Science.gov

Sample records for decommissioning update spring

  1. FLUOR HANFORD DECOMMISSIONING UPDATE

    SciTech Connect

    GERBER MS

    2008-04-21

    Fluor Hanford is completing D&D of the K East Basin at the U.S. Department of Energy's (DOE's) Hanford Site in southeastern Washington State this spring, with demolition expected to begin in June. Located about 400 yards from the Columbia River, the K East Basin is one of two indoor pools that formerly contained irradiated nuclear fuel, radioactive sludge and tons of contaminated debris. In unique and path-breaking work, workers finished removing the spent fuel from the K Basins in 2004. In May 2007, workers completed vacuuming the sludge into containers in the K East Basin, and transferring it into containers in the K West Basin. In December, they finished vacuuming the remainder of K West Basin sludge into these containers. The K East Basin was emptied of its radioactive inventory first because it was more contaminated than the K West Basin, and had leaked in the past. In October 2007, Fluor Hanford began physical D&D of the 8,400-square foot K East Basin by pouring approximately 14-inches of grout into the bottom of it. Grout is a type of special cement used for encasing waste. Two months later, Fluor Hanford workers completed sluicing contaminated sand from the large filter that had sieved contaminants from the basin water for more than 50 years. Next, they poured grout into the filter housing and the vault that surrounds the filter, as well as into ion exchange columns that also helped filter basin water. For a six-week period in February and March, personnel drained the approximately one million gallons of contaminated water from the K East Basin. The effort required more than 200 tanker truck loads that transported the water to an effluent treatment facility for treatment and then release. A thin fixative was also applied to the basin walls as the water was removed to hold residual contamination in place. As soon as the water was out of the basin, Fluor pumped in approximately 18 feet of 'controlled density fill' material (somewhat similar to sand) to shield

  2. Sellafield Decommissioning Programme - Update and Lessons Learned

    SciTech Connect

    Lutwyche, P. R.; Challinor, S. F.

    2003-02-24

    The Sellafield site in North West England has over 240 active facilities covering the full nuclear cycle from fuel manufacture through generation, reprocessing and waste treatment. The Sellafield decommissioning programme was formally initiated in the mid 1980s though several plants had been decommissioned prior to this primarily to create space for other plants. Since the initiation of the programme 7 plants have been completely decommissioned, significant progress has been made in a further 16 and a total of 56 major project phases have been completed. This programme update will explain the decommissioning arrangements and strategies and illustrate the progress made on a number of the plants including the Windscale Pile Chimneys, the first reprocessing plan and plutonium plants. These present a range of different challenges and requiring approaches from fully hands on to fully remote. Some of the key lessons learned will be highlighted.

  3. Rancho Seco--Decommissioning Update

    SciTech Connect

    Newey, J. M.; Ronningen, E. T.; Snyder, M. W.

    2003-02-26

    The Rancho Seco Nuclear Generating Station ceased operation in June of 1989 and entered an extended period of SAFSTOR to allow funds to accumulate for dismantlement. Incremental dismantlement was begun in 1997 of steam systems and based on the successful completion of work, the Sacramento Municipal Utility District (SMUD) board of directors approved full decommissioning in July 1999. A schedule has been developed for completion of decommissioning by 2008, allowing decommissioning funds to accumulate until they are needed. Systems removal began in the Auxiliary Building in October of 1999 and in the Reactor Building in January of 2000. Systems dismantlement continues in the Reactor Building and should be completed by the end of 2003. System removal is near completion in the Auxiliary Building with removal of the final liquid waste tanks in progress. The spent fuel has been moved to dry storage in an onsite ISFSI, with completion on August 21, 2002. The spent fuel racks are currently being removed from the pool, packaged and shipped, and then the pool will be cleaned. Also in the last year the reactor coolant pumps and primary piping were removed and shipped. Characterization and planning work for the reactor vessel and internals is also in progress with various cut-up and/or disposal options being evaluated. In the year ahead the remaining systems in the Reactor Building will be removed, packaged and sent for disposal, including the pressurizer. Work will be started on embedded and underground piping and the large outdoor tanks. Building survey and decontamination will begin. RFP's for removal of the vessel and internals and the steam generators are planned to fix the cost of those components. If the costs are consistent with current estimates the work will go forward. If they are not, hardened SAFSTOR/entombment may be considered.

  4. HANFORD DECOMMISSIONING UPDATE 09/2007

    SciTech Connect

    GERBER, M.S.

    2007-08-20

    Fluor Hanford's K Basins Closure (KBC) Project tallied three major accomplishments at the U.S. Department of Energy's (DOE's) Hanford Site in Southeastern Washington State this past summer. The Project finished emptying the aging K East Basin of both sludge and the last pieces of scrap spent nuclear fuel. It also Completed vacuuming the bulk of the sludge in the K West Basin into underwater containers. The 54-year-old concrete basins once held more than four million pounds of spent nuclear fuel and sit less than 400 yards from the Columbia River. Each basin holds more than a million gallons of radioactive water. In 2004, Fluor finished removing all the spent nuclear fuel from the K Basins. Nearly 50 cubic meters of sludge remained--a combination of dirt, sand, small pieces of corroded uranium fuel and fuel cladding, corrosion products from racks and canisters, ion-exchange resin beads, polychlorinated biphenyls, and fission products that had formed during the decades that the spent nuclear fuel was stored underwater. Capturing the sludge into underwater containers in the K East Basin took more than two years, and vacuuming the much smaller volume of sludge into containers in the K West Basin required seven months. Workers stood on grating above the basin water and vacuumed the sludge through long, heavy hoses. The work was complicated by murky water and contaminated solid waste (debris). Pumping was paused several times to safely remove and package debris that totaled more than 370 tons. In October 2006, Fluor Hanford workers began pumping the sludge captured in the K East Basin containers out through a specially designed pipeline to underwater containers in the K West Basin, about a half mile away. They used a heavy but flexible, double-walled ''hose-in-hose'' system. Pumping work progressed slowly at first, but ramped up in spring 2007 and was completed on May 31. Just a week before sludge transfers finished, the KBC Project removed the last few small pieces of

  5. Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant

    SciTech Connect

    Miles, T.L.; Liu, Y.

    1995-08-01

    The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed.

  6. To Your Health: NLM update transcript - NIH MedlinePlus magazine Spring 2016

    MedlinePlus

    ... To Your Health: NLM update Transcript NIH MedlinePlus magazine Spring 2016 : 06/06/2016 To use the ... weekly topics. The new edition of NIH MedlinePlus magazine covers fibromyalgia, health disparities, as well as women ...

  7. FEMP (Federal Energy Management Program) Update, Spring 1989

    SciTech Connect

    Not Available

    1989-04-01

    The FEMP Update, published quarterly by the Federal Energy Management Program (FEMP), provides information that will assist federal managers in their energy management responsibilities. The Update is distributed primarily to federal facility and energy management personnel.

  8. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #28, Spring 2011

    SciTech Connect

    Schell, D. J.

    2011-04-01

    Spring 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program sessions and special topic sessions; assessment of waste water treatment needs; and an update on new arabinose-to-ethanol fermenting Zymomonas mobilis strains.

  9. Decommissioning Handbook

    SciTech Connect

    Not Available

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  10. Update on Research and Leadership. Vol. 20, No. 2. Spring 2009

    ERIC Educational Resources Information Center

    Bragg, Debra D., Ed.: Khan, Sadya, Ed.; Kirby, Catherine, Ed.

    2009-01-01

    Increasing rates of remediation in college and the alignment gap between secondary and postsecondary education call for further study of policies and practices to improve college and career readiness. This issue of Update on Research and Leadership features nine articles that highlight current research and practice related to college readiness and…

  11. National FCEV Learning Demonstration: Spring 2011 All Composite Data Products With Updates Through March 29, 2011

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2011-04-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes all the composite data products produced to date (with updates through March 29, 2011) as part of the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration.

  12. STATUS OF THE NRC'S DECOMMISSIONING PROGRAM

    SciTech Connect

    Orlando, D. A.; Camper, L. W.; Buckley, J.

    2002-02-25

    On July 21, 1997, the U.S. Nuclear Regulatory Commission published the final rule on Radiological Criteria for License Termination (the License Termination Rule) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program. It discusses the status of permanently shut-down commercial power reactors, complex decommissioning sites, and sites listed in the Site Decommissioning Management Plan. The paper provides the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including a Standard Review Plan for evaluating plans and information submitted by licensees to support the decommissioning of nuclear facilities and the D and D Screen software for determining the potential doses from residual radioactivity. Finally, it discusses the status of the staff's current efforts to streamline the decommissioning process.

  13. Changing timing of the onset of spring in western North America—An update (Invited)

    NASA Astrophysics Data System (ADS)

    Dettinger, M. D.; Cayan, D. R.; Knowles, N.; Das, T.

    2009-12-01

    In recent decades in association with long-term warming trends, the climate, hydrology and landscapes of western North America have been changing. A broad range of physical and biological indicators reflecting changes in the timing of the onset of spring have been trending since about the 1950s, with earlier springs resulting. In recent years, the responses to warming have continued and more such indicators have been reported in the scientific literature. Warming across western North America has been attended by more precipitation falling as rain rather than snow, more frequent rainy days, less overall and less persistent springtime snowpacks, earlier snowmelt and snowfed streamflow, changes in the geographic distributions of rain-on-snow events, and changes in temperature thresholds separating rain from snow, as well as earlier springtime greenup and bloom of vegetation. As a result of the hastening of springtime hydrologic conditions, by summer, drier land and vegetation conditions are occurring, increasing background tree mortality rates and wildfire risks. A number of the hydroclimatic trends have now been formally shown to be of unnatural causes. These broad and interconnected changes in western North America provide evidence for significant vulnerabilities of the region to continued warming.

  14. Decommissioning handbook

    SciTech Connect

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

  15. NIH Portfolio Allocation, Lemmings, and the Silent Spring: A Time-Capsule Commentary & Its Update.

    PubMed

    Boothby, Mark

    2012-01-01

    With the release of the US President's proposed budget for the Federal Fiscal year (FY) 2013, to start October 1, 2012, we've spun yet again into the mad vortex of an appropriation season. Fundamental re-thinks of how biological and medical research are prioritized and funded are urgently needed, but sadly appear to be unlikely unless the research and advocacy communities push harder and in a more unified manner. Early in the Obama presidency and the NIH Directorship of Dr Francis Collins, the FASEB Office of Public Affairs performed an analysis of trends in funding of R01 and other Research Project Grants and shared that with the Director and his office. Using the FASEB analysis, whose numbers drew on NIH data, an independent commentary (below) was submitted to (but not published in) Science. With the analysis a few years old, this older viewpoint is followed by updates that touch on how the trends have fared since early 2010 and comment on other aspects of the ongoing cull in biomedical research. In particular, data on some of the growth areas that continue to prosper at the expense of the ever-declining direct support for R01 science are discussed. PMID:24358813

  16. NMSS handbook for decommissioning fuel cycle and materials licensees

    SciTech Connect

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M.

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

  17. Shippingport Station Decommissioning Project decommissioning plan. Volume XII

    SciTech Connect

    Not Available

    1983-01-01

    Information is presented concerning allowable residual contamination levels in soil for decommissioning the Shippingport reactor site; draft statement of work for the decommissioning operations contractor; the Shippingport Station Decommissioning Project Change Control Board charter; the surplus facilities management program; the Shippingport Station Decommissioning Project charter; DOE-RL/DOE-PNR program management agreement; and draft occupational medical plan for the decommissioning project.

  18. EVALUATION OF SPRING OPERATED RELIEF VALVE MAINTENANCE INTERVALS AND EXTENSION OF MAINTENANCE TIMES USING A WEIBULL ANALYSIS WITH MODIFIED BAYESIAN UPDATING

    SciTech Connect

    Harris, S.; Gross, R.; Mitchell, E.

    2011-01-18

    The Savannah River Site (SRS) spring operated pressure relief valve (SORV) maintenance intervals were evaluated using an approach provided by the American Petroleum Institute (API RP 581) for risk-based inspection technology (RBI). In addition, the impact of extending the inspection schedule was evaluated using Monte Carlo Simulation (MCS). The API RP 581 approach is characterized as a Weibull analysis with modified Bayesian updating provided by SRS SORV proof testing experience. Initial Weibull parameter estimates were updated as per SRS's historical proof test records contained in the Center for Chemical Process Safety (CCPS) Process Equipment Reliability Database (PERD). The API RP 581 methodology was used to estimate the SORV's probability of failing on demand (PFD), and the annual expected risk. The API RP 581 methodology indicates that the current SRS maintenance plan is conservative. Cost savings may be attained in certain mild service applications that present low PFD and overall risk. Current practices are reviewed and recommendations are made for extending inspection intervals. The paper gives an illustration of the inspection costs versus the associated risks by using API RP 581 Risk Based Inspection (RBI) Technology. A cost effective maintenance frequency balancing both financial risk and inspection cost is demonstrated.

  19. Decommissioning at AWE

    SciTech Connect

    Biles, K.; Hedges, M.; Campbell, C

    2008-07-01

    AWE (A) has been at the heart of the UK Nuclear deterrent since it was established in the early 1950's. It is a nuclear licensed site and is governed by the United Kingdoms Nuclear Installation Inspectorate (NII). AWE plc on behalf of the Ministry of Defence (MOD) manages the AWE (A) site and all undertakings including decommissioning. Therefore under NII license condition 35 'Decommissioning', AWE plc is accountable to make and implement adequate arrangements for the decommissioning of any plant or process, which may affect safety. The majority of decommissioning projects currently being undertaken are to do with Hazard category 3, 4 or 5 facilities, systems or plant that have reached the end of their operational span and have undergone Post-Operational Clean-Out (POCO). They were either built for the production of fissile components, for supporting the early reactor fuels programmes or for processing facility waste arisings. They either contain redundant contaminated gloveboxes associated process areas, process plant or systems or a combination of all. In parallel with decommissioning project AWE (A) are undertaking investigation into new technologies to aid decommissioning projects; to remove the operative from hands on operations; to develop and implement modifications to existing process and techniques used. AWE (A) is currently going thorough a sustained phase of upgrading its facilities to enhance its scientific capability, with older facilities, systems and plant being replaced, making decommissioning a growth area. It is therefore important to the company to reduce these hazards progressively and safety over the coming years, making decommissioning an important feature of the overall legacy management aspects of AWE PLC's business. This paper outlines the current undertakings and progress of Nuclear decommissioning on the AWE (A) site. (authors)

  20. Site decommissioning management plan

    SciTech Connect

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  1. Development of a Preliminary Decommissioning Plan Following the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations - 13361

    SciTech Connect

    Moshonas Cole, Katherine; Dinner, Julia; Grey, Mike; Daniska, Vladimir

    2013-07-01

    The International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, published by OECD/NEA, IAEA and EC is intended to provide a uniform list of cost items for decommissioning projects and provides a standard format that permits international cost estimates to be compared. Candesco and DECOM have used the ISDC format along with two costing codes, OMEGA and ISDCEX, developed from the ISDC by DECOM, in three projects: the development of a preliminary decommissioning plan for a multi-unit CANDU nuclear power station, updating the preliminary decommissioning cost estimates for a prototype CANDU nuclear power station and benchmarking the cost estimates for CANDU against the cost estimates for other reactor types. It was found that the ISDC format provides a well defined and transparent basis for decommissioning planning and cost estimating that assists in identifying gaps and weaknesses and facilitates the benchmarking against international experience. The use of the ISDC can also help build stakeholder confidence in the reliability of the plans and estimates and the adequacy of decommissioning funding. (authors)

  2. INTERNATIONAL DECOMMISSIONING SYMPOSIUM 2000

    SciTech Connect

    M.A. Ebadian, Ph.D.

    2001-01-01

    The purpose of IDS 2000 was to deliver a world-class conference on applicable global environmental issues. The objective of this conference was to publicize environmental progress of individual countries, to provide a forum for technology developer and problem-holder interaction, to facilitate environmental and technology discussions between the commercial and financial communities, and to accommodate information and education exchange between governments, industries, universities, and scientists. The scope of this project included the planning and execution of an international conference on the decommissioning of nuclear facilities, and the providing of a business forum for vendors and participants sufficient to attract service providers, technology developers, and the business and financial communities. These groups, when working together with attendees from regulatory organizations and government decision-maker groups, provide an opportunity to more effectively and efficiently expedite the decommissioning projects.

  3. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    SciTech Connect

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo; Kim, Juyoul; Kim, Juyub

    2013-07-01

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  4. International Research Reactor Decommissioning Project

    SciTech Connect

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

  5. ORNL decontamination and decommissioning program

    SciTech Connect

    Bell, J.P.

    1980-01-01

    A program has been initiated at ORNL to decontaminate and decommission surplus or abandoned nuclear facilities. Program planning and technical studies have been performed by UCC-ND Engineering. A feasibility study for decommissioning the Metal Recovery Facility, a fuel reprocessing pilot plant, has been completed.

  6. Offshore-platform decommissioning perceptions change

    SciTech Connect

    Twachtman, R.

    1997-12-08

    The oil and gas industry has seen a change in the perceptions about decommissioning offshore facilities. Now, decommissioning projects are being planned ahead of actual field development, and new concepts derived during decommissioning often are used to provide feedback for new development projects. The current trends and concepts applicable to decommissioning can be summarized as: advanced planning; engineered solutions; research and development; reuse; expanded use of offshore reefs; and deepwater disposal. Planning the platform decommissioning ahead of time (at least 2 years before production ceases) is key to a safe, environmentally conscious, and efficient decommissioning project. The paper discusses decommissioning projects, engineered solutions, research and development; reuse of platforms, and deepwater disposal.

  7. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  8. Spring Tire

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake M.; Benzing, Jim; Kish, Jim C.

    2011-01-01

    The spring tire is made from helical springs, requires no air or rubber, and consumes nearly zero energy. The tire design provides greater traction in sandy and/or rocky soil, can operate in microgravity and under harsh conditions (vastly varying temperatures), and is non-pneumatic. Like any tire, the spring tire is approximately a toroidal-shaped object intended to be mounted on a transportation wheel. Its basic function is also similar to a traditional tire, in that the spring tire contours to the surface on which it is driven to facilitate traction, and to reduce the transmission of vibration to the vehicle. The essential difference between other tires and the spring tire is the use of helical springs to support and/or distribute load. They are coiled wires that deform elastically under load with little energy loss.

  9. Recent Trends in the Adequacy of Nuclear Plant Decommissioning Funding

    SciTech Connect

    Williams, D. G.

    2002-02-26

    Concerned about the potential cost and sufficiency of funds to decommission the nation's nuclear power plants, the Congress asked the U.S. General Accounting Office (GAO) to assess the adequacy, as of December 31, 1997, of electric utilities'; funds to eventually decommission their plants. GAO's report (GAO/RCED-99-75) on this issue addressed three alternative assumption scenarios--baseline (most likely), optimistic, and pessimistic; and was issued in May 1999. This paper updates GAO's baseline assessment of fund adequacy in 1997, and extends the analysis through 2000. In 2000, we estimate that the present value cost to decommission the nation's nuclear plants is about $35 billion; utility fund balances are about $29 billion. Both our two measures of funding adequacy for utilities are on average not only much above ideal levels, but also overall have greatly improved since 1997. However, certain utilities still show less than ideal fund balances and annual contributions. We suggest that the range of these results among the individual utilities is a more important policy measure to assess the adequacy of decommissioning funding than is the funding adequacy for the industry as a whole.

  10. Money Related Decommissioning and Funding Decision Making

    SciTech Connect

    Goodman, Lynne S.

    2008-01-15

    'Money makes the world go round', as the song says. It definitely influences decommissioning decision-making and financial assurance for future decommissioning. This paper will address two money-related decommissioning topics. The first is the evaluation of whether to continue or to halt decommissioning activities at Fermi 1. The second is maintaining adequacy of financial assurance for future decommissioning of operating plants. Decommissioning costs considerable money and costs are often higher than originally estimated. If costs increase significantly and decommissioning is not well funded, decommissioning activities may be deferred. Several decommissioning projects have been deferred when decision-makers determined future spending is preferable than current spending, or when costs have risen significantly. Decommissioning activity timing is being reevaluated for the Fermi 1 project. Assumptions for waste cost-escalation significantly impact the decision being made this year on the Fermi 1 decommissioning project. They also have a major impact on the estimated costs for decommissioning currently operating plants. Adequately funding full decommissioning during plant operation will ensure that the users who receive the benefit pay the full price of the nuclear-generated electricity. Funding throughout operation also will better ensure that money is available following shutdown to allow decommissioning to be conducted without need for additional funds.

  11. Austin Community College Benchmarking Update.

    ERIC Educational Resources Information Center

    Austin Community Coll., TX. Office of Institutional Effectiveness.

    Austin Community College contracted with MGT of America, Inc. in spring 1999 to develop a peer and benchmark (best) practices analysis on key indicators. These indicators were updated in spring 2002 using data from eight Texas community colleges and four non-Texas institutions that represent large, comprehensive, urban community colleges, similar…

  12. The joys of spring.

    PubMed

    Riby, Leigh M

    2013-01-01

    This study used Vivaldi's Four Seasons, an extraordinary example of program music, to explore the consequence of music exposure on cognitive event-related potentials (ERPs). Seventeen participants performed a three-stimulus visual odd-ball task while ERPs were recorded. Participants were required to differentiate between a rare target stimulus (to elicit a memory updating component; P3b), a rare novel stimulus (to elicit a novelty attention component; P3a), and a frequent nontarget stimulus. During task performance participants listened to the four concertos: Spring, Summer, Autumn, and Winter in comparison to a silent control condition. Additionally, the three movements of each concerto have a fast, slow, fast structure that enabled examination of the impact of tempo. The data revealed that "Spring," particularly the well-recognized, vibrant, emotive, and uplifting first movement, had the ability to enhance mental alertness and brain measures of attention and memory. PMID:22851380

  13. 77 FR 41107 - Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... Decommissioning Planning Rule (DPR) (June 17, 2011, 76 FR 33512). The DPR applies to the operational phase of a..., ``Decommissioning Planning During Operations'' (December 13, 2011, 76 FR 77431). The NRC received more than 100...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Parts 20, 30, 40, 50, 70, and 72 Decommissioning Planning...

  14. Cultural practices updates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultural practice updates from 2013 included the effects of shredding in spring, residue management, periodic flooding, no-till fertilizer applications, and billet planting on cane tonnage and sugar yield. Shredding, whether high or low, had little impacts in 2013. However, burning following shreddi...

  15. 76 FR 35511 - Decommissioning Planning

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... regulations in 1997 as Subpart E of 10 CFR part 20 (62 FR 39058; July 21, 1997). This set of requirements is... the January 27, 1988 (53 FR 24018), rule on planning for decommissioning require licensees to provide... contamination and the amount of funds set aside and expended on cleanup. (62 FR 39082; July 21, 1997)....

  16. Hydrologic Uncertainty Assessment for Decommissioning Sites: Hypothetical Test Case Applications

    SciTech Connect

    Meyer, Philip D.; Taira, Randal Y.

    2001-03-19

    This report uses hypothetical decommissioning test cases to illustrate an uncertainty assessment methodology for dose assessments conducted as part of decommissioning analyses (see NUREG/CR-6656). The hypothetical test case source term and scenarios are based on an actual decommissioning case and the physcial setting is based on the site of a field experiment carried out for the NRC in Arizona. The emphasis in the test case was on parameter uncertainty. The analysis is limited to the hydrologic aspects of the exposure pathway involving infiltration of water at the ground surface, leaching of contaminants, and transport of contaminants through the groundwater to a point of exposure. The methodology uses generic parameter distributions based on national or regiounal databases for estimating parameter uncertainty. A Bayesian updating method is used in one of the test case applications to combine site-specific information with the generic parameter distributions. Sensitivity analysis and probabilisitc siumlation are used to describe the impact of parameter uncertainty on predicted dose. Emphasis is placed on understanding the conceptual and computational behavior of the dose assessment codes as they are applied to the test cases. The primary code used in this application was RESRAD v.6.0 although DandD v.1.0 results are also reported. The methods presented and the issues discussed are applicable to other codes as well.

  17. Hydrologic Uncertainty Assessment for Decommissioning Sites: Hypothetical Test Case Applications

    SciTech Connect

    Meyer, Philip D; Taira, Randal Y

    2001-03-19

    This report uses hypothetical decommissioning test cases to illustrate an uncertainty assessment methodology for dose assessments conducted as part of decommissioning analyses (see NUREG/CR-6656). The hypothetical test case source term and scenarios are based on an actual decommissioning case and the physical setting is based on the site of a field experiment carried out for the NRC in Arizona. The emphasis in the test case was on parameter uncertainty. The analysis is limited to the hydrologic aspects of the exposure pathway involving infiltration of water at the ground surface, leaching of contaminants, and transport of contaminants through the groundwater to a point of exposure. The methodology uses generic parameter distributions based on national or regional databases for estimating parameter uncertainty. A Bayesian updating method is used in one of the test case applications to combine site-specific information with the generic parameter distributions. Sensitivity analysis and probabilistic simulation are used to describe the impact of parameter uncertainty on predicted dose. Emphasis is placed on understanding the conceptual and computational behavior of the dose assessment codes as they are applied to the test cases. The primary code used in this application was RESRAD v.6.0 although D and D v.1.0 results are also reported. The methods presented and the issues discussed are applicable to other codes as well.

  18. Decontamination & Decommissioning Equipment Tracking System (DDETS)

    SciTech Connect

    Cook, S.

    1994-07-01

    At the request of the Department of Energy (DOE)(EM-50), the Scientific Computing Unit developed a prototype system to track information and data relevant to equipment and tooling removed during decontamination and decommissioning activities. The DDETS proof-of-concept tracking system utilizes a one-dimensional (1D) and two-dimensional (2D) bar coding technology to retain and track information such as identification number, manufacturer, requisition information, and various contaminant information, etc. The information is encoded in a bar code, printed on a label and can be attached to corresponding equipment. The DDETS was developed using a proven relational database management system which allows the addition, modification, printing, and deletion of data. In addition, communication interfaces with bar code printers and bar code readers were developed. Additional features of the system include: (a) Four different reports available for the user (REAPS, transaction, and two inventory), (b) Remote automated inventory tracking capabilities, (c) Remote automated inventory tracking capability (2D bar codes allow equipment to be scanned/tracked without being linked to the DDETS database), (d) Edit, update, delete, and query capabilities, (e) On-line bar code label printing utility (data from 2D bar codes can be scanned directly into the data base simplifying data entry), and (f) Automated data backup utility. Compatibility with the Reportable Excess Automated Property System (REAPS) to upload data from DDETS is planned.

  19. POLARIS Magnetotelluric Overview and Update - Spring 2004

    NASA Astrophysics Data System (ADS)

    Ferguson, I.; Samson, C.; Unsworth, M.; Asudeh, I.; Craven, J.; Atkinson, G.

    2004-05-01

    The Canadian POLARIS project includes an important component of electromagnetic studies. As part of this project, magnetotelluric (MT) equipment has been acquired to develop an infrastructure for electromagnetic soundings over depths ranging from the uppermost crust to depths of several hundreds kilometers into the asthenosphere. A key innovative feature of the POLARIS project is that MT instruments are being used in association with teleseismic techniques for imaging the Earth's structure, and for investigating seismogenic structures. MT soundings are in progress and, at the end of the project, will have been made at most of the 90 POLARIS observatory arrays on the Slave craton in the Northwest Territories, in the Casacadia region of southwestern British Columbia, and in the Precambrian Grenville Province in southern Ontario. MT equipment is also being used in studies of geomagnetically induced currents (GICs) on powerlines and pipelines. To carry out soundings at different target depths, the POLARIS MT equipment includes: audio-frequency (104 to 10 Hz) MT (AMT) systems for imaging the upper crust; broadband (102 to 10-3 Hz) MT (BBMT) systems for imaging the middle and lower crust; and long-period (1 to <10-4 Hz) MT (LMT) systems with specialized ring-core fluxgate magnetometers required for imaging at mantle depths and for geomagnetic hazard studies. More specifically, the AMT-BBMT equipment consists of six MTU-5A systems that have been procured from Phoenix Geophysics Ltd. and the LMT equipment of twenty-five ring-core NIMS systems on order from Narod Geophysics Ltd. A subset of the POLARIS MT equipment consisting of the AMT, BBMT, and fifteen of the LMT instruments is designed to be moved progressively through the POLARIS arrays providing MT responses over a broad frequency range. The remaining ten LMT instruments are to be deployed at carefully selected POLARIS sites in satellite-telemetered observatory configuration to provide ultra-deep imaging of the mantle and monitoring of temporal conductivity variations. POLARIS MT soundings have been completed using both the new equipment and alternative LMT systems. In 2002, LMT soundings were done at eleven sites on the Southern Ontario array. In 2003, LMT soundings were done at 40 sites on and adjacent to the Cascadia array and a four-station GIC survey was done in the Ottawa River Valley, Ontario. Field-work planned for 2004 includes: the deployment of MT telemetered observatories and the acquisition of AMT-BBMT data in the Slave craton; AMT-BBMT soundings on the Southern Ontario array; and deployment of MT observatories on the Southern Ontario and Cascadia arrays.

  20. Decontamination, decommissioning, and vendor advertorial issue, 2005

    SciTech Connect

    Agnihotri, Newal

    2005-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major interviews, articles and reports in this issue include: Increasing momentum, by Gary Taylor, Entergy Nuclear, Inc.; An acceptable investment, by Tom Chrisopher, Areva, Inc.; Fuel recycling for the U.S. and abroad, by Philippe Knoche, Areva, France; We're bullish on nuclear power, by Dan R. Keuter, Entergy Nuclear, Inc.; Ten key actions for decommissioning, by Lawrence E. Boing, Argonne National Laboratory; Safe, efficient and cost-effective decommissioning, by Dr. Claudio Pescatore and Torsten Eng, OECD Nuclear Energy Agency (NEA), France; and, Plant profile: SONGS decommissioning.

  1. STANDARD OPERATING PROTOCOLS FOR DECOMMISSIONING

    SciTech Connect

    Foss, D. L.; Stevens, J. L.; Gerdeman, F. W.

    2002-02-25

    Decommissioning projects at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites are conducted under project-specific decision documents, which involve extensive preparation time, public comment periods, and regulatory approvals. Often, the decision documents must be initiated at least one year before commencing the decommissioning project, and they are expensive and time consuming to prepare. The Rocky Flats Environmental Technology Site (RFETS) is a former nuclear weapons production plant at which hazardous substances and wastes were released or disposed during operations. As a result of the releases, RFETS was placed on the National Priorities List in 1989, and is conducting cleanup activities under a federal facilities compliance agreement. Working closely with interested stakeholders and state and federal regulatory agencies, RFETS has developed and implemented an improved process for obtaining the approvals. The key to streamlining the approval process has been the development of sitewide decision documents called Rocky Flats Cleanup Agreement Standard Operating Protocols or ''RSOPs.'' RSOPs have broad applicability, and could be used instead of project-specific documents. Although no two decommissioning projects are exactly the same and they may vary widely in contamination and other hazards, the basic steps taken for cleanup are usually similar. Because of this, using RSOPs is more efficient than preparing a separate project-specific decision documents for each cleanup action. Over the Rocky Flats cleanup life cycle, using RSOPs has the potential to: (1) Save over 5 million dollars and 6 months on the site closure schedule; (2) Eliminate preparing one hundred and twenty project-specific decision documents; and (3) Eliminate writing seventy-five closure description documents for hazardous waste unit closure and corrective actions.

  2. 76 FR 3837 - Nuclear Decommissioning Funds; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... 23, 2010 (75 FR 80697) relating to deductions for contributions to trusts maintained for decommissioning nuclear power plants. DATES: This correction is effective on January 21, 2011, and is applicable... Internal Revenue Service 26 CFR Part 1 RIN 1545-BF08 Nuclear Decommissioning Funds; Correction...

  3. Spring Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    22 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dunes in the north polar region of Mars. In this scene, the dunes, and the plain on which the dunes reside, are at least in part covered by a bright carbon dioxide frost. Dark spots indicate areas where the frost has begun to change, either by subliming away to expose dark sand, changing to a coarser particle size, or both. The winds responsible for the formation of these dunes blew from the lower left (southwest) toward the upper right (northeast).

    Location near: 76.3oN, 261.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  4. Technology needs for decommissioning and decontamination

    SciTech Connect

    Bundy, R.D.; Kennerly, J.M.

    1993-12-01

    This report summarizes the current view of the most important decontamination and decommissioning (D & D) technology needs for the US Department of Energy facilities for which the D & D programs are the responsibility of Martin Marietta Energy Systems, Inc. The source of information used in this assessment was a survey of the D & D program managers at each facility. A summary of needs presented in earlier surveys of site needs in approximate priority order was supplied to each site as a starting point to stimulate thinking. This document reflects a brief initial assessment of ongoing needs; these needs will change as plans for D & D are finalized, some of the technical problems are solved through successful development programs, and new ideas for D and D technologies appear. Thus, this assessment should be updated and upgraded periodically, perhaps, annually. This assessment differs from others that have been made in that it directly and solely reflects the perceived need for new technology by key personnel in the D & D programs at the various facilities and does not attempt to consider the likelihood that these technologies can be successfully developed. Thus, this list of technology needs also does not consider the cost, time, and effort required to develop the desired technologies. An R & D program must include studies that have a reasonable chance for success as well as those for which there is a high need. Other studies that considered the cost and probability of successful development as well as the need for new technology are documented. However, the need for new technology may be diluted in such studies; this document focuses only on the need for new technology as currently perceived by those actually charged with accomplishing D & D.

  5. UPDATE: Applications of Research in Music Education. UPDATE Yearbook

    ERIC Educational Resources Information Center

    Rowman & Littlefield Education, 2005

    2005-01-01

    The Fall 2004 and Spring 2005 issues of "UPDATE: Applications of Research in Music Education," in one print volume, presents hard facts and statistical data in a style that can be easily understood and appreciated by music researchers, teachers, graduates, and undergraduates alike. Includes advice to first-year music teachers, instrument…

  6. Variable stiffness torsion springs

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1995-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  7. Variable stiffness torsion springs

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1994-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  8. Deactivation, Decontamination and Decommissioning Project Summaries

    SciTech Connect

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  9. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    SciTech Connect

    Agnew, Kieran

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method

  10. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. PMID:25979740

  11. Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396

    SciTech Connect

    Devgun, Jas S.; Laraia, Michele; Dinner, Paul

    2012-07-01

    perspective in the post Fukushima -accident era. Accidents at the Fukushima Daiichi reactors in the aftermath of the devastating earthquake and tsunami of March 11, 2011 have slowed down the nuclear renaissance world-wide and may have accelerated decommissioning either because some countries have decided to halt or reduce nuclear, or because the new safety requirements may reduce life-time extensions. Even in countries such as the UK and France that favor nuclear energy production existing nuclear sites are more likely to be chosen as sites for future NPPs. Even as the site recovery efforts continue at Fukushima and any decommissioning decisions are farther into the future, the accidents have focused attention on the reactor designs in general and specifically on the Fukushima type BWRs. The regulatory authorities in many countries have initiated a re-examination of the design of the systems, structures and components and considerations of the capability of the station to cope with beyond-design basis events. Enhancements to SSCs and site features for the existing reactors and the reactors that will be built will also impact the decommissioning phase activities. The newer reactor designs of today not only have enhanced safety features but also take into consideration the features that will facilitate future decommissioning. Lessons learned from past management and operation of reactors as well as the lessons from decommissioning are incorporated into the new designs. However, in the post-Fukushima era, the emphasis on beyond-design-basis capability may lead to significant changes in SSCs, which eventually will also have impact on the decommissioning phase. Additionally, where some countries decide to phase out the nuclear power, many reactors may enter the decommissioning phase in the coming decade. While the formal updating and expanding of existing guidance documents for accident cleanup and decommissioning would benefit by waiting until the Fukushima project has progressed

  12. Russian nuclear-powered submarine decommissioning

    SciTech Connect

    Bukharin, O.; Handler, J.

    1995-11-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems.

  13. Safety of Decommissioning of Nuclear Facilities

    SciTech Connect

    Batandjieva, B.; Warnecke, E.; Coates, R.

    2008-01-15

    Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

  14. ASTM standards in radiological decontamination and decommissioning

    SciTech Connect

    Meservey, R.H.

    1994-12-31

    The American Society for Testing and Materials (ASTM) Subcommittee E10.03 was formed following a steering committee meeting held in April 1980. The meeting was initiated as a result of labor union concern for the safety of workers on decommissioning projects. Of particular concern at that time was the need for proper training of the workers and a means of tracking worker radiation-exposure records as they traveled to various decommissioning job sites. The steering committee concluded not only that worker protection standards were necessary for decommissioning activities but also that all phases of a decommissioning project could benefit from the appropriate guides or standards. These would provide worker protection, technical guidance, and consistency for decommissioning work. It recommended that Subcommittee E10.03 be formed and dedicated to the preparation of guides and standards that would support all phases of nuclear facility decontamination and decommissioning. Subcommittee E10.03 has met regularly on a semiannual basis since that time.

  15. 77 FR 32393 - Amendment of Class E Airspace; Colorado Springs, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ..., Colorado Springs, CO (77 FR 9840). Airspace reconfiguration is necessary due to the decommissioning of the... processing and charting. DATES: The effective date for final rule published February 21, 2012, at 77 FR 9840... Policies and Procedures (44 FR 11034; February 26, 1979); and (3) does not warrant preparation of...

  16. Decommissioning of the Iraq former nuclear complex

    SciTech Connect

    Abbas, Mohammed; Helou, Tuama; Ahmead, Bushra; Al-Atia, Mousa; Al-Mubarak, Mowaffak; Danneels, Jeffrey; Cochran, John; Sorenson, Ken; Coates, Roger

    2007-07-01

    Available in abstract form only. Full text of publication follows: A number of sites in Iraq have some degree of radiological contamination and require decommissioning and remediation in order to ensure radiological safety. Many of these sites in Iraq are located at the nuclear research centre at Al Tuwaitha. The International Atomic Energy Agency (IAEA) Board of Governors has approved a project to assist the Government of Iraq in the evaluation and decommissioning of former facilities that used radioactive materials. The project is divided into three phases: Phase 1: collect and analyze all available data and conduct training of the Iraqi staff, Phase 2: develop a decommissioning and remediation plan, and Phase 3: implement field activities relating to decommissioning, remediation and site selection suitable for final disposal of waste. Four working groups have been established to complete the Phase 1 work and significant progress has been made in drafting a new nuclear law which will provide the legal basis for the licensing of the decommissioning of the former nuclear complex. Work is also underway to collect and analysis existing date, to prioritize future activities and to develop a waste management strategy. This will be a long-term and costly project. (authors)

  17. Decommissioning the Tokamak Fusion Test Reactor

    SciTech Connect

    Spampinato, P.T.; Walton, G.R.

    1993-10-01

    The Tokamak Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory (PPPL) will complete its experimental lifetime with a series of deuterium-tritium pulses in 1994. As a result, the machine structures will become radioactive, and vacuum components will also be contaminated with tritium. Dose rate levels will range from less than 1 mr/h for external structures to hundreds of mr/h for the vacuum vessel. Hence, decommissioning operations will range from hands on activities to the use of remotely operated equipment. After 21 months of cool down, decontamination and decommissioning (D and D) operations will commence and continue for approximately 15 months. The primary objective is to render the test cell complex re-usable for the next machine, the Tokamak Physics Experiment (TPX). This paper presents an overview of decommissioning TFTR and discusses the D and D objectives.

  18. Decision framework for platform decommissioning in California.

    PubMed

    Bernstein, Brock B

    2015-10-01

    This article describes the overall decision framework for eventual decisions about decommissioning the 27 operating oil and gas platforms offshore southern California. These platforms will eventually reach the end of their useful lifetimes (estimated between 2015 and 2030, although specific dates have not been determined). Current law and regulations allow for alternative uses in lieu of the complete removal required in existing leases. To prepare for eventual decommissioning, the California Natural Resources Agency initiated an in-depth process to identify and investigate issues surrounding possible decommissioning alternatives. The detailed evaluation of alternatives focused on 2-complete removal and artificial reefing that included partial removal to 85 feet below the waterline. These were selected after a comparison of the technical and economic feasibility of several potential alternatives, availability of a legal framework for implementation, degree of interest from proponents, and relative acceptance by state and federal decision makers. Despite California's history of offshore oil and gas production, only 7 decommissioning projects have been completed and these were all relatively small and close to shore. In contrast, nearly 30% of the California platforms are in water depths (as much as 1200 feet) that exceed any decommissioning project anywhere in the world. Most earlier projects considered an artificial reefing alternative but none were implemented and all platforms were completely removed. Future decisions about decommissioning must grapple with a more complex decision context involving greater technological and logistical challenges and cost, a wider range of viable options, tradeoffs among environmental impacts and benefits, and an intricate maze of laws, regulations, and authorities. The specific engineering differences between complete and partial removal provide an explicit basis for a thorough evaluation of their respective impacts. PMID:26259879

  19. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning...

  20. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning...

  1. Decommissioning of a tritium-contaminated laboratory

    SciTech Connect

    Harper, J.R.; Garde, R.

    1981-11-01

    A tritium laboratory facility at the Los Alamos National Laboratory, Los Alamos, New Mexico, was decommissioned in 1979. The project involved dismantling the laboratory equipment and disposing of the equipment and debris at an on-site waste disposal/storage area. The laboratory was constructed in 1953 and was in service for tritium research and fabrication of lithium tritide components until 1974. The major features of the laboratory included some 25 meters of gloveboxes and hoods, associated vacuum lines, utility lines, exhaust ducts, electrodryers, blowers, and laboratory benches. This report presents details on the decommissioning, health physics, waste management, environmental surveillance, and costs for the operation.

  2. Water Treatment Technology - Springs.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on springs provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on spring basin construction and spring protection. For each competency, student…

  3. Spring Wheat Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common wheat, known as bread wheat, is one of major crops for human food consumption. It is further classified into spring and winter wheat based on the distinct growing seasons. Spring wheat is grown worldwide and usually planted in the spring and harvested in late summer or early fall. In this c...

  4. 1. LOOKING NORTH, SHOWING IODINE SPRING (FOREGROUND), SALT SULPHUR SPRING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING NORTH, SHOWING IODINE SPRING (FOREGROUND), SALT SULPHUR SPRING (LEFT BACKGROUND), AND TWIN COTTAGES (UPPER RIGHT) (4 x 5 negative; 5 x 7 print) - Salt Sulpher Springs, U.S. Route 219, Salt Sulphur Springs, Monroe County, WV

  5. 78 FR 663 - Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... complying with the NRC's Decommissioning Planning Rule (DPR) (76 FR 35512; June 17, 2011). The DPR went into... use by holders of licenses in complying with the DPR. On December 13, 2011 (76 FR 77431), the NRC... was extended from February 10, 2012 to March 30, 2012 (77 FR 8751; February 15, 2012) to allow...

  6. University of Virginia Reactor Facility Decommissioning Results

    SciTech Connect

    Ervin, P. F.; Lundberg, L. A.; Benneche, P. E.; Mulder, R. U.; Steva, D. P.

    2003-02-24

    The University of Virginia Reactor Facility started accelerated decommissioning in 2002. The facility consists of two licensed reactors, the CAVALIER and the UVAR. This paper will describe the progress in 2002, remaining efforts and the unique organizational structure of the project team.

  7. Halons: The hidden dangers of accelerated decommissioning

    SciTech Connect

    Dalzell, G.A.

    1996-12-31

    Many operators have introduced a decommissioning programme for halon systems following the Montreal Protocol and the cessation of production of 1211 and 1301. Some have already decommissioned all their systems. This paper questions whether rapid decommissioning, particularly when faced with external pressure or a desire to be {open_quotes}seen to be green{close_quotes} does reduce the environmental impact. It examines the lifecycle of the halon in an existing system until it is finally destroyed, used, or lost to the atmosphere. Halon is one of the most difficult gases to contain. It is more prone to leakage than almost any other gas. Fixed systems, which contain the majority of 1301 also have valve arrangements which are designed to open with the minimum of energy input. As a result they are also prone to accidental discharge. This paper examines these aspects and the potential for loss to the atmosphere when decommissioning, transporting, recycling and storing the halon. Controlling leakage and preventing accidental discharges within systems has been addressed in other work.

  8. Sodium Reactor Experiment decommissioning. Final report

    SciTech Connect

    Carroll, J.W.; Conners, C.C.; Harris, J.M.; Marzec, J.M.; Ureda, B.F.

    1983-08-15

    The Sodium Reactor Experiment (SRE) located at the Rockwell International Field Laboratories northwest of Los Angeles was developed to demonstrate a sodium-cooled, graphite-moderated reactor for civilian use. The reactor reached full power in May 1958 and provided 37 GWh to the Southern California Edison Company grid before it was shut down in 1967. Decommissioning of the SRE began in 1974 with the objective of removing all significant radioactivity from the site and releasing the facility for unrestricted use. Planning documentation was prepared to describe in detail the equipment and techniques development and the decommissioning work scope. A plasma-arc manipulator was developed for remotely dissecting the highly radioactive reactor vessels. Other important developments included techniques for using explosives to cut reactor vessel internal piping, clamps, and brackets; decontaminating porous concrete surfaces; and disposing of massive equipment and structures. The documentation defined the decommissioning in an SRE dismantling plan, in activity requirements for elements of the decommissioning work scope, and in detailed procedures for each major task.

  9. Decommissioning of the Northrop TRIGA reactor

    SciTech Connect

    Cozens, George B.; Woo, Harry; Benveniste, Jack; Candall, Walter E.; Adams-Chalmers, Jeanne

    1986-07-01

    An overview of the administrative and operational aspects of decommissioning and dismantling the Northrop Mark F TRIGA Reactor, including: planning and preparation, personnel requirements, government interfacing, costs, contractor negotiations, fuel shipments, demolition, disposal of low level waste, final survey and disposition of the concrete biological shielding. (author)

  10. Decontamination and decommissioning of Shippingport commercial reactor

    SciTech Connect

    Schreiber, J.

    1989-11-01

    To a certain degree, the decontamination and decommissioning (D and D) of the Shippingport reactor was a joint venture with Duquesne Light Company. The structures that were to be decommissioned were to be removed to at least three feet below grade. Since the land had been leased from Duquesne Light, there was an agreement with them to return the land to them in a radiologically safe condition. The total enclosure volume for the steam and nuclear containment systems was about 1.3 million cubic feet, more than 80% of which was below ground. Engineering plans for the project were started in July of 1980 and the final environmental impact statement (EIS) was published in May of 1982. The plant itself was shut down in October of 1982 for end-of-life testing and defueling. The engineering services portion of the decommissioning plans was completed in September of 1983. DOE moved onto the site and took over from the Navy in September of 1984. Actual physical decommissioning began after about a year of preparation and was completed about 44 months later in July of 1989. This paper describes the main parts of D and D.

  11. Springs of Florida

    USGS Publications Warehouse

    Rosenau, Jack C.; Faulkner, Glen L.; Hendry, Charles W., Jr.; Hull, Robert W.

    1977-01-01

    The first comprehensive report of Florida's springs, which contains both a story of the springs and a collection of facts about them, was published thirty years ago (Ferguson and others, 1947). Since then, much additional data on springs have been gathered and the current report, Springs of Florida, makes a wealth of information on springs available to the public. Springs of Florida, prepared by the U.S. Geological Survey in cooperation with the Bureau of Geology, Florida Department of Natural Resources, publishers, and the Bureau of Water Resources Management, Florida Department of Environmental Regulation, is intended to provide sufficient background information for a lucid understanding of the nature and occurrence of the springs in the State.

  12. Spring joint with overstrain sensor

    NASA Technical Reports Server (NTRS)

    Phelps, Peter M. (Inventor); Gaither, Bryan W. (Inventor)

    2011-01-01

    A flexible joint may include a conductive compression spring and a pair of non-conductive spring cages disposed at opposite ends of the compression spring to support the compression spring. A conductive member disposed inside the compression spring may extend between the pair of spring cages. One end of the conductive member may be fixed for movement with one of the spring cages and another end of the conductive member may be fixed for movement with the other of the spring cages.

  13. Email Updates

    MedlinePlus

    ... unsubscribe. Prevent MedlinePlus emails from being marked as "spam" or "junk" To ensure that MedlinePlus email updates ... com to your email address book, adjust your spam settings, or follow the instructions from your email ...

  14. 30 CFR 250.1750 - When may I decommission a pipeline in place?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false When may I decommission a pipeline in place... Decommissioning Activities Pipeline Decommissioning § 250.1750 When may I decommission a pipeline in place? You may decommission a pipeline in place when the Regional Supervisor determines that the pipeline...

  15. 30 CFR 250.1754 - When must I remove a pipeline decommissioned in place?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false When must I remove a pipeline decommissioned in... Decommissioning Activities Pipeline Decommissioning § 250.1754 When must I remove a pipeline decommissioned in place? You must remove a pipeline decommissioned in place if the Regional Supervisor determines that...

  16. 30 CFR 250.1750 - When may I decommission a pipeline in place?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false When may I decommission a pipeline in place... Decommissioning Activities Pipeline Decommissioning § 250.1750 When may I decommission a pipeline in place? You may decommission a pipeline in place when the Regional Supervisor determines that the pipeline...

  17. 30 CFR 250.1754 - When must I remove a pipeline decommissioned in place?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false When must I remove a pipeline decommissioned in... Decommissioning Activities Pipeline Decommissioning § 250.1754 When must I remove a pipeline decommissioned in place? You must remove a pipeline decommissioned in place if the Regional Supervisor determines that...

  18. 30 CFR 250.1753 - After I decommission a pipeline, what information must I submit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false After I decommission a pipeline, what... SHELF Decommissioning Activities Pipeline Decommissioning § 250.1753 After I decommission a pipeline, what information must I submit? Within 30 days after you decommission a pipeline, you must submit...

  19. 30 CFR 250.1753 - After I decommission a pipeline, what information must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false After I decommission a pipeline, what... SHELF Decommissioning Activities Pipeline Decommissioning § 250.1753 After I decommission a pipeline, what information must I submit? Within 30 days after you decommission a pipeline, you must submit...

  20. 30 CFR 250.1753 - After I decommission a pipeline, what information must I submit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false After I decommission a pipeline, what... SHELF Decommissioning Activities Pipeline Decommissioning § 250.1753 After I decommission a pipeline, what information must I submit? Within 30 days after you decommission a pipeline, you must submit...

  1. 30 CFR 250.1750 - When may I decommission a pipeline in place?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false When may I decommission a pipeline in place... Decommissioning Activities Pipeline Decommissioning § 250.1750 When may I decommission a pipeline in place? You may decommission a pipeline in place when the Regional Supervisor determines that the pipeline...

  2. 30 CFR 250.1754 - When must I remove a pipeline decommissioned in place?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false When must I remove a pipeline decommissioned in... Decommissioning Activities Pipeline Decommissioning § 250.1754 When must I remove a pipeline decommissioned in place? You must remove a pipeline decommissioned in place if the Regional Supervisor determines that...

  3. 30 CFR 250.1754 - When must I remove a pipeline decommissioned in place?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false When must I remove a pipeline decommissioned in... SHELF Decommissioning Activities Pipeline Decommissioning § 250.1754 When must I remove a pipeline decommissioned in place? You must remove a pipeline decommissioned in place if the Regional Supervisor...

  4. 30 CFR 250.1753 - After I decommission a pipeline, what information must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false After I decommission a pipeline, what... OUTER CONTINENTAL SHELF Decommissioning Activities Pipeline Decommissioning § 250.1753 After I decommission a pipeline, what information must I submit? Within 30 days after you decommission a pipeline,...

  5. 30 CFR 250.1753 - After I decommission a pipeline, what information must I submit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false After I decommission a pipeline, what... Decommissioning Activities Pipeline Decommissioning § 250.1753 After I decommission a pipeline, what information must I submit? Within 30 days after you decommission a pipeline, you must submit a written report...

  6. Coil spring venting arrangement

    DOEpatents

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  7. Spring and valve skirt

    SciTech Connect

    Moore, L.

    1986-07-29

    This patent describes an engine having a valve guide operatively mounting a valve stem and its associated valve spring and spring retainer for actuation of the valve stem by a valve actuator. An improvement is described comprising: a hollow, generally cylindrical shaped skirt means having a side portion forming an interior with one open end and having at its other end an end portion extending inwardly and formed with an axial opening therein communicating to the interior. The skirt means is mounted on and about the valve stem and spring retainer and about its spring so as to move with the valve stem and to cover the spring retainer and most of the portion of the valve spring and the valve stem extending outwardly from the valve guide except for an outermost end of the stem which extends through the opening in the end portion for actuation by the actuator , such that the inwardly extending end portion lies between the outermost end of the stem and an outermost end of the spring retainer to allow for retrofitting insertion of the skirt means over existing valve stems without removal of the spring and spring retainer. Excessive oil is presented from seeping between and valve guide and the valve stem thus preventing excessive carbon build-up in the combustion area, sticking valves, fouled plugs and high exhaust emissions.

  8. Decommissioning of the Molten Salt Reactor Experiment: A technical evaluation

    SciTech Connect

    Notz, K.J.

    1988-01-01

    This report completes a technical evaluation of decommissioning planning for the former Molten Salt Reactor Experiment, which was shut down in December, 1969. The key issues revolve around the treatment and disposal of some five tons of solid fuel salt which contains over 30 kg of fissionable uranium-233 plus fission products and higher actinides. The chemistry of this material is complicated by the formation of elemental fluorine via a radiolysis reaction under certain conditions. Supporting studies carried out as part of this evaluation include (a) a broad scope analysis of possible options for storage/disposal of the salts, (b) calculation of nuclide decay in future years, (c) technical evaluation of the containment facility and hot cell penetrations, (d) review and update of surveillance and maintenance procedures, (e) measurements of facility groundwater radioactivity and sump pump operation, (f) laboratory studies of the radiolysis reaction, and (g) laboratory studies which resulted in finding a suitable getter for elemental fluorine. In addition, geologic and hydrologic factors of the surrounding area were considered, and also the implications of entombment of the fuel in-place with concrete. The results of this evaluation show that the fuel salt cannot be left in its present form and location permanently. On the other hand, extended storage in its present form is quite acceptable for 20 to 30 years, or even longer. For continued storage in-place, some facility modifications are recommended. 30 refs., 5 figs., 9 tabs.

  9. In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367

    SciTech Connect

    Serrato, Michael G.; Musall, John C.; Bergren, Christopher L.

    2013-07-01

    The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m{sup 3}) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and international

  10. Gnome site decontamination and decommissioning project

    SciTech Connect

    Orcutt, J.A.; Sorom, E.R.

    1982-08-01

    In July 1977, DOE/Headquarters directed DOE/NV to design a decontamination and decommissioning plan for the Gnome site, 48 kilometers southeast of Carlsbad, New Mexico. The plan incorporated three distinct phases. During Phase I, both aerial and ground radiological surveys were conducted on the site. Radiological decontamination criteria were established, and a decontamination plan was developed based on the radiological survey results. During Phase II, site preparatory and rehabilitation work was completed. The actual land area decontamination was accomplished during Phase III with conventional earthmoving equipment. A gravity water injection system deposited 36,700 metric tons of contaminated soil and salt in the Gnome cavity. After completion of the decontamination and decommissioning operations, the Gnome site was returned to the Bureau of Land Management for unrestricted surface use.

  11. Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  12. Investment management for nuclear decommissioning trusts

    SciTech Connect

    Stimes, P.C.; Flaherty, R.T. )

    1990-11-22

    According to Nuclear Regulatory Commission estimates, and assuming a 4 percent annual inflation rate, minimum decommissioning requirements for a single reactor could total almost $350 million after 30 years. Consequently, reducing customer contributions to decommissioning funds is a potentially rewarding activity. In fact, improving the after-tax return earned on an NDT fund by as little as one percentage point can reduce customer contributions to the fund by 15% over its life. Unfortunately, many electric utilities are headed in the wrong direction and are unlikely to achieve satisfactory results. The main problem is the prevalence of the conventional wisdom, most of which has been appropriated from the area of pension fund management. This is an area which is familiar to most utility managements, but which has only superficial similarity to the issue of NDT investing. The differences are pronounced: NDTs, unlike pensions, are fully taxable at corporate income tax rates. In addition, NDT managers should be concerned with protecting the inflation-adjusted or real value of fund investments at a single, future decommissioning date. Pension managers, on the other hand, may be concerned with satisfying nominal contractual obligations spread over an extended future time horizon. In view of the large stakes involved in the management of NDTs, the authors summarize five key tenets of the conventional wisdom in this area and demonstrate where they feel they are in error.

  13. P2 integration into conduct of decommissioning

    SciTech Connect

    Boing, L.E.; Lindley, R.

    1997-08-01

    Over the last five years, the D and D Program at the ANL-East site has completed decommissioning of three facilities. Currently, decommissioning of two facilities continues at the site with completion of the JANUS Reactor scheduled for September 1997 and completion of the CP-5 Reactor scheduled for late in CY 1999. In the course of this work, certain waste minimization pollution prevention (WMin/P2) activities have been integrated into all these projects. In most cases, the P2 aspects were key components of the operations that made the best use of available project resources to complete the work safely, within the budget and on or ahead of schedule. This paper will highlight those WMin/P2 activities found most suitable for these D and D operations. Activities covered will include: re-use of lead bricks from a research reactor for shielding material at an accelerator facility, re-use of a reactor out building structure by the on-site plant services group, and several other smaller scope activities which have also helped heighten WMin/P2 awareness in decommissioning.

  14. A Magnet Spring Model

    ERIC Educational Resources Information Center

    Fay, T. H.; Mead, L.

    2006-01-01

    The paper discusses an elementary spring model representing the motion of a magnet suspended from the ceiling at one end of a vertical spring which is held directly above a second magnet fixed on the floor. There are two cases depending upon the north-south pole orientation of the two magnets. The attraction or repelling force induced by the…

  15. Decommissioning nuclear power plants - the wave of the future

    SciTech Connect

    Griggs, F.S. Jr.

    1994-12-31

    The paper discusses the project controls developed in the decommissioning of a nuclear power plant. Considerations are given to the contaminated piping and equipment that have to be removed and the spent and used fuel that has to be disposed of. The storage issue is of primary concern here. The cost control aspects and the dynamics of decommissioning are discussed. The effects of decommissioning laws on the construction and engineering firms are mentioned. 5 refs.

  16. Valve-spring Surge

    NASA Technical Reports Server (NTRS)

    Marti, Willy

    1937-01-01

    Test equipment is described that includes a system of three quartz indicators whereby three different pressures could be synchronized and simultaneously recorded on a single oscillogram. This equipment was used to test the reliction of waves at ends of valve spring, the dynamical stress of the valve spring for a single lift of the valve, and measurement of the curve of the cam tested. Other tests included simultaneous recording of the stress at both ends of the spring, spring oscillation during a single lift as a function of speed, computation of amplitude of oscillation for a single lift by harmonic analysis, effect of cam profile, the setting up of resonance, and forced spring oscillation with damping.

  17. Rotary spring energy storage

    SciTech Connect

    Cooley, S.

    1981-07-01

    The goal was to design a lightweight system, for bicycles, that can level the input energy requirement (human exertion) in accordance with variations in road load (friction, wind, and grade) and/or to provide a system for regenerative braking, that is, to store energy normally lost in brake pad friction for brief periods until it required for re-acceleration or hill-climbing. The rotary spring, also called the coil, motor, spiral, or power spring is governed by the equations reviewed. Materials used in spring manufacture are briefly discussed, and justification for steel as the design choice of material is given. Torque and power requirements for a bicycle and rider are provided as well as estimated human power output levels. These criteria are examined to define spring size and possible orientations on a bicycle. Patents and designs for coupling the spring to the drive train are discussed.

  18. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    SciTech Connect

    Austin, W.; Brinkley, D.

    2011-10-13

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment

  19. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report

    SciTech Connect

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01

    The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

  20. Update '98.

    ERIC Educational Resources Information Center

    Mock, Karen R.

    1998-01-01

    Updates cases and issues previously discussed in this regular column on human rights in Canada, including racism and anti-Semitism, laws on hate crimes, hate sites on the World Wide Web, the use of the "free speech" defense by hate groups, and legal challenges to antiracist groups by individuals criticized by them. (DSK)

  1. Plus updates.

    PubMed

    Parkhouse, Richard C

    2008-01-01

    Inevitably, with an innovative and fast growing technique, improvements in hardware and refinements are ongoing. So it is with Plus. Therefore there are some relevant updates, subsequent to my article "Current Products and Practice: Tip-Edge Plus" (reprinted in the last issue of International Journalof Orthodontics by kind permission of the British Journal of Orthodontics). PMID:19263632

  2. SPRING_TANK

    EPA Science Inventory

    This point coverage shows springs and water tanks on Salt River Indian Reservation in Arizona. This coverage was digitized off of USGS 7.5 minute quad maps by the Phoenix office of the Bureau of Indian Affairs.

  3. Harbingers of Spring

    ERIC Educational Resources Information Center

    Serrao, John

    1976-01-01

    Emphasizing the spring migration of frogs, toads, and salamanders to their watery breeding sites, this article presents information on numerous amphibians and suggests both indoor and outdoor educational activities appropriate for elementary and/or early secondary instruction. (JC)

  4. Decommissioning considerations at a time of nuclear renaissance

    SciTech Connect

    Devgun, Jas S.

    2007-07-01

    At a time of renaissance in the nuclear power industry, when it is estimated that anywhere between 60 to 130 new power reactors may be built worldwide over the next 15 years, why should we focus on decommissioning? Yet it is precisely the time to examine what decommissioning considerations should be taken into account as the industry proceeds with developing final designs for new reactors and the construction on the new build begins. One of the lessons learned from decommissioning of existing reactors has been that decommissioning was not given much thought when these reactors were designed three or four decades ago. Even though decommissioning may be sixty years down the road from the time they go on line, eventually all reactors will be decommissioned. It is only prudent that new designs be optimized for eventual decommissioning, along with the other major considerations. The overall objective in this regard is that when the time comes for decommissioning, it can be completed in shorter time frames, with minimum generation of radioactive waste, and with better radiological safety. This will ensure that the tail end costs of the power reactors are manageable and that the public confidence in the nuclear power is sustained through the renaissance and beyond. (author)

  5. Optimising waste management performance - The key to successful decommissioning

    SciTech Connect

    Keep, Matthew

    2007-07-01

    Available in abstract form only. Full text of publication follows: On the 1. of April 2005 the United Kingdom's Nuclear Decommissioning Authority became responsible for the enormous task of decommissioning the UK's civilian nuclear liabilities. The success of the NDA in delivering its key objectives of safer, cheaper and faster decommissioning depends on a wide range factors. It is self-evident, however, that the development of robust waste management practices by those charged with decommissioning liability will be at the heart of the NDA's business. In addition, the implementation of rigorous waste minimisation techniques throughout decommissioning will deliver tangible environmental benefits as well as better value for money and release funds to accelerate the decommissioning program. There are mixed views as to whether waste minimisation can be achieved during decommissioning. There are those that argue that the radioactive inventory already exists, that the amount of radioactivity cannot be minimised and that the focus of activities should be focused on waste management rather than waste minimisation. Others argue that the management and decommissioning of the UK's civilian nuclear liability will generate significant volumes of additional radioactive waste and it is in this area where the opportunities for waste minimisation can be realised. (author)

  6. Decommissioning: Nuclear Power's Missing Link. Worldwatch Paper 69.

    ERIC Educational Resources Information Center

    Pollock, Cynthia

    The processes and associated dilemmas of nuclear power plant decommissioning are reviewed in this publication. Decommissioning involves the clearing up and disposal of a retired nuclear plant and its equipment of such a way as to safeguard the public from the dangers of radioactivity. Related problem areas are identified and include: (1) closure…

  7. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... Policy and Interpretations Under the Federal Power Act § 2.24 Project decommissioning at relicensing....

  8. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, draft report for comment. Volume 2

    SciTech Connect

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.

    1994-09-01

    On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s WNP-2, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, materials, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

  9. Environmental Impact Assessment (EIA) Process of V1 NPP Decommissioning

    SciTech Connect

    Matejovic, Igor; Polak, Vincent

    2007-07-01

    Through the adoption of Governmental Resolution No. 801/99 the Slovak Republic undertook a commitment to shutdown units 1 and 2 of Jaslovske Bohunice V 1 NPP (WWER 230 reactor type) in 2006 and 2008 respectively. Therefore the more intensive preparation of a decommissioning documentation has been commenced. Namely, the VI NPP Conceptual Decommissioning Plan and subsequently the Environmental Impact Assessment Report of VI NPP Decommissioning were developed. Thus, the standard environmental impact assessment process was performed and the most suitable alternative of V1 NPP decommissioning was selected as a basis for development of further decommissioning documents. The status and main results of the environmental impact assessment process and EIA report are discussed in more detail in this paper. (authors)

  10. Lessons learnt from Ignalina NPP decommissioning project

    SciTech Connect

    NAISSE, Jean-Claude

    2007-07-01

    The Ignalina Nuclear Power Plant (INPP) is located in Lithuania, 130 km north of Vilnius, and consists of two 1500 MWe RBMK type units, commissioned respectively in December 1983 and August 1987. On the 1. of May 2004, the Republic of Lithuania became a member of the European Union. With the protocol on the Ignalina Nuclear Power in Lithuania which is annexed to the Accession Treaty, the Contracting Parties have agreed: - On Lithuanian side, to commit closure of unit 1 of INPP before 2005 and of Unit 2 by 31 December 2009; - On European Union side, to provide adequate additional Community assistance to the efforts of Lithuania to decommission INPP. The paper is divided in two parts. The first part describes how, starting from this agreement, the project was launched and organized, what is its present status and which activities are planned to reach the final ambitious objective of a green field. To give a global picture, the content of the different projects that were defined and the licensing process will also be presented. In the second part, the paper will focus on the lessons learnt. It will explain the difficulties encountered to define the decommissioning strategy, considering both immediate or differed dismantling options and why the first option was finally selected. The paper will mention other challenges and problems that the different actors of the project faced and how they were managed and solved. The paper will be written by representatives of the Ignalina NPP and of the Project Management Unit. (author)

  11. Pre-decommissioning radiological characterization of concrete

    SciTech Connect

    Boden, Sven; Cantrel, Eric

    2007-07-01

    The decommissioning of the BR3 (Belgian Reactor 3) approaches its final phase, in which the building structures are being decontaminated and either denuclearized for possible reuse or demolished. Apart from the presence of naturally occurring radionuclides in building materials, other radionuclides might be present due to contamination or activation. The overall process of the BR3 building structure D and D (Decontamination and Decommissioning) consists of the following steps: - make a complete inventory and preliminary categorize all elements based on historical data; characterize and determine the contamination or activation depth; - determine the decontamination method; - perform the decontamination and clean up; - a possible intermediate characterization followed by an additional decontamination step; and characterize for clearance. A good knowledge of the contamination and activation depth (second step) is fundamental in view of cost minimization. Currently, the method commonly used for the determination of the depth is based on core drilling and destructive analysis. Recently, we have introduced a complementary non destructive assay based on in-situ gamma spectroscopy. Field tests at BR3, both for contamination and activation, showed promising results. (authors)

  12. Nuclear facility decommissioning and site remedial actions

    SciTech Connect

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  13. Nuclear facility decommissioning and site remedial actions

    SciTech Connect

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  14. Segmented tubular cushion springs and spring assembly

    NASA Technical Reports Server (NTRS)

    Haslim, Leonard A. (Inventor)

    1988-01-01

    A spring (10) includes a tube (12) having an elliptical cross section, with the greater axial dimension (22) extending laterally and the lesser axial dimension (24) extending vertically. A plurality of cuts (20) in the form of slots passing through most of a wall of the tube (12) extend perpendicularly to a longitudinal axis (16) extending along the tube (12). An uncut portion (26) of the tube wall extends along the tube (12) for bonding or fastening the tube to a suitable base, such as a bottom (28) of a seat cushion (30).

  15. Segmented tubular cushion springs and spring assembly

    NASA Technical Reports Server (NTRS)

    Haslim, L. A. (Inventor)

    1985-01-01

    A spring which includes a tube with an elliptical cross section, with the greater axial dimension extending laterally and the lesser axial dimension extending vertically is disclosed. A plurality of cuts in the form of slots passing through most of a wall of the tube extend perpendiculary to a longitudinal axis extending along the tube. An uncut portion of the tube wall extends along the tube for bonding or fastening the tube to a suitable base, such as a bottom of a seat cushion.

  16. Walking with springs

    NASA Astrophysics Data System (ADS)

    Sugar, Thomas G.; Hollander, Kevin W.; Hitt, Joseph K.

    2011-04-01

    Developing bionic ankles poses great challenges due to the large moment, power, and energy that are required at the ankle. Researchers have added springs in series with a motor to reduce the peak power and energy requirements of a robotic ankle. We developed a "robotic tendon" that reduces the peak power by altering the required motor speed. By changing the required speed, the spring acts as a "load variable transmission." If a simple motor/gearbox solution is used, one walking step would require 38.8J and a peak motor power of 257 W. Using an optimized robotic tendon, the energy required is 21.2 J and the peak motor power is reduced to 96.6 W. We show that adding a passive spring in parallel with the robotic tendon reduces peak loads but the power and energy increase. Adding a passive spring in series with the robotic tendon reduces the energy requirements. We have built a prosthetic ankle SPARKy, Spring Ankle with Regenerative Kinetics, that allows a user to walk forwards, backwards, ascend and descend stairs, walk up and down slopes as well as jog.

  17. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of...

  18. 26 CFR 1.468A-4T - Treatment of nuclear decommissioning fund (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Treatment of nuclear decommissioning fund...-4T Treatment of nuclear decommissioning fund (temporary). (a) In general. A nuclear decommissioning... income earned by the assets of the nuclear decommissioning fund. (b) Modified gross income. For...

  19. 30 CFR 250.1750 - When may I decommission a pipeline in place?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may I decommission a pipeline in place... Pipeline Decommissioning § 250.1750 When may I decommission a pipeline in place? You may decommission a pipeline in place when the Regional Supervisor determines that the pipeline does not constitute a...

  20. 30 CFR 250.1754 - When must I remove a pipeline decommissioned in place?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When must I remove a pipeline decommissioned in... Activities Pipeline Decommissioning § 250.1754 When must I remove a pipeline decommissioned in place? You must remove a pipeline decommissioned in place if the Regional Supervisor determines that the...

  1. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of...

  2. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of...

  3. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of...

  4. DECOMMISSIONING OF A CAESIUM-137 SEALED SOURCE PRODUCTION FACILITY

    SciTech Connect

    Murray, A.; Abbott, H.

    2003-02-27

    Amersham owns a former Caesium-137 sealed source production facility. They commissioned RWE NUKEM to carry out an Option Study to determine a strategy for the management of this facility and then the subsequent decommissioning of it. The decommissioning was carried out in two sequential phases. Firstly robotic decommissioning followed by a phase of manual decommissioning. This paper describes the remote equipment designed built and operated, the robotic and manual decommissioning operations performed, the Safety Management arrangements and summarizes the lessons learned. Using the equipment described the facility was dismantled and decontaminated robotically. Some 2300kg of Intermediate Level Waste containing in the order of 4000Ci were removed robotically from the facility. Ambient dose rates were reduced from 100's of R per hour {gamma} to 100's of mR per hour {gamma}. The Telerobotic System was then removed to allow man access to complete the decommissioning. Manual decommissioning reduced ambient dose rates further to less than 1mR per hour {gamma} and loose contamination levels to less than 0.25Bq/cm2. This allowed access to the facility without respiratory protection.

  5. Optimal policies for aggregate recycling from decommissioned forest roads.

    PubMed

    Thompson, Matthew; Sessions, John

    2008-08-01

    To mitigate the adverse environmental impact of forest roads, especially degradation of endangered salmonid habitat, many public and private land managers in the western United States are actively decommissioning roads where practical and affordable. Road decommissioning is associated with reduced long-term environmental impact. When decommissioning a road, it may be possible to recover some aggregate (crushed rock) from the road surface. Aggregate is used on many low volume forest roads to reduce wheel stresses transferred to the subgrade, reduce erosion, reduce maintenance costs, and improve driver comfort. Previous studies have demonstrated the potential for aggregate to be recovered and used elsewhere on the road network, at a reduced cost compared to purchasing aggregate from a quarry. This article investigates the potential for aggregate recycling to provide an economic incentive to decommission additional roads by reducing transport distance and aggregate procurement costs for other actively used roads. Decommissioning additional roads may, in turn, result in improved aquatic habitat. We present real-world examples of aggregate recycling and discuss the advantages of doing so. Further, we present mixed integer formulations to determine optimal levels of aggregate recycling under economic and environmental objectives. Tested on an example road network, incorporation of aggregate recycling demonstrates substantial cost-savings relative to a baseline scenario without recycling, increasing the likelihood of road decommissioning and reduced habitat degradation. We find that aggregate recycling can result in up to 24% in cost savings (economic objective) and up to 890% in additional length of roads decommissioned (environmental objective). PMID:18481140

  6. Decommissioning Plan of the Musashi Reactor and Its Progress

    SciTech Connect

    Tanzawa, Tomio

    2008-01-15

    The Musashi Reactor is a TRIGA-II, tank-type research reactor, as shown in Table 1. The reactor had been operated at maximum thermal power level of 100 kW since first critical, January 30, 1963. Reactor operation was shut down due to small leakage of water from the reactor tank on December 21,1989. After shutdown, investigation of the causes, making plan of repair and discussions on restart or decommissioning had been done. Finally, decision of decommissioning was made in May, 2003. The initial plan of the decommissioning was submitted to the competent authority in January, 2004. Now, the reactor is under decommissioning. The plan of decommissioning and its progress are described. In conclusion: considering the status of undertaking plan of the waste disposal facility for the low level radioactive waste from research reactors, the phased decommissioning was selected for the Musashi Reactor. First phase of the decommissioning activities including the actions of permanent shutdown and delivering the spent nuclear fuels to US DOE was completed.

  7. Optimal Policies for Aggregate Recycling from Decommissioned Forest Roads

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew; Sessions, John

    2008-08-01

    To mitigate the adverse environmental impact of forest roads, especially degradation of endangered salmonid habitat, many public and private land managers in the western United States are actively decommissioning roads where practical and affordable. Road decommissioning is associated with reduced long-term environmental impact. When decommissioning a road, it may be possible to recover some aggregate (crushed rock) from the road surface. Aggregate is used on many low volume forest roads to reduce wheel stresses transferred to the subgrade, reduce erosion, reduce maintenance costs, and improve driver comfort. Previous studies have demonstrated the potential for aggregate to be recovered and used elsewhere on the road network, at a reduced cost compared to purchasing aggregate from a quarry. This article investigates the potential for aggregate recycling to provide an economic incentive to decommission additional roads by reducing transport distance and aggregate procurement costs for other actively used roads. Decommissioning additional roads may, in turn, result in improved aquatic habitat. We present real-world examples of aggregate recycling and discuss the advantages of doing so. Further, we present mixed integer formulations to determine optimal levels of aggregate recycling under economic and environmental objectives. Tested on an example road network, incorporation of aggregate recycling demonstrates substantial cost-savings relative to a baseline scenario without recycling, increasing the likelihood of road decommissioning and reduced habitat degradation. We find that aggregate recycling can result in up to 24% in cost savings (economic objective) and up to 890% in additional length of roads decommissioned (environmental objective).

  8. Rhabdomyolysis updated

    PubMed Central

    Efstratiadis, G; Voulgaridou, A; Nikiforou, D; Kyventidis, A; Kourkouni, E; Vergoulas, G

    2007-01-01

    Rhabdomyolysis constitutes a common cause of acute renal failure and presents paramount interest. A large variety of causes with different pathogenetic mechanisms can involve skeletal muscles resulting in rhabdomyolysis with or without acute renal failure. Crush syndrome, one of the most common causes of rhabdomyolysis presents increased clinical interest, particularly in areas often involved by earthquakes, such as Greece and Turkey. Drug abusers are another sensitive group of young patients prone to rhabdomyolysis, which attracts the clinical interest of a variety of medical specialties. We herein review the evidence extracted from updated literature concerning the data related to pathogenetic mechanisms and pathophysiology as well as the management of this interesting syndrome. PMID:19582207

  9. [Pharmacovigilance update].

    PubMed

    Livio, F

    2013-01-01

    Main pharmacovigilance updates in 2012 are reviewed here. Dabigatran: elderly patients with renal failure are at higher risk of bleeding. Dual renin-angiotensin-aldosterone system blockade comprising aliskiren is harmful. Incretins: low risk of acute pancreatitis. Interaction between fusidic acid and statins: many reports of rhabdomyolysis. Interactions between boceprevir/telaprevir and antiretroviral therapies: complex, but manageable. Citalopram, ondansetron: maximum recommended doses are reduced. Atomoxetine: significant increase in blood pressure and heart rate in a fraction of exposed patients. Agomelatine: elevated liver enzymes are common. Fingolimod: bradycardia and heart blocks after first dose - stronger safety recommendations regarding use in patients with heart conditions and strengthened cardiovascular monitoring. PMID:23367709

  10. [Pharmacovigilance update].

    PubMed

    Fogarasi Szabo, Nathalie; Diezi, Léonore; Delenclos, Laurie; Renard, Delphine; Chtioui, Haithem; Rothuizen, Laura E; Buclin, Thierry; Livio, Françoise

    2015-01-14

    The main pharmacovigilance updates in 2014 are reviewed. Ivabradine: increased risk of cardiovascular death and myocardial infarction in patients with symptomatic angina treated with high dosages. Clopidogrel: rare observations of acquired hemophilia. Orlistat: may reduce the absorption of HIV antiretrovirals. Ponatinib: increased risk of arteriopathy and thrombosis. Axitinib: significant risk of heart failure (class effect). Tocilizumab: possible causal relationship with the emergence or aggravation of psoriasis. Lithium: hypercalcemia and hyperparathyroidism commonly observed. Sildenalfil: suspected causal association with melanoma, so far not proven, Methylphenidate: rare observations of priapism. St John's wort (Hypericum): reduced effectiveness of hormonal contraceptives, including implants. PMID:25799668

  11. [Pharmacovigilance update].

    PubMed

    Dao, Kim; Chtioui, Haithem; Rothuizen, Laura E; Diezi, Léonore; Prod'hom, Sylvain; Winterfeld, Ursula; Buclin, Thierry; Livio, Françoise

    2016-01-13

    The main pharmacovigilance updates in 2015are reviewed. Sofosbuvir amiodarone interaction: risk of severe bradycardia. Dasabuvir clopidogrel interaction: increased dasabuvir concentrations and potential risk of QTprolongation. SGLT2 inhibitors: risks of diabetic acidocetosis and bone fracture. Dabigatran: therapeutic drug monitoring may improve benefit-risk ratio. Ibuprofen: at higher dosage, vascular risks are comparable to coxibs. Pregabaline, gabapentine: potential for abuse and addiction. Varenicline: potentiates alcohol's effects. Codeine: contra-indicated as cough medicine under the age of twelve. Valproate: strengthened warnings on the risks of valproate use in pregnancy. Dimethylfumarate: rare observations of progressive multifocal leucoencephalopathy. Ustekinumab: rare observations of erythrodermia. PMID:26946710

  12. Spring polar ozone behavior

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1992-01-01

    Understanding of the springtime behavior of polar stratospheric ozone as of mid 1990 is summarized. Heterogeneous reactions on polar stratospheric clouds as hypothesis for ozone loss are considered and a simplified description of the behavior of Antarctic ozone in winter and spring is given. Evidence that the situation is more complicated than described by the theory is produced. Many unresolved scientific issues remain and some of the most important problems are identified. Ozone changes each spring since 1979 have clearly established for the first time that man made chlorine compounds influence stratospheric ozone. Long before important advances in satellite and in situ investigations, it was Dobson's decision to place a total ozone measuring spectrometer at Halley Bay in Antarctica during the International Geophysical Year and subsequent continuous monitoring which led to the discovery that ozone was being destroyed each spring by chlorine processed by polar stratospheric clouds.

  13. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    SciTech Connect

    1998-07-01

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  14. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  15. When a plant shuts down: The psychology of decommissioning

    SciTech Connect

    Schulz, J.; Crawford, A.C. )

    1993-07-01

    Within the next decade, 10 to 25 nuclear plants in the United States may be taken off line. Many will have reached the end of their 40-year life cycles, but others will be retired because the cost of operating them has begun to outweigh their economic benefit. Such was the case at Fort St. Vrain, the first decommissioning of a US commercial plant under new Nuclear Regulatory Commission (NRC) regulations. Two major problems associated with decommissioning plants have been obvious: (1) the technical challenges and costs of decommissioning, and (2) the cost of maintaining and finally decommissioning a plant after a safe storage (SAFSTOR) period of approximately 60 years. What has received little attention is the challenge that affects not only the people who make a plant work, but the quality of the solutions to these problems: how to maintain effective organizational performance during the process of downsizing and decommissioning and/or SAFSTOR. The quality of technical solutions for closing a plant, as well as how successfully the decommissioning process is held within or below budget, will depend largely on how effectively the nuclear organization functions as a social unit. Technical and people issues are bound together. The difficulty is how to operate a plant effectively when plant personnel have no sense of long-term security. As the nuclear power industry matures and the pace for closing operating plants accelerates, the time has come to prepare for the widespread decommissioning of plants. The industry would be well served by conducting a selective, industry-wide evaluation of plants to assess its overall readiness for the decommissioning process. A decommissioning is not likely to be trouble free, but with a healthy appreciation for the human side of the process, it will undoubtedly go more smoothly than if approached as a matter of dismantling a machine.

  16. Information on Hydrologic Conceptual Models, Parameters, Uncertainty Analysis, and Data Sources for Dose Assessments at Decommissioning Sites

    SciTech Connect

    Meyer, Philip D.; Gee, Glendon W.; Nicholson, Thomas J.

    2000-02-28

    This report addresses issues related to the analysis of uncertainty in dose assessments conducted as part of decommissioning analyses. The analysis is limited to the hydrologic aspects of the exposure pathway involving infiltration of water at the ground surface, leaching of contaminants, and transport of contaminants through the groundwater to a point of exposure. The basic conceptual models and mathematical implementations of three dose assessment codes are outlined along with the site-specific conditions under which the codes may provide inaccurate, potentially nonconservative results. In addition, the hydrologic parameters of the codes are identified and compared. A methodology for parameter uncertainty assessment is outlined that considers the potential data limitations and modeling needs of decommissioning analyses. This methodology uses generic parameter distributions based on national or regional databases, sensitivity analysis, probabilistic modeling, and Bayesian updating to incorporate site-specific information. Data sources for best-estimate parameter values and parameter uncertainty information are also reviewed. A follow-on report will illustrate the uncertainty assessment methodology using decommissioning test cases.

  17. MARSSIM recommended in states' guidance document for decommissioning.

    PubMed

    McBaugh, Debra; Stoffey, Phillip; Shuman, Howard; Young, Robert; Zannoni, Dennis

    2003-06-01

    States appreciate guidance for activities done infrequently or at only a few locations in the state. For many states, this is the case for decommissioning. Some states have reactors being decommissioned, some DOE sites undergoing cleanup, and some uranium mill or radium sites. Many, however, only occasionally do a small facility cleanup or, once in a great while, a large one. For this reason, most states participated in the readily available MARSSIM training and now recommend its use. For this same reason, the CRCPD Committee on Decontamination and Decommissioning (E24) developed a brief guidance document for state and licensee use. PMID:12792402

  18. Some aspects of the decommissioning of nuclear power plants

    SciTech Connect

    Khvostova, M. S.

    2012-03-15

    The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

  19. RESRAD update

    SciTech Connect

    Yu, C.; Cheng, J.J.; Zielen, A.J.; Jones, L.G.; LePoire, D.J.; Wang, Y.Y. ); Yuan, Y.C. ); Loureiro, C.O. . Escola de Engenharia); Wallo, A. III; Peterson, H. . Offic

    1993-01-01

    A microcomputer program called RESRAD, which implements a pathway analysis method for radiological risk assessment, was developed by Argonne National Laboratory (ANL) in 1989. This program is used to derive allowable residual concentrations of radionuclides in soil and to predict effective dose equivalents and excess cancer incidence risks incurred by an individual exposed to radioactive materials. Since its development, the RESRAD code has been adopted by DOE in Order 5400.5 for the derivation of soil cleanup criteria and dose calculations, and it has been used widely by DOE, other agencies, and their contractors. The original models used by ANL to develop RESRAD were initially developed as part of a DOE effort that began in the early 1980s and involved most of the national laboratories and DOE program offices. The RESRAD code is continuously improved and updated to incorporate comments from users and new features that ease the interaction with users and increase the code's capability and flexibility. The DOE Offices of Environmental Guidance and Environmental Restoration also provide periodic guidance regarding any significant changes to the code. The RESRAD update, Version 5.0, has substantial improvements in many aspects compared with the last version released in 1989.

  20. RESRAD update

    SciTech Connect

    Yu, C.; Cheng, J.J.; Zielen, A.J.; Jones, L.G.; LePoire, D.J.; Wang, Y.Y.; Yuan, Y.C.; Loureiro, C.O.; Wallo, A. III; Peterson, H.; H Williams, W.A.

    1993-05-01

    A microcomputer program called RESRAD, which implements a pathway analysis method for radiological risk assessment, was developed by Argonne National Laboratory (ANL) in 1989. This program is used to derive allowable residual concentrations of radionuclides in soil and to predict effective dose equivalents and excess cancer incidence risks incurred by an individual exposed to radioactive materials. Since its development, the RESRAD code has been adopted by DOE in Order 5400.5 for the derivation of soil cleanup criteria and dose calculations, and it has been used widely by DOE, other agencies, and their contractors. The original models used by ANL to develop RESRAD were initially developed as part of a DOE effort that began in the early 1980s and involved most of the national laboratories and DOE program offices. The RESRAD code is continuously improved and updated to incorporate comments from users and new features that ease the interaction with users and increase the code`s capability and flexibility. The DOE Offices of Environmental Guidance and Environmental Restoration also provide periodic guidance regarding any significant changes to the code. The RESRAD update, Version 5.0, has substantial improvements in many aspects compared with the last version released in 1989.

  1. Update on Law-Related Education, Spring 1977.

    ERIC Educational Resources Information Center

    American Bar Association, Chicago, IL. Special Committee on Youth Education for Citizenship.

    This is the first issue of a new journal designed to keep elementary and secondary school teachers and students up-to-date with developments in law-related education. The focus of this issue is on equal protection. Two major articles review recent Supreme Court cases and examine historical cases of segregation. Other features explain how schools…

  2. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) PROGRAM SPRING UPDATE

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Superfund Innovative Technology Evaluation (SITE) Program, now in its fifth year, serves several purposes, including (1) the development and implementation of innovative treatment technologies for hazardous waste remediation and (2) the...

  3. Percutaneous laser disc decompression: an update--Spring 1992.

    PubMed

    Choy, D S; Michelsen, J; Getrajdman, G; Diwan, S

    1992-06-01

    Percutaneous laser disc decompression (PLDD) is being performed in multiple centers in the United States, Germany, Austria, France, and Switzerland with the Nd:YAG having the longest follow up at more than 75 months. The experience with this procedure, in both humans and animals, carried out over the past decade is presented along with a detailed discussion of the surgical procedure. Conditions that favor such surgery and contraindications to the procedure are also presented. There are a number of important advantages to PLDD that make it a procedure that merits continued investigation. Because PLDD is relatively noninvasive, it can be repeated. Because there is no cutting, there is no perispinal scar formation, with possible future pain secondary to entrapment of nerves by scar. Because of its effectiveness for treatment, the laser, in this application, should prove to be an important addition to the spinal surgeon's armamentarium. PMID:10147861

  4. Constructing Predictive Estimates for Worker Exposure to Radioactivity During Decommissioning: Analysis of Completed Decommissioning Projects - Master Thesis

    SciTech Connect

    Dettmers, Dana Lee; Eide, Steven Arvid

    2002-10-01

    An analysis of completed decommissioning projects is used to construct predictive estimates for worker exposure to radioactivity during decommissioning activities. The preferred organizational method for the completed decommissioning project data is to divide the data by type of facility, whether decommissioning was performed on part of the facility or the complete facility, and the level of radiation within the facility prior to decommissioning (low, medium, or high). Additional data analysis shows that there is not a downward trend in worker exposure data over time. Also, the use of a standard estimate for worker exposure to radioactivity may be a best estimate for low complete storage, high partial storage, and medium reactor facilities; a conservative estimate for some low level of facility radiation facilities (reactor complete, research complete, pits/ponds, other), medium partial process facilities, and high complete research facilities; and an underestimate for the remaining facilities. Limited data are available to compare different decommissioning alternatives, so the available data are reported and no conclusions can been drawn. It is recommended that all DOE sites and the NRC use a similar method to document worker hours, worker exposure to radiation (person-rem), and standard industrial accidents, injuries, and deaths for all completed decommissioning activities.

  5. Uranium enrichment decontamination and decommissioning fund

    SciTech Connect

    1994-12-31

    One of the most challenging issues facing the Department of Energy`s Office of Environmental Management is the cleanup of the three gaseous diffusion plants. In October 1992, Congress passed the Energy Policy Act of 1992 and established the Uranium Enrichment Decontamination and Decommissioning Fund to accomplish this task. This mission is being undertaken in an environmentally and financially responsible way by: devising cost-effective technical solutions; producing realistic life-cycle cost estimates, based on practical assumptions and thorough analysis; generating coherent long-term plans which are based on risk assessments, land use, and input from stakeholders; and, showing near-term progress in the cleanup of the gaseous diffusion facilities at Oak Ridge.

  6. Decontamination, decommissioning, and vendor advertorial issue, 2008

    SciTech Connect

    Agnihotri, Newal

    2008-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Articles and reports in this issue include: D and D technical paper summaries; The role of nuclear power in turbulent times, by Tom Chrisopher, AREVA, NP, Inc.; Enthusiastic about new technologies, by Jack Fuller, GE Hitachi Nuclear Energy; It's important to be good citizens, by Steve Rus, Black and Veatch Corporation; Creating Jobs in the U.S., by Guy E. Chardon, ALSTOM Power; and, and, An enviroment and a community champion, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovations article is titled Best of the best TIP achievement 2008, by Edward Conaway, STP Nuclear Operating Company.

  7. Spring black stem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spring black stem is the most destructive alfalfa diseases in temperate regions of the U.S., Canada, Australia, and countries of Europe, Asia, and South America. The disease causes serious yield losses by reducing canopy dry matter and also decreases seed weight and crown and root mass. Forage qua...

  8. The News. Spring 2006

    ERIC Educational Resources Information Center

    Giles, Ray, Ed.

    2006-01-01

    This Spring issue of the quarterly newsletter of the Community College League of California contains the following articles: (1) Enrollment Drops; Fees to Blame?; (2) Senate's Grad Proposal Triggers Debate on Mission, Access; (3) Compton Decision has Affected Perceptions of Commission (discussion with Barbara Beno); (4) Dynamic New Architectural…

  9. Atascocita Springs Elementary School

    ERIC Educational Resources Information Center

    Nigaglioni, Irene; Yocham, Deborah

    2011-01-01

    With the significant amount of time invested in researching the best techniques for delivering instruction to their students, Humble ISD is always on the forefront of education. Taking the recommendations of their active and vocal community groups, the district embarked in the design of the 26th elementary school, Atascocita Springs Elementary…

  10. Planar torsion spring

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Parsons, Adam H. (Inventor); Mehling, Joshua S. (Inventor); Griffith, Bryan Kristian (Inventor)

    2012-01-01

    A torsion spring comprises an inner mounting segment. An outer mounting segment is located concentrically around the inner mounting segment. A plurality of splines extends from the inner mounting segment to the outer mounting segment. At least a portion of each spline extends generally annularly around the inner mounting segment.

  11. Energy Matters - Spring 2002

    SciTech Connect

    2002-03-01

    Quarterly newsletter from DOE's Industrial Technologies Program to promote the use of energy-efficient industrial systems. The focus of the Spring 2002 Issue of Energy Matters focuses on premium energy efficiency systems, with articles on new gas technologies, steam efficiency, the Augusta Newsprint Showcase, and more.

  12. A Quadratic Spring Equation

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  13. Editors' Spring Picks

    ERIC Educational Resources Information Center

    Library Journal, 2011

    2011-01-01

    While they do not represent the rainbow of reading tastes American public libraries accommodate, Book Review editors are a wildly eclectic bunch. One look at their bedside tables and ereaders would reveal very little crossover. This article highlights an eclectic array of spring offerings ranging from print books to an audiobook to ebook apps. It…

  14. Echoes of Spring Valley.

    ERIC Educational Resources Information Center

    Boyken, J. Clarine J.

    Designed to preserve the rich heritage of the rural school system which passed from the education scene in the 1930's and 1940's, this narrative, part history and part nostalgia, describes the author's own elementary education and the secure community life centered in the one room Spring Valley School in Hamilton County, Iowa, in the early decades…

  15. 9. CONTEXTUAL VIEW SOUTHSOUTHEAST TOWARDS SPRING SITE. SPRING LEFT CORNER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. CONTEXTUAL VIEW SOUTH-SOUTHEAST TOWARDS SPRING SITE. SPRING LEFT CORNER. - Juniata Mill Complex, 22.5 miles Southwest of Hawthorne, between Aurora Crater & Aurora Peak, Hawthorne, Mineral County, NV

  16. [Pharmacovigilance update].

    PubMed

    Diezi, Léonore; Renard, Delphine; Rothuizen, Laura E; Livio, Françoise

    2014-01-15

    The main pharmacovigilance updates in 2013 are reviewed. Nitrofurantoin: lower efficacy and an increased risk of adverse events when creatinine clearance is below 60 ml/min. Dabigatran: contraindicated in patients with mechanical heart valves. Azithromycin: QT prolongation and increased risk of death. Zolpidem: towards a lower dosage. Roflumilast: avoid in patients known or at risk for mood disorders. Retigabine: indication restricted to last-line use and new monitoring requirements after reports of pigment changes in retina and other tissues. Telaprevir and rituximab: severe mucocutaneous reactions. Fingolimod: rare cases of progressive multifocal leucoencephalopathy. Tolvaptan: potential for hepatotoxicity. Nicotinic acid/laropiprant: suspension of marketing authorization as benefits no longer outweigh risks. PMID:24558915

  17. Exploration Update

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Delores Beasley, NASA Public Affairs, introduces the panel who consist of: Scott "Doc" Horowitz, Associate Administrator of Exploration Systems from NASA Headquarters; Jeff Henley, Constellation Program Manager from NASA Johnson Space Flight Center; and Steve Cook, Manager Exploration Launch Office at NASA Marshall Space Flight Center. Scott Horowitz presents a short video entitled, "Ares Launching the Future". He further explains how NASA personnel came up with the name of Ares and where the name Ares was derived. Jeff Henley, updates the Constellation program and Steve Cook presents two slide presentations detailing the Ares l crew launch vehicle and Ares 5 cargo launch vehicle. A short question and answer period from the news media follows.

  18. Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico

    SciTech Connect

    Salazar, M.; Elder, J.

    1992-08-01

    The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program.

  19. Lessons Learned from the NASA Plum Brook Reactor Facility Decommissioning

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA has been conducting decommissioning activities at its PBRF for the last decade. As a result of all this work there have been several lessons learned both good and bad. This paper presents some of the more exportable lessons.

  20. Studying Springs in Series Using a Single Spring

    ERIC Educational Resources Information Center

    Serna, Juan D.; Joshi, Amitabh

    2011-01-01

    Springs are used for a wide range of applications in physics and engineering. Possibly, one of their most common uses is to study the nature of restoring forces in oscillatory systems. While experiments that verify Hooke's law using springs are abundant in the physics literature, those that explore the combination of several springs together are…

  1. The Decommissioning of the Trino Nuclear Power Plant

    SciTech Connect

    Brusa, L.; DeSantis, R.; Nurden, P. L.; Walkden, P.; Watson, B.

    2002-02-27

    Following a referendum in Italy in 1987, the four Nuclear Power Plants (NPPs) owned and operated by the state utility ENEL were closed. After closing the NPPs, ENEL selected a ''safestore'' decommissioning strategy; anticipating a safestore period of some 40-50 years. This approach was consistent with the funds collected during plant operation, and was reinforced by the lack of both a waste repository and a set of national free release limits for contaminated materials in Italy. During 1999, twin decisions were made to privatize ENEL and to transform the nuclear division into a separate subsidiary of the ENEL group. This group was renamed Sogin and during the following year, ownership of the company was transferred to the Italian Treasury. On formation, Sogin was asked by the Italian government to review the national decommissioning strategy. The objective of the review was to move from a safestore strategy to a prompt decommissioning strategy, with the target of releasing all of the nuclear sites by 2020. It was recognized that this target was conditional upon the availability of a national LLW repository together with interim stores for both spent fuel and HLW by 2009. The government also agreed that additional costs caused by the acceleration of the decommissioning program would be considered as stranded costs. These costs will be recovered by a levy on the kWh price of electricity, a process established and controlled by the Regulator of the Italian energy sector. Building on the successful collaboration to develop a prompt decommissioning strategy for the Latina Magnox reactor (1), BNFL and Sogin agreed to collaborate on an in depth study for the prompt decommissioning of the Sogin PWR at Trino. BNFL is currently decommissioning six NPPs and is at an advanced stage of planning for two further units, having completed a full and rigorous exercise to develop Baseline Decommissioning Plans (BDP's) for these stations. The BDP exercise utilizes the full range of

  2. Progress in Decommissioning the Humboldt Bay Power Plant - 13604

    SciTech Connect

    Rod, Kerry; Shelanskey, Steven K.; Kristofzski, John

    2013-07-01

    Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) to Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes

  3. Northrop Triga facility decommissioning plan versus actual results

    SciTech Connect

    Gardner, F.W.

    1986-01-01

    This paper compares the Triga facility decontamination and decommissioning plan to the actual results and discusses key areas where operational activities were impacted upon by the final US Nuclear Regulatory Commission (NRC)-approved decontamination and decommissioning plan. Total exposures for fuel transfer were a factor of 4 less than planned. The design of the Triga reactor components allowed the majority of the components to be unconditionally released.

  4. Early Childhood Education: Organization of Reference Topics for Use in Undergraduate Courses. ERIC 1967-Spring 1973. (A Selective Listing).

    ERIC Educational Resources Information Center

    Wallat, Cynthia, Comp.

    This selective bibliography cites references pertaining to early childhood education from "Research in Education" (RIE) and "Current Index to Journals in Education" (CIJE). The bibliography is divided into three sections. The first two sections contain references from RIE and CIJE from spring 1967 through spring 1973; the last section updates the…

  5. Accelerating the Whiteshell Laboratories Decommissioning Through the Implementation of a Projectized and Delivery-Focused Organization - 13074

    SciTech Connect

    Wilcox, Brian; Mellor, Russ; Michaluk, Craig

    2013-07-01

    and positive impacts on schedule and delivery. A revised organizational structure was implemented in two phases, starting 2011 April 1, to align WL staff with the common goal of decommissioning the site through the direction of the WL Decommissioning Project General Manager. On 2011 September 1, the second phase of the reorganization was implemented and WL Decommissioning staff was organized under five Divisions: Programs and Regulatory Compliance, General Site Services, Decommissioning Strategic Planning, Nuclear Facilities and Project Delivery. A new Mission, Vision and Objectives were developed for the project, and several productivity enhancements are being implemented. These include the use of an integrated and fully re-sourced Site Wide Schedule that is updated and reviewed at Plan-of-the-Week meetings, improved work distribution throughout the year, eliminating scheduling 'push' mentality, project scoreboards, work planning implementation, lean practices and various process improvement initiatives. A revised Strategic Plan is under development that reflects the improved project delivery capabilities. As a result of these initiatives, and a culture change towards a projectized approach, the decommissioning schedule will be advanced by approximately 10 years. (authors)

  6. Decontamination and Decommissioning Experience at a Sellafield Uranium Purification Plant

    SciTech Connect

    Prosser, J.L.

    2006-07-01

    Built in the 1950's, this plant was originally designed to purify depleted uranyl nitrate solution arising from reprocessing operations at the Primary Separation and Head End Plant (Fig. 1). The facility was used for various purposes throughout its life cycle such as research, development and trial based processes. Test rigs were operated in the building from the 1970's until 1984 to support development of the process and equipment now used at Sellafield's Thermal Oxide Reprocessing Plant (THORP). The extensive decommissioning program for this facility began over 15 years ago. Many challenges have been overcome throughout this program such as decommissioning the four main process cells, which were very highly alpha contaminated. The cells contained vessels and pipeline systems that were contaminated to such levels that workers had to use pressurized suits to enter the cells. Since decommissioning at Sellafield was in its infancy, this project has trialed various decontamination/decommissioning methods and techniques in order to progress the project, and this has provided valuable learning for other decommissioning projects. The project has included characterization, decontamination, dismantling, waste handling, and is now ready for demolition during late 2005, early 2006. This will be the first major facility within the historic Separation Area at Sellafield to be demolished down to base slab level. The lessons learnt from this project will directly benefit numerous decommissioning projects as the cleanup at Sellafield continues. (authors)

  7. Completed Decommissioning of the Research Reactor TRIGA Heidelberg We are specialised in Decommissioning a Research Reactor in Germany now

    SciTech Connect

    Juenger-Graef, B.; Hoever, K.; Moser, T.; Berthold, M.; Blenski, H.J.

    2006-07-01

    This paper describes the decommissioning of the TRIGA Heidelberg II reactor which was used until 1999, and of the TRIGA Heidelberg I reactor, which was for the last 20 years in a safe containment. (authors)

  8. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Main report, draft report for comment. Volume 1

    SciTech Connect

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.

    1994-09-01

    On June 27, 1988, the U.S. Nuclear Regulatory Commission (NRC) published in the Federal Register (53 FR 24018) the final rule for the General Requirements for Decommissioning Nuclear Facilities. With the issuance of the final rule, owners and operators of licensed nuclear power plants are required to prepare, and submit to the NRC for review, decommissioning plans and cost estimates. The NRC staff is in need of updated bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB alternatives, which now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste. Costs for labor, transport, and disposal activities are given in 1993 dollars. Sensitivities of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances are also examined.

  9. The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities

    SciTech Connect

    Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee

    2007-07-01

    Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

  10. Hot Spring Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, María Esperanza; González-Siso, María Isabel

    2013-01-01

    Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S rRNA genes arose. Thereafter, the possibility of cloning and sequencing the total environmental DNA, defined as metagenome, and the study of the genes rescued in the metagenomic libraries and assemblies made it possible to gain a more comprehensive understanding of microbial communities—their diversity, structure, the interactions existing between their components, and the factors shaping the nature of these communities. In the last decade, hot springs have been a source of thermophilic enzymes of industrial interest, encouraging further study of the poorly understood diversity of microbial life in these habitats. PMID:25369743

  11. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    SciTech Connect

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a

  12. Spring operated accelerator and constant force spring mechanism therefor

    NASA Technical Reports Server (NTRS)

    Shillinger, G. L., Jr. (Inventor)

    1977-01-01

    A spring assembly consisting of an elongate piece of flat spring material formed into a spiral configuration and a free running spool in circumscribing relation to which this spring is disposed was developed. The spring has a distal end that is externally accessible so that when the distal end is drawn along a path, the spring unwinds against a restoring force present in the portion of the spring that resides in a transition region between a relatively straight condition on the path and a fully wound condition on the spool. When the distal end is released, the distal end is accelerated toward the spool by the force existing at the transition region which force is proportional to the cross-sectional area of the spring.

  13. Spring magnet films.

    SciTech Connect

    Bader, S. D.; Fullerton, E. E.; Gornakov, V. S.; Inomata, A.; Jiang, J. S.; Nikitenko, V. I.; Shapiro, A. J.; Shull, R. D.; Sowers, C. H.

    1999-03-29

    The properties of exchange-spring-coupled bilayer and superlattice films are highlighted for Sm-Co hard magnet and Fe or Co soft magnet layers. The hexagonal Sm-Co is grown via magnetron sputtering in a- and b-axis epitaxial orientations. In both cases the c-axis, in the film plane, is the easy axis of magnetization. Trends in coercivity with film thickness are established and related to the respective microstructure of the two orientations. The magnetization reversal process for the bilayers is examined by magnetometry and magneto-optical imaging, as well as by simulations that utilize a one-dimensional model to provide the spin configuration for each atomic layer. The Fe magnetization is pinned to that of the Sm-Co at the interface, and reversal proceeds via a progressive twisting of the Fe magnetization. The Fe demagnetization curves are reversible as expected for a spring magnet. Comparison of experiment and simulations indicates that the spring magnet behavior can be understood from the intrinsic properties of the hard and soft layers. Estimated are made of the ultimate gain in performance that can potentially be realized in this system.

  14. Activities update

    NASA Astrophysics Data System (ADS)

    Smith, Gerald A.

    1994-07-01

    The present report is an update on activities for the second year of funding. Research leading to a detailed characterization of antiproton annihilation in nuclei has resulted in a published analysis of fast deuteron production from carbon and uranium targets. This follows previously reported work and publications by our group on gamma-ray, neutral and charged pion, proton, and neutron production. The deuteron measurements are important to our SHIVA Star antiproton- catalyzed microfission experiment at the Phillips Laboratory, Kirtland AFB, in that they help constrain theoretical models of light nuclei production and subsequent energy deposition in the target. Work continues at SHIVA Star on working fluid formation and target compression for the microfission experiment. Excellent progress has been made, both theoretically and experimentally, on these important aspects of the experiment. The Penn State group, working in collaboration with Los Alamos National Laboratory physicists, trapped and held up to 721,000 antiprotons per beam injection pulse from the LEAR accelerator during July, 1993. This was a crucial step to the ultimate goal of transferring large numbers of antiprotons to the Phillips Laboratory for the antiproton-catalyzed microfission experiment.

  15. Evaluation of nuclear facility decommissioning projects. Project summary report, Elk River Reactor

    SciTech Connect

    Miller, R.L.; Adams, J.A.

    1982-12-01

    This report summarizes information concerning the decommissioning of the Elk River Reactor. Decommissioning data from available documents were input into a computerized data-handling system in a manner that permits specific information to be readily retrieved. The information is in a form that assists the Nuclear Regulatory Commission in its assessment of decommissioning alternatives and ALARA methods for future decommissionings projects. Samples of computer reports are included in the report. Decommissioning of other reactors, including NRC reference decommissioning studies, will be described in similar reports.

  16. An overview of U.S. decommissioning experience -- A basic introduction

    SciTech Connect

    Boing, L.E.

    1998-03-09

    This paper presents an overview of the US experiences in the decommissioning technical area. Sections included are: (1) an overview of the magnitude of the problem, (2) a review of the US decommissioning process, (3) regulation of decommissioning, (4) regulatory and funding requirements for decommissioning, and (5) a general overview of all on-going and completed decommissioning projects to date in the US. The final section presents a review of some issues in the decommissioning area currently being debated in the technical specialists community.

  17. Mobile workstation for decontamination and decommissioning operations

    SciTech Connect

    Whittaker, W.L.; Osborn, J.F.; Thompson, B.R.

    1993-10-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D&D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D&D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility.

  18. Performance and review of safety assessment for decommissioning

    SciTech Connect

    Percival, K.; Thierfeldt, S.; Joubert, A.; Kaulard, J.; Manson, P.; Ferch, R.; Batandjieva, B.

    2007-07-01

    Available in abstract form only. Full text of publication follows: Safety assessment is required by national and international safety standards to be performed for all stages of life cycle of facilities that are using radioactive material. It is required to be performed by operators and reviewed by regulators in support of a decommissioning plan for every facility before decommissioning commences. With the growing amount of decommissioning activities world-wide, the need for assistance to Member States in development and review of such assessments was highlighted in the Berlin Conference in 2002 and reflected in the International Action Plan on Decommissioning of Nuclear Facilities, approved by the International Atomic Energy Agency (IAEA) Board of Governors in 2004. In order to respond to this need, the IAEA initiated an international project on Evaluation and Demonstration of Safety during Decommissioning of Nuclear Facilities (DeSa Project) in the same year. More than fifty experts from over thirty Member States have been working over the last three years on (i) the establishment of a harmonized safety assessment methodology for decommissioning; (ii) development of recommendations for a regulatory approach and procedure for review of such assessments; (iii) development of recommendations on the application of the graded approach to development and review of safety assessments; and (iv) application of the methodology, the regulatory review procedure and graded approach recommendations to three test cases - safety assessment for decommissioning of a nuclear power plant (NPP), a research reactor and a nuclear laboratory. This paper presents the current status of the DeSa project work, the consensus achieved, the main preliminary outcomes and lessons learned. The project results are envisaged to be presented and discussed at the 4. Joint DeSa meeting in October 2007 in Vienna, where the scope and objectives of a follow- up project will be also discussed. (authors)

  19. MedlinePlus E-mail Updates | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. MedlinePlus E-mail Updates Past Issues / Spring - Summer 2010 Table ... in health and medicine? Sign up for MedlinePlus e-mail updates, and you'll receive alerts whenever ...

  20. 77 FR 47223 - Medicare Program; Inpatient Psychiatric Facilities Prospective Payment System-Update for Fiscal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ...) in a final rule that appeared in the November 15, 2004 Federal Register (69 FR 66922). In developing... publish a notice in the Federal Register each spring to update the IPF PPS (71 FR 27041). In the May 6, 2011 IPF PPS final rule (76 FR 26432), we changed the payment rate update period to a rate year...

  1. 76 FR 4997 - Medicare Program; Inpatient Psychiatric Facilities Prospective Payment System-Update for Rate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ...) in a final rule that appeared in the November 15, 2004 Federal Register (69 FR 66922). In developing... publish a notice in the Federal Register each spring to update the IPF PPS (71 FR 27041). We are proposing... most recent IPF PPS annual update occurred in the April 30, 2010 Federal Register notice (75 FR...

  2. 76 FR 26431 - Medicare Program; Inpatient Psychiatric Facilities Prospective Payment System-Update for Rate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... Register (69 FR 66922). In developing the IPF PPS, in order to ensure that the IPF PPS is able to account... stated our intention to publish a notice in the Federal Register each spring to update the IPF PPS (71 FR... most recent IPF PPS annual update occurred in the April 30, 2010 Federal Register notice (75 FR...

  3. 75 FR 15423 - U.S. Nuclear Regulatory Commission Technical Evaluation Report for the Phase 1 Decommissioning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... and consider the comments provided prior to the initiation of decontamination and decommissioning... initiation of decontamination and decommissioning operations. As indicated by NRC, ``Should the EIS...

  4. Lomonosov In Spring

    NASA Technical Reports Server (NTRS)

    2004-01-01

    26 September 2004 This blue wide angle Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the frost-covered rims of Lomonosov Crater in late martian spring. At the north (top) end of the image, low, ground-hugging fog can be seen in association with the retreating seasonal polar cap. Lomonosov Crater is about 150 km (93 mi) in diameter and located at 65oN, 9oW. The image is illuminated by sunlight from the lower left.

  5. Fun with Automobile Springs

    NASA Astrophysics Data System (ADS)

    Fritsch, Klaus

    2006-10-01

    Simple measurements on car suspension systems and their analysis can raise student interest in the elementary discussion of the behavior of springs in oscillating systems. To understand these complicated oscillating systems and to interpret measurements properly, models may be used. Students find out how to make approximations and extract useful information from marginal data using common sense, basic physics, and simple software tools. Basic experiments on a physical model of a car suspension and on a passenger car, as well as the analysis of the data, will be presented. In particular, a value of the bounce mode frequency of a car was obtained using several approaches.

  6. Windscale pile reactors - Decommissioning progress on a fifty year legacy

    SciTech Connect

    Sexton, Richard J.

    2007-07-01

    The decommissioning of the Windscale Pile 1 reactor, fifty years after the 1957 fire, is one of the most technically challenging decommissioning projects in the UK, if not the world. This paper presents a summary of the 1957 Windscale Pile 1 accident, its unique challenges and a new technical approach developed to safely and efficiently decommission the two Windscale Pile Reactors. The reactors will be decommissioned using a top down approach that employs an array of light weight, carbon fiber, high payload robotic arms to remove the damaged fuel, the graphite core, activated metals and concrete. This relatively conventional decommissioning approach has been made possible by a recently completed technical assessment of reactor core fire and criticality risk which concluded that these types of events are not credible if relatively simple controls are applied. This paper presents an overview of the design, manufacture and testing of equipment to remove the estimated 15 tons of fire damaged fuel and isotopes from the Pile 1 reactor. The paper also discusses recently conducted characterization activities which have allowed for a refined waste estimate and conditioning strategy. These data and an innovative approach have resulted in a significant reduction in the estimated project cost and schedule. (authors)

  7. The Chernobyl NPP decommissioning: Current status and alternatives

    SciTech Connect

    Mikolaitchouk, H.; Steinberg, N.

    1996-08-01

    After the Chernobyl accident of April 26, 1986, many contradictory decisions were taken concerning the Chernobyl nuclear power plant (NPP) future. The principal source of contradictions was a deadline for a final shutdown of the Chernobyl NPP units. Alterations in a political and socioeconomic environment resulted in the latest decision of the Ukrainian Authorities about 2000 as a deadline for a beginning of the Chernobyl NPP decommissioning. The date seems a sound compromise among the parties concerned. However, in order to meet the data a lot of work should be done. First of all, a decommissioning strategy has to be established. The problem is complicated due to both site-specific aspects and an absence of proven solutions for the RBMK-type reactor decommissioning. In the paper the problem of decommissioning option selection is considered taking into account an influence of the following factors: relevant legislative and regulatory requirements; resources required to carry out decommissioning (man-power, equipment, technologies, waste management infrastructure, etc.); radiological and physical status of the plant, including structural integrity and predictable age and weather effects; impact of planned activities at the destroyed unit 4 and within the 30-km exclusion zone of the Chernobyl NPP; planed use of the site; socio-economic considerations.

  8. Development of Safety Assessment Code for Decommissioning of Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Shimada, Taro; Ohshima, Soichiro; Sukegawa, Takenori

    A safety assessment code, DecDose, for decommissioning of nuclear facilities has been developed, based on the experiences of the decommissioning project of Japan Power Demonstration Reactor (JPDR) at Japan Atomic Energy Research Institute (currently JAEA). DecDose evaluates the annual exposure dose of the public and workers according to the progress of decommissioning, and also evaluates the public dose at accidental situations including fire and explosion. As for the public, both the internal and the external doses are calculated by considering inhalation, ingestion, direct radiation from radioactive aerosols and radioactive depositions, and skyshine radiation from waste containers. For external dose for workers, the dose rate from contaminated components and structures to be dismantled is calculated. Internal dose for workers is calculated by considering dismantling conditions, e.g. cutting speed, cutting length of the components and exhaust velocity. Estimation models for dose rate and staying time were verified by comparison with the actual external dose of workers which were acquired during JPDR decommissioning project. DecDose code is expected to contribute the safety assessment for decommissioning of nuclear facilities.

  9. 30 CFR 285.907 - How will MMS process my decommissioning application?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... decommissioning application with the decommissioning general concept in your approved SAP, COP, or GAP to..., COP, or GAP, and MMS will begin the appropriate NEPA analysis and other regulatory reviews as...

  10. Web-Based Training on Reviewing Dose Modeling Aspects of NRC Decommissioning and License Termination Plans

    SciTech Connect

    LePoire, D.; Cheng, J.J.; Kamboj, S.; Arnish, J.; Richmond, P.; Chen, S.Y.; Barr, C.; McKenney, C.

    2008-01-15

    related to training, developing, and transferring knowledge to NRC staff on how to review dose-modeling portions of licensee-submitted DPs and LTPs. This project identified specific cases and examples, created easily updateable educational modules, represented material in an engaging format through animations, video, and graphics, and distributed information on how to perform these reviews in an accessible, web-based format. WBT promotes consistency in reviews and has the advantage of being able to be used as a resource to staff at any time. The WBT will provide reviewers with knowledge needed to perform risk-informed analyses (e.g., information related to development of realistic scenarios and use of probabilistic analysis). WBT on review of LTP or DP dose modeling will promote staff development, efficiency, and effectiveness in performing risk-informed, performance-based reviews of decommissioning activities at NRC-licensed facilities. One of the key advantages of this type of web-based training is that it can be loaded on-demand and can be reused indefinitely. In addition to the benefits of on-demand training, the modules can also be used for reference. The presentations are hosted on a web server that can be accessed by registered users at any time. Staff can return to a particular module to review the material long after they have completed the course.

  11. Managing Decommissioning Projects Using D&D Trak

    SciTech Connect

    Stegen, R.; Wilkinson, R.; Frink, P.; Karas, T.

    2003-02-26

    Numerous buildings throughout the DOE complex are being decommissioned. The decommissioning process typically includes dismantling equipment and utility systems for disposal, decontaminating remaining surfaces to meet regulatory limits, demolishing the building structure, and remediating the surrounding environment to address any historical releases. Typically, a large amount of information and radiation survey data needs to be processed and evaluated. Rapid assessment of project information is required to effectively manage unanticipated conditions that are frequently encountered as building components are dismantled. Parsons has developed a relational database called D&D TRAK to estimate, plan, manage, and track decommissioning projects. D&D TRAK has been successfully used at DOE and other federal facilities to terminate radioactive licenses thus allowing the unrestricted free-release of these buildings to public and private sectors.

  12. DEACTIVATION AND DECOMMISSIONING PLANNING AND ANALYSIS WITH GEOGRAPHIC INFORMATION SYSTEMS

    SciTech Connect

    Bollinger, J; William Austin, W; Larry Koffman, L

    2007-09-17

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dispositioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dispositioning infrastructure and for reporting the future status of impacted facilities.

  13. The shielding design process--new plants to decommissioning.

    PubMed

    Jeffries, Graham; Cooper, Andrew; Hobson, John

    2005-01-01

    BNFL have over 25 years experience of designing nuclear plant for the whole-fuel cycle. In the UK, a Nuclear Decommissioning Authority (NDA) is to be set up to ensure that Britain's nuclear legacy is cleaned up safely, securely and cost effectively. The resulting challenges and opportunities for shielding design will be substantial as the shielding design process was originally devised for the design of new plants. Although its underlying principles are equally applicable to decommissioning and remediation of old plants, there are many aspects of detailed application that need to adapt to this radically different operating environment. The paper describes both the common issues and the different challenges of shielding design at different operational phases. Sample applications will be presented of both new plant and decommissioning projects that illustrate not only the robust nature of the processes being used, but also how they lead to cost-effective solutions making a substantive and appropriate contribution to radiological protection goals. PMID:16604700

  14. Completion of decommissioning: Monitoring for site release and license termination

    SciTech Connect

    Boing, L.E.

    1997-08-01

    To request termination of a license upon completion of dismantling or decommissioning activities, documenting any residual radioactivity to show that the levels are environmentally acceptable will be necessary. When the regulators approve the decommissioning plan, they establish what the release criteria for the decommissioned site will be at the time of the site release and license termination. The criteria are numeric guidelines for direct radiation in soils and on surfaces. If the regulatory body finds that the measured on-site values are below the guidelines, the site will be acceptable for unrestricted release (no radiological controls or future use). If areas are found above those values, more decontamination or cleanup of these areas may be required unless the regulatory body grants an exemption.

  15. Beneficial Re-use of Decommissioned Former Nuclear Facilities

    SciTech Connect

    Boing, L.E.

    1997-06-01

    With the decision to decommission a nuclear facility, it is necessary to evaluate whether to fully demolish a facility or to re-use the facility in some capacity. This evaluation is often primarily driven by both the past mission of the site and the facility and the site's perceived future mission. In the case where the facility to be decommissioned is located within a large research or industrial complex and represents a significant resource to the site's future mission, it may be a perfect candidate to be re-used in some fashion. However, if the site is a rather remote older facility with little chance of being modified to today's standards for its re-use, the chances for its re-use will be substantially reduced. In this presentation, some specific cases of former nuclear facilities being decommissioned and re-used will be reviewed and some factors required to be considered in making this decision will be reviewed.

  16. Spring-Tab Lock Washer

    NASA Technical Reports Server (NTRS)

    Finckenor, Jeff; Rogers, Dylan; Rodriguez, Pete

    1993-01-01

    Improved spring-tab lock washer offers alternative to such positive-locking devices as cotter pins and lock wires and to conventional split-ring lock washers. Does not dig into fastened parts with sharp edges; less likely to inflict scratches causing cracks. Contains three winglike spring tabs and three alignment pips, pressed into mating dimples in surface of part to be fastened. Spring tabs on lock washer allow only clockwise rotation (tightening) of bolt or nut.

  17. A costing model for offshore decommissioning in California.

    PubMed

    Bressler, Andrew; Bernstein, Brock B

    2015-10-01

    California's 27 offshore oil and gas platforms will reach the end of their useful lifetimes sometime in the near future and will require decommissioning. Although existing leases require complete removal of all platforms and associated infrastructure, the underlying laws and regulations have changed in recent years to allow a number of alternative uses after decommissioning. In particular, AB 2503, signed into law in September 2010, provides for a rigs-to-reefs program that allows the state to accept ownership of decommissioned platforms in federal waters. Decisions about whether to remove platforms completely or leave them in place as artificial reefs will depend in part on the relative cost of the 2 options. In this study, we describe the design and use of a mathematical decision model that provides detailed cost estimates of complete and partial removal (to 85 feet below the water line) for California's offshore platforms. The model, PLATFORM, is loaded with Bureau of Safety and Environmental Enforcement (BSEE) and Bureau of Ocean Energy Management (BOEM) costs for complete removal, along with costs for partial removal calculated for this study and estimates of the uncertainty associated with decommissioning cost estimates. PLATFORM allows users to define a wide range of decommissioning and costing scenarios (e.g., number of platforms, choice of heavy lift vessel, shell mound removal, reef enhancement). As a benchmark cost, complete removal of all 27 offshore platforms, grouped into the 7 decommissioning projects defined by the most recent federal cost estimates produced in 2010, would cost an estimated $1.09 billion, whereas partial removal of these platforms, grouped into the same set of projects, would cost $478 million, with avoided costs of $616 million (with minor rounding). PMID:25914378

  18. 77 FR 75198 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... COMMISSION Standard Format and Content for Post-Shutdown Decommissioning Activities Report AGENCY: Nuclear... Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method...) 1.185, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report,''...

  19. 26 CFR 1.468A-1T - Nuclear decommissioning costs; general rules (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Nuclear decommissioning costs; general rules...-1T Nuclear decommissioning costs; general rules (temporary). (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income...

  20. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In...

  1. ADVANTAGES, DISADVANTAGES, AND LESSONS LEARNED FROM MULTI-REACTOR DECOMMISSIONING PROJECTS

    SciTech Connect

    Morton, M.R.; Nielson, R.R.; Trevino, R.A.

    2003-02-27

    This paper discusses the Reactor Interim Safe Storage (ISS) Project within the decommissioning projects at the Hanford Site and reviews the lessons learned from performing four large reactor decommissioning projects sequentially. The advantages and disadvantages of this multi-reactor decommissioning project are highlighted.

  2. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... COMMISSION Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors AGENCY... ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC considers acceptable for use in... Revision 1 of Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000....

  3. Technology demonstrations in the Decontamination and Decommissioning Focus Area

    SciTech Connect

    Bossart, S.J.

    1996-02-01

    This paper describes three large-scale demonstration projects sponsored jointly by the Decontamination and Decommissioning Focus Area (DDFA), and the three US Department of Energy (DOE) Operations Offices that successfully offered to deactivate or decommission (D&D) one of its facilities using a combination of innovative and commercial D&D technologies. The paper also includes discussions on recent technology demonstrations for an Advanced Worker Protection System, an Electrohydraulic Scabbling System, and a Pipe Explorer{trademark}. The references at the conclusion of this paper should be consulted for more detailed information about the large-scale demonstration projects and recent technology demonstrations sponsored by the DDFA.

  4. Springing into Spring: Reading Games for the Season

    ERIC Educational Resources Information Center

    Maxwell, D. Jackson

    2008-01-01

    As spring arrives, more time is spent outdoors. Unfortunately, as spring fever hits, books and learning often take a backseat. The goal is for educators to find a way to re-engage learners. In this article, the author presents a seasonal story and game that can help catch students' attention by making learning both informative and entertaining.…

  5. BLACKJACK SPRINGS WILDERNESS, WISCONSIN.

    USGS Publications Warehouse

    Schulz, Klaus J.

    1984-01-01

    The mineral-resource potential of the Blackjack Springs Wilderness in northern Wisconsin was evaluated. The lack of bedrock exposures in or near the wilderness and the thick mantle of glacial sediments precludes a detailed assessment of the mineral potential of the wilderness. However, based on presently available data, the area is concluded to offer little promise for the occurrence of mineral resources. If mineral deposits exist in the area, they would be under thick glacial cover and probably be of the massive sulfide type in association with metavolcanic rocks or be magmatic copper-nickel in association with metamorphosed mafic intrusive rocks. Sand and gravel resources occur in the wilderness, but they are abundant regionally, outside the wilderness. No other metallic or energy resources were identified in this study.

  6. Spring loaded thermocouple module

    DOEpatents

    McKelvey, Thomas E.; Guarnieri, Joseph J.

    1985-01-01

    A thermocouple arrangement is provided for mounting in a blind hole of a specimen. The thermocouple arrangement includes a cup-like holder member, which receives an elongated thermal insulator, one end of which is seated at an end wall of the holder. A pair of thermocouple wires, threaded through passageways in the insulator, extend beyond the insulator member, terminating in free ends which are joined together in a spherical weld bead. A spring, held captive within the holder, applies a bias force to the weld bead, through the insulator member. The outside surface of the holder is threaded for engagement with the blind hole of the specimen. When the thermocouple is installed in the specimen, the spherical contact surface of the weld bead is held in contact with the end wall of the blind hole, with a predetermined bias force.

  7. Spring loaded thermocouple module

    DOEpatents

    McKelvey, T.E.; Guarnieri, J.J.

    1984-03-13

    A thermocouple arrangement is provided for mounting in a blind hole of a specimen. The thermocouple arrangement includes a cup-like holder member, which receives an elongated thermal insulator, one end of which is seated at an end wall of the holder. A pair of thermocouple wires, threaded through passageways in the insulator, extend beyond the insulator member, terminating in free ends which are joined together in a spherical weld bead. A spring, held captive within the holder, applies a bias force to the weld bead, through the insulator member. The outside surface of the holder is threaded for engagement with the blind hole of the specimen. When the thermocouple is installed in the specimen, the spherical contact surface of the weld bead is held in contact with the end wall of the blind hole, with a predetermined bias force.

  8. Updating Situation Models

    ERIC Educational Resources Information Center

    Zwaan, Rolf A.; Madden, Carol J.

    2004-01-01

    The authors examined how situation models are updated during text comprehension. If comprehenders keep track of the evolving situation, they should update their models such that the most current information, the here and now, is more available than outdated information. Contrary to this updating hypothesis, E. J. O'Brien, M. L. Rizzella, J. E.…

  9. Spring loaded locator pin assembly

    DOEpatents

    Groll, T.A.; White, J.P.

    1998-03-03

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

  10. Spring loaded locator pin assembly

    DOEpatents

    Groll, Todd A.; White, James P.

    1998-01-01

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

  11. Experimenting with Inexpensive Plastic Springs

    ERIC Educational Resources Information Center

    Perez, Leander; Marques, Adriana; Sánchez, Iván

    2014-01-01

    Acommon undergraduate laboratory experience is the determination of the elastic constant of a spring, whether studying the elongation under a static load or studying the damped harmonic motion of the spring with a suspended mass. An alternative approach to this laboratory experience has been suggested by Menezes et al., aimed at studying the…

  12. Single-Crystal Springs For Accelerometers

    NASA Technical Reports Server (NTRS)

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Thermal noise reduced, enabling use of smaller proof masses. Spring-and-mass accelerometers in which springs made of single-crystal material being developed. In spring-and-mass accelerometer, proof mass attached to one end of spring, and acceleration of object at other end of spring measured in terms of deflection of spring, provided frequency spectrum of acceleration lies well below resonant frequency of spring-and-proof-mass system. Use of single-crystal spring materials instead of such polycrystalline spring materials as ordinary metals makes possible to construct highly sensitive accelerometers (including seismometers) with small proof masses.

  13. Mallow Springs, County Cork, Ireland

    NASA Astrophysics Data System (ADS)

    Aldwell, C. R.

    1996-03-01

    Because of its copious and reliable rainfall, Ireland has an abundance of springs. Many of the larger ones issue from the Carboniferous limestone that occurs in over 40% of the country. The spring water is mainly a calcium bicarbonate type with a temperature of about 10°C. In the 18th century, warm and cold springs were developed as spas in various parts of Ireland. The popularity of these springs was short and most were in major decline by 1850. Today only one cold spa at Lisdoonvarna, Co. Clare is still operating. Springs in Ireland were places of religious significance for the pre-Christian Druidic religion. In the Christian period they became holy wells, under the patronage of various saints. Cures for many different ailments were attributed to water from these wells.

  14. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Spring rigging. 229.65 Section 229.65....65 Spring rigging. (a) Protective construction or safety hangers shall be provided to prevent spring planks, spring seats or bolsters from dropping to track structure in event of a hanger or spring...

  15. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Spring rigging. 229.65 Section 229.65....65 Spring rigging. (a) Protective construction or safety hangers shall be provided to prevent spring planks, spring seats or bolsters from dropping to track structure in event of a hanger or spring...

  16. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Spring rigging. 229.65 Section 229.65....65 Spring rigging. (a) Protective construction or safety hangers shall be provided to prevent spring planks, spring seats or bolsters from dropping to track structure in event of a hanger or spring...

  17. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Spring rigging. 229.65 Section 229.65....65 Spring rigging. (a) Protective construction or safety hangers shall be provided to prevent spring planks, spring seats or bolsters from dropping to track structure in event of a hanger or spring...

  18. Linear magnetic spring and spring/motor combination

    NASA Technical Reports Server (NTRS)

    Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)

    1991-01-01

    A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.

  19. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... electric energy generated by a nuclear power plant must be included in the gross income of such taxpayer in the same manner as amounts charged for electric energy. For this purpose, decommissioning costs... consumers are liable to pay by reason of electric energy furnished by the taxpayer during the taxable...

  20. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... electric energy generated by a nuclear power plant must be included in the gross income of such taxpayer in the same manner as amounts charged for electric energy. For this purpose, decommissioning costs... consumers are liable to pay by reason of electric energy furnished by the taxpayer during the taxable...

  1. 10 CFR 72.130 - Criteria for decommissioning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for decommissioning. 72.130 Section 72.130 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General...

  2. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Register on February 14, 2012 (77 FR 8902), for a 60-day public comment period. The public comment period... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission....

  3. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of...

  4. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... electric energy generated by a nuclear power plant must be included in the gross income of such taxpayer in the same manner as amounts charged for electric energy. For this purpose, decommissioning costs... consumers are liable to pay by reason of electric energy furnished by the taxpayer during the taxable...

  5. Korea Research Reactor -1 & 2 Decommissioning Project in Korea

    SciTech Connect

    Park, S. K.; Chung, U. S.; Jung, K. J.; Park, J. H.

    2003-02-24

    Korea Research Reactor 1 (KRR-1), the first research reactor in Korea, has been operated since 1962, and the second one, Korea Research Reactor 2 (KRR-2) since 1972. The operation of both of them was phased out in 1995 due to their lifetime and operation of the new and more powerful research reactor, HANARO (High-flux Advanced Neutron Application Reactor; 30MW). Both are TRIGA Pool type reactors in which the cores are small self-contained units sitting in tanks filled with cooling water. The KRR-1 is a TRIGA Mark II, which could operate at a level of up to 250 kW. The second one, the KRR-2 is a TRIGA Mark III, which could operate at a level of up 2,000 kW. The decontamination and decommissioning (D & D) project of these two research reactors, the first D & D project in Korea, was started in January 1997 and will be completed to stage 3 by 2008. The aim of this decommissioning program is to decommission the KRR-1 & 2 reactors and to decontaminate the residual building structure s and the site to release them as unrestricted areas. KAERI (Korea Atomic Energy Research Institute) submitted the decommissioning plan and the environmental impact assessment reports to the Ministry of Science and Technology (MOST) for the license in December 1998, and was approved in November 2000.

  6. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    SciTech Connect

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  7. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    SciTech Connect

    Haffner, D.R.; Villelgas, A.J.

    1996-01-01

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities.

  8. In-house developed methodologies and tools for decommissioning projects

    SciTech Connect

    Detilleux, Michel; Centner, Baudouin

    2007-07-01

    The paper describes different methodologies and tools developed in-house by Tractebel Engineering to facilitate the engineering works to be carried out especially in the frame of decommissioning projects. Three examples of tools with their corresponding results are presented: - The LLWAA-DECOM code, a software developed for the radiological characterization of contaminated systems and equipment. The code constitutes a specific module of more general software that was originally developed to characterize radioactive waste streams in order to be able to declare the radiological inventory of critical nuclides, in particular difficult-to-measure radionuclides, to the Authorities. In the case of LLWAA-DECOM, deposited activities inside contaminated equipment (piping, tanks, heat exchangers...) and scaling factors between nuclides, at any given time of the decommissioning time schedule, are calculated on the basis of physical characteristics of the systems and of operational parameters of the nuclear power plant. This methodology was applied to assess decommissioning costs of Belgian NPPs, to characterize the primary system of Trino NPP in Italy, to characterize the equipment of miscellaneous circuits of Ignalina NPP and of Kozloduy unit 1 and, to calculate remaining dose rates around equipment in the frame of the preparation of decommissioning activities; - The VISIMODELLER tool, a user friendly CAD interface developed to ease the introduction of lay-out areas in a software named VISIPLAN. VISIPLAN is a 3D dose rate assessment tool for ALARA work planning, developed by the Belgian Nuclear Research Centre SCK.CEN. Both softwares were used for projects such as the steam generators replacements in Belgian NPPs or the preparation of the decommissioning of units 1 and 2 of Kozloduy NPP; - The DBS software, a software developed to manage the different kinds of activities that are part of the general time schedule of a decommissioning project. For each activity, when relevant

  9. Digital simulation error curves for a spring-mass-damper system

    NASA Technical Reports Server (NTRS)

    Knox, L. A.

    1971-01-01

    Plotting digital simulation errors for a spring-mass-damper system and using these error curves to select type of integration, feedback update method, and number of samples per cycle at resonance reduces excessive number of samples per cycle and unnecessary iterations.

  10. Offshore scientific and technical publications, February-July, Spring 1989. Quarterly report

    SciTech Connect

    Not Available

    1989-01-01

    The catalog lists all current (1987-1989) scientific and technical publications of the Offshore Minerals Management Program. The catalog is updated and released on a quarterly basis in winter, spring, summer, and fall. Publications available after July 21, 1989, will be listed in the next issue.

  11. Atmospheric discharges from nuclear facilities during decommissioning: German experiences

    SciTech Connect

    Braun, H.; Goertz, R.; Weil, L.

    1997-08-01

    In Germany, a substantial amount of experience is available with planning, licensing and realization of decommissioning projects. In total, a number of 18 nuclear power plants including prototype facilities as well as 6 research reactors and 3 fuel cycle facilities have been shut down finally and are at different stages of decommissioning. Only recently the final {open_quotes}green field{close_quotes} stage of the Niederaichbach Nuclear Power Plant total dismantlement project has been achieved. From the regulatory point of view, a survey of the decommissioning experience in Germany is presented highlighting the aspects of production and retention of airborne radioactivity. Nuclear air cleaning technology, discharge limits prescribed in licences and actual discharges are presented. As compared to operation, the composition of the discharged radioactivity is different as well as the off-gas discharge rate. In practically all cases, there is no significant amount of short-lived radionuclides. The discussion further includes lessons learned, for example inadvertent discharges of radionuclides expected not to be in the plants inventory. It is demonstrated that, as for operation of nuclear power plants, the limits prescribed in the Ordinance on Radiological Protection can be met using existing air cleaning technology, Optimization of protection results in public exposures substantially below the limits. In the frame of the regulatory investigation programme a study has been conducted to assess the airborne radioactivity created during certain decommissioning activities like decontamination, segmentation and handling of contaminated or activated parts. The essential results of this study are presented, which are supposed to support planning for decommissioning, for LWRs, Co-60 and Cs-137 are expected to be the dominant radionuclides in airborne discharges. 18 refs., 2 figs., 1 tab.

  12. Decommissioning of U.S. uranium production facilities

    SciTech Connect

    Not Available

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  13. Education in nuclear decommissioning in the north of Scotland

    SciTech Connect

    Catlow, F.; Reeves, G.M.

    2007-07-01

    This paper describes the work covered and experience gained in the first two years of operation of DERC, a Centre for Decommissioning and Environmental Remediation in the Highlands of Scotland. The Centre is a unique development which was set up to teach nuclear decommissioning as a separate discipline, address the problem of a declining skills base in the field of nuclear technologies and to take advantage of the unique and exceptional innovative, technical and research opportunities offered through the decommissioning of Britain's fast reactor site at Dounreay. The Centre is an offshoot from North Highland College which is a member of UHI, the University in embryo of the Highlands and Islands. The Centre currently supports ten PhD students completing various diverse projects mainly in the field of nuclear environmental remediation. In addition there area number of full and part time MSc students who participate in NTEC (Nuclear Technology Education Consortium) a consortium of British Universities set up specifically to engender interest and skills in nuclear technology at postgraduate level. At undergraduate level, courses are offered in Nuclear Decommissioning and related subjects as part of Electrical and Mechanical degree courses. In addition to our relationship with the United Kingdom Atomic Energy Authority (UKAEA) the Dounreay site licensee, we have links with Rolls-Royce and the Ministry of Defence who also share the Dounreay site and with other stakeholders such as, the UK regulator (HSE/NII), the Scottish Environmental Protection Agency (SEPA), local and international contractors and we liaise with the newly formed Nuclear Decommissioning Authority (NDA), who provide some sponsorship and support. We possess our own equipment and laboratories for taking and analysing soil samples and for conducting environmental surveys. Recently we commissioned an aerial survey of contamination in the locality from natural sources, other background levels such as

  14. Piston and spring powered engine

    SciTech Connect

    Samodovitz, A. J.

    1985-12-10

    The invention is an improved piston engine, either two stroke or four stroke. In one, two stroke, one cylinder embodiment, the improvement comprises two springs connecting between the piston and the base of the piston. These springs are relatively relaxed when the crank is at top dead center. Then during the power/intake stroke, some of the fuel's energy is delivered to the crankshaft and some is used to compress the springs. The stored energy in the springs is delivered to the crankshaft during the exhaust/compression stroke while the springs return to their relatively relaxed condition. As a result, energy is delivered to the crankshaft during both strokes of the cycle, and the engine runs smooth. In one, four stroke, two cylinder embodiment, each cylinder has springs as described above, the cranks of each cylinder are aligned, and the cam sets one cylinder in the power stroke while the other is in the intake stroke. As a result, the engine runs smooth because energy is delivered to the crankshaft during all four strokes of the cycle, during two of the strokes by the burning fuel and during the other two by the release of energy in the springs. In both embodiments, a heavy crankshaft is not needed because of the more uniform power delivery.

  15. Groundwater flow cycling between a submarine spring and an inland fresh water spring.

    PubMed

    Davis, J Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half. PMID:24138490

  16. Groundwater flow cycling between a submarine spring and an inland fresh water spring

    USGS Publications Warehouse

    Davis, J. Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half.

  17. Hydrogeology of the mineral springs at Manitou Springs, Colorado

    SciTech Connect

    Maslyn, R.M.; Blomquist, P.K.

    1985-01-01

    Manitou Springs, a small resort community located at the base of 14,110 foot Pikes Peak, is situated at the south end of the southward plunging Williams Canyon Anticline. This is truncated south of town by the Ute Pass Reverse Fault, with over 30,000 feet of displacement. Paleozoic limestones are exposed north of Manitou Springs in north-south trending Williams Canyon. The Mississippian age Leadville Limestone and underlying Ordovician age Manitou Limestone contain over 40 caves, including the 8500-foot long Cave of the Winds system. These limestones continue under Manitou Springs, where cave forming processes have resulted in water-filled caverns. The 28 natural springs and flowing wells in Manitou Springs source in the limestone caverns. This carbonate aquifer is bounded by the Ute Pass Fault on the west and southwest, the Rampart Range Fault to the east, and open to recharge from exposed limestone to the north. Areal extent of the aquifer is approximately 3.5 spare miles, containing an estimated 10 billion gallons. In the past 100 years, spring development has lowered the potentiometric surface 50 feet. Contemporary and historical chemical analyses of the mineral water show high concentrations of calcium, magnesium, bicarbonate, and carbon dioxide gas. This suggests prolonged exposure of the water to limestone, as confirmed by Carbon 14 age-dating values of up to 30,000 years.

  18. Responding To Changes in the Decommissioning Plans for Demolition of a Former Active Handling Building at The United Kingdom Atomic Energy Establishment Winfrith

    SciTech Connect

    Brown, N.; Parkinson, S.J.; Cornell, R.M.; Staples, A.T.

    2006-07-01

    The full decommissioning of the former Active Handling Building A59 at Winfrith in Dorset is being carried out by RWE NUKEM Limited under contract from the site owners and nuclear site licence holder, United Kingdom Atomic Energy Authority (UKAEA). Following recent government changes, the United Kingdom's Nuclear Decommissioning Authority (NDA) has now set up contracts with UKAEA for delivery of the site clean-up programme. The building contains two heavily shielded suites of caves originally used to carry out remote examination of irradiated nuclear fuel elements together with other supporting facilities. The original intention was to demolish the caves ahead of the building but after detailed consideration it was concluded that demolition of the building in advance of the caves was more operationally effective. As a result, the original decommissioning plan had to be reworked to reflect these changes. The paper briefly explains how this situation arose and the means by which the problems experienced were overcome by a complete revision to the decommissioning programme. The updated plan has been adopted by UKAEA and work is now proceeding apace to clear the building of redundant items, to complete decontamination of all remaining areas and facilities and to carry out detailed radiological surveys to confirm that the building structure is clean and ready for demolition. Both cave lines have been completely decontaminated to low residual levels of activity and are essentially ready for controlled demolition. This paper describes some of the significant tasks undertaken during the past year with particular reference to the decommissioning techniques that gave the greatest success and the limitations of others originally considered. Some of these processes were aimed at minimising the volume of low level waste (LLW) generated by using standard off-the-shelf equipment to remove contamination from {approx}5 Ton concrete blocks recovered from both cave line structures. A

  19. Moving Objects Updating

    NASA Astrophysics Data System (ADS)

    Chen, Jidong; Meng, Xiaofeng

    In moving objects applications, large numbers of locations can be sampled by sensors or GPS periodically, then sent from moving clients to the server and stored in a database. Therefore, continuously maintaining in a database the current locations of moving objects by using a tracking technique becomes very important. The key issue is minimizing the number of updates, while providing precise locations for query results. In this chapter, we will introduce some underlying location update methods. Then, we describe two location update strategies in detail, which can improve the performance. One is the proactive location update strategy, which predicts the movement of moving objects to lower the update frequency; the other is the group location update strategy, which groups the objects to minimize the total number of objects reporting their locations.

  20. Spring Small Grains Area Estimation

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  1. Site-characteristic and hydrologic data for selected wells and springs on Federal land in Clark County, Nevada

    USGS Publications Warehouse

    Pavelko, Michael T.

    2014-01-01

    Site-characteristic and hydrologic data for selected wells and springs on U.S. Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, and U.S. Forest Service land in Clark County, Nevada, were updated in the U.S. Geological Survey’s National Water Information System (NWIS) to facilitate multi-agency research. Data were researched and reviewed, sites were visited, and NWIS data were updated for 231 wells and 198 springs, including 36 wells and 67 springs that were added to NWIS and 44 duplicate sites that were deleted. The site-characteristic and hydrologic data collected, reviewed, edited, and added to NWIS include locations, well water levels, spring discharges, and water chemistry. Site-characteristic and hydrologic data can be accessed from links to the NWIS web interface; data not available through the web interface are presented in appendixes to this report.

  2. ISS Update: Suitport

    NASA Video Gallery

    ISS Update commentator Lynnette Madison interviews Mallory Jennings, Suitport Human Testing Lead, about making spacewalks easier and more efficient with the Suitport. Questions? Ask us on Twitter @...

  3. Improving the Identification, Dissemination and Implementation of Deactivation and Decommissioning Lessons Learned and Best Practices

    SciTech Connect

    Waisley, Sandra L.; Lackey, Michael B.; Dusek, Lansing G.

    2008-01-15

    Approximately $150 billion of work currently remains in the United States Department of Energy's (DoE's) Office of Environmental Management (EM) life cycle budget for U.S. projects. Contractors who manage facilities for the DOE have been challenged to identify transformational changes to reduce the life cycle costs and to develop a knowledge-management system that identifies, disseminates, and tracks the implementation of lessons learned and best practices. This paper discusses DoE's rationale for using lessons learned and best practices to improve safety and performance while reducing life cycle costs for Deactivation and Decommissioning (D and D) projects. It also provides an update on the Energy Facility Contractors Group's (EFCOG's) progress in supporting DoE's efforts. At this juncture the best practice efforts described are in developmental stages; however, the commitment to and the concrete nature of the work thus far is noteworthy in regard to improving the way D and D lessons learned and best practices are identified, disseminated and implemented across the DOE Complex.

  4. Accelerated Decontamination and Decommissioning at the Hanford Site

    SciTech Connect

    Hughes, M.C.; Douglas, L.M.; Marske, S.G.

    1994-01-01

    The Hanford Site has over 100 facilities that have been declared surplus and are scheduled to be decommissioned. In addition to these surplus facilities, there is a significant number of facilities that are currently being shut down, deactivated, and transferred to the Decontamination and Decommissioning (D&D) program. In the last year, Westinghouse Hanford Company and the US Department of Energy, Richland Operations Office, have developed and implemented an initiative to accelerate the D&D work at the Hanford Site. The strategy associated with accelerated D&D is to reduce the number of surplus facilities, eliminate potential safety hazards, demonstrate meaningful cleanup progress, and recycle materials for other uses. This initiative has been extremely successful and has resulted in the safe demolition of 13 facilities in fiscal year (FY) 1993. In addition, four facilities have been completed in FY 1994 and demolition of several other facilities is currently underway.

  5. Carbon-14 Bioassay for Decommissioning of Hanford Reactors

    SciTech Connect

    Carbaugh, Eugene H.; Watson, David J.

    2012-05-01

    The old production reactors at the US Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for 14C radiobioassay of workers was identified. Technical issues associated with 14C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S 14C anticipated to be encountered. However the concentrations in the graphite piles appear to be sufficiently low that dosimetrically significant intakes of 14C are not credible, thus rendering moot the need for such bioassay.

  6. Decontamination and Decommissioning activities photobriefing book FY 1997

    SciTech Connect

    1998-04-01

    The Decontamination and Decommissioning (D and D) Program at Argonne National Laboratory-East (ANL-E) is dedicated to the safe and cost effective D{ampersand}D of surplus nuclear facilities. There is currently a backlog of more than 7,000 contaminated US Department of Energy facilities nationwide. Added to this are 110 licensed commercial nuclear power reactors operated by utilities learning to cope with deregulation and an aging infrastructure that supports the commercial nuclear power industry, as well as medical and other uses of radioactive materials. With this volume it becomes easy to understand the importance of addressing the unique issues and objectives associated with the D{ampersand}D of surplus nuclear facilities. This photobriefing book summarizes the decontamination and decommissioning projects and activities either completed or continuing at the ANL-E site during the year.

  7. Reducing environmental risk associated with laboratory decommissioning and property transfer.

    PubMed Central

    Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G

    2000-01-01

    The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness. PMID:11121365

  8. TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING WORKSHOP REPORT

    SciTech Connect

    Jannik, T.; Lee, P.; Gladden, J.; Langton, C.; Serrato, M.; Urland, C.; Reynolds, E.

    2009-06-30

    In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and where the private

  9. Reducing environmental risk associated with laboratory decommissioning and property transfer.

    PubMed

    Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G

    2000-12-01

    The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness. PMID:11121365

  10. FACILITY DEACTIVATION AND DECOMMISSIONING AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Gilmour, J; William Austin, W; Cathy Sizemore, C

    2007-01-31

    In February 2002, the U.S. Department of Energy initiated actions to expedite Cleanup, focus on significant and early risk reduction, and reduce costs at the Savannah River Site (SRS). In response SRS started on a project focused on completing the decommissioning of inactive facilities in T, D, and M Areas, areas that on the perimeter of the Site, by the end of 2006. In June 2003, the Department of Energy Savannah River Operations Office (DOE-SR), the South Carolina Department of Health and Environmental Control (SCDHEC), and the Environmental Protection Agency, Region 4 (EPA-4) endorsed a Memorandum of Agreement (MOA) concerning cleanup at the Savannah River Site (SRS). The vision of the Agreement is that SRS will reduce its operations footprint to establish a buffer zone at the perimeter if the Site, while the central core area of the Site will be reserved for continuing or future long-term operations. DOE-SR, EPA-4, and SCDHEC agreed that establishing this buffer zone and appropriately sequencing environmental restoration and decommissioning activities can lead to greater efficiency and accelerate completion of entire site areas. This vision is embodied in the concept of Area Completion--which integrated operations, deactivation and decommissioning (D&D), and soils and groundwater cleanup into a time-phased approach to completing all the work necessary to address the Cold War legacy. D&D addresses the ''footprint'' of the building or structure, while the soils and groundwater project addresses any environmental remediation that may be required in the underlying and surrounding soils and groundwater. Since then, {approx}250 facilities have been decommissioned at the SRS, ranging from guard stations to nuclear fuel production facilities.