Science.gov

Sample records for decomposable integer programs

  1. Resupply Scheduler Program Using Integer Optimization

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Reed, D. M.

    1994-01-01

    Resupply Scheduling Modeler (RSM) fully menu-driven computer program using integer programming techniques to determine optimum schedule for replacing components on or before ends of fixed replacement periods. Written to analyze electrical power system on Space Station Freedom, also used to model resupply of almost any system subject to user-defined constraints on resources. Lifetimes of components, assembly schedules, and other constraints taken into account. Written in APL2(R).

  2. Solving Integer Programming Problems by Using Artificial Bee Colony Algorithm

    NASA Astrophysics Data System (ADS)

    Akay, Bahriye; Karaboga, Dervis

    This paper presents a study that applies the Artificial Bee Colony algorithm to integer programming problems and compares its performance with those of Particle Swarm Optimization algorithm variants and Branch and Bound technique presented to the literature. In order to cope with integer programming problems, in neighbour solution production unit, solutions are truncated to the nearest integer values. The experimental results show that Artificial Bee Colony algorithm can handle integer programming problems efficiently and Artificial Bee Colony algorithm can be considered to be very robust by the statistics calculated such as mean, median, standard deviation.

  3. Program Helps Decompose Complex Design Systems

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Hall, Laura E.

    1994-01-01

    DeMAID (A Design Manager's Aid for Intelligent Decomposition) computer program is knowledge-based software system for ordering sequence of modules and identifying possible multilevel structure for design problem. Groups modular subsystems on basis of interactions among them. Saves considerable money and time in total design process, particularly in new design problem in which order of modules has not been defined. Available in two machine versions: Macintosh and Sun.

  4. Program Helps Decompose Complex Design Systems

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Hall, Laura E.

    1995-01-01

    DeMAID (Design Manager's Aid for Intelligent Decomposition) computer program is knowledge-based software system for ordering sequence of modules and identifying possible multilevel structure for design problems such as large platforms in outer space. Groups modular subsystems on basis of interactions among them. Saves considerable amount of money and time in total design process, particularly in new design problem in which order of modules has not been defined. Originally written for design problems, also applicable to problems containing modules (processes) that take inputs and generate outputs. Available in three machine versions: Macintosh written in Symantec's Think C 3.01, Sun, and SGI IRIS in C language.

  5. Program Helps Decompose Complicated Design Problems

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.

    1993-01-01

    Time saved by intelligent decomposition into smaller, interrelated problems. DeMAID is knowledge-based software system for ordering sequence of modules and identifying possible multilevel structure for design problem. Displays modules in N x N matrix format. Requires investment of time to generate and refine list of modules for input, it saves considerable amount of money and time in total design process, particularly new design problems in which ordering of modules has not been defined. Program also implemented to examine assembly-line process or ordering of tasks and milestones.

  6. Optimizing a Library's Loan Policy: An Integer Programming Approach.

    ERIC Educational Resources Information Center

    Al-Fares, Hesham K.

    1998-01-01

    Discusses the length of library loan periods and the number of books allowed to be borrowed. An integer programming model is formulated whose solution yields the optimum user satisfaction, and a case study conducted at King Fahd University of Petroleum and Minerals (Saudi Arabia) is presented. (Author/LRW)

  7. Currency Arbitrage Detection Using a Binary Integer Programming Model

    ERIC Educational Resources Information Center

    Soon, Wanmei; Ye, Heng-Qing

    2011-01-01

    In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this…

  8. Investigating Integer Restrictions in Linear Programming

    ERIC Educational Resources Information Center

    Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.

    2015-01-01

    Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…

  9. Orbital rendezvous mission planning using mixed integer nonlinear programming

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Tang, Guo-jin; Luo, Ya-Zhong; Li, Hai-yang

    2011-04-01

    The rendezvous and docking mission is usually divided into several phases, and the mission planning is performed phase by phase. A new planning method using mixed integer nonlinear programming, which investigates single phase parameters and phase connecting parameters simultaneously, is proposed to improve the rendezvous mission's overall performance. The design variables are composed of integers and continuous-valued numbers. The integer part consists of the parameters for station-keeping and sensor-switching, the number of maneuvers in each rendezvous phase and the number of repeating periods to start the rendezvous mission. The continuous part consists of the orbital transfer time and the station-keeping duration. The objective function is a combination of the propellant consumed, the sun angle which represents the power available, and the terminal precision of each rendezvous phase. The operational requirements for the spacecraft-ground communication, sun illumination and the sensor transition are considered. The simple genetic algorithm, which is a combination of the integer-coded and real-coded genetic algorithm, is chosen to obtain the optimal solution. A practical rendezvous mission planning problem is solved by the proposed method. The results show that the method proposed can solve the integral rendezvous mission planning problem effectively, and the solution obtained can satisfy the operational constraints and has a good overall performance.

  10. Currency arbitrage detection using a binary integer programming model

    NASA Astrophysics Data System (ADS)

    Soon, Wanmei; Ye, Heng-Qing

    2011-04-01

    In this article, we examine the use of a new binary integer programming (BIP) model to detect arbitrage opportunities in currency exchanges. This model showcases an excellent application of mathematics to the real world. The concepts involved are easily accessible to undergraduate students with basic knowledge in Operations Research. Through this work, students can learn to link several types of basic optimization models, namely linear programming, integer programming and network models, and apply the well-known sensitivity analysis procedure to accommodate realistic changes in the exchange rates. Beginning with a BIP model, we discuss how it can be reduced to an equivalent but considerably simpler model, where an efficient algorithm can be applied to find the arbitrages and incorporate the sensitivity analysis procedure. A simple comparison is then made with a different arbitrage detection model. This exercise helps students learn to apply basic Operations Research concepts to a practical real-life example, and provides insights into the processes involved in Operations Research model formulations.

  11. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Lee, Charles H.

    2012-01-01

    We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.

  12. Split diversity in constrained conservation prioritization using integer linear programming

    PubMed Central

    Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt

    2015-01-01

    Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization. Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator–prey interactions between the species in a community to define viability constraints. Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure. We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda. PMID:25893087

  13. A generalized threading model using integer programming that allows for secondary structure element deletion.

    PubMed

    Ellrott, Kyle; Guo, Jun-tao; Olman, Victor; Xu, Ying

    2006-01-01

    Integer programming is a combinatorial optimization method that has been successfully applied to the protein threading problem. We seek to expand the model optimized by this technique to allow for a more accurate description of protein threading. We have developed and implemented an expanded model of integer programming that has the capability to model secondary structure element deletion, which was not possible in previous version of integer programming based optimization. PMID:17503397

  14. Reconstructing cerebrovascular networks under local physiological constraints by integer programming

    SciTech Connect

    Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; Xiao, Xianghui; Stock, Stuart R.; Klohs, Jan; Szekely, Gabor; Andres, Bjoern; Menze, Bjoern H.

    2015-04-23

    We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of our probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.

  15. Reconstructing cerebrovascular networks under local physiological constraints by integer programming

    DOE PAGESBeta

    Rempfler, Markus; Schneider, Matthias; Ielacqua, Giovanna D.; Xiao, Xianghui; Stock, Stuart R.; Klohs, Jan; Szekely, Gabor; Andres, Bjoern; Menze, Bjoern H.

    2015-04-23

    We introduce a probabilistic approach to vessel network extraction that enforces physiological constraints on the vessel structure. The method accounts for both image evidence and geometric relationships between vessels by solving an integer program, which is shown to yield the maximum a posteriori (MAP) estimate to the probabilistic model. Starting from an over-connected network, it is pruning vessel stumps and spurious connections by evaluating the local geometry and the global connectivity of the graph. We utilize a high-resolution micro computed tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain a reference network and learn the prior distributions of ourmore » probabilistic model. As a result, we perform experiments on micro magnetic resonance angiography (µMRA) images of mouse brains and discuss properties of the networks obtained under different tracking and pruning approaches.« less

  16. Validation and assessment of integer programming sensor placement models.

    SciTech Connect

    Uber, James G.; Hart, William Eugene; Watson, Jean-Paul; Phillips, Cynthia Ann; Berry, Jonathan W.

    2005-02-01

    We consider the accuracy of predictions made by integer programming (IP) models of sensor placement for water security applications. We have recently shown that IP models can be used to find optimal sensor placements for a variety of different performance criteria (e.g. minimize health impacts and minimize time to detection). However, these models make a variety of simplifying assumptions that might bias the final solution. We show that our IP modeling assumptions are similar to models developed for other sensor placement methodologies, and thus IP models should give similar predictions. However, this discussion highlights that there are significant differences in how temporal effects are modeled for sensor placement. We describe how these modeling assumptions can impact sensor placements.

  17. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  18. Item Pool Construction Using Mixed Integer Quadratic Programming (MIQP). GMAC® Research Report RR-14-01

    ERIC Educational Resources Information Center

    Han, Kyung T.; Rudner, Lawrence M.

    2014-01-01

    This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…

  19. Accurate construction of consensus genetic maps via integer linear programming.

    PubMed

    Wu, Yonghui; Close, Timothy J; Lonardi, Stefano

    2011-01-01

    We study the problem of merging genetic maps, when the individual genetic maps are given as directed acyclic graphs. The computational problem is to build a consensus map, which is a directed graph that includes and is consistent with all (or, the vast majority of) the markers in the input maps. However, when markers in the individual maps have ordering conflicts, the resulting consensus map will contain cycles. Here, we formulate the problem of resolving cycles in the context of a parsimonious paradigm that takes into account two types of errors that may be present in the input maps, namely, local reshuffles and global displacements. The resulting combinatorial optimization problem is, in turn, expressed as an integer linear program. A fast approximation algorithm is proposed, and an additional speedup heuristic is developed. Our algorithms were implemented in a software tool named MERGEMAP which is freely available for academic use. An extensive set of experiments shows that MERGEMAP consistently outperforms JOINMAP, which is the most popular tool currently available for this task, both in terms of accuracy and running time. MERGEMAP is available for download at http://www.cs.ucr.edu/~yonghui/mgmap.html. PMID:20479505

  20. An integer programming approach to DNA sequence assembly.

    PubMed

    Chang, Youngjung; Sahinidis, Nikolaos V

    2011-08-10

    De novo sequence assembly is a ubiquitous combinatorial problem in all DNA sequencing technologies. In the presence of errors in the experimental data, the assembly problem is computationally challenging, and its solution may not lead to a unique reconstruct. The enumeration of all alternative solutions is important in drawing a reliable conclusion on the target sequence, and is often overlooked in the heuristic approaches that are currently available. In this paper, we develop an integer programming formulation and global optimization solution strategy to solve the sequence assembly problem with errors in the data. We also propose an efficient technique to identify all alternative reconstructs. When applied to examples of sequencing-by-hybridization, our approach dramatically increases the length of DNA sequences that can be handled with global optimality certificate to over 10,000, which is more than 10 times longer than previously reported. For some problem instances, alternative solutions exhibited a wide range of different ability in reproducing the target DNA sequence. Therefore, it is important to utilize the methodology proposed in this paper in order to obtain all alternative solutions to reliably infer the true reconstruct. These alternative solutions can be used to refine the obtained results and guide the design of further experiments to correctly reconstruct the target DNA sequence. PMID:21864794

  1. Constrained spacecraft reorientation using mixed integer convex programming

    NASA Astrophysics Data System (ADS)

    Tam, Margaret; Glenn Lightsey, E.

    2016-10-01

    A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.

  2. Fish Processed Production Planning Using Integer Stochastic Programming Model

    NASA Astrophysics Data System (ADS)

    Firmansyah, Mawengkang, Herman

    2011-06-01

    Fish and its processed products are the most affordable source of animal protein in the diet of most people in Indonesia. The goal in production planning is to meet customer demand over a fixed time horizon divided into planning periods by optimizing the trade-off between economic objectives such as production cost and customer satisfaction level. The major decisions are production and inventory levels for each product and the number of workforce in each planning period. In this paper we consider the management of small scale traditional business at North Sumatera Province which performs processing fish into several local seafood products. The inherent uncertainty of data (e.g. demand, fish availability), together with the sequential evolution of data over time leads the production planning problem to a nonlinear mixed-integer stochastic programming model. We use scenario generation based approach and feasible neighborhood search for solving the model. The results which show the amount of each fish processed product and the number of workforce needed in each horizon planning are presented.

  3. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  4. A Mixed Integer Linear Program for Airport Departure Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Jung, Yoon Chul

    2009-01-01

    Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced

  5. Molecular solutions to the binary integer programming problem based on DNA computation.

    PubMed

    Yeh, Chung-Wei; Chu, Chih-Ping; Wu, Kee-Rong

    2006-01-01

    Binary optimization is a widely investigated topic in integer linear programming. This study proposes a DNA-based computing algorithm for solving the significantly large binary integer programming (BIP) problem. The proposed approach is based upon Adleman and Lipton's DNA operations to solve the BIP problem. The potential of DNA computation for the BIP problem is promising given the operational time complexity of O(nxk). PMID:16229936

  6. The use of integer programming to select bulls across breeding companies with volume price discounts.

    PubMed

    McConnel, M B; Galligan, D T

    2004-10-01

    Optimization programs are currently used to aid in the selection of bulls to be used in herd breeding programs. While these programs offer a systematic approach to the problem of semen selection, they ignore the impact of volume discounts. Volume discounts are discounts that vary depending on the number of straws purchased. The dynamic nature of volume discounts means that, in order to be adequately accounted for, they must be considered in the optimization routine. Failing to do this creates a missed economic opportunity because the potential benefits of optimally selecting and combining breeding company discount opportunities are not captured. To address these issues, an integer program was created which used binary decision variables to incorporate the effects of quantity discounts into the optimization program. A consistent set of trait criteria was used to select a group of bulls from 3 sample breeding companies. Three different selection programs were used to select the bulls, 2 traditional methods and the integer method. After the discounts were applied using each method, the integer program resulted in the lowest cost portfolio of bulls. A sensitivity analysis showed that the integer program also resulted in a low cost portfolio when the genetic trait goals were changed to be more or less stringent. In the sample application, a net benefit of the new approach over the traditional approaches was a 12.3 to 20.0% savings in semen cost. PMID:15377634

  7. Solution of Mixed-Integer Programming Problems on the XT5

    SciTech Connect

    Hartman-Baker, Rebecca J; Busch, Ingrid Karin; Hilliard, Michael R; Middleton, Richard S; Schultze, Michael

    2009-01-01

    In this paper, we describe our experience with solving difficult mixed-integer linear programming problems (MILPs) on the petaflop Cray XT5 system at the National Center for Computational Sciences at Oak Ridge National Laboratory. We describe the algorithmic, software, and hardware needs for solving MILPs and present the results of using PICO, an open-source, parallel, mixed-integer linear programming solver developed at Sandia National Laboratories, to solve canonical MILPs as well as problems of interest arising from the logistics and supply chain management field.

  8. Optimal control of polymer flooding based on mixed-integer iterative dynamic programming

    NASA Astrophysics Data System (ADS)

    Lei, Yang; Li, Shurong; Zhang, Xiaodong; Zhang, Qiang; Guo, Lanlei

    2011-11-01

    Polymer flooding is one of the most important technologies for enhanced oil recovery. In this article, a mixed-integer optimal control model of distributed parameter systems (DPS) for the injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding and some inequalities constraints, such as polymer concentration and injection amount limitation. The control variables are the volume size, the injection concentration of each slug and the terminal flooding time. For the constant injection rate, the slug size is determined by the integer time stage length, and thus the integer variables are introduced in the DPS. To cope with the optimal control problem (OCP) of this DPS, a mixed-integer iterative dynamic programming incorporating a special truncation procedure to handle integer restrictions on stage lengths is proposed. First, the OCP with variable time stage lengths is transformed into a fixed time stage problem by introducing a normalised time variable. Then, the optimisation procedure is carried out at each stage and preceded backwards in a systematic way. Finally, the numerical results of an example illustrate the effectiveness of the proposed method.

  9. Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kania, Adhe; Sidarto, Kuntjoro Adji

    2016-02-01

    Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.

  10. Dynamic analysis for solid waste management systems: an inexact multistage integer programming approach.

    PubMed

    Li, Yongping; Huang, Guohe

    2009-03-01

    In this study, a dynamic analysis approach based on an inexact multistage integer programming (IMIP) model is developed for supporting municipal solid waste (MSW) management under uncertainty. Techniques of interval-parameter programming and multistage stochastic programming are incorporated within an integer-programming framework. The developed IMIP can deal with uncertainties expressed as probability distributions and interval numbers, and can reflect the dynamics in terms of decisions for waste-flow allocation and facility-capacity expansion over a multistage context. Moreover, the IMIP can be used for analyzing various policy scenarios that are associated with different levels of economic consequences. The developed method is applied to a case study of long-term waste-management planning. The results indicate that reasonable solutions have been generated for binary and continuous variables. They can help generate desired decisions of system-capacity expansion and waste-flow allocation with a minimized system cost and maximized system reliability. PMID:19320267

  11. Determining the optimal product-mix using integer programming: An application in audio speaker production

    NASA Astrophysics Data System (ADS)

    Khan, Sahubar Ali Bin Mohamed Nadhar; Ahmarofi, Ahmad Afif Bin

    2014-12-01

    In manufacturing sector, production planning or scheduling is the most important managerial task in order to achieve profit maximization and cost minimization. With limited resources, the management has to satisfy customer demand and at the same time fulfill company's objective, which is to maximize profit or minimize cost. Hence, planning becomes a significant task for production site in order to determine optimal number of units for each product to be produced. In this study, integer programming technique is used to develop an appropriate product-mix planning to obtain the optimal number of audio speaker products that should be produced in order to maximize profit. Branch-and-bound method is applied to obtain exact integer solutions when non-integer solutions occurred. Three major resource constraints are considered in this problem: raw materials constraint, demand constraint and standard production time constraint. It is found that, the developed integer programming model gives significant increase in profit compared to the existing method used by the company. At the end of the study, sensitivity analysis was performed to evaluate the effects of changes in objective function coefficient and available resources on the developed model. This will enable the management to foresee the effects on the results when some changes happen to the profit of its products or available resources.

  12. Detection of code spread OFDM based on 0-1 integer quadratic programming

    NASA Astrophysics Data System (ADS)

    Elghariani, Ali; Zoltowski, Michael D.

    2012-05-01

    In this paper we introduce Integer Quadratic Programming (MIQP) approach to optimally detect QPSK Code Spread OFDM (CS-OFDM) by formulating the problem as a combinatorial optimization problem. The Branch and Bound (BB) algorithm is utilized to solve this integer quadratic programming problem. Furthermore, we propose combined preprocessing steps that can be applied prior to BB so that the computational complexity of the optimum receiver is reduced. The first step in this combination is to detect as much as possible symbols using procedures presented in [9], which is basically based on the gradient of quadratic function. The second step detects the undetected symbols from the first step using MMSE estimator. The result of the latter step will be used to predict the initial upper bound of the BB algorithm. Simulation results show that the proposed preprocessing combination when applied prior to BB provides optimal performance with a significantly reduced computational complexity.

  13. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    NASA Astrophysics Data System (ADS)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  14. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming. PMID:25935050

  15. PySP : modeling and solving stochastic mixed-integer programs in Python.

    SciTech Connect

    Woodruff, David L.; Watson, Jean-Paul

    2010-08-01

    Although stochastic programming is a powerful tool for modeling decision-making under uncertainty, various impediments have historically prevented its widespread use. One key factor involves the ability of non-specialists to easily express stochastic programming problems as extensions of deterministic models, which are often formulated first. A second key factor relates to the difficulty of solving stochastic programming models, particularly the general mixed-integer, multi-stage case. Intricate, configurable, and parallel decomposition strategies are frequently required to achieve tractable run-times. We simultaneously address both of these factors in our PySP software package, which is part of the COIN-OR Coopr open-source Python project for optimization. To formulate a stochastic program in PySP, the user specifies both the deterministic base model and the scenario tree with associated uncertain parameters in the Pyomo open-source algebraic modeling language. Given these two models, PySP provides two paths for solution of the corresponding stochastic program. The first alternative involves writing the extensive form and invoking a standard deterministic (mixed-integer) solver. For more complex stochastic programs, we provide an implementation of Rockafellar and Wets Progressive Hedging algorithm. Our particular focus is on the use of Progressive Hedging as an effective heuristic for approximating general multi-stage, mixed-integer stochastic programs. By leveraging the combination of a high-level programming language (Python) and the embedding of the base deterministic model in that language (Pyomo), we are able to provide completely generic and highly configurable solver implementations. PySP has been used by a number of research groups, including our own, to rapidly prototype and solve difficult stochastic programming problems.

  16. Stacking-sequence optimization for buckling of laminated plates by integer programming

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Walsh, Joanne L.

    1991-01-01

    Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for a given total thickness and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.

  17. Parametric integer linear programming: a synthesis of branch and bound with cutting planes

    SciTech Connect

    Rountree, S.L.K.; Gillett, B.E.

    1980-01-01

    A branch and bound algorithm is designed to solve the general integer linear programing problem with parametric right-hand sides. The right-hand sides have the form b + THETA d, where b and d are conformable vectors, d consists of nonegative constants, and THETA varies from zero to one. The method consists of first determining all possible right-hand side ineger constants and appending this set of integer constants to the initial tableau to form an expanded problem with a finite number of family members. The implicit enumeration method gives a lower bound on the integer solutions. The branch and bound method is used with fathoming tests that allow one family member possibly to fathom other family members. A cutting plane option applies a finite number of cuts to each node before branching. In addition, the cutting plane method is invoked whenever some members are feasible at a node and others are infeasible. The branching and cutting process is repeated until the entire family of problems has been solved. 3 tables.

  18. Integer programming applications: Bond trading, mortgage backed security financing, and FASB 115 accounting

    SciTech Connect

    Nauss, R.

    1994-12-31

    In this review we describe three integer programming applications involving fixed income securities. A bond trading model is presented that features a number of possible different objectives and collections of constraints including future interest rate scenarios. A mortgage backed security (MBS) financing model that accounts for potential defaults in the MBS is also presented. Finally we describe an approach to allocate collections of bank securities into three categories: hold to maturity, available for sale, or trading. Placement of securities in these categories affects the capital, net income, and liquidity of a bank according to new accounting rules promulgated by the Financial Accounting Standards Board.

  19. Edit distance for marked point processes revisited: An implementation by binary integer programming.

    PubMed

    Hirata, Yoshito; Aihara, Kazuyuki

    2015-12-01

    We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699-3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process is large. PMID:26723156

  20. Edit distance for marked point processes revisited: An implementation by binary integer programming

    SciTech Connect

    Hirata, Yoshito; Aihara, Kazuyuki

    2015-12-15

    We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699–3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process is large.

  1. Evaluating the impact of AND/OR search on 0-1 integer linear programming

    PubMed Central

    Dechter, R.

    2010-01-01

    AND/OR search spaces accommodate advanced algorithmic schemes for graphical models which can exploit the structure of the model. We extend and evaluate the depth-first and best-first AND/OR search algorithms to solving 0-1 Integer Linear Programs (0-1 ILP) within this framework. We also include a class of dynamic variable ordering heuristics while exploring an AND/OR search tree for 0-1 ILPs. We demonstrate the effectiveness of these search algorithms on a variety of benchmarks, including real-world combinatorial auctions, random uncapacitated warehouse location problems and MAX-SAT instances. PMID:21052484

  2. Integration of progressive hedging and dual decomposition in stochastic integer programs

    DOE PAGESBeta

    Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; Ryan, Sarah M.; Woodruff, David L.

    2015-04-07

    We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.

  3. Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs

    DOE PAGESBeta

    Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; Watson, Jean -Paul; Wets, Roger J.-B.; Woodruff, David L.

    2016-04-02

    We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.

  4. Inexact multistage stochastic integer programming for water resources management under uncertainty.

    PubMed

    Li, Y P; Huang, G H; Nie, S L; Liu, L

    2008-07-01

    In this study, an inexact multistage stochastic integer programming (IMSIP) method is developed for water resources management under uncertainty. This method incorporates techniques of inexact optimization and multistage stochastic programming within an integer programming framework. It can deal with uncertainties expressed as both probabilities and discrete intervals, and reflect the dynamics in terms of decisions for water allocation through transactions at discrete points of a complete scenario set over a multistage context. Moreover, the IMSIP can facilitate analyses of the multiple policy scenarios that are associated with economic penalties when the promised targets are violated as well as the economies-of-scale in the costs for surplus water diversion. A case study is provided for demonstrating the applicability of the developed methodology. The results indicate that reasonable solutions have been generated for both binary and continuous variables. For all scenarios under consideration, corrective actions can be undertaken dynamically under various pre-regulated policies and can thus help minimize the penalties and costs. The IMSIP can help water resources managers to identify desired system designs against water shortage and for flood control with maximized economic benefit and minimized system-failure risk. PMID:17532113

  5. Inexact fuzzy integer chance constraint programming approach for noise control within an urban environment

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Huang, Gordon; Dai, Liming; Fan, Yurui

    2016-08-01

    This article introduces an inexact fuzzy integer chance constraint programming (IFICCP) approach for identifying noise reduction strategy under uncertainty. The IFICCP method integrates the interval programming and fuzzy chance constraint programming approaches into a framework, which is able to deal with uncertainties expressed as intervals and fuzziness. The proposed IFICCP model can be converted into two deterministic submodels corresponding to the optimistic and pessimistic conditions. The modelling approach is applied to a hypothetical control measure selection problem for noise reduction. Results of the case study indicate that useful solutions for noise control practices can be acquired. Three acceptable noise levels for two communities are considered. For each acceptable noise level, several decision alternatives have been obtained and analysed under different fuzzy confidence levels, which reflect the trade-offs between environmental and economic considerations.

  6. Upper Bounds on the Number of Solutions of Binary Integer Programs

    NASA Astrophysics Data System (ADS)

    Jain, Siddhartha; Kadioglu, Serdar; Sellmann, Meinolf

    We present a new method to compute upper bounds of the number of solutions of binary integer programming (BIP) problems. Given a BIP, we create a dynamic programming (DP) table for a redundant knapsack constraint which is obtained by surrogate relaxation. We then consider a Lagrangian relaxation of the original problem to obtain an initial weight bound on the knapsack. This bound is then refined through subgradient optimization. The latter provides a variety of Lagrange multipliers which allow us to filter infeasible edges in the DP table. The number of paths in the final table then provides an upper bound on the number of solutions. Numerical results show the effectiveness of our counting framework on automatic recording and market split problems.

  7. An improved exploratory search technique for pure integer linear programming problems

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1990-01-01

    The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.

  8. Estimating Tree-Structured Covariance Matrices via Mixed-Integer Programming

    PubMed Central

    Bravo, Héctor Corrada; Wright, Stephen; Eng, Kevin H.; Keles, Sündüz; Wahba, Grace

    2011-01-01

    We present a novel method for estimating tree-structured covariance matrices directly from observed continuous data. Specifically, we estimate a covariance matrix from observations of p continuous random variables encoding a stochastic process over a tree with p leaves. A representation of these classes of matrices as linear combinations of rank-one matrices indicating object partitions is used to formulate estimation as instances of well-studied numerical optimization problems. In particular, our estimates are based on projection, where the covariance estimate is the nearest tree-structured covariance matrix to an observed sample covariance matrix. The problem is posed as a linear or quadratic mixed-integer program (MIP) where a setting of the integer variables in the MIP specifies a set of tree topologies of the structured covariance matrix. We solve these problems to optimality using efficient and robust existing MIP solvers. We present a case study in phylogenetic analysis of gene expression and a simulation study comparing our method to distance-based tree estimating procedures. PMID:22081761

  9. An integer programming framework for inferring disease complexes from network data

    PubMed Central

    Mazza, Arnon; Klockmeier, Konrad; Wanker, Erich; Sharan, Roded

    2016-01-01

    Motivation: Unraveling the molecular mechanisms that underlie disease calls for methods that go beyond the identification of single causal genes to inferring larger protein assemblies that take part in the disease process. Results: Here, we develop an exact, integer-programming-based method for associating protein complexes with disease. Our approach scores proteins based on their proximity in a protein–protein interaction network to a prior set that is known to be relevant for the studied disease. These scores are combined with interaction information to infer densely interacting protein complexes that are potentially disease-associated. We show that our method outperforms previous ones and leads to predictions that are well supported by current experimental data and literature knowledge. Availability and Implementation: The datasets we used, the executables and the results are available at www.cs.tau.ac.il/roded/disease_complexes.zip Contact: roded@post.tau.ac.il PMID:27307626

  10. Power Minimization for Dual- and Triple-Supply Digital Circuits via Integer Linear Programming

    NASA Astrophysics Data System (ADS)

    Ahn, Ki-Yong; Kyung, Chong-Min

    This paper proposes an Integer Linear Programming (ILP)-based power minimization method by partitioning into regions, first, with three different VDD's(PM3V), and, secondly, with two different VDD's(PM2V). To reduce the solving time of triple-VDD case (PM3V), we also proposed a partitioned ILP method(p-PM3V). The proposed method provides 29% power saving on the average in the case of triple-VDD compared to the case of single VDD. Power reduction of PM3V compared to Clustered Voltage Scaling (CVS) was about 18%. Compared to the unpartitioned ILP formulation(PM3V), the partitioned ILP method(p-PM3V) reduced the total solution time by 46% at the cost of additional power consumption within 1.3%.

  11. Optimization of a wood dryer kiln using the mixed integer programming technique: A case study

    SciTech Connect

    Gustafsson, S.I.

    1999-07-01

    When wood is to be utilized as a raw material for furniture, buildings, etc., it must be dried from approximately 100% to 6% moisture content. This is achieved at least partly in a drying kiln. Heat for this purpose is provided by electrical means, or by steam from boilers fired with wood chips or oil. By making a close examination of monitored values from an actual drying kiln it has been possible to optimize the use of steam and electricity using the so called mixed integer programming technique. Owing to the operating schedule for the drying kiln it has been necessary to divide the drying process in very short time intervals, i.e., a number of minutes. Since a drying cycle takes about two or three weeks, a considerable mathematical problem is presented and this has to be solved.

  12. An integer programming model for gate assignment problem at airline terminals

    NASA Astrophysics Data System (ADS)

    Chun, Chong Kok; Nordin, Syarifah Zyurina

    2015-05-01

    In this paper, we concentrate on a gate assignment problem (GAP) at the airlines terminal. Our problem is to assign an arrival plane to a suitable gate. There are two considerations needed to take. One of its is passenger walking distance from arrival gate to departure gate while another consideration is the transport baggage distance from one gate to another. Our objective is to minimize the total distance between the gates that related to assign the arrival plane to the suitable gates. An integer linear programming (ILP) model is proposed to solve this gate assignment problem. We also conduct a computational experiment using CPLEX 12.1 solver in AIMMS 3.10 software to analyze the performance of the model. Results of the computational experiments are presented. The efficiency of flights assignment is depends on the ratio of the weight for both total passenger traveling distances and total baggage transport distances.

  13. Final Report---Next-Generation Solvers for Mixed-Integer Nonlinear Programs: Structure, Search, and Implementation

    SciTech Connect

    Linderoth, Jeff T.; Luedtke, James R.

    2013-05-30

    The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Problems involving both discrete and nonlinear components are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems. This research project added to the understanding of this area by making a number of fundamental advances. First, the work demonstrated many novel, strong, tractable relaxations designed to deal with non-convexities arising in mathematical formulation. Second, the research implemented the ideas in software that is available to the public. Finally, the work demonstrated the importance of these ideas on practical applications and disseminated the work through scholarly journals, survey publications, and conference presentations.

  14. Selection of actuator locations for static shape control of large space structures by heuristic integer programing

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Adelman, H. M.

    1984-01-01

    Orbiting spacecraft such as large space antennas have to maintain a highly accurate space to operate satisfactorily. Such structures require active and passive controls to mantain an accurate shape under a variety of disturbances. Methods for the optimum placement of control actuators for correcting static deformations are described. In particular, attention is focused on the case were control locations have to be selected from a large set of available sites, so that integer programing methods are called for. The effectiveness of three heuristic techniques for obtaining a near-optimal site selection is compared. In addition, efficient reanalysis techniques for the rapid assessment of control effectiveness are presented. Two examples are used to demonstrate the methods: a simple beam structure and a 55m space-truss-parabolic antenna.

  15. Selection of actuator locations for static shape control of large space structures by heuristic integer programing

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.; Adelman, H. M.

    1985-01-01

    Orbiting spacecraft such as large space antennas have to maintain a highly accurate shape to operate satisfactorily. Such structures require active and passive controls to maintain an accurate shape under a variety of disturbances. Methods for the optimum placement of control actuators for correcting static deformations are described. In particular, attention is focused on the case were control locations have to be selected from a large set of available sites, so that integer programing methods are called for. The effectiveness of three heuristic techniques for obtaining a near-optimal site selection is compared. In addition, efficient reanalysis techniques for the rapid assessment of control effectiveness are presented. Two examples are used to demonstrate the methods: a simple beam structure and a 55m space-truss-parabolic antenna.

  16. An Application of Parametric Mixed-Integer Linear Programming to Hydropower Development

    NASA Astrophysics Data System (ADS)

    Turgeon, André

    1987-03-01

    The problem consists in selecting the sites on the river where reservoirs and hydroelectric power plants are to be built and then determining the type and size of the projected installations. The solution obviously depends on the amount of money the utility is willing to invest, which itself is a function of what the new installations will produce. It is therefore necessary to solve the problem for all possible amounts of firm energy produced, since it is not known at the outset which production level the utility will select. This is done in the paper by a parametric mixed-integer linear programming (MILP) method whose efficiency derives from the fact that the branch-and-bound algorithm for selecting the sites to be developed (and consuming most of the computer time) is solved a minimum number of times. Between the points where the MILP problem is solved, LP parametric analysis is applied.

  17. Synchronic interval Gaussian mixed-integer programming for air quality management.

    PubMed

    Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong

    2015-12-15

    To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can

  18. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  19. Identifying optimal regional solid waste management strategies through an inexact integer programming model containing infinite objectives and constraints.

    PubMed

    He, Li; Huang, Guo-He; Zeng, Guang-Ming; Lu, Hong-Wei

    2009-01-01

    The previous inexact mixed-integer linear programming (IMILP) method can only tackle problems with coefficients of the objective function and constraints being crisp intervals, while the existing inexact mixed-integer semi-infinite programming (IMISIP) method can only deal with single-objective programming problems as it merely allows the number of constraints to be infinite. This study proposes, an inexact mixed-integer bi-infinite programming (IMIBIP) method by incorporating the concept of functional intervals into the programming framework. Different from the existing methods, the IMIBIP can tackle the inexact programming problems that contain both infinite objectives and constraints. The developed method is applied to capacity planning of waste management systems under a variety of uncertainties. Four scenarios are considered for comparing the solutions of IMIBIP with those of IMILP. The results indicate that reasonable solutions can be generated by the IMIBIP method. Compared with IMILP, the system cost from IMIBIP would be relatively high since the fluctuating market factors are considered; however, the IMILP solutions are associated with a raised system reliability level and a reduced constraint violation risk level. PMID:18406594

  20. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast

    PubMed Central

    Poos, Alexandra M.; Maicher, André; Dieckmann, Anna K.; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-01-01

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654

  1. An integer programming approach to the phase problem for centrosymmetric structures.

    PubMed

    Vaia, Anastasia; Sahinidis, Nikolaos V

    2003-09-01

    The problem addressed in this paper is the determination of three-dimensional structures of centrosymmetric crystals from X-ray diffraction measurements. The 'minimal principle' that a certain quantity is minimized only by the crystal structure is employed to solve the phase problem. The mathematical formulation of the minimal principle is a nonconvex nonlinear optimization problem. To date, local optimization techniques and advanced computer architectures have been used to solve this problem, which may have a very large number of local optima. In this paper, the minimal principle model is reformulated for the case of centrosymmetric structures into an integer programming problem in terms of the missing phases. This formulation is solvable by well established combinatorial optimization techniques that are guaranteed to provide the global optimum in a finite number of steps without explicit enumeration of all possible combinations of phases. Computational experience with the proposed method on a number of structures of moderate complexity is provided and demonstrates that the approach yields a fast and reliable method that resolves the crystallographic phase problem for the case of centrosymmetric structures. PMID:12944609

  2. Automatic design of synthetic gene circuits through mixed integer non-linear programming.

    PubMed

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  3. 1001 optimal PDB structure alignments: integer programming methods for finding the maximum contact map overlap.

    PubMed

    Caprara, Alberto; Carr, Robert; Istrail, Sorin; Lancia, Giuseppe; Walenz, Brian

    2004-01-01

    Protein structure comparison is a fundamental problem for structural genomics, with applications to drug design, fold prediction, protein clustering, and evolutionary studies. Despite its importance, there are very few rigorous methods and widely accepted similarity measures known for this problem. In this paper we describe the last few years of developments on the study of an emerging measure, the contact map overlap (CMO), for protein structure comparison. A contact map is a list of pairs of residues which lie in three-dimensional proximity in the protein's native fold. Although this measure is in principle computationally hard to optimize, we show how it can in fact be computed with great accuracy for related proteins by integer linear programming techniques. These methods have the advantage of providing certificates of near-optimality by means of upper bounds to the optimal alignment value. We also illustrate effective heuristics, such as local search and genetic algorithms. We were able to obtain for the first time optimal alignments for large similar proteins (about 1,000 residues and 2,000 contacts) and used the CMO measure to cluster proteins in families. The clusters obtained were compared to SCOP classification in order to validate the measure. Extensive computational experiments showed that alignments which are off by at most 10% from the optimal value can be computed in a short time. Further experiments showed how this measure reacts to the choice of the threshold defining a contact and how to choose this threshold in a sensible way. PMID:15072687

  4. A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem

    NASA Technical Reports Server (NTRS)

    Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad

    2010-01-01

    Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.

  5. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast.

    PubMed

    Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-06-01

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. PMID:26908654

  6. Uncluttered Single-Image Visualization of Vascular Structures using GPU and Integer Programming

    PubMed Central

    Won, Joong-Ho; Jeon, Yongkweon; Rosenberg, Jarrett; Yoon, Sungroh; Rubin, Geoffrey D.; Napel, Sandy

    2013-01-01

    Direct projection of three-dimensional branching structures, such as networks of cables, blood vessels, or neurons onto a 2D image creates the illusion of intersecting structural parts and creates challenges for understanding and communication. We present a method for visualizing such structures, and demonstrate its utility in visualizing the abdominal aorta and its branches, whose tomographic images might be obtained by computed tomography or magnetic resonance angiography, in a single two-dimensional stylistic image, without overlaps among branches. The visualization method, termed uncluttered single-image visualization (USIV), involves optimization of geometry. This paper proposes a novel optimization technique that utilizes an interesting connection of the optimization problem regarding USIV to the protein structure prediction problem. Adopting the integer linear programming-based formulation for the protein structure prediction problem, we tested the proposed technique using 30 visualizations produced from five patient scans with representative anatomical variants in the abdominal aortic vessel tree. The novel technique can exploit commodity-level parallelism, enabling use of general-purpose graphics processing unit (GPGPU) technology that yields a significant speedup. Comparison of the results with the other optimization technique previously reported elsewhere suggests that, in most aspects, the quality of the visualization is comparable to that of the previous one, with a significant gain in the computation time of the algorithm. PMID:22291148

  7. An integer programming formulation of the parsimonious loss of heterozygosity problem.

    PubMed

    Catanzaro, Daniele; Labbé, Martine; Halldórsson, Bjarni V

    2013-01-01

    A loss of heterozygosity (LOH) event occurs when, by the laws of Mendelian inheritance, an individual should be heterozygote at a given site but, due to a deletion polymorphism, is not. Deletions play an important role in human disease and their detection could provide fundamental insights for the development of new diagnostics and treatments. In this paper, we investigate the parsimonious loss of heterozygosity problem (PLOHP), i.e., the problem of partitioning suspected polymorphisms from a set of individuals into a minimum number of deletion areas. Specifically, we generalize Halldórsson et al.'s work by providing a more general formulation of the PLOHP and by showing how one can incorporate different recombination rates and prior knowledge about the locations of deletions. Moreover, we show that the PLOHP can be formulated as a specific version of the clique partition problem in a particular class of graphs called undirected catch-point interval graphs and we prove its general $({\\cal NP})$-hardness. Finally, we provide a state-of-the-art integer programming (IP) formulation and strengthening valid inequalities to exactly solve real instances of the PLOHP containing up to 9,000 individuals and 3,000 SNPs. Our results give perspectives on the mathematics of the PLOHP and suggest new directions on the development of future efficient exact solution approaches. PMID:24407298

  8. Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment

    PubMed Central

    Karimzadehgan, Maryam; Zhai, ChengXiang

    2011-01-01

    Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970

  9. Mixed integer programming improves comprehensibility and plan quality in inverse optimization of prostate HDR brachytherapy.

    PubMed

    Gorissen, Bram L; den Hertog, Dick; Hoffmann, Aswin L

    2013-02-21

    Current inverse treatment planning methods that optimize both catheter positions and dwell times in prostate HDR brachytherapy use surrogate linear or quadratic objective functions that have no direct interpretation in terms of dose-volume histogram (DVH) criteria, do not result in an optimum or have long solution times. We decrease the solution time of the existing linear and quadratic dose-based programming models (LP and QP, respectively) to allow optimizing over potential catheter positions using mixed integer programming. An additional average speed-up of 75% can be obtained by stopping the solver at an early stage, without deterioration of the plan quality. For a fixed catheter configuration, the dwell time optimization model LP solves to optimality in less than 15 s, which confirms earlier results. We propose an iterative procedure for QP that allows us to prescribe the target dose as an interval, while retaining independence between the solution time and the number of dose calculation points. This iterative procedure is comparable in speed to the LP model and produces better plans than the non-iterative QP. We formulate a new dose-volume-based model that maximizes V(100%) while satisfying pre-set DVH criteria. This model optimizes both catheter positions and dwell times within a few minutes depending on prostate volume and number of catheters, optimizes dwell times within 35 s and gives better DVH statistics than dose-based models. The solutions suggest that the correlation between the objective value and the clinical plan quality is weak in the existing dose-based models. PMID:23363622

  10. Integer anatomy

    SciTech Connect

    Doolittle, R.

    1994-11-15

    The title integer anatomy is intended to convey the idea of a systematic method for displaying the prime decomposition of the integers. Just as the biological study of anatomy does not teach us all things about behavior of species neither would we expect to learn everything about the number theory from a study of its anatomy. But, some number-theoretic theorems are illustrated by inspection of integer anatomy, which tend to validate the underlying structure and the form as developed and displayed in this treatise. The first statement to be made in this development is: the way structure of the natural numbers is displayed depends upon the allowed operations.

  11. PIPS-SBB: A Parallel Distributed-Memory Branch-and-Bound Algorithm for Stochastic Mixed-Integer Programs

    DOE PAGESBeta

    Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak

    2016-05-01

    Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less

  12. Mixed-integer programming methods for transportation and power generation problems

    NASA Astrophysics Data System (ADS)

    Damci Kurt, Pelin

    This dissertation conducts theoretical and computational research to solve challenging problems in application areas such as supply chain and power systems. The first part of the dissertation studies a transportation problem with market choice (TPMC) which is a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We show that TPMC is strongly NP-complete. We consider a version of the problem with a service level constraint on the maximum number of markets that can be rejected and show that if the original problem is polynomial, its cardinality-constrained version is also polynomial. We propose valid inequalities for mixed-integer cover and knapsack sets with variable upper bound constraints, which appear as substructures of TPMC and use them in a branch-and-cut algorithm to solve this problem. The second part of this dissertation studies a unit commitment (UC) problem in which the goal is to minimize the operational cost of power generators over a time period subject to physical constraints while satisfying demand. We provide several exponential classes of multi-period ramping and multi-period variable upper bound inequalities. We prove the strength of these inequalities and describe polynomial-time separation algorithms. Computational results show the effectiveness of the proposed inequalities when used as cuts in a branch-and-cut algorithm to solve the UC problem. The last part of this dissertation investigates the effects of uncertain wind power on the UC problem. A two-stage robust model and a three-stage stochastic program are compared.

  13. Industrial waste recycling strategies optimization problem: mixed integer programming model and heuristics

    NASA Astrophysics Data System (ADS)

    Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang

    2008-12-01

    Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.

  14. Mixed integer programming model for optimizing the layout of an ICU vehicle

    PubMed Central

    2009-01-01

    Background This paper presents a Mixed Integer Programming (MIP) model for designing the layout of the Intensive Care Units' (ICUs) patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112). Methods The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group"), the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. Results As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles. Conclusion The outcome was highly satisfactory. Indeed, the final design served as a basis

  15. An interactive approach based on a discrete differential evolution algorithm for a class of integer bilevel programming problems

    NASA Astrophysics Data System (ADS)

    Li, Hong; Zhang, Li; Jiao, Yong-Chang

    2016-07-01

    This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.

  16. An inexact two-stage mixed integer linear programming method for solid waste management in the City of Regina.

    PubMed

    Li, Y P; Huang, G H

    2006-11-01

    In this study, an interval-parameter two-stage mixed integer linear programming (ITMILP) model is developed for supporting long-term planning of waste management activities in the City of Regina. In the ITMILP, both two-stage stochastic programming and interval linear programming are introduced into a general mixed integer linear programming framework. Uncertainties expressed as not only probability density functions but also discrete intervals can be reflected. The model can help tackle the dynamic, interactive and uncertain characteristics of the solid waste management system in the City, and can address issues concerning plans for cost-effective waste diversion and landfill prolongation. Three scenarios are considered based on different waste management policies. The results indicate that reasonable solutions have been generated. They are valuable for supporting the adjustment or justification of the existing waste flow allocation patterns, the long-term capacity planning of the City's waste management system, and the formulation of local policies and regulations regarding waste generation and management. PMID:16678336

  17. Landfill space consumption dynamics in the Lower Rio Grande Valley by grey integer programming-based games.

    PubMed

    Davila, Eric; Chang, Ni-Bin; Diwakaruni, Syamala

    2005-06-01

    The Lower Rio Grande Valley (LRGV) region in South Texas emerges as a warehouse and transportation center between Central America and the US with positive growth impacts due to the North American Free Trade Agreement (NAFTA). In 10 years time, a 39.8% population increase has resulted in a 25% boost in solid waste per capita disposal rate in the region. A landfill space shortage drives a need for landfill operators to understand their optimal management strategies in this highly-competitive market. Initially, a strategic plan for optimal solid waste pattern distribution minimizes net costs for cities. This is accomplished through a grey integer programming algorithm that encapsulates all uncertainty present in the solid waste system. Secondly, a series of grey integer submodels construct payoff matrices for a zero-sum two-person game. The ensuing game theoretic analysis is critical for evaluating optimal pricing strategies for tipping fees available to the most significant regional landfills (e.g. Browning-Ferris Industries (BFI) and City of Edinburg) as they compete over disposal contracts. The BFI landfill intrinsically benefits from its competitive pricing policy and central location to solid waste generators. The City of Edinburg landfill, on the other hand, wishes to secure its lucrative solid waste management revenue. It desires a gaming strategy backed by optimality that integrates ambiguity in solid waste generation, design capacity boundaries, and unitary shipping costs. Results show that a two-tiered analysis via grey integer programming-based games may pave the way for 'grey Nash equilibria' pricing tactics that will help the Edinburg landfill maintain its waste contracts. PMID:15854728

  18. Piece-wise mixed integer programming for optimal sizing of surge control devices in water distribution systems

    NASA Astrophysics Data System (ADS)

    Skulovich, Olya; Bent, Russell; Judi, David; Perelman, Lina Sela; Ostfeld, Avi

    2015-06-01

    Despite their potential catastrophic impact, transients are often ignored or presented ad hoc when designing water distribution systems. To address this problem, we introduce a new piece-wise function fitting model that is integrated with mixed integer programming to optimally place and size surge tanks for transient control. The key features of the algorithm are a model-driven discretization of the search space, a linear approximation nonsmooth system response surface to transients, and a mixed integer linear programming optimization. Results indicate that high quality solutions can be obtained within a reasonable number of function evaluations and demonstrate the computational effectiveness of the approach through two case studies. The work investigates one type of surge control devices (closed surge tank) for a specified set of transient events. The performance of the algorithm relies on the assumption that there exists a smooth relationship between the objective function and tank size. Results indicate the potential of the approach for the optimal surge control design in water systems.

  19. Groundwater Remediation Design Using a Three-Dimensional Simulation Model and Mixed-Integer Programming

    NASA Astrophysics Data System (ADS)

    Sawyer, Charles S.; Ahlfeld, David P.; King, Alan J.

    1995-05-01

    A three-dimensional groundwater flow management model for making decisions on the design of hydrodynamic control of a groundwater flow system using a combination of extraction and/or injection wells is developed. The model takes into account constraints imposed on the system to stop the horizontal spread of contaminants and to ensure a net upward flow in areas where downward vertical gradients exist. The mathematical formulation of the groundwater remediation problem as a mixed-integer model and the strategy for solving the model are presented. Numerical results are presented for the Toms River Plant site, which is modeled as a five-layer aquifer system with interconnecting aquitards. A sensitivity analysis on the relative magnitude of the continuous operating costs and the fixed-charge costs is also presented.

  20. A solution procedure for mixed-integer nonlinear programming formulation of supply chain planning with quantity discounts under demand uncertainty

    NASA Astrophysics Data System (ADS)

    Yin, Sisi; Nishi, Tatsushi

    2014-11-01

    Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.

  1. Solving large-scale fixed cost integer linear programming models for grid-based location problems with heuristic techniques

    NASA Astrophysics Data System (ADS)

    Noor-E-Alam, Md.; Doucette, John

    2015-08-01

    Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.

  2. Mixed interval-fuzzy two-stage integer programming and its application to flood-diversion planning

    NASA Astrophysics Data System (ADS)

    Li, Y. P.; Huang, G. H.; Nie, S. L.

    2007-03-01

    Innovative prevention, adaptation, and mitigation approaches as well as policies for sustainable flood management continue to be challenges faced by decision-makers. In this study, a mixed interval-fuzzy two-stage integer programming (IFTIP) method is developed for flood-diversion planning under uncertainty. This method improves upon the existing interval, fuzzy, and two-stage programming approaches by allowing uncertainties expressed as probability distributions, fuzzy sets, and discrete intervals to be directly incorporated within the optimization framework. In its modelling formulation, economic penalties as corrective measures against any infeasibilities arising because of a particular realization of the uncertainties are taken into account. The method can also be used for analysing a variety of policy scenarios that are associated with different levels of economic penalties. A management problem in terms of flood control is studied to illustrate the applicability of the proposed approach. The results indicate that reasonable solutions have been generated. They can provide desired flood-diversion alternatives and capacity-expansion schemes with a minimized system cost and a maximized safety level. The developed IFTIP is also applicable to other management problems that involve uncertainties presented in multiple formats as well as complexities in policy dynamics.

  3. Minimum-time control of systems with Coloumb friction: Near global optima via mixed integer linear programming

    SciTech Connect

    DRIESSEN,BRIAN; SADEGH,NADER

    2000-04-25

    This work presents a method of finding near global optima to minimum-time trajectory generation problem for systems that would be linear if it were not for the presence of Coloumb friction. The required final state of the system is assumed to be maintainable by the system, and the input bounds are assumed to be large enough so that they can overcome the maximum static Coloumb friction force. Other than the previous work for generating minimum-time trajectories for non redundant robotic manipulators for which the path in joint space is already specified, this work represents, to the best of the authors' knowledge, the first approach for generating near global optima for minimum-time problems involving a nonlinear class of dynamic systems. The reason the optima generated are near global optima instead of exactly global optima is due to a discrete-time approximation of the system (which is usually used anyway to simulate such a system numerically). The method closely resembles previous methods for generating minimum-time trajectories for linear systems, where the core operation is the solution of a Phase I linear programming problem. For the nonlinear systems considered herein, the core operation is instead the solution of a mixed integer linear programming problem.

  4. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations.

    PubMed

    Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas

    2014-06-01

    Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative. PMID:23934675

  5. Integer-linear-programing optimization in scalable video multicast with adaptive modulation and coding in wireless networks.

    PubMed

    Lee, Dongyul; Lee, Chaewoo

    2014-01-01

    The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862

  6. Integer-Linear-Programing Optimization in Scalable Video Multicast with Adaptive Modulation and Coding in Wireless Networks

    PubMed Central

    Lee, Chaewoo

    2014-01-01

    The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862

  7. Computing the minimum recombinant haplotype configuration from incomplete genotype data on a pedigree by integer linear programming.

    PubMed

    Li, Jing; Jiang, Tao

    2005-01-01

    We study the problem of reconstructing haplotype configurations from genotypes on pedigree data with missing alleles under the Mendelian law of inheritance and the minimum-recombination principle, which is important for the construction of haplotype maps and genetic linkage/association analyses. Our previous results show that the problem of finding a minimum-recombinant haplotype configuration (MRHC) is in general NP-hard. This paper presents an effective integer linear programming (ILP) formulation of the MRHC problem with missing data and a branch-and-bound strategy that utilizes a partial order relationship and some other special relationships among variables to decide the branching order. Nontrivial lower and upper bounds on the optimal number of recombinants are introduced at each branching node to effectively prune the search tree. When multiple solutions exist, a best haplotype configuration is selected based on a maximum likelihood approach. The paper also shows for the first time how to incorporate marker interval distance into a rule-based haplotyping algorithm. Our results on simulated data show that the algorithm could recover haplotypes with 50 loci from a pedigree of size 29 in seconds on a Pentium IV computer. Its accuracy is more than 99.8% for data with no missing alleles and 98.3% for data with 20% missing alleles in terms of correctly recovered phase information at each marker locus. A comparison with a statistical approach SimWalk2 on simulated data shows that the ILP algorithm runs much faster than SimWalk2 and reports better or comparable haplotypes on average than the first and second runs of SimWalk2. As an application of the algorithm to real data, we present some test results on reconstructing haplotypes from a genome-scale SNP dataset consisting of 12 pedigrees that have 0.8% to 14.5% missing alleles. PMID:16108713

  8. COMSAT: Residue contact prediction of transmembrane proteins based on support vector machines and mixed integer linear programming.

    PubMed

    Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A

    2016-03-01

    In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. PMID:26756402

  9. Classification of drug molecules considering their IC50 values using mixed-integer linear programming based hyper-boxes method

    PubMed Central

    Armutlu, Pelin; Ozdemir, Muhittin E; Uney-Yuksektepe, Fadime; Kavakli, I Halil; Turkay, Metin

    2008-01-01

    Background A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. Results We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Conclusion Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed. PMID:18834515

  10. Detecting and Removing Inconsistencies between Experimental Data and Signaling Network Topologies Using Integer Linear Programming on Interaction Graphs

    PubMed Central

    Alexopoulos, Leonidas G.; Klamt, Steffen

    2013-01-01

    Cross-referencing experimental data with our current knowledge of signaling network topologies is one central goal of mathematical modeling of cellular signal transduction networks. We present a new methodology for data-driven interrogation and training of signaling networks. While most published methods for signaling network inference operate on Bayesian, Boolean, or ODE models, our approach uses integer linear programming (ILP) on interaction graphs to encode constraints on the qualitative behavior of the nodes. These constraints are posed by the network topology and their formulation as ILP allows us to predict the possible qualitative changes (up, down, no effect) of the activation levels of the nodes for a given stimulus. We provide four basic operations to detect and remove inconsistencies between measurements and predicted behavior: (i) find a topology-consistent explanation for responses of signaling nodes measured in a stimulus-response experiment (if none exists, find the closest explanation); (ii) determine a minimal set of nodes that need to be corrected to make an inconsistent scenario consistent; (iii) determine the optimal subgraph of the given network topology which can best reflect measurements from a set of experimental scenarios; (iv) find possibly missing edges that would improve the consistency of the graph with respect to a set of experimental scenarios the most. We demonstrate the applicability of the proposed approach by interrogating a manually curated interaction graph model of EGFR/ErbB signaling against a library of high-throughput phosphoproteomic data measured in primary hepatocytes. Our methods detect interactions that are likely to be inactive in hepatocytes and provide suggestions for new interactions that, if included, would significantly improve the goodness of fit. Our framework is highly flexible and the underlying model requires only easily accessible biological knowledge. All related algorithms were implemented in a freely

  11. Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties

    SciTech Connect

    Guo, P.; Huang, G.H.

    2010-03-15

    In this study, an interval-parameter semi-infinite fuzzy-chance-constrained mixed-integer linear programming (ISIFCIP) approach is developed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing interval-parameter semi-infinite programming (ISIP) and fuzzy-chance-constrained programming (FCCP) by incorporating uncertainties expressed as dual uncertainties of functional intervals and multiple uncertainties of distributions with fuzzy-interval admissible probability of violating constraint within a general optimization framework. The binary-variable solutions represent the decisions of waste-management-facility expansion, and the continuous ones are related to decisions of waste-flow allocation. The interval solutions can help decision-makers to obtain multiple decision alternatives, as well as provide bases for further analyses of tradeoffs between waste-management cost and system-failure risk. In the application to the City of Regina, Canada, two scenarios are considered. In Scenario 1, the City's waste-management practices would be based on the existing policy over the next 25 years. The total diversion rate for the residential waste would be approximately 14%. Scenario 2 is associated with a policy for waste minimization and diversion, where 35% diversion of residential waste should be achieved within 15 years, and 50% diversion over 25 years. In this scenario, not only landfill would be expanded, but also CF and MRF would be expanded. Through the scenario analyses, useful decision support for the City's solid-waste managers and decision-makers has been generated. Three special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it is useful for tackling multiple uncertainties expressed as intervals, functional intervals, probability distributions, fuzzy sets, and their

  12. The Integer Abacus.

    ERIC Educational Resources Information Center

    Dirks, Michael K.

    1984-01-01

    The abacus method for instruction on addition, subtraction, and multiplication with integers is explained. How to represent the integers for each operation is detailed with words and illustrations. (MNS)

  13. Sums of Consecutive Integers

    ERIC Educational Resources Information Center

    Pong, Wai Yan

    2007-01-01

    We begin by answering the question, "Which natural numbers are sums of consecutive integers?" We then go on to explore the set of lengths (numbers of summands) in the decompositions of an integer as such sums.

  14. Online with Integers

    ERIC Educational Resources Information Center

    Siegel, Jonathan W.; Siegel, P. B.

    2011-01-01

    Integers are sometimes used in physics problems to simplify the mathematics so the arithmetic does not distract students from the physics concepts. This is particularly important in exams where students should not have to spend a lot of time using their calculators. Common uses of integers in physics problems include integer solutions to…

  15. An inexact fuzzy-chance-constrained two-stage mixed-integer linear programming approach for flood diversion planning under multiple uncertainties

    NASA Astrophysics Data System (ADS)

    Guo, P.; Huang, G. H.; Li, Y. P.

    2010-01-01

    In this study, an inexact fuzzy-chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is developed for flood diversion planning under multiple uncertainties. A concept of the distribution with fuzzy boundary interval probability is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets and probability distributions. IFCTIP integrates the inexact programming, two-stage stochastic programming, integer programming and fuzzy-stochastic programming within a general optimization framework. IFCTIP incorporates the pre-regulated water-diversion policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised targets are violated. More importantly, it can facilitate dynamic programming for decisions of capacity-expansion planning under fuzzy-stochastic conditions. IFCTIP is applied to a flood management system. Solutions from IFCTIP provide desired flood diversion plans with a minimized system cost and a maximized safety level. The results indicate that reasonable solutions are generated for objective function values and decision variables, thus a number of decision alternatives can be generated under different levels of flood flows.

  16. A novel mixed integer programming for multi-biomarker panel identification by distinguishing malignant from benign colorectal tumors.

    PubMed

    Zou, Meng; Zhang, Peng-Jun; Wen, Xin-Yu; Chen, Luonan; Tian, Ya-Ping; Wang, Yong

    2015-07-15

    Multi-biomarker panels can capture the nonlinear synergy among biomarkers and they are important to aid in the early diagnosis and ultimately battle complex diseases. However, identification of these multi-biomarker panels from case and control data is challenging. For example, the exhaustive search method is computationally infeasible when the data dimension is high. Here, we propose a novel method, MILP_k, to identify serum-based multi-biomarker panel to distinguish colorectal cancers (CRC) from benign colorectal tumors. Specifically, the multi-biomarker panel detection problem is modeled by a mixed integer programming to maximize the classification accuracy. Then we measured the serum profiling data for 101 CRC patients and 95 benign patients. The 61 biomarkers were analyzed individually and further their combinations by our method. We discovered 4 biomarkers as the optimal small multi-biomarker panel, including known CRC biomarkers CEA and IL-10 as well as novel biomarkers IMA and NSE. This multi-biomarker panel obtains leave-one-out cross-validation (LOOCV) accuracy to 0.7857 by nearest centroid classifier. An independent test of this panel by support vector machine (SVM) with threefold cross validation gets an AUC 0.8438. This greatly improves the predictive accuracy by 20% over the single best biomarker. Further extension of this 4-biomarker panel to a larger 13-biomarker panel improves the LOOCV to 0.8673 with independent AUC 0.8437. Comparison with the exhaustive search method shows that our method dramatically reduces the searching time by 1000-fold. Experiments on the early cancer stage samples reveal two panel of biomarkers and show promising accuracy. The proposed method allows us to select the subset of biomarkers with best accuracy to distinguish case and control samples given the number of selected biomarkers. Both receiver operating characteristic curve and precision-recall curve show our method's consistent performance gain in accuracy. Our method

  17. Inexact fuzzy-stochastic mixed-integer programming approach for long-term planning of waste management--Part A: methodology.

    PubMed

    Guo, P; Huang, G H

    2009-01-01

    In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada. PMID:19800164

  18. Rarity-Weighted Richness: A Simple and Reliable Alternative to Integer Programming and Heuristic Algorithms for Minimum Set and Maximum Coverage Problems in Conservation Planning

    PubMed Central

    Albuquerque, Fabio; Beier, Paul

    2015-01-01

    Here we report that prioritizing sites in order of rarity-weighted richness (RWR) is a simple, reliable way to identify sites that represent all species in the fewest number of sites (minimum set problem) or to identify sites that represent the largest number of species within a given number of sites (maximum coverage problem). We compared the number of species represented in sites prioritized by RWR to numbers of species represented in sites prioritized by the Zonation software package for 11 datasets in which the size of individual planning units (sites) ranged from <1 ha to 2,500 km2. On average, RWR solutions were more efficient than Zonation solutions. Integer programming remains the only guaranteed way find an optimal solution, and heuristic algorithms remain superior for conservation prioritizations that consider compactness and multiple near-optimal solutions in addition to species representation. But because RWR can be implemented easily and quickly in R or a spreadsheet, it is an attractive alternative to integer programming or heuristic algorithms in some conservation prioritization contexts. PMID:25780930

  19. Mixed integer nonlinear programming model of wireless pricing scheme with QoS attribute of bandwidth and end-to-end delay

    NASA Astrophysics Data System (ADS)

    Irmeilyana, Puspita, Fitri Maya; Indrawati

    2016-02-01

    The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.

  20. Optimal fleetwide emissions reductions for passenger ferries: an application of a mixed-integer nonlinear programming model for the New York-New Jersey Harbor.

    PubMed

    Winebrake, James J; Corbett, James J; Wang, Chengfeng; Farrell, Alexander E; Woods, Pippa

    2005-04-01

    Emissions from passenger ferries operating in urban harbors may contribute significantly to emissions inventories and commuter exposure to air pollution. In particular, ferries are problematic because of high emissions of oxides of nitrogen (NOx) and particulate matter (PM) from primarily unregulated diesel engines. This paper explores technical solutions to reduce pollution from passenger ferries operating in the New York-New Jersey Harbor. The paper discusses and demonstrates a mixed-integer, non-linear programming model used to identify optimal control strategies for meeting NOx and PM reduction targets for 45 privately owned commuter ferries in the harbor. Results from the model can be used by policy-makers to craft programs aimed at achieving least-cost reduction targets. PMID:15887889

  1. A Generalized National Planning Approach for Admission Capacity in Higher Education: A Nonlinear Integer Goal Programming Model with a Novel Differential Evolution Algorithm.

    PubMed

    El-Qulity, Said Ali; Mohamed, Ali Wagdy

    2016-01-01

    This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness. PMID:26819583

  2. A Generalized National Planning Approach for Admission Capacity in Higher Education: A Nonlinear Integer Goal Programming Model with a Novel Differential Evolution Algorithm

    PubMed Central

    El-Qulity, Said Ali; Mohamed, Ali Wagdy

    2016-01-01

    This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness. PMID:26819583

  3. Ozone decomposing filter

    DOEpatents

    Simandl, Ronald F.; Brown, John D.; Whinnery, Jr., LeRoy L.

    1999-01-01

    In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

  4. Ozone decomposing filter

    SciTech Connect

    Simandl, R.F.; Brown, J.D.; Whinnery, L.L. Jr.

    1999-11-02

    In an improved ozone decomposing air filter carbon fibers are held together with a carbonized binder in a perforated structure. The structure is made by combining rayon fibers with gelatin, forming the mixture in a mold, freeze-drying, and vacuum baking.

  5. Generating "Random" Integers

    ERIC Educational Resources Information Center

    Griffiths, Martin

    2011-01-01

    One of the author's undergraduate students recently asked him whether it was possible to generate a random positive integer. After some thought, the author realised that there were plenty of interesting mathematical ideas inherent in her question. So much so in fact, that the author decided to organise a workshop, open both to undergraduates and…

  6. Integer Equal Flows

    SciTech Connect

    Meyers, C A; Schulz, A S

    2009-01-07

    The integer equal flow problem is an NP-hard network flow problem, in which all arcs in given sets R{sub 1}, ..., R{sub {ell}} must carry equal flow. We show this problem is effectively inapproximable, even if the cardinality of each set R{sub k} is two. When {ell} is fixed, it is solvable in polynomial time.

  7. The Multi-State Perfect Phylogeny Problem with missing and removable data: solutions via integer-programming and chordal graph theory.

    PubMed

    Gusfield, Dan

    2010-03-01

    The Multi-State Perfect Phylogeny Problem is an extension of the Binary Perfect Phylogeny Problem, allowing characters to take on more than two states. In this article, we consider three problems that extend the utility of the multi-state perfect phylogeny model: (1) the Missing Data (MD) Problem, where some entries in the input are missing and the question is whether (bounded) values for the missing data can be imputed so that the resulting data has a multi-state perfect phylogeny; (2) the Character-Removal (CR) Problem, where we want to minimize the number of characters to remove from the data so that the resulting data has a multi-state perfect phylogeny; and (3) the Missing-Data Character-Removal (MDCR) Problem, where the input has missing data and we want to impute values for the missing data to minimize the solution to the resulting Character-Removal Problem. We discuss Integer Linear Programming (ILP) solutions to these problems for the special case of three, four, and five permitted states per character, and we report on extensive empirical testing of these solutions. Then we develop a general theory to solve the MD problem for an arbitrary number of permitted states, using chordal graph theory and results on minimal triangulation of non-chordal graphs. This establishes new necessary and sufficient conditions for the existence of a perfect phylogeny with (or without) missing data. We implement the general theory using integer linear programming, although other optimization methods are possible. We extensively explore the empirical behavior of the general solution, showing that the methods are very practical for data of size and complexity that is characteristic of many current applications in phylogenetics. Some of the empirical results for the MD problem with an arbitrary number of permitted states are very surprising, suggesting the existence of additional combinatorial structure in multi-state perfect phylogenies. Finally, we note some relationships

  8. Examining the decomposed brain.

    PubMed

    MacKenzie, James Mackintosh

    2014-12-01

    Examination of the decomposed brain is a largely neglected area of forensic neuropathology. However, careful examination often yields valuable information that may assist in criminal proceedings. Decomposition encompasses the processes of autolysis, putrefaction, and decay. Most decomposed brains will be affected by both autolysis and putrefaction, resulting in a brain that may, at one end of the spectrum, be almost normal or, at the other end, pulpified, depending on the conditions in which the body remained after death and the postmortem interval. Naked eye examination may detect areas of hemorrhage and also guides appropriate sampling for histology. Histological appearances are often better than what would be predicted from the state of the brain. Histology often confirms macroscopic abnormalities and may also reveal other features such as ischemic injury. Silver staining demonstrates neuritic plaques, and immunocytochemistry for β-amyloid precursor protein and other molecules produces results comparable with those seen in well-preserved fixed brains. The usefulness of information derived from the examination of the decomposed brain in criminal proceedings is illustrated with 6 case reports drawn from the author's own practice. PMID:25384305

  9. Multi-objective Mixed Integer Programming approach for facility layout design by considering closeness ratings, material handling, and re-layout cost

    NASA Astrophysics Data System (ADS)

    Purnomo, Muhammad Ridwan Andi; Satrio Wiwoho, Yoga

    2016-01-01

    Facility layout becomes one of production system factor that should be managed well, as it is designated for the location of production. In managing the layout, designing the layout by considering the optimal layout condition that supports the work condition is essential. One of the method for facility layout optimization is Mixed Integer Programming (MIP). In this study, the MIP is solved using Lingo 9.0 software and considering quantitative and qualitative objectives to be achieved simultaneously: minimizing material handling cost, maximizing closeness rating, and minimizing re-layout cost. The research took place in Rekayasa Wangdi as a make to order company, focusing on the making of concrete brick dough stirring machine with 10 departments involved. The result shows an improvement in the new layout for 333,72 points of objective value compared with the initial layout. As the conclusion, the proposed MIP is proven to be used to model facility layout problem under multi objective consideration for a more realistic look.

  10. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model.

    PubMed

    Ko, Andi Setiady; Chang, Ni-Bin

    2008-07-01

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time. PMID:17395362

  11. A mixed integer linear programming model to reconstruct phylogenies from single nucleotide polymorphism haplotypes under the maximum parsimony criterion

    PubMed Central

    2013-01-01

    that these constraints can often lead to significant reductions in the gap between the optimal solution and its non-integral linear programming bound relative to the prior art as well as often substantially faster processing of moderately hard problem instances. Conclusion We provide an indication of the conditions under which such an optimal enumeration approach is likely to be feasible, suggesting that these strategies are usable for relatively large numbers of taxa, although with stricter limits on numbers of variable sites. The work thus provides methodology suitable for provably optimal solution of some harder instances that resist all prior approaches. PMID:23343437

  12. Aerospace Applications of Integer and Combinatorial Optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  13. Aerospace applications on integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  14. Computer Corner: Spreadsheets, Power Series, Generating Functions, and Integers.

    ERIC Educational Resources Information Center

    Snow, Donald R.

    1989-01-01

    Implements a table algorithm on a spreadsheet program and obtains functions for several number sequences such as the Fibonacci and Catalan numbers. Considers other applications of the table algorithm to integers represented in various number bases. (YP)

  15. Mixed integer evolution strategies for parameter optimization.

    PubMed

    Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C

    2013-01-01

    Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems. PMID:22122384

  16. Forensic entomology of decomposing humans and their decomposing pets.

    PubMed

    Sanford, Michelle R

    2015-02-01

    Domestic pets are commonly found in the homes of decedents whose deaths are investigated by a medical examiner or coroner. When these pets become trapped with a decomposing decedent they may resort to feeding on the body or succumb to starvation and/or dehydration and begin to decompose as well. In this case report photographic documentation of cases involving pets and decedents were examined from 2009 through the beginning of 2014. This photo review indicated that in many cases the pets were cats and dogs that were trapped with the decedent, died and were discovered in a moderate (bloat to active decay) state of decomposition. In addition three cases involving decomposing humans and their decomposing pets are described as they were processed for time of insect colonization by forensic entomological approach. Differences in timing and species colonizing the human and animal bodies were noted as was the potential for the human or animal derived specimens to contaminate one another at the scene. PMID:25533575

  17. Aerospace applications of integer and combinatorial optimization

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Kincaid, R. K.

    1995-01-01

    Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.

  18. Integer Operations Using a Whiteboard

    ERIC Educational Resources Information Center

    Andrews, Delise R.

    2011-01-01

    Interactive whiteboards are somewhat unimpressive at first and look like the whiteboards that already hang on the walls of many classrooms. However, integrating interactive whiteboard technology in a unit on adding and subtracting integers enhances student engagement and understanding. In this article, the author describes how she used an…

  19. Integers Made Easy: Just Walk It Off

    ERIC Educational Resources Information Center

    Nurnberger-Haag, Julie

    2007-01-01

    This article describes a multisensory method for teaching students how to multiply and divide as well as add and subtract integers. The author uses sidewalk chalk and the underlying concept of integers to physically and mentally engage students in understanding the concepts of integers, making connections, and developing computational fluency.…

  20. Investigating data envelopment analysis model with potential improvement for integer output values

    NASA Astrophysics Data System (ADS)

    Hussain, Mushtaq Taleb; Ramli, Razamin; Khalid, Ruzelan

    2015-12-01

    The decrement of input proportions in DEA model is associated with its input reduction. This reduction is apparently good for economy since it could reduce unnecessary cost resources. However, in some situations the reduction of relevant inputs such as labour could create social problems. Such inputs should thus be maintained or increased. This paper develops an advanced radial DEA model dealing with mixed integer linear programming to improve integer output values through the combination of inputs. The model can deal with real input values and integer output values. This model is valuable for situations dealing with input combination to improve integer output values as faced by most organizations.

  1. Solving the Water Jugs Problem by an Integer Sequence Approach

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2012-01-01

    In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and…

  2. Order and Value: Transitioning to Integers

    ERIC Educational Resources Information Center

    Bofferding, Laura

    2014-01-01

    As students progress from working with whole numbers to working with integers, they must wrestle with the big ideas of number values and order. Using objects to show positive quantities is easy, but no physical negative quantities exist. Therefore, when talking about integers, the author refers to number values instead of number quantities. The…

  3. Prospective Elementary Teachers' Conceptual Understanding of Integers

    ERIC Educational Resources Information Center

    Reeder, Stacy; Bateiha, Summer

    2016-01-01

    This investigation examined the degree to which prospective elementary teachers had developed a meaningful and conceptual understanding of what integers are and explored their development of models for multiplication with integers that are related to everyday activities. Additionally, this study explored how these understandings informed…

  4. Decomposing global crop yield variability

    NASA Astrophysics Data System (ADS)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  5. Factorization of large integers on a massively parallel computer

    SciTech Connect

    Davis, J.A.; Holdridge, D.B.

    1988-01-01

    Our interest in integer factorization at Sandia National Laboratories is motivated by cryptographic applications and in particular the security of the RSA encryption-decryption algorithm. We have implemented our version of the quadratic sieve procedure on the NCUBE computer with 1024 processors (nodes). The new code is significantly different in all important aspects from the program used to factor number of order 10/sup 70/ on a single processor CRAY computer. Capabilities of parallel processing and limitation of small local memory necessitated this entirely new implementation. This effort involved several restarts as realizations of program structures that seemed appealing bogged down due to inter-processor communications. We are presently working with integers of magnitude about 10/sup 70/ in tuning this code to the novel hardware. 6 refs., 3 figs.

  6. Our World without Decomposers: How Scary!

    ERIC Educational Resources Information Center

    Spring, Patty; Harr, Natalie

    2014-01-01

    Bugs, slugs, bacteria, and fungi are decomposers at the heart of every ecosystem. Fifth graders at Dodge Intermediate School in Twinsburg, Ohio, ventured outdoors to learn about the necessity of these amazing organisms. With the help of a naturalist, students explored their local park and discovered the wonder of decomposers and their…

  7. Solving the water jugs problem by an integer sequence approach

    NASA Astrophysics Data System (ADS)

    Man, Yiu-Kwong

    2012-01-01

    In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and lecturers involved in teaching mathematical problem solving, recreational mathematics, or elementary number theory.

  8. Integer cosine transform for image compression

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Pollara, F.; Shahshahani, M.

    1991-01-01

    This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.

  9. RSM 1.0 - A RESUPPLY SCHEDULER USING INTEGER OPTIMIZATION

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    RSM, Resupply Scheduling Modeler, is a fully menu-driven program that uses integer programming techniques to determine an optimum schedule for replacing components on or before the end of a fixed replacement period. Although written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user-defined resource constraints. RSM is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more computationally intensive, integer programming was required for accuracy when modeling systems with small quantities of components. Input values for component life cane be real numbers, RSM converts them to integers by dividing the lifetime by the period duration, then reducing the result to the next lowest integer. For each component, there is a set of constraints that insure that it is replaced before its lifetime expires. RSM includes user-defined constraints such as transportation mass and volume limits, as well as component life, available repair crew time and assembly sequences. A weighting factor allows the program to minimize factors such as cost. The program then performs an iterative analysis, which is displayed during the processing. A message gives the first period in which resources are being exceeded on each iteration. If the scheduling problem is unfeasible, the final message will also indicate the first period in which resources were exceeded. RSM is written in APL2 for IBM PC series computers and compatibles. A stand-alone executable version of RSM is provided; however, this is a "packed" version of RSM which can only utilize the memory within the 640K DOS limit. This executable requires at least 640K of memory and DOS 3.1 or higher. Source code for an APL2/PC workspace version is also provided. This version of RSM can make full use of any

  10. IMC-PID-fractional-order-filter controllers design for integer order systems.

    PubMed

    Maâmar, Bettayeb; Rachid, Mansouri

    2014-09-01

    One of the reasons of the great success of standard PID controllers is the presence of simple tuning rules, of the automatic tuning feature and of tables that simplify significantly their design. For the fractional order case, some tuning rules have been proposed in the literature. However, they are not general because they are valid only for some model cases. In this paper, a new approach is investigated. The fractional property is not especially imposed by the controller structure but by the closed loop reference model. The resulting controller is fractional but it has a very interesting structure for its implementation. Indeed, the controller can be decomposed into two transfer functions: an integer transfer function which is generally an integer PID controller and a simple fractional filter. PMID:24957276

  11. Mixed-Integer Formulations for Constellation Scheduling

    NASA Astrophysics Data System (ADS)

    Valicka, C.; Hart, W.; Rintoul, M.

    Remote sensing systems have expanded the set of capabilities available for and critical to national security. Cooperating, high-fidelity sensing systems and growing mission applications have exponentially increased the set of potential schedules. A definitive lack of advanced tools places an increased burden on operators, as planning and scheduling remain largely manual tasks. This is particularly true in time-critical planning activities where operators aim to accomplish a large number of missions through optimal utilization of single or multiple sensor systems. Automated scheduling through identification and comparison of alternative schedules remains a challenging problem applicable across all remote sensing systems. Previous approaches focused on a subset of sensor missions and do not consider ad-hoc tasking. We have begun development of a robust framework that leverages the Pyomo optimization modeling language for the design of a tool to assist sensor operators planning under the constraints of multiple concurrent missions and uncertainty. Our scheduling models have been formulated to address the stochastic nature of ad-hoc tasks inserted under a variety of scenarios. Operator experience is being leveraged to select appropriate model objectives. Successful development of the framework will include iterative development of high-fidelity mission models that consider and expose various schedule performance metrics. Creating this tool will aid time-critical scheduling by increasing planning efficiency, clarifying the value of alternative modalities uniquely provided by multi-sensor systems, and by presenting both sets of organized information to operators. Such a tool will help operators more quickly and fully utilize sensing systems, a high interest objective within the current remote sensing operations community. Preliminary results for mixed-integer programming formulations of a sensor scheduling problem will be presented. Assumptions regarding sensor geometry

  12. Slip and Slide Method of Factoring Trinomials with Integer Coefficients over the Integers

    ERIC Educational Resources Information Center

    Donnell, William A.

    2012-01-01

    In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss…

  13. Integer Solutions of a Special Diophantine Equation

    NASA Astrophysics Data System (ADS)

    Özkoç, Arzu; Tekcan, Ahmet

    2011-09-01

    Let t≠1 be an integer. In this work, we determine the integer solutions of Diophantine equation D:x2+(2-t2)y2+(-2t2-2t+2)x+(2t5-6t3+4t)y-t8+4t6-4t4+2t3+t2-2t = 0 over Z and also over finite fields Fp for primes p≥2. Also we derive some recurrence relations on the integer solutions (xn,yn) of D and formulate the the n—th solution (xn,yn) by using the simple continued fraction expansion of xn/yn.

  14. Reducing Truncation Error In Integer Processing

    NASA Technical Reports Server (NTRS)

    Thomas, J. Brooks; Berner, Jeffrey B.; Graham, J. Scott

    1995-01-01

    Improved method of rounding off (truncation of least-significant bits) in integer processing of data devised. Provides for reduction, to extremely low value, of numerical bias otherwise generated by accumulation of truncation errors from many arithmetic operations. Devised for use in integer signal processing, in which rescaling and truncation usually performed to reduce number of bits, which typically builds up in sequence of operations. Essence of method to alternate direction of roundoff (plus, then minus) on alternate occurrences of truncated values contributing to bias.

  15. PSLQ: An Algorithm to Discover Integer Relations

    SciTech Connect

    Bailey, David H.; Borwein, J. M.

    2009-04-03

    Let x = (x{sub 1}, x{sub 2} {hor_ellipsis}, x{sub n}) be a vector of real or complex numbers. x is said to possess an integer relation if there exist integers a{sub i}, not all zero, such that a{sub 1}x{sub 1} + a{sub 2}x{sub 2} + {hor_ellipsis} + a{sub n}x{sub n} = 0. By an integer relation algorithm, we mean a practical computational scheme that can recover the vector of integers ai, if it exists, or can produce bounds within which no integer relation exists. As we will see in the examples below, an integer relation algorithm can be used to recognize a computed constant in terms of a formula involving known constants, or to discover an underlying relation between quantities that can be computed to high precision. At the present time, the most effective algorithm for integer relation detection is the 'PSLQ' algorithm of mathematician-sculptor Helaman Ferguson [10, 4]. Some efficient 'multi-level' implementations of PSLQ, as well as a variant of PSLQ that is well-suited for highly parallel computer systems, are given in [4]. PSLQ constructs a sequence of integer-valued matrices B{sub n} that reduces the vector y = xB{sub n}, until either the relation is found (as one of the columns of B{sub n}), or else precision is exhausted. At the same time, PSLQ generates a steadily growing bound on the size of any possible relation. When a relation is found, the size of smallest entry of the vector y abruptly drops to roughly 'epsilon' (i.e. 10{sup -p}, where p is the number of digits of precision). The size of this drop can be viewed as a 'confidence level' that the relation is real and not merely a numerical artifact - a drop of 20 or more orders of magnitude almost always indicates a real relation. Very high precision arithmetic must be used in PSLQ. If one wishes to recover a relation of length n, with coefficients of maximum size d digits, then the input vector x must be specified to at least nd digits, and one must employ nd-digit floating-point arithmetic. Maple and

  16. Dollars & Sense: Students' Integer Perspectives

    ERIC Educational Resources Information Center

    Whitacre, Ian; Bishop, Jessica Pierson; Philipp, Randolph A.; Lamb, Lisa L.; Schappelle, Bonnie P.

    2014-01-01

    A story problem about borrowing money, presented in this article, may be represented with positive or negative numbers and thought about in different ways. The authors describe ideas related to integers (both positive and negative) and how students used them in relation to a story problem, and how they related these ideas to equations.

  17. Semiperfect and Integer-Perfect Numbers.

    ERIC Educational Resources Information Center

    Costello, Patrick

    1991-01-01

    The number theory concepts of perfect, deficient, and abundant numbers are subdivided and then utilized to discuss propositions concerning semiperfect, weird, and integer-perfect numbers. Conjectures about relationships among these latter numbers are suggested as avenues for further investigation. (JJK)

  18. How to Differentiate an Integer Modulo n

    ERIC Educational Resources Information Center

    Emmons, Caleb; Krebs, Mike; Shaheen, Anthony

    2009-01-01

    A number derivative is a numerical mapping that satisfies the product rule. In this paper, we determine all number derivatives on the set of integers modulo n. We also give a list of undergraduate research projects to pursue using these maps as a starting point.

  19. Decomposing Achievement Gaps among OECD Countries

    ERIC Educational Resources Information Center

    Zhang, Liang; Lee, Kristen A.

    2011-01-01

    In this study, we use decomposition methods on PISA 2006 data to compare student academic performance across OECD countries. We first establish an empirical model to explain the variation in academic performance across individuals, and then use the Oaxaca-Blinder decomposition method to decompose the achievement gap between each of the OECD…

  20. Scalable Domain Decomposed Monte Carlo Particle Transport

    SciTech Connect

    O'Brien, Matthew Joseph

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  1. A Treatment of Computational Precision, Number Representation, and Large Integers in an Introductory Fortran Course

    ERIC Educational Resources Information Center

    Richardson, William H., Jr.

    2006-01-01

    Computational precision is sometimes given short shrift in a first programming course. Treating this topic requires discussing integer and floating-point number representations and inaccuracies that may result from their use. An example of a moderately simple programming problem from elementary statistics was examined. It forced students to…

  2. N2O Decomposed by Discharge Plasma with Catalysts

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Huang, Hao; Xu, Jie; Yang, Qi; Tao, Gongkai

    2015-12-01

    A great deal of attention has been focused on discharge plasma as it can rapidly decompose N2O without additives, which is not only a kind of greenhouse gas but also a kind of damages to the ozone layer. The thermal equilibrium plasma is chosen to combine with catalysts to decompose N2O, and its characteristics are analyzed in the present paper. The results indicate that NO and NO2 were formed besides N2 and O2 during N2O decomposition when N2O was treated merely by discharge plasma. Concentration of NO declined greatly when the discharge plasma was combined with catalysts. Results of Raman spectra analysis on CeO2, Ce0.75Zr0.25O2 and Ce0.5Zr0.5O2 imply that the products selectivity has been obviously improved in discharge plasma decomposing N2O because of the existence of massive oxygen vacancies over the composite oxide catalysts. supported by National Natural Science Foundation of China (No. 50677026) and the Applied Basic Research Program of Wuhan, China (No. 2015060101010068)

  3. Slip and slide method of factoring trinomials with integer coefficients over the integers

    NASA Astrophysics Data System (ADS)

    Donnell, William A.

    2012-06-01

    In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss the Slip and Slide Method and present a theoretical justification of why it works.

  4. On the computation of the best integer equivariant estimator

    NASA Astrophysics Data System (ADS)

    Teunissen, P. J. G.

    Carrier phase integer ambiguity resolution is the key to high precision Global Navigation Satellite System (GNSS) positioning and navigation. In this contribution we study some of the computational aspects of best integer equivariant estimation. The best integer equivariant (BIE) estimator is the optimal estimator of the class of integer equivariant estimators, which is one of the three classes of estimators for carrier phase ambiguity resolution. The two other classes are the class of integer estimators and the class of integer aperture estimators. Since the BIE-estimator can not be computed exactly, it is shown how to approximate this estimator while retaining the property of integer equivariance. It is also shown how the decorrelating Z-transformation and the integer search of the LAMBDA method can be used to speed up the computation of the BIE-estimator.

  5. Unlimited Capacity Parallel Quantity Comparison of Multiple Integers

    ERIC Educational Resources Information Center

    Blanc-Goldhammer, Daryn R.; Cohen, Dale J.

    2014-01-01

    Research has shown that integer comparison is quick and efficient. This efficiency may be a function of the structure of the integer comparison system. The present study tests whether integers are compared with an unlimited capacity system or a limited capacity system. We tested these models using a visual search task with time delimitation. The…

  6. Optimal decomposable witnesses without the spanning property

    SciTech Connect

    Augusiak, Remigiusz; Sarbicki, Gniewomir; Lewenstein, Maciej

    2011-11-15

    One of the unsolved problems in the characterization of the optimal entanglement witnesses is the existence of optimal witnesses acting on bipartite Hilbert spaces H{sub m,n}=C{sup m} x C{sup n} such that the product vectors obeying =0 do not span H{sub m,n}. So far, the only known examples of such witnesses were found among indecomposable witnesses, one of them being the witness corresponding to the Choi map. However, it remains an open question whether decomposable witnesses exist without the property of spanning. Here we answer this question affirmatively, providing systematic examples of such witnesses. Then, we generalize some of the recently obtained results on the characterization of 2 x n optimal decomposable witnesses [R. Augusiak et al., J. Phys. A 44, 212001 (2011)] to finite-dimensional Hilbert spaces H{sub m,n} with m,n{>=}3.

  7. Catalytic cartridge SO.sub.3 decomposer

    DOEpatents

    Galloway, Terry R.

    1982-01-01

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  8. Catalytic cartridge SO.sub.3 decomposer

    DOEpatents

    Galloway, Terry R.

    1982-01-01

    A catalytic cartridge internally heated is utilized as a SO.sub.3 decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO.sub.3 gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube being internally heated. In the axial-flow cartridge, SO.sub.3 gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and being internally heated. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety.

  9. Optimal decomposable witnesses without the spanning property

    NASA Astrophysics Data System (ADS)

    Augusiak, Remigiusz; Sarbicki, Gniewomir; Lewenstein, Maciej

    2011-11-01

    One of the unsolved problems in the characterization of the optimal entanglement witnesses is the existence of optimal witnesses acting on bipartite Hilbert spaces Hm,n=Cm⊗Cn such that the product vectors obeying =0 do not span Hm,n. So far, the only known examples of such witnesses were found among indecomposable witnesses, one of them being the witness corresponding to the Choi map. However, it remains an open question whether decomposable witnesses exist without the property of spanning. Here we answer this question affirmatively, providing systematic examples of such witnesses. Then, we generalize some of the recently obtained results on the characterization of 2⊗n optimal decomposable witnesses [R. Augusiak , J. Phys. APLRAAN1751-811310.1088/1751-8113/44/21/212001 44, 212001 (2011)] to finite-dimensional Hilbert spaces Hm,n with m,n≥3.

  10. Catalytic cartridge SO/sub 3/ decomposer

    DOEpatents

    Galloway, T.R.

    1980-11-18

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

  11. Signature wood modifications reveal decomposer community history.

    PubMed

    Schilling, Jonathan S; Kaffenberger, Justin T; Liew, Feng Jin; Song, Zewei

    2015-01-01

    Correlating plant litter decay rates with initial tissue traits (e.g. C, N contents) is common practice, but in woody litter, predictive relationships are often weak. Variability in predicting wood decomposition is partially due to territorial competition among fungal decomposers that, in turn, have a range of nutritional strategies (rot types) and consequences on residues. Given this biotic influence, researchers are increasingly using culture-independent tools in an attempt to link variability more directly to decomposer groups. Our goal was to complement these tools by using certain wood modifications as 'signatures' that provide more functional information about decomposer dominance than density loss. Specifically, we used dilute alkali solubility (DAS; higher for brown rot) and lignin:density loss (L:D; higher for white rot) to infer rot type (binary) and fungal nutritional mode (gradient), respectively. We first determined strength of pattern among 29 fungi of known rot type by correlating DAS and L:D with mass loss in birch and pine. Having shown robust relationships for both techniques above a density loss threshold, we then demonstrated and resolved two issues relevant to species consortia and field trials, 1) spatial patchiness creating gravimetric bias (density bias), and 2) brown rot imprints prior or subsequent to white rot replacement (legacy effects). Finally, we field-tested our methods in a New Zealand Pinus radiata plantation in a paired-plot comparison. Overall, results validate these low-cost techniques that measure the collective histories of decomposer dominance in wood. The L:D measure also showed clear potential in classifying 'rot type' along a spectrum rather than as a traditional binary type (brown versus white rot), as it places the nutritional strategies of wood-degrading fungi on a scale (L:D=0-5, in this case). These information-rich measures of consequence can provide insight into their biological causes, strengthening the links

  12. Corrosion and repairs of ammonium carbamate decomposers

    SciTech Connect

    De Romero, M.F.; Galban, J.P.

    1996-05-01

    Corrosion-erosion problems occurred in the carbon steel base metal of the ammonium carbamate decomposers in an urea extraction process lined with type 316L (UNS S31603) urea grade stainless steel. The cladding was replaced by weld overlay using a semiautomatic gas metal arc welding process. The first layer was alloy 25%Cr-15%Ni-2%Mo (UNS W30923); the second layer was alloy 25%Cr-22%Ni-2%Mo (UNS W31020).

  13. Signature Wood Modifications Reveal Decomposer Community History

    PubMed Central

    Schilling, Jonathan S.; Kaffenberger, Justin T.; Liew, Feng Jin; Song, Zewei

    2015-01-01

    Correlating plant litter decay rates with initial tissue traits (e.g. C, N contents) is common practice, but in woody litter, predictive relationships are often weak. Variability in predicting wood decomposition is partially due to territorial competition among fungal decomposers that, in turn, have a range of nutritional strategies (rot types) and consequences on residues. Given this biotic influence, researchers are increasingly using culture-independent tools in an attempt to link variability more directly to decomposer groups. Our goal was to complement these tools by using certain wood modifications as ‘signatures’ that provide more functional information about decomposer dominance than density loss. Specifically, we used dilute alkali solubility (DAS; higher for brown rot) and lignin:density loss (L:D; higher for white rot) to infer rot type (binary) and fungal nutritional mode (gradient), respectively. We first determined strength of pattern among 29 fungi of known rot type by correlating DAS and L:D with mass loss in birch and pine. Having shown robust relationships for both techniques above a density loss threshold, we then demonstrated and resolved two issues relevant to species consortia and field trials, 1) spatial patchiness creating gravimetric bias (density bias), and 2) brown rot imprints prior or subsequent to white rot replacement (legacy effects). Finally, we field-tested our methods in a New Zealand Pinus radiata plantation in a paired-plot comparison. Overall, results validate these low-cost techniques that measure the collective histories of decomposer dominance in wood. The L:D measure also showed clear potential in classifying ‘rot type’ along a spectrum rather than as a traditional binary type (brown versus white rot), as it places the nutritional strategies of wood-degrading fungi on a scale (L:D=0-5, in this case). These information-rich measures of consequence can provide insight into their biological causes, strengthening the

  14. Integer sparse distributed memory: analysis and results.

    PubMed

    Snaider, Javier; Franklin, Stan; Strain, Steve; George, E Olusegun

    2013-10-01

    Sparse distributed memory is an auto-associative memory system that stores high dimensional Boolean vectors. Here we present an extension of the original SDM, the Integer SDM that uses modular arithmetic integer vectors rather than binary vectors. This extension preserves many of the desirable properties of the original SDM: auto-associativity, content addressability, distributed storage, and robustness over noisy inputs. In addition, it improves the representation capabilities of the memory and is more robust over normalization. It can also be extended to support forgetting and reliable sequence storage. We performed several simulations that test the noise robustness property and capacity of the memory. Theoretical analyses of the memory's fidelity and capacity are also presented. PMID:23747569

  15. CRAY-1S integer vector utility library

    SciTech Connect

    Rogers, J.N.; Tooman, T.P.

    1982-06-01

    This report describes thirty-five integer or packed vector utility routines, and documents their testing. These routines perform various vector searches, linear algebra functions, memory resets, and vector boolean operations. They are written in CAL, the assembly language on the CRAY-1S computer. By utilizing the vector processing features of that machine, they are optimized in terms of run time. Each routine has been extensively tested.

  16. HypExp 2, expanding hypergeometric functions about half-integer parameters

    NASA Astrophysics Data System (ADS)

    Huber, Tobias; Maître, Daniel

    2012-04-01

    HypExp is a Mathematica package for expanding hypergeometric functions about integer and half-integer parameters. New version program summaryProgram title: HypExp 2 Catalogue identifier: ADXF_v2_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXF_v2_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 107 274 No. of bytes in distributed program, including test data, etc.: 2 690 337 Distribution format: tar.gz Programming language: Mathematica 7 and 8 Computer: Computers running Mathematica Operating system: Linux, Windows, Mac RAM: Depending on the complexity of the problem Supplementary material: Library files which contain the expansion of certain hypergeometric functions around their parameters are available Classification: 4.7, 5 Catalogue identifier of previous version: ADXF_v2_0 Journal reference of previous version: Comput. Phys. Comm. 178 (2008) 755 Does the new version supersede the previous version?: Yes Nature of problem: Expansion of hypergeometric functions about parameters that are integer and/or half-integer valued. Solution method: New algorithm implemented in Mathematica. Reasons for new version: Compatibility with new versions of Mathematica. Summary of revisions: Support for versions 7 and 8 of Mathematica added. No changes in the features of the package. Restrictions: The classes of hypergeometric functions with half-integer parameters that can be expanded are listed in the long write-up. Additional comments: The package uses the package HPL included in the distribution. Running time: Depending on the expansion.

  17. Fast integer least-squares estimation for GNSS high-dimensional ambiguity resolution using lattice theory

    NASA Astrophysics Data System (ADS)

    Jazaeri, S.; Amiri-Simkooei, A. R.; Sharifi, M. A.

    2012-02-01

    GNSS ambiguity resolution is the key issue in the high-precision relative geodetic positioning and navigation applications. It is a problem of integer programming plus integer quality evaluation. Different integer search estimation methods have been proposed for the integer solution of ambiguity resolution. Slow rate of convergence is the main obstacle to the existing methods where tens of ambiguities are involved. Herein, integer search estimation for the GNSS ambiguity resolution based on the lattice theory is proposed. It is mathematically shown that the closest lattice point problem is the same as the integer least-squares (ILS) estimation problem and that the lattice reduction speeds up searching process. We have implemented three integer search strategies: Agrell, Eriksson, Vardy, Zeger (AEVZ), modification of Schnorr-Euchner enumeration (M-SE) and modification of Viterbo-Boutros enumeration (M-VB). The methods have been numerically implemented in several simulated examples under different scenarios and over 100 independent runs. The decorrelation process (or unimodular transformations) has been first used to transform the original ILS problem to a new one in all simulations. We have then applied different search algorithms to the transformed ILS problem. The numerical simulations have shown that AEVZ, M-SE, and M-VB are about 320, 120 and 50 times faster than LAMBDA, respectively, for a search space of dimension 40. This number could change to about 350, 160 and 60 for dimension 45. The AEVZ is shown to be faster than MLAMBDA by a factor of 5. Similar conclusions could be made using the application of the proposed algorithms to the real GPS data.

  18. Multi-objective mixed integer strategy for the optimisation of biological networks.

    PubMed

    Sendín, J O H; Exler, O; Banga, J R

    2010-05-01

    In this contribution, the authors consider multi-criteria optimisation problems arising from the field of systems biology when both continuous and integer decision variables are involved. Mathematically, they are formulated as mixed-integer non-linear programming problems. The authors present a novel solution strategy based on a global optimisation approach for dealing with this class of problems. Its usefulness and capabilities are illustrated with two metabolic engineering case studies. For these problems, the authors show how the set of optimal solutions (the so-called Pareto front) is successfully and efficiently obtained, providing further insight into the systems under consideration regarding their optimal manipulation. PMID:20500003

  19. A Structural Connection between Linear and 0-1 Integer Linear Formulations

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2007-01-01

    The connection between linear and 0-1 integer linear formulations has attracted the attention of many researchers. The main reason triggering this interest has been an availability of efficient computer programs for solving pure linear problems including the transportation problem. Also the optimality of linear problems is easily verifiable…

  20. Domain-decomposed preconditionings for transport operators

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Gropp, William D.; Keyes, David E.

    1991-01-01

    The performance was tested of five different interface preconditionings for domain decomposed convection diffusion problems, including a novel one known as the spectral probe, while varying mesh parameters, Reynolds number, ratio of subdomain diffusion coefficients, and domain aspect ratio. The preconditioners are representative of the range of practically computable possibilities that have appeared in the domain decomposition literature for the treatment of nonoverlapping subdomains. It is shown that through a large number of numerical examples that no single preconditioner can be considered uniformly superior or uniformly inferior to the rest, but that knowledge of particulars, including the shape and strength of the convection, is important in selecting among them in a given problem.

  1. Scalable Domain Decomposed Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    O'Brien, Matthew Joseph

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.

  2. Process for decomposing nitrates in aqueous solution

    DOEpatents

    Haas, Paul A.

    1980-01-01

    This invention is a process for decomposing ammonium nitrate and/or selected metal nitrates in an aqueous solution at an elevated temperature and pressure. Where the compound to be decomposed is a metal nitrate (e.g., a nuclear-fuel metal nitrate), a hydroxylated organic reducing agent therefor is provided in the solution. In accordance with the invention, an effective proportion of both nitromethane and nitric acid is incorporated in the solution to accelerate decomposition of the ammonium nitrate and/or selected metal nitrate. As a result, decomposition can be effected at significantly lower temperatures and pressures, permitting the use of system components composed of off-the-shelf materials, such as stainless steel, rather than more costly materials of construction. Preferably, the process is conducted on a continuous basis. Fluid can be automatically vented from the reaction zone as required to maintain the operating temperature at a moderate value--e.g., at a value in the range of from about 130.degree.-200.degree. C.

  3. Decomposing generalized measurements into continuous stochastic processes

    SciTech Connect

    Varbanov, Martin; Brun, Todd A.

    2007-09-15

    One of the broadest concepts of measurement in quantum theory is the generalized measurement. Another paradigm of measurement--arising naturally in quantum optics, among other fields--is that of continuous-time measurements, which can be seen as the limit of a consecutive sequence of weak measurements. They are naturally described in terms of stochastic processes, or time-dependent random variables. We show that any generalized measurement can be decomposed as a sequence of weak measurements with a mathematical limit as a continuous stochastic process. We give an explicit construction for any generalized measurement, and prove that the resulting continuous evolution, in the long-time limit, collapses the state of the quantum system to one of the final states generated by the generalized measurement, being decomposed, with the correct probabilities. A prominent feature of the construction is the presence of a feedback mechanism--the instantaneous choice weak measurement at a given time depends on the outcomes of earlier measurements. For a generalized measurement with n outcomes, this information is captured by a real n-vector on an n-simplex, which obeys a simple classical stochastic evolution.

  4. Decomposing Solid Micropropulsion Nozzle Performance Issues

    NASA Technical Reports Server (NTRS)

    Reed, Brian

    2003-01-01

    Micropropulsion technology is essential to the success of miniaturized spacecraft and can provide ultra-precise propulsion for small spacecraft. NASA Glenn Research Center has envisioned a micropropulsion concept that utilizes decomposing solid propellants for a valveless, leak-free propulsion system. Among the technical challenges of this decomposing solid micropropulsion concept is optimization of miniature, rectangular nozzles. A number of flat micronozzles were tested with ambient-temperature nitrogen and helium gas in a vacuum facility. The thrusters were etched out of silicon and had throat widths on the order of 350 microns and throat depths on the order of 250 microns. While these were half-sections of thrusters (two would be bonded together before firing), testing provided the performance trend for nozzles of this scale and geometry. Area ratios from 1 to 25 were tested, with thrust measured using an inverted pendulum thrust stand for nitrogen flows and a torsional thrust stand for helium. In the nitrogen testing, peak nozzle performance was achieved around area ratio of 5. In the helium series, nozzle performance peaked for the smallest nozzle tested area ratio 1.5. For both gases, there was a secondary performance peak above area ratio 15. At low chamber pressures (< 1.6 atm), nitrogen provided higher nozzle performance than helium. The performance curve for helium was steeper, however, and it appeared that helium would provide better performance than nitrogen at higher chamber pressures.

  5. Horizontal visibility graphs from integer sequences

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas

    2016-09-01

    The horizontal visibility graph (HVG) is a graph-theoretical representation of a time series and builds a bridge between dynamical systems and graph theory. In recent years this representation has been used to describe and theoretically compare different types of dynamics and has been applied to characterize empirical signals, by extracting topological features from the associated HVGs which have shown to be informative on the class of dynamics. Among some other measures, it has been shown that the degree distribution of these graphs is a very informative feature that encapsulates nontrivial information of the series's generative dynamics. In particular, the HVG associated to a bi-infinite real-valued series of independent and identically distributed random variables is a universal exponential law P(k)=(1/3){(2/3)}k-2, independent of the series marginal distribution. Most of the current applications have however only addressed real-valued time series, as no exact results are known for the topological properties of HVGs associated to integer-valued series. In this paper we explore this latter situation and address univariate time series where each variable can only take a finite number n of consecutive integer values. We are able to construct an explicit formula for the parametric degree distribution {P}n(k), which we prove to converge to the continuous case for large n and deviates otherwise. A few applications are then considered.

  6. Decomposing trimmed surfaces using the Voronoie tesselation

    SciTech Connect

    Tsai, Po-Yu; Hamann, B.

    1996-12-31

    Many applications deal with the rendering of trimmed surfaces and the generation of grids for trimmed surfaces. Usually, a structured or unstructured grid must be constructed in the parameter space of the trimmed surface. Trimmed surfaces not only cause problems in the context of grid generation but also when exchanging data between different CAD systems. This paper describes a new approach for decomposing the valid part of the parameter space of a trimmed surface into a set of four-sided surfaces. The boundaries of these four-sided surfaces axe line segments, segments of the trimming curves themselves, and segments of bisecting curves that are defined by a generalized Voronoi diagram implied by the trimming curves in parameter space. We use a triangular background mesh for the approximation of the bisecting curves of the generalized Voronoi diagram.

  7. Supporting Knowledge Transfer through Decomposable Reasoning Artifacts

    SciTech Connect

    Pike, William A.; May, Richard A.; Turner, Alan E.

    2007-01-03

    Technology to support knowledge transfer and cooperative inquiry must offer its users the ability to effectively interpret knowledge structures produced by collaborators. Communicating the reasoning processes that underlie a finding is one method for enhancing interpretation, and can result in more effective evaluation and application of shared knowledge. In knowledge management tools, interpretation is aided by creating knowledge artifacts that can expose their provenance to scrutiny and that can be transformed into diverse representations that suit their consumers’ perspectives and preferences. We outline the information management needs of inquiring communities characterized by hypothesis generation tasks, and propose a model for communication, based in theories of hermeneutics, semiotics, and abduction, in which knowledge structures can be decomposed into the lower-level reasoning artifacts that produced them. We then present a proof-of-concept implementation for an environment to support the capture and communication of analytic products, with emphasis on the domain of intelligence analysis.

  8. Gypsum crystals formed on decomposing calcium citrate

    NASA Astrophysics Data System (ADS)

    Söhnel, O.; Křivánková, I.; Krčmář, S.; Jurčová, M.

    1991-06-01

    Particle size and the specific surface area of gypsum crystals formed on decomposing an aqueous suspension of solid calcium citrate tetrahydrate by diluted 50% sulphuric acid at 25, 40, 60, 80 and 100°C was studied. The size of the gypsum crystals increases with increasing temperature of decomposition. At a constant temperature within the range of 25 to 100°C the median of gypsum crystal size distribution (PSD) increases for approximately 4 h after commencing decomposition and then reaches a virtually constant value. The specific surface area of gypsum crystals decreases after commencement of the reaction for approximately 6 h before reaching a constant value. Gypsum crystal growth by solute deposition from the liquid is responsible for PSD changes for approximately one hour at the commencement of reaction. Then the growth of larger crystals at the expense of smaller crystals, i.e. ripening, is apparently responsible for further changes in the PSD.

  9. DCMDSM: a DICOM decomposed storage model

    PubMed Central

    Savaris, Alexandre; Härder, Theo; von Wangenheim, Aldo

    2014-01-01

    Objective To design, build, and evaluate a storage model able to manage heterogeneous digital imaging and communications in medicine (DICOM) images. The model must be simple, but flexible enough to accommodate variable content without structural modifications; must be effective on answering query/retrieval operations according to the DICOM standard; and must provide performance gains on querying/retrieving content to justify its adoption by image-related projects. Methods The proposal adapts the original decomposed storage model, incorporating structural and organizational characteristics present in DICOM image files. Tag values are stored according to their data types/domains, in a schema built on top of a standard relational database management system (RDBMS). Evaluation includes storing heterogeneous DICOM images, querying metadata using a variable number of predicates, and retrieving full-content images for different hierarchical levels. Results and discussion When compared to a well established DICOM image archive, the proposal is 0.6–7.2 times slower in storing content; however, in querying individual tags, it is about 48.0% faster. In querying groups of tags, DICOM decomposed storage model (DCMDSM) is outperformed in scenarios with a large number of tags and low selectivity (being 66.5% slower); however, when the number of tags is balanced with better selectivity predicates, the performance gains are up to 79.1%. In executing full-content retrieval, in turn, the proposal is about 48.3% faster. Conclusions DCMDSM is a model built for the storage of heterogeneous DICOM content, based on a straightforward database design. The results obtained through its evaluation attest its suitability as a storage layer for projects where DICOM images are stored once, and queried/retrieved whenever necessary. PMID:24491269

  10. Optimizing Non-Decomposable Loss Functions in Structured Prediction

    PubMed Central

    Ranjbar, Mani; Lan, Tian; Wang, Yang; Robinovitch, Steven N.; Li, Ze-Nian; Mori, Greg

    2012-01-01

    We develop an algorithm for structured prediction with non-decomposable performance measures. The algorithm learns parameters of Markov random fields and can be applied to multivariate performance measures. Examples include performance measures such as Fβ score (natural language processing), intersection over union (object category segmentation), Precision/Recall at k (search engines) and ROC area (binary classifiers). We attack this optimization problem by approximating the loss function with a piecewise linear function. The loss augmented inference forms a quadratic program (QP), which we solve using LP relaxation. We apply this approach to two tasks: object class-specific segmentation and human action retrieval from videos. We show significant improvement over baseline approaches that either use simple loss functions or simple scoring functions on the PASCAL VOC and H3D Segmentation datasets, and a nursing home action recognition dataset. PMID:22868650

  11. Camera placement in integer lattices (extended abstract)

    NASA Astrophysics Data System (ADS)

    Pocchiola, Michel; Kranakis, Evangelos

    1990-09-01

    Techniques for studying an art gallery problem (the camera placement problem) in the infinite lattice (L sup d) of d tuples of integers are considered. A lattice point A is visible from a camera C positioned at a vertex of (L sup d) if A does not equal C and if the line segment joining A and C crosses no other lattice vertex. By using a combination of probabilistic, combinatorial optimization and algorithmic techniques the position they must occupy in the lattice (L sup d) in the order to maximize their visibility can be determined in polynomial time, for any given number s less than or equal to (5 sup d) of cameras. This improves previous results for s less than or equal to (3 sup d).

  12. Decomposability and mental representation of French verbs

    PubMed Central

    Estivalet, Gustavo L.; Meunier, Fanny E.

    2015-01-01

    In French, regardless of stem regularity, inflectional verbal suffixes are extremely regular and paradigmatic. Considering the complexity of the French verbal system, we argue that all French verbs are polymorphemic forms that are decomposed during visual recognition independently of their stem regularity. We conducted a behavioral experiment in which we manipulated the surface and cumulative frequencies of verbal inflected forms and asked participants to perform a visual lexical decision task. We tested four types of verbs with respect to their stem variants: a. fully regular (parler “to speak,” [parl-]); b. phonological change e/E verbs with orthographic markers (répéter “to repeat,” [répét-] and [répèt-]); c. phonological change o/O verbs without orthographic markers (adorer “to adore,” [ador-] and [adOr-]); and d. idiosyncratic (boire “to drink,” [boi-] and [buv-]). For each type of verb, we contrasted four conditions, forms with high and low surface frequencies and forms with high and low cumulative frequencies. Our results showed a significant cumulative frequency effect for the fully regular and idiosyncratic verbs, indicating that different stems within idiosyncratic verbs (such as [boi-] and [buv-]) have distinct representations in the mental lexicon as different fully regular verbs. For the phonological change verbs, we found a significant cumulative frequency effect only when considering the two forms of the stem together ([répét-] and [répèt-]), suggesting that they share a single abstract and under specified phonological representation. Our results also revealed a significant surface frequency effect for all types of verbs, which may reflect the recombination of the stem lexical representation with the functional information of the suffixes. Overall, these results indicate that all inflected verbal forms in French are decomposed during visual recognition and that this process could be due to the regularities of the French

  13. A Proposed Instructional Theory for Integer Addition and Subtraction

    ERIC Educational Resources Information Center

    Stephan, Michelle; Akyuz, Didem

    2012-01-01

    This article presents the results of a 7th-grade classroom teaching experiment that supported students' understanding of integer addition and subtraction. The experiment was conducted to test and revise a hypothetical learning trajectory so as to propose a potential instructional theory for integer addition and subtraction. The instructional…

  14. Certain integers related to Ankeny-Artin-Chowla conjecture

    NASA Astrophysics Data System (ADS)

    Hashimoto, Ryūta

    2008-01-01

    Let d be a non-square integer which is congruent to 1 modulo 4. Let t and u be the fundamental solution of the diophantine equation X2-dY2 = -4. A family of integers d satisfying d

  15. Harmonic oscillator states with integer and non-integer orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Land, Martin

    2011-12-01

    We study the quantum mechanical harmonic oscillator in two and three dimensions, with particular attention to the solutions as basis states for representing their respective symmetry groups — O(2), O(1,1), O(3), and O(2,1). The goal of this study is to establish a correspondence between Hilbert space descriptions found by solving the Schrodinger equation in polar coordinates, and Fock space descriptions constructed by expressing the symmetry operators in terms of creation/annihilation operators. We obtain wavefunctions characterized by a principal quantum number, the group Casimir eigenvalue, and one group generator whose eigenvalue is m + s, for integer m and real constant parameter s. For the three groups that contain O(2), the solutions split into two inequivalent representations, one associated with s = 0, from which we recover the familiar description of the oscillator as a product of one-dimensional solutions, and the other with s > 0 (in three dimensions, solutions are found for s = 0 and s = 1/2) whose solutions are non-separable in Cartesian coordinates, and are hence overlooked by the standard Fock space approach. The O(1,1) solutions are singlet states, restricted to zero eigenvalue of the symmetry operator, which represents the boost, not angular momentum. For O(2), a single set of creation and annihilation operators forms a ladder representation for the allowed oscillator states for any s, and the degeneracy of energy states is always finite. However, in three dimensions, the integer and half-integer eigenstates are qualitatively different: the former can be expressed as finite dimensional irreducible tensors under O(3) or O(2,1) while the latter exhibit infinite degeneracy. Creation operators that produce the allowed integer states by acting on the non-degenerate ground state are constructed as irreducible tensor products of the fundamental vector representation. However, the half-integer eigenstates are infinite-dimensional, as expected for the non

  16. The integer quantum hall effect revisited

    SciTech Connect

    Michalakis, Spyridon; Hastings, Matthew

    2009-01-01

    For T - L x L a finite subset of Z{sup 2}, let H{sub o} denote a Hamiltonian on T with periodic boundary conditions and finite range, finite strength intetactions and a unique ground state with a nonvanishing spectral gap. For S {element_of} T, let q{sub s} denote the charge at site s and assume that the total charge Q = {Sigma}{sub s {element_of} T} q{sub s} is conserved. Using the local charge operators q{sub s}, we introduce a boundary magnetic flux in the horizontal and vertical direction and allow the ground state to evolve quasiadiabatically around a square of size one magnetic flux, in flux space. At the end of the evolution we obtain a trivial Berry phase, which we compare, via a method reminiscent of Stokes Theorem. to the Berry phase obtained from an evolution around an exponentially small loop near the origin. As a result, we show, without any averaging assumption, that the Hall conductance is quantized in integer multiples of e{sup 2}/h up to exponentially small corrections of order e{sup -L/{zeta}}, where {zeta}, is a correlation length that depends only on the gap and the range and strength of the interactions.

  17. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    SciTech Connect

    Moore, Robert; Pickard, Paul S.; Parma, Jr., Edward J.; Vernon, Milton E.; Gelbard, Fred; Lenard, Roger X.

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  18. Procedures for Decomposing a Redox Reaction into Half-Reaction

    ERIC Educational Resources Information Center

    Fishtik, Ilie; Berka, Ladislav H.

    2005-01-01

    A simple algorithm for a complete enumeration of the possible ways a redox reaction (RR) might be uniquely decomposed into half-reactions (HRs) using the response reactions (RERs) formalism is presented. A complete enumeration of the possible ways a RR may be decomposed into HRs is equivalent to a complete enumeration of stoichiometrically…

  19. Fractal electrodynamics via non-integer dimensional space approach

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  20. A review of «integer PPP» applications

    NASA Astrophysics Data System (ADS)

    Perosanz, Felix; Mercier, Flavien; Loyer, Sylvain; Petit, Gérard; Marty, Jean-Charles

    2016-04-01

    The possibility of fixing GNSS phase observations to integer values in PPP mode has been demonstrated by several authors. Various scientific and commercial services have started offering this option. In this presentation we first summarize the mathematical formalism needed to recover integer ambiguities while processing un-differenced GNSS phase observations. The improvements but also the limitations of "integer PPP" (IPPP) solutions are discussed. Then we make a review of several scientific results based on this method to illustrate its wide field of applications like oceanic buoy tracking, glacier deformation, atomic oscillator frequency transfer, LEO satellite orbit determination. Several ideas for future improvement are also discussed including the recommendation to IGS Analysis Centers to adopt a compatible approach to deliver "integer" clock products for a combined solution that would allow for IPPP solutions.

  1. Integer aperture ambiguity resolution based on difference test

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong

    2015-07-01

    Carrier-phase integer ambiguity resolution (IAR) is the key to highly precise, fast positioning and attitude determination with Global Navigation Satellite System (GNSS). It can be seen as the process of estimating the unknown cycle ambiguities of the carrier-phase observations as integers. Once the ambiguities are fixed, carrier phase data will act as the very precise range data. Integer aperture (IA) ambiguity resolution is the combination of acceptance testing and integer ambiguity resolution, which can realize better quality control of IAR. Difference test (DT) is one of the most popular acceptance tests. This contribution will give a detailed analysis about the following properties of IA ambiguity resolution based on DT: 1. The sharpest and loose upper bounds of DT are derived from the perspective of geometry. These bounds are very simple and easy to be computed, which give the range for the critical values of DT.

  2. Adaptive Source Coding Schemes for Geometrically Distributed Integer Alphabets

    NASA Technical Reports Server (NTRS)

    Cheung, K-M.; Smyth, P.

    1993-01-01

    Revisit the Gallager and van Voorhis optimal source coding scheme for geometrically distributed non-negative integer alphabets and show that the various subcodes in the popular Rice algorithm can be derived from the Gallager and van Voorhis code.

  3. Toward the development of a Trust-Tech-based methodology for solving mixed integer nonlinear optimization

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Chiang, Hsiao-Dong

    Many applications of smart grid can be formulated as constrained optimization problems. Because of the discrete controls involved in power systems, these problems are essentially mixed-integer nonlinear programs. In this paper, we review the Trust-Tech-based methodology for solving mixed-integer nonlinear optimization. Specifically, we have developed a two-stage Trust-Tech-based methodology to systematically compute all the local optimal solutions for constrained mixed-integer nonlinear programming (MINLP) problems. In the first stage, for a given MINLP problem this methodology starts with the construction of a new, continuous, unconstrained problem through relaxation and the penalty function method. A corresponding dynamical system is then constructed to search for a set of local optimal solutions for the unconstrained problem. In the second stage, a reduced constrained NLP is defined for each local optimal solution by determining and fixing the values of integral variables of the MINLP problem. The Trust-Tech-based method is used to compute a set of local optimal solutions for these reduced NLP problems, from which the optimal solution of the original MINLP problem is determined. A numerical simulation of several testing problems is provided to illustrate the effectiveness of our proposed method.

  4. Design and multiparticle simulation of the half integer slow extraction system for the Main Injector

    SciTech Connect

    Trbojevic, D.; Harrison, M.

    1991-05-01

    One of the roles of the new Main Injector ring, in the second phase of the Fermilab upgrade, is to deliver all year around the slow extracted 120 GeV test beams. The half-integer slow extraction system design and results from a Monte-Carlo simulation of fast spill are presented. The simulation was performed with a computer tracking program based on the TEVLAT program with a large number of particles (up to 1000). Particle tracking included the systematic errors produced by the magnetic multipoles within the dipoles and quadrupoles as well as random multipole errors.

  5. Polynomial-time algorithms for the integer minimal principle for centrosymmetric structures.

    PubMed

    Vaia, Anastasia; Sahinidis, Nikolaos V

    2005-07-01

    The minimal principle for structure determination from single-crystal X-ray diffraction measurements has recently been formulated as an integer linear optimization model for the case of centrosymmetric structures. Solution of this model via established combinatorial branch-and-bound algorithms provides the true global minimum of the minimal principle while operating exclusively in reciprocal space. However, integer programming techniques may require an exponential number of iterations to exhaust the search space. In this paper, a new approach is developed to solve the integer minimal principle to global optimality without requiring the solution of an optimization problem. Instead, properties of the solution of the optimization problem, as observed in a large number of computational experiments, are exploited in order to reduce the optimization formulation to a system of linear equations in the number field of two elements (F(2)). Two specialized Gaussian elimination algorithms are then developed to solve this system of equations in polynomial time in the number of atoms. Computational results on a collection of 38 structures demonstrate that the proposed approach provides very fast and accurate solutions to the phase problem for centrosymmetric structures. This approach also provided much better crystallographic R values than SHELXS for all 38 structures tested. PMID:15972998

  6. Finite pure integer programming algorithms employing only hyperspherically deduced cuts

    NASA Technical Reports Server (NTRS)

    Young, R. D.

    1971-01-01

    Three algorithms are developed that may be based exclusively on hyperspherically deduced cuts. The algorithms only apply, therefore, to problems structured so that these cuts are valid. The algorithms are shown to be finite.

  7. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2012-01-01

    In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.

  8. Non-integer expansion embedding techniques for reversible image watermarking

    NASA Astrophysics Data System (ADS)

    Xiang, Shijun; Wang, Yi

    2015-12-01

    This work aims at reducing the embedding distortion of prediction-error expansion (PE)-based reversible watermarking. In the classical PE embedding method proposed by Thodi and Rodriguez, the predicted value is rounded to integer number for integer prediction-error expansion (IPE) embedding. The rounding operation makes a constraint on a predictor's performance. In this paper, we propose a non-integer PE (NIPE) embedding approach, which can proceed non-integer prediction errors for embedding data into an audio or image file by only expanding integer element of a prediction error while keeping its fractional element unchanged. The advantage of the NIPE embedding technique is that the NIPE technique can really bring a predictor into full play by estimating a sample/pixel in a noncausal way in a single pass since there is no rounding operation. A new noncausal image prediction method to estimate a pixel with four immediate pixels in a single pass is included in the proposed scheme. The proposed noncausal image predictor can provide better performance than Sachnev et al.'s noncausal double-set prediction method (where data prediction in two passes brings a distortion problem due to the fact that half of the pixels were predicted with the watermarked pixels). In comparison with existing several state-of-the-art works, experimental results have shown that the NIPE technique with the new noncausal prediction strategy can reduce the embedding distortion for the same embedding payload.

  9. A Polynomial Time, Numerically Stable Integer Relation Algorithm

    NASA Technical Reports Server (NTRS)

    Ferguson, Helaman R. P.; Bailey, Daivd H.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Let x = (x1, x2...,xn be a vector of real numbers. X is said to possess an integer relation if there exist integers a(sub i) not all zero such that a1x1 + a2x2 + ... a(sub n)Xn = 0. Beginning in 1977 several algorithms (with proofs) have been discovered to recover the a(sub i) given x. The most efficient of these existing integer relation algorithms (in terms of run time and the precision required of the input) has the drawback of being very unstable numerically. It often requires a numeric precision level in the thousands of digits to reliably recover relations in modest-sized test problems. We present here a new algorithm for finding integer relations, which we have named the "PSLQ" algorithm. It is proved in this paper that the PSLQ algorithm terminates with a relation in a number of iterations that is bounded by a polynomial in it. Because this algorithm employs a numerically stable matrix reduction procedure, it is free from the numerical difficulties, that plague other integer relation algorithms. Furthermore, its stability admits an efficient implementation with lower run times oil average than other algorithms currently in Use. Finally, this stability can be used to prove that relation bounds obtained from computer runs using this algorithm are numerically accurate.

  10. Bosonic Integer Quantum Hall Effect in Optical Flux Lattices

    NASA Astrophysics Data System (ADS)

    Sterdyniak, A.; Cooper, Nigel R.; Regnault, N.

    2015-09-01

    In two dimensions strongly interacting bosons in a magnetic field can realize a bosonic integer quantum Hall state, the simplest two-dimensional example of a symmetry-protected topological phase. We propose a realistic implementation of this phase using an optical flux lattice. Through exact diagonalization calculations, we show that the system exhibits a clear bulk gap and the topological signature of the bosonic integer quantum Hall state. In particular, the calculation of the many-body Chern number leads to a quantized Hall conductance in agreement with the analytical predictions. We also study the stability of the phase with respect to some of the experimentally relevant parameters.

  11. FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression

    PubMed Central

    Jacob, J. Augustin; Kumar, N. Senthil

    2015-01-01

    A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120

  12. FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression.

    PubMed

    Jacob, J Augustin; Kumar, N Senthil

    2015-01-01

    A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120

  13. Decomposed gosling feet provide evidence of insecticide exposure

    USGS Publications Warehouse

    Vyas, N.B.; Spann, J.W.; Hulse, C.S.; Torrez, M.; Williams, B.I.; Leffel, R.

    2004-01-01

    Canada goose goslings were exposed to turf sprayed with D.Z.N(R) diazinon 50W application (2.24 kg a.i./ha). The control plot was subjected to a water application. One foot from each bird was placed outdoors for 7 d to decompose and the other foot was kept frozen. Diazinon residues were analyzed on both feet. Results showed that diazinon was detected from undecomposed and decomposed feet of the birds. Diazinon residues were below the level of detection (<0.01 ppm, a.i.) on the feet from the control goslings. Decomposed feet may be used for determining insecticide exposure when the traditional matrices are not available.

  14. Comparison of penalty functions on a penalty approach to mixed-integer optimization

    NASA Astrophysics Data System (ADS)

    Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.

    2016-06-01

    In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.

  15. Unique Factorization in Cyclotomic Integers of Degree Seven

    ERIC Educational Resources Information Center

    Duckworth, W. Ethan

    2008-01-01

    This article provides a survey of some basic results in algebraic number theory and applies this material to prove that the cyclotomic integers generated by a seventh root of unity are a unique factorization domain. Part of the proof uses the computer algebra system Maple to find and verify factorizations. The proofs use a combination of historic…

  16. Informing Practice: Making Sense of Integers through Storytelling

    ERIC Educational Resources Information Center

    Wessman-Enzinger, Nicole M.; Mooney, Edward S.

    2014-01-01

    The authors asked fifth-grade and eighth-grade students to pose stories for number sentences involving the addition and subtraction of integers. In this article, the authors look at eight stories from students. Which of these stories works for the given number sentence? What do they reveal about student thinking? When the authors examined these…

  17. Using the Finite Difference Calculus to Sum Powers of Integers.

    ERIC Educational Resources Information Center

    Zia, Lee

    1991-01-01

    Summing powers of integers is presented as an example of finite differences and antidifferences in discrete mathematics. The interrelation between these concepts and their analogues in differential calculus, the derivative and integral, is illustrated and can form the groundwork for students' understanding of differential and integral calculus.…

  18. Happy and Sad Thoughts: An Exploration of Children's Integer Reasoning

    ERIC Educational Resources Information Center

    Whitacre, Ian; Bishop, Jessica Pierson; Lamb, Lisa L. C.; Philipp, Randolph A.; Schappelle, Bonnie P.; Lewis, Melinda L.

    2012-01-01

    The purpose of this study was to investigate elementary children's conceptions that might serve as foundations for integer reasoning. Working from an abstract algebraic perspective and using an opposite-magnitudes context that is relevant to children, we analyzed the reasoning of 33 children in grades K-5. We focus our report on three prominent…

  19. A fast DFT algorithm using complex integer transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1978-01-01

    Winograd's algorithm for computing the discrete Fourier transform is extended considerably for certain large transform lengths. This is accomplished by performing the cyclic convolution, required by Winograd's method, by a fast transform over certain complex integer fields. This algorithm requires fewer multiplications than either the standard fast Fourier transform or Winograd's more conventional algorithms.

  20. INTEGER ELEVATION MODEL GRIDS FOR US EPA REGION 9

    EPA Science Inventory

    Integer Digital Elevation Models in GRID format for the mainland US administrative boundary of the US EPA Region 9 developed from the United States Geological Survey (USGS) National Elevation Dataset (NED). The administrative boundary is represented by the state boundaries of Ca...

  1. Using Set Model for Learning Addition of Integers

    ERIC Educational Resources Information Center

    Lestari, Umi Puji; Putri, Ratu Ilma Indra; Hartono, Yusuf

    2015-01-01

    This study aims to investigate how set model can help students' understanding of addition of integers in fourth grade. The study has been carried out to 23 students and a teacher of IVC SD Iba Palembang in January 2015. This study is a design research that also promotes PMRI as the underlying design context and activity. Results showed that the…

  2. Negative Integer Understanding: Characterizing First Graders' Mental Models

    ERIC Educational Resources Information Center

    Bofferding, Laura

    2014-01-01

    This article presents results of a research study. Sixty-one first graders' responses to interview questions about negative integer values and order and directed magnitudes were examined to characterize the students' mental models. The models reveal that initially, students overrelied on various combinations of whole-number principles as…

  3. Exploring the Sums of Powers of Consecutive q-Integers

    ERIC Educational Resources Information Center

    Kim, T.; Ryoo, C. S.; Jang, L. C.; Rim, S. H.

    2005-01-01

    The Bernoulli numbers are among the most interesting and important number sequences in mathematics. They first appeared in the posthumous work "Ars Conjectandi" (1713) by Jacob Bernoulli (1654-1705) in connection with sums of powers of consecutive integers (Bernoulli, 1713; or Smith, 1959). Bernoulli numbers are particularly important in number…

  4. Automorphisms of semigroups of invertible matrices with nonnegative integer elements

    SciTech Connect

    Semenov, Pavel P

    2012-09-30

    Let G{sub n}(Z) be the subsemigroup of GL{sub n}(Z) consisting of the matrices with nonnegative integer coefficients. In the paper, the automorphisms of this semigroup are described for n{>=}2. Bibliography: 5 titles.

  5. Triangular Numbers, Gaussian Integers, and KenKen

    ERIC Educational Resources Information Center

    Watkins, John J.

    2012-01-01

    Latin squares form the basis for the recreational puzzles sudoku and KenKen. In this article we show how useful several ideas from number theory are in solving a KenKen puzzle. For example, the simple notion of triangular number is surprisingly effective. We also introduce a variation of KenKen that uses the Gaussian integers in order to…

  6. Leveraging Structure: Logical Necessity in the Context of Integer Arithmetic

    ERIC Educational Resources Information Center

    Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.

    2016-01-01

    Looking for, recognizing, and using underlying mathematical structure is an important aspect of mathematical reasoning. We explore the use of mathematical structure in children's integer strategies by developing and exemplifying the construct of logical necessity. Students in our study used logical necessity to approach and use numbers in a…

  7. Dust to dust - How a human corpse decomposes

    SciTech Connect

    Vass, Arpad Alexander

    2010-01-01

    After death, the human body decomposes through four stages. The final, skeleton stage may be reached as quickly as two weeks or as slowly as two years, depending on temperature, humidity and other environmental conditions where the body lies. Dead bodies emit a surprising array of chemicals, from benzene to freon, which can help forensic scientists find clandestine graves.

  8. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    PubMed

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone. PMID:25078817

  9. Decomposing Curricular Objectives To Increase Specificity of Instruction.

    ERIC Educational Resources Information Center

    Marzano, Robert J.

    Advances in cognitive science have greatly increased our knowledge of how the human mind stores and uses information. That knowledge can be used to decompose curricular objectives so as to increase the specificity of instruction to a level of precision that should greatly enhance student writing. This article identifies some major types of…

  10. Efficient lossless coding model for medical images by applying integer-to-integer wavelet transform to segmented images

    NASA Astrophysics Data System (ADS)

    Yang, Shuyu; Zamora, Gilberto; Wilson, Mark; Mitra, Sunanda

    2000-06-01

    Existing lossless coding models yield only up to 3:1 compression. However, a much higher lossless compression can be achieved for certain medical images when the images are segmented prior to applying integer to integer wavelet transform and lossless coding. The methodology used in this research work is to apply a contour detection scheme to segment the image first. The segmented image is then wavelet transformed with integer to integer mapping to obtain a lower weighted entropy than the original. An adaptive arithmetic model is then applied to code the transformed image losslessly. For the male visible human color image set, the overall average lossless compression using the above scheme is around 10:1 whereas the compression ratio of an individual slice can be as high as 16:1. The achievable compression ratio depends on the actual bit rate of the segmented images attained by lossless coding as well as the compression obtainable from segmentation alone. The computational time required by the entire process is fast enough for application on large medical images.

  11. RSM 1.0 user's guide: A resupply scheduler using integer optimization

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.; Green, Robert D.; Reed, David M.

    1991-01-01

    The Resupply Scheduling Model (RSM) is a PC based, fully menu-driven computer program. It uses integer programming techniques to determine an optimum schedule to replace components on or before a fixed replacement period, subject to user defined constraints such as transportation mass and volume limits or available repair crew time. Principal input for RSJ includes properties such as mass and volume and an assembly sequence. Resource constraints are entered for each period corresponding to the component properties. Though written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user defined resource constraints. Presented here is a step by step procedure for preparing the input, performing the analysis, and interpreting the results. Instructions for installing the program and information on the algorithms are given.

  12. A Note on the Visibility in the [1, N ] x [1, N ] Integer Domain

    ERIC Educational Resources Information Center

    Kim, G. D.; Engelhardt, J.

    2007-01-01

    A k-dimensional integer point is called visible if the line segment joining the point and the origin contains no proper integer points. This note proposes an explicit formula that represents the number of visible points on the two-dimensional [1,N]x[1,N] integer domain. Simulations and theoretical work are presented. (Contains 5 figures and 2…

  13. Making Sense of Integer Arithmetic: The Effect of Using Virtual Manipulatives on Students' Representational Fluency

    ERIC Educational Resources Information Center

    Bolyard, Johnna; Moyer-Packenham, Patricia

    2012-01-01

    This study investigated how the use of virtual manipulatives in integer instruction impacts student achievement for integer addition and subtraction. Of particular interest was the influence of using virtual manipulatives on students' ability to create and translate among representations for integer computation. The research employed a…

  14. Integer-ambiguity resolution in astronomy and geodesy

    NASA Astrophysics Data System (ADS)

    Lannes, A.; Prieur, J.-L.

    2014-02-01

    Recent theoretical developments in astronomical aperture synthesis have revealed the existence of integer-ambiguity problems. Those problems, which appear in the self-calibration procedures of radio imaging, have been shown to be similar to the nearest-lattice point (NLP) problems encountered in high-precision geodetic positioning and in global navigation satellite systems. In this paper we analyse the theoretical aspects of the matter and propose new methods for solving those NLP~problems. The related optimization aspects concern both the preconditioning stage, and the discrete-search stage in which the integer ambiguities are finally fixed. Our algorithms, which are described in an explicit manner, can easily be implemented. They lead to substantial gains in the processing time of both stages. Their efficiency was shown via intensive numerical tests.

  15. Two-dimensional convolute integers for analytical instrumentation

    NASA Technical Reports Server (NTRS)

    Edwards, T. R.

    1982-01-01

    As new analytical instruments and techniques emerge with increased dimensionality, a corresponding need is seen for data processing logic which can appropriately address the data. Two-dimensional measurements reveal enhanced unknown mixture analysis capability as a result of the greater spectral information content over two one-dimensional methods taken separately. It is noted that two-dimensional convolute integers are merely an extension of the work by Savitzky and Golay (1964). It is shown that these low-pass, high-pass and band-pass digital filters are truly two-dimensional and that they can be applied in a manner identical with their one-dimensional counterpart, that is, a weighted nearest-neighbor, moving average with zero phase shifting, convoluted integer (universal number) weighting coefficients.

  16. A first digit theorem for powerful integer powers.

    PubMed

    Hürlimann, Werner

    2015-01-01

    For any fixed power exponent, it is shown that the first digits of powerful integer powers follow a generalized Benford law (GBL) with size-dependent exponent that converges asymptotically to a GBL with the inverse double power exponent. In particular, asymptotically as the power goes to infinity these sequences obey Benford's law. Moreover, the existence of a one-parametric size-dependent exponent function that converges to these GBL's is established, and an optimal value that minimizes its deviation to two minimum estimators of the size-dependent exponent is determined. The latter is undertaken over the finite range of powerful integer powers less than [Formula: see text], where [Formula: see text] is a fixed power exponent. PMID:26543711

  17. Two dimensional convolute integers for machine vision and image recognition

    NASA Technical Reports Server (NTRS)

    Edwards, Thomas R.

    1988-01-01

    Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.

  18. Electron interferometry in integer quantum Hall edge channels

    NASA Astrophysics Data System (ADS)

    Rech, J.; Wahl, C.; Jonckheere, T.; Martin, T.

    2016-05-01

    We consider the electronic analog of the Hong-Ou-Mandel interferometer from quantum optics. In this realistic condensed matter device, single electrons are injected and travel along opposite chiral edge states of the integer quantum Hall effect, colliding at a quantum point contact (QPC). We monitor the fate of the colliding excitations by calculating zero-frequency current correlations at the output of the QPC. In the simpler case of filling factor $\

  19. Contrasting energy scales of reentrant integer quantum Hall states

    NASA Astrophysics Data System (ADS)

    Deng, Nianpei; Watson, J. D.; Rokhinson, L. P.; Manfra, M. J.; Csáthy, G. A.

    2012-11-01

    We report drastically different onset temperatures of the reentrant integer quantum Hall states in the second and third Landau level. This finding is in quantitative disagreement with the Hartree-Fock theory of the bubble phases which is thought to describe these reentrant states. Our results indicate that the number of electrons per bubble in either the second or the third Landau level is likely different than predicted.

  20. Optimal source codes for geometrically distributed integer alphabets

    NASA Technical Reports Server (NTRS)

    Gallager, R. G.; Van Voorhis, D. C.

    1975-01-01

    An approach is shown for using the Huffman algorithm indirectly to prove the optimality of a code for an infinite alphabet if an estimate concerning the nature of the code can be made. Attention is given to nonnegative integers with a geometric probability assignment. The particular distribution considered arises in run-length coding and in encoding protocol information in data networks. Questions of redundancy of the optimal code are also investigated.

  1. DEcomposed Software Pipelining: A new perspective and a new approach

    SciTech Connect

    Wang, J.; Eisenbeis, C.; Jourdan, M.; Su, B. )

    1994-06-01

    Software pipelining is an efficient instruction-level loop scheduling technique, but existing software pipelining approaches have not been widely used in practical and commercial compilers. This is mainly because resource constraints and the cyclic data dependencies make software pipelining very complicated and difficult to apply. In this paper we present a new perspective on software pipelining in which it is decomposed into two subproblems - one is free from cyclic data dependencies and can be effectively solved by the list scheduling technique, and the other is free from resource constraints and can be easily solved by classical polynomial-time algorithms of graph theory. Based on this new perspective, we develop a new instruction-level loop scheduling approach, called DEcomposed Software Pipelining (DESP).

  2. Domain decomposed preconditioners with Krylov subspace methods as subdomain solvers

    SciTech Connect

    Pernice, M.

    1994-12-31

    Domain decomposed preconditioners for nonsymmetric partial differential equations typically require the solution of problems on the subdomains. Most implementations employ exact solvers to obtain these solutions. Consequently work and storage requirements for the subdomain problems grow rapidly with the size of the subdomain problems. Subdomain solves constitute the single largest computational cost of a domain decomposed preconditioner, and improving the efficiency of this phase of the computation will have a significant impact on the performance of the overall method. The small local memory available on the nodes of most message-passing multicomputers motivates consideration of the use of an iterative method for solving subdomain problems. For large-scale systems of equations that are derived from three-dimensional problems, memory considerations alone may dictate the need for using iterative methods for the subdomain problems. In addition to reduced storage requirements, use of an iterative solver on the subdomains allows flexibility in specifying the accuracy of the subdomain solutions. Substantial savings in solution time is possible if the quality of the domain decomposed preconditioner is not degraded too much by relaxing the accuracy of the subdomain solutions. While some work in this direction has been conducted for symmetric problems, similar studies for nonsymmetric problems appear not to have been pursued. This work represents a first step in this direction, and explores the effectiveness of performing subdomain solves using several transpose-free Krylov subspace methods, GMRES, transpose-free QMR, CGS, and a smoothed version of CGS. Depending on the difficulty of the subdomain problem and the convergence tolerance used, a reduction in solution time is possible in addition to the reduced memory requirements. The domain decomposed preconditioner is a Schur complement method in which the interface operators are approximated using interface probing.

  3. Population transfer HMQC for half-integer quadrupolar nuclei

    SciTech Connect

    Wang, Qiang; Xu, Jun; Feng, Ningdong; Deng, Feng E-mail: jean-paul.amoureux@univ-lille1.fr; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul E-mail: jean-paul.amoureux@univ-lille1.fr

    2015-03-07

    This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., {sup 27}Al-{sup 17}O). In this case, the build-up is strongly affected by relaxation for small T{sub 2}′ and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO{sub 4}-14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the {sup 31}P-({sup 27}Al) experiments.

  4. Population transfer HMQC for half-integer quadrupolar nuclei.

    PubMed

    Wang, Qiang; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Xu, Jun; Hu, Bingwen; Feng, Ningdong; Chen, Qun; Amoureux, Jean-Paul; Deng, Feng

    2015-03-01

    This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., (27)Al-(17)O). In this case, the build-up is strongly affected by relaxation for small T2' and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO4-14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the (31)P-{(27)Al} experiments. PMID:25747074

  5. Fast integer least squares estimation methods: applications-oriented review and improvement

    NASA Astrophysics Data System (ADS)

    Xu, Peiliang

    2013-04-01

    The integer least squares (ILS) problem, also known as the weighted closest point problem, is highly interdisciplinary, but no algorithms can find its global optimal integer solution in polynomial time. In this talk, we will review fast algorithms for estimation of integer parameters. First, we will outline two suboptimal integer solutions, which can be important either in real time communication systems or to solve high dimensional GPS integer ambiguity unknowns. We then focus on the most efficient algorithms to search for the exact integer solution, which is shown to be much faster than LAMBDA in the sense that the ratio of integer candidates to be checked by efficient algorithms to those by LAMBDA can be theoretically expressed by rm, where r < 1 and m is the number of integer unknowns. Finally, we further improve the searching efficiency of the most powerful combined algorithms by implementing two sorting strategies, which can either be used for finding the exact integer solution or for constructing a suboptimal integer solution. A test example clearly demonstrates that the improved methods can perform significantly better than the most powerful combined algorithm to simultaneously find the optimal and second optimal integer solutions. More mathematical and algorithmic details of this talk can be found in Xu (2001, J Geod, 75, 408-423); Xu (2006, IEEE Trans Information Theory, 52, 3122-3138); Xu (2012, J Geod, 86, 35-52) and Xu et al. (2012, Survey Review, 44, 59-71).

  6. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    NASA Astrophysics Data System (ADS)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  7. Interface preconditionings for domain-decomposed convection-diffusion operators

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Keyes, David E.

    1990-01-01

    The performance of five different interface preconditionings for domain-decomposed convection-diffusion problems, including a novel one known as the spectral probe is tested in a three-dimensional parameter space consisting of mesh parameters, Reynolds number, and domain aspect ratio. The preconditioners are representative of the range of practically computable possibilities that have appeared in the literature for the treatment of nonoverlapping subdomains. Numerical examples show that no single preconditioner can be considered uniformly superior or uniformly inferior to the rest, but that knowledge of the particulars of the shape and strength of the convection is important in selecting among them in a given problem.

  8. Bosonic Integer Quantum Hall Effect in an Interacting Lattice Model

    NASA Astrophysics Data System (ADS)

    He, Yin-Chen; Bhattacharjee, Subhro; Moessner, R.; Pollmann, Frank

    2015-09-01

    We study a bosonic model with correlated hopping on a honeycomb lattice, and show that its ground state is a bosonic integer quantum Hall (BIQH) phase, a prominent example of a symmetry-protected topological (SPT) phase. By using the infinite density matrix renormalization group method, we establish the existence of the BIQH phase by providing clear numerical evidence: (i) a quantized Hall conductance with |σx y|=2 , (ii) two counterpropagating gapless edge modes. Our simple model is an example of a novel class of systems that can stabilize SPT phases protected by a continuous symmetry on lattices and opens up new possibilities for the experimental realization of these exotic phases.

  9. Transcranial Magnetic Stimulation: Decomposing the Processes Underlying Action Preparation.

    PubMed

    Bestmann, Sven; Duque, Julie

    2016-08-01

    Preparing actions requires the operation of several cognitive control processes that influence the state of the motor system to ensure that the appropriate behavior is ultimately selected and executed. For example, some form of competition resolution ensures that the right action is chosen among alternatives, often in the presence of conflict; at the same time, impulse control ought to be deployed to prevent premature responses. Here we review how state-changes in the human motor system during action preparation can be studied through motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the contralateral primary motor cortex (M1). We discuss how the physiological fingerprints afforded by MEPs have helped to decompose some of the dynamic and effector-specific influences on the motor system during action preparation. We focus on competition resolution, conflict and impulse control, as well as on the influence of higher cognitive decision-related variables. The selected examples demonstrate the usefulness of MEPs as physiological readouts for decomposing the influence of distinct, but often overlapping, control processes on the human motor system during action preparation. PMID:26163320

  10. VARIANCE ESTIMATION IN DOMAIN DECOMPOSED MONTE CARLO EIGENVALUE CALCULATIONS

    SciTech Connect

    Mervin, Brenden T; Maldonado, G. Ivan; Mosher, Scott W; Evans, Thomas M; Wagner, John C

    2012-01-01

    The number of tallies performed in a given Monte Carlo calculation is limited in most modern Monte Carlo codes by the amount of memory that can be allocated on a single processor. By using domain decomposition, the calculation is now limited by the total amount of memory available on all processors, allowing for significantly more tallies to be performed. However, decomposing the problem geometry introduces significant issues with the way tally statistics are conventionally calculated. In order to deal with the issue of calculating tally variances in domain decomposed environments for the Shift hybrid Monte Carlo code, this paper presents an alternative approach for reactor scenarios in which an assumption is made that once a particle leaves a domain, it does not reenter the domain. Particles that reenter the domain are instead treated as separate independent histories. This assumption introduces a bias that inevitably leads to under-prediction of the calculated variances for tallies within a few mean free paths of the domain boundaries. However, through the use of different decomposition strategies, primarily overlapping domains, the negative effects of such an assumption can be significantly reduced to within reasonable levels.

  11. Incorporation of Fixed Installation Costs into Optimization of Groundwater Remediation with a New Efficient Surrogate Nonlinear Mixed Integer Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Shoemaker, Christine; Wan, Ying

    2016-04-01

    Optimization of nonlinear water resources management issues which have a mixture of fixed (e.g. construction cost for a well) and variable (e.g. cost per gallon of water pumped) costs has been not well addressed because prior algorithms for the resulting nonlinear mixed integer problems have required many groundwater simulations (with different configurations of decision variable), especially when the solution space is multimodal. In particular heuristic methods like genetic algorithms have often been used in the water resources area, but they require so many groundwater simulations that only small systems have been solved. Hence there is a need to have a method that reduces the number of expensive groundwater simulations. A recently published algorithm for nonlinear mixed integer programming using surrogates was shown in this study to greatly reduce the computational effort for obtaining accurate answers to problems involving fixed costs for well construction as well as variable costs for pumping because of a substantial reduction in the number of groundwater simulations required to obtain an accurate answer. Results are presented for a US EPA hazardous waste site. The nonlinear mixed integer surrogate algorithm is general and can be used on other problems arising in hydrology with open source codes in Matlab and python ("pySOT" in Bitbucket).

  12. Generalized integer aperture estimation for partial GNSS ambiguity fixing

    NASA Astrophysics Data System (ADS)

    Brack, Andreas; Günther, Christoph

    2014-05-01

    In satellite navigation, the key to high precision is to make use of the carrier-phase measurements. The periodicity of the carrier-phase, however, leads to integer ambiguities. Often, resolving the full set of ambiguities cannot be accomplished for a given reliability constraint. In that case, it can be useful to resolve a subset of ambiguities. The selection of the subset should be based not only on the stochastic system model but also on the actual measurements from the tracking loops. This paper presents a solution to the problem of joint subset selection and ambiguity resolution. The proposed method can be interpreted as a generalized version of the class of integer aperture estimators. Two specific realizations of this new class of estimators are presented, based on different acceptance tests. Their computation requires only a single tree search, and can be efficiently implemented, e.g., in the framework of the well-known LAMBDA method. Numerical simulations with double difference measurements based on Galileo E1 signals are used to evaluate the performance of the introduced estimation schemes under a given reliability constraint. The results show a clear gain of partial fixing in terms of the probability of correct ambiguity resolution, leading to improved baseline estimates.

  13. A Secret Image Sharing Method Using Integer Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Huang, Chin-Pan; Li, Ching-Chung

    2007-12-01

    A new image sharing method, based on the reversible integer-to-integer (ITI) wavelet transform and Shamir's [InlineEquation not available: see fulltext.] threshold scheme is presented, that provides highly compact shadows for real-time progressive transmission. This method, working in the wavelet domain, processes the transform coefficients in each subband, divides each of the resulting combination coefficients into [InlineEquation not available: see fulltext.] shadows, and allows recovery of the complete secret image by using any [InlineEquation not available: see fulltext.] or more shadows [InlineEquation not available: see fulltext.]. We take advantages of properties of the wavelet transform multiresolution representation, such as coefficient magnitude decay and excellent energy compaction, to design combination procedures for the transform coefficients and processing sequences in wavelet subbands such that small shadows for real-time progressive transmission are obtained. Experimental results demonstrate that the proposed method yields small shadow images and has the capabilities of real-time progressive transmission and perfect reconstruction of secret images.

  14. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia.

    PubMed

    Tláskal, Vojtěch; Voříšková, Jana; Baldrian, Petr

    2016-11-01

    The decomposition of dead plant biomass contributes to the carbon cycle and is one of the key processes in temperate forests. While fungi in litter decomposition drive the chemical changes occurring in litter, the bacterial community appears to be important as well, especially later in the decomposition process when its abundance increases. In this paper, we describe the bacterial community composition in live Quercus petraea leaves and during the subsequent two years of litter decomposition. Members of the classes Alpha-, Beta- and Gammaproteobacteria and the phyla Actinobacteria, Bacteroidetes and Acidobacteria were dominant throughout the experiment. Bacteria present in the oak phyllosphere were rapidly replaced by other taxa after leaf senescence. There were dynamic successive changes in community composition, in which the early-stage (months 2-4), mid-stage (months 6-8) and late-stage (months 10-24) decomposer communities could be distinguished, and the diversity increased with time. Bacteria associated with dead fungal mycelium were important during initial decomposition, with sequence relative abundances of up to 40% of the total bacterial community in months 2 and 4 when the highest fungal biomass was observed. Cellulose-decomposing bacteria were less frequent, with abundance ranging from 4% to 15%. The bacterial community dynamics reflects changes in the availability of possible resources either of the plant or microbial origin. PMID:27543318

  15. Menu-Driven Solver Of Linear-Programming Problems

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.; Ferencz, D.

    1992-01-01

    Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).

  16. Mining functional modules in genetic networks with decomposable graphical models.

    PubMed

    Dejori, Mathäus; Schwaighofer, Anton; Tresp, Volker; Stetter, Martin

    2004-01-01

    In recent years, graphical models have become an increasingly important tool for the structural analysis of genome-wide expression profiles at the systems level. Here we present a new graphical modelling technique, which is based on decomposable graphical models, and apply it to a set of gene expression profiles from acute lymphoblastic leukemia (ALL). The new method explains probabilistic dependencies of expression levels in terms of the concerted action of underlying genetic functional modules, which are represented as so-called "cliques" in the graph. In addition, the method uses continuous-valued (instead of discretized) expression levels, and makes no particular assumption about their probability distribution. We show that the method successfully groups members of known functional modules to cliques. Our method allows the evaluation of the importance of genes for global cellular functions based on both link count and the clique membership count. PMID:15268775

  17. Decomposing the Unsteady Flow Routing in River Systems

    NASA Astrophysics Data System (ADS)

    Gomez Cunya, L. A.; Leon, A.; Gibson, N. L.; Vasylkivska, V.

    2014-12-01

    This work presents an optimization-based domain decomposition strategy for unsteady flow routing in complex river systems. This strategy couples the domain decomposition technique with a Precomputed Channel Hydraulics Ensemble approach, known also as HydraulicPerformance Graph (HPG), which utilizes precomputed solutions along reaches on a river system. These solutions are stored in a database. While efficient and robust, HPGs requires extensive memory allocation, especially for high resolution simulations. Decomposing the river system into subdomains reduces computer memory constraints as each sub-domain is solved independently. Further, an optimization method is used to couple the sub-domains using the stored precomputed solution. In turn, the computational efficiency of the HPG approach allows the optimization-based scheme to be competitive with a whole domain methodology. The combined strategy is expected to reduce the overall computational time for large-scale problems. This work discusses the results of the application to the Columbia River (Northwest USA).

  18. Fungal community on decomposing leaf litter undergoes rapid successional changes.

    PubMed

    Voříšková, Jana; Baldrian, Petr

    2013-03-01

    Fungi are considered the primary decomposers of dead plant biomass in terrestrial ecosystems. However, current knowledge regarding the successive changes in fungal communities during litter decomposition is limited. Here we explored the development of the fungal community over 24 months of litter decomposition in a temperate forest with dominant Quercus petraea using 454-pyrosequencing of the fungal internal transcribed spacer (ITS) region and cellobiohydrolase I (cbhI) genes, which encode exocellulases, to specifically address cellulose decomposers. To quantify the involvement of phyllosphere fungi in litter decomposition, the fungal communities in live leaves and leaves immediately before abscission were also analysed. The results showed rapid succession of fungi with dramatic changes in the composition of the fungal community. Furthermore, most of the abundant taxa only temporarily dominated in the substrate. Fungal diversity was lowest at leaf senescence, increased until month 4 and did not significantly change during subsequent decomposition. Highly diverse community of phyllosphere fungi inhabits live oak leaves 2 months before abscission, and these phyllosphere taxa comprise a significant share of the fungal community during early decomposition up to the fourth month. Sequences assigned to the Ascomycota showed highest relative abundances in live leaves and during the early stages of decomposition. In contrast, the relative abundance of sequences assigned to the Basidiomycota phylum, particularly basidiomycetous yeasts, increased with time. Although cellulose was available in the litter during all stages of decomposition, the community of cellulolytic fungi changed substantially over time. The results indicate that litter decomposition is a highly complex process mediated by various fungal taxa. PMID:23051693

  19. Fungal community on decomposing leaf litter undergoes rapid successional changes

    PubMed Central

    Voříšková, Jana; Baldrian, Petr

    2013-01-01

    Fungi are considered the primary decomposers of dead plant biomass in terrestrial ecosystems. However, current knowledge regarding the successive changes in fungal communities during litter decomposition is limited. Here we explored the development of the fungal community over 24 months of litter decomposition in a temperate forest with dominant Quercus petraea using 454-pyrosequencing of the fungal internal transcribed spacer (ITS) region and cellobiohydrolase I (cbhI) genes, which encode exocellulases, to specifically address cellulose decomposers. To quantify the involvement of phyllosphere fungi in litter decomposition, the fungal communities in live leaves and leaves immediately before abscission were also analysed. The results showed rapid succession of fungi with dramatic changes in the composition of the fungal community. Furthermore, most of the abundant taxa only temporarily dominated in the substrate. Fungal diversity was lowest at leaf senescence, increased until month 4 and did not significantly change during subsequent decomposition. Highly diverse community of phyllosphere fungi inhabits live oak leaves 2 months before abscission, and these phyllosphere taxa comprise a significant share of the fungal community during early decomposition up to the fourth month. Sequences assigned to the Ascomycota showed highest relative abundances in live leaves and during the early stages of decomposition. In contrast, the relative abundance of sequences assigned to the Basidiomycota phylum, particularly basidiomycetous yeasts, increased with time. Although cellulose was available in the litter during all stages of decomposition, the community of cellulolytic fungi changed substantially over time. The results indicate that litter decomposition is a highly complex process mediated by various fungal taxa. PMID:23051693

  20. Integer aperture bootstrapping: a new GNSS ambiguity estimator with controllable fail-rate

    NASA Astrophysics Data System (ADS)

    Teunissen, P. J. G.

    2005-08-01

    In this contribution, we introduce a new bootstrap-based method for Global Navigation Satellite System (GNSS) carrier-phase ambiguity resolution. Integer bootstrapping is known to be one of the simplest methods for integer ambiguity estimation with close-to-optimal performance. Its outcome is easy to compute due to the absence of an integer search, and its performance is close to optimal if the decorrelating Z-transformation of the LAMBDA method is used. Moreover, the bootstrapped estimator is presently the only integer estimator for which an exact and easy-to-compute expression of its fail-rate can be given. A possible disadvantage is, however, that the user has only a limited control over the fail-rate. Once the underlying mathematical model is given, the user has no freedom left in changing the value of the fail-rate. Here, we present an ambiguity estimator for which the user is given additional freedom. For this purpose, use is made of the class of integer aperture estimators as introduced in Teunissen (2003). This class is larger than the class of integer estimators. Integer aperture estimators are of a hybrid nature and can have integer outcomes as well as non-integer outcomes. The new estimator is referred to as integer aperture bootstrapping. This new estimator has all the advantages known from integer bootstrapping with the additional advantage that its fail-rate can be controlled by the user. This is made possible by giving the user the freedom over the aperture of the pull-in region. We also give an exact and easy-to-compute expression for its controllable fail-rate.

  1. Integer-Valued Characters for Some Sporadic Groups

    NASA Astrophysics Data System (ADS)

    Gilani, Alireza; Moghani, Ali

    2010-11-01

    Using the concept of markaracter tables proposed by a Chemist S. Fujita who applied his results in this area of research to enumerate isomers of molecules, we are able to discuss characters and marks concerning a group of a finite order on a common basis. He also introduced tables of integer-valued characters that are obtained for finite groups. According to the main result of W. Feit and G. M. Seitz (see, Illinois J. Math. 33 (1), 103-131, 1988), the sporadic Mathieu groups M11, M12 and Higman-Sims (HS) group are unmatured. In this paper, at first all the dominant classes and Q- conjugacy characters for the above groups are derived.

  2. Integer Representation of Decimal Numbers for Exact Computations.

    PubMed

    Bernal, Javier; Witzgall, Christoph

    2006-01-01

    A scheme is presented and software is documented for representing as integers input decimal numbers that have been stored in a computer as double precision floating point numbers and for carrying out multiplications, additions and subtractions based on these numbers in an exact manner. The input decimal numbers must not have more than nine digits to the left of the decimal point. The decimal fractions of their floating point representations are all first rounded off at a prespecified location, a location no more than nine digits away from the decimal point. The number of digits to the left of the decimal point for each input number besides not being allowed to exceed nine must then be such that the total number of digits from the leftmost digit of the number to the location where round-off is to occur does not exceed fourteen. PMID:27274918

  3. Pure scaling operators at the integer quantum Hall plateau transition.

    PubMed

    Bondesan, R; Wieczorek, D; Zirnbauer, M R

    2014-05-01

    Stationary wave functions at the transition between plateaus of the integer quantum Hall effect are known to exhibit multifractal statistics. Here we explore this critical behavior for the case of scattering states of the Chalker-Coddington network model with point contacts. We argue that moments formed from the wave amplitudes of critical scattering states decay as pure powers of the distance between the points of contact and observation. These moments in the continuum limit are proposed to be correlation functions of primary fields of an underlying conformal field theory. We check this proposal numerically by finite-size scaling. We also verify the conformal field theory prediction for a three-point function involving two primary fields. PMID:24856714

  4. Insulating States in the Integer Quantum Hall Regime

    NASA Astrophysics Data System (ADS)

    Knighton, Talbot; Serafin, Alessandro; Wu, Zhe; Tarquini, Vinicio; Xia, J. F.; Sullivan, Neil; Pfeiffer, Loren; West, Ken; Huang, Jian

    Quantum Hall measurements are performed at temperatures 20-300 mK in high quality p-type GaAs quantum well systems having mobility μ = 4 ×106 cm2/V .s for density 5 ×1010 cm-2. We report a series of insulating phases appearing at or near integer filling factors ν >= 1 . The DC resistance demonstrates a maximum of 25M Ω, much larger than the quantum resistance h /e2 , with threshold transport behavior at low currents around 10 pA at low temperatures. The threshold diminishes upon heating up to 200 mK, consistent with a finite temperature melting of bubble phases or Wigner crystal. Additionally, these peaks have a complex electrical impedance for AC signals, with large phase shifts down to 1Hz. In this regime, the ac impedance of the two chiral edges show distinct correlated characteristics. NSF DMR-1410302.

  5. Parallel integer sorting with medium and fine-scale parallelism

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1993-01-01

    Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.

  6. Analytical estimation of the correlation dimension of integer lattices

    SciTech Connect

    Lacasa, Lucas; Gómez-Gardeñes, Jesús

    2014-12-01

    Recently [L. Lacasa and J. Gómez-Gardeñes, Phys. Rev. Lett. 110, 168703 (2013)], a fractal dimension has been proposed to characterize the geometric structure of networks. This measure is an extension to graphs of the so called correlation dimension, originally proposed by Grassberger and Procaccia to describe the geometry of strange attractors in dissipative chaotic systems. The calculation of the correlation dimension of a graph is based on the local information retrieved from a random walker navigating the network. In this contribution, we study such quantity for some limiting synthetic spatial networks and obtain analytical results on agreement with the previously reported numerics. In particular, we show that up to first order, the correlation dimension β of integer lattices ℤ{sup d} coincides with the Haussdorf dimension of their coarsely equivalent Euclidean spaces, β = d.

  7. Integer-spin electron paramagnetic resonance of iron proteins.

    PubMed Central

    Hendrich, M P; Debrunner, P G

    1989-01-01

    A quantitative interpretation is presented for EPR spectra from integer-spin metal centers having large zero-field splittings. Integer-spin, or non-Kramers, centers are common in metalloproteins and many give EPR signals, but a quantitative understanding has been lacking until now. Heterogeneity of the metal's local environment will result in a significant spread in zero-field splittings and in broadened EPR signals. Using the spin Hamiltonian Hs = S.D.S + beta S.g.B and some simple assumptions about the nature of the zero-field parameter distributions, a lineshape model was devised which allows accurate simulation of single crystal and frozen solution spectra. The model was tested on single crystals of magnetically dilute ferrous fluosilicate. Data and analyses from proteins and active-site models are presented with the microwave field B1 either parallel or perpendicular to B. Quantitative agreement of observed and predicted signal intensities is found for the two B1 orientations. Methods of spin quantitation are given and are shown to predict an unknown concentration relative to a standard with known concentration. The fact that the standard may be either a non-Kramers or a Kramers center is further proof of the model's validity. The magnitude of the splitting in zero magnetic field is of critical importance; it affects not only the chance of signal observation, but also the quantitation accuracy. Experiments taken at microwave frequencies of 9 and 35 GHz demonstrate the need for high-frequency data as only a fraction of the molecules give signals at 9 GHz. PMID:2551404

  8. Hyper-Sums of Powers of Integers and the Akiyama-Tanigawa Matrix

    NASA Astrophysics Data System (ADS)

    Inaba, Yoshinari

    2005-05-01

    In this short essay, we consider hyper-sums of powers of integers, namely sums of power sums. We can obtain easily their formulae as polynomials by using formulae for ordinary sums of powers of integers. The coefficient of the first-degree term in each polynomial coincides with the matrix element of the Akiyama-Tanigawa matrix.

  9. Integral-valued polynomials over sets of algebraic integers of bounded degree☆

    PubMed Central

    Peruginelli, Giulio

    2014-01-01

    Let K be a number field of degree n with ring of integers OK. By means of a criterion of Gilmer for polynomially dense subsets of the ring of integers of a number field, we show that, if h∈K[X] maps every element of OK of degree n to an algebraic integer, then h(X) is integral-valued over OK, that is, h(OK)⊂OK. A similar property holds if we consider the set of all algebraic integers of degree n and a polynomial f∈Q[X]: if f(α) is integral over Z for every algebraic integer α of degree n, then f(β) is integral over Z for every algebraic integer β of degree smaller than n. This second result is established by proving that the integral closure of the ring of polynomials in Q[X] which are integer-valued over the set of matrices Mn(Z) is equal to the ring of integral-valued polynomials over the set of algebraic integers of degree equal to n. PMID:26949270

  10. Toxic effects of decomposing red algae on littoral organisms

    NASA Astrophysics Data System (ADS)

    Eklund, Britta; Svensson, Andreas P.; Jonsson, Conny; Malm, Torleif

    2005-03-01

    Large masses of filamentous red algae of the genera Polysiphonia, Rhodomela, and Ceramium are regularly washed up on beaches of the central Baltic Sea. As the algal masses start to decay, red coloured effluents leak into the water, and this tinge may be traced several hundred meters off shore. In this study, possible toxic effects of these effluents were tested on littoral organisms from different trophic levels. Effects on fertilisation, germination and juvenile survival of the brown seaweed Fucus vesiculosus were investigated, and mortality tests were performed on the crustaceans Artemia salina and Idotea baltica, as well as on larvae and adults of the fish Pomatoschistus microps. Fucus vesiculosus was the most sensitive species of the tested organisms to the red algal extract. The survival of F. vesiculosus recruits was reduced with 50% (LC50) when exposed to a concentration corresponding to 1.7 g l -1 dw red algae. The lethal concentration for I. baltica, A. salina and P. microps were approximately ten times higher. The toxicity to A. salina was reduced if the algal extract was left to decompose during two weeks but the decline in toxicity was not affected by different light or temperature conditions. This study indicates that the filamentous red algae in the central Baltic Sea may produce and release compounds with negative effects on the littoral ecosystem. The effects may be particularly serious for the key species F. vesiculosus, which reproduce in autumn when filamentous red algal blooms are most severe.