A; Sweeney, John A

    2015-08-01

    Working memory impairment is well established in psychotic disorders. However, the relative magnitude, diagnostic specificity, familiality pattern, and degree of independence from generalized cognitive deficits across psychotic disorders remain unclear. Participants from the Bipolar and Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study included probands with schizophrenia (N=289), psychotic bipolar disorder (N=227), schizoaffective disorder (N=165), their first-degree relatives (N=315, N=259, N=193, respectively), and healthy controls (N=289). All were administered the WMS-III Spatial Span working memory test and the Brief Assessment of Cognition in Schizophrenia (BACS) battery. All proband groups displayed significant deficits for both forward and backward span compared to controls. However, after covarying for generalized cognitive impairments (BACS composite), all proband groups showed a 74% or greater effect size reduction with only schizoaffective probands showing residual backward span deficits compared to controls. Significant familiality was seen in schizophrenia and bipolar pedigrees. In relatives, both forward and backward span deficits were again attenuated after covarying BACS scores and residual backward span deficits were seen in relatives of schizophrenia patients. Overall, both probands and relatives showed a similar pattern of robust working memory deficits that were largely attenuated when controlling for generalized cognitive deficits. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Insulin potentiates the therapeutic effect of memantine against central STZ-induced spatial learning and memory deficit.

    PubMed

    Bahramian, Abbas; Rastegar, Karim; Namavar, Mohammad Reza; Moosavi, Maryam

    2016-09-15

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Memantine has been approved for moderate to severe AD, but evidence indicates that it does not modify disease progression. Recently insulin has been found to exert some beneficial effects on cognition. This study aimed to compare the protective effects of memantine and insulin in an animal model of memory deficit. It also evaluated the effects of combination therapy of these drugs. Adult male Sprague-Dawely rats approximately 8-10 weeks old were used. The canules were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3mg/kg in divided doses) and Memantine (5 or 10mg/kg/ip) or/and Insulin (3 or 6mU/icv) were started from day 4 and continued till day 13. The animal's learning and memory capability was assessed on days 14-16 using Morris water maze. On day 17 a visible platform test was done to assess the animals' visuomotor ability. After completion of behavioral studies the brain sections were stained with hematoxylin and eosin for routine histological evaluation. The results show that memantine in doses 5 and 10mg/kg improved memory at day 3 of training and memantine 5mg/kg was more potent than memantine 10mg/kg. Insulin in dose 3mU, but not 6 mU, reversed STZ-induced memory deficit from day 2 of training. When insulin was added to memantine, it increased the potency of memantine 5mg/kg in preventing a memory deficit, but surprisingly was not successful in impeding STZ-induced amnesia, in combination with memantine 10mg/kg. This research work revealed that insulin act more efficiently than memantine in reversing STZ-induced memory impairment. Additionally combination of insulin and memantine seems to act better than memantine alone, providing that a dose adjustment has been done. This study suggests considering the combination therapy of memantine and insulin in dementia and AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fluoxetine prevents the memory deficits and reduction in hippocampal cell proliferation caused by valproic acid.

    PubMed

    Welbat, Jariya Umka; Sangrich, Preeyanuch; Sirichoat, Apiwat; Chaisawang, Pornthip; Chaijaroonkhanarak, Wunnee; Prachaney, Parichat; Pannangrong, Wanassanun; Wigmore, Peter

    2016-12-01

    Valproic acid (VPA), a commonly used antiepileptic drug, has been reported to cause cognitive impairments in patients. In a previous study, using a rodent model, we showed that VPA treatment impaired cognition which was associated with a reduction in the cell proliferation required for hippocampal neurogenesis. The antidepressant fluoxetine has been shown to increase hippocampal neurogenesis and to reverse the memory deficits found in a number of pathological conditions. In the present study we investigated the protective effects of fluoxetine treatment against the impairments in memory and hippocampal cell proliferation produced by VPA. Male Sprague Dawley rats received daily treatment with fluoxetine (10mg/kg) by oral gavage for 21days. Some rats were co-administered with VPA (300mg/kg, twice daily i.p. injections) for 14days from day 8 to day 21 of the fluoxetine treatment. Spatial memory was tested using the novel object location (NOL) test. The number of proliferating cells present in the sub granular zone of the dentate gyrus was quantified using Ki67 immunohistochemistry at the end of the experiment. Levels of the receptor Notch1, the neurotrophic factor BDNF and the neural differentiation marker DCX were determined by Western blotting. VPA-treated rats showed memory deficits, a decrease in the number of proliferating cells in the sub granular zone and decreases in the levels of Notch1 and BDNF but not DCX compared to control animals. These changes in behavior, cell proliferation and Notch1 and BDNF were prevented in animals which had received both VPA and fluoxetine. Rats receiving fluoxetine alone did not show a significant difference in the number of proliferating cells or behavior compared to controls. These results demonstrated that the spatial memory deficits and reduction of cell proliferation produced by VPA can be ameliorated by the simultaneous administration of the antidepressant fluoxetine. Crown Copyright © 2016. Published by Elsevier B

  16. Selective deficit of spatial short-term memory: Role of storage and rehearsal mechanisms.

    PubMed

    Bonnì, Sonia; Perri, Roberta; Fadda, Lucia; Tomaiuolo, Francesco; Koch, Giacomo; Caltagirone, Carlo; Carlesimo, Giovanni Augusto

    2014-10-01

    We report the neuropsychological and MRI investigation of a patient (GP) who developed a selective impairment of spatial short-term memory (STM) following damage to the dorso-mesial areas of the right frontal lobe. We assessed in this patient spatial STM with an experimental procedure that evaluated immediate and 5-20 s delayed recall of verbal, visual and spatial stimuli. The patient scored significantly worse than normal controls on tests that required delayed recall of spatial data. This could not be ascribed to a deficit of spatial episodic long-term memory because amnesic patients performed normally on these tests. Conversely, the patient scored in the normal range on tests of immediate recall of verbal, visual and spatial data and tests of delayed recall of verbal and visual data. Comparison with a previously described patient who had a selective deficit in immediate spatial recall and an ischemic lesion that affected frontal and parietal dorso-mesial areas in the right hemisphere (Carlesimo GA, Perri R, Turriziani P, Tomaiuolo F, Caltagirone C. Remembering what but not where: independence of spatial and visual working memory in the human brain. Cortex. 2001 Sep; 37(4):519-34) suggests that the right parietal areas are involved in the short-term storage of spatial information and that the dorso-mesial regions of the right frontal underlie mechanisms for the delayed maintenance of the same data.

  17. Curcumin Improves Amyloid β-Peptide (1-42) Induced Spatial Memory Deficits through BDNF-ERK Signaling Pathway.

    PubMed

    Zhang, Lu; Fang, Yu; Xu, Yuming; Lian, Yajun; Xie, Nanchang; Wu, Tianwen; Zhang, Haifeng; Sun, Limin; Zhang, Ruifang; Wang, Zhenhua

    2015-01-01

    Curcumin, the most active component of turmeric, has various beneficial properties, such as antioxidant, anti-inflammatory, and antitumor effects. Previous studies have suggested that curcumin reduces the levels of amyloid and oxidized proteins and prevents memory deficits and thus is beneficial to patients with Alzheimer's disease (AD). However, the molecular mechanisms underlying curcumin's effect on cognitive functions are not well-understood. In the present study, we examined the working memory and spatial reference memory in rats that received a ventricular injection of amyloid-β1-42 (Aβ1-42), representing a rodent model of Alzheimer's disease (AD). The rats treated with Aβ1-42 exhibited obvious cognitive deficits in behavioral tasks. Chronic (seven consecutive days, once per day) but not acute (once a day) curcumin treatments (50, 100, and 200 mg/kg) improved the cognitive functions in a dose-dependent manner. In addition, the beneficial effect of curcumin is accompanied by increased BDNF levels and elevated levels of phosphorylated ERK in the hippocampus. Furthermore, the cognition enhancement effect of curcumin could be mimicked by the overexpression of BDNF in the hippocampus and blocked by either bilateral hippocampal injections with lentiviruses that express BDNF shRNA or a microinjection of ERK inhibitor. These findings suggest that chronic curcumin ameliorates AD-related cognitive deficits and that upregulated BDNF-ERK signaling in the hippocampus may underlie the cognitive improvement produced by curcumin.

  18. Rehabilitation of everyday memory deficits in paediatric brain injury: self-instruction and diary training.

    PubMed

    Ho, Joanna; Epps, Adrienne; Parry, Louise; Poole, Miriam; Lah, Suncica

    2011-04-01

    Memory problems that interfere with everyday living are frequently reported in children who have sustained acquired brain injury (ABI), but their nature and rehabilitation is under-researched. This study aimed to (1) determine neuropsychological correlates of everyday memory deficits in children with ABI, and (2) investigate the effectiveness of a newly developed programme for their rehabilitation. We assessed everyday memory, verbal memory, attention and behaviour in 15 children with ABI. The children attended the everyday memory rehabilitation programme: six weekly sessions that involved diary training, self-instruction training and case examples. At the onset we found that everyday memory problems were related to impaired attention and behavioural difficulties. On completion of the programme there was a significant increase in children's abilities to perform daily routines that demanded recall of information and events. In addition, children used diaries more frequently. Moreover, significant secondary gains were found in attention and mood (anxiety and depression). In conclusion, the results provided preliminary evidence that our six week programme could be effective in reducing everyday memory difficulties and improving psychological well-being in children with ABI.

  19. The origins of repetitive thought in rumination: separating cognitive style from deficits in inhibitory control over memory.

    PubMed

    Fawcett, Jonathan M; Benoit, Roland G; Gagnepain, Pierre; Salman, Amna; Bartholdy, Savani; Bradley, Caroline; Chan, Daniel K Y; Roche, Ayesha; Brewin, Chris R; Anderson, Michael C

    2015-06-01

    Rumination is a major contributor to the maintenance of affective disorders and has been linked to memory control deficits. However, ruminators often report intentionally engaging in repetitive thought due to its perceived benefits. Deliberate re-processing may lead to the appearance of a memory control deficit that is better explained as a difference in cognitive style. Ninety-six undergraduate students volunteered to take part in a direct-suppression variant of the Think/No-Think paradigm after which they completed self-report measures of rumination and the degree to which they deliberately re-processed the to-be-suppressed items. We demonstrate a relation between rumination and impaired suppression-induced forgetting. This relation is robust even when controlling for deliberate re-processing of the to-be-suppressed items, a behavior itself related to both rumination and suppression. Therefore, whereas conscious fixation on to-be-suppressed items reduced memory suppression, it did not fully account for the relation between rumination and memory suppression. The current experiment employed a retrospective measure of deliberate re-processing in the context of an unscreened university sample; future research might therefore generalize our findings using an online measure of deliberate re-processing or within a clinical population. We provide evidence that deliberate re-processing accounts for some--but not all--of the relation between rumination and suppression-induced forgetting. The present findings, observed in a paradigm known to engage top-down inhibitory modulation of mnemonic processing, provide the most theoretically focused evidence to date for the existence of a memory control deficit in rumination. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Slow-oscillatory Transcranial Direct Current Stimulation Modulates Memory in Temporal Lobe Epilepsy by Altering Sleep Spindle Generators: A Possible Rehabilitation Tool.

    PubMed

    Del Felice, Alessandra; Magalini, Alessandra; Masiero, Stefano

    2015-01-01

    Temporal lobe epilepsy (TLE) is often associated with memory deficits. Given the putative role for sleep spindles memory consolidation, spindle generators skewed toward the affected lobe in TLE subjects may be a neurophysiological marker of defective memory. Slow-oscillatory transcranial direct current stimulation (sotDCS) during slow waves sleep (SWS) has previously been shown to enhance sleep-dependent memory consolidation by increasing slow-wave sleep and modulating sleep spindles. To test if anodal sotDCS over the affected TL prior to a nap affects sleep spindles and whether this improves memory consolidation. Randomized controlled cross-over study. 12 people with TLE underwent sotDCS (0.75 Hz; 0-250 μV, 30 min) or sham before daytime nap. Declarative verbal and visuospatial learning were tested. Fast and slow spindle signals were recorded by 256-channel EEG during sleep. In both study arms, electrical source imaging (ESI) localized cortical generators. Neuropsychological data were analyzed with general linear model statistics or the Kruskal-Wallis test (P or Z < 0.05), and neurophysiological data tested with the Mann-Whitney t test and binomial distribution test (P or Z < 0.05). An improvement in declarative (P = 0.05) and visuospatial memory performance (P = 0.048) emerged after sotDCS. SotDCS increased slow spindle generators current density (Z = 0.001), with a shift to the anterior cortical areas. Anodal sotDCS over the affected temporal lobe improves declarative and visuospatial memory performance by modulating slow sleep spindles cortical source generators. SotDCS appears a promising tool for memory rehabilitation in people with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Benefits of deep encoding in Alzheimer disease. Analysis of performance on a memory task using the Item Specific Deficit Approach.

    PubMed

    Oltra-Cucarella, J; Pérez-Elvira, R; Duque, P

    2014-06-01

    the aim of this study is to test the encoding deficit hypothesis in Alzheimer disease (AD) using a recent method for correcting memory tests. To this end, a Spanish-language adaptation of the Free and Cued Selective Reminding Test was interpreted using the Item Specific Deficit Approach (ISDA), which provides three indices: Encoding Deficit Index, Consolidation Deficit Index, and Retrieval Deficit Index. We compared the performances of 15 patients with AD and 20 healthy control subjects and analysed results using either the task instructions or the ISDA approach. patients with AD displayed deficient encoding of more than half the information, but items that were encoded properly could be retrieved later with the help of the same semantic clues provided individually during encoding. Virtually all the information retained over the long-term was retrieved by using semantic clues. Encoding was shown to be the most impaired process, followed by retrieval and consolidation. Discriminant function analyses showed that ISDA indices are more sensitive and specific for detecting memory impairments in AD than are raw scores. These results indicate that patients with AD present impaired information encoding, but they benefit from semantic hints that help them recover previously learned information. This should be taken into account for intervention techniques focusing on memory impairments in AD. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  2. Memory improvement via slow-oscillatory stimulation during sleep in older adults.

    PubMed

    Westerberg, Carmen E; Florczak, Susan M; Weintraub, Sandra; Mesulam, M-Marsel; Marshall, Lisa; Zee, Phyllis C; Paller, Ken A

    2015-09-01

    We examined the intriguing but controversial idea that disrupted sleep-dependent consolidation contributes to age-related memory decline. Slow-wave activity during sleep may help strengthen neural connections and provide memories with long-term stability, in which case decreased slow-wave activity in older adults could contribute to their weaker memories. One prediction from this account is that age-related memory deficits should be reduced by artificially enhancing slow-wave activity. In young adults, applying transcranial current oscillating at a slow frequency (0.75 Hz) during sleep improves memory. Here, we tested whether this procedure can improve memory in older adults. In 2 sessions separated by 1 week, we applied either slow-oscillatory stimulation or sham stimulation during an afternoon nap in a double-blind, crossover design. Memory tests were administered before and after sleep. A larger improvement in word-pair recall and higher slow-wave activity was observed with slow-oscillatory stimulation than with sham stimulation. This is the first demonstration that this procedure can improve memory in older adults, suggesting that declarative memory performance in older adults is partly dependent on slow-wave activity during sleep. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Differential effects of non-REM and REM sleep on memory consolidation?

    PubMed

    Ackermann, Sandra; Rasch, Björn

    2014-02-01

    Sleep benefits memory consolidation. Previous theoretical accounts have proposed a differential role of slow-wave sleep (SWS), rapid-eye-movement (REM) sleep, and stage N2 sleep for different types of memories. For example the dual process hypothesis proposes that SWS is beneficial for declarative memories, whereas REM sleep is important for consolidation of non-declarative, procedural and emotional memories. In fact, numerous recent studies do provide further support for the crucial role of SWS (or non-REM sleep) in declarative memory consolidation. However, recent evidence for the benefit of REM sleep for non-declarative memories is rather scarce. In contrast, several recent studies have related consolidation of procedural memories (and some also emotional memories) to SWS (or non-REM sleep)-dependent consolidation processes. We will review this recent evidence, and propose future research questions to advance our understanding of the role of different sleep stages for memory consolidation.

  4. The potent free radical scavenger alpha-lipoic acid improves memory in aged mice: putative relationship to NMDA receptor deficits.

    PubMed

    Stoll, S; Hartmann, H; Cohen, S A; Müller, W E

    1993-12-01

    alpha-Lipoic acid (alpha-LA) improved longer-term memory of aged female NMRI mice in the habituation in the open field test at a dose of 100 mg/kg body weight for 15 days. In a separate experiment, no such effect could be found for young mice. alpha-LA alleviated age-related NMDA receptor deficits (Bmax) without changing muscarinic, benzodiazepine, and alpha 2-adrenergic receptor deficits in aged mice. The carbachol-stimulated accumulation of inositol monophosphates was not changed by the treatment with alpha-LA. These results give tentative support to the hypothesis that alpha-LA improves memory in aged mice, probably by a partial compensation of NMDA receptor deficits. Possible modes of action of alpha-LA based on its free radical scavenger properties are discussed in relation to the membrane hypothesis of aging.

  5. Memory in autistic spectrum disorder.

    PubMed

    Boucher, Jill; Mayes, Andrew; Bigham, Sally

    2012-05-01

    Behavioral evidence concerning memory in forms of high-functioning autism (HFA) and in moderately low-functioning autism (M-LFA) is reviewed and compared. Findings on M-LFA are sparse. However, it is provisionally concluded that memory profiles in HFA and M-LFA (relative to ability-matched controls) are similar but that declarative memory impairments are more extensive in M-LFA than in HFA. Specifically, both groups have diminished memory for emotion- or person-related stimuli. Regarding memory for nonsocial stimuli, both groups probably have mental-age-appropriate nondeclarative memory, and within declarative memory, both groups have mental-age-appropriate immediate free recall of within-span or supraspan lists of unrelated items, as well as cued recall and paired associate learning. By contrast, recognition is largely unimpaired in HFA but moderately impaired in M-LFA, and free recall of meaningful or structured stimuli is moderately impaired in HFA but more severely impaired in M-LFA. Theoretical explanations of data on declarative memory in HFA identify problems in the integrative processing, or the consolidation and storage, of complex stimuli or a specific problem of recollection. Proposed neural substrates include the following: disconnectivity of primary sensory and association areas; dysfunctions of medial prefrontal cortex, hippocampus, or posterior parietal lobe; or combinations of these associated with neural disconnectivity. Hypothetically, perirhinal dysfunction might explain the more extensive declarative memory impairments in M-LFA. Foreseeable consequences of uneven memory abilities in HFA and M-LFA are outlined, including possible effects on language and learning in M-LFA. Finally, priorities for future research are identified, highlighting the urgent need for research on memory in lower functioning individuals. 2012 APA, all rights reserved

  6. Analysis of memory deficits following chemotherapy in breast cancer survivors: evidence from the doors and people test.

    PubMed

    Prokasheva, Svetlana; Faran, Yifat; Cwikel, Julie; Geffen, David B

    2011-01-01

    Studies of cognitive effects of chemotherapy among breast cancer patients show that not all women who are exposed to chemotherapy develop cognitive dysfunction and that the observed declines in cognitive functioning may be quite subtle. The use of measures that are sensitive to subtle cognitive decline are recommended yet rarely used among clinical populations. The purpose of this study is to specify the types of memory changes observed among breast cancer survivors treated with chemotherapy and tamoxifen, by using an analytic test of memory, the Doors and People test, which uses age-adjusted norms. The participants were 40 women who were survivors of breast cancer, 20 of whom had completed chemotherapy treatment and 20 women who were treated only with tamoxifen. There were no significant differences between the two groups in overall scores and in all four subtests: visual memory, verbal memory, recall, and recognition measured by age-adjusted scores. Forty percent of patients in both of the groups were classified as having mild impairment in episodic memory. No between-group differences were found in the frequency of subjective, cognitive complaints. Subjective complaints were reported by 69% of patients but were unrelated to objective performance. Memory deficits were observed in breast cancer patients who receive either chemotherapy or tamoxifen alone compared to age-adjusted norms. The Doors and People Test is a sensitive measure of memory deficits that is feasible for use with clinical populations of breast cancer patients in order to monitor changes in cognitive function.

  7. Binge drinking during adolescence and young adulthood is associated with deficits in verbal episodic memory

    PubMed Central

    Cadaveira, Fernando; Caamaño-Isorna, Francisco; Rodríguez-Holguín, Socorro

    2017-01-01

    Binge drinking (BD), a harmful pattern of alcohol consumption, is common during adolescence. Young adults with alcohol use disorders exhibit hippocampal alterations and episodic memory deficits. However, it is not known how these difficulties progress in community BD adolescents. Our objective was to analyze the relationship between BD trajectory and verbal episodic memory during the developmental period spanning from adolescence and to early adulthood. An initial sample of 155 male and female first-year university students with no other risk factors were followed over six years. Participants were classified as stable non-BDs, stable BDs and ex-BDs according to the third AUDIT item. At baseline, participants comprised 36 ♂/ 40 ♀ non-BDs (18.58 years), 40 ♂/ 39 ♀ BDs (18.87 years), and at the third follow-up, they comprised 8 ♂/ 8 ♀ stable non-BDs (25.49 years), 2 ♂/ 2 ♀ stable BDs (25.40) and 8 ♂/ 12 ♀ ex-BDs (24.97 years). Episodic memory was assessed four times with the Logical Memory subtest (WMS-III) and the Rey Auditory Verbal Learning Test (RAVLT). Generalized linear mixed models were applied. The results showed that, relative to non-BDs, stable BDs presented difficulties in immediate and delayed recall in the Logical Memory subtest. These difficulties remained stable over time. The short-term ex-BDs continued to display difficulties in immediate and delayed recall in the Logical Memory subtest, but long-term ex-BDs did not. The effects were not influenced by age of alcohol onset, frequency of cannabis use, tobacco use or psychopathological distress. In conclusion, BD during adolescence and young adulthood is associated with episodic memory deficits. Abandoning the BD pattern may lead to partial recovery. These findings are consistent with the vulnerability of the adolescent hippocampus to the neurotoxic effects of alcohol. PMID:28152062

  8. Binge drinking during adolescence and young adulthood is associated with deficits in verbal episodic memory.

    PubMed

    Carbia, Carina; Cadaveira, Fernando; Caamaño-Isorna, Francisco; Rodríguez-Holguín, Socorro; Corral, Montse

    2017-01-01

    Binge drinking (BD), a harmful pattern of alcohol consumption, is common during adolescence. Young adults with alcohol use disorders exhibit hippocampal alterations and episodic memory deficits. However, it is not known how these difficulties progress in community BD adolescents. Our objective was to analyze the relationship between BD trajectory and verbal episodic memory during the developmental period spanning from adolescence and to early adulthood. An initial sample of 155 male and female first-year university students with no other risk factors were followed over six years. Participants were classified as stable non-BDs, stable BDs and ex-BDs according to the third AUDIT item. At baseline, participants comprised 36 ♂/ 40 ♀ non-BDs (18.58 years), 40 ♂/ 39 ♀ BDs (18.87 years), and at the third follow-up, they comprised 8 ♂/ 8 ♀ stable non-BDs (25.49 years), 2 ♂/ 2 ♀ stable BDs (25.40) and 8 ♂/ 12 ♀ ex-BDs (24.97 years). Episodic memory was assessed four times with the Logical Memory subtest (WMS-III) and the Rey Auditory Verbal Learning Test (RAVLT). Generalized linear mixed models were applied. The results showed that, relative to non-BDs, stable BDs presented difficulties in immediate and delayed recall in the Logical Memory subtest. These difficulties remained stable over time. The short-term ex-BDs continued to display difficulties in immediate and delayed recall in the Logical Memory subtest, but long-term ex-BDs did not. The effects were not influenced by age of alcohol onset, frequency of cannabis use, tobacco use or psychopathological distress. In conclusion, BD during adolescence and young adulthood is associated with episodic memory deficits. Abandoning the BD pattern may lead to partial recovery. These findings are consistent with the vulnerability of the adolescent hippocampus to the neurotoxic effects of alcohol.

  9. A selective egocentric topographical working memory deficit in the early stages of Alzheimer's disease: a preliminary study.

    PubMed

    Bianchini, F; Di Vita, A; Palermo, L; Piccardi, L; Blundo, C; Guariglia, C

    2014-12-01

    The aim of this study was to determine whether an egocentric topographical working memory (WM) deficit is present in the early stages of Alzheimer's disease (AD) with respect to other forms of visuospatial WM. Further, we would investigate whether this deficit could be present in patients having AD without topographical disorientation (TD) signs in everyday life assessed through an informal interview to caregivers. Seven patients with AD and 20 healthy participants performed the Walking Corsi Test and the Corsi Block-Tapping Test. The former test requires memorizing a sequence of places by following a path and the latter is a well-known visuospatial memory task. Patients with AD also performed a verbal WM test to exclude the presence of general WM impairments. Preliminary results suggest that egocentric topographical WM is selectively impaired, with respect to visuospatial and verbal WM, even without TD suggesting an important role of this memory in the early stages of AD. © The Author(s) 2014.

  10. Spatial Working Memory Deficits in Male Rats Following Neonatal Hypoxic Ischemic Brain Injury Can Be Attenuated by Task Modifications

    PubMed Central

    Smith, Amanda L.; Hill, Courtney A.; Alexander, Michelle; Szalkowski, Caitlin E.; Chrobak, James J.; Rosenkrantz, Ted S.; Fitch, R. Holly

    2014-01-01

    Hypoxia-ischemia (HI; reduction in blood/oxygen supply) is common in infants with serious birth complications, such as prolonged labor and cord prolapse, as well as in infants born prematurely (<37 weeks gestational age; GA). Most often, HI can lead to brain injury in the form of cortical and subcortical damage, as well as later cognitive/behavioral deficits. A common domain of impairment is working memory, which can be associated with heightened incidence of developmental disorders. To further characterize these clinical issues, the current investigation describes data from a rodent model of HI induced on postnatal (P)7, an age comparable to a term (GA 36–38) human. Specifically, we sought to assess working memory using an eight-arm radial water maze paradigm. Study 1 used a modified version of the paradigm, which requires a step-wise change in spatial memory via progressively more difficult tasks, as well as multiple daily trials for extra learning opportunity. Results were surprising and revealed a small HI deficit only for the final and most difficult condition, when a delay before test trial was introduced. Study 2 again used the modified radial arm maze, but presented the most difficult condition from the start, and only one daily test trial. Here, results were expected and revealed a robust and consistent HI deficit across all weeks. Combined results indicate that male HI rats can learn a difficult spatial working memory task if it is presented in a graded multi-trial format, but performance is poor and does not appear to remediate if the task is presented with high initial memory demand. Male HI rats in both studies displayed impulsive characteristics throughout testing evidenced as reduced choice latencies despite more errors. This aspect of behavioral results is consistent with impulsiveness as a core symptom of ADHD—a diagnosis common in children with HI insult. Overall findings suggest that task specific behavioral modifications are crucial to

  11. Piracetam inhibits ethanol (EtOH)-induced memory deficit by mediating multiple pathways.

    PubMed

    Yang, Yifan; Feng, Jian; Xu, Fangyuan; Wang, Jianglin

    2017-12-01

    Excessive ethanol (EtOH) intake, especially to prenatal exposure, can significantly affect cognitive function and cause permanent learning and memory injures in children. As a result, how to protect children from EtOH neurotoxicity has gained increasing attention in recent years. Piracetam (Pir) is a nootropic drug derived from c-aminobutyric acid and can manage cognition impairments in multiple neurological disorders. Studies have shown that Pir can exert therapeutic effects on EtOH-induced memory impairments, but the underlying mechanism is still unknown. In this study, we found that Pir inhibited ethanol-induced memory deficit by mediating multiple pathways. Treatment with EtOH could cause cognitive deficit in juvenile rats, and triggered the alteration of synaptic plasticity. Administration with Pir significantly increased long-term potentiation and protected hippocampus neurons from EtOH neurotoxicity. Pir intervention ameliorated EtOH-induced cell apoptosis and inhibited the activation of Caspase-3 in vitro, suggesting that Pir protected neurons by anti-apoptotic effects. Pir could decrease the expression of LC3-II and Beclin-1 induced by EtOH, and increase the phosphorylation of mTOR and reduce the phosphorylation of Akt, which suggested that the protective effect of Pir was involved in regulation of autophagic process and mTOR/Akt pathways. In conclusion, we speculate that Pir reduces EtOH-induced neuronal damage by regulation of apoptotic action and autophagic action, and our research offers preclinical evidence for the application of Pir in ethanol toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Deletion of the γ-secretase subunits Aph1B/C impairs memory and worsens the deficits of knock-in mice modeling the Alzheimer-like familial Danish dementia.

    PubMed

    Biundo, Fabrizio; Ishiwari, Keita; Del Prete, Dolores; D'Adamio, Luciano

    2016-03-15

    Mutations in BRI2/ITM2b genes cause Familial British and Danish Dementias (FBD and FDD), which are pathogenically similar to Familial Alzheimer Disease (FAD). BRI2 inhibits processing of Amyloid precursor protein (APP), a protein involved in FAD pathogenesis. Accumulation of a carboxyl-terminal APP metabolite -ß-CTF- causes memory deficits in a knock-in mouse model of FDD, called FDDKI.We have investigated further the pathogenic function of ß-CTF studying the effect of Aph1B/C deletion on FDDKI mice. This strategy is based on the evidence that deletion of Aph1B/C proteins, which are components of the γ-secretase that cleaves ß-CTF, results in stabilization of ß-CTF and a reduction of Aβ. We found that both the FDD mutation and the Aph1B/C deficiency mildly interfered with spatial long term memory, spatial working/short-term memory and long-term contextual fear memory. In addition, the Aph1BC deficiency induced deficits in long-term cued fear memory. Moreover, the two mutations have additive adverse effects as they compromise the accuracy of spatial long-term memory and induce spatial memory retention deficits in young mice. Overall, the data are consistent with a role for β-CTF in the genesis of memory deficits.

  13. A neurodevelopmental approach to understanding memory processes among intellectually gifted youth with attention-deficit hyperactivity disorder.

    PubMed

    Whitaker, Ashley M; Bell, Terece S; Houskamp, Beth M; O'Callaghan, Erin T

    2015-01-01

    Intellectual giftedness is associated with strong strategic verbal memory while attention-deficit hyperactivity disorder (ADHD) is associated with strategic verbal memory deficits; however, no previous research has explored how this contradiction manifests in gifted populations with diagnoses of ADHD. The purpose of this study was to explore strategic verbal memory processes among intellectually gifted youth with and without ADHD to provide clarification regarding this specific aspect of neuropsychological functioning within this population. One hundred twenty-five youth completed neuropsychological evaluations including the Wechsler Intelligence Scale for Children-Fourth Edition and California Verbal Learning Test-Children's Version (CVLT-C). Results revealed significant differences between groups, with intellectually gifted youth with ADHD achieving lower T scores on CVLT-C Trials 1 through 5 compared with intellectually gifted youth without ADHD, and intellectually gifted youth with ADHD achieving higher T scores than youth of average intellectual abilities with ADHD. Additionally, repeated-measures analysis of variance revealed a main effect improvement among gifted youth with ADHD in short-delay recall when provided with organizational cues. Findings revealed new evidence about the role of twice exceptionality (specifically intellectual giftedness and ADHD) in strategic verbal memory and have important implications for parents, educators, psychologists and neuropsychologists, and other mental health professionals working with this population.

  14. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  15. The Deficit Profile of Working Memory, Inhibition, and Updating in Chinese Children with Reading Difficulties

    ERIC Educational Resources Information Center

    Peng, Peng; Sha, Tao; Li, Beilei

    2013-01-01

    This study investigated executive function deficits among Chinese children with reading difficulties. Verbal and numerical measures of working memory, inhibition, updating, and processing speed were examined among children with only reading difficulties (RD), children with reading and mathematics difficulties (RDMD), and typically developing peers…

  16. Congenital Amusia: A Short-Term Memory Deficit for Non-Verbal, but Not Verbal Sounds

    ERIC Educational Resources Information Center

    Tillmann, Barbara; Schulze, Katrin; Foxton, Jessica M.

    2009-01-01

    Congenital amusia refers to a lifelong disorder of music processing and is linked to pitch-processing deficits. The present study investigated congenital amusics' short-term memory for tones, musical timbres and words. Sequences of five events (tones, timbres or words) were presented in pairs and participants had to indicate whether the sequences…

  17. Can Motivation Normalize Working Memory and Task Persistence in Children with Attention-Deficit/Hyperactivity Disorder? The Effects of Money and Computer-Gaming

    ERIC Educational Resources Information Center

    Dovis, Sebastiaan; van der Oord, Saskia; Wiers, Reinout W.; Prins, Pier J. M.

    2012-01-01

    Visual-spatial "Working Memory" (WM) is the most impaired executive function in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Some suggest that deficits in executive functioning are caused by motivational deficits. However, there are no studies that investigate the effects of motivation on the visual-spatial WM of children with-…

  18. Working memory deficits in developmental dyscalculia: The importance of serial order.

    PubMed

    Attout, Lucie; Majerus, Steve

    2015-01-01

    Although a number of studies suggests a link between working memory (WM) storage capacity of short-term memory and calculation abilities, the nature of verbal WM deficits in children with developmental dyscalculia (DD) remains poorly understood. We explored verbal WM capacity in DD by focusing on the distinction between memory for item information (the items to be retained) and memory for order information (the order of the items within a list). We hypothesized that WM for order could be specifically related to impaired numerical abilities given that recent studies suggest close interactions between the representation of order information in WM and ordinal numerical processing. We investigated item and order WM abilities as well as basic numerical processing abilities in 16 children with DD (age: 8-11 years) and 16 typically developing children matched on age, IQ, and reading abilities. The DD group performed significantly poorer than controls in the order WM condition but not in the item WM condition. In addition, the DD group performed significantly slower than the control group on a numerical order judgment task. The present results show significantly reduced serial order WM abilities in DD coupled with less efficient numerical ordinal processing abilities, reflecting more general difficulties in explicit processing of ordinal information.

  19. Memory for past public events depends on retrieval frequency but not memory age in Alzheimer's disease.

    PubMed

    Müller, Stephan; Mychajliw, Christian; Hautzinger, Martin; Fallgatter, Andreas J; Saur, Ralf; Leyhe, Thomas

    2014-01-01

    Alzheimer's disease (AD) is characterized by retrograde memory deficits primarily caused by dysfunction of the hippocampal complex. Unresolved questions exist concerning the time course of hippocampal involvement in conscious recollection of declarative knowledge, as reports of temporal gradients of retrograde amnesia have been inconclusive. The aim of this study was to examine whether the extent and severity of retrograde amnesia is mediated by retrieval frequency or, in contrast, whether it depends on the age of the memory according to the assumptions of the main current theories of memory formation. We compared recall of past public events in patients with AD and healthy control (HC) individuals using the Historic Events Test (HET). The HET assesses knowledge about famous public events of the past 60 years divided into four time segments and consists of subjective memory rating, dating accuracy, and contextual memory tasks. Although memory for public events was impaired in AD patients, there was a strong effect of retrieval frequency across all time segments and both groups. As AD and HC groups derived similar benefits from greater retrieval frequency, cortical structures other than the hippocampal complex may mediate memory retrieval. These findings suggest that more frequently retrieved events and facts become more independent of the hippocampal complex and thus better protected against early damage of AD. This could explain why cognitive activity may delay the onset of memory decline in persons who develop AD.

  20. Shared etiology of phonological memory and vocabulary deficits in school-age children.

    PubMed

    Peterson, Robin L; Pennington, Bruce F; Samuelsson, Stefan; Byrne, Brian; Olson, Richard K

    2013-08-01

    The goal of this study was to investigate the etiologic basis for the association between deficits in phonological memory (PM) and vocabulary in school-age children. Children with deficits in PM or vocabulary were identified within the International Longitudinal Twin Study (ILTS; Samuelsson et al., 2005). The ILTS includes 1,045 twin pairs (between the ages of 5 and 8 years) from the United States, Australia, and Scandinavia. The authors applied the DeFries-Fulker ( DeFries & Fulker, 1985, 1988) regression method to determine whether problems in PM and vocabulary tend to co-occur because of overlapping genes, overlapping environmental risk factors, or both. Among children with isolated PM deficits, the authors found significant bivariate heritability of PM and vocabulary weaknesses both within and across time. However, when probands were selected for a vocabulary deficit, there was no evidence for bivariate heritability. In this case, it appears that the PM-vocabulary relationship is caused by common shared environmental experiences. The findings are consistent with previous research on the heritability of specific language impairment and suggest that there are etiologic subgroups of children with low vocabulary for different reasons, 1 being more influenced by genes and another being more influenced by environment.

  1. Transcranial direct current stimulation improves long-term memory deficits in an animal model of attention-deficit/hyperactivity disorder and modulates oxidative and inflammatory parameters.

    PubMed

    Leffa, Douglas Teixeira; Bellaver, Bruna; Salvi, Artur Alban; de Oliveira, Carla; Caumo, Wolnei; Grevet, Eugenio Horacio; Fregni, Felipe; Quincozes-Santos, André; Rohde, Luis Augusto; Torres, Iraci L S

    2018-04-05

    Transcranial direct current stimulation (tDCS) is a technique that modulates neuronal activity and has been proposed as a potential therapeutic tool for attention-deficit/hyperactivity disorder (ADHD) symptoms. Although pilot studies have shown evidence of efficacy, its mechanism of action remains unclear. We evaluated the effects of tDCS on behavioral (working and long-term memory) and neurochemical (oxidative and inflammatory parameters) outcomes related to ADHD pathophysiology. We used the most widely accepted animal model of ADHD: spontaneously hypertensive rats (SHR). The selected behavioral outcomes have been shown to be altered in both ADHD patients and animal models, and were chosen for their relation to the proposed mechanistic action of tDCS. Adult male SHR and their control, the Wistar Kyoto rats (WKY), were subjected to 20 min of bicephalic tDCS or sham stimulation for 8 consecutive days. Working memory, long-term memory, and neurochemical outcomes were evaluated. TDCS improved long-term memory deficits presented by the SHR. No change in working memory performance was observed. In the hippocampus, tDCS increased both the production of reactive oxygen species in SHR and the levels of the antioxidant molecule glutathione in both strains. TDCS also modulated inflammatory response in the brains of WKY by downregulating pro-inflammatory cytokines. TDCS had significant effects that were specific for strain, type of behavioral and neurochemical outcomes. The long-term memory improvement in the SHR may point to a possible therapeutic role of tDCS in ADHD that does not seem to be mediated by inflammatory markers. Additionally, the anti-inflammatory effects observed in the brain of WKY after tDCS needs to be further explored. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Maternal administration of melatonin prevents spatial learning and memory deficits induced by developmental ethanol and lead co-exposure.

    PubMed

    Soleimani, Elham; Goudarzi, Iran; Abrari, Kataneh; Lashkarbolouki, Taghi

    2017-05-01

    Melatonin is a radical scavenger with the ability to remove reactive oxidant species. There is report that co-exposure to lead and ethanol during developmental stages induces learning and memory deficits and oxidative stress. Here, we studied the effect of melatonin, with strong antioxidant properties, on memory deficits induced by lead and ethanol co-exposure and oxidative stress in hippocampus. Pregnant rats in lead and ethanol co-exposure group received lead acetate of 0.2% in distilled drinking water and ethanol (4g/kg) by oral gavages once daily from the 5th day of gestation until weaning. Rats received 10mg/kg melatonin by oral gavages. On postnatal days (PD) 30, rats trained with six trials per day for 6 consecutive days in the water maze. On day 37, a probe test was done and oxidative stress markers in the hippocampus were evaluated. Results demonstrated lead and ethanol co-exposed rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency in probe trial test and had significantly higher malondialdehyde (MDA) levels, significantly lower superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities in the hippocampus. Melatonin treatment could improve memory deficits, antioxidants activity and reduced MDA levels in the hippocampus. We conclude, co-exposure to lead and ethanol impair memory and melatonin can prevent from it by oxidative stress modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Magnitude, Generality, and Determinants of Flynn Effects on Forms of Declarative Memory and Visuospatial Ability: Time-Sequential Analyses of Data from a Swedish Cohort Study

    ERIC Educational Resources Information Center

    Ronnlund, Michael; Nilsson, Lars-Goran

    2008-01-01

    To estimate Flynn effects (FEs) on forms of declarative memory (episodic, semantic) and visuospatial ability (Block Design) time-sequential analyses of data for Swedish adult samples (35-80 years) assessed on either of four occasions (1989, 1994, 1999, 2004; n = 2995) were conducted. The results demonstrated cognitive gains across occasions,…

  4. Verbal Short-Term Memory Deficits in Chinese Children with Dyslexia may not be a Problem with the Activation of Phonological Representations.

    PubMed

    Zhao, Jing; Yang, Yang; Song, Yao-Wu; Bi, Hong-Yan

    2015-11-01

    This study explored the underlying mechanism of the verbal short-term memory deficit in Chinese children with developmental dyslexia. Twenty-four children with dyslexia and 28 age-matched normal readers participated in the study. They were required to memorize a visually presented series of six Chinese characters and identify them from a list also including code-specific distracters and non-code-specific distracters. Error rates were recorded and were higher for code-specific distracters in all three conditions, revealing phonological, visual, and semantic similarity effects respectively. Group comparisons showed a stronger phonological similarity effect in dyslexic group, suggesting intact activation of phonological representations of target characters. Children with dyslexia also exhibited a greater semantic similarity effect, revealing stronger activation of semantic representations, while visual similarity effects were equivalent to controls. These results suggest that the verbal short-term memory deficit in Chinese dyslexics might not stem from insufficient activation of phonological information. Based the semantic activation of target characters in dyslexics is greater than in controls, it is possible that the memory deficit of dyslexia is related with deficient inhibition of target semantic representations in short-term memory. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity.

    PubMed

    Thomasson, Julien; Canini, Frédéric; Poly-Thomasson, Betty; Trousselard, Marion; Granon, Sylvie; Chauveau, Frédéric

    2017-12-01

    Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Deficits in learning and memory in mice with a mutation of the candidate dyslexia susceptibility gene Dyx1c1.

    PubMed

    Rendall, Amanda R; Tarkar, Aarti; Contreras-Mora, Hector M; LoTurco, Joseph J; Fitch, R Holly

    2017-09-01

    Dyslexia is a learning disability characterized by difficulty learning to read and write. The underlying biological and genetic etiology remains poorly understood. One candidate gene, dyslexia susceptibility 1 candidate 1 (DYX1C1), has been shown to be associated with deficits in short-term memory in dyslexic populations. The purpose of the current study was to examine the behavioral phenotype of a mouse model with a homozygous conditional (forebrain) knockout of the rodent homolog Dyx1c1. Twelve Dyx1c1 conditional homozygous knockouts, 7 Dyx1c1 conditional heterozygous knockouts and 6 wild-type controls were behaviorally assessed. Mice with the homozygous Dyx1c1 knockout showed deficits on memory and learning, but not on auditory or motor tasks. These findings affirm existing evidence that DYX1C1 may play an underlying role in the development of neural systems important to learning and memory, and disruption of this function could contribute to the learning deficits seen in individuals with dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Memory in Early Onset Bipolar Disorder and Attention-Deficit/Hyperactivity Disorder: Similarities and Differences

    ERIC Educational Resources Information Center

    Udal, Anne H.; Oygarden, Bjorg; Egeland, Jens; Malt, Ulrik F.; Groholt, Berit

    2012-01-01

    Differentiating between early-onset bipolar disorder (BD) and attention-deficit/hyperactivity disorder (ADHD) can be difficult. Memory problems are commonly reported in BD, and forgetfulness is among the diagnostic criteria for ADHD. We compared children and adolescents with BD (n = 23), ADHD combined type (ADHD-C; n = 26), BD + ADHD-C (n = 15),…

  8. Blockade of adenosine A2A receptors recovers early deficits of memory and plasticity in the triple transgenic mouse model of Alzheimer's disease.

    PubMed

    Silva, António C; Lemos, Cristina; Gonçalves, Francisco Q; Pliássova, Anna V; Machado, Nuno J; Silva, Henrique B; Canas, Paula M; Cunha, Rodrigo A; Lopes, João Pedro; Agostinho, Paula

    2018-05-31

    Alzheimer's disease (AD) begins with a deficit of synaptic function and adenosine A 2A receptors (A 2A R) are mostly located in synapses controlling synaptic plasticity. The over-activation of adenosine A 2A receptors (A 2A R) causes memory deficits and the blockade of A 2A R prevents memory damage in AD models. We now enquired if this prophylactic role of A 2A R might be extended to a therapeutic potential. We used the triple transgenic model of AD (3xTg-AD) and defined that the onset of memory dysfunction occurred at 4 months of age in the absence of locomotor or emotional alterations. At the onset of memory deficits, 3xTg mice displayed a decreased density of markers of excitatory synapses (10.6 ± 3.8% decrease of vGluT1) without neuronal or glial overt damage and an increase of synaptic A 2A R in the hippocampus (130 ± 22%). After the onset of memory deficits in 3xTg-AD mice, a three weeks treatment with the selective A 2A R antagonist normalized the up-regulation of hippocampal A 2A R and restored hippocampal-dependent reference memory, as well as the decrease of hippocampal synaptic plasticity (60.0 ± 3.7% decrease of long-term potentiation amplitude) and the decrease of global (syntaxin-I) and glutamatergic synaptic markers (vGluT1). These findings show a therapeutic-like ability of A 2A R antagonists to recover synaptic and memory dysfunction in early AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Thalidomide attenuates learning and memory deficits induced by intracerebroventricular administration of streptozotocin in rats.

    PubMed

    Elçioğlu, Hk; Kabasakal, L; Alan, S; Salva, E; Tufan, F; Karan, Ma

    2013-05-01

    Neuroinflammatory responses caused by amyloid β (Aβ) peptide deposits are involved in the pathogenesis of Alzheimer's disease (AD). Thalidomide has a significant anti-inflammatory effect by inhibiting TNF-α, which plays role in Aβ neurotoxicity. We investigated the effect of thalidomide on AD-like cognitive deficits caused by intracerebroventricular injection of streptozotocin (STZ). Intraperitoneal thalidomide was administered 1 h before the first dose of STZ and continued for 21 days. Learning and memory behavior was evaluated on days 17, 18 and 19, and the rats were sacrificed on day 21 to examine histopathological changes. STZ injection caused a significant decrease in the mean escape latency in passive avoidance and decreased improvement of performance in Morris water maze tests. Histopathological changes were examined using hematoxylin-eosin and Bielschowsky staining. Brain sections of STZ treated rats showed increased neurodegeneration and disturbed linear arrangement of cells in the cortical area compared to controls. Thalidomide treatment attenuated significantly STZ induced cognitive impairment and histopathological changes. Thalidomide appears to provide neuroprotection from the memory deficits and neuronal damage induced by STZ.

  10. Deletion of the γ-secretase subunits Aph1B/C impairs memory and worsens the deficits of knock-in mice modeling the Alzheimer-like familial Danish dementia

    PubMed Central

    Biundo, Fabrizio; Ishiwari, Keita; Del Prete, Dolores; D'Adamio, Luciano

    2016-01-01

    Mutations in BRI2/ITM2b genes cause Familial British and Danish Dementias (FBD and FDD), which are pathogenically similar to Familial Alzheimer Disease (FAD). BRI2 inhibits processing of Amyloid precursor protein (APP), a protein involved in FAD pathogenesis. Accumulation of a carboxyl-terminal APP metabolite –β-CTF- causes memory deficits in a knock-in mouse model of FDD, called FDDKI. We have investigated further the pathogenic function of β-CTF studying the effect of Aph1B/C deletion on FDDKI mice. This strategy is based on the evidence that deletion of Aph1B/C proteins, which are components of the γ-secretase that cleaves β-CTF, results in stabilization of β-CTF and a reduction of Aβ. We found that both the FDD mutation and the Aph1B/C deficiency mildly interfered with spatial long term memory, spatial working/short-term memory and long-term contextual fear memory. In addition, the Aph1BC deficiency induced deficits in long-term cued fear memory. Moreover, the two mutations have additive adverse effects as they compromise the accuracy of spatial long-term memory and induce spatial memory retention deficits in young mice. Overall, the data are consistent with a role for β-CTF in the genesis of memory deficits. PMID:26942869

  11. Exposure to radiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Carey, A.; Rabin, B. M.; Joseph, J. A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles), produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism; oxidative stress damage to the central nervous system caused by an increased release of reactive oxygen species is likely responsible for the deficits seen in aging and following irradiation. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a "map" provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by NASA Grants NAG9-1190 and NAG9-1529

  12. Autobiographical Memory Deficits in Alcohol-Dependent Patients with Short- and Long-Term Abstinence.

    PubMed

    Nandrino, Jean-Louis; El Haj, Mohamad; Torre, Julie; Naye, Delphine; Douchet, Helyette; Danel, Thierry; Cottençin, Oliver

    2016-04-01

    Autobiographical memory (AM) enables the storage and retrieval of life experiences that allow individuals to build their sense of identity. Several AM impairments have been described in patients with alcohol abuse disorders without assessing whether such deficits can be recovered. This cross-sectional study aimed to identify whether the semantic (SAM) and episodic (EAM) dimensions of AM are affected in individuals with alcohol dependence after short-term abstinence (STA) or long-term abstinence (LTA). A second aim of this study was to examine the factors that could disrupt the efficiency of semantic and episodic AM (the impact of depression severity, cognitive functions, recent or early traumatic events, and drinking history variables). After clinical and cognitive evaluations (alcohol consumption, depression, anxiety, IQ, memory performance), AM was assessed with the Autobiographical Memory Interview in patients with recent (between 4 and 6 weeks) and longer (at least 6 months) abstinence. Participants were asked to retrieve the number and nature of traumatic or painful life experiences in recent or early life periods (using the Childhood Traumatic Events Scale). The 2 abstinent groups had lower global EAM and SAM scores than the control group. These scores were comparable for both abstinent groups. For childhood events, no significant differences were observed in SAM for both groups compared with control participants. For early adulthood and recent events, both STA and LTA groups had lower scores on both SAM and EAM. Moreover, there was a negative correlation between the length of substance consumption and SAM scores. This study highlighted a specific AM disorder in both episodic and semantic dimensions. These deficits remained after 6 months of abstinence. This AM impairment may be explained by compromised encoding and consolidation of memories during bouts of drinking. Copyright © 2016 by the Research Society on Alcoholism.

  13. Faster Forgetting Contributes to Impaired Spatial Memory in the PDAPP Mouse: Deficit in Memory Retrieval Associated with Increased Sensitivity to Interference?

    ERIC Educational Resources Information Center

    Daumas, Stephanie; Sandin, Johan; Chen, Karen S.; Kobayashi, Dione; Tulloch, Jane; Martin, Stephen J.; Games, Dora; Morris, Richard G. M.

    2008-01-01

    Two experiments were conducted to investigate the possibility of faster forgetting by PDAPP mice (a well-established model of Alzheimer's disease as reported by Games and colleagues in an earlier paper). Experiment 1, using mice aged 13-16 mo, confirmed the presence of a deficit in a spatial reference memory task in the water maze by hemizygous…

  14. Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory.

    PubMed

    Vann, Seralynne D; Aggleton, John P

    2002-02-01

    Despite the connections of the retrosplenial cortex strongly suggesting a role in spatial memory, the lesion data to date have been equivocal. Whether subjects are impaired after retrosplenial lesions seems to depend on whether the lesions were aspirative or excitotoxic, with the latter failing to produce an impairment. A shortcoming of previous excitotoxic lesion studies is that they spared the most caudal part of the retrosplenial cortex. The present study thus used rats with extensive neurotoxic lesions of the retrosplenial cortex that encompassed the entire rostrocaudal extent of this region. These rats were consistently impaired on several tests that tax allocentric memory. In contrast, they were unimpaired on an egocentric discrimination task. Although the lesions did not appear to affect object recognition, clear deficits were found for an object-in-place discrimination. The present study not only demonstrates a role for the retrosplenial cortex in allocentric spatial memory, but also explains why previous excitotoxic lesions have failed to detect any deficits.

  15. HIV-infected persons with bipolar disorder are less aware of memory deficits than HIV-infected persons without bipolar disorder.

    PubMed

    Blackstone, Kaitlin; Tobin, Alexis; Posada, Carolina; Gouaux, Ben; Grant, Igor; Moore, David J; The Hiv Neurobehavioral Research Program Hnrp

    2012-01-01

    Episodic memory deficits are common in HIV infection and bipolar disorder, but patient insight into such deficits remains unclear. Thirty-four HIV-infected individuals without bipolar disorder (HIV+/BD-) and 47 HIV+ individuals with comorbid bipolar disorder (HIV+/BD+) were administered the Hopkins Verbal Learning Test-Revised and the Brief Visuospatial Memory Test-Revised to examine objective learning/memory functioning. Subjective memory complaints were assessed via the memory subscale of the Patient's Assessment of Own Functioning Inventory. HIV+/BD+ individuals performed poorer on tests of visual learning and visual/verbal recall than did HIV+/BD- participants (ps < .05). Memory complaints only predicted verbal learning (at a trend level, p = .10) and recall (p = .03) among the HIV+/BD- individuals. Memory complaints were not associated with memory performance within the HIV+/BD+ group (ps > .10). Memory complaints were associated with depressive symptoms in both groups (ps < 0.05). These complaints were also predictive of immunosuppression, higher unemployment, and greater dependence on activities of daily living among the HIV+/BD+ individuals (ps < .05). Awareness of memory abilities was particularly poor among HIV+/BD+ individuals (i.e., objective learning/memory did not correspond to reported complaints), which has important implications for the capacity of these individuals to engage in error-monitoring and compensatory strategies in daily life. Memory complaints are associated with depressed mood regardless of group membership. Among HIV+/BD+ individuals, these complaints may also signify worse HIV disease status and problems with everyday functioning. Clinicians and researchers should be cognizant of what these complaints indicate in order to lead treatment most effectively; use of objective neurocognitive assessments may still be warranted when working with these populations.

  16. Octadecylpropyl Sulfamide Reduces Neurodegeneration and Restores the Memory Deficits Induced by Hypoxia-Ischemia in Mice

    PubMed Central

    Kossatz, Elk; Silva-Peña, Daniel; Suárez, Juan; de Fonseca, Fernando R.; Maldonado, Rafael; Robledo, Patricia

    2018-01-01

    The PPAR-α agonist, oleoylethanolamide (OEA) has neuroprotective properties in stroke models. However, its rapid degradation represents a limitation for an effective therapeutic approach. In this study, we evaluated the effects of a stable OEA-modeled compound, octadecylpropyl sulfamide (SUL) on the cognitive, behavioral, cellular and molecular alterations associated with hypoxia-ischemia (HI) in mice. Mice subjected to HI were treated with the PPAR-α antagonist GW6471 (GW) (1 mg/kg) followed 15 min later by SUL (3 and 10 mg/kg). Behavioral, motor, and cognitive tests were carried out 24 h and 7 days after the HI. The levels of microglia, reactive astrocytes and neuronal nuclei were studied using immunofluorescence, and the expression of genes related to the N-acyl-ethanolamides/endocannabinoid signaling systems was determined by qRT-PCR at the end of the experimental sequence. HI induced brain damage in the ipsilateral hippocampus and cortex, which lead to severe memory impairments, and motor coordination deficits. Significant neuronal loss, increased microglia and reactive astrocytes, and compensatory changes in genes associated with the inflammation/immune and endocannabinoid systems were observed in these brain structures of lesioned mice. SUL reversed the memory and motor deficits, decreased the overexpression of microglia and astrocytes, and reduced neurodegeneration induced by HI. Cnr1 and Cnr2 gene expression was modulated by SUL in both sham and HI mice, while Pparα and Faah expression was regulated in HI mice. GW completely blocked the beneficial actions of SUL. These findings suggest that treatment with SUL reduces brain damage and the associated motor and memory deficits induced by HI probably by normalizing the changes in neuroinflammation/immune system mediators. PMID:29725299

  17. Octadecylpropyl Sulfamide Reduces Neurodegeneration and Restores the Memory Deficits Induced by Hypoxia-Ischemia in Mice.

    PubMed

    Kossatz, Elk; Silva-Peña, Daniel; Suárez, Juan; de Fonseca, Fernando R; Maldonado, Rafael; Robledo, Patricia

    2018-01-01

    The PPAR-α agonist, oleoylethanolamide (OEA) has neuroprotective properties in stroke models. However, its rapid degradation represents a limitation for an effective therapeutic approach. In this study, we evaluated the effects of a stable OEA-modeled compound, octadecylpropyl sulfamide (SUL) on the cognitive, behavioral, cellular and molecular alterations associated with hypoxia-ischemia (HI) in mice. Mice subjected to HI were treated with the PPAR-α antagonist GW6471 (GW) (1 mg/kg) followed 15 min later by SUL (3 and 10 mg/kg). Behavioral, motor, and cognitive tests were carried out 24 h and 7 days after the HI. The levels of microglia, reactive astrocytes and neuronal nuclei were studied using immunofluorescence, and the expression of genes related to the N -acyl-ethanolamides/endocannabinoid signaling systems was determined by qRT-PCR at the end of the experimental sequence. HI induced brain damage in the ipsilateral hippocampus and cortex, which lead to severe memory impairments, and motor coordination deficits. Significant neuronal loss, increased microglia and reactive astrocytes, and compensatory changes in genes associated with the inflammation/immune and endocannabinoid systems were observed in these brain structures of lesioned mice. SUL reversed the memory and motor deficits, decreased the overexpression of microglia and astrocytes, and reduced neurodegeneration induced by HI. Cnr1 and Cnr2 gene expression was modulated by SUL in both sham and HI mice, while Ppar α and Faah expression was regulated in HI mice. GW completely blocked the beneficial actions of SUL. These findings suggest that treatment with SUL reduces brain damage and the associated motor and memory deficits induced by HI probably by normalizing the changes in neuroinflammation/immune system mediators.

  18. Memory Deficits Are Associated with Impaired Ability to Modulate Neuronal Excitability in Middle-Aged Mice

    ERIC Educational Resources Information Center

    Kaczorowski, Catherine C.; Disterhoft, John F.

    2009-01-01

    Normal aging disrupts hippocampal neuroplasticity and learning and memory. Aging deficits were exposed in a subset (30%) of middle-aged mice that performed below criterion on a hippocampal-dependent contextual fear conditioning task. Basal neuronal excitability was comparable in middle-aged and young mice, but learning-related modulation of the…

  19. Visuo-spatial memory deficits following medial temporal lobe damage: A comparison of three patient groups.

    PubMed

    Esfahani-Bayerl, Nazli; Finke, Carsten; Braun, Mischa; Düzel, Emrah; Heekeren, Hauke R; Holtkamp, Martin; Hasper, Dietrich; Storm, Christian; Ploner, Christoph J

    2016-01-29

    The contributions of the hippocampal formation and adjacent regions of the medial temporal lobe (MTL) to memory are still a matter of debate. It is currently unclear, to what extent discrepancies between previous human lesion studies may have been caused by the choice of distinct patient models of MTL dysfunction, as disorders affecting this region differ in selectivity, laterality and mechanisms of post-lesional compensation. Here, we investigated the performance of three distinct patient groups with lesions to the MTL with a battery of visuo-spatial short-term memory tasks. Thirty-one subjects with either unilateral damage to the MTL (postsurgical lesions following resection of a benign brain tumor, 6 right-sided lesions, 5 left) or bilateral damage (10 post-encephalitic lesions, 10 post-anoxic lesions) performed a series of tasks requiring short-term memory of colors, locations or color-location associations. We have shown previously that performance in the association task critically depends on hippocampal integrity. Patients with postsurgical damage of the MTL showed deficient performance in the association task, but performed normally in color and location tasks. Patients with left-sided lesions were almost as impaired as patients with right-sided lesions. Patients with bilateral post-encephalitic lesions showed comparable damage to MTL sub-regions and performed similarly to patients with postsurgical lesions in the association task. However, post-encephalitic patients showed additional impairments in the non-associative color and location tasks. A strikingly similar pattern of deficits was observed in post-anoxic patients. These results suggest a distinct cerebral organization of associative and non-associative short-term memory that was differentially affected in the three patient groups. Thus, while all patient groups may provide appropriate models of medial temporal lobe dysfunction in associative visuo-spatial short-term memory, additional deficits in

  20. Improving Working Memory in Children with Attention-Deficit/Hyperactivity Disorder: The Separate and Combined Effects of Incentives and Stimulant Medication

    ERIC Educational Resources Information Center

    Strand, Michael T.; Hawk, Larry W., Jr.; Bubnik, Michelle; Shiels, Keri; Pelham, William E., Jr.; Waxmonsky, James G.

    2012-01-01

    Working memory (WM) is considered a core deficit in Attention-Deficit/Hyperactivity Disorder (ADHD), with numerous studies demonstrating impaired WM among children with ADHD. We tested the degree to which WM in children with ADHD was improved by performance-based incentives, an analog of behavioral intervention. In two studies, WM performance was…

  1. Cognitive Training and Work Therapy for the Treatment of Verbal Learning and Memory Deficits in Veterans With Alcohol Use Disorders.

    PubMed

    Bell, Morris D; Vissicchio, Nicholas A; Weinstein, Andrea J

    2016-01-01

    This study focused on the efficacy of cognitive training for verbal learning and memory deficits in a population of older veterans with alcohol use disorders. Veterans with alcohol use disorders, who were in outpatient treatment at VA facilities and in early-phase recovery (N = 31), were randomized to receive a three-month trial of daily cognitive training plus work therapy (n = 15) or work therapy alone (n = 16), along with treatment as usual. Participants completed assessments at baseline and at three- and six-month follow-ups; the Hopkins Verbal Learning Task (HVLT) was the primary outcome measure. Participants were primarily male (97%) and in their mid-50s (M = 55.16, SD = 5.16) and had been sober for 1.64 (SD = 2.81) months. Study retention was excellent (91% at three-month follow-up) and adherence to treatment in both conditions was very good. On average, participants in the cognitive training condition had more than 41 hours of cognitive training, and both conditions had more than 230 hours of productive activity. HVLT results at three-month follow-up revealed significant condition effects favoring cognitive training for verbal learning (HVLT Trial-3 T-score, p < .005, Cohen's d = 1.3) and verbal memory (HVLT Total T-score, p < .01, Cohen's d = 1.1). Condition effects were sustained at six-month follow-up. At baseline, 55.9% of participants showed a significant deficit in verbal memory and 58.8% showed a deficit in verbal learning compared with a premorbid estimate of verbal IQ. At three-month follow-up there was a significant reduction in the number of participants in the cognitive training condition with clinically significant verbal memory deficits (p < .01, number needed to treat = 3.0) compared with the work therapy alone condition and a trend toward significance for verbal learning deficits, which was not sustained at six-month follow-up. This National Institute on Drug Abuse-funded pilot study demonstrates that cognitive training within the context

  2. Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory

    PubMed Central

    Leach, Prescott T.; Poplawski, Shane G.; Kenney, Justin W.; Hoffman, Barbara; Liebermann, Dan A.; Abel, Ted; Gould, Thomas J.

    2012-01-01

    Growth arrest and DNA damage-inducible β (Gadd45b) has been shown to be involved in DNA demethylation and may be important for cognitive processes. Gadd45b is abnormally expressed in subjects with autism and psychosis, two disorders associated with cognitive deficits. Furthermore, several high-throughput screens have identified Gadd45b as a candidate plasticity-related gene. However, a direct demonstration of a link between Gadd45b and memory has not been established. The current studies first determined whether expression of the Gadd45 family of genes was affected by contextual fear conditioning. Gadd45b, and to a lesser extent Gadd45g, were up-regulated in the hippocampus following contextual fear conditioning, whereas Gadd45a was not. Next, Gadd45b knockout mice were tested for contextual and cued fear conditioning. Gadd45b knockout mice exhibited a significant deficit in long-term contextual fear conditioning; however, they displayed normal levels of short-term contextual fear conditioning. No differences between Gadd45b knockout and wild-type mice were observed in cued fear conditioning. Because cued fear conditioning is hippocampus independent, while contextual fear conditioning is hippocampus dependent, the current studies suggest that Gadd45b may be important for long-term hippocampus-dependent memory storage. Therefore, Gadd45b may be a novel therapeutic target for the cognitive deficits associated with many neurodevelopmental, neurological, and psychiatric disorders. PMID:22802593

  3. Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory

    PubMed Central

    Xu, Lin-Hao; Xie, Hui; Shi, Zhi-Hui; Du, Li-Da; Wing, Yun-Kwok; Li, Albert M.

    2015-01-01

    Abstract Aims: This study examined the role of endoplasmic reticulum (ER) stress in mediating chronic intermittent hypoxia (IH)-induced neurocognitive deficits. We designed experiments to demonstrate that ER stress is initiated in the hippocampus under chronic IH and determined its role in apoptotic cell death, impaired synaptic structure and plasticity, and memory deficits. Results: Two weeks of IH disrupted ER fine structure and upregulated ER stress markers, glucose-regulated protein 78, caspase-12, and C/EBP homologous protein, in the hippocampus, which could be suppressed by ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid. Meanwhile, ER stress induced apoptosis via decreased Bcl-2, promoted reactive oxygen species production, and increased malondialdehyde formation and protein carbonyl, as well as suppressed mitochondrial function. These effects were largely prevented by ER stress inhibitors. On the other hand, suppression of oxidative stress could reduce ER stress. In addition, the length of the synaptic active zone and number of mature spines were reduced by IH. Long-term recognition memory and spatial memory were also impaired, which was accompanied by reduced long-term potentiation in the Schaffer collateral pathway. These effects were prevented by coadministration of the TUDCA. Innovation and Conclusion: These results show that ER stress plays a critical role in underlying memory deficits in obstructive sleep apnea (OSA)-associated IH. Attenuators of ER stress may serve as novel adjunct therapeutic agents for ameliorating OSA-induced neurocognitive impairment. Antioxid. Redox Signal. 23, 695–710. PMID:25843188

  4. β- but not γ-secretase proteolysis of APP causes synaptic and memory deficits in a mouse model of dementia.

    PubMed

    Tamayev, Robert; Matsuda, Shuji; Arancio, Ottavio; D'Adamio, Luciano

    2012-03-01

    A mutation in the BRI2/ITM2b gene causes loss of BRI2 protein leading to familial Danish dementia (FDD). BRI2 deficiency of FDD provokes an increase in amyloid-β precursor protein (APP) processing since BRI2 is an inhibitor of APP proteolysis, and APP mediates the synaptic/memory deficits in FDD. APP processing is linked to Alzheimer disease (AD) pathogenesis, which is consistent with a common mechanism involving toxic APP metabolites in both dementias. We show that inhibition of APP cleavage by β-secretase rescues synaptic/memory deficits in a mouse model of FDD. β-cleavage of APP yields amino-terminal-soluble APPβ (sAPPβ) and β-carboxyl-terminal fragments (β-CTF). Processing of β-CTF by γ-secretase releases amyloid-β (Aβ), which is assumed to cause AD. However, inhibition of γ-secretase did not ameliorate synaptic/memory deficits of FDD mice. These results suggest that sAPPβ and/or β-CTF, rather than Aβ, are the toxic species causing dementia, and indicate that reducing β-cleavage of APP is an appropriate therapeutic approach to treating human dementias. Our data and the failures of anti-Aβ therapies in humans advise against targeting γ-secretase cleavage of APP and/or Aβ. Copyright © 2012 EMBO Molecular Medicine.

  5. β- but not γ-secretase proteolysis of APP causes synaptic and memory deficits in a mouse model of dementia

    PubMed Central

    Tamayev, Robert; Matsuda, Shuji; Arancio, Ottavio; D'Adamio, Luciano

    2012-01-01

    A mutation in the BRI2/ITM2b gene causes loss of BRI2 protein leading to familial Danish dementia (FDD). BRI2 deficiency of FDD provokes an increase in amyloid-β precursor protein (APP) processing since BRI2 is an inhibitor of APP proteolysis, and APP mediates the synaptic/memory deficits in FDD. APP processing is linked to Alzheimer disease (AD) pathogenesis, which is consistent with a common mechanism involving toxic APP metabolites in both dementias. We show that inhibition of APP cleavage by β-secretase rescues synaptic/memory deficits in a mouse model of FDD. β-cleavage of APP yields amino-terminal-soluble APPβ (sAPPβ) and β-carboxyl-terminal fragments (β-CTF). Processing of β-CTF by γ-secretase releases amyloid-β (Aβ), which is assumed to cause AD. However, inhibition of γ-secretase did not ameliorate synaptic/memory deficits of FDD mice. These results suggest that sAPPβ and/or β-CTF, rather than Aβ, are the toxic species causing dementia, and indicate that reducing β-cleavage of APP is an appropriate therapeutic approach to treating human dementias. Our data and the failures of anti-Aβ therapies in humans advise against targeting γ-secretase cleavage of APP and/or Aβ. PMID:22170863

  6. Relationship between hippocampal subfield volumes and memory deficits in patients with thalamus infarction.

    PubMed

    Chen, Li; Luo, Tianyou; Lv, Fajin; Shi, Dandan; Qiu, Jiang; Li, Qi; Fang, Weidong; Peng, Juan; Li, Yongmei; Zhang, Zhiwei; Li, Yang

    2016-09-01

    Clinical studies have shown that thalamus infarction (TI) affects memory function. The thalamic nucleus is directly or indirectly connected to the hippocampal system in animal models. However, this connection has not been investigated using structural magnetic resonance imaging (MRI) in humans. From the pathological perspective, TI patients may serve as valid models for revealing the interaction between the thalamus and hippocampus in memory function. In this study, we aim to assess different hippocampal subfield volumes in TI patients and control subjects using MRI and test their associations with memory function. A total of 37 TI patients (TI group), 38 matched healthy control subjects (HC group), and 22 control patients with other stroke location (SC group) underwent 3.0-T MRI scans and clinical memory examinations. Hippocampal subfield volumes were measured and compared by using FreeSurfer software. We examined the correlation between hippocampal subfield volumes and memory scores. Smaller ipsilesional presubiculum and subiculum volumes were observed, and former was related to graphics recall in both left and right TI patients. The left subiculum volume was correlated with short-delayed recall in left TI patients. The right presubiculum volume was correlated with short- and long-delayed recall in right TI patients. TI was found to result in hippocampal abnormality and memory deficits, and its neural mechanisms might be related with and interaction between the thalamus and hippocampus.

  7. The selective positive allosteric M1 muscarinic receptor modulator PQCA attenuates learning and memory deficits in the Tg2576 Alzheimer's disease mouse model.

    PubMed

    Puri, Vanita; Wang, Xiaohai; Vardigan, Joshua D; Kuduk, Scott D; Uslaner, Jason M

    2015-01-01

    We have recently shown that the M1 muscarinic receptor positive allosteric modulator, PQCA, improves cognitive performance in rodents and non-human primates administered the muscarinic receptor antagonist scopolamine. The purpose of the present experiments was to characterize the effects of PQCA in a model more relevant to the disease pathology of Alzheimer's disease. Tg2576 transgenic mice that have elevated Aβ were tested in the novel object recognition task to characterize recognition memory as a function of age and treatment with the PQCA. The effects of PQCA were compared to the acetylcholinesterase inhibitor donepezil, the standard of care for Alzheimer's disease. In addition, the effect of co-administering PQCA and donepezil was evaluated. Aged Tg2576 mice demonstrated a deficit in recognition memory that was significantly attenuated by PQCA. The positive control donepezil also reversed the deficit. Furthermore, doses of PQCA and donepezil that were inactive on their own were found to improve recognition memory when given together. These studies suggest that M1 muscarinic receptor positive allosteric modulation can ameliorate memory deficits in disease relevant models of Alzheimer's disease. These data, combined with our previous findings demonstrating PQCA improves scopolamine-induced cognitive deficits in both rodents and non-human primates, suggest that M1 positive allosteric modulators have therapeutic potential for the treatment of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Using visual lateralization to model learning and memory in zebrafish larvae

    PubMed Central

    Andersson, Madelene Åberg; Ek, Fredrik; Olsson, Roger

    2015-01-01

    Impaired learning and memory are common symptoms of neurodegenerative and neuropsychiatric diseases. Present, there are several behavioural test employed to assess cognitive functions in animal models, including the frequently used novel object recognition (NOR) test. However, although atypical functional brain lateralization has been associated with neuropsychiatric conditions, spanning from schizophrenia to autism, few animal models are available to study this phenomenon in learning and memory deficits. Here we present a visual lateralization NOR model (VLNOR) in zebrafish larvae as an assay that combines brain lateralization and NOR. In zebrafish larvae, learning and memory are generally assessed by habituation, sensitization, or conditioning paradigms, which are all representatives of nondeclarative memory. The VLNOR is the first model for zebrafish larvae that studies a memory similar to the declarative memory described for mammals. We demonstrate that VLNOR can be used to study memory formation, storage, and recall of novel objects, both short and long term, in 10-day-old zebrafish. Furthermore we show that the VLNOR model can be used to study chemical modulation of memory formation and maintenance using dizocilpine (MK-801), a frequently used non-competitive antagonist of the NMDA receptor, used to test putative antipsychotics in animal models. PMID:25727677

  9. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms.

    PubMed

    Hasanein, Parisa; Felehgari, Zhila; Emamjomeh, Abbasali

    2016-05-27

    Learning and memory impairment occurs in diabetes. Salvia officinalis L. (SO) has been used in Iranian traditional medicine as a remedy against diabetes. We hypothesized that chronic administration of SO (400, 600 and 800mg/kg, p.o.) and its principal constituent, rosmarinic acid, would affect on passive avoidance learning (PAL) and memory in streptozocin-induced diabetic and non-diabetic rats. We also explored hypoglycemic and antioxidant activities of SO as the possible mechanisms. Treatments were begun at the onset of hyperglycemia. PAL was assessed 30days later. Retention test was done 24h after training. At the end, animals were weighed and blood samples were drawn for further analyzing of glucose and oxidant/antioxidant markers. Diabetes induced deficits in acquisition and retrieval processes. SO (600 and 800mg/kg) and rosmarinic acid reversed learning and memory deficits induced by diabetes and improved cognition of healthy rats. While the dose of 400mg/kg had no effect, the higher doses and rosmarinic acid inhibited hyperglycemia and lipid peroxidation as well as enhanced the activity of antioxidant enzymes superoxide dismutase and catalase. SO prevented diabetes-induced acquisition and memory deficits through inhibiting hyperglycemia, lipid peroxidation as well as enhancing antioxidant defense systems. Therefore, SO and its principal constituent rosmarinic acid represent a potential therapeutic option against diabetic memory impairment which deserves consideration and further examination. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. A Characterization of Visual, Semantic and Auditory Memory in Children with Combination-Type Attention Deficit, Primarily Inattentive, and a Control Group

    ERIC Educational Resources Information Center

    Ramirez, Luz Angela; Arenas, Angela Maria; Henao, Gloria Cecilia

    2005-01-01

    Introduction: This investigation describes and compares characteristics of visual, semantic and auditory memory in a group of children diagnosed with combined-type attention deficit with hyperactivity, attention deficit predominating, and a control group. Method: 107 boys and girls were selected, from 7 to 11 years of age, all residents in the…

  11. Interference effects between memory systems in the acquisition of a skill.

    PubMed

    Gagné, Marie-Hélène; Cohen, Henri

    2016-10-01

    There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.

  12. An Intracellular Threonine of Amyloid-β Precursor Protein Mediates Synaptic Plasticity Deficits and Memory Loss

    PubMed Central

    Lombino, Franco; Biundo, Fabrizio; Tamayev, Robert; Arancio, Ottavio; D’Adamio, Luciano

    2013-01-01

    Mutations in Amyloid-ß Precursor Protein (APP) and BRI2/ITM2b genes cause Familial Alzheimer and Danish Dementias (FAD/FDD), respectively. APP processing by BACE1, which is inhibited by BRI2, yields sAPPß and ß-CTF. ß-CTF is cleaved by gamma-secretase to produce Aß. A knock-in mouse model of FDD, called FDDKI, shows deficits in memory and synaptic plasticity, which can be attributed to sAPPß/ß-CTF but not Aß. We have investigated further the pathogenic function of ß-CTF focusing on Thr668 of ß-CTF because phosphorylation of Thr668 is increased in AD cases. We created a knock-in mouse bearing a Thr668Ala mutation (APPTA mice) that prevents phosphorylation at this site. This mutation prevents the development of memory and synaptic plasticity deficits in FDDKI mice. These data are consistent with a role for the carboxyl-terminal APP domain in the pathogenesis of dementia and suggest that averting the noxious role of Thr668 is a viable therapeutic strategy for human dementias. PMID:23451158

  13. Deletion of Glutamate Delta-1 Receptor in Mouse Leads to Enhanced Working Memory and Deficit in Fear Conditioning

    PubMed Central

    Yadav, Roopali; Hillman, Brandon G.; Gupta, Subhash C.; Suryavanshi, Pratyush; Bhatt, Jay M.; Pavuluri, Ratnamala; Stairs, Dustin J.; Dravid, Shashank M.

    2013-01-01

    Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins was observed in amygdala and prefrontal cortex of GluD1 knockout mice (GluD1 KO). However the role of GluD1 in learning and memory paradigms remains unknown. In the present study we evaluated GluD1 KO in learning and memory tests. In the eight-arm radial maze GluD1 KO mice committed fewer working memory errors compared to wildtype mice but had normal reference memory. Enhanced working memory in GluD1 KO was also evident by greater percent alternation in the spontaneous Y-maze test. No difference was observed in object recognition memory in the GluD1 KO mice. In the Morris water maze test GluD1 KO mice showed no difference in acquisition but had longer latency to find the platform in the reversal learning task. GluD1 KO mice showed a deficit in contextual and cue fear conditioning but had normal latent inhibition. The deficit in contextual fear conditioning was reversed by D-Cycloserine (DCS) treatment. GluD1 KO mice were also found to be more sensitive to foot-shock compared to wildtype. We further studied molecular changes in the hippocampus, where we found lower levels of GluA1, GluA2 and GluK2 subunits while a contrasting higher level of GluN2B in GluD1 KO. Additionally, we found higher postsynaptic density protein 95 (PSD95) and lower glutamate decarboxylase 67 (GAD67) expression in GluD1 KO. We propose that GluD1 is crucial for normal functioning of synapses and absence of GluD1 leads to specific abnormalities in learning and memory. These findings provide novel insights into the role of GluD1 receptors in the central nervous system. PMID:23560106

  14. Reduced prefrontal efficiency for visuospatial working memory in attention-deficit/hyperactivity disorder.

    PubMed

    Bédard, Anne-Claude V; Newcorn, Jeffrey H; Clerkin, Suzanne M; Krone, Beth; Fan, Jin; Halperin, Jeffrey M; Schulz, Kurt P

    2014-09-01

    Visuospatial working memory impairments have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, most ADHD research has focused on the neural correlates of nonspatial mnemonic processes. This study examined brain activation and functional connectivity for visuospatial working memory in youth with and without ADHD. Twenty-four youth with ADHD and 21 age- and sex-matched healthy controls were scanned with functional magnetic resonance imaging while performing an N-back test of working memory for spatial position. Block-design analyses contrasted activation and functional connectivity separately for high (2-back) and low (1-back) working memory load conditions versus the control condition (0-back). The effect of working memory load was modeled with linear contrasts. The 2 groups performed comparably on the task and demonstrated similar patterns of frontoparietal activation, with no differences in linear gains in activation as working memory load increased. However, youth with ADHD showed greater activation in the left dorsolateral prefrontal cortex (DLPFC) and left posterior cingulate cortex (PCC), greater functional connectivity between the left DLPFC and left intraparietal sulcus, and reduced left DLPFC connectivity with left midcingulate cortex and PCC for the high load contrast compared to controls (p < .01; k > 100 voxels). Reanalysis using a more conservative statistical approach (p < .001; k > 100 voxels) yielded group differences in PCC activation and DLPFC-midcingulate connectivity. Youth with ADHD show decreased efficiency of DLPFC for high-load visuospatial working memory and greater reliance on posterior spatial attention circuits to store and update spatial position than healthy control youth. Findings should be replicated in larger samples. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Medial Temporal Lobe Memory in Childhood: Developmental Transitions

    ERIC Educational Resources Information Center

    Townsend, Elise L.; Richmond, Jenny L.; Vogel-Farley, Vanessa K.; Thomas, Kathleen

    2010-01-01

    The medial temporal lobes (MTL) support declarative memory and mature structurally and functionally during the postnatal years in humans. Although recent work has addressed the development of declarative memory in early childhood, less is known about continued development beyond this period of time. The purpose of this investigation was to explore…

  16. Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse

    PubMed Central

    Carey, Amanda N.; Sypek, Elizabeth I.; Singh, Harminder D.; Kaufman, Marc J.; McLaughlin, Jay P.

    2012-01-01

    HIV-Tat protein has been implicated in the pathogenesis of HIV-1 neurological complications (i.e., neuroAIDS), but direct demonstrations of the effects of Tat on behavior are limited. GT-tg mice with a doxycycline (Dox)-inducible and brain-selective tat gene coding for Tat protein were used to test the hypothesis that the activity of Tat in brain is sufficient to impair learning and memory processes. Western blot analysis of GT-tg mouse brains demonstrated an increase in Tat antibody labeling that seemed to be dependent on the dose and duration of Dox pretreatment. Dox-treated GT-tg mice tested in the Barnes maze demonstrated longer latencies to find an escape hole and displayed deficits in probe trial performance, versus uninduced GT-tg littermates, suggesting Tat-induced impairments of spatial learning and memory. Reversal learning was also impaired in Tat-induced mice. Tat-induced mice additionally demonstrated long-lasting (up to one month) deficiencies in novel object recognition learning and memory performance. Furthermore, novel object recognition impairment was dependent on the dose and duration of Dox exposure, suggesting that Tat exposure progressively mediated deficits. These experiments provide evidence that Tat protein expression is sufficient to mediate cognitive abnormalities seen in HIV-infected individuals. Moreover, the genetically engineered GT-tg mouse may be useful for improving our understanding of the neurological underpinnings of neuroAIDS-related behaviors. PMID:22197678

  17. Oral administration of grape seed polyphenol extract restores memory deficits in chronic cerebral hypoperfusion rats.

    PubMed

    Chen, Chen; Zheng, Yake; Wu, Tianwen; Wu, Chuanjie; Cheng, Xuan

    2017-04-01

    Chronic cerebral hypoperfusion (CCH) has been recognized as an important cause of both vascular dementia and Alzheimer's disease (AD), the two most prominent neurodegenerative diseases causing memory impairment in the elderly. However, an effective therapy for CCH-induced memory impairment has not yet been established. Grape seed polyphenol extract (GSPE) has powerful antioxidant properties and protects neurons and glia during ischemic injury, but its potential use in the prevention of CCH-induced memory impairment has not yet been investigated. Here, CCH-related memory impairment was modeled in rats using permanent bilateral occlusion of the common carotid artery. A Morris water maze task was used to evaluate memory, the levels of acetylcholinesterase, choline acetyltransferase, acetylcholine were used to evaluate cholinergic function, and oxidative stress was assessed by measuring the enzyme activity of superoxide dismutase, glutathione peroxidase, malonic dialdehyde, and catalase. We found that oral administration of GSPE for 1 month can rescue memory deficits. We also found that GSPE restores cholinergic neuronal function and represses oxidative damage in the hippocampus of CCH rats. We propose that GSPE protects memory in CCH rats by reducing ischemia-induced oxidative stress and cholinergic dysfunction. These findings provide a novel application of GSPE in CCH-related memory impairments.

  18. Modulation of competing memory systems by distraction.

    PubMed

    Foerde, Karin; Knowlton, Barbara J; Poldrack, Russell A

    2006-08-01

    Different forms of learning and memory depend on functionally and anatomically separable neural circuits [Squire, L. R. (1992) Psychol. Rev. 99, 195-231]. Declarative memory relies on a medial temporal lobe system, whereas habit learning relies on the striatum [Cohen, N. J. & Eichenbaum, H. (1993) Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, MA)]. How these systems are engaged to optimize learning and behavior is not clear. Here, we present results from functional neuroimaging showing that the presence of a demanding secondary task during learning modulates the degree to which subjects solve a problem using either declarative memory or habit learning. Dual-task conditions did not reduce accuracy but reduced the amount of declarative learning about the task. Medial temporal lobe activity was correlated with task performance and declarative knowledge after learning under single-task conditions, whereas performance was correlated with striatal activity after dual-task learning conditions. These results demonstrate a fundamental difference in these memory systems in their sensitivity to concurrent distraction. The results are consistent with the notion that declarative and habit learning compete to mediate task performance, and they suggest that the presence of distraction can bias this competition. These results have implications for learning in multitask situations, suggesting that, even if distraction does not decrease the overall level of learning, it can result in the acquisition of knowledge that can be applied less flexibly in new situations.

  19. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats.

    PubMed

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Ben, Juliana; Guaita, Gisele O; Pita, Inês R; Sequeira, Ana C; Pereira, Frederico C; Walz, Roger; Takahashi, Reinaldo N; Bertoglio, Leandro J; Da Cunha, Cláudio; Cunha, Rodrigo A; Prediger, Rui D

    2016-03-15

    Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [Neurobiology of learning and memory and anti-dementia drug].

    PubMed

    Ishikawa, K

    1995-08-01

    Discoveries of long-term potentiation and immediate early gene in the central nervous system have enabled new developments in experiments on learning and memory. These experiments are conducted in many kinds of animals with different procedures, physiology, chemistry and pharmacology. However, there is still some confusion when these various procedures are discussed. Memory is defined as information storage of an animal's previous experiences. The memory induces changes in behavioral performance. This means that memory must be observed in whole animals, and one question that can occur is how does long-term potentiation, for example, correlate with memory. Furthermore, memory has been divided into two major classifications, declarative and non-declarative, from the comparison of amnesias observed in humans and animals. The declarative memory can be observed in human subjects, but not in animals. This article presents a neuronal circuit concerning memory formation and some results obtained from benzodiazepines, and it discusses some problems encountered executing when experiments on learning and memory. In addition, the discussion speculates over the possibility for an "anti-dementia drug".

  1. Neural hyperactivity related to working memory in drug-naive boys with attention deficit hyperactivity disorder.

    PubMed

    Li, Yuanyuan; Li, Fei; He, Ning; Guo, Lanting; Huang, Xiaoqi; Lui, Su; Gong, Qiyong

    2014-08-04

    Impaired working memory is thought to be a core feature of attention deficit hyperactivity disorder (ADHD). Previous imaging studies investigating working memory in ADHD have used tasks involving different cognitive resources and ignoring the categorical judgments about objects that are essential parts of performance in visual working memory tasks, thus complicating the interpretation of their findings. In the present study, we explored differential neural activation in children and adolescents with ADHD and in healthy controls using functional magnetic resonance imaging (fMRI) with the categorical n-back task (CN-BT), which maximized demands for executive reasoning while holding memory demands constant. A total of 33 drug-naive, right-handed male ADHD without comorbidity (mean age 9.9±2.4 years) and 27 right-handed, healthy male controls (mean age 10.9±2.7 years) were recruited in the present study. Event-related fMRI was used to study differences in brain activity during the CN-BT between the two groups. The two groups did not differ in their accuracy in the CN-BT, although the ADHD patients showed significantly shorter reaction times to correct responses than did the controls. During the CN-BT, both ADHD patients and controls showed significant positive and negative activations by the correct responses, mainly in the sensory-motor pathways and the striato-cerebellum circuit. Additionally, the ADHD patients showed significantly higher activation in the bilateral globus pallidus and the right hippocampus compared with the controls. There was also a positive correlation between hyperactivation of the left globus pallidus and the reaction time to correct responses in ADHD. In contrast to controls, ADHD patients showed neural hyperactivation in the striatum and mediotemporal areas during a working memory task involving categorization. Hyperfunction in these areas might be the pathophysiological foundation of ADHD, related to the deficits of working memory and the

  2. The relationships between memory systems and sleep stages.

    PubMed

    Rauchs, Géraldine; Desgranges, Béatrice; Foret, Jean; Eustache, Francis

    2005-06-01

    Sleep function remains elusive despite our rapidly increasing comprehension of the processes generating and maintaining the different sleep stages. Several lines of evidence support the hypothesis that sleep is involved in the off-line reprocessing of recently-acquired memories. In this review, we summarize the main results obtained in the field of sleep and memory consolidation in both animals and humans, and try to connect sleep stages with the different memory systems. To this end, we have collated data obtained using several methodological approaches, including electrophysiological recordings of neuronal ensembles, post-training modifications of sleep architecture, sleep deprivation and functional neuroimaging studies. Broadly speaking, all the various studies emphasize the fact that the four long-term memory systems (procedural memory, perceptual representation system, semantic and episodic memory, according to Tulving's SPI model; Tulving, 1995) benefit either from non-rapid eye movement (NREM) (not just SWS) or rapid eye movement (REM) sleep, or from both sleep stages. Tulving's classification of memory systems appears more pertinent than the declarative/non-declarative dichotomy when it comes to understanding the role of sleep in memory. Indeed, this model allows us to resolve several contradictions, notably the fact that episodic and semantic memory (the two memory systems encompassed in declarative memory) appear to rely on different sleep stages. Likewise, this model provides an explanation for why the acquisition of various types of skills (perceptual-motor, sensory-perceptual and cognitive skills) and priming effects, subserved by different brain structures but all designated by the generic term of implicit or non-declarative memory, may not benefit from the same sleep stages.

  3. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems.

    PubMed

    Le, Xoan Thi; Pham, Hang Thi Nguyet; Do, Phuong Thi; Fujiwara, Hironori; Tanaka, Ken; Li, Feng; Van Nguyen, Tai; Nguyen, Khoi Minh; Matsumoto, Kinzo

    2013-10-01

    This study investigated the effects of alcoholic extract of Bacopa monnieri (L.) Wettst. (BM) on cognitive deficits using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its action. OBX mice were treated daily with BM (50 mg/kg, p.o.) or a reference drug, tacrine (2.5 mg/kg, i.p.), 1 week before and continuously 3 days after OBX. Cognitive performance of the animals was analyzed by the novel object recognition test, modified Y maze test, and fear conditioning test. Brain tissues of OBX animals were used for neurochemical and immunohistochemical studies. OBX impaired non-spatial short-term memory, spatial working memory, and long-term fair memory. BM administration ameliorated these memory disturbances. The effect of BM on short-term memory deficits was abolished by a muscarinic receptor antagonist, scopolamine. OBX downregulated phosphorylation of synaptic plasticity-related signaling proteins: NR1 subunit of N-methyl-D-aspartate receptor, glutamate receptor 1 (GluR1), and calmodulin-dependent kinase II but not cyclic AMP-responsive element binding protein (CREB), and reduced brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. OBX also reduced choline acetyltransferase in the hippocampus and cholinergic neurons in the medial septum, and enlarged the size of lateral ventricle. BM administration reversed these OBX-induced neurochemical and histological alterations, except the decrease of GluR1 phosphorylation, and enhanced CREB phosphorylation. Moreover, BM treatment inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BM treatment ameliorates OBX-induced cognition dysfunction via a mechanism involving enhancement of synaptic plasticity-related signaling and BDNF transcription and protection of cholinergic systems from OBX-induced neuronal damage.

  4. Danish dementia mice suggest that loss of function and not the amyloid cascade causes synaptic plasticity and memory deficits

    PubMed Central

    Tamayev, Robert; Matsuda, Shuji; Fà, Mauro; Arancio, Ottavio; D’Adamio, Luciano

    2010-01-01

    According to the prevailing “amyloid cascade hypothesis,” genetic dementias such as Alzheimer’s disease and familial Danish dementia (FDD) are caused by amyloid deposits that trigger tauopathy, neurodegeneration, and behavioral/cognitive alterations. To efficiently reproduce amyloid lesions, murine models of human dementias invariably use transgenic expression systems. However, recent FDD transgenic models showed that Danish amyloidosis does not cause memory defects, suggesting that other mechanisms cause Danish dementia. We studied an animal knock-in model of FDD (FDDKI/+) genetically congruous with human cases. FDDKI/+ mice present reduced Bri2 levels, impaired synaptic plasticity and severe hippocampal memory deficits. These animals show no cerebral lesions that are reputed characteristics of human dementia, such as tangles or amyloid plaques. Bri2+/− mice exhibit synaptic and memory deficits similar to FDDKI/+ mice, and memory loss of FDDKI/+ mice is prevented by expression of WT BRI2, indicating that Danish dementia is caused by loss of BRI2 function. Together, the data suggest that clinical dementia in Danish patients occurs via a loss of function mechanism and not as a result of amyloidosis and tauopathy. PMID:21098268

  5. Danish dementia mice suggest that loss of function and not the amyloid cascade causes synaptic plasticity and memory deficits.

    PubMed

    Tamayev, Robert; Matsuda, Shuji; Fà, Mauro; Arancio, Ottavio; D'Adamio, Luciano

    2010-11-30

    According to the prevailing "amyloid cascade hypothesis," genetic dementias such as Alzheimer's disease and familial Danish dementia (FDD) are caused by amyloid deposits that trigger tauopathy, neurodegeneration, and behavioral/cognitive alterations. To efficiently reproduce amyloid lesions, murine models of human dementias invariably use transgenic expression systems. However, recent FDD transgenic models showed that Danish amyloidosis does not cause memory defects, suggesting that other mechanisms cause Danish dementia. We studied an animal knock-in model of FDD (FDD(KI/+)) genetically congruous with human cases. FDD(KI/+) mice present reduced Bri2 levels, impaired synaptic plasticity and severe hippocampal memory deficits. These animals show no cerebral lesions that are reputed characteristics of human dementia, such as tangles or amyloid plaques. Bri2(+/-) mice exhibit synaptic and memory deficits similar to FDD(KI/+) mice, and memory loss of FDD(KI/+) mice is prevented by expression of WT BRI2, indicating that Danish dementia is caused by loss of BRI2 function. Together, the data suggest that clinical dementia in Danish patients occurs via a loss of function mechanism and not as a result of amyloidosis and tauopathy.

  6. The protective effect of hydrogen sulfide (H2S) on traumatic brain injury (TBI) induced memory deficits in rats.

    PubMed

    Karimi, Seyed Asaad; Hosseinmardi, Narges; Janahmadi, Mahyar; Sayyah, Mohammad; Hajisoltani, Razieh

    2017-09-01

    Traumatic brain injury (TBI), as an expanding public health epidemic, is a common cause of death among youth. TBI is associated with cognitive deficits and memory impairment. Hydrogen sulfide (H 2 S), a novel gaseous mediator, has been recognized as an important neuromodulator and neuroprotective agent in the central nervous system. In the present study the potential neuroprotective role of sodium hydrosulfide (NaHS), an H 2 S donor on TBI induced memory deficit in a rat model of controlled cortical impact (CCI) injury was investigated. CCI model was used to induce TBI. Male rats were randomly assigned into the following groups: control, sham, sham treated with NaHS, TBI, and TBI treated with NaHS (3 and 5mg/kg). NaHS was injected intraperitoneally 5min before TBI induction. Learning and memory were assessed using Morris water maze (MWM) on days 8-12 following injury. CCI resulted in MWM deficits. Injured animals showed a slower rate of acquisition with respect to the sham-operated animals [F (1, 24)=13.97, P<0.01, two-way ANOVA]. NaHS improved spatial memory impairment of injured rats. Treatment with NaHS (5 mg/kg) decreased the escape latency [F (1, 24)=7.559, P<0.05, two-way ANOVA] and traveled distance [F (1, 12)=6.398, P<0.05, Two way ANOVA)]. In probe test, injured animals spent less time in target zone (P<0.05, unpaired t-test) and NaHS did not have any effect on this parameter (p>0.05, one way ANOVA). These findings suggest that NaHS has a neuroprotective effect on TBI-induced memory impairment in rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Oculomotor Performance Identifies Underlying Cognitive Deficits in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Loe, Irene M.; Feldman, Heidi M.; Yasui, Enami; Luna, Beatriz

    2009-01-01

    The evaluation of the cognitive control in children with attention-deficit hyperactivity disorder through the use of oculomotor tests reveal that this group showed susceptibility to peripheral distractors and deficits in response inhibition. All subjects were found to have intact sensorimotor function and working memory.

  8. Disruptions of working memory and inhibition mediate the association between exposure to institutionalization and symptoms of attention deficit hyperactivity disorder.

    PubMed

    Tibu, F; Sheridan, M A; McLaughlin, K A; Nelson, C A; Fox, N A; Zeanah, C H

    2016-02-01

    Young children raised in institutions are exposed to extreme psychosocial deprivation that is associated with elevated risk for psychopathology and other adverse developmental outcomes. The prevalence of attention deficit hyperactivity disorder (ADHD) is particularly high in previously institutionalized children, yet the mechanisms underlying this association are poorly understood. We investigated whether deficits in executive functioning (EF) explain the link between institutionalization and ADHD. A sample of 136 children (aged 6-30 months) was recruited from institutions in Bucharest, Romania, and 72 never institutionalized community children matched for age and gender were recruited through general practitioners' offices. At 8 years of age, children's performance on a number of EF components (working memory, response inhibition and planning) was evaluated. Teachers completed the Health and Behavior Questionnaire, which assesses two core features of ADHD, inattention and impulsivity. Children with history of institutionalization had higher inattention and impulsivity than community controls, and exhibited worse performance on working memory, response inhibition and planning tasks. Lower performances on working memory and response inhibition, but not planning, partially mediated the association between early institutionalization and inattention and impulsivity symptom scales at age 8 years. Institutionalization was associated with decreased EF performance and increased ADHD symptoms. Deficits in working memory and response inhibition were specific mechanisms leading to ADHD in previously institutionalized children. These findings suggest that interventions that foster the development of EF might reduce risk for psychiatric problems in children exposed to early deprivation.

  9. A Meta-Analysis of Working Memory Deficits in Children with Learning Difficulties: Is There a Difference between Verbal Domain and Numerical Domain?

    ERIC Educational Resources Information Center

    Peng, Peng; Fuchs, Douglas

    2016-01-01

    Children with learning difficulties suffer from working memory (WM) deficits. Yet the specificity of deficits associated with different types of learning difficulties remains unclear. Further research can contribute to our understanding of the nature of WM and the relationship between it and learning difficulties. The current meta-analysis…

  10. Inhibition of Histone Acetylation by ANP32A Induces Memory Deficits.

    PubMed

    Chai, Gao-Shang; Feng, Qiong; Ma, Rong-Hong; Qian, Xiao-Hang; Luo, Dan-Ju; Wang, Zhi-Hao; Hu, Yu; Sun, Dong-Sheng; Zhang, Jun-Fei; Li, Xiao; Li, Xiao-Guang; Ke, Dan; Wang, Jian-Zhi; Yang, Xi-Fei; Liu, Gong-Ping

    2018-01-01

    There is accumulating evidence that decreased histone acetylation is involved in normal aging and neurodegenerative diseases. Recently, we found that ANP32A, a key component of INHAT (inhibitor of acetyltransferases) that suppresses histone acetylation, increased in aged and cognitively impaired C57 mice and expressing wild-type human full length tau (htau) transgenic mice. Downregulating ANP32A restored cognitive function and synaptic plasticity through upregulation of the expressions of synaptic-related proteins via increasing histone acetylation. However, there is no direct evidence that ANP32A can induce neurodegeneration and memory deficits. In the present study, we overexpressed ANP32A in the hippocampal CA3 region of C57 mice and found that ANP32A overexpression induced cognitive abilities and synaptic plasticity deficits, with decreased synaptic-related protein expression and histone acetylation. Combined with our recent studies, our findings reveal that upregulated ANP32A induced-suppressing histone acetylation may underlie the cognitive decline in neurodegenerative disease, and suppression of ANP32A may represent a promising therapeutic approach for neurodegenerative diseases including Alzheimer's disease.

  11. Lithium, phenserine, memantine and pioglitazone reverse memory deficit and restore phospho-GSK3β decreased in hippocampus in intracerebroventricular streptozotocin induced memory deficit model.

    PubMed

    Ponce-Lopez, Teresa; Liy-Salmeron, Gustavo; Hong, Enrique; Meneses, Alfredo

    2011-12-02

    Intracerebroventricular (ICV) streptozotocin (STZ) treated rat has been described as a suitable model for sporadic Alzheimer's disease (AD). Central application of STZ has demonstrated behavioral and neurochemical features that resembled those found in human AD. Chronic treatments with antioxidants, acetylcholinesterase (AChE) inhibitors, or improving glucose utilization drugs have reported a beneficial effect in ICV STZ-treated rats. In the present study the post-training administration of a glycogen synthase kinase (GSK3) inhibitor, lithium; antidementia drugs: phenserine and memantine, and insulin sensitizer, pioglitazone on memory function of ICV STZ-rats was assessed. In these same animals the phosphorylated GSK3β (p-GSK3β) and total GSK3β levels were determined, and importantly GSK3β regulates the tau phosphorylation responsible for neurofibrillary tangle formation in AD. Wistar rats received ICV STZ application (3mg/kg twice) and 2 weeks later short- (STM) and long-term memories (LTM) were assessed in an autoshaping learning task. Animals were sacrificed immediately following the last autoshaping session, their brains removed and dissected. The enzymes were measured in the hippocampus and prefrontal cortex (PFC) by western blot. ICV STZ-treated rats showed a memory deficit and significantly decreased p-GSK3β levels, while total GSK3β did not change, in both the hippocampus and PFC. Memory impairment was reversed by lithium (100mg/kg), phenserine (1mg/kg), memantine (5mg/kg) and pioglitazone (30 mg/kg). The p-GSK3β levels were restored by lithium, phenserine and pioglitazone in the hippocampus, and restored by lithium in the PFC. Memantine produced no changes in p-GSK3β levels in neither the hippocampus nor PFC. Total GSK3β levels did not change with either drug. Altogether these results show the beneficial effects of drugs with different mechanisms of actions on memory impairment induced by ICV STZ, and restored p-GSK3β levels, a kinase key of

  12. Transcranial direct current stimulation improves short-term memory in an animal model of attention-deficit/hyperactivity disorder.

    PubMed

    Leffa, Douglas Teixeira; de Souza, Andressa; Scarabelot, Vanessa Leal; Medeiros, Liciane Fernandes; de Oliveira, Carla; Grevet, Eugenio Horacio; Caumo, Wolnei; de Souza, Diogo Onofre; Rohde, Luis Augusto Paim; Torres, Iraci L S

    2016-02-01

    Attention deficit hyperactivity disorder (ADHD) is characterized by impairing levels of hyperactivity, impulsivity and inattention. However, different meta-analyses have reported disruptions in short and long-term memory in ADHD patients. Previous studies indicate that mnemonic dysfunctions might be the result of deficits in attentional circuits, probably due to ineffective dopaminergic modulation of hippocampal synaptic plasticity. In this study we aimed to evaluate the potential therapeutic effects of a neuromodulatory technique, transcranial direct current stimulation (tDCS), in short-term memory (STM) deficits presented by the spontaneous hypertensive rats (SHR), the most widely used animal model of ADHD. Adult male SHR and Wistar Kyoto rats (WKY) were subjected to a constant electrical current of 0.5 mA intensity applied on the frontal cortex for 20 min/day during 8 days. STM was evaluated with an object recognition test conducted in an open field. Exploration time and locomotion were recorded, and brain regions were dissected to determine dopamine and BDNF levels. SHR spent less time exploring the new object when compared to WKY, and tDCS improved object recognition deficits in SHR without affecting WKY performance. Locomotor activity was higher in SHR and it was not affected by tDCS. After stimulation, dopamine levels were increased in the hippocampus and striatum of both strains, while BDNF levels were increased only in the striatum of WKY. These findings suggest that tDCS on the frontal cortex might be able to improve STM deficits present in SHR, which is potentially related to dopaminergic neurotransmission in the hippocampus and striatum of those animals. Copyright © 2016. Published by Elsevier B.V.

  13. Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans.

    PubMed

    Ellis, Julia R; Ellis, Kathryn A; Bartholomeusz, Cali F; Harrison, Ben J; Wesnes, Keith A; Erskine, Fiona F; Vitetta, Luis; Nathan, Pradeep J

    2006-04-01

    Functional abnormalities in muscarinic and nicotinic receptors are associated with a number of disorders including Alzheimer's disease and schizophrenia. While the contribution of muscarinic receptors in modulating cognition is well established in humans, the effects of nicotinic receptors and the interactions and possible synergistic effects between muscarinic and nicotinic receptors have not been well characterized in humans. The current study examined the effects of selective and simultaneous muscarinic and nicotinic receptor antagonism on a range of cognitive processes. The study was a double-blind, placebo-controlled, repeated measures design in which 12 healthy, young volunteers completed cognitive testing under four acute treatment conditions: placebo (P); mecamylamine (15 mg) (M); scopolamine (0.4 mg i.m.) (S); mecamylamine (15 mg)/scopolamine (0.4 mg i.m.) (MS). Muscarinic receptor antagonism with scopolamine resulted in deficits in working memory, declarative memory, sustained visual attention and psychomotor speed. Nicotinic antagonism with mecamylamine had no effect on any of the cognitive processes examined. Simultaneous antagonism of both muscarinic and nicotinic receptors with mecamylamine and scopolamine impaired all cognitive processes impaired by scopolamine and produced greater deficits than either muscarinic or nicotinic blockade alone, particularly on working memory, visual attention and psychomotor speed. These findings suggest that muscarinic and nicotinic receptors may interact functionally to have synergistic effects particularly on working memory and attention and suggests that therapeutic strategies targeting both receptor systems may be useful in improving selective cognitive processes in a number of disorders.

  14. Prevalence and diagnostic validity of motivational impairments and deficits in visuospatial short-term memory and working memory in ADHD subtypes.

    PubMed

    Dovis, Sebastiaan; Van der Oord, Saskia; Huizenga, Hilde M; Wiers, Reinout W; Prins, Pier J M

    2015-05-01

    Deficits in working memory (WM) and reinforcement sensitivity are thought to give rise to symptoms in the combined (ADHD-C) and inattentive subtype (ADHD-I) of ADHD. Children with ADHD are especially impaired on visuospatial WM, which is composed of short-term memory (STM) and a central executive. Although deficits in visuospatial WM and reinforcement sensitivity appear characteristic of children with ADHD on a group-level, the prevalence and diagnostic validity of these impairments is still largely unknown. Moreover, studies investigating this did not control for the interaction between motivational impairments and cognitive performance in children with ADHD, and did not differentiate between ADHD subtypes. Visuospatial WM and STM tasks were administered in a standard (feedback-only) and a high-reinforcement (feedback + 10 euros) condition, to 86 children with ADHD-C, 27 children with ADHD-I (restrictive subtype), and 62 typically developing controls (aged 8-12). Reinforcement sensitivity was indexed as the difference in performance between the reinforcement conditions. WM and STM impairments were most prevalent in ADHD-C. In ADHD-I, only WM impairments, not STM impairments, were more prevalent than in controls. Motivational impairments were not common (22% impaired) and equally prevalent in both subtypes. Memory and motivation were found to represent independent neuropsychological domains. Impairment on WM, STM, and/or motivation was associated with more inattention symptoms, medication-use, and lower IQ scores. Similar results were found for analyses of diagnostic validity. The majority of children with ADHD-C is impaired on visuospatial WM. In ADHD-I, STM impairments are not more common than in controls. Within both ADHD subtypes only a minority has an abnormal sensitivity to reinforcement.

  15. Thalamo-Cortical Disruption Contributes to Short-Term Memory Deficits in Patients with Medial Temporal Lobe Damage.

    PubMed

    Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E

    2015-11-01

    Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. © The Author 2015. Published by Oxford University Press.

  16. Episodic Memory Retrieval in Adolescents with and without Developmental Language Disorder (DLD)

    ERIC Educational Resources Information Center

    Lee, Joanna C.

    2018-01-01

    Background: Two reasons may explain the discrepant findings regarding declarative memory in developmental language disorder (DLD) in the literature. First, standardized tests are one of the primary tools used to assess declarative memory in previous studies. It is possible they are not sensitive enough to subtle memory impairment. Second, the…

  17. Age effects shrink when motor learning is predominantly supported by nondeclarative, automatic memory processes: evidence from golf putting.

    PubMed

    Chauvel, Guillaume; Maquestiaux, François; Hartley, Alan A; Joubert, Sven; Didierjean, André; Masters, Rich S W

    2012-01-01

    Can motor learning be equivalent in younger and older adults? To address this question, 48 younger (M = 23.5 years) and 48 older (M = 65.0 years) participants learned to perform a golf-putting task in two different motor learning situations: one that resulted in infrequent errors or one that resulted in frequent errors. The results demonstrated that infrequent-error learning predominantly relied on nondeclarative, automatic memory processes whereas frequent-error learning predominantly relied on declarative, effortful memory processes: After learning, infrequent-error learners verbalized fewer strategies than frequent-error learners; at transfer, a concurrent, attention-demanding secondary task (tone counting) left motor performance of infrequent-error learners unaffected but impaired that of frequent-error learners. The results showed age-equivalent motor performance in infrequent-error learning but age deficits in frequent-error learning. Motor performance of frequent-error learners required more attention with age, as evidenced by an age deficit on the attention-demanding secondary task. The disappearance of age effects when nondeclarative, automatic memory processes predominated suggests that these processes are preserved with age and are available even early in motor learning.

  18. A network approach for modulating memory processes via direct and indirect brain stimulation: Toward a causal approach for the neural basis of memory.

    PubMed

    Kim, Kamin; Ekstrom, Arne D; Tandon, Nitin

    2016-10-01

    Electrical stimulation of the brain is a unique tool to perturb endogenous neural signals, allowing us to evaluate the necessity of given neural processes to cognitive processing. An important issue, gaining increasing interest in the literature, is whether and how stimulation can be employed to selectively improve or disrupt declarative memory processes. Here, we provide a comprehensive review of both invasive and non-invasive stimulation studies aimed at modulating memory performance. The majority of past studies suggest that invasive stimulation of the hippocampus impairs memory performance; similarly, most non-invasive studies show that disrupting frontal or parietal regions also impairs memory performance, suggesting that these regions also play necessary roles in declarative memory. On the other hand, a handful of both invasive and non-invasive studies have also suggested modest improvements in memory performance following stimulation. These studies typically target brain regions connected to the hippocampus or other memory "hubs," which may affect endogenous activity in connected areas like the hippocampus, suggesting that to augment declarative memory, altering the broader endogenous memory network activity is critical. Together, studies reporting memory improvements/impairments are consistent with the idea that a network of distinct brain "hubs" may be crucial for successful memory encoding and retrieval rather than a single primary hub such as the hippocampus. Thus, it is important to consider neurostimulation from the network perspective, rather than from a purely localizationalist viewpoint. We conclude by proposing a novel approach to neurostimulation for declarative memory modulation that aims to facilitate interactions between multiple brain "nodes" underlying memory rather than considering individual brain regions in isolation. Copyright © 2016. Published by Elsevier Inc.

  19. Interference Conditions of the Reconsolidation Process in Humans: The Role of Valence and Different Memory Systems

    PubMed Central

    Fernández, Rodrigo S.; Bavassi, Luz; Kaczer, Laura; Forcato, Cecilia; Pedreira, María E.

    2016-01-01

    Following the presentation of a reminder, consolidated memories become reactivated followed by a process of re-stabilization, which is referred to as reconsolidation. The most common behavioral tool used to reveal this process is interference produced by new learning shortly after memory reactivation. Memory interference is defined as a decrease in memory retrieval, the effect is generated when new information impairs an acquired memory. In general, the target memory and the interference task used are the same. Here we investigated how different memory systems and/or their valence could produce memory reconsolidation interference. We showed that a reactivated neutral declarative memory could be interfered by new learning of a different neutral declarative memory. Then, we revealed that an aversive implicit memory could be interfered by the presentation of a reminder followed by a threatening social event. Finally, we showed that the reconsolidation of a neutral declarative memory is unaffected by the acquisition of an aversive implicit memory and conversely, this memory remains intact when the neutral declarative memory is used as interference. These results suggest that the interference of memory reconsolidation is effective when two task rely on the same memory system or both evoke negative valence. PMID:28066212

  20. Interference Conditions of the Reconsolidation Process in Humans: The Role of Valence and Different Memory Systems.

    PubMed

    Fernández, Rodrigo S; Bavassi, Luz; Kaczer, Laura; Forcato, Cecilia; Pedreira, María E

    2016-01-01

    Following the presentation of a reminder, consolidated memories become reactivated followed by a process of re-stabilization, which is referred to as reconsolidation. The most common behavioral tool used to reveal this process is interference produced by new learning shortly after memory reactivation. Memory interference is defined as a decrease in memory retrieval, the effect is generated when new information impairs an acquired memory. In general, the target memory and the interference task used are the same. Here we investigated how different memory systems and/or their valence could produce memory reconsolidation interference. We showed that a reactivated neutral declarative memory could be interfered by new learning of a different neutral declarative memory. Then, we revealed that an aversive implicit memory could be interfered by the presentation of a reminder followed by a threatening social event. Finally, we showed that the reconsolidation of a neutral declarative memory is unaffected by the acquisition of an aversive implicit memory and conversely, this memory remains intact when the neutral declarative memory is used as interference. These results suggest that the interference of memory reconsolidation is effective when two task rely on the same memory system or both evoke negative valence.

  1. Ear2 deletion causes early memory and learning deficits in APP/PS1 mice.

    PubMed

    Kummer, Markus P; Hammerschmidt, Thea; Martinez, Ana; Terwel, Dick; Eichele, Gregor; Witten, Anika; Figura, Stefanie; Stoll, Monika; Schwartz, Stephanie; Pape, Hans-Christian; Schultze, Joachim L; Weinshenker, David; Heneka, Michael T; Urban, Inga

    2014-06-25

    To assess the consequences of locus ceruleus (LC) degeneration and subsequent noradrenaline (NA) deficiency in early Alzheimer's disease (AD), mice overexpressing mutant amyloid precursor protein and presenilin-1 (APP/PS1) were crossed with Ear2(-/-) mice that have a severe loss of LC neurons projecting to the hippocampus and neocortex. Testing spatial memory and hippocampal long-term potentiation revealed an impairment in APP/PS1 Ear2(-/-) mice, whereas APP/PS1 or Ear2(-/-) mice showed only minor changes. These deficits were associated with distinct synaptic changes including reduced expression of the NMDA 2A subunit and increased levels of NMDA receptor 2B in APP/PS1 Ear2(-/-) mice. Acute pharmacological replacement of NA by L-threo-DOPS partially restored phosphorylation of β-CaMKII and spatial memory performance in APP/PS1 Ear2(-/-) mice. These changes were not accompanied by altered APP processing or amyloid β peptide (Aβ) deposition. Thus, early LC degeneration and subsequent NA reduction may contribute to cognitive deficits via CaMKII and NMDA receptor dysfunction independent of Aβ and suggests that NA supplementation could be beneficial in treating AD. Copyright © 2014 the authors 0270-6474/14/348845-10$15.00/0.

  2. Memory factors in Rey AVLT: Implications for early staging of cognitive decline.

    PubMed

    Fernaeus, Sven-Erik; Ostberg, Per; Wahlund, Lars-Olof; Hellström, Ake

    2014-12-01

    Supraspan verbal list learning is widely used to assess dementia and related cognitive disorders where declarative memory deficits are a major clinical sign. While the overall learning rate is important for diagnosis, serial position patterns may give insight into more specific memory processes in patients with cognitive impairment. This study explored these patterns in a memory clinic clientele. One hundred eighty three participants took the Rey Auditory-Verbal Learning Test (RAVLT). The major groups were patients with Alzheimer's disease (AD), Vascular Dementia (VD), Mild Cognitive Impairment (MCI), and Subjective Cognitive Impairment (SCI) as well as healthy controls (HC). Raw scores for the five trials and five serial partitions were factor analysed. Three memory factors were found and interpreted as Primacy, Recency, and Resistance to Interference. AD and MCI patients had impaired scores in all factors. SCI patients were significantly impaired in the Resistance to Interference factor, and in the Recency factor at the first trial. The main conclusion is that serial position data from word list testing reflect specific memory capacities which vary with levels of cognitive impairment. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  3. Long-term phenylbutyrate administration prevents memory deficits in Tg2576 mice by decreasing Abeta.

    PubMed

    Ricobaraza, Ana; Cuadrado-Tejedor, Mar; Garcia-Osta, Ana

    2011-06-01

    Aberrations in protein folding, processing, and/or degradation are common features of neurodegenerative diseases, such as Alzheimer's disease (AD). Sodium 4-phenylbutyrate (PBA) is a well-known histone deacetylase inhibitor, which increases gene transcription of a number of genes, and also exerts neuroprotective effects. PBA acts as a chemical chaperone reducing the load of mutant or unfolded proteins during cellular stress. Previously, we reported that 5-week administration of PBA reinstated memory loss and dendritic spine densities in the Tg2576 mouse model of AD. In this study we reported that chronic administration of PBA, starting before the onset of disease symptoms (6 month-old) prevents age-related memory deficits in Tg2576 mice. The amelioration of the memory impairment is associated to a decrease in amyloid beta pathology and the glial fibrillary acidic protein (GFAP), suggesting that inflammation was reduced in PBA-treated animals. Together, the beneficial effects of PBA make it a promising agent for the prevention of AD.

  4. Unrealistic representations of "the self": A cognitive neuroscience assessment of anosognosia for memory deficit.

    PubMed

    Berlingeri, Manuela; Ravasio, Alessandra; Cranna, Silvia; Basilico, Stefania; Sberna, Maurizio; Bottini, Gabriella; Paulesu, Eraldo

    2015-12-01

    Three cognitive components may play a crucial role in both memory awareness and in anosognosia for memory deficit (AMD): (1) a personal data base (PDB), i.e., a memory store that contains "semantic" representations about the self, (2) monitoring processes (MPs) and (3) an explicit evaluation system (EES), or comparator, that assesses and binds the representations stored in the PDB with information obtained from the environment. We compared both the behavior and the functional connectivity (as assessed by resting-state fMRI) of AMD patients with aware patients and healthy controls. We found that AMD is associated with an impoverished PDB, while MPs are necessary to successfully update the PDB. AMD was associated with reduced functional connectivity within both the default-mode network and in a network that includes the left lateral temporal cortex, the hippocampus and the insula. The reduced connectivity between the hippocampus and the insular cortex was correlated with AMD severity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. How should we measure nutrition-induced improvements in memory?

    PubMed

    Benton, David; Kallus, K Wolfgang; Schmitt, Jeroen A J

    2005-12-01

    There is a basic distinction between declarative memories, which can be stated verbally, and non-declarative memory, such as how to ride a bicycle, which cannot be expressed in words. With age it is the performance of declarative memory, particularly episodic memory that requires recall of events placed in time, that declines. As memory is not a unitary phenomenon, it should be ideally monitored using a range of tests that reflect theoretical conceptions of the topic. If circumstances demand the use of a single test then a measure of episodic memory is suggested. When it proves only possible to use a rating scale it should be ensured that memory is distinguished from other aspects of cognition and that different types of memory are not confused. The tests used, and the form in which they are used, need to be chosen to be of appropriate difficulty for the sample studied. A major conclusion is that the selection of the measure of memory used in the study of a dietary intervention should never be routine. It is inevitable that the form of the test used will need to be chosen carefully for the population being studied.

  6. [Classification of memory systems: a revision].

    PubMed

    Agrest, M

    2001-12-01

    The present paper exposes the arguments against considering memory as a monolytic entity and how is it to be divided into several systems in order to understand its operation. Historically this division was acknowledge by different authors but in the last few decades it received the confirmation from the scientific research. The most accepted taxonomy establishes the existence of two major memory systems: declarative and non declarative memory. The article also presents the arguments for and against this kind of division, as well as an alternative classification in five major systems: procedural, perceptual representation, semantic, primary and episodic.

  7. Combined mnemonic strategy training and high-definition transcranial direct current stimulation for memory deficits in mild cognitive impairment.

    PubMed

    Hampstead, Benjamin M; Sathian, Krishnankutty; Bikson, Marom; Stringer, Anthony Y

    2017-09-01

    Memory deficits characterize Alzheimer's dementia and the clinical precursor stage known as mild cognitive impairment. Nonpharmacologic interventions hold promise for enhancing functioning in these patients, potentially delaying functional impairment that denotes transition to dementia. Previous findings revealed that mnemonic strategy training (MST) enhances long-term retention of trained stimuli and is accompanied by increased blood oxygen level-dependent signal in the lateral frontal and parietal cortices as well as in the hippocampus. The present study was designed to enhance MST generalization, and the range of patients who benefit, via concurrent delivery of transcranial direct current stimulation (tDCS). This protocol describes a prospective, randomized controlled, four-arm, double-blind study targeting memory deficits in those with mild cognitive impairment. Once randomized, participants complete five consecutive daily sessions in which they receive either active or sham high definition tDCS over the left lateral prefrontal cortex, a region known to be important for successful memory encoding and that has been engaged by MST. High definition tDCS (active or sham) will be combined with either MST or autobiographical memory recall (comparable to reminiscence therapy). Participants undergo memory testing using ecologically relevant measures and functional magnetic resonance imaging before and after these treatment sessions as well as at a 3-month follow-up. Primary outcome measures include face-name and object-location association tasks. Secondary outcome measures include self-report of memory abilities as well as a spatial navigation task (near transfer) and prose memory (medication instructions; far transfer). Changes in functional magnetic resonance imaging will be evaluated during both task performance and the resting-state using activation and connectivity analyses. The results will provide important information about the efficacy of cognitive and

  8. Deficits in Memory Tasks of Mice with CREB Mutations Depend on Gene Dosage

    PubMed Central

    Gass, Peter; Wolfer, David P.; Balschun, Detlef; Rudolph, Dorothea; Frey, Uwe; Lipp, Hans-Peter; Schütz, Günther

    1998-01-01

    Studies in Aplysia, Drosophila, and mice have shown that the transcription factor CREB is involved in formation and retention of long-term memory. To analyze the impact of differential CREB levels on learning and memory, we varied the gene dosage of CREB in two strains of mutant mice: (1) CREBαΔ mice, in which the α and Δ isoforms are disrupted, but a third isoform β is strongly up-regulated; (2) CREBcomp, a compound strain with one αΔ allele and one CREBnull allele in which all CREB isoforms are disrupted. To minimize genetic background effects, CREB mutations were backcrossed into a C57BL/6 and a FVB/N strain, respectively, and studies were performed in F1 hybrids from these lines. CREBcomp but not CREBαΔ F1 hybrids were impaired in water maze learning and fear conditioning, demonstrating a CREB gene dosage effect. However, analysis of the platform searching strategies in the water maze task suggested that CREBcomp mutants are impaired in behavioral flexibility rather than in spatial memory. In contrast to previous experiments using CREBαΔ mice with different genetic background, the F1 hybrid CREBαΔ and CREBcomp mice did not show deficits in a social transmission of food preference task nor in dentate gyrus and CA1 LTP as recorded from slice preparations. These data indicate that the hybrid vigor typical for F1 hybrids may compensate for a reduction in CREB levels in some tests. On the other hand, the persistence of clear behavioral deficits as shown by the F1 hybrid CREBcomp mice in water maze and fear conditioning indicates a robust and repeatable phenomenon that will permit further functional analysis of CREB. PMID:10454354

  9. Comparing Iconic Memory in Children with and without Attention Deficit Hyperactivity Disorder

    PubMed Central

    Ahmadi, Nastaran; Goodarzi, Mohammad Ali; Hadianfard, Habib; Mohamadi, Norolah; Farid, Daryush; Kholasehzadeh, Golrasteh; Sakhvidi, Mohammad Nadi

    2013-01-01

    Objective Children with attention deficit hyperactivity disorder (ADHD) do not process most information due to inattention and loss of the opportunity to save and retrieve information. Therefore, these children experience memory impairment. Although visual memory has been previously studied in children with ADHD, iconic memory in these children has been less evaluated. We aimed to study the possibility of iconic memory impairment in children with ADHD, and compare the results with that of children without ADHD. Methods The experimental group of this study were 6-9 year-old children who referred to the Imam Hosein Clinic and were diagnosed as having ADHD by a psychiatrist during 2011-2012 (n = 30).The subjects were interviewed clinically by a psychologist; and in order to diagnose ADHD, their parents and teachers were asked to complete the child symptom inventory-4 (CSI-4). The comparison group were 6-9 year-old children without ADHD who studied in 1st and 2nd educational district of Yazd (n = 30). Subjects’ iconic memory was assessed using an iconic memory task. Repeated measure ANOVA was used for data analysis. Results Based on the iconic memory test, the mean score of ADHD children was significantly lower than that of children without ADHD (P < 0.001). Moreover, the performance of the experimental group differed significantly when the duration of the presentation differed from 50 ms to 100 ms as compared to the control group (P < 0.001). The number of correct answers increased in the experimental group as the duration of presentation increased. However, children with ADHD scored less than children without ADHD at 50 ms as well as 100 ms. The means of ADHD children increased as the duration of the presentation increased from 50 ms to 100 ms to 300 ms (P < 0.001). Conclusion Visual memory is weaker in children with ADHD, and they have weaker performance than normal children in both visual and auditory symbols at presentation durations of 50 and 100 ms. The

  10. Comparing Iconic Memory in Children with and without Attention Deficit Hyperactivity Disorder.

    PubMed

    Ahmadi, Nastaran; Goodarzi, Mohammad Ali; Hadianfard, Habib; Mohamadi, Norolah; Farid, Daryush; Kholasehzadeh, Golrasteh; Sakhvidi, Mohammad Nadi; Hemyari, Camellia

    2013-08-01

    Children with attention deficit hyperactivity disorder (ADHD) do not process most information due to inattention and loss of the opportunity to save and retrieve information. Therefore, these children experience memory impairment. Although visual memory has been previously studied in children with ADHD, iconic memory in these children has been less evaluated. We aimed to study the possibility of iconic memory impairment in children with ADHD, and compare the results with that of children without ADHD. The experimental group of this study were 6-9 year-old children who referred to the Imam Hosein Clinic and were diagnosed as having ADHD by a psychiatrist during 2011-2012 (n = 30).The subjects were interviewed clinically by a psychologist; and in order to diagnose ADHD, their parents and teachers were asked to complete the child symptom inventory-4 (CSI-4). The comparison group were 6-9 year-old children without ADHD who studied in 1st and 2nd educational district of Yazd (n = 30). Subjects' iconic memory was assessed using an iconic memory task. Repeated measure ANOVA was used for data analysis. Based on the iconic memory test, the mean score of ADHD children was significantly lower than that of children without ADHD (P < 0.001). Moreover, the performance of the experimental group differed significantly when the duration of the presentation differed from 50 ms to 100 ms as compared to the control group (P < 0.001). The number of correct answers increased in the experimental group as the duration of presentation increased. However, children with ADHD scored less than children without ADHD at 50 ms as well as 100 ms. The means of ADHD children increased as the duration of the presentation increased from 50 ms to 100 ms to 300 ms (P < 0.001). Visual memory is weaker in children with ADHD, and they have weaker performance than normal children in both visual and auditory symbols at presentation durations of 50 and 100 ms. The performance of ADHD children improves as the

  11. Dyslexic children show short-term memory deficits in phonological storage and serial rehearsal: an fMRI study.

    PubMed

    Beneventi, Harald; Tønnessen, Finn Egil; Ersland, Lars

    2009-01-01

    Dyslexia is primarily associated with a phonological processing deficit. However, the clinical manifestation also includes a reduced verbal working memory (WM) span. It is unclear whether this WM impairment is caused by the phonological deficit or a distinct WM deficit. The main aim of this study was to investigate neuronal activation related to phonological storage and rehearsal of serial order in WM in a sample of 13-year-old dyslexic children compared with age-matched nondyslexic children. A sequential verbal WM task with two tasks was used. In the Letter Probe task, the probe consisted of a single letter and the judgment was for the presence or absence of that letter in the prior sequence of six letters. In the Sequence Probe (SP) task, the probe consisted of all six letters and the judgment was for a match of their serial order with the temporal order in the prior sequence. Group analyses as well as single-subject analysis were performed with the statistical parametric mapping software SPM2. In the Letter Probe task, the dyslexic readers showed reduced activation in the left precentral gyrus (BA6) compared to control group. In the Sequence Probe task, the dyslexic readers showed reduced activation in the prefrontal cortex and the superior parietal cortex (BA7) compared to the control subjects. Our findings suggest that a verbal WM impairment in dyslexia involves an extended neural network including the prefrontal cortex and the superior parietal cortex. Reduced activation in the left BA6 in both the Letter Probe and Sequence Probe tasks may be caused by a deficit in phonological processing. However, reduced bilateral activation in the BA7 in the Sequence Probe task only could indicate a distinct working memory deficit in dyslexia associated with temporal order processing.

  12. Mitochondrial Superoxide Contributes to Hippocampal Synaptic Dysfunction and Memory Deficits in Angelman Syndrome Model Mice.

    PubMed

    Santini, Emanuela; Turner, Kathryn L; Ramaraj, Akila B; Murphy, Michael P; Klann, Eric; Kaphzan, Hanoch

    2015-12-09

    Angelman syndrome (AS) is a neurodevelopmental disorder associated with developmental delay, lack of speech, motor dysfunction, and epilepsy. In the majority of the patients, AS is caused by the deletion of small portions of maternal chromosome 15 harboring the UBE3A gene. This results in a lack of expression of the UBE3A gene because the paternal allele is genetically imprinted. The UBE3A gene encodes an enzyme termed ubiquitin ligase E3A (E6-AP) that targets proteins for degradation by the 26S proteasome. Because neurodegenerative disease and other neurodevelopmental disorders have been linked to oxidative stress, we asked whether mitochondrial reactive oxygen species (ROS) played a role in impaired synaptic plasticity and memory deficits exhibited by AS model mice. We discovered that AS mice have increased levels of superoxide in area CA1 of the hippocampus that is reduced by MitoQ 10-methanesuflonate (MitoQ), a mitochondria-specific antioxidant. In addition, we found that MitoQ rescued impairments in hippocampal synaptic plasticity and deficits in contextual fear memory exhibited by AS model mice. Our findings suggest that mitochondria-derived oxidative stress contributes to hippocampal pathophysiology in AS model mice and that targeting mitochondrial ROS pharmacologically could benefit individuals with AS. Oxidative stress has been hypothesized to contribute to the pathophysiology of neurodevelopmental disorders, including autism spectrum disorders and Angelman syndrome (AS). Herein, we report that AS model mice exhibit elevated levels of mitochondria-derived reactive oxygen species in pyramidal neurons in hippocampal area CA1. Moreover, we demonstrate that the administration of MitoQ (MitoQ 10-methanesuflonate), a mitochondria-specific antioxidant, to AS model mice normalizes synaptic plasticity and restores memory. Finally, our findings suggest that antioxidants that target the mitochondria could be used therapeutically to ameliorate synaptic and cognitive

  13. Memory consolidation in human sleep depends on inhibition of glucocorticoid release.

    PubMed

    Plihal, W; Born, J

    1999-09-09

    Early sleep dominated by slow-wave sleep has been found to be particularly relevant for declarative memory formation via hippocampo-neocortical networks. Concurrently, early nocturnal sleep is characterized by an inhibition of glucocorticoid release from the adrenals. Here, we show in healthy humans that this inhibition serves to support declarative memory consolidation during sleep. Elevating plasma glucocorticoid concentration during early sleep by administration of cortisol impaired consolidation of paired associate words, but not of non-declarative memory of visuomotor skills. Since glucocorticoid concentration was enhanced only during retention sleep, but not during acquisition or retrieval, a specific effect on the consolidation process is indicated. Blocking mineralocorticoid receptors by canrenoate did not affect memory, suggesting inactivation of glucocorticoid receptors to be the essential prerequisite for memory consolidation during early sleep.

  14. Consuming a Diet Supplemented with Resveratrol Reduced Infection-Related Neuroinflammation and Deficits in Working Memory in Aged Mice

    PubMed Central

    Abraham, Jayne

    2009-01-01

    Abstract Aged mice treated peripherally with lipopolysaccharide (LPS) show an exaggerated neuroinflammatory response and cognitive deficits compared to adults. Considerable evidence suggests resveratrol, a polyphenol found in red grapes, has potent antiinflammatory effects in the periphery, but its effects on the central inflammatory response and cognitive behavior are unknown. Therefore, the current study investigated if resveratrol dietary supplementation would inhibit neuroinflammation as well as behavioral and cognitive deficits in aged mice given LPS to mimic a peripheral infection. In initial studies, adult (3–6 months) and aged (22–24 months) mice were provided control or resveratrol-supplemented diet for 4 weeks and then injected intraperitoneally (i.p.) with saline or LPS, and locomotor activity and spatial working memory were assessed. As anticipated, deficits in locomotor activity and spatial working memory indicated aged mice are more sensitive to LPS compared to adults. More importantly, the LPS-induced deficits in aged animals were mitigated by dietary supplementation of resveratrol. In addition, resveratrol consumption reduced LPS-induced interleukin-1β (IL-1β) in plasma and the IL-1β mRNA in the hippocampus of aged mice. Finally, pretreatment of BV-2 microglial cells with resveratrol potently inhibited LPS-induced IL-1β production. These data show that aged mice are more sensitive than adult mice to both the inflammatory and cognitive effects of peripheral immune stimulation and suggest that resveratrol may be useful for attenuating acute cognitive disorders in elderly individuals with an infection. PMID:20041738

  15. Methylphenidate does not improve interference control during a working memory task in young patients with attention-deficit hyperactivity disorder.

    PubMed

    Prehn-Kristensen, Alexander; Krauel, Kerstin; Hinrichs, Hermann; Fischer, Jochen; Malecki, Ulrike; Schuetze, Hartmut; Wolff, Stephan; Jansen, Olav; Duezel, Emrah; Baving, Lioba

    2011-05-04

    Patients with attention-deficit/hyperactivity disorder (ADHD) show deficits in working memory (WM) which may be related to prefrontal dysfunction. Methylphenidate (MPH) can restore WM deficits in ADHD by enhancing prefrontal activity. At the same time, changes in striatal activation could cause ADHD patients to be more interference-sensitive during working memory tasks. However, it is unclear whether MPH reduces WM distractibility in ADHD. In this fMRI study, 12 ADHD patients and 12 healthy controls participated on two separate days in a delayed-match-to-sample test. During the delay interval, a distractor stimulus was presented in half of the trials. Children and adolescents with ADHD received MPH only on one of the two sessions. Behavioral data analyses revealed that MPH normalized WM in ADHD. However, MPH did not improve WM performance when a distractor was presented during the delay interval. Functional images showed that MPH enhanced prefrontal activity during the delay in ADHD patients when no distractor was present. If the delay was interrupted by a distractor, only healthy controls showed activation of the caudate. In patients with ADHD, however, in line with behavioral data, MPH did not enhance caudate activity. In healthy youth, caudate activity is involved in interference control allowing the successful maintenance of information in working memory even in the presence of distraction. Our findings suggest that interference control, linked to caudate activity, is not adequately enhanced by MPH in ADHD. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The nucleus accumbens and learning and memory.

    PubMed

    Setlow, B

    1997-09-01

    Recent research on the nucleus accumbens (NA) indicates that this brain region is involved in learning and memory processes in a way that is separable from its other well-known roles in behavior, such as motivation, reward, and locomotor activity. These findings have suggested that 1) the NA may be involved in declarative, or hippocampal formation-dependent learning and memory, and not in several other non-declarative forms of learning and memory, and 2) the NA may be selectively involved in certain stages of learning and memory. These characteristics suggest that the NA may be part of a larger striatal system which subserves acquisition and consolidation, but is not a site of long-term storage, of different forms of learning and memory.

  17. Amnesic H.M. Exhibits Parallel Deficits and Sparing in Language and Memory: Systems versus Binding Theory Accounts

    ERIC Educational Resources Information Center

    MacKay, Donald G.; James, Lori E.; Taylor, Jennifer K.; Marian, Diane E.

    2007-01-01

    This study examines sentence-level language abilities of amnesic H.M. to test competing theoretical conceptions of relations between language and memory. We present 11 new sources of experimental evidence indicating deficits in H.M's comprehension and production of non-cliche sentences. Contrary to recent claims that H.M.'s comprehension is…

  18. Effects of URB597 as an inhibitor of fatty acid amide hydrolase on WIN55, 212-2-induced learning and memory deficits in rats.

    PubMed

    Hasanein, Parisa; Teimuri Far, Massoud

    2015-04-01

    Cannabinoid and endocannabinoid systems have been implicated in several physiological functions including modulation of cognition. In this study we evaluated the effects and interaction between fatty-acid amide hydrolase (FAAH) inhibitor URB597 and CB1 receptor agonist WIN55, 212-2 on memory using object recognition and passive avoidance learning (PAL) tests. Learning and memory impairment was induced by WIN 55, 212-2 administration (1mg/kg, i.p.) 30min before the acquisition trial. URB597 (0.1, 0.3 and 1mg/kg, i.p.) or SR141716A (1mg/kg, i.p.) was injected to rats 10min before WIN 55, 212-2 or URB597 respectively. URB597 (0.3 and 1mg/kg) but not 0.1mg/kg induced higher discrimination index (DI) in object recognition test and enhanced memory acquisition in PAL test. The cognitive enhancing effect of URB597 was blocked by a CB1 receptor antagonist, SR141716A which at this dose alone had no effect on cognition. WIN55, 212-2 caused cognition deficits in both tests. URB597 (0.3 and 1mg/kg) treatment could alleviate the negative influence of WIN 55, 212-2 on cognition and memory. These results indicate URB597 potential to protect against memory deficits induced by cannabinoid. Therefore, in combination with URB597 beneficial effects, this study suggests that URB597 has recognition and acquisition memory enhancing effects. It may also constitute a novel approach for the treatment of cannabinoid induced memory deficits and lead to a better understanding of the brain mechanisms underlying cognition. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Viral-mediated Zif268 expression in the prefrontal cortex protects against gonadectomy-induced working memory, long-term memory, and social interaction deficits in male rats.

    PubMed

    Dossat, Amanda M; Jourdi, Hussam; Wright, Katherine N; Strong, Caroline E; Sarkar, Ambalika; Kabbaj, Mohamed

    2017-01-06

    In humans, some males experience reductions in testosterone levels, as a natural consequence of aging or in the clinical condition termed hypogonadism, which are associated with impaired cognitive performance and mood disorder(s). Some of these behavioral deficits can be reversed by testosterone treatment. Our previous work in rats reported that sex differences in the expression of the transcription factor Zif268, a downstream target of testosterone, within the medial prefrontal cortex (mPFC) mediates sex differences in social interaction. In the present study, we aimed to examine the effects of gonadectomy (GNX) in male rats on mPFC Zif268 expression, mood and cognitive behaviors. We also examined whether reinstitution of Zif268 in GNX rats will correct some of the behavioral deficits observed following GNX. Our results show that GNX induced a downregulation of Zif268 protein in the mPFC, which was concomitant with impaired memory in the y-maze and spontaneous object recognition test, reduced social interaction time, and depression-like behaviors in the forced swim test. Reinstitution of mPFC Zif268, using a novel adeno-associated-viral (AAV) construct, abrogated GNX-induced working memory and long-term memory impairments, and reductions in social interaction time, but not GNX-induced depression-like behaviors. These findings suggest that mPFC Zif268 exerts beneficial effects on memory and social interaction, and could be a potential target for novel treatments for behavioral impairments observed in hypogonadal and aged men with declining levels of gonadal hormones. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Improvement of cationic albumin conjugated pegylated nanoparticles holding NC-1900, a vasopressin fragment analog, in memory deficits induced by scopolamine in mice.

    PubMed

    Xie, Yue-Ling; Lu, Wei; Jiang, Xin-Guo

    2006-10-02

    NC-1900, an active fragment analog of arginine vasopressin [arginine vasopressin-(4-9)], has proved to be capable of improving the spatial memory deficits and the impairments in passive avoidance test. In this study, a novel drug carrier for brain delivery, cationic bovine serum albumin conjugated pegylated nanoparticles (CBSA-NPs) holding NC-1900, was developed and its improvement on scopolamine-induced memory deficits was investigated in mice using the platform-jumping avoidance test. CBSA-NPs loaded with NC-1900 in spherical shape and uniform size below 100 nm were prepared by the double emulsion/solvent evaporation procedure, and the zeta potential of CBSA-NPs was about -8mV with the loading capacity of NC-1900 around 0.46%. The in vitro study showed that approximately 10% NC-1900 was released from CBSA-NPs in pH 7.4 phosphate buffer saline (PBS) during 56 h incubation with about 15% NC-1900 released in pH 4.0 PBS during 7 days, indicating the sustained release of this carrier. Furthermore, the half-life of NC-1900 loaded in CBSA-NPs in plasma was about 78 h, which was 4-fold longer than that of free NC-1900 (19 h). The active avoidance behavioral results showed that the s.c. administration of NC-1900 tended to improve memory deficits, but the difference did not present any statistical significance, whereas this peptide failed to produce any positive effects by i.v. administration. However, the i.v. injection of CBSA-NPs loaded with NC-1900 greatly improved memory impairments to a normal level, but the efficacy was slight if the loaded nanoparticles (NPs) were exclusive of the conjugation of CBSA, indicating that CBSA-NP was a promising brain delivery carrier for NC-1900 with CBSA as a potent brain targetor. It was concluded that CBSA-NP loaded with NC-1900 was potentially efficacious in the treatment of memory deficits via i.v. administration.