Science.gov

Sample records for decrease cellulose crystallinity

  1. Reactive Liftoff of Crystalline Cellulose Particles

    PubMed Central

    Teixeira, Andrew R.; Krumm, Christoph; Vinter, Katherine P.; Paulsen, Alex D.; Zhu, Cheng; Maduskar, Saurabh; Joseph, Kristeen E.; Greco, Katharine; Stelatto, Michael; Davis, Eric; Vincent, Brendon; Hermann, Richard; Suszynski, Wieslaw; Schmidt, Lanny D.; Fan, Wei; Rothstein, Jonathan P.; Dauenhauer, Paul J.

    2015-01-01

    The condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500–600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C). Introduction of macroporosity to the heated surface was shown to completely inhibit the cellulose Leidenfrost effect, providing a tunable design parameter to control particle heat transfer rates in industrial biomass reactors. PMID:26057818

  2. Reactive Liftoff of Crystalline Cellulose Particles

    NASA Astrophysics Data System (ADS)

    Teixeira, Andrew R.; Krumm, Christoph; Vinter, Katherine P.; Paulsen, Alex D.; Zhu, Cheng; Maduskar, Saurabh; Joseph, Kristeen E.; Greco, Katharine; Stelatto, Michael; Davis, Eric; Vincent, Brendon; Hermann, Richard; Suszynski, Wieslaw; Schmidt, Lanny D.; Fan, Wei; Rothstein, Jonathan P.; Dauenhauer, Paul J.

    2015-06-01

    The condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500-600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C). Introduction of macroporosity to the heated surface was shown to completely inhibit the cellulose Leidenfrost effect, providing a tunable design parameter to control particle heat transfer rates in industrial biomass reactors.

  3. Reactive Liftoff of Crystalline Cellulose Particles.

    PubMed

    Teixeira, Andrew R; Krumm, Christoph; Vinter, Katherine P; Paulsen, Alex D; Zhu, Cheng; Maduskar, Saurabh; Joseph, Kristeen E; Greco, Katharine; Stelatto, Michael; Davis, Eric; Vincent, Brendon; Hermann, Richard; Suszynski, Wieslaw; Schmidt, Lanny D; Fan, Wei; Rothstein, Jonathan P; Dauenhauer, Paul J

    2015-01-01

    The condition of heat transfer to lignocellulosic biomass particles during thermal processing at high temperature (>400 °C) dramatically alters the yield and quality of renewable energy and fuels. In this work, crystalline cellulose particles were discovered to lift off heated surfaces by high speed photography similar to the Leidenfrost effect in hot, volatile liquids. Order of magnitude variation in heat transfer rates and cellulose particle lifetimes was observed as intermediate liquid cellulose droplets transitioned from low temperature wetting (500-600 °C) to fully de-wetted, skittering droplets on polished surfaces (>700 °C). Introduction of macroporosity to the heated surface was shown to completely inhibit the cellulose Leidenfrost effect, providing a tunable design parameter to control particle heat transfer rates in industrial biomass reactors. PMID:26057818

  4. A single molecule study of cellulase hydrolysis of crystalline cellulose

    NASA Astrophysics Data System (ADS)

    Liu, Yu-San; Luo, Yonghua; Baker, John O.; Zeng, Yining; Himmel, Michael E.; Smith, Steve; Ding, Shi-You

    2010-02-01

    Cellobiohydrolase-I (CBH I), a processive exoglucanase secreted by Trichoderma reesei, is one of the key enzyme components in a commercial cellulase mixture currently used for processing biomass to biofuels. CBH I contains a family 7 glycoside hydrolase catalytic module, a family 1 carbohydrate-binding module (CBM), and a highlyglycosylated linker peptide. It has been proposed that the CBH I cellulase initiates the hydrolysis from the reducing end of one cellulose chain and successively cleaves alternate β-1,4-glycosidic bonds to release cellobiose as its principal end product. The role each module of CBH I plays in the processive hydrolysis of crystalline cellulose has yet to be convincingly elucidated. In this report, we use a single-molecule approach that combines optical (Total Internal Reflection Fluorescence microscopy, or TIRF-M) and non-optical (Atomic Force Microscopy, or AFM) imaging techniques to analyze the molecular motion of CBM tagged with green fluorescence protein (GFP), and to investigate the surface structure of crystalline cellulose and changes made in the structure by CBM and CBH I. The preliminary results have revealed a confined nanometer-scale movement of the TrCBM1-GFP bound to cellulose, and decreases in cellulose crystal size as well as increases in surface roughness during CBH I hydrolysis of crystalline cellulose.

  5. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    SciTech Connect

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  6. Cellulose polymorphy, crystallite size, and the Segal crystallinity index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The X-ray diffraction-based Segal Crystallinity Index (CI) was calculated for simulated different sizes of crystallites for cellulose I' and II. The Mercury software was used, and different crystallite sizes were based on different input peak widths at half of the maximum peak intensity (pwhm). The ...

  7. Isolation and Characterization of Two Cellulose Morphology Mutants of Gluconacetobacter hansenii ATCC23769 Producing Cellulose with Lower Crystallinity

    PubMed Central

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  8. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity.

    PubMed

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M; Tien, Ming; Kao, Teh-hui

    2015-01-01

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the

  9. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity

    DOE PAGESBeta

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh -hui; Lai, Hsin -Chih

    2015-03-19

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To addressmore » this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan

  10. Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study

    SciTech Connect

    Zhao, Haibo; Kwak, Ja Hun; Wang, Yong; Franz, James A.; White, John M.; Holladay, Johnathan E.

    2005-12-23

    The dilute acid (0.05 M H2SO4) hydrolysis at 175°C of samples comprising varying fractions of crystalline (α-form) and amorphous cellulose was studied. The amorphous content, based on XRD and NMR, and then the product (glucose) yield, based on HPLC, increased by as much as a factor of three upon ball milling. These results are interpreted in terms of a model involving mechanical disruption of crystallinity by breaking hydrogen bonds in α-cellulose, opening up the structure and making more β-1,4 glycosidic bonds readily accessible to the dilute acid. In parallel with hydrolysis to form liquid phase products, there are reactions of amorphous cellulose that form solid degradation products.

  11. Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility

    PubMed Central

    2011-01-01

    Background In converting biomass to bioethanol, pretreatment is a key step intended to render cellulose more amenable and accessible to cellulase enzymes and thus increase glucose yields. In this study, four cellulose samples with different degrees of polymerization and crystallinity indexes were subjected to aqueous sodium hydroxide and anhydrous liquid ammonia treatments. The effects of the treatments on cellulose crystalline structure were studied, in addition to the effects on the digestibility of the celluloses by a cellulase complex. Results From X-ray diffractograms and nuclear magnetic resonance spectra, it was revealed that treatment with liquid ammonia produced the cellulose IIII allomorph; however, crystallinity depended on treatment conditions. Treatment at a low temperature (25°C) resulted in a less crystalline product, whereas treatment at elevated temperatures (130°C or 140°C) gave a more crystalline product. Treatment of cellulose I with aqueous sodium hydroxide (16.5 percent by weight) resulted in formation of cellulose II, but also produced a much less crystalline cellulose. The relative digestibilities of the different cellulose allomorphs were tested by exposing the treated and untreated cellulose samples to a commercial enzyme mixture (Genencor-Danisco; GC 220). The digestibility results showed that the starting cellulose I samples were the least digestible (except for corn stover cellulose, which had a high amorphous content). Treatment with sodium hydroxide produced the most digestible cellulose, followed by treatment with liquid ammonia at a low temperature. Factor analysis indicated that initial rates of digestion (up to 24 hours) were most strongly correlated with amorphous content. Correlation of allomorph type with digestibility was weak, but was strongest with cellulose conversion at later times. The cellulose IIII samples produced at higher temperatures had comparable crystallinities to the initial cellulose I samples, but achieved

  12. New application of crystalline cellulose in rubber composites

    NASA Astrophysics Data System (ADS)

    Bai, Wen

    Rubber without reinforcement has limited applications. The strength of reinforced rubber composites can be ten times stronger than that of unreinforced rubbers. Therefore, rubber composites are widely used in various applications ranging from automobile tires to seals, valves, and gaskets because of their excellent mechanical elastic properties. Silica and carbon black are the two most commonly used reinforcing materials in rubber tires. They are derived from non-renewable materials and are expensive. Silica also contributes to a large amount of ash when used tires are disposed of by incineration. There is a need for a new reinforcing filler that is inexpensive, renewable and easily disposable. Cellulose is the most abundant natural polymer. Native cellulose includes crystalline regions and amorphous regions. Crystalline cellulose can be obtained by removing the amorphous regions with the acid hydrolysis of cellulose because the amorphous cellulose can be hydrolyzed faster than crystalline cellulose. We recently discovered that the partial replacement of silica with microcrystalline cellulose (MCC) provided numerous benefits: (1) low energy consumption for compounding, (2) good processability, (3) strong tensile properties, (4) good heat resistance, and (5) potential for good fuel efficiency in the application of rubber tires. Strong bonding between fillers and a rubber matrix is essential for imparting rubber composites with the desired properties for many specific applications. The bonding between hydrophilic MCC and the hydrophobic rubber matrix is weak and can be improved by addition of a coupling agent or surface modifications of MCC. In this study, MCC was surface-modified with acryloyl chloride or alkenyl ketene dimer (AnKD) to form acrylated MCC (A-MCC) and AnKD-modified MCC (AnKD-MCC). The surface modifications of MCC did not change the integrity and mechanical properties of MCC, but provided functional groups that were able to form covalent linkages with

  13. Vibrational sum frequency generation (SFG) spectroscopic study of crystalline cellulose in biomass

    NASA Astrophysics Data System (ADS)

    Kim, Seong H.; Lee, Christopher M.; Kafle, Kabindra; Park, Yong Bum; Xi, Xiaoning

    2013-09-01

    The noncentrosymmetry requirement of sum frequency generation (SFG) spectroscopy allows selective detection of crystalline cellulose in plant cell walls and lignocellulose biomass without spectral interferences from hemicelluloses and lignin. In addition, the phase synchronization requirement of the SFG process allows noninvasive investigation of spatial arrangement of crystalline cellulose microfibrils in the sample. This paper reviews how these principles are applied to reveal structural information of crystalline cellulose in plant cell walls and biomass.

  14. Coarse-grained model for the interconversion between different crystalline cellulose allomorphs

    SciTech Connect

    Langan, Paul

    2012-01-01

    We present the results of Langevin dynamics simulations on a coarse grained model for crystalline cellulose. In particular, we analyze two different cellulose crystalline forms: cellulose I (the natural form of cellulose) and cellulose IIII (obtained after cellulose I is treated with anhydrous liquid ammonia). Cellulose IIII has been the focus of wide interest in the field of cellulosic biofuels as it can be efficiently hydrolyzed to glucose (its enzymatic degradation rates are up to 5 fold higher than those of cellulose I ). In turn, glucose can eventually be fermented into fuels. The coarse-grained model presented in this study is based on a simplified geometry and on an effective potential mimicking the changes in both intracrystalline hydrogen bonds and stacking interactions during the transition from cellulose I to cellulose IIII. The model accurately reproduces both structural and thermomechanical properties of cellulose I and IIII. The work presented herein describes the structural transition from cellulose I to cellulose IIII as driven by the change in the equilibrium state of two degrees of freedom in the cellulose chains. The structural transition from cellulose I to cellulose IIII is essentially reduced to a search for optimal spatial arrangement of the cellulose chains.

  15. Solvent-Driven Preferential Association of Lignin with Regions of Crystalline Cellulose in Molecular Dynamics Simulation

    SciTech Connect

    Lindner, Benjamin; Petridis, Loukas; Schulz, Roland; Smith, Jeremy C

    2013-01-01

    The precipitation of lignin onto cellulose after pretreatment of lignocellulosic biomass is an obstacle to economically viable cellulosic ethanol production. Here, 750 ns nonequilibrium molecular dynamics simulations are reported of a system of lignin and cellulose in aqueous solution. Lignin is found to strongly associate with itself and the cellulose. However, noncrystalline regions of cellulose are observed to have a lower tendency to associate with lignin than crystalline regions, and this is found to arise from stronger hydration of the noncrystalline chains. The results suggest that the recalcitrance of crystalline cellulose to hydrolysis arises not only from the inaccessibility of inner fibers but also due to the promotion of lignin adhesion.

  16. A chemoenzymatic approach to protein immobilization onto crystalline cellulose nanoscaffolds.

    PubMed

    Uth, Christina; Zielonka, Stefan; Hörner, Sebastian; Rasche, Nicolas; Plog, Andreas; Orelma, Hannes; Avrutina, Olga; Zhang, Kai; Kolmar, Harald

    2014-11-10

    The immobilization of bioactive molecules onto nanocellulose leads to constructs that combine the properties of the grafted compounds with the biocompatibility and low cytotoxicity of cellulose carriers and the advantages given by their nanometer dimensions. However, the methods commonly used for protein grafting suffer from lack of selectivity, long reaction times, nonphysiological pH ranges and solvents, and the necessity to develop a tailor-made reaction strategy for each individual case. To overcome these restrictions, a generic two-step procedure was developed that takes advantage of the highly efficient oxime ligation combined with enzyme-mediated protein coupling onto the surface of peptide-modified crystalline nanocellulose. The described method is based on efficient and orthogonal transformations, requires no organic solvents, and takes place under physiological conditions. Being site-directed and regiospecific, it could be applied to a vast number of functional proteins. PMID:25070515

  17. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance.

    PubMed

    Park, Sunkyu; Baker, John O; Himmel, Michael E; Parilla, Philip A; Johnson, David K

    2010-01-01

    Although measurements of crystallinity index (CI) have a long history, it has been found that CI varies significantly depending on the choice of measurement method. In this study, four different techniques incorporating X-ray diffraction and solid-state 13C nuclear magnetic resonance (NMR) were compared using eight different cellulose preparations. We found that the simplest method, which is also the most widely used, and which involves measurement of just two heights in the X-ray diffractogram, produced significantly higher crystallinity values than did the other methods. Data in the literature for the cellulose preparation used (Avicel PH-101) support this observation. We believe that the alternative X-ray diffraction (XRD) and NMR methods presented here, which consider the contributions from amorphous and crystalline cellulose to the entire XRD and NMR spectra, provide a more accurate measure of the crystallinity of cellulose. Although celluloses having a high amorphous content are usually more easily digested by enzymes, it is unclear, based on studies published in the literature, whether CI actually provides a clear indication of the digestibility of a cellulose sample. Cellulose accessibility should be affected by crystallinity, but is also likely to be affected by several other parameters, such as lignin/hemicellulose contents and distribution, porosity, and particle size. Given the methodological dependency of cellulose CI values and the complex nature of cellulase interactions with amorphous and crystalline celluloses, we caution against trying to correlate relatively small changes in CI with changes in cellulose digestibility. In addition, the prediction of cellulase performance based on low levels of cellulose conversion may not include sufficient digestion of the crystalline component to be meaningful. PMID:20497524

  18. Can Delignification Decrease Cellulose Digestibility in Acid Pretreated Corn Stover?

    SciTech Connect

    Ishizawa, C. I.; Jeoh, T.; Adney, W. S.; Himmel, M. E.; Johnson, D. K.; Davis, M. F.

    2009-01-01

    It has previously been shown that the improved digestibility of dilute acid pretreated corn stover is at least partially due to the removal of xylan and the consequent increase in accessibility of the cellulose to cellobiohydrolase enzymes. We now report on the impact that lignin removal has on the accessibility and digestibility of dilute acid pretreated corn stover. Samples of corn stover were subjected to dilute sulfuric acid pretreatment with and without simultaneous (partial) lignin removal. In addition, some samples were completely delignified after the pretreatment step using acidified sodium chlorite. The accessibility and digestibility of the samples were tested using a fluorescence-labeled cellobiohydrolase (Trichoderma reesei Cel7A) purified from a commercial cellulase preparation. Partial delignification of corn stover during dilute acid pretreatment was shown to improve cellulose digestibility by T. reesei Cel7A; however, decreasing the lignin content below 5% (g g{sup -1}) by treatment with acidified sodium chlorite resulted in a dramatic reduction in cellulose digestibility. Importantly, this effect was found to be enhanced in samples with lower xylan contents suggesting that the near complete removal of xylan and lignin may cause aggregation of the cellulose microfibrils resulting in decreased cellulase accessibility.

  19. Effect of cooking temperature on the crystallinity of acid hydrolysed-oil palm cellulose

    NASA Astrophysics Data System (ADS)

    Kuthi, Fatin Afifah Binti Ahmad; Badri, Khairiah Haji

    2014-09-01

    In this research, we studied the effect of acid hydrolysis temperature on the crystallinity of cellulose produced from empty fruit bunch (EFB). The hydrolysis temperature was studied from 120 to 140 °C at a fixed time and sulfuric acid, H2SO4 concentration which were 1 h and 1% (v/v) respectively. X-ray diffractometry (XRD) was carried out to measure the crystallinity of cellulose produced at varying hydrolysis temperatures. During hydrolysis, the amorphous region of α-cellulose was removed and the crystalline region was obtained. Percentage of crystallinity (CrI) for acid hydrolysed cellulose at 120, 130 and 140 °C were 54.21, 50.59 and 50.55 % respectively. Morphological studies using scanning electron microscope (SEM) showed that acid hydrolysis defibrilised to microfibrils in α-cellulose. The extraction process to produce α-cellulose has also been successfully carried out as the impurities at the outer surface, lignin and hemicellulose were removed. These findings were supported by the disappearance of peaks at 1732, 1512 and 1243 cm-1 on Fourier Transform infrared (FTIR) spectrum of α-cellulose. Similar peaks were identified in both the commercial microcrystalline cellulose (C-MCC) and acid hydrolysed cellulose (H-EFB), indicating the effectiveness of heat-catalysed acid hydrolysis.

  20. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    SciTech Connect

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  1. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    NASA Astrophysics Data System (ADS)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD).

  2. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity

    SciTech Connect

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh -hui; Lai, Hsin -Chih

    2015-03-19

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To address this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of

  3. Cellulose Degradation Kinetics of Two Novel Bacterial Isolates That Preferentially Hydrolyze Crystalline Domains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of cellulosic biomass to bioenergy is extremely attractive in the recent climate of renewable energy research. Although a large number of organisms and fungi that have been isolated and characterized demonstrate an ability to hydrolyze both amorphous and crystalline domains of cellulose, ...

  4. Estimation of Crystallinity and Crystallite Size of Cellulose in Benzylated Fibres of Oil Palm Empty Fruit Bunches by X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Deraman, Mohamad; Zakaria, Sarani; Murshidi, Julie Andrianny

    2001-05-01

    Benzylated fibre (BzF) was produced from fibres of oil palm empty fruit bunches (EFBs) using benzyl chloride in an etherification reaction for 2 h at two reaction temperatures, 100°C and 110°C. Estimates based on X-ray diffraction data show decreases of approximately 15 and 17%, respectively, in the crystallinity of cellulose, and 36 and 54% in the size of crystallites cellulose in the BzF(100°C) and BzF(110°C) samples. This indicates a greater effect on crystallite size than on crystallinity because the conversion of some crystalline cellulose in the crystallite domain into an amorphous state is accompanied by the breakage of the crystallite domain into smaller sizes. Furthermore, the results also indicate that the increase of reaction temperature from 100°C to 110°C results in a larger change in crystallite size than in crystallinity.

  5. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    NASA Astrophysics Data System (ADS)

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad; Ahmad, Ishak

    2013-11-01

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H2SO4, 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application.

  6. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    SciTech Connect

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad; Ahmad, Ishak

    2013-11-27

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H{sub 2}SO{sub 4}, 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that the chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application.

  7. A cellular automaton model of crystalline cellulose hydrolysis by cellulases

    PubMed Central

    2011-01-01

    Background Cellulose from plant biomass is an abundant, renewable material which could be a major feedstock for low emissions transport fuels such as cellulosic ethanol. Cellulase enzymes that break down cellulose into fermentable sugars are composed of different types - cellobiohydrolases I and II, endoglucanase and β-glucosidase - with separate functions. They form a complex interacting network between themselves, soluble hydrolysis product molecules, solution and solid phase substrates and inhibitors. There have been many models proposed for enzymatic saccharification however none have yet employed a cellular automaton approach, which allows important phenomena, such as enzyme crowding on the surface of solid substrates, denaturation and substrate inhibition, to be considered in the model. Results The Cellulase 4D model was developed de novo taking into account the size and composition of the substrate and surface-acting enzymes were ascribed behaviors based on their movements, catalytic activities and rates, affinity for, and potential for crowding of, the cellulose surface, substrates and inhibitors, and denaturation rates. A basic case modeled on literature-derived parameters obtained from Trichoderma reesei cellulases resulted in cellulose hydrolysis curves that closely matched curves obtained from published experimental data. Scenarios were tested in the model, which included variation of enzyme loadings, adsorption strengths of surface acting enzymes and reaction periods, and the effect on saccharide production over time was assessed. The model simulations indicated an optimal enzyme loading of between 0.5 and 2 of the base case concentrations where a balance was obtained between enzyme crowding on the cellulose crystal, and that the affinities of enzymes for the cellulose surface had a large effect on cellulose hydrolysis. In addition, improvements to the cellobiohydrolase I activity period substantially improved overall glucose production. Conclusions

  8. Selective Detection of Crystalline Cellulose in Plant Cell Walls with Sum-Frequency-Generation (SFG) Vibration Spectroscopy

    SciTech Connect

    Barnette, Anna L.; Bradley, Laura C.; Veres, Brandon D.; Schreiner, Edward P.; Park, Yong Bum; Park, Junyeong; Park, Sunkyu; Kim, Seong H.

    2011-07-11

    The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.

  9. An Improved X-ray Diffraction Method For Cellulose Crystallinity Measurement

    SciTech Connect

    Ju, Xiaohui; Bowden, Mark E.; Brown, Elvie E.; Zhang, Xiao

    2015-06-01

    We show in this work a modified X-ray diffraction method to determine cellulose crystallinity index (CrI). Nanocrystalline cellulose (NCC) dervided from bleached wood pulp was used as a model substrate. Rietveld refinement was applied with consideration of March-Dollase preferred orientation at the (001) plane. In contrast to most previous methods, three distinct amorphous peaks identified from new model samples which are used to calculate CrI. A 2 theta range from 10° to 75° was found to be more suitable to determine CrI and crystallite structural parameters such as d-spacing and crystallite size. This method enables a more reliable measurement of CrI of cellulose and may be applicable to other types of cellulose polymorphs.

  10. Effect of Intrinsic Twist on Length of Crystalline and Disordered Regions in Cellulose Microfibrils

    NASA Astrophysics Data System (ADS)

    Nili, Abdolmadjid; Shklyaev, Oleg; Zhao, Zhen; Zhong, Linghao; Crespi, Vincent

    2013-03-01

    Cellulose is the most abundant biological material in the world. It provides mechanical reinforcement for plant cell wall, and could potentially serve as renewable energy source for biofuel. Native cellulose forms a non-centrosymmetric chiral crystal due to lack of roto-inversion symmetry of constituent glucose chains. Chirality of cellulose crystal could result in an overall twist. Competition between unwinding torsional/extensional and twisting energy terms leads to twist induced frustration along fibril's axis. The accumulated frustration could be the origin of periodic disordered regions observed in cellulose microfibrils. These regions could play significant role in properties of cellulose bundles and ribbons as well as biological implications on plant cell walls. We propose a mechanical model based on Frenkel-Kontorova mechanism to investigate effects of radius dependent twist on crystalline size in cellulose microfibrils. Parameters of the model are adjusted according to all-atom molecular simulations. This work is supported by the US Department of Energy, Office of Basic Energy Sciences as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center

  11. Complete genome sequence of Streptomyces reticuli, an efficient degrader of crystalline cellulose.

    PubMed

    Wibberg, Daniel; Al-Dilaimi, Arwa; Busche, Tobias; Wedderhoff, Ina; Schrempf, Hildgund; Kalinowski, Jörn; Ortiz de Orué Lucana, Darío

    2016-03-20

    We report the complete, GC-rich genome sequence of the melanin producer Streptomyces reticuli Tü 45 (S. reticuli) that targets and degrades highly crystalline cellulose by the concerted action of a range of biochemically characterized proteins. It consists of a linear 8.3 Mb chromosome, a linear 0.8 Mb megaplasmid, a linear 94 kb plasmid and a circular 76 kb plasmid. Noteworthy, the megaplasmid is the second largest known Streptomyces plasmid. Preliminary analysis reveals, among others, 43 predicted gene clusters for the synthesis of secondary metabolites and 456 predicted genes for binding and degradation of cellulose, other polysaccharides and carbohydrate-containing compounds. PMID:26851387

  12. Probing the early events associated with liquid ammonia pretreatment of native crystalline cellulose.

    PubMed

    Bellesia, Giovanni; Chundawat, Shishir P S; Langan, Paul; Dale, Bruce E; Gnanakaran, S

    2011-08-18

    Various chemicals are being explored for catalyzing efficient lignocellulose deconstruction. In particular, when liquid ammonia is used to convert the naturally occurring cellulose crystalline phase I(β), to cellulose III(I), the rearrangement of the hydrogen bond network in cellulose III(I) results in enhanced hydrolysis yields. We use molecular dynamics simulations to analyze the interaction between a cellulose I(β) fibril and ammonia. Our simulations reveal that early structural changes in the fibril are driven by the rapid formation of an extended hydrogen bond network between the solvent-exposed surface chains and ammonia that precedes ammonia penetration into the fibril. The emergence of this hydrogen bond network causes relative shifting of the cellulose layers within the fibril that in turn leads to the formation of channels orthogonal to the (100) and (-100) fibril surfaces. The channels allow ammonia molecules to penetrate into the cellulose fibril. These findings provide avenues for improving existing chemical pretreatments to make them more effective and economical. PMID:21728311

  13. Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis

    PubMed Central

    Hiras, Jennifer; Wu, Yu-Wei; Deng, Kai; Nicora, Carrie D.; Aldrich, Joshua T.; Frey, Dario; Kolinko, Sebastian; Robinson, Errol W.; Jacobs, Jon M.; Adams, Paul D.; Northen, Trent R.; Simmons, Blake A.

    2016-01-01

    ABSTRACT Glycoside hydrolases (GHs) are key enzymes in the depolymerization of plant-derived cellulose, a process central to the global carbon cycle and the conversion of plant biomass to fuels and chemicals. A limited number of GH families hydrolyze crystalline cellulose, often by a processive mechanism along the cellulose chain. During cultivation of thermophilic cellulolytic microbial communities, substantial differences were observed in the crystalline cellulose saccharification activities of supernatants recovered from divergent lineages. Comparative community proteomics identified a set of cellulases from a population closely related to actinobacterium Thermobispora bispora that were highly abundant in the most active consortium. Among the cellulases from T. bispora, the abundance of a GH family 12 (GH12) protein correlated most closely with the changes in crystalline cellulose hydrolysis activity. This result was surprising since GH12 proteins have been predominantly characterized as enzymes active on soluble polysaccharide substrates. Heterologous expression and biochemical characterization of the suite of T. bispora hydrolytic cellulases confirmed that the GH12 protein possessed the highest activity on multiple crystalline cellulose substrates and demonstrated that it hydrolyzes cellulose chains by a predominantly random mechanism. This work suggests that the role of GH12 proteins in crystalline cellulose hydrolysis by cellulolytic microbes should be reconsidered. PMID:27555310

  14. Cellulose-based liquid crystalline photoresponsive films with tunable surface wettability.

    PubMed

    Pinto, L F V; Kundu, S; Brogueira, P; Cruz, C; Fernandes, S N; Aluculesei, A; Godinho, M H

    2011-05-17

    We report on a new type of liquid crystalline cellulosic films with light controllable reversible wettability. The films are prepared from a thermotropic cellulose derivative functionalized with azo-containing groups. These groups exhibit dynamic changes in interfacial properties in response to UV irradiation. The UV irradiation induces trans-to-cis isomerization in the azobenzene moiety, which causes a conformational change in the upper molecular layers of the thin films. These changes originate a hydrophobic to comparatively hydrophilic transformation of the surface. The reversible wettability of the surface results from the cis/trans photo and thermal isomerization. The UV-vis absorption spectra, as well as contact angle measurements with UV irradiation, clearly support the understanding of the phenomenon. This type of surface design enables the amplification of molecular level conformational transitions to macroscopic changes in interface properties using the means of isomerism. This opens new opportunities in surface engineering using eco-friendly cellulose manipulation. PMID:21491848

  15. Depolymerization of crystalline cellulose catalyzed by acidic ionic liquids grafted onto sponge-like nanoporous polymers.

    PubMed

    Liu, Fujian; Kamat, Ranjan K; Noshadi, Iman; Peck, Daniel; Parnas, Richard S; Zheng, Anmin; Qi, Chenze; Lin, Yao

    2013-10-01

    The acidic ionic liquid (IL) functionalized polymer (PDVB-SO3H-[C3vim][SO3CF3]) possesses abundant nanoporous structures, strong acid strength and unique capability for deconstruction of crystalline cellulose into sugars in ILs. The polymer shows much improved catalytic activities in comparison with mineral acids, homogeneous acidic ionic liquids and the acidic resins such as Amberlyst 15. The enhanced catalytic activity found in the polymer is attributed to synergistic effects between the strongly acidic group and the ILs grafted onto the polymer, which by itself is capable of breaking down the crystalline structures of cellulose. This study may help develop cost-effective and green routes for conversion of biomass to fuels. PMID:23958800

  16. CelG from Clostridium cellulolyticum: a multidomain endoglucanase acting efficiently on crystalline cellulose.

    PubMed Central

    Gal, L; Gaudin, C; Belaich, A; Pages, S; Tardif, C; Belaich, J P

    1997-01-01

    The gene coding for CelG, a family 9 cellulase from Clostridium cellulolyticum, was cloned and overexpressed in Escherichia coli. Four different forms of the protein were genetically engineered, purified, and studied: CelGL (the entire form of CelG), CelGcat1 (the catalytic domain of CelG alone), CelGcat2 (CelGcat1 plus 91 amino acids at the beginning of the cellulose binding domain [CBD]), and GST-CBD(CelG) (the CBD of CelG fused to glutathione S-transferase). The biochemical properties of CelG were compared with those of CelA, an endoglucanase from C. cellulolyticum which was previously studied. CelG, like CelA, was found to have an endo cutting mode of activity on carboxymethyl cellulose (CMC) but exhibited greater activity on crystalline substrates (bacterial microcrystalline cellulose and Avicel) than CelA. As observed with CelA, the presence of the nonhydrolytic miniscaffolding protein (miniCipC1) enhanced the activity of CelG on phosphoric acid swollen cellulose (PASC), but to a lesser extent. The absence of the CBD led to the complete inactivation of the enzyme. The abilities of CelG and GST-CBD(CelG) to bind various substrates were also studied. Although the entire enzyme is able to bind to crystalline cellulose at a limited number of sites, the chimeric protein GST-CBD(CelG) does not bind to either of the tested substrates (Avicel and PASC). The lack of independence between the two domains and the weak binding to cellulose suggest that this CBD-like domain may play a special role and be either directly or indirectly involved in the catalytic reaction. PMID:9352905

  17. Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase

    SciTech Connect

    Shoseyov, O.; Doi, R.H. )

    1990-03-01

    The cellulase complex from Clostridium cellulovorans has been purified and its subunit composition determined. The complex exhibits cellulase activity against crystalline cellulose as well as carboxymethylcellulase (CMCase) and cellobiohydrolase activities. Three major subunits are present with molecular masses of 170, 100, and 70 kDa. The 100-kDa subunit is the major CMCase, although at least four other, minor subunits show CMCase activity. The 170-kDa subunit has the highest affinity for cellulose, does not have detectable enzymatic activity, but is necessary for cellulase activity. Immunological studies indicate that the 170-kDa subunit is not required for binding of the catalytic subunits to cellulose and therefore does not function solely as an anchor protein. Thus this core subunit must have multiple functions. The authors propose a working hypothesis that the binding of the 170-kDa subunit converts the crystalline cellulose to a form that is capable of being hydrolyzed in a cooperative fashion by the associated catalytic subunits.

  18. Crystallinity and thermal resistance of microcrystalline cellulose prepared from manau rattan (Calamusmanan)

    NASA Astrophysics Data System (ADS)

    Rizkiansyah, Raden Reza; Mardiyati, Steven, Suratman, R.

    2016-04-01

    The objective of this study was to prepare microcrystalline cellulose from Manau rattan (Calamusmanan) and to investigate the influence of concentration of sulfuric acid and hydrolysis time on crystallinity and thermal resistance of the microcrystalline cellulose (MCC). In this research, MCC was extracted through two stages, which is alkalization and acid hydrolysis. Alkalization was prepared by soaking manau rattan powder into sodium hydroxide (NaOH) 17.5wt% at 100°C for 8 hours. Acid hydrolysis was prepared by using sulfuric acid with concentration 0.1 M; 0.3 M; and 0.5 M for 4, 6, 8 and 10 hours. Crystallinity of MCC was measured by XRD, and thermal resistance was characterized by TGA. MCC was successfully extracted from manau rattan. The highest crystallinity of MCC obtained was 72.42% which prepared by acid hydrolysis with concentration 0.5 M for 10 hours. MCC prepared by acid hydrolysis with concentration 0.5 M for 10 hours not only resulted the highest crystallinity but also the best thermal resistance.

  19. Characterization of low crystallinity cellulose as a direct compression excipient: Effects of physicochemical properties of cellulose excipients on their tabletting characteristics

    NASA Astrophysics Data System (ADS)

    Kothari, Sanjeev Hukmichand

    A scale-up method for the preparation of a new excipient, low crystallinity powder cellulose (LCPC), was established. Physicochemical characterization of a series of LCPC materials was performed, and compared to the physicochemical properties of commercially existing cellulose excipients, microcrystalline cellulose (AvicelsRTM) and powdered celluloses (Solka Flocs RTM). Low crystallinity cellulose powders had high amorphous contents (>50%) and a low degree of polymerization (<40 anhydroglucose units). They were dense aggregates with porosity values less than 62%. Low crystallinity cellulose was found to contain cellulose II as the predominant polymorphic form in the crystalline regions. LCPC particles, obtained from larger scale preparations (>2 kg), typically showed low yield pressures (<75 MPa), high compressibility (>200 MPa), and intermediate compactability (250--600 MPa2) values. Mechanical characterization of the three types of cellulose materials, and the statistical models obtained for the results, indicated that a high porosity (>810%), a high average of amorphous content (>40%) and moisture content (>4%), and a low degree of polymerization (<150) significantly lowered the yield pressures, and significantly enhanced the compressibility and compactability. The bonding indices of microcrystalline celluloses (0.013 to 0.031) and LCPC materials (0.011 to 0.020) investigated indicated a ductile behavior. The LCPC compacts showed a higher brittle fracture propensity (0.42 to 0.55) as compared to the brittle fracture indices (0.02 to 0.19) seen for the Avicel RTM compacts. Heckel analysis of different particle size fractions of LCPC and the surface area results of the LCPC compacts indicated that the particles do not fragment on uniaxial compression. The rapid disintegration times (5 to 90 seconds) for LCPC tablets at low as well as high solid fractions suggest the high affinity of these materials to water, due to their high amorphous contents that expose a

  20. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy.

    PubMed

    Oh, Sang Youn; Yoo, Dong Il; Shin, Younsook; Kim, Hwan Chul; Kim, Hak Yong; Chung, Yong Sik; Park, Won Ho; Youk, Ji Ho

    2005-10-31

    Crystalline structures of cellulose (named as Cell 1), NaOH-treated cellulose (Cell 2), and subsequent CO2-treated cellulose (Cell 2-C) were analyzed by wide-angle X-ray diffraction and FTIR spectroscopy. Transformation from cellulose I to cellulose II was observed by X-ray diffraction for Cell 2 treated with 15-20 wt% NaOH. Subsequent treatment with CO2 also transformed the Cell 2-C treated with 5-10 wt% NaOH. Many of the FTIR bands including 2901, 1431, 1282, 1236, 1202, 1165, 1032, and 897 cm(-1) were shifted to higher wave number (by 2-13 cm(-1)). However, the bands at 3352, 1373, and 983 cm(-1) were shifted to lower wave number (by 3-95 cm(-1)). In contrast to the bands at 1337, 1114, and 1058 cm(-1), the absorbances measured at 1263, 993, 897, and 668 cm(-1) were increased. The FTIR spectra of hydrogen-bonded OH stretching vibrations at around 3352 cm(-1) were resolved into three bands for cellulose I and four bands for cellulose II, assuming that all the vibration modes follow Gaussian distribution. The bands of 1 (3518 cm(-1)), 2 (3349 cm(-1)), and 3 (3195 cm(-1)) were related to the sum of valence vibration of an H-bonded OH group and an intramolecular hydrogen bond of 2-OH ...O-6, intramolecular hydrogen bond of 3-OH...O-5 and the intermolecular hydrogen bond of 6-O...HO-3', respectively. Compared with the bands of cellulose I, a new band of 4 (3115 cm(-1)) related to intermolecular hydrogen bond of 2-OH...O-2' and/or intermolecular hydrogen bond of 6-OH...O-2' in cellulose II appeared. The crystallinity index (CI) was obtained by X-ray diffraction [CI(XD)] and FTIR spectroscopy [CI(IR)]. Including absorbance ratios such as A1431,1419/A897,894 and A1263/A1202,1200, the CI(IR) was evaluated by the absorbance ratios using all the characteristic absorbances of cellulose. The CI(XD) was calculated by the method of Jayme and Knolle. In addition, X-ray diffraction curves, with and without amorphous halo correction, were resolved into portions of cellulose I and

  1. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

  2. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE PAGESBeta

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  3. Vibrational Spectral Signatures of Crystalline Cellulose Using High Resolution Broadband Sum Frequency Generation Vibrational Spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde Ruiz Esparza, Luis A.; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Art J.; Wang, Hongfei; Yang, Bin

    2015-03-03

    Here we reported the first sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) study on both the C-H and O-H region spectra of crystalline cellulose. HR-BB-SFG-VS has about 10 times better resolution than the conventional scanning SFG-VS and is known to be able to measure the intrinsic spectral lineshape and to resolve much more spectral details. With HR-BB-SFG-VS, we found that in cellulose from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the OH regions were unique for different allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C-H regions varied in all samples examined. Even though the origin of the different behaviors of the crystalline cellulose in the O-H and C-H vibrational frequency regions is yet to be correlated to the structure of cellulose, these results provided new spectroscopic methods and opportunities to classify and understand the basic crystalline structure, as well as variations, in polymorphism of the crystalline cellulose structure.

  4. High Resolution Quantification of Crystalline Cellulose Accumulation in Arabidopsis Roots to Monitor Tissue-specific Cell Wall Modifications.

    PubMed

    Fridman, Yulia; Holland, Neta; Elbaum, Rivka; Savaldi-Goldstein, Sigal

    2016-01-01

    Plant cells are surrounded by a cell wall, the composition of which determines their final size and shape. The cell wall is composed of a complex matrix containing polysaccharides that include cellulose microfibrils that form both crystalline structures and cellulose chains of amorphous organization. The orientation of the cellulose fibers and their concentrations dictate the mechanical properties of the cell. Several methods are used to determine the levels of crystalline cellulose, each bringing both advantages and limitations. Some can distinguish the proportion of crystalline regions within the total cellulose. However, they are limited to whole-organ analyses that are deficient in spatiotemporal information. Others relying on live imaging, are limited by the use of imprecise dyes. Here, we report a sensitive polarized light-based system for specific quantification of relative light retardance, representing crystalline cellulose accumulation in cross sections of Arabidopsis thaliana roots. In this method, the cellular resolution and anatomical data are maintained, enabling direct comparisons between the different tissues composing the growing root. This approach opens a new analytical dimension, shedding light on the link between cell wall composition, cellular behavior and whole-organ growth. PMID:27214583

  5. Butanol Production from Crystalline Cellulose by Cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4 ▿

    PubMed Central

    Nakayama, Shunichi; Kiyoshi, Keiji; Kadokura, Toshimori; Nakazato, Atsumi

    2011-01-01

    We investigated butanol production from crystalline cellulose by cocultured cellulolytic Clostridium thermocellum and the butanol-producing strain, Clostridium saccharoperbutylacetonicum (strain N1-4). Butanol was produced from Avicel cellulose after it was incubated with C. thermocellum for at least 24 h at 60°C before the addition of strain N1-4. Butanol produced by strain N1-4 on 4% Avicel cellulose peaked (7.9 g/liter) after 9 days of incubation at 30°C, and acetone was undetectable in this coculture system. Less butanol was produced by cocultured Clostridium acetobutylicum and Clostridium beijerinckii than by strain N1-4, indicating that strain N1-4 was the optimal strain for producing butanol from crystalline cellulose in this coculture system. PMID:21764954

  6. Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosomally integrated zymomonas mobilis genes

    SciTech Connect

    Doran, J.B.; Ingram, L.O.

    1993-09-01

    Complete enzymatic hydrolysis of cellulose to glucose is generally required for efficient fermentation to ethanol. This hydrolysis requires endoglucanase, exoglucanase, and cellobiase. The Gram-negative bacterium, Klebsiella oxytoca, contains the native ability to transport and metabolize cellobiose, minimizing the need for extracellular cellobiase. Strain P2 is a recombinant derivative in which the Zymomonas mobilis pdc and adhB genes have been integrated into the chromosome and expressed, directing the metabolism of pyruvate to ethanol. This organism has been evaluated in simultaneous saccharification and fermentation (SSF) experiments to determine optimal conditions and limits of performance. The temperature was varied between 32 and 40{degree}C over a pH range of 5.0-5.8 with 100 g/L crystalline cellulose (Sigmacell 50, Sigma Chemical Company, St. Louis, MO) as the substrate and commercial cellulase (Spezyme CE, South San Francisco, CA). A broad optimum for SSF was observed, with a pH of 5.2-5.5 and temperatures of 32-35{degree}C, which allowed the production of over 44 g of ethanol/L (81-86% of the maximum theoretical yield). Although the rate of ethanol production increased with cellulase, diminishing improvements were observed at enzyme loadings above 10 filter paper units/g of cellulose. 34 refs., 5 figs., 2 tabs.

  7. Multi-pollutant treatment of crystalline cellulosic effluent: Function of dissolved oxygen on process control.

    PubMed

    Shanthi Sravan, J; Naresh Kumar, A; Venkata Mohan, S

    2016-10-01

    Treatment of crystalline cellulose based wastewater was carried out in periodic discontinuous batch reactor (PDBR). Specific influence of dissolved oxygen on treatment of crystalline cellulosic (CC) wastewater was evaluated in three different microenvironments such as aerobic, anoxic and anaerobic. PDBR-aerobic biosystem documented relatively higher substrate degradation [2.63kgCOD/m(3)-day (92%)] in comparison to PDBR-anoxic [2.12kgCOD/m(3)-day (71%)] and PDBR-anaerobic [1.81kgCOD/m(3)-day (63%)], which is in accordance with the observed DO levels. Similarly, multipollutants viz., phosphates and nitrates removal was observed to be higher in aerobic followed by anoxic and anaerobic operations. Higher nitrate removal in aerobic operation might be attributed to the efficient denitrification carried out by the biocatalyst, which utilizes both nitrates and oxygen as oxidizing agents. Multiscan spectral profiles depicted reduction in color intensity in all three microenvironments that correlated with the substrate degradation observed. Despite the high organic load, PDBR functioned well without exhibiting process inhibition. PMID:27005787

  8. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II.

    PubMed

    Nam, Sunghyun; French, Alfred D; Condon, Brian D; Concha, Monica

    2016-01-01

    The Segal method estimates the amorphous fraction of cellulose Iβ materials simply based on intensity at 18° 2θ in an X-ray diffraction pattern and was extended to cellulose II using 16° 2θ intensity. To address the dependency of Segal amorphous intensity on crystal size, cellulose polymorph, and the degree of polymorphic conversion, we simulated the diffraction patterns of cotton celluloses (Iβ and II) and compared the simulated amorphous fractions with the Segal values. The diffraction patterns of control and mercerized cottons, respectively, were simulated with perfect crystals of cellulose Iβ (1.54° FWHM) and cellulose II (2.30° FWHM) as well as 10% and 35% amorphous celluloses. Their Segal amorphous fractions were 15% and 31%, respectively. The higher Segal amorphous fraction for control cotton was attributed to the peak overlap. Although the amorphous fraction was set in the simulation, the peak overlap induced by the increase of FWHM further enhanced the Segal amorphous intensity of cellulose Iβ. For cellulose II, the effect of peak overlap was smaller; however the lower reflection of the amorphous cellulose scattering in its Segal amorphous location resulted in smaller Segal amorphous fractions. Despite this underestimation, the relatively good agreement of the Segal method with the simulation for mercerized cotton was attributed to the incomplete conversion to cellulose II. The (1-10) and (110) peaks of cellulose Iβ remained near the Segal amorphous location of cellulose II for blends of control and mercerized cotton fibers. PMID:26453844

  9. Crystalline structure and morphological properties of porous cellulose/clay composites: The effect of water and ethanol as coagulants.

    PubMed

    Ahmadzadeh, Safoura; Desobry, Stephane; Keramat, Javad; Nasirpour, Ali

    2016-05-01

    In this study, cellulose foams incorporated with surface-modified montmorillonite (SM-MMT) were prepared following NaOH dissolution and regeneration into water and ethanol. According to the SEM images, the type of coagulating agent significantly affected the morphological properties of composite foams. The crystalline parameters were evaluated using wide-angle X-ray diffraction (WAXD), which showed an increase in crystal size as the effect of SM-MMT; however, the crystal size decreased for the samples treated with ethanol. The distribution of hydrogen bond types was also investigated using Fourier transform infrared (FTIR). Resolving the hydrogen-bonded OH stretching band at around 3340 into five bands indicated that presence of SM-MMT caused the shift of OH-stretching vibration band to lower wave number due to new hydrogen bonds between cellulose and SM-MMT. In general, the results indicated a change in the contents of the intra- and inter-molecular hydrogen bonds when the coagulant was changed or SM-MMT was incorporated. PMID:26877015

  10. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose IB and cellulose II

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Segal method estimates the amorphous fraction of cellulose IB materials simply based on intensity at 18o 20 in an X-ray diffraction pattern and was extended to cellulose II using 16o 2O intensity. To address the dependency of Segal amorphous intensity on crystal size, cellulose polymorph, and th...

  11. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase

    PubMed Central

    Harris, Darby M.; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana L.; Petti, Carloalberto; Smilgies, Detlef-M.; Estevez, José Manuel; Bonetta, Dario; Urbanowicz, Breeanna R.; Ehrhardt, David W.; Somerville, Chris R.; Rose, Jocelyn K. C.; Hong, Mei; DeBolt, Seth

    2012-01-01

    The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1A903V and CESA3T942I in Arabidopsis thaliana. Using 13C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1A903V and CESA3T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1A903V and CESA3T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization. PMID:22375033

  12. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.

    PubMed

    Joshi, Mahesh Kumar; Tiwari, Arjun Prasad; Pant, Hem Raj; Shrestha, Bishnu Kumar; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2015-09-01

    Post-electrospinning treatment is a facile process to improve the properties of electrospun nanofibers for various applications. This technique is commonly used when direct electrospinning is not a suitable option to fabricate a nonwoven membrane of the desired polymer in a preferred morphology. In this study, a representative natural-synthetic hybrid of cellulose acetate (CA) and polycaprolactone (PCL) in different ratios was fabricated using an electrospinning process, and CA in the hybrid fiber was transformed into cellulose (CL) by post-electrospinning treatment via alkaline saponification. Scanning electron microscopy was employed to study the effects of polymer composition and subsequent saponification on the morphology of the nanofibers. Increasing the PCL content in the PCL/CA blend solution caused a gradual decrease in viscosity, resulting in smoother and more uniform fibers. The saponification of fibers lead to pronounced changes in the physicochemical properties. The crystallinity of the PCL in the composite fiber was varied according to the composition of the component polymers. The water contact angle was considerably decreased (from 124° to less than 20°), and the mechanical properties were greatly enhanced (Young's Modulus was improved by ≈20-30 fold, tensile strength by 3-4 fold, and tensile stress by ≈2-4 fold) compared to those of PCL and PCL/CA membranes. Regeneration of cellulose chains in the nanofibers increased the number of hydroxyl groups, which increased the hydrogen bonding, thereby improving the mechanical properties and wettability of the composite nanofibers. The improved wettability and presence of surface functional groups enhanced the ability to nucleate bioactive calcium phosphate crystals throughout the matrix when exposed to a simulated body fluid solution. Experimental results of cell viability assay, confocal microscopy, and scanning electron microscopy imaging showed that the fabricated nanofibrous membranes have

  13. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films.

    PubMed

    Shankar, Shiv; Rhim, Jong-Whan

    2016-01-01

    A facile approach has been performed to prepare nanocellulose (NC) from micro-crystalline cellulose (MCC) and test their effect on the performance properties of agar-based composite films. The NC was characterized by STEM, XRD, FTIR, and TGA. The NC was well dispersed in distilled water after sonication and their size was in the range of 100-500nm. The XRD results revealed the crystallinity of NC. The crystallinity index of NC (0.71) was decreased compared to the MCC (0.81). The effect of NC or MCC content (1, 3, 5 and 10wt% based on agar) on the mechanical, water vapor permeability (WVP), and thermal properties of the composites were studied. The NC obtained from MCC can be used as a reinforcing agent for the preparation of biodegradable composites films for their potential use in the development of biodegradable food packaging materials. PMID:26453846

  14. Levoglucosan formation from crystalline cellulose: importance of a hydrogen bonding network in the reaction.

    PubMed

    Hosoya, Takashi; Sakaki, Shigeyoshi

    2013-12-01

    Levoglucosan (1,6-anhydro-β-D-glucopyranose) formation by the thermal degradation of native cellulose was investigated by MP4(SDQ)//DFT(B3LYP) and DFT(M06-2X)//DFT(B3LYP) level computations. The computational results of dimer models lead to the conclusion that the degradation occurs by a concerted mechanism similar to the degradation of methyl β-D-glucoside reported in our previous study. One-chain models of glucose hexamer, in which the interchain hydrogen bonds of real cellulose crystals are absent, do not exhibit the correct reaction behavior of levoglucosan formation; for instance, the activation enthalpy (Ea =≈38 kcal mol(-1) ) is considerably underestimated compared to the experimental value (48-60 kcal mol(-1) ). This problem is solved with the use of two-chain models that contain interchain hydrogen bonds. The theoretical study of this model clearly shows that the degradation of the internal glucosyl residue leads to the formation of a levoglucosan precursor at the chain end and levoglucosan is selectively formed from this levoglucosan end. The calculated Ea (56-62 kcal mol(-1) ) agrees well with the experimental value. The computational results of three-chain models indicate that this degradation occurs selectively on the crystalline surface. All these computational results provide a comprehensive understanding of several experimental facts, the mechanisms of which have not yet been elucidated. PMID:24243863

  15. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose.

    PubMed

    Elazzouzi-Hafraoui, Samira; Nishiyama, Yoshiharu; Putaux, Jean-Luc; Heux, Laurent; Dubreuil, Frédéric; Rochas, Cyrille

    2008-01-01

    The shape and size distribution of crystalline nanoparticles resulting from the sulfuric acid hydrolysis of cellulose from cotton, Avicel, and tunicate were investigated using transmission electron microscopy (TEM) and atomic force microscopy (AFM) as well as small- and wide-angle X-ray scattering (SAXS and WAXS). Images of negatively stained and cryo-TEM specimens showed that the majority of cellulose particles were flat objects constituted by elementary crystallites whose lateral adhesion was resistant against hydrolysis and sonication treatments. Moreover, tunicin whiskers were described as twisted ribbons with an estimated pitch of 2.4-3.2 microm. Length and width distributions of all samples were generally well described by log-normal functions, with the exception of tunicin, which had less lateral aggregation. AFM observation confirmed that the thickness of the nanocrystals was almost constant for a given origin and corresponded to the crystallite size measured from peak broadening in WAXS spectra. Experimental SAXS profiles were numerically simulated, combining the dimensions and size distribution functions determined by the various techniques. PMID:18052127

  16. Labeling the Planar Face of Crystalline Cellulose Using Quantum Dots Directed by Type-I Carbohydrate-Binding Modules

    SciTech Connect

    Xu, Q.; Tucker, M. P.; Arenkiel, P.; Ai, X.; Rumbles, G.; Sugiyama, J.; Himmel, M. E.; Ding, S.-Y.

    2009-01-01

    We report a new method for the direct labeling and visualization of crystalline cellulose using quantum dots (QDs) directed by carbohydrate-binding modules (CBMs). Two type-I (surface binding) CBMs belonging to families 2 and 3a were cloned and expressed with dual histidine tags at the N- and C-termini. Semiconductor (CdSe)ZnS QDs were used to label these CBMs following their binding to Valonia cellulose crystals. Using this approach, we demonstrated that QDs are linearly arrayed on cellulose, which implies that these CBMs specifically bind to a planar face of cellulose. Direct imaging has further shown that different sizes (colors) of QDs can be used to label CBMs bound to cellulose. Furthermore, the binding density of QDs arrayed on cellulose was modified predictably by selecting from various combinations of CBMs and QDs of known dimensions. This approach should be useful for labeling and imaging cellulose-containing materials precisely at the molecular scale, thereby supporting studies of the molecular mechanisms of lignocellulose conversion for biofuels production.

  17. Cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose properties and structure are reviewed, with a primary focus on crystal structure and polymorphy. This focus highlights the conversion from cellulose I to cellulose II, which converts the molecules to being all parallel to each other in the crystal to being antiparallel. This has been co...

  18. Supermolecular structure of cellulose: stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. [Leveling-off degree of polymerization

    SciTech Connect

    Yachi, T.; Hayashi, J.; Takai, M.; Shimizu, Y.

    1983-01-01

    It was observed by electron microscopy that rayons hydrolyzed with 2.4 N HCl at 100/sup 0/C for 2 h, followed by ultrasonic treatment were split into homogeneous particles having a size of about 200 A(2000A). In the previous work with rayons, crystallite length, long period, and chain length calculated from their LODP were all about 200 A(2000A), regardless of the type of rayon. The agreement between particle size and length suggested strongly that a rayon microfibril has a periodic structure along its axis at intervals of about A(2000A). Celluloses II, III, and IV and cellulose regenerated from its esters were derived both from native cellulose and rayons in the fibrous state. After hydrolysis, all the modifications derived from native cellulose showed an LODP of about 80 and rod-like fragments which showed a maximum at 400 A(2000A) in the frequency distribution of their lengths. All of the modifications, except mercerized native cellulose, showed a meridional small-angle reflection corresponding to 400 A(2000A). All the modifications from rayons showed an LODP of about 40. The esters derived from native cellulose were recrystallized by heat treatment and then saponified into cellulose II. After hydrolysis, they showed an LODP of about 40 (200 A(2000A) in chain length), a meridional reflection showing a long period of about 200 A(2000A), and a particle-like fragment having a size of about 200 A(2000A). For native cellulose, after chemical and physical treatments, the LODP, the long period, and the fragment length all decreased stepwise and by the same amounts. The steps were an integral multiple of 200 A(2000A), which is the value of the crystallite length obtained for the native and all other celluloses. The results suggest that native cellulose has a periodic structure at intervals of 200 A(2000A) in length. 40 references, 14 figures, 5 tables.

  19. Single-molecule imaging analysis of elementary reaction steps of Trichoderma reesei cellobiohydrolase I (Cel7A) hydrolyzing crystalline cellulose Iα and IIII.

    PubMed

    Shibafuji, Yusuke; Nakamura, Akihiko; Uchihashi, Takayuki; Sugimoto, Naohisa; Fukuda, Shingo; Watanabe, Hiroki; Samejima, Masahiro; Ando, Toshio; Noji, Hiroyuki; Koivula, Anu; Igarashi, Kiyohiko; Iino, Ryota

    2014-05-16

    Trichoderma reesei cellobiohydrolase I (TrCel7A) is a molecular motor that directly hydrolyzes crystalline celluloses into water-soluble cellobioses. It has recently drawn attention as a tool that could be used to convert cellulosic materials into biofuel. However, detailed mechanisms of action, including elementary reaction steps such as binding, processive hydrolysis, and dissociation, have not been thoroughly explored because of the inherent challenges associated with monitoring reactions occurring at the solid/liquid interface. The crystalline cellulose Iα and IIII were previously reported as substrates with different crystalline forms and different susceptibilities to hydrolysis by TrCel7A. In this study, we observed that different susceptibilities of cellulose Iα and IIII are highly dependent on enzyme concentration, and at nanomolar enzyme concentration, TrCel7A shows similar rates of hydrolysis against cellulose Iα and IIII. Using single-molecule fluorescence microscopy and high speed atomic force microscopy, we also determined kinetic constants of the elementary reaction steps for TrCel7A against cellulose Iα and IIII. These measurements were performed at picomolar enzyme concentration in which density of TrCel7A on crystalline cellulose was very low. Under this condition, TrCel7A displayed similar binding and dissociation rate constants for cellulose Iα and IIII and similar fractions of productive binding on cellulose Iα and IIII. Furthermore, once productively bound, TrCel7A processively hydrolyzes and moves along cellulose Iα and IIII with similar translational rates. With structural models of cellulose Iα and IIII, we propose that different susceptibilities at high TrCel7A concentration arise from surface properties of substrate, including ratio of hydrophobic surface and number of available lanes. PMID:24692563

  20. Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil.

    PubMed

    Ahmadi, Maede; Madadlou, Ashkan; Saboury, Ali Akbar

    2016-04-01

    Whey protein hydrogels blended with nanocrystalline and microcrystalline cellulose particles (NCC and MCC, respectively) were prepared, followed by freeze-drying, to produce aerogels. NCC blending increased the Young's modulus, and elastic character, of the protein aerogel. Aerogels were microporous and mesoporous materials, as characterized by the pores sizing 1.2 nm and 12.2 nm, respectively. Blending with NCC decreased the count of both microporous and mesoporous-classified pores at the sub-100 nm pore size range investigated. In contrast, MCC blending augmented the specific surface area and pores volume of the aerogel. It also increased moisture sorption affinity of aerogel. The feasibility of conveying hydrophobic nutraceuticals by aerogels was evaluated through loading fish oil into the non-blended aerogel. Oil loading altered its microstructure, corresponding to a peak displacement in Fourier-transform infra-red spectra, which was ascribed to increased hydrophobic interactions. Surface coating of aerogel with zein decreased the oxidation susceptibility of the loaded oil during subsequent storage. PMID:26593584

  1. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

    NASA Astrophysics Data System (ADS)

    Dri, Fernando L.; Shang, ShunLi; Hector, Louis G., Jr.; Saxe, Paul; Liu, Zi-Kui; Moon, Robert J.; Zavattieri, Pablo D.

    2014-12-01

    Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500 K) of the monoclinic cellulose Iβ lattice parameters, constant pressure heat capacity, Cp, entropy, S, enthalpy, H, the linear thermal expansion components, ξi, and components of the isentropic and isothermal (single crystal) elastic stiffness matrices, CijS (T) and CijT (T) , respectively. Thermodynamic quantities from phonon calculations computed with DFT and the supercell method provided necessary inputs to compute the temperature dependence of cellulose Iβ properties via the quasi-harmonic approach. The notable exceptions were the thermal conductivity components, λi (the prediction of which has proven to be problematic for insulators using DFT) for which the reverse, non-equilibrium molecular dynamics approach with a force field was applied. The extent to which anisotropy of Young's modulus and Poisson's ratio is temperature-dependent was explored in terms of the variations of each with respect to crystallographic directions and preferred planes containing specific bonding characteristics (as revealed quantitatively from phonon force constants for each atomic pair, and qualitatively from charge density difference contours). Comparisons of the predicted quantities with available experimental data revealed reasonable agreement up to 500 K. Computed properties were interpreted in terms of the cellulose Iβ structure and bonding interactions.

  2. Influence of the crystalline structure of cellulose on the production of ethanol from lignocellulose biomass

    NASA Astrophysics Data System (ADS)

    Smuga-Kogut, Małgorzata; Zgórska, Kazimiera; Szymanowska-Powałowska, Daria

    2016-01-01

    In recent years, much attention has been devoted to the possibility of using lignocellulosic biomass for energy. Bioethanol is a promising substitute for conventional fossil fuels and can be produced from straw and wood biomass. Therefore, the aim of this paper was to investigate the effect of 1-ethyl-3-methylimidazolium pretreatment on the structure of cellulose and the acquisition of reducing sugars and bioethanol from cellulosic materials. Material used in the study was rye straw and microcrystalline cellulose subjected to ionic liquid 1-ethyl-3-methylimidazolium pretreatment. The morphology of cellulose fibres in rye straw and microcrystalline cellulose was imaged prior to and after ionic liquid pretreatment. Solutions of ionic liquid-treated and untreated cellulosic materials were subjected to enzymatic hydrolysis in order to obtain reducing sugars, which constituted a substrate for alcoholic fermentation. An influence of the ionic liquid on the cellulose structure, accumulation of reducing sugars in the process of hydrolysis of this material, and an increase in ethanol amount after fermentation was observed. The ionic liquid did not affect cellulolytic enzymes negatively and did not inhibit yeast activity. The amount of reducing sugars and ethyl alcohol was higher in samples purified with 1-ethyl-3-methy-limidazolium acetate. A change in the supramolecular structure of cellulose induced by the ionic liquid was also observed.

  3. Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation.

    PubMed

    Tsubaki, Shuntaro; Oono, Kiriyo; Onda, Ayumu; Yanagisawa, Kazumichi; Mitani, Tomohiko; Azuma, Jun-ichi

    2016-02-10

    This study investigated the effects of ionic conduction of electrolytes under microwave field to facilitate hydrothermal hydrolysis of corn starch and crystalline cellulose (Avicel), typical model biomass substrates. Addition of 0.1M NaCl was effective to improve reducing sugar yield by 1.61-fold at unit energy (kJ) level. Although Avicel cellulose was highly recalcitrant to hydrothermal hydrolysis, addition of 0.1M MgCl2 improved reducing sugar yield by 6.94-fold at unit energy (kJ). Dielectric measurement of the mixture of corn starch/water/electrolyte revealed that ionic conduction of electrolytes were strongly involved in facilitating hydrothermal hydrolysis of polysaccharides. PMID:26686168

  4. Recognition of xyloglucan by the crystalline cellulose-binding site of a family 3a carbohydrate-binding module.

    PubMed

    Hernandez-Gomez, Mercedes C; Rydahl, Maja G; Rogowski, Artur; Morland, Carl; Cartmell, Alan; Crouch, Lucy; Labourel, Aurore; Fontes, Carlos M G A; Willats, William G T; Gilbert, Harry J; Knox, J Paul

    2015-08-19

    Type A non-catalytic carbohydrate-binding modules (CBMs), exemplified by CtCBM3acipA, are widely believed to specifically target crystalline cellulose through entropic forces. Here we have tested the hypothesis that type A CBMs can also bind to xyloglucan (XG), a soluble β-1,4-glucan containing α-1,6-xylose side chains. CtCBM3acipA bound to xyloglucan in cell walls and arrayed on solid surfaces. Xyloglucan and cellulose were shown to bind to the same planar surface on CBM3acipA. A range of type A CBMs from different families were shown to bind to xyloglucan in solution with ligand binding driven by enthalpic changes. The nature of CBM-polysaccharide interactions is discussed. PMID:26193423

  5. The effect of microcrystalline cellulose crystallinity on the hydrophilic property of tablets and the hydrolysis of acetylsalicylic acid as active pharmaceutical ingredient inside tablets.

    PubMed

    Awa, Kimie; Shinzawa, Hideyuki; Ozaki, Yukihiro

    2015-08-01

    The crystal structures of active pharmaceutical ingredients and excipients should be strictly controlled because they influence pharmaceutical properties of products which cause the change in the quality or the bioavailability of the products. In this study, we investigated the effects of microcrystalline cellulose (MCC) crystallinity on the hydrophilic properties of tablets and the hydrolysis of active pharmaceutical ingredient, acetylsalicylic acid (ASA), inside tablets by using tablets containing 20% MCC as an excipient. Different levels of grinding were applied to MCC prior to tablet formulation, to intentionally cause structural variation in the MCC. The water penetration and moisture absorbability of the tablets increased with decreasing the crystallinity of MCC through higher level of grinding. More importantly, the hydrolysis of ASA inside tablets was also accelerated. These results indicate that the crystallinity of MCC has crucial effects on the pharmaceutical properties of tablets even when the tablets contain a relatively small amount of MCC. Therefore, controlling the crystal structure of excipients is important for controlling product qualities. PMID:25583304

  6. Studying the effects of laccase treatment in a softwood dissolving pulp: cellulose reactivity and crystallinity.

    PubMed

    Quintana, Elisabet; Valls, Cristina; Barneto, Agustín G; Vidal, Teresa; Ariza, José; Roncero, M Blanca

    2015-03-30

    An enzymatic biobleaching sequence (LVAQPO) using a laccase from Trametes villosa in combination with violuric acid (VA) and then followed by a pressurized hydrogen peroxide treatment (PO) was developed and found to give high bleaching properties and meet dissolving pulp requirements: high brightness, low content of hemicellulose, satisfactory pulp reactivity, no significant cellulose degradation manifested by α-cellulose and HPLC, and brightness stability against moist heat ageing. The incorporation of a laccase-mediator system (LMS) to bleach sulphite pulps can be a good alternative to traditional bleaching processes since thermogravimetric analysis (TGA) showed that the laccase treatment prevented the adverse effect of hydrogen peroxide on fibre surface as observed during a conventional hydrogen peroxide bleaching treatment (PO). Although VA exhibited the best results in terms of bleaching properties, the performance of natural mediators, such as p-coumaric acid and syringaldehyde, was discussed in relation to changes in cellulose surface detected by TGA. PMID:25563944

  7. Effect of cellulose nanocrystals (CNCs) on crystallinity, mechanical and rheological properties of polypropylene/CNCs nanocomposites

    NASA Astrophysics Data System (ADS)

    Bagheriasl, D.; Carreau, P. J.; Dubois, C.; Riedl, B.

    2015-05-01

    Rheological and mechanical properties of polypropylene (PP)/CNCs nanocomposites were compared with those of nanocomposites containing poly(ethylene-co-vinyl alcohol) as a compatibilizer. The nanocomposites were prepared by a Brabender internal mixer at CNC contents of 5 wt%. The compression molded nanocomposite dog-bones and disks were characterized regarding their tensile and dynamic rheological behavior, respectively. The complex viscosity of the nanocomposites samples containing the compatibilizer were increased, slightly, compared to the non-compatibilized nanocomposite samples. Moreover, an overshoot in the transient start-up viscosity of the compatibilized nanocomposite was observed. The Young modulus of the nanocomposite samples containing the compatibilizer were increased up to ca. 37% compared to the neat PP. The elongation at break was decreased in all PP/CNC nanocomposite samples, but less for the nanocomposite samples containing the compatibilizer. The crystalline content of the PP in the nanocomposites and also the crystallization temperature were increased after compatibilization. These results could be ascribed to the efficiency of the poly(ethylene-co-vinyl alcohol) as a compatibilizer that favors a better dispersion and wetting of the hydrophilic CNCs within the hydrophobic PP.

  8. Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods.

    PubMed

    Agarwal, Umesh P; Reiner, Richard R; Ralph, Sally A

    2013-01-01

    Of the recently developed univariate and multivariate near-IR FT-Raman methods for estimating cellulose crystallinity, the former method was applied to a variety of lignocelluloses: softwoods, hardwoods, wood pulps, and agricultural residues/fibers. The effect of autofluorescence on the crystallinity estimation was minimized by solvent extraction or chemical treatment or both. Additionally, when the roles of lignin and hemicellulose in the Raman crystallinity assessment were investigated, it was found that syringyl lignin containing lignocelluloses generated somewhat higher crystallinity, whereas the presence of hemicellulose reduced the crystallinity. Overall, when autofluorescence was minimized and corrections made for hemicellulose and syringyl lignin contributions, the univariate Raman method performed well and estimated cellulose crystallinity accurately. Moreover, when the Raman and Segal-WAXS methods were compared, we observed that in the absence of significant fluorescence, the Raman method was influenced mostly by hemicellulose and syringyl lignin, whereas the Segal-WAXS was affected by various types of lignin and hemicellulose. It was concluded that the near-IR FT-Raman method with corrections for influences of syringyl lignin and hemicellulose can be used to correctly estimate cellulose crystallinity. PMID:23241140

  9. SIMULATION STUDIES OF THE WETTING OF CRYSTALLINE FACES OF COTTON CELLULOSE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Models of the surfaces of nano-sized cellulose crystals were constructed and a model droplet of water was placed on each. Then, the model atoms were given motion that corresponds to room temperature (a molecular dynamics simulation), and the spreading of the water over the surfaces was studied. Besi...

  10. Inverse Temperature-Dependent Pathway of Cellulose Decrystallization in Trifluoroacetic Acid

    SciTech Connect

    Zhao, Haibo; Holladay, John E.; Kwak, Ja Hun; Zhang, Z. Conrad

    2007-05-17

    Abstract An unusual inverse temperature-dependent pathway was observed during cellulose decrystallization in trifluoroacetic acid (TFA). Decreasing the TFA treatment temperature accelerated the cellulose decrystallization process. It took only 100 minutes to completely decrystallize cellulose at 0 °C in TFA, a result not achieved in 48 hours at 25°C in the same medium. There was neither cellulose esterification nor a change of cellulose macrofibril morphology by TFA treatment at 0 °C. Our IR data suggest that TFA molecules are present as cyclic dimers when they penetrate into crystalline cellulose regions, transforming crystalline cellulose to amorphous cellulose. The TFA cyclic dimer does not form strong hydrogen bonds with cellulose since the IR vibration frequency of the carbonyl group of the dimer molecule remained unchanged after the dimer diffused into the cellulose matrix. On the other hand, the rate of TFA penetration into the cellulose matrix was greatly retarded at higher temperatures where monomeric TFA esterification took place on the external surface of crystalline cellulose. At elevated temperatures esterification of TFA monomers with cellulose, as well as water released from the esterification reaction, inhibit the diffusion rate of TFA into the cellulose crystalline region and decreases the TFA swelling capability. Based on experimental observations, our study indicates that cellulose decrystallization does not require that solvent molecules form strong hydrogen bonds with cellulose.

  11. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: importance of post-synthetic functionalization of the carbon surface.

    PubMed

    To, Anh The; Chung, Po-Wen; Katz, Alexander

    2015-09-14

    The direct hydrolysis of crystalline cellulose to glucose in water without prior pretreatment enables the transformation of biomass into fuels and chemicals. To understand which features of a solid catalyst are most important for this transformation, the nanoporous carbon material MSC-30 was post-synthetically functionalized by oxidation. The most active catalyst depolymerized crystalline cellulose without prior pretreatment in water, providing glucose in an unprecedented 70 % yield. In comparison, virtually no reaction was observed with MSC-30, even when the reaction was conducted in aqueous solution at pH 2. As no direct correlations between the activity of this solid-solid reaction and internal-site characteristics, such as the β-glu adsorption capacity and the rate of catalytic hydrolysis of adsorbed β-glu strands, were observed, contacts of the external surface with the cellulose crystal are thought to be key for the overall efficiency. PMID:26276901

  12. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1{sup A903V} and CESA3{sup T942I} of cellulose synthase

    SciTech Connect

    Harris, Darby; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana; Petti, Caroalberto; Smilgies, Detlef-M; Estevez, Jose Manuel; Bonetta, Dario; Urbanowicz, Breeanna; Ehrhardt, David; Somerville, Chris; Rose, Jocelyn; Hong, Mei; DeBolt, Seth

    2012-01-08

    The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1{sup A903V} and CESA3{sup T942I} in Arabidopsis thaliana. Using {sup 13}C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1{sup A903V} and CESA3{sup T942I} displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1{sup A903V} and CESA3{sup T942I} have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.

  13. Hydrolytic effects of scaffolding proteins CbpB and CbpC on crystalline cellulose mediated by the major cellulolytic complex from Clostridium cellulovorans.

    PubMed

    Jeon, Sang Duck; Kim, Su Jung; Park, Sung Hyun; Choi, Gi-Wook; Han, Sung Ok

    2015-09-01

    The role of the scaffolding proteins, cellulose binding protein B and C (CbpB and CbpC, respectively) were identified in cellulolytic complex (cellulosome) of Clostridium cellulovorans for efficient degradation of cellulose. Recombinant CbpB and CbpC directly anchored to the cell surface of C. cellulovorans. In addition, CbpB and CbpC showed increased hydrolytic activity on crystalline cellulose incubated with exoglucanase S (ExgS) and endoglucanase Z (EngZ) compared with the activity of free enzymes. Moreover, the results showed synergistic effects of crystalline cellulose hydrolytic activity (1.8- to 2.2-fold) when CbpB and CbpC complex with ExgS and EngZ are incubated with cellulolytic complex containing mini-CbpA. The results suggest C. cellulovorans critically uses CbpB and CbpC, which can directly anchor cells for the hydrolysis of cellulosic material with the major cellulosome complex. PMID:25748018

  14. The anisotropy1 D604N Mutation in the Arabidopsis Cellulose Synthase1 Catalytic Domain Reduces Cell Wall Crystallinity and the Velocity of Cellulose Synthase Complexes1[W][OA

    PubMed Central

    Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T.; Galway, Moira E.; Mansfield, Shawn D.; Hocart, Charles H.; Wasteneys, Geoffrey O.

    2013-01-01

    Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1’s permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature. PMID:23532584

  15. Paradigmatic status of an endo- and exoglucanase and its effect on crystalline cellulose degradation

    PubMed Central

    2012-01-01

    Background Microorganisms employ a multiplicity of enzymes to efficiently degrade the composite structure of plant cell wall cellulosic polysaccharides. These remarkable enzyme systems include glycoside hydrolases (cellulases, hemicellulases), polysaccharide lyases, and the carbohydrate esterases. To accomplish this challenging task, several strategies are commonly observed either separately or in combination. These include free enzyme systems, multifunctional enzymes, and multi-enzyme self-assembled designer cellulosome complexes. Results In order to compare these different paradigms, we employed a synthetic biology approach to convert two different cellulases from the free enzymatic system of the well-studied bacterium, Thermobifida fusca, into bifunctional enzymes with different modular architectures. We then examined their performance compared to those of the combined parental free-enzyme and equivalent designer-cellulosome systems. The results showed that the cellulolytic activity displayed by the different architectures of the bifunctional enzymes was somewhat inferior to that of the wild-type free enzyme system. Conclusions The activity exhibited by the designer cellulosome system was equal or superior to that of the free system, presumably reflecting the combined proximity of the enzymes and high flexibility of the designer cellulosome components, thus enabling efficient enzymatic activity of the catalytic modules. PMID:23095278

  16. Decreased Core Crystallinity Facilitated Drug Loading in Polymeric Micelles without Affecting Their Biological Performances.

    PubMed

    Gou, Jingxin; Feng, Shuangshuang; Xu, Helin; Fang, Guihua; Chao, Yanhui; Zhang, Yu; Xu, Hui; Tang, Xing

    2015-09-14

    Cargo-loading capacity of polymeric micelles could be improved by reducing the core crystallinity and the improvement in the amount of loaded cargo was cargo-polymer affinity dependent. The effect of medium chain triglyceride (MCT) in inhibiting PCL crystallization was confirmed by DSC and polarized microscope. When incorporating MCT into polymeric micelles, the maximum drug loading of disulfiram (DSF), cabazitaxel (CTX), and TM-2 (a taxane derivative) increased from 2.61 ± 0.100%, 13.5 ± 0.316%, and 20.9 ± 1.57% to 8.34 ± 0.197%, 21.7 ± 0.951%, and 28.0 ± 1.47%, respectively. Moreover, the prepared oil-containing micelles (OCMs) showed well-controlled particle size, good stability, and decreased drug release rate. MCT incorporation showed little influence on the performances of micelles in cell studies or pharmacokinetics. These results indicated that MCT incorporation could be a core construction module applied in the delivery of hydrophobic drugs. PMID:26314832

  17. The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose.

    PubMed Central

    Linder, M; Teeri, T T

    1996-01-01

    Cellulose-binding domains (CBDs) bind specifically to cellulose, and form distinct domains of most cellulose degrading enzymes. The CBD-mediated binding of the enzyme has a fundamental role in the hydrolysis of the solid cellulose substrate. In this work we have investigated the reversibility and kinetics of the binding of the CBD from Trichoderma reesei cellobiohydrolase I on microcrystalline cellulose. The CBD was produced in Escherichia coli, purified, and radioactively labeled by reductive alkylation with 3H. Sensitive detection of the labeled CBD allowed more detailed analysis of its behavior than has been possible before, and important novel features were resolved. Binding of the CBD was found to be temperature sensitive, with an increased affinity at lower temperatures. The interaction of the CBD with cellulose was shown to be fully reversible and the CBD could be eluted from cellulose by simple dilution. The rate of exchange measured for the CBD-cellulose interaction compares well with the hydrolysis rate of cellobiohydrolase I, which is consistent with its proposed mode of action as a processive exoglucanase. PMID:8901566

  18. Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils

    PubMed Central

    Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity. PMID:23990797

  19. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    PubMed Central

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN%) varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls. PMID:22163913

  20. Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution.

    PubMed

    Chen, Xiong; Chen, Jinghuan; You, Tingting; Wang, Kun; Xu, Feng

    2015-07-10

    This study focused on the effect of cellulose crystal type on the dissolution of cellulose in aqueous NaOH/urea. Cellulose I, II, IIII, and IVI were prepared and characterized. Subsequently, the solubility of these cellulose samples in aqueous NaOH/urea was tested and the mechanism was determined by a combination of (1)H NMR spectroscopy and differential scanning calorimetry (DSC). The results indicated that, compared with the degree of polymerization (DP) and crystallinity index of cellulose, the cellulose crystal type had greater impact on cellulose dissolution. Specially, the solubility of the cellulose I, II, and III was progressively decreased, probably due to different hydrogen bond network and packing energy in it. The ability of cellulose I, II, III, and IV to form hydrogen bonds with sodium hydroxides was nearly the same, while gradually increased when cellulose preparations were associated with urea. Moreover, all the cellulose solutions showed good thermal stability. PMID:25857963

  1. Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers.

    PubMed

    Gerber, Lorenz; Zhang, Bo; Roach, Melissa; Rende, Umut; Gorzsás, András; Kumar, Manoj; Burgert, Ingo; Niittylä, Totte; Sundberg, Björn

    2014-09-01

    The biosynthesis of wood in aspen (Populus) depends on the metabolism of sucrose, which is the main transported form of carbon from source tissues. The largest fraction of the wood biomass is cellulose, which is synthesized from UDP-glucose. Sucrose synthase (SUS) has been proposed previously to interact directly with cellulose synthase complexes and specifically supply UDP-glucose for cellulose biosynthesis. To investigate the role of SUS in wood biosynthesis, we characterized transgenic lines of hybrid aspen with strongly reduced SUS activity in developing wood. No dramatic growth phenotypes in glasshouse-grown trees were observed, but chemical fingerprinting with pyrolysis-GC/MS, together with micromechanical analysis, showed notable changes in chemistry and ultrastructure of the wood in the transgenic lines. Wet chemical analysis showed that the dry weight percentage composition of wood polymers was not changed significantly. However, a decrease in wood density was observed and, consequently, the content of lignin, hemicellulose and cellulose was decreased per wood volume. The decrease in density was explained by a looser structure of fibre cell walls as shown by increased wall shrinkage on drying. The results show that SUS is not essential for cellulose biosynthesis, but plays a role in defining the total carbon incorporation to wood cell walls. PMID:24920335

  2. Binding and Movement of Individual Cel7A Cellobiohydrolases on Crystalline Cellulose Surfaces Revealed by Single-molecule Fluorescence Imaging*

    PubMed Central

    Jung, Jaemyeong; Sethi, Anurag; Gaiotto, Tiziano; Han, Jason J.; Jeoh, Tina; Gnanakaran, Sandrasegaram; Goodwin, Peter M.

    2013-01-01

    The efficient catalytic conversion of biomass to bioenergy would meet a large portion of energy requirements in the near future. A crucial step in this process is the enzyme-catalyzed hydrolysis of cellulose to glucose that is then converted into fuel such as ethanol by fermentation. Here we use single-molecule fluorescence imaging to directly monitor the movement of individual Cel7A cellobiohydrolases from Trichoderma reesei (TrCel7A) on the surface of insoluble cellulose fibrils to elucidate molecular level details of cellulase activity. The motion of multiple, individual TrCel7A cellobiohydrolases was simultaneously recorded with ∼15-nm spatial resolution. Time-resolved localization microscopy provides insights on the activity of TrCel7A on cellulose and informs on nonproductive binding and diffusion. We measured single-molecule residency time distributions of TrCel7A bound to cellulose both in the presence of and absence of cellobiose the major product and a potent inhibitor of Cel7A activity. Combining these results with a kinetic model of TrCel7A binding provides microscopic insight into interactions between TrCel7A and the cellulose substrate. PMID:23818525

  3. Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging.

    PubMed

    Jung, Jaemyeong; Sethi, Anurag; Gaiotto, Tiziano; Han, Jason J; Jeoh, Tina; Gnanakaran, Sandrasegaram; Goodwin, Peter M

    2013-08-16

    The efficient catalytic conversion of biomass to bioenergy would meet a large portion of energy requirements in the near future. A crucial step in this process is the enzyme-catalyzed hydrolysis of cellulose to glucose that is then converted into fuel such as ethanol by fermentation. Here we use single-molecule fluorescence imaging to directly monitor the movement of individual Cel7A cellobiohydrolases from Trichoderma reesei (TrCel7A) on the surface of insoluble cellulose fibrils to elucidate molecular level details of cellulase activity. The motion of multiple, individual TrCel7A cellobiohydrolases was simultaneously recorded with ∼15-nm spatial resolution. Time-resolved localization microscopy provides insights on the activity of TrCel7A on cellulose and informs on nonproductive binding and diffusion. We measured single-molecule residency time distributions of TrCel7A bound to cellulose both in the presence of and absence of cellobiose the major product and a potent inhibitor of Cel7A activity. Combining these results with a kinetic model of TrCel7A binding provides microscopic insight into interactions between TrCel7A and the cellulose substrate. PMID:23818525

  4. How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis

    PubMed Central

    2011-01-01

    Background In order to generate biofuels, insoluble cellulosic substrates are pretreated and subsequently hydrolyzed with cellulases. One way to pretreat cellulose in a safe and environmentally friendly manner is to apply, under mild conditions, non-hydrolyzing proteins such as swollenin - naturally produced in low yields by the fungus Trichoderma reesei. To yield sufficient swollenin for industrial applications, the first aim of this study is to present a new way of producing recombinant swollenin. The main objective is to show how swollenin quantitatively affects relevant physical properties of cellulosic substrates and how it affects subsequent hydrolysis. Results After expression in the yeast Kluyveromyces lactis, the resulting swollenin was purified. The adsorption parameters of the recombinant swollenin onto cellulose were quantified for the first time and were comparable to those of individual cellulases from T. reesei. Four different insoluble cellulosic substrates were then pretreated with swollenin. At first, it could be qualitatively shown by macroscopic evaluation and microscopy that swollenin caused deagglomeration of bigger cellulose agglomerates as well as dispersion of cellulose microfibrils (amorphogenesis). Afterwards, the effects of swollenin on cellulose particle size, maximum cellulase adsorption and cellulose crystallinity were quantified. The pretreatment with swollenin resulted in a significant decrease in particle size of the cellulosic substrates as well as in their crystallinity, thereby substantially increasing maximum cellulase adsorption onto these substrates. Subsequently, the pretreated cellulosic substrates were hydrolyzed with cellulases. Here, pretreatment of cellulosic substrates with swollenin, even in non-saturating concentrations, significantly accelerated the hydrolysis. By correlating particle size and crystallinity of the cellulosic substrates with initial hydrolysis rates, it could be shown that the swollenin

  5. Preparing cationic cotton linter cellulose with high substitution degree by ultrasonic treatment.

    PubMed

    Zhang, Fulong; Pang, Zhiqiang; Dong, Cuihua; Liu, Zong

    2015-11-01

    As an important cellulose derivative, cationic cellulose has becoming an attractive material. However, it remains challenging to produce cationic cellulose with high substitute degree. In this paper, we successfully increased the substitute degree of cationic cellulose by introducing ultrasonic treatment, which efficiently breaks hydrogen bonds of the chemical structure of cationic cellulose. Properties of cationic cellulose were studied by scanning electron spectroscope (SEM), contact angle, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Experimental results show that the cationic cellulose has rougher surface and lower crystallinity degree as compared to the original sample. TGA analysis verifies that the thermostability of CLC decreases after the cationic modification. The residual of the cationic cellulose (25 wt%) after pyrolysis increases significantly as compared to that of the original cellulose (15 wt%). PMID:26256343

  6. Ethyl cellulose amphiphilic graft copolymers with LCST-UCST transition: Opposite self-assembly behavior, hydrophilic-hydrophobic surface and tunable crystalline morphologies.

    PubMed

    Yuan, Hua; Chi, Hai; Yuan, Weizhong

    2016-08-20

    Novel and well-defined graft copolymer with block copolymer side chain, ethyl cellulose-graft-(poly(ε-caprolactone)-block-poly(N,N-dimethylaminoethylmeth acrylate)) (EC-g-(PCL-b-PDMAEMA)) with a lower critical solution temperature (LCST) was successfully synthesized via the combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). EC-g-(PCL-b-PDMAEMA) copolymers with various PCL-b-PDMAEMA block lengths were obtained by adjusting the molar ratios of the N,N-dimethylaminoethyl methacrylate monomer to ε-caprolactone. The EC-g-(PCL-b-PDMAPS) with an upper critical solution temperature (UCST) was obtained via facile quaternization reaction of PDMAEMA with 1,3-propane sultone. EC-g-(PCL-b-PDMAEMA) and EC-g-(PCL-b-PDMAPS) micelle solutions showed opposite thermoresponsiviness and hydrophilic-hydrophobic surface. Moreover, the tunable crystalline morphologies could be obtained from these graft copolymers through changing the polymer structure and PDMAEMA contents. PMID:27178932

  7. Biomass Enzymatic Saccharification Is Determined by the Non-KOH-Extractable Wall Polymer Features That Predominately Affect Cellulose Crystallinity in Corn

    PubMed Central

    Wu, Leiming; Wang, Hongwu; Wu, Zhiliang; Li, Ming; Huang, Pengyan; Feng, Shengqiu; Chen, Peng; Zheng, Yonglian; Peng, Liangcai

    2014-01-01

    Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at p<0.05 & 0.01, but hemicelluloses did not show any significant impact on hexoses yields. Comparative analysis of five standard pairs of corn samples indicated that cellulose and lignin should not be the major factors on biomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%–23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara) and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at p<0.05, leading to a high biomass digestibility. Hence, this study could suggest an optimal approach for genetic modification of plant cell walls in bioenergy corn. PMID:25251456

  8. Molecular and Biochemical Analyses of CbCel9A/Cel48A, a Highly Secreted Multi-Modular Cellulase by Caldicellulosiruptor bescii during Growth on Crystalline Cellulose

    PubMed Central

    Yi, Zhuolin; Su, Xiaoyun; Revindran, Vanessa; Mackie, Roderick I.; Cann, Isaac

    2013-01-01

    During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases

  9. Ethyl cellulose nanoparticles as a platform to decrease ulcerogenic potential of piroxicam: formulation and in vitro/in vivo evaluation

    PubMed Central

    El-Habashy, Salma E; Allam, Ahmed N; El-Kamel, Amal H

    2016-01-01

    Nanoparticles (NPs) have long gained significant interest for their use in various drug formulations in order to increase bioavailability, prolong drug release, and decrease side effects of highly toxic drugs. The objective of this investigation was to evaluate the potential of ethyl cellulose-based NPs (EC-NPs) to modulate the release and reduce ulcerogenicity of piroxicam (PX) after oral administration. PX-loaded EC-NPs were prepared by solvent evaporation technique using different stabilizers at three concentration levels. Morphological examination of selected formulas confirmed the formation of spherical NPs with slightly porous surface. Formulation containing poloxamer-stabilized EC-NPs (P188/0.2), having a particle size of 240.26±29.24 nm, polydispersity index of 0.562±0.030, entrapment efficiency of 85.29%±1.57%, and modulated release of PX (88% after 12 hours), was selected as the optimum formulation. Differential scanning calorimetry demonstrated the presence of PX in an amorphous form in the NPs. Fourier-transform infrared spectroscopy revealed the possible formation of hydrogen bond and the absence of chemical interaction. In vivo study, evaluation of pharmacokinetic parameters, evaluation of gastric irritation potential, and histological examination were conducted after administration of the selected formulation. Time to reach maximum plasma concentration, tmax, of poloxamer-stabilized EC-NPs was significantly higher than that of Feldene® 20 mg capsules (P≤0.001). Encapsulation of the acidic, gastric offender PX into NPs managed to significantly suppress gastric ulceration potential in rats (P≤0.05) as compared to that of PX suspension. A reduction of 66% in mean ulcer index was observed. In conclusion, poloxamer-stabilized EC-NPs (P188/0.2) had a significant potential of offsetting deleterious side effects common in PX use. PMID:27307735

  10. Assessing the potential to decrease the Gulf of Mexico hypoxic zone with Midwest US perennial cellulosic feedstock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this research is to determine the changes in streamflow, dissolved inorganic nitrogen (DIN) leaching and export to the Gulf of Mexico associated with a range of large-scale dedicated perennial cellulosic bioenergy production scenarios within in the Mississippi-Atchafalaya River Basin (MA...

  11. Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose

    DOE PAGESBeta

    Chung, Daehwan; Young, Jenna; Cha, Minseok; Brunecky, Roman; Bomble, Yannick J.; Himmel, Michael E.; Westpheling, Janet

    2015-08-13

    The Caldicellulosiruptor bescii genome encodes a potent set of carbohydrate-active enzymes (CAZymes), found primarily as multi-domain enzymes that exhibit high cellulolytic and hemicellulolytic activity on and allow utilization of a broad range of substrates, including plant biomass without conventional pretreatment. CelA, the most abundant cellulase in the C. bescii secretome, uniquely combines a GH9 endoglucanase and a GH48 exoglucanase in one protein. The most effective commercial enzyme cocktails used in vitro to pretreat biomass are derived from fungal cellulases (cellobiohydrolases, endoglucanases and a β-d-glucosidases) that act synergistically to release sugars for microbial conversion. The C. bescii genome contains six GH5more » domains in five different open reading frames. Four exist in multi-domain proteins and two as single catalytic domains. E1 is a GH5 endoglucanase reported to have high specific activity and simple architecture and is active at the growth temperature of C. bescii. E1 is an endo-1,4-β-glucanase linked to a family 2 carbohydrate-binding module shown to bind primarily to cellulosic substrates. As a result, we tested if the addition of this protein to the C. bescii secretome would improve its cellulolytic activity.« less

  12. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  13. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  14. Label-free Quantitative Proteomics for the Extremely Thermophilic Bacterium Caldicellulosiruptor obsidiansis Reveal Distinct Abundance Patterns upon Growth on Cellobiose, Crystalline Cellulose, and Switchgrass

    SciTech Connect

    Giannone, Richard J; Lochner, Adriane; Keller, Martin; Antranikian, Garabed; Graham, David E; Hettich, Robert {Bob} L

    2011-01-01

    Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47-0549 together with the COB47-1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47-0096 and COB47-0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 {beta}-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation.

  15. Physical properties of agave cellulose graft polymethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan

    2013-11-01

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm-1 which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  16. Physical properties of agave cellulose graft polymethyl methacrylate

    SciTech Connect

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan

    2013-11-27

    The grafting polymerization of methyl methacrylate and Agave cellulose was prepared and their structural analysis and morphology were investigated. The grafting reaction was carried out in an aqueous medium using ceric ammonium nitrate as an initiator. The structural analysis of the graft copolymers was carried out by Fourier transform infrared and X-ray diffraction. The graft copolymers were also characterized by field emission scanning electron microscopy (FESEM). An additional peak at 1732 cm{sup −1} which was attributed to the C=O of ester stretching vibration of poly(methyl methacrylate), appeared in the spectrum of grafted Agave cellulose. A slight decrease of crystallinity index upon grafting was found from 0.74 to 0.68 for cellulose and grafted Agave cellulose, respectively. Another evidence of grafting showed in the FESEM observation, where the surface of the grafted cellulose was found to be roughed than the raw one.

  17. Cellobiose dehydrogenase in cellulose degradation

    SciTech Connect

    Eriksson, L.; Igarashi, Kiyohiko; Samejima, Masahiro

    1996-10-01

    Cellobiose dehydrogenase is produced by a variety of fungi. Although it was already discovered during the 70`s, it`s role in cellulose and lignin degradation is yet ambiguous. The enzyme contains both heme and FAD as prosthetic groups, and seems to have a domain specifically designed to bind the enzyme to cellulose. It`s affinity to amorphous cellulose is higher than to crystalline cellulose. We will report on the binding behavior of the enzyme, its usefulness in elucidation of cellulose structures and also, possibilities for applications such as its use in measuring individual and synergistic mechanisms for cellulose degradation by endo- and exo-glucanases.

  18. X-ray Studies of Regenerated Cellulose Fibers Wet Spun from Cotton Linter Pulp in NaOH/Thiourea Aqueous Solutions

    SciTech Connect

    Chen,X.; Burger, C.; Fang, D.; Ruan, D.; Zhang, L.; Hsiao, B.; Chu, B.

    2006-01-01

    Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. The crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.

  19. Inhibitory Effect of Crocin(s) on Lens α-Crystallin Glycation and Aggregation, Results in the Decrease of the Risk of Diabetic Cataract.

    PubMed

    Bahmani, Fereshteh; Bathaie, Seyedeh Zahra; Aldavood, Seyed Javid; Ghahghaei, Arezou

    2016-01-01

    The current study investigates the inhibitory effect of crocin(s), also known as saffron apocarotenoids, on protein glycation and aggregation in diabetic rats, and α-crystallin glycation. Thus, crocin(s) were administered by intraperitoneal injection to normal and streptozotocin-induced diabetic rats. The cataract progression was recorded regularly every two weeks and was classified into four stages. After eight weeks, the animals were sacrificed and the parameters involved in the cataract formation were measured in the animal lenses. Some parameters were also determined in the serum and blood of the rats. In addition, the effect of crocin(s) on the structure and chaperone activity of α-crystallin in the presence of glucose was studied by different methods. Crocin(s) lowered serum glucose levels of diabetic rats and effectively maintained plasma total antioxidants, glutathione levels and catalase activity in the lens of the animals. In the in vitro study, crocin(s) inhibited α-crystallin glycation and aggregation. Advanced glycation end products fluorescence, hydrophobicity and protein cross-links were also decreased in the presence of crocin(s). In addition, the decreased chaperone activity of α-crystallin in the presence of glucose changed and became close to the native value by the addition of crocin(s) in the medium. Crocin(s) thus showed a powerful inhibitory effect on α-crystallin glycation and preserved the structure-function of this protein. Crocin(s) also showed the beneficial effects on prevention of diabetic cataract. PMID:26821002

  20. Increased understanding of cellulose crystallinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    According to the International Union of Crystallography, “material is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering.”...

  1. Effects of autohydrolysis of Eucalyptus urograndis and Eucalyptus grandis on influence of chemical components and crystallinity index.

    PubMed

    da Silva Morais, Alaine Patrícia; Sansígolo, Cláudio Angeli; de Oliveira Neto, Mario

    2016-08-01

    Samples of Eucalyptus urograndis and Eucalyptus grandis sawdust were autohydrolyzed in aqueous conditions to reach temperatures in the range 110-190°C and reaction times of 0-150min in a minireactor. In each minireactor were used a liquor:wood ratio (10:1 L:kg dry wood), in order to assess the effects of the autohydrolysis severity and the crystalline properties of cellulose. The content of extractives, lignin, holocellulose, cellulose, hemicelluloses and crystallinity index obtained from the solid fraction after autohydrolysis of sawdust were determined. This study demonstrated that the hemicelluloses were extensively removed at 170 and 190°C, whereas cellulose was partly degraded to Eucalyptus urograndis and Eucalyptus grandis sawdust. The lignin content decreased, while the extractives content increased. It was defined that during autohydrolysis, had a slight decreased on crystalline structure of cellulose of Eucalyptus urogandis and Eucalyptus grandis. PMID:27187566

  2. Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood.

    PubMed

    Abushammala, Hatem; Krossing, Ingo; Laborie, Marie-Pierre

    2015-12-10

    We report for the first time the direct extraction of cellulose nanocrystals (CNCs) from wood by means of a 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) treatment. A native cellulosic product could be recovered in 44% yield with respect to wood cellulose content. The product was analyzed for morphological (TEM, AFM, XRD), chemical (FTIR, (13)C CP/MAS NMR), thermal (DSC, TGA) and surface properties (Zeta potential, contact angle). These analyses evidenced the presence of partially acetylated (surface DS=0.28) nanocrystals of native cellulose I microstructure, with a crystallinity index of about 75% and aspect ratio of 65. Direct production of CNCs from wood is ascribed to the simultaneous capability of [EMIM][OAc] to (1) dissolve lignin in situ while only swelling cellulose, (2) decrease intermolecular cohesion in wood via acetylation, and (3) to catalyze cellulose hydrolysis. PMID:26428164

  3. The Arabidopsis COBRA Protein Facilitates Cellulose Crystallization at the Plasma Membrane*

    PubMed Central

    Sorek, Nadav; Sorek, Hagit; Kijac, Aleksandra; Szemenyei, Heidi J.; Bauer, Stefan; Hématy, Kian; Wemmer, David E.; Somerville, Chris R.

    2014-01-01

    Mutations in the Arabidopsis COBRA gene lead to defects in cellulose synthesis but the function of COBRA is unknown. Here we present evidence that COBRA localizes to discrete particles in the plasma membrane and is sensitive to inhibitors of cellulose synthesis, suggesting that COBRA and the cellulose synthase complex reside in close proximity on the plasma membrane. Live-cell imaging of cellulose synthesis indicated that, once initiated, cellulose synthesis appeared to proceed normally in the cobra mutant. Using isothermal calorimetry, COBRA was found to bind individual β1–4-linked glucan chains with a KD of 3.2 μm. Competition assays suggests that COBRA binds individual β1–4-linked glucan chains with higher affinity than crystalline cellulose. Solid-state nuclear magnetic resonance studies of the cell wall of the cobra mutant also indicated that, in addition to decreases in cellulose amount, the properties of the cellulose fibrils and other cell wall polymers differed from wild type by being less crystalline and having an increased number of reducing ends. We interpret the available evidence as suggesting that COBRA facilitates cellulose crystallization from the emerging β1–4-glucan chains by acting as a “polysaccharide chaperone.” PMID:25331944

  4. The Arabidopsis COBRA protein facilitates cellulose crystallization at the plasma membrane.

    PubMed

    Sorek, Nadav; Sorek, Hagit; Kijac, Aleksandra; Szemenyei, Heidi J; Bauer, Stefan; Hématy, Kian; Wemmer, David E; Somerville, Chris R

    2014-12-12

    Mutations in the Arabidopsis COBRA gene lead to defects in cellulose synthesis but the function of COBRA is unknown. Here we present evidence that COBRA localizes to discrete particles in the plasma membrane and is sensitive to inhibitors of cellulose synthesis, suggesting that COBRA and the cellulose synthase complex reside in close proximity on the plasma membrane. Live-cell imaging of cellulose synthesis indicated that, once initiated, cellulose synthesis appeared to proceed normally in the cobra mutant. Using isothermal calorimetry, COBRA was found to bind individual β1-4-linked glucan chains with a KD of 3.2 μm. Competition assays suggests that COBRA binds individual β1-4-linked glucan chains with higher affinity than crystalline cellulose. Solid-state nuclear magnetic resonance studies of the cell wall of the cobra mutant also indicated that, in addition to decreases in cellulose amount, the properties of the cellulose fibrils and other cell wall polymers differed from wild type by being less crystalline and having an increased number of reducing ends. We interpret the available evidence as suggesting that COBRA facilitates cellulose crystallization from the emerging β1-4-glucan chains by acting as a "polysaccharide chaperone." PMID:25331944

  5. Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose.

    PubMed

    Bertran, M S; Dale, B E

    1985-02-01

    Cellulose samples from cotton and wood pulps with varying low degrees of crystallinity (mechanically decrystallized) were studied. The influence of initial cellulose crystallinity on sugar yield after enzymatic hydrolysis was determined by two different methods. As expected, samples with low crystallinity were much more accessible to enzymatic attack and glucose yields were higher than were samples of high initial crystallinity. Hydrolysis of cellulose seems more dependent on cellulose crystallinity than on the source of cellulose. It is known that decrystallized or amorphous cellulose can recrystallize under proper conditions, e.g., during acid hydrolysis. The data reported here also reveal some recrystallization during enzymatic hydrolysis which probably occurs simulataneously with a selective enzymatic attack on the amorphous regions of cellulose. In all cases, the amorphous celluloses recrystallized in the original lattice form, that of native cellulose. PMID:18553653

  6. COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in arabidopsis seed coat mucilage secretory cells.

    PubMed

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J; Harpaz-Saad, Smadar

    2015-03-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. PMID:25583925

  7. Method of saccharifying cellulose

    DOEpatents

    Johnson, Eric A.; Demain, Arnold L.; Madia, Ashwin

    1985-09-10

    A method of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of a reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  8. Method of saccharifying cellulose

    DOEpatents

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  9. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. PMID:26344323

  10. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    PubMed

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases. PMID:26799780

  11. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  12. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  13. All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application.

    PubMed

    Ghaderi, Moein; Mousavi, Mohammad; Yousefi, Hossein; Labbafi, Mohsen

    2014-04-15

    All-cellulose nanocomposite (ACNC) film was produced from sugarcane bagasse nanofibers using N,N-dimethylacetamide/lithium chloride solvent. The average diameter of bagasse fibers (14 μm) was downsized to 39 nm after disk grinding process. X-ray diffraction showed that apparent crystallinity and crystallite size decreased relatively to an increased duration of dissolution time. Thermogravimetric analysis confirmed that thermal stability of the ACNC was slightly less than that of the pure cellulose nanofiber sheet. Tensile strength of the fiber sheet, nanofiber sheet and ACNC prepared with 10 min dissolution time were 8, 101 and 140 MPa, respectively. Water vapor permeability (WVP) of the ACNC film increased relatively to an increased duration of dissolution time. ACNC can be considered as a multi-performance material with potential for application in cellulose-based food packaging owing to its promising properties (tough, bio-based, biodegradable and acceptable levels of WVP). PMID:24607160

  14. Cyclic AMP--dependent aggregation of Swiss 3T3 cells on a cellulose substratum (Cuprophan) and decreased cell membrane Rho A.

    PubMed

    Faucheux, N; Nagel, M D

    2002-06-01

    Cell surface integrin receptors and Rho family GTPases function together to mediate adhesion-dependent events in cells. We have shown that the attachment of Swiss 3T3 cells to a cellulose substratum (Cuprophan, CU) activates adenylyl cyclase, which catalyses cyclic AMP (cAMP) production. CU adsorbs vitronectin poorly, prevents cell spreading and causes cells to aggregate. By contrast, spread cells on polystyrene (PS) contain low cAMP concentrations. We have now investigated the shift between integrin signalling-Rho A and the cAMP pathway. CU did not support the formation of focal contacts and stress fibres. The plasma membranes of cells on CU had less Rho A than those of cells on PS. Also, blocking vitronectin (VN) or fibronectin (FN)-integrin receptors with echistatin, which activates cAMP production, decreased Rho A in the plasma membrane of cells attached to PS. But adsorption of VN or FN onto CU, which limits the production of the cAMP, increased the cell membrane Rho A. Adding an inhibitor of cAMP-dependent protein kinase PKA to the medium also increased the plasma membrane Rho A in aggregated cells attached to CU. These results highlight the importance of cAMP, generated by cell attachment to substratum, as a gating element in integrin-Rho A signalling. PMID:12013176

  15. Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride.

    PubMed

    Han, Jingquan; Zhou, Chengjun; French, Alfred D; Han, Guangping; Wu, Qinglin

    2013-05-15

    Regenerated cellulose nanoparticles (RCNs) including both elongated fiber and spherical structures were prepared from microcrystalline cellulose (MCC) and cotton using 1-butyl-3-methylimidazolium chloride followed by high-pressure homogenization. The crystalline structure of RCNs was cellulose II in contrast to the cellulose I form of the starting materials. Also, the RCNs have decreased crystallinity and crystallite size. The elongated RCNs produced from cotton and MCC had average lengths of 123 ± 34 and 112 ± 42 nm, and mean widths of 12 ± 5 and 12 ± 3 nm, respectively. The average diameter of spherical RCNs from MCC was 118 ± 32nm. The dimensions of the various RCNs were all well fitted with an asymmetrical log-normal distribution function. The RCN has a two-step pyrolysis, different from raw MCC and cotton that have a one-step process. PMID:23544632

  16. Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro.

    PubMed Central

    Weimer, P J; Lopez-Guisa, J M; French, A D

    1990-01-01

    The digestion kinetics of a variety of pure celluloses were examined by using an in vitro assay employing mixed ruminal microflora and a modified detergent extraction procedure to recover residual cellulose. Digestion of all of the celluloses was described by a discontinuous first-order rate equation to yield digestion rate constants and discrete lag times. These kinetic parameters were compared with the relative crystallinity indices and estimated accessible surface areas of the celluloses. For type I celluloses having similar crystallinities and simple nonaggregating particle morphologies, the fermentation rate constants displayed a strong positive correlation (r2 = 0.978) with gross specific surface area; lag time exhibited a weaker, negative correlation (r2 = 0.930) with gross specific surface area. Crystallinity was shown to have a relatively minor effect on the digestion rate and lag time. Swelling of microcrystalline cellulose with 72 to 77% phosphoric acid yielded substrates which were fermented slightly more rapidly than the original material. However, treatment with higher concentrations of phosphoric acid resulted in a more slowly fermented substrate, despite a decrease in crystallinity and an increase in pore volume. This reduced fermentation rate was apparently due to the partial conversion of the cellulose from the type I to the type II allomorph, since mercerized (type II) cellulose was also fermented more slowly, and only after a much longer lag period. The results are consistent with earlier evidence for the cell-associated nature of cellulolytic enzymes of ruminal bacteria and suggest that ruminal microflora do not rapidly adapt to utilization of celluloses with altered unit cell structures. PMID:2403252

  17. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment

    DOE PAGESBeta

    Sun, Qining; Foston, Marcus; Meng, Xianzhi; Sawada, Daisuke; Pingali, Sai Venkatesh; O’Neill, Hugh M.; Li, Hongjia; Wyman, Charles E.; Langan, Paul; Ragauskas, Art J.; et al

    2014-10-14

    Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have largemore » implications with respect to enzymatic deconstruction efforts. Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated with dilute sulfuric acid (0.10 M) at 160°C for 15 minutes and 35 minutes, respectively . Following extensive characterization, the partially delignified biomass displayed more significant changes in cellulose ultrastructure following DAP than the native untreated biomass. With respect to the native untreated poplar, delignified poplar after DAP (in which approximately 40% lignin removal occurred) experienced: increased cellulose accessibility indicated by increased Simons’ stain (orange dye) adsorption from 21.8 to 72.5 mg/g, decreased cellulose weight-average degree of polymerization (DPw) from 3087 to 294 units, and increased cellulose crystallite size from 2.9 to 4.2 nm. These changes following DAP ultimately increased enzymatic sugar yield from 10 to 80%. We conclude that, overall, the results indicate a strong influence of lignin content on cellulose ultrastructural changes occurring during DAP. With the reduction of lignin content during DAP, the enlargement of

  18. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment

    SciTech Connect

    Sun, Qining; Foston, Marcus; Meng, Xianzhi; Sawada, Daisuke; Pingali, Sai Venkatesh; O’Neill, Hugh M.; Li, Hongjia; Wyman, Charles E.; Langan, Paul; Ragauskas, Art J.; Kumar, Rajeev

    2014-10-14

    Obtaining a better understanding of the complex mechanisms occurring during lignocellulosic deconstruction is critical to the continued growth of renewable biofuel production. A key step in bioethanol production is thermochemical pretreatment to reduce plant cell wall recalcitrance for downstream processes. Previous studies of dilute acid pretreatment (DAP) have shown significant changes in cellulose ultrastructure that occur during pretreatment, but there is still a substantial knowledge gap with respect to the influence of lignin on these cellulose ultrastructural changes. This study was designed to assess how the presence of lignin influences DAP-induced changes in cellulose ultrastructure, which might ultimately have large implications with respect to enzymatic deconstruction efforts. Native, untreated hybrid poplar (Populus trichocarpa x Populus deltoids) samples and a partially delignified poplar sample (facilitated by acidic sodium chlorite pulping) were separately pretreated with dilute sulfuric acid (0.10 M) at 160°C for 15 minutes and 35 minutes, respectively . Following extensive characterization, the partially delignified biomass displayed more significant changes in cellulose ultrastructure following DAP than the native untreated biomass. With respect to the native untreated poplar, delignified poplar after DAP (in which approximately 40% lignin removal occurred) experienced: increased cellulose accessibility indicated by increased Simons’ stain (orange dye) adsorption from 21.8 to 72.5 mg/g, decreased cellulose weight-average degree of polymerization (DPw) from 3087 to 294 units, and increased cellulose crystallite size from 2.9 to 4.2 nm. These changes following DAP ultimately increased enzymatic sugar yield from 10 to 80%. We conclude that, overall, the results indicate a strong influence of lignin content on cellulose ultrastructural changes occurring during DAP. With the reduction of lignin content during DAP, the enlargement of

  19. Isolation of cellulose fibers from kenaf using electron beam

    NASA Astrophysics Data System (ADS)

    Shin, Hye Kyoung; Pyo Jeun, Joon; Bin Kim, Hyun; Hyun Kang, Phil

    2012-08-01

    Cellulose fibers were isolated from a kenaf bast fiber using a electron beam irradiation (EBI) treatment. The methods of isolation were based on a hot water treatment after EBI and two-step bleaching processes. FT-IR spectroscopy demonstrated that the content of lignin and hemicellulose in the bleached cellulose fibers treated with various EBI doses decreased with increasing doses of EBI. Specifically, the lignin in the bleached cellulose fibers treated at 300 kGy, was almost completely removed. Moreover, XRD analyses showed that the bleached cellulose fibers treated at 300 kGy presented the highest crystallinity of all the samples treated with EBI. Finally, the morphology of the bleached fiber was characterized by SEM imagery, and the studies showed that the separated degree of bleached cellulose fibers treated with various EBI doses increased with an increase of EBI dose, and the bleached cellulose fibers obtained by EBI treatment at 300 kGy was separated more uniformly than the bleached cellulose fiber obtained by alkali cooking with non-irradiated kenaf fiber.

  20. Cellulose based hybrid hydroxylated adducts for polyurethane foams

    NASA Astrophysics Data System (ADS)

    De Pisapia, Laura; Verdolotti, Letizia; Di Mauro, Eduardo; Di Maio, Ernesto; Lavorgna, Marino; Iannace, Salvatore

    2012-07-01

    Hybrid flexible polyurethane foams (HPU) were synthesized by using a hybrid hydroxilated adduct (HHA) based on renewable resources. In particular the HHA was obtained by dispersing cellulose wastes in colloidal silica at room temperature, pressure and humidity. The colloidal silica was selected for its ability of modifying the cellulose structure, by inducing a certain "destructurization" of the crystalline phase, in order to allow cellulose to react with di-isocyanate for the final synthesis of the polyurethane foam. In fact, cellulose-polysilicate complexes are engaged in the reaction with the isocyanate groups. This study provides evidence of the effects of the colloidal silica on the cellulose structure, namely, a reduction of the microfiber cellulose diameter and the formation of hydrogen bonds between the polysilicate functional groups and the hydroxyl groups of the cellulose, as assessed by IR spectroscopy and solid state NMR. The HHA was added to a conventional polyol in different percentages (between 5 and 20%) to synthesize HPU in presence of catalysts, silicone surfactant and diphenylmethane diisocyanate (MDI). The mixture was expanded in a mold and cured for two hours at room temperature. Thermal analysis, optical microscopy and mechanical tests were performed on the foams. The results highlighted an improvement of thermal stability and a decrease of the cell size with respect neat polyurethane foam. Mechanical tests showed an improvement of the elastic modulus and of the damping properties with increasing HHA amount.

  1. COBRA-LIKE2, a Member of the Glycosylphosphatidylinositol-Anchored COBRA-LIKE Family, Plays a Role in Cellulose Deposition in Arabidopsis Seed Coat Mucilage Secretory Cells1,2[OPEN

    PubMed Central

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J.; Harpaz-Saad, Smadar

    2015-01-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. PMID:25583925

  2. Ice formation in amorphous cellulose

    NASA Astrophysics Data System (ADS)

    Czihak, C.; Müller, M.; Schober, H.; Vogl, G.

    2000-03-01

    We investigate the formation of ice in wet amorphous cellulose in the temperature range of 190 K⩽T⩽280 K. Due to voids and pores in the cellulose film, water molecules are able to form crystalline aggregates. Beyond that, water is able to penetrate between cellulose chains where it can adsorb to hydroxyl side groups. From diffraction data we suggest an aggregation of low-density amorphous (lda) ice at cellulose surfaces. The formation of lda ice shows a clear temperature dependence which will be discussed together with recent inelastic neutron scattering results.

  3. Cellulose-silica aerogels.

    PubMed

    Demilecamps, Arnaud; Beauger, Christian; Hildenbrand, Claudia; Rigacci, Arnaud; Budtova, Tatiana

    2015-05-20

    Aerogels based on interpenetrated cellulose-silica networks were prepared and characterised. Wet coagulated cellulose was impregnated with silica phase, polyethoxydisiloxane, using two methods: (i) molecular diffusion and (ii) forced flow induced by pressure difference. The latter allowed an enormous decrease in the impregnation times, by almost three orders of magnitude, for a sample with the same geometry. In both cases, nanostructured silica gel was in situ formed inside cellulose matrix. Nitrogen adsorption analysis revealed an almost threefold increase in pores specific surface area, from cellulose aerogel alone to organic-inorganic composite. Morphology, thermal conductivity and mechanical properties under uniaxial compression were investigated. Thermal conductivity of composite aerogels was lower than that of cellulose aerogel due to the formation of superinsulating mesoporous silica inside cellulose pores. Furthermore, composite aerogels were stiffer than each of reference aerogels. PMID:25817671

  4. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    SciTech Connect

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-11-27

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF{sub 3}SO{sub 3} were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10{sup −7} Scm{sup −1} upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  5. Tensile and characterization properties of regenerated cellulose empty fruit bunch biocomposite films using ionic liquid

    NASA Astrophysics Data System (ADS)

    Husseinsyah, Salmah; Zailuddin, Nur Liyana Izyan; Li, Chew Li; Mostapha @ Zakaria, Marliza

    2016-07-01

    The regenerated cellulose (RC) empty fruit bunch (EFB) biocomposite films were prepared using ionic liquid. The tensile strength and modulus of elasticity of regenerated cellulose biocomposite films achieved maximum value at 2 wt% of EFB contents while at 3 and 4 wt% of EFB the tensile strength and modulus of elasticity tend to decreased. The elongation at break tends to decreased at 2 wt% of EFB content but increased at 3 and 4 wt% of EFB contents. The crystallinity index reaches maximum at 2 wt% EFB content, followed by declination with further addition of EFB content. The morphology study illustrated that regenerated cellulose biocomposite films at 2 wt% of EFB contents exhibit a smooth surface that suggested the reinforcement was surrounded by the regenerated cellulose matrix, while at 4 wt% EFB content shows a rough morphology.

  6. New Insights into Hydrogen Bonding and Stacking Interactions in Cellulose

    SciTech Connect

    Langan, Paul

    2011-01-01

    In this quantum chemical study, we explore hydrogen bonding (H-bonding) and stacking interactions in different crystalline cellulose allomorphs, namely cellulose I and cellulose IIII. We consider a model system representing a cellulose crystalline core, made from six cellobiose units arranged in three layers with two chains per layer. We calculate the contributions of intrasheet and intersheet interactions to the structure and stability in both cellulose I and cellulose IIII crystalline cores. Reference structures for this study were generated from molecular dynamics simulations of water-solvated cellulose I and IIII fibrils. A systematic analysis of various conformations describing different mutual orientations of cellobiose units is performed using the hybrid density functional theory (DFT) with the M06-2X with 6-31+G (d, p) basis sets. We dissect the nature of the forces that stabilize the cellulose I and cellulose IIII crystalline cores and quantify the relative strength of H-bonding and stacking interactions. Our calculations demonstrate that individual H-bonding interactions are stronger in cellulose I than in cellulose IIII. We also observe a significant contribution from cooperative stacking interactions to the stabilization of cellulose I . In addition, the theory of atoms-in-molecules (AIM) has been employed to characterize and quantify these intermolecular interactions. AIM analyses highlight the role of nonconventional CH O H-bonding in the cellulose assemblies. Finally, we calculate molecular electrostatic potential maps for the cellulose allomorphs that capture the differences in chemical reactivity of the systems considered in our study.

  7. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    SciTech Connect

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.

  8. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE PAGESBeta

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  9. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    NASA Astrophysics Data System (ADS)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-01

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.

  10. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    PubMed Central

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-01-01

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component. PMID:26463274

  11. Interrelation between the crystallinity of polysaccharides and water absorption

    NASA Astrophysics Data System (ADS)

    Prusov, A. N.; Prusova, S. M.; Radugin, M. V.; Zakharov, A. G.

    2014-05-01

    The maximum sorption of water and its vapors is calculated using experimental data from calorimetric and effusion studies of flax, wood, and cotton cellulose. X-day diffraction is used to determine the crystallinity of cellulose samples. The equations relating crystallinity ( X) with maximum sorption and the enthalpy of interaction between cellulose and water are presented. Experimental results and the literature data on water sorption by chitin, chitosan and other polysaccharides show that our equations for calculating crystallinity are correct.

  12. Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp.

    PubMed

    Wan, JinQuan; Wang, Yan; Xiao, Qing

    2010-06-01

    Eucalyptus pulp fibers with large differences in cellulose and hemicellulose proportions but similar lignin contents were produced by partial removal of the hemicellulose and studied using Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS (13)C NMR) in combination with spectral fitting, Atomic Force Microscopy (AFM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). There were remarkable differences in both cellulose fibril structure, pore structure and cellulose supermolecular structure between the samples. CP/MAS (13)C NMR combined with spectral fitting demonstrated an increase in average fibril aggregate size (17.9-22.2 nm) with decreasing hemicellulose content. AFM observations revealed that when the hemicellulose content decreased from 27.62% to 19.80%, the average diameters of pores decreased by 12.53%, but increased by 13.55% when the hemicellulose content decreased from 19.80% to 9.09%. XRD and FTIR analysis indicated that cellulose crystallinity increased with decreasing hemicellulose content. The low and high hemicellulose-containing pulps had very different recycling characteristics, which may be explained by the changes observed at cellulose fiber structure level. Fibrils appear to aggregate and form a more compact structure when the hemicellulose is removed, which was caused by a coalescence of the cellulose microfibrils. The removal of hemicellulose had disadvantageous influence on the accessibility of fibers and enhanced fiber flattening during drying, leading to increased sheet density and increased hornification. PMID:20181478

  13. Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose

    SciTech Connect

    Chung, Daehwan; Young, Jenna; Cha, Minseok; Brunecky, Roman; Bomble, Yannick J.; Himmel, Michael E.; Westpheling, Janet

    2015-08-13

    The Caldicellulosiruptor bescii genome encodes a potent set of carbohydrate-active enzymes (CAZymes), found primarily as multi-domain enzymes that exhibit high cellulolytic and hemicellulolytic activity on and allow utilization of a broad range of substrates, including plant biomass without conventional pretreatment. CelA, the most abundant cellulase in the C. bescii secretome, uniquely combines a GH9 endoglucanase and a GH48 exoglucanase in one protein. The most effective commercial enzyme cocktails used in vitro to pretreat biomass are derived from fungal cellulases (cellobiohydrolases, endoglucanases and a β-d-glucosidases) that act synergistically to release sugars for microbial conversion. The C. bescii genome contains six GH5 domains in five different open reading frames. Four exist in multi-domain proteins and two as single catalytic domains. E1 is a GH5 endoglucanase reported to have high specific activity and simple architecture and is active at the growth temperature of C. bescii. E1 is an endo-1,4-β-glucanase linked to a family 2 carbohydrate-binding module shown to bind primarily to cellulosic substrates. As a result, we tested if the addition of this protein to the C. bescii secretome would improve its cellulolytic activity.

  14. Cellulose biogenesis in Dictyostelium discoideum

    SciTech Connect

    Blanton, R.L.

    1993-12-31

    Organisms that synthesize cellulose can be found amongst the bacteria, protistans, fungi, and animals, but it is in plants that the importance of cellulose in function (as the major structural constituent of plant cell walls) and economic use (as wood and fiber) can be best appreciated. The structure of cellulose and its biosynthesis have been the subjects of intense investigation. One of the most important insights gained from these studies is that the synthesis of cellulose by living organisms involves much more than simply the polymerization of glucose into a (1{r_arrow}4)-{beta}-linked polymer. The number of glucoses in a polymer (the degree of polymerization), the crystalline form assumed by the glucan chains when they crystallize to form a microfibril, and the dimensions and orientation of the microfibrils are all subject to cellular control. Instead of cellulose biosynthesis, a more appropriate term might be cellulose biogenesis, to emphasize the involvement of cellular structures and mechanisms in controlling polymerization and directing crystallization and deposition. Dictyostelium discoideum is uniquely suitable for the study of cellulose biogenesis because of its amenability to experimental study and manipulation and the extent of our knowledge of its basic cellular mechanisms (as will be evident from the rest of this volume). In this chapter, I will summarize what is known about cellulose biogenesis in D. discoideum, emphasizing its potential to illuminate our understanding both of D. discoideum development and plant cellulose biogenesis.

  15. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.

    PubMed

    Oun, Ahmed A; Rhim, Jong-Whan

    2015-01-01

    Crystalline cellulose nanofibril (CNF) was isolated from cotton linter pulp using an acid hydrolysis method and used as a filler to reinforce sodium carboxymethyl cellulose (CMC) film. The CNF was in rod shape with the diameter of 23-38 nm and the length of 125-217 nm and crystallinity index (CI) was 0.89. The effect of CNF concentration (1, 3, 5, and 10 wt% based on CMC) on the optical, morphological, mechanical, water vapor barrier, surface hydrophobicity, and thermal properties of the nanocomposites were studied. The CNF was evenly distributed in the polymer matrix to form smooth and flexible films indicating the CNF is highly compatible with the CMC. The tensile strength (TS) and elastic modulus (EM) of CMC film increased by 23% and 27%, respectively, while the elongation (E) decreased by 28% with 5 wt% of CNF inclusion. The WVP of CMC film decreased at low content of CNF, and increased with increase in CNF content, then decreased but to the same level of the control CMC film with the inclusion of 10 wt% of CNF. Transparency of CMC film decreased slightly from 87.7% to 86.2% with 5 wt% of CNF. The CMC/CNF composite films have a high potential to be used as an edible coating or packaging films for the extension of shelf life of fresh and minimally processed fruits and vegetables. PMID:25965462

  16. Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites.

    PubMed

    Lavoratti, Alessandra; Scienza, Lisete Cristine; Zattera, Ademir José

    2016-01-20

    Composites of unsaturated polyester resin (UPR) and cellulose nanofibers (CNFs) obtained from dry cellulose waste of softwood (Pinus sp.) and hardwood (Eucalyptus sp.) were developed. The fiber properties and the influence of the CNFs in the dynamic-mechanical and thermomechanical properties of the composites were evaluated. CNFs with a diameter of 70-90 nm were obtained. Eucalyptus sp. has higher α-cellulose content than Pinus sp. fibers. The crystallinity of the cellulose pulps decreased after grinding. However, high values were still obtained. The chemical composition of the fibers was not significantly altered by the grinding process. Eucalyptus sp. CNF composites had water absorption close to the neat resin at 1 wt% filler. The dynamic-mechanical properties of Eucalyptus sp. CNFs were slightly increased and the thermal stability was improved. PMID:26572434

  17. Stimuli-responsive cellulose modified by epoxy-functionalized polymer nanoparticles with photochromic and solvatochromic properties.

    PubMed

    Abdollahi, Amin; Rad, Jaber Keyvan; Mahdavian, Ali Reza

    2016-10-01

    Photoresponsive papers are among the fast and simple tools for detection of polarity by solvatochromic and photochromic behaviors upon UV irradiation. Here, a new, green and facile modification strategy was employed to prepare novel stimuli-responsive cellulose materials containing spiropyran by mixing microcrystalline cellulose (MCC), as a model compound, with epoxy-functionalized photochromic latex. FTIR analysis, thermal and thermo-mechanical properties were used to confirm the microstructral properties. Crystallographic analysis revealed a decrease in crystallinity of cellulose matrix and approved the incorporation of photochromic copolymer. Then stimuli-responsive papers were prepared by using pulp paper as the cellulosic matrix and their smart characteristics were studied under UV irradiation while dried or immersed into some polar and non-polar solvents. Different color changes were observed and investigated by solid-state UV-vis spectroscopy. These significant results were attributed to the efficient chemical modification and confirmed by SEM, EDX and nitrogen mapping analyses. PMID:27312622

  18. Characterization of cellulose from banana pseudo-stem by heterogeneous liquefaction.

    PubMed

    Li, Wei; Zhang, Yucang; Li, Jihui; Zhou, Yijun; Li, Ruisong; Zhou, Wei

    2015-11-01

    A cellulose extraction from banana pseudo-stem through the combination of bleach and liquefaction processes was described: holocellulose was isolated by the sodium chlorite method, and then the cellulose was obtained by removing the hemicellulose through chemical liquefaction. The chemical composition, morphology, thermal properties and degree of crystallinity of the celluloses were characterized to discuss their suitability for new bio-based composite materials. It was shown that hemicellulose can be selectively liquefied to get cellulose. The hemicellulose content in cellulose is decreased from 45.69% to 8.38%. Surface morphological studies revealed that there is a reduction in fiber diameter and fiber bundles are divided into individual fibrils, which lead to an increase of the surface area and results in an increased adhesion at the fiber-matrix interface in composites. Thermal analysis results show that the cellulose exhibit enhanced thermal stability over holocellulose. XRD results indicate that the crystallinity is increased from 52.22% to 81.26% by liquefaction. PMID:26256377

  19. Kinetics of Cellulose Digestion by Fibrobacter succinogenes S85

    PubMed Central

    Maglione, G.; Russell, J. B.; Wilson, D. B.

    1997-01-01

    Growing cultures of Fibrobacter succinogenes S85 digested cellulose at a rapid rate, but nongrowing cells and cell extracts did not have detectable crystalline cellulase activity. Cells that had been growing exponentially on cellobiose initiated cellulose digestion and succinate production immediately, and cellulose-dependent succinate production could be used as an index of enzyme activity against crystalline cellulose. Cells incubated with cellulose never produced detectable cellobiose, and cells that were preincubated for a short time with thiocellobiose lost their ability to digest cellulose (competitive inhibition [K(infi)] of only 0.2 mg/ml or 0.56 mM). Based on these results, the crystalline cellulases of F. succinogenes were very sensitive to feedback inhibition. Different cellulose sources bound different amounts of Congo red, and the binding capacity was HCl-regenerated cellulose > ball-milled cellulose > Sigmacel > Avicel > filter paper. Congo red binding capacity was highly correlated with the maximum rates of metabolism of cellulose digestion and inversely related to K(infm). Congo red (250 (mu)g/ml) did not inhibit the growth of F. succinogenes S85 on cellobiose, but this concentration of Congo red inhibited the rate of ball-milled cellulose digestion. A Lineweaver-Burk plot of ball-milled cellulose digestion rate versus the amount of cellulose indicated that Congo red was a competitive inhibitor of cellulose digestion (K(infi) was 250 (mu)g/ml). PMID:16535519

  20. Idealized powder diffraction patterns for cellulose polymorphs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...

  1. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  2. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  3. TEMPO-oxidized cellulose nanofibers

    NASA Astrophysics Data System (ADS)

    Isogai, Akira; Saito, Tsuguyuki; Fukuzumi, Hayaka

    2011-01-01

    Native wood celluloses can be converted to individual nanofibers 3-4 nm wide that are at least several microns in length, i.e. with aspect ratios >100, by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and successive mild disintegration in water. Preparation methods and fundamental characteristics of TEMPO-oxidized cellulose nanofibers (TOCN) are reviewed in this paper. Significant amounts of C6 carboxylate groups are selectively formed on each cellulose microfibril surface by TEMPO-mediated oxidation without any changes to the original crystallinity (~74%) or crystal width of wood celluloses. Electrostatic repulsion and/or osmotic effects working between anionically-charged cellulose microfibrils, the ζ-potentials of which are approximately -75 mV in water, cause the formation of completely individualized TOCN dispersed in water by gentle mechanical disintegration treatment of TEMPO-oxidized wood cellulose fibers. Self-standing TOCN films are transparent and flexible, with high tensile strengths of 200-300 MPa and elastic moduli of 6-7 GPa. Moreover, TOCN-coated poly(lactic acid) films have extremely low oxygen permeability. The new cellulose-based nanofibers formed by size reduction process of native cellulose fibers by TEMPO-mediated oxidation have potential application as environmentally friendly and new bio-based nanomaterials in high-tech fields.

  4. Pretreatment of microcrystalline cellulose in organic electrolyte solutions for enzymatic hydrolysis

    PubMed Central

    2011-01-01

    Background Previous studies have shown that the crystalline structure of cellulose is negatively correlated with enzymatic digestibility, therefore, pretreatment is required to break down the highly ordered crystalline structure in cellulose, and to increase the porosity of its surface. In the present study, an organic electrolyte solution (OES) composed of an ionic liquid (1-allyl-3-methylimidazolium chloride ([AMIM]Cl)) and an organic solvent (dimethyl sulfoxide; DMSO) was prepared, and used to pretreat microcrystalline cellulose for subsequent enzymatic hydrolysis; to our knowledge, this is the first time that this method has been used. Results Microcrystalline cellulose (5 wt%) rapidly dispersed and then completely dissolved in an OES with a molar fraction of [AMIM]Cl per OES (χ [AMIM]Cl) of greater than or equal to 0.2 at 110°C within 10 minutes. The cellulose was regenerated from the OES by precipitation with hot water, and enzymatically hydrolyzed. As the χ [AMIM]Cl of the OES increased from 0.1 to 0.9, both the hydrolysis yield and initial hydrolysis rate of the regenerated cellulose also increased gradually. After treatment using OES with χ [AMIM]Cl of 0.7, the glucose yield (54.1%) was 7.2 times that of untreated cellulose. This promotion of hydrolysis yield was mainly due to the decrease in the degree of crystallinity (that is, the crystallinity index of cellulose I). Conclusions An OES of [AMIM]Cl and DMSO with χ [AMIM]Cl of 0.7 was chosen for cellulose pretreatment because it dissolved cellulose rapidly to achieve a high glucose yield (54.1%), which was only slightly lower than the value (59.6%) obtained using pure [AMIM]Cl. OES pretreatment is a cost-effective and environmentally friendly technique for hydrolysis, because it 1) uses the less expensive OES instead of pure ionic liquids, 2) shortens dissolution time, 3) requires lower energy for stirring and transporting, and 4) is recyclable. PMID:22099703

  5. The influence of supramolecular structure of cellulose allomorphs on the interactions with cellulose-binding domain, CBD3b from Paenibacillus barcinonensis.

    PubMed

    Ciolacu, Diana; Chiriac, Alina Iulia; Pastor, F I Javier; Kokol, Vanja

    2014-04-01

    The interaction of recombinant cellulose-binding domains (CBDs) of endoglucanase Cel9B from Paenibacillus barcinonensis with different cotton cellulose allomorphs (I, II and III) has been investigated, in order to bring new insights regarding the CBD adsorption and desorption processes. The highest CBD adsorption capacity was recorded for cellulose I, confirming the affinity of proteins to the most crystalline substrate. The weakening and splitting of the hydrogen bonds within cellulose structure after CBD adsorption, as well as a decrease of the crystallinity degree were identified by ATR-FTIR spectroscopy and XRD. The CBD's adsorption kinetic was shown to be rendered by properties as, specific surface area and porosity, being confirmed by dynamic vapor sorption measurements. An important influence of temperature (25, 37 and 50°C) and/or pH medium (4, 5.5, 7 and 10) on the CBD desorption capacity was confirmed, being related to the hydrophobic interactions formed between the CBD and the cellulose allomorphs. PMID:24525243

  6. Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nano-whiskers in poly(lactic acid) nanocomposites: improved barrier and mechanical properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(glycidyl methacrylate) (PGMA) was grafted onto bacterial cellulose nanowhiskers (BCNW) by means of a redox-initiated free radical copolymerization reaction. The incorporation of PGMA chains decreased the thermal stability and crystallinity of BCNW. The neat and the PGMA-grafted BCNW were subseq...

  7. Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies.

    PubMed

    Magalhães, Washington Luiz Esteves; Cao, Xiaodong; Lucia, Lucian A

    2009-11-17

    We report herein for the first time how a co-electrospinning technique can be used to overcome the issue of orienting cellulose nanocrystals within a neat cellulose matrix. A home-built co-electrospinning apparatus was fabricated that was comprised of a high-voltage power supply, two concentric capillary needles, and one screw-type pump syringe. Eucalyptus-derived cellulose was dissolved in N-methylmorpholine oxide (NMMO) at 120 degrees C and diluted with dimethyl sulfoxide (DMSO) which was used in the external concentric capillary needle as the shell solution. A cellulose nanocrystal suspension obtained by the sulfuric acid hydrolysis of bleached sisal and cotton fibers was used as the core liquid in the internal concentric capillary needle. Three flow rate ratios between the shell and core, four flow rates for the shell dope solution, and four high voltages were tested. The resultant co-electrospun composite fibers were collected onto a grounded metal screen immersed in cold water. Micrometer and submicrometer cellulose fiber assemblies were obtained which were reinforced with cellulose nanocrystals and characterized by FESEM, FTIR, TGA, and XRD. Surprisingly, it was determined that the physical properties for the cellulose controls are superior to the composites; in addition, the crystallinity of the controls was slightly greater. PMID:19731951

  8. UV-radiation induced disruption of dry-cavities in human γD-crystallin results in decreased stability and faster unfolding.

    PubMed

    Xia, Zhen; Yang, Zaixing; Huynh, Tien; King, Jonathan A; Zhou, Ruhong

    2013-01-01

    Age-onset cataracts are believed to be expedited by the accumulation of UV-damaged human γD-crystallins in the eye lens. Here we show with molecular dynamics simulations that the stability of γD-crystallin is greatly reduced by the conversion of tryptophan to kynurenine due to UV-radiation, consistent with previous experimental evidences. Furthermore, our atomic-detailed results reveal that kynurenine attracts more waters and other polar sidechains due to its additional amino and carbonyl groups on the damaged tryptophan sidechain, thus breaching the integrity of nearby dry center regions formed by the two Greek key motifs in each domain. The damaged tryptophan residues cause large fluctuations in the Tyr-Trp-Tyr sandwich-like hydrophobic clusters, which in turn break crucial hydrogen-bonds bridging two β-strands in the Greek key motifs at the "tyrosine corner". Our findings may provide new insights for understanding of the molecular mechanism of the initial stages of UV-induced cataractogenesis. PMID:23532089

  9. Effect of Water Vapor Adsorption on Electrical Properties of Carbon Nanotube/Nanocrystalline Cellulose Composites.

    PubMed

    Safari, Salman; van de Ven, Theo G M

    2016-04-13

    It has been long known that the electrical properties of cellulose are greatly influenced by adsorption of water vapor. Incorporating conductive nanofillers in a cellulose matrix is an example of an approach to tailor their characteristics for use in electronics and sensing devices. In this work, we introduce two new nanocomposites comprising carbon nanotubes (CNTs) and conventional or electrosterically stabilized nanocrystalline celluloses matrices. While conventional nanocrystalline cellulose (NCC) consists of a rigid crystalline backbone, electrosterically stabilized cellulose (ENCC) is composed of a rigid crystalline backbone with carboxylated polymers protruding from both ends. By tuning CNT loading, we can tailor a CNT/NCC composite with minimal electrical sensitivity to the ambient relative humidity, despite the fact that the composite has a high moisture uptake. The expected decrease in CNT conductivity upon water vapor adsorption, due to electron donation, is counterbalanced by an increase in the conductivity of NCC due to proton hopping at an optimum CNT loading (1-2%). Contrary to the CNT/NCC composite, a CNT/ENCC composite at 1% CNT loading shows insulating behavior for relative humidities up to 75%, after which the composite becomes conductive. This interesting behavior can be ascribed to the low moisture uptake of ENCC at low and moderate relative humidities due to the limited number of hydroxyl groups and hydrogen bond formation between carboxyl groups on ENCC, which endow ENCC with limited water molecule adsorption sites. PMID:26998641

  10. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    NASA Astrophysics Data System (ADS)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  11. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    PubMed Central

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-01-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films. PMID:27143197

  12. Ultrasonic enhance acid hydrolysis selectivity of cellulose with HCl-FeCl3 as catalyst.

    PubMed

    Li, Jinbao; Zhang, Xiangrong; Zhang, Meiyun; Xiu, Huijuan; He, Hang

    2015-03-01

    The effect of ultrasonic pretreatment coupled with HCl-FeCl3 catalyst was evaluated to hydrolyze cellulose amorphous regions. The ultrasonic pretreatment leads to cavitation that affects the morphology and microstructure of fibers, enhancing the accessibility of chemical reagent to the loosened amorphous regions of cellulose. In this work, Fourier transform infrared spectroscopy (FTIR) was used to identify characteristic absorption bands of the constituents and the crystallinity was evaluated by the X-ray diffraction (XRD) technique. The results indicated that appropriate ultrasonic pretreatment assisted with FeCl3 can enhance the acid hydrolysis of amorphous regions of cellulose, thus improving the crystallinity of the remaining hydrocellulose. It was observed that sonication samples that were pretreated for 300 W and 20 min followed by acid hydrolysis had maximum of 78.9% crystallinity. The crystallinity was 9.2% higher than samples that were not subjected to ultrasound. In addition, the average fines length decreased from 49 μm to 37 μm. PMID:25498717

  13. Tubular cellulose/starch gel composite as food enzyme storehouse.

    PubMed

    Barouni, Eleftheria; Petsi, Theano; Kanellaki, Maria; Bekatorou, Argyro; Koutinas, Athanasios

    2015-12-01

    The objective of this study was to produce a composite biocatalyst, based on porous cellulosic material, produced after wood sawdust delignification (tubular cellulose; TC) and starch gel (SG), for the development of bioprocesses related to enzyme applications. The composite biocatalyst was studied by Scanning Electron Microscopy to observe the SG deposition in the TC pores, and porosimetry analysis to determine the average pore diameter and surface area. The deposition of SG into the TC tubes provided a TC/SG composite with reduced pore sizes. X-ray powder diffractometry showed a decrease of crystallinity with increased SG ratio in the composite. The composite was used as an insoluble carrier for entrapment of the dairy enzyme rennin, leading to the production of an active biocatalyst for milk coagulation (initiation of milk clotting at about 20 min and full coagulation at about 200 min), creating perspectives for several applications in food enzyme research and technology. PMID:26041171

  14. Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A.

    PubMed

    Li, Yongchao; Irwin, Diana C; Wilson, David B

    2007-05-01

    Thermobifida fusca Cel9A-90 is a processive endoglucanase consisting of a family 9 catalytic domain (CD), a family 3c cellulose binding module (CBM3c), a fibronectin III-like domain, and a family 2 CBM. This enzyme has the highest activity of any individual T. fusca enzyme on crystalline substrates, particularly bacterial cellulose (BC). Mutations were introduced into the CD or the CBM3c of Cel9A-68 using site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli; purified; and tested for activity on four substrates, ligand binding, and processivity. The results show that H125 and Y206 play an important role in activity by forming a hydrogen bonding network with the catalytic base, D58; another important supporting residue, D55; and Glc(-1) O1. R378, a residue interacting with Glc(+1), plays an important role in processivity. Several enzymes with mutations in the subsites Glc(-2) to Glc(-4) had less than 15% activity on BC and markedly reduced processivity. Mutant enzymes with severalfold-higher activity on carboxymethyl cellulose (CMC) were found in the subsites from Glc(-2) to Glc(-4). The CBM3c mutant enzymes, Y520A, R557A/E559A, and R563A, had decreased activity on BC but had wild-type or improved processivity. Mutation of D513, a conserved residue at the end of the CBM, increased activity on crystalline cellulose. Previous work showed that deletion of the CBM3c abolished crystalline activity and processivity. This study shows that it is residues in the catalytic cleft that control processivity while the CBM3c is important for loose binding of the enzyme to the crystalline cellulose substrate. PMID:17369336

  15. Lung biodurability and free radical production of cellulose nanomaterials.

    PubMed

    Stefaniak, Aleksandr B; Seehra, Mohindar S; Fix, Natalie R; Leonard, Stephen S

    2014-10-01

    Abstract The potential applications of cellulose nanomaterials in advanced composites and biomedicine makes it imperative to understand their pulmonary exposure to human health. Here, we report the results on the biodurability of three cellulose nanocrystal (CNC), two cellulose nanofibril (CNF) and a benchmark cellulose microcrystal (CMC) when exposed to artificial lung airway lining fluid (SUF, pH 7.3) for up to 7 days and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5) for up to 9 months. X-ray diffraction analysis was used to monitor biodurability and thermogravimetry, surface area, hydrodynamic diameter, zeta potential and free radical generation capacity of the samples were determined (in vitro cell-free and RAW 264.7 cell line models). The CMC showed no measurable changes in crystallinity (x(CR)) or crystallite size D in either SUF or PSF. For one CNC, a slight decrease in x(CR) and D in SUF was observed. In acidic PSF, a slight increase in x(CR) with exposure time was observed, possibly due to dissolution of the amorphous component. In a cell-free reaction with H₂O₂, radicals were observed; the CNCs and a CNF generated significantly more ·OH radicals than the CMC (p < 0.05). The ·OH radical production correlates with particle decomposition temperature and is explained by the higher surface area to volume ratio of the CNCs. Based on their biodurability, mechanical clearance would be the primary mechanism for lung clearance of cellulose materials. The production of ·OH radicals indicates the need for additional studies to characterize the potential inhalation hazards of cellulose. PMID:25265049

  16. Lung biodurability and free radical production of cellulose nanomaterials

    PubMed Central

    Stefaniak, Aleksandr B.; Seehra, Mohindar S.; Fix, Natalie R.; Leonard, Stephen S.

    2015-01-01

    The potential applications of cellulose nanomaterials in advanced composites and biomedicine makes it imperative to understand their pulmonary exposure to human health. Here, we report the results on the biodurability of three cellulose nanocrystal (CNC), two cellulose nanofibril (CNF) and a benchmark cellulose microcrystal (CMC) when exposed to artificial lung airway lining fluid (SUF, pH 7.3) for up to 7 days and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5) for up to 9 months. X-ray diffraction analysis was used to monitor biodurability and thermogravimetry, surface area, hydrodynamic diameter, zeta potential and free radical generation capacity of the samples were determined (in vitro cell-free and RAW 264.7 cell line models). The CMC showed no measurable changes in crystallinity (xCR) or crystallite size D in either SUF or PSF. For one CNC, a slight decrease in xCR and D in SUF was observed. In acidic PSF, a slight increase in xCR with exposure time was observed, possibly due to dissolution of the amorphous component. In a cell-free reaction with H2O2, radicals were observed; the CNCs and a CNF generated significantly more ●OH radicals than the CMC (p<0.05). The ●OH radical production correlates with particle decomposition temperature and is explained by the higher surface area to volume ratio of the CNCs. Based on their biodurability, mechanical clearance would be the primary mechanism for lung clearance of cellulose materials. The production of ●OH radicals indicates the need for additional studies to characterize the potential inhalation hazards of cellulose. PMID:25265049

  17. Co-electrospun poly(ɛ-caprolactone)/cellulose nanofibers-fabrication and characterization.

    PubMed

    Ahmed, Farooq; Saleemi, Sidra; Khatri, Zeeshan; Abro, Muhammad Ishaque; Kim, Ick-Soo

    2015-01-22

    We report fabrication of poly (ɛ-caprolactone) (PCL)/cellulose (CEL) nanofiber blends via co-electrospinning for the possible use as biofilters and biosensor strips. Five different ratios of PCL to CEL were fabricated to investigate the wicking behavior. The cellulose acetate (CA) was taken as precursor to make cellulose nanofibers. Double nozzles were employed for jetting constituent polymers toward collector drum independently and resultant nanofibers webs were deacetylated in aqueous alkaline solution to convert CA into CEL as confirmed by FTIR spectra. FTIR further revealed that there is no effect of deacetylation on PCL nanofiber. The morphology of each blend webs under SEM showed uniform and bead-free nanofibers. Wicking behavior for five different ratios of PCL/CEL suggested that increasing CEL ratio in the blend enhanced the wicking front height; however, X-ray diffraction patterns of PCL/CEL showed a slight decrease in crystallinity. PMID:25439909

  18. The segal crystallinity index as it relates to crystallite size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers are composed of crystals of cellulose that yield a diffraction pattern, although fibers from varying sources and histories are said to have different degrees of crystallinity. There are many methods to assess this crystallinity. One of the most popular is the Segal Crystallinity Index ...

  19. Processing of cellulose for the advancement of biofuels

    NASA Astrophysics Data System (ADS)

    Watson, Brian James

    2011-12-01

    The enzymatic degradation of cellulose polymers is currently a rate-limiting step in the bioconversion of biomass to biofuels. Cellulose polymers self assemble to form crystalline structures stabilized by a complex network of intermolecular interactions such as hydrogen bonding. The network of interactions in crystalline cellulose (cellulose nanostructure) poses an energy barrier that limits enzymatic degradation as apparent from the activity of Cel5H. To improve the degradability of cellulose the intermolecular interactions must be disrupted. The interactions of the cellulose nanostructure prevent solubilization by water and most other common solvents, but some organic solvents aid degradation of cellulose suggesting they influence cellulose nanostructure. The objective of this work is to understand the influence of solvents on cellulose nanostructure with the goal of improving the degradability of cellulose nanostructure using solvents. To understand solvent interaction with cellulose, phosphoric acid was used to first solubilize cellulose (PAS cellulose) followed by adding an organic liquid or water to wash the phosphate from the system. The Flory Huggins theory was used to predict wash liquids that could favorably interact with cellulose. A favorable wash liquid was predicted to prevent the reformation of crystalline domains to yield a disrupted cellulose nanostructure, which should be more degradable. Low molecular weight alcohols and glycols were calculated to be favorable wash liquids. Washing PAS cellulose with the predicted favorable liquids yielded semi-transparent gel-like materials compared to the opaque white precipitate formed when water or unfavorable solvents were used in the wash. Fractal analysis of small angle neutron scattering (SANS) of these apparent gels indicated cellulose polymers likely have the properties of clustered rods. This partial disruption increased degradability relative to the water washed PAS cellulose. The apparent rod

  20. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.

    PubMed

    Seantier, Bastien; Bendahou, Dounia; Bendahou, Abdelkader; Grohens, Yves; Kaddami, Hamid

    2016-03-15

    Bio-composite aerogels based on bleached cellulose fibers (BCF) and cellulose nanoparticles having various morphological and physico-chemical characteristics are prepared by a freeze-drying technique and characterized. The various composite aerogels obtained were compared to a BCF aerogel used as the reference. Severe changes in the material morphology were observed by SEM and AFM due to a variation of the cellulose nanoparticle properties such as the aspect ratio, the crystalline index and the surface charge density. BCF fibers form a 3D network and they are surrounded by the cellulose nanoparticle thin films inducing a significant reduction of the size of the pores in comparison with a neat BCF based aerogel. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, a decrease of the thermal conductivities is observed from 28mWm(-1)K(-1) (BCF aerogel) to 23mWm(-1)K(-1) (bio-composite aerogel), which is below the air conductivity (25mWm(-1)K(-1)). This improvement of the insulation properties for composite materials is more pronounced for aerogels based on cellulose nanoparticles having a low crystalline index and high surface charge (NFC-2h). The significant improvement of their insulation properties allows the bio-composite aerogels to enter the super-insulating materials family. The characteristics of cellulose nanoparticles also influence the mechanical properties of the bio-composite aerogels. A significant improvement of the mechanical properties under compression is obtained by self-organization, yielding a multi-scale architecture of the cellulose nanoparticles in the bio-composite aerogels. In this case, the mechanical property is more dependent on the morphology of the composite aerogel rather than the intrinsic characteristics of the cellulose nanoparticles. PMID:26794770

  1. Cellulose degradation by polysaccharide monooxygenases.

    PubMed

    Beeson, William T; Vu, Van V; Span, Elise A; Phillips, Christopher M; Marletta, Michael A

    2015-01-01

    Polysaccharide monooxygenases (PMOs), also known as lytic PMOs (LPMOs), enhance the depolymerization of recalcitrant polysaccharides by hydrolytic enzymes and are found in the majority of cellulolytic fungi and actinomycete bacteria. For more than a decade, PMOs were incorrectly annotated as family 61 glycoside hydrolases (GH61s) or family 33 carbohydrate-binding modules (CBM33s). PMOs have an unusual surface-exposed active site with a tightly bound Cu(II) ion that catalyzes the regioselective hydroxylation of crystalline cellulose, leading to glycosidic bond cleavage. The genomes of some cellulolytic fungi contain more than 20 genes encoding cellulose-active PMOs, suggesting a diversity of biological activities. PMOs show great promise in reducing the cost of conversion of lignocellulosic biomass to fermentable sugars; however, many questions remain about their reaction mechanism and biological function. This review addresses, in depth, the structural and mechanistic aspects of oxidative depolymerization of cellulose by PMOs and considers their biological function and phylogenetic diversity. PMID:25784051

  2. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    SciTech Connect

    McKeown, Catherine K; Brown, Steven D

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  3. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production.

    PubMed

    Liu, Zhuo; Ho, Shih-Hsin; Sasaki, Kengo; den Haan, Riaan; Inokuma, Kentaro; Ogino, Chiaki; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-01-01

    Cellulosic biofuel is the subject of increasing attention. The main obstacle toward its economic feasibility is the recalcitrance of lignocellulose requiring large amount of enzyme to break. Several engineered yeast strains have been developed with cellulolytic activities to reduce the need for enzyme addition, but exhibiting limited effect. Here, we report the successful engineering of a cellulose-adherent Saccharomyces cerevisiae displaying four different synergistic cellulases on the cell surface. The cellulase-displaying yeast strain exhibited clear cell-to-cellulose adhesion and a "tearing" cellulose degradation pattern; the adhesion ability correlated with enhanced surface area and roughness of the target cellulose fibers, resulting in higher hydrolysis efficiency. The engineered yeast directly produced ethanol from rice straw despite a more than 40% decrease in the required enzyme dosage for high-density fermentation. Thus, improved cell-to-cellulose interactions provided a novel strategy for increasing cellulose hydrolysis, suggesting a mechanism for promoting the feasibility of cellulosic biofuel production. PMID:27079382

  4. Gravity effects on cellulose assembly

    NASA Technical Reports Server (NTRS)

    Brown, R. M. Jr; Kudlicka, K.; Cousins, S. K.; Nagy, R.; Brown RM, J. r. (Principal Investigator)

    1992-01-01

    The effect of microgravity on cellulose synthesis using the model system of Acetobacter xylinum was the subject of recent investigations using The National Aeronautics and Space Administration's Reduced Gravity Laboratory, a modified KC-135 aircraft designed to produce 20 sec of microgravity during the top of a parabolic dive. Approximately 40 parabolas were executed per mission, and a period of 2 x g was integral to the pullout phase of each parabola. Cellulose biosynthesis was initiated on agar surfaces, liquid growth medium, and buffered glucose during parabolic flight and terminated with 2.0% sodium azide or 50.0% ethanol. While careful ground and in-flight controls indicated normal, compact ribbons of microbial cellulose, data from five different flights consistently showed that during progression into the parabola regime, the cellulose ribbons became splayed. This observation suggests that some element of the parabola (the 20 sec microgravity phase, the 20 sec 2 x g phase, or a combination of both) was responsible for this effect. Presumably the cellulose I alpha crystalline polymorph normally is produced under strain, and the microgravity/hypergravity combination may relieve this stress to produce splayed ribbons. An in-flight video microscopy analysis of bacterial motions during a parabolic series demonstrated that the bacteria continue to synthesize cellulose during all phases of the parabolic series. Thus, the splaying may be a reflection of a more subtle alteration such as reduction of intermicrofibrillar hydrogen bonding. Long-term microgravity exposures during spaceflight will be necessary to fully understand the cellulose alterations from the short-term microgravity experiments.

  5. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  6. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  7. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  8. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  9. Cellulose promotes extracellular assembly of Clostridium cellulovorans cellulosomes.

    PubMed Central

    Matano, Y; Park, J S; Goldstein, M A; Doi, R H

    1994-01-01

    Cellulosome synthesis by Clostridium cellulovorans was investigated by growing the cells in media containing different carbon sources. Supernatant from cells grown with cellobiose contained no cellulosomes and only the free forms of cellulosomal major subunits CbpA, P100, and P70 and the minor subunits with enzymatic activity. Supernatant from cells grown on pebble-milled cellulose and Avicel contained cellulosomes capable of degrading crystalline cellulose. Supernatants from cells grown with cellobiose, pebble-milled cellulose, and Avicel contained about the same amount of carboxymethyl cellulase activity. Although the supernatant from the medium containing cellobiose did not initially contain active cellulosomes, the addition of crystalline cellulose to the cell-free supernatant fraction converted the free major forms to cellulosomes with the ability to degrade crystalline cellulose. The binding of P100 and P70 to crystalline cellulose was dependent on their attachment to the endoglucanase-binding domains of CbpA. These data strongly indicate that crystalline cellulose promotes cellulosome assembly. Images PMID:7961457

  10. Magnetically responsive bacterial cellulose: Synthesis and magnetic studies

    NASA Astrophysics Data System (ADS)

    Vitta, Satish; Drillon, Marc; Derory, A.

    2010-09-01

    Bacterial cellulose with its porous network structure was used as a support to precipitate Ni nanoparticles by room temperature chemical reduction of Ni-chloride hexahydrate. The room temperature reduction in an aqueous environment results in the formation of crystalline Ni nanoparticles of size 10 to 60 nm inside the bacterial cellulose along with Ni(OH)2. The nanocrystals have an equiaxed shape and are found both as individual particles as well as small aggregates depending on the porous network structure of cellulose matrix. The bacterial cellulose does not undergo any change and retains its crystal structure even after chemical reduction reaction. The Ni loaded bacterial cellulose is found to be ferromagnetic at room temperature with a saturation magnetization of 2.81 emu g-1 which increases by an order of magnitude to 21.8 emu g-1 at 1.8 K. The coercive field also increases by two orders of magnitude from 28 G at 300 K to 2900 G at 1.8 K. The zero field cooled magnetization however exhibits a superparamagnetic behavior with a peak at 20 K, the blocking temperature and this behavior is observed even in ac magnetization. The magnetization decrease with increasing temperature up to 400 K, when extrapolated to high temperatures using a power law indicates a Curie transition at 500 K, much lower than the Curie temperature of bulk Ni. The fraction of isolated superparamagnetic nanoparticles present in the composite was estimated from the saturation magnetization and is found to be ˜88%. These results clearly highlight the presence of two separate magnetic phases, superparamagnetic, and ferromagnetic, and the role of various magnetic interactions in the collective magnetic behavior of Ni nanoparticles in the composite structure.

  11. Cavitation milling of natural cellulose to nanofibrils.

    PubMed

    Pinjari, Dipak Vitthal; Pandit, Aniruddha B

    2010-06-01

    Cavitation holds the promise of a new and exciting approach to fabricate both top down and bottom up nanostructures. Cavitation bubbles are created when a liquid boils under less than atmospheric pressure. The collapse process occurs supersonically and generates a host of physical and chemical effects. We have made an attempt to fabricate natural cellulose material using hydrodynamic as well as acoustic cavitation. The cellulose material having initial size of 63 micron was used for the experiments. 1% (w/v) slurry of cellulose sample was circulated through the hydrodynamic cavitation device or devices (orifice) for 6h. The average velocity of the fluid through the device was 10.81m/s while average pressure applied was 7.8 kg/cm(2). Cavitation number was found to be 2.61. The average particle size obtained after treatment was 1.36 micron. This hydrodynamically processed sample was sonicated for 1h 50 min. The average size of ultrasonically processed particles was found to be 301 nm. Further, the cellulose particles were characterized with X-ray diffraction (XRD) and differential scanning calorimetry (DSC) to see the effect of cavitation on crystallinity (X(c)) as well as on melting temperature (T(m)). Cellulose structures consist of amorphous as well as crystalline regions. The initial raw sample was 86.56% crystalline but due to the effect of cavitation, the crystallinity reduced to 37.76%. Also the melting temperature (T(m)) was found to be reduced from 101.78 degrees C of the original to 60.13 degrees C of the processed sample. SEM images for the cellulose (processed and unprocessed) shows the status and fiber-fiber alignment and its orientation with each other. Finally cavitation has proved to be very efficient tool for reduction in size from millimeter to nano scale for highly crystalline materials. PMID:20362487

  12. Characterization of cellulose II nanoparticles regenerated from ionic liquid, 1-butyl-3-methylimidazolium chloride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Regenerated cellulose nanoparticles (RCNs) including both elongated fiber and spherical structures were prepared from microcrystalline cellulose (MCC)and cotton using 1-butyl-3-methylimidazolium chloride followed by high-pressure homogenization. The crystalline structure of RCNs was cellulose II in ...

  13. Cyanoresin, cyanoresin/cellulose triacetate blends for thin film, dielectric capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Lewis, Carol R. (Inventor); Cygan, Peter J. (Inventor); Jow, T. Richard (Inventor)

    1996-01-01

    Non brittle dielectric films are formed by blending a cyanoresin such as cyanoethyl, hydroxyethyl cellulose (CRE) with a compatible, more crystalline resin such as cellulose triacetate. The electrical breakdown strength of the blend is increased by orienting the films by uniaxial or biaxial stretching. Blends of high molecular weight CRE with high molecular weight cyanoethyl cellulose (CRC) provide films with high dielectric constants.

  14. Cyanoresin, cyanoresin/cellulose triacetate blends for thin film, dielectric capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Non-brittle dielectric films are formed by blending a cyanoresin such as cyanoethyl, hydroxyethyl cellulose (CRE) with a compatible, more crystalline resin such as cellulose triacetate. The electrical breakdown strength of the blend is increased by orienting the films by uniaxial or biaxial stretching. Blends of high molecular weight CRE with high molecular weight cyanoethyl cellulose (CRC) provide films with high dielectric constants.

  15. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains.

    PubMed

    Fang, Lin; Catchmark, Jeffrey M

    2015-01-22

    This study characterized the cellulosic and non-cellulosic exopolysaccharides (EPS) produced by four Gluconacetobacter strains. The yields of bacterial cellulose and water-soluble polysaccharides were dependent on both carbon source and Gluconacetobacter strain. The carbon substrate also affected the composition of the free EPS. When galactose served as an exclusive carbon source, Gluconacetobacter xylinus (G. xylinus) ATCC 53524 and ATCC 700178 produced a distinct alkaline stable crystalline product, which influenced the crystallization of cellulose. Gluconacetobacter hansenii (G. hansenii) ATCC 23769 and ATCC 53582, however, did not exhibit any significant change in cellulose crystal properties when galactose was used as the carbon source. Microscopic observation further confirmed significant incorporation of EPS into the cellulose composites. The cellulosic network produced from galactose medium showed distinctive morphological and structural features compared to that from glucose medium. PMID:25439946

  16. Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals.

    PubMed

    Guo, Juan; Guo, Xuxia; Wang, Siqun; Yin, Yafang

    2016-01-01

    Ultrasonic treatment is useful for the isolation of cellulose nanocrystals (CNCs). However, the effects of ultrasonic treatment on the structure and properties of CNCs have not been fully understood. We statistically analyzed the variations in yields and dimensions of CNCs prepared using acid hydrolysis, with or without ultrasonic treatment, and illustrated these variations by investigating the CNC structures. The results demonstrated that ultrasonic treatment promoted an increase in yields only for short hydrolysis times, while resulting in CNCs with shorter lengths and narrower dimension distributions. Furthermore, a prolonged acid attack under ultrasonic treatment caused a partial dissociation of cellulose hydrogen bond networks in the CNCs, ultimately resulting in the delamination and disorder of the cellulose crystalline structure, thus leading to a decrease in the width and thickness of the CNCs. This work provides more insights into the mechanisms of ultrasonic treatment on the structure and properties of CNCs. PMID:26453875

  17. Mechanical and structural property analysis of bacterial cellulose composites.

    PubMed

    Dayal, Manmeet Singh; Catchmark, Jeffrey M

    2016-06-25

    Bacterial cellulose (BC) exhibits unique properties including high mechanical strength and high crystallinity. Improvement in the mechanical properties of BC is sought for many applications ranging from food to structural composites to biomedical materials. In this study, different additives including carboxymethyl cellulose (CMC), pectin, gelatin, cornstarch, and corn steep liquor were included in the fermentation media to alter the BC produced. Three different concentrations (1%, 3% and 5%) were chosen for each of the additives, with no additive (0%) as the control. The produced BC was then analyzed to determine tensile and compression modulus. Amongst the tested additives, BC produced in media containing 3% (w/v) pectin had the maximum compressive modulus (142kPa), and BC produced in media containing 1% (w/v) gelatin exhibited the maximum tensile modulus (21MPa). Structural characteristics of BC and BC-additive composites were compared using X-Ray diffraction (XRD). The crystal size and crystallinity of BC was reduced when grown in the presence of CMC and gelatin while pectin only decreased the crystallite size. This suggested that CMC and gelatin may be incorporated into the BC fibril structure. The field emission scanning electron microscopy (FESEM) images showed the increased micro-fibril aggregation in BC pellicles grown in the presence of additives to the culture media. PMID:27083837

  18. Cellulose synthase interacting protein

    PubMed Central

    Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities. PMID:21150290

  19. Cellulose Aggregation under Hydrothermal Pretreatment Conditions.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Kovalenko, Andriy; Skaf, Munir S

    2016-08-01

    Cellulose, the most abundant biopolymer on Earth, represents a resource for sustainable production of biofuels. Thermochemical treatments make lignocellulosic biomaterials more amenable to depolymerization by exposing cellulose microfibrils to enzymatic or chemical attacks. In such treatments, the solvent plays fundamental roles in biomass modification, but the molecular events underlying these changes are still poorly understood. Here, the 3D-RISM-KH molecular theory of solvation has been employed to analyze the role of water in cellulose aggregation under different thermodynamic conditions. The results show that, under ambient conditions, highly structured hydration shells around cellulose create repulsive forces that protect cellulose microfibrils from aggregating. Under hydrothermal pretreatment conditions, however, the hydration shells lose structure, and cellulose aggregation is favored. These effects are largely due to a decrease in cellulose-water interactions relative to those at ambient conditions, so that cellulose-cellulose attractive interactions become prevalent. Our results provide an explanation to the observed increase in the lateral size of cellulose crystallites when biomass is subject to pretreatments and deepen the current understanding of the mechanisms of biomass modification. PMID:27301535

  20. Modeling of Carbohydrate Binding Modules Complexed to Cellulose

    SciTech Connect

    Nimlos, M. R.; Beckham, G. T.; Bu, L.; Himmel, M. E.; Crowley, M. F.; Bomble, Y. J.

    2012-01-01

    Modeling results are presented for the interaction of two carbohydrate binding modules (CBMs) with cellulose. The family 1 CBM from Trichoderma reesei's Cel7A cellulase was modeled using molecular dynamics to confirm that this protein selectively binds to the hydrophobic (100) surface of cellulose fibrils and to determine the energetics and mechanisms for locating this surface. Modeling was also conducted of binding of the family 4 CBM from the CbhA complex from Clostridium thermocellum. There is a cleft in this protein, which may accommodate a cellulose chain that is detached from crystalline cellulose. This possibility is explored using molecular dynamics.

  1. Relative Crystallinity of Plant Biomass: Studies on Assembly, Adaptation and Acclimation

    PubMed Central

    Harris, Darby; DeBolt, Seth

    2008-01-01

    Plant biomechanical design is central to cell shape, morphogenesis, reproductive performance and protection against environmental and mechanical stress. The cell wall forms the central load bearing support structure for plant design, yet a mechanistic understanding of its synthesis is incomplete. A key tool for studying the structure of cellulose polymorphs has been x-ray diffraction and fourier transform infrared spectroscopy (FTIR). Relative crystallinity index (RCI) is based on the x-ray diffraction characteristics of two signature peaks and we used this technique to probe plant assembly, adaptation and acclimation. Confocal microscopy was used to visualize the dynamics of cellulose synthase in transgenic Arabidopsis plants expressing a homozygous YFP::CESA6. Assembly: RCI values for stems and roots were indistinguishable but leaves had 23.4 and 21.6% lower RCI than stems and roots respectively. Adaptation: over 3-fold variability in RCI was apparent in leaves from 35 plant species spanning Ordovician to Cretaceous periods. Within this study, RCI correlated positively with leaf geometric constraints and with mass per unit area, suggestive of allometry. Acclimation: biomass crystallinity was found to decrease under conditions of thigmomorphogenesis in Arabidopsis. Further, in etiolated pea hypocotyls, RCI values also decreased compared to plants that were grown in light, consistent with alterations in FTIR cellulose fingerprint peaks and live cell imaging experiments revealing rapid orientation of the YFP::cellulose synthase-6 array in response to light. Herein, results and technical challenges associated with the structure of the cell wall that gives rise to sample crystallinity are presented and examined with respect to adaptation, acclimation and assembly in ecosystem-level processes. PMID:18682826

  2. Relative crystallinity of plant biomass: studies on assembly, adaptation and acclimation.

    PubMed

    Harris, Darby; DeBolt, Seth

    2008-01-01

    Plant biomechanical design is central to cell shape, morphogenesis, reproductive performance and protection against environmental and mechanical stress. The cell wall forms the central load bearing support structure for plant design, yet a mechanistic understanding of its synthesis is incomplete. A key tool for studying the structure of cellulose polymorphs has been x-ray diffraction and fourier transform infrared spectroscopy (FTIR). Relative crystallinity index (RCI) is based on the x-ray diffraction characteristics of two signature peaks and we used this technique to probe plant assembly, adaptation and acclimation. Confocal microscopy was used to visualize the dynamics of cellulose synthase in transgenic Arabidopsis plants expressing a homozygous YFP::CESA6. Assembly: RCI values for stems and roots were indistinguishable but leaves had 23.4 and 21.6% lower RCI than stems and roots respectively. Adaptation: over 3-fold variability in RCI was apparent in leaves from 35 plant species spanning Ordovician to Cretaceous periods. Within this study, RCI correlated positively with leaf geometric constraints and with mass per unit area, suggestive of allometry. Acclimation: biomass crystallinity was found to decrease under conditions of thigmomorphogenesis in Arabidopsis. Further, in etiolated pea hypocotyls, RCI values also decreased compared to plants that were grown in light, consistent with alterations in FTIR cellulose fingerprint peaks and live cell imaging experiments revealing rapid orientation of the YFP::cellulose synthase-6 array in response to light. Herein, results and technical challenges associated with the structure of the cell wall that gives rise to sample crystallinity are presented and examined with respect to adaptation, acclimation and assembly in ecosystem-level processes. PMID:18682826

  3. Cellulose biosynthesis in Acetobacter xylinum

    SciTech Connect

    Lin, F.C.

    1988-01-01

    Time-lapse video microscopy has shown periodic reversals during the synthesis of cellulose. In the presence of Congo Red, Acetobacter produces a band of fine fibrils. The direction of cell movement is perpendicular to the longitudinal axis of cell, and the rate of movement was decreased. A linear row of particles, presumably the cellulose synthesizing complexes, was found on the outer membrane by freeze-fracture technique. During the cell cycle, the increase of particles in linear row, the differentiation to four linear rows and the separation of the linear rows have been observed. A digitonin-solubilized cellulose synthase was prepared from A. xylinum, and incubated under conditions known to lead to active in vitro synthesis of 1,4-{beta}-D-glucan polymer. Electron microscopy revealed that clusters of fibrils were assembled within minutes. Individual fibrils are 17 {plus minus} 2 angstroms in diameter. Evidence for the cellulosic composition of newly synthesized fibrils was based on incorporation of tritium from UDP-({sup 3}H) glucose binding of gold-labeled cellobiohydrolase, and an electron diffraction pattern identified as cellulose II polymorph instead of cellulose I.

  4. Cellulose degradation by oxidative enzymes.

    PubMed

    Dimarogona, Maria; Topakas, Evangelos; Christakopoulos, Paul

    2012-01-01

    Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs), cellobiose dehydrogenases (CDHs) and members of carbohydrate-binding module family 33 (CBM33). PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future. PMID:24688656

  5. Cellulose degradation by oxidative enzymes

    PubMed Central

    Dimarogona, Maria; Topakas, Evangelos; Christakopoulos, Paul

    2012-01-01

    Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs), cellobiose dehydrogenases (CDHs) and members of carbohydrate-binding module family 33 (CBM33). PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future. PMID:24688656

  6. Evaluation of cellulose and carboxymethyl cellulose/poly(vinyl alcohol) membranes.

    PubMed

    Ibrahim, Maha M; Koschella, Andreas; Kadry, Ghada; Heinze, Thomas

    2013-06-01

    Cellulose was isolated from rice straw and converted to carboxymethyl cellulose (CMC). Both polymers were crosslinked with poly(vinyl alcholo) (PVA). The physical properties of the resulting membranes were characterized by FT-IR, TGA, DSC and SEM. The cellulose and CMC were first prepared from bleached rice straw pulp. The infrared spectroscopy of the resulting polymer membranes indicated a decrease in the absorbance of the OH group at 3300-3400 cm(-1), which is due to bond formation with either the cellulose or CMC with the PVA. The thermal stability of PVA/cellulose and PVA/CMC membranes was lower than PVA membrane. The surface of the resulting polymer membranes showed smooth surface in case of the PVA/CMC membrane and rough surface in case of the PVA/cellulose membrane. Desalination test, using 0.2% NaCl, showed that pure PVA membranes had no effect while membranes containing either cellulose or CMC as filler were able to decrease the content of the NaCl from the solution by 25% and 15%, respectively. Transport properties, including water and chloroform vapor were studied. The moisture transport was reduced by the presence of both cellulose and CMC. Moreover, the membranes containing cellulose and CMC showed significantly reduced flux compared to the pure PVA. The water sorption, solubility and soaking period at different pH solutions were also studied and showed that the presence of both cellulose and CMC influences the properties. PMID:23618287

  7. Enzymatic hydrolysis and physical characterization of commercial celluloses and cellulose-based ion-exchange powdered mixed resins.

    PubMed

    Clarkin, S D; Clesceri, L S

    2002-12-01

    Commercial celluloses (BH20, Epicote, FC+) and their cellulose-containing powdered mixed resins (PMR) were evaluated using enzymatic and physical methods. Samples were hydrolyzed with purified Trichoderma viride cellulase extract and measured for released reducing sugar using the dinitrosalicylic acid method. Physical characterization was performed with gross specific surface areas (GSSA) and relative crystalline indices (RCI). In addition, FC+ was exposed to physical and chemical processing commonly encountered in spent PMR processing to determine potential effects on reducing sugar release in high intensity containers. Reducing sugar released from the celluloses by T. viride cellulase ranged from 135.37 to 244.48 mg day(-1); the celluloses were highly crystalline, ranging from 82.47 to 84.57%; and the GSSA medians for the celluloses ranged from 1,298.60 cm(2) g(-1) to 2,493.20 cm(2) g(-1). Most processing treatments on the FC+ reduced the amount of reducing sugar released and increased RCI. Cellulose hydrolysis rates did not show a strong correlation with the physical characterization. These results suggest that (1) celluloses and PMR can serve as abundant sources of bioavailable carbon in water treatment systems, and (2) the use of correlative physical characteristics to evaluate a cellulose-based commercial product may not accurately predict microbial activity; a complementary microbial test such as cellulose hydrolysis with cellulase may prove useful. PMID:12466892

  8. Depolymerization of microcrystalline cellulose by the combination of ultrasound and Fenton reagent.

    PubMed

    Zhang, Mei-Fang; Qin, Yuan-Hang; Ma, Jia-Yu; Yang, Li; Wu, Zai-Kun; Wang, Tie-Lin; Wang, Wei-Guo; Wang, Cun-Wen

    2016-07-01

    In this study, the combined use of Fenton reagent and ultrasound to the pretreatment of microcrystalline cellulose (MCC) for subsequent enzyme hydrolysis was investigated. The morphological analysis showed that the aspect ratio of MCC was greatly reduced after pretreatment. The X-ray diffraction (XRD) and degree of polymerization (DP) analyses showed that Fenton reagent was more efficient in decreasing the crystallinity of MCC while ultrasound was more efficient in decreasing the DP of MCC. The combination of Fenton reaction and ultrasound, which produced the lowest crystallinity (84.8 ± 0.2%) and DP (124.7 ± 0.6) of MCC and the highest yield of reducing sugar (22.9 ± 0.3 g/100 g), provides a promising pretreatment process for MCC depolymerization. PMID:26964965

  9. Clean conversion of cellulose into fermentable glucose.

    PubMed

    Sun, Yong; Zhuang, Junping; Lin, Lu; Ouyang, Pingkai

    2009-01-01

    We studied the process of conversion of microcrystalline-cellulose into fermentable glucose in the formic acid reaction system using cross polarization/magic angle spinning (13)C-nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy. The results indicated that formic acid as an active agent was able to effectively penetrate into the interior space of the cellulose molecules, thus collapsing the rigid crystalline structure and allowing hydrolysis to occur easily in the amorphous zone as well as in the crystalline zone. The microcrystalline-cellulose was hydrolyzed using formic acid and 4% hydrochloric acid under mild conditions. The effects of hydrochloric acid concentration, the ratio of solid to liquid, temperature (55-75 degrees C) and retention time (0-9 h), and the concentration of glucose were analyzed. The hydrolysis velocities of microcrystalline-cellulose were 6.14 x 10(-3) h(-1) at 55 degrees C, 2.94 x 10(-2) h(-1) at 65 degrees C, and 6.84x10(-2) h(-1) at 75 degrees C. The degradation velocities of glucose were 0.01 h(-1) at 55 degrees C, 0.14 h(-1) at 65 degrees C, 0.34 h(-1) at 75 degrees C. The activation energy of microcrystalline-cellulose hydrolysis was 105.61 kJ/mol, and the activation energy of glucose degradation was 131.37 kJ/mol. PMID:19409478

  10. Influence of cellulose powder structure on moisture-induced degradation of acetylsalicylic acid.

    PubMed

    Mihranyan, A; Strømme, M; Ek, R

    2006-02-01

    The stability of crystalline acetylsalicylic acid (ASA) powder in binary mixtures with cellulose powders was investigated to reveal information about the influence of the cellulose structural properties on the moisture-induced ASA degradation. Different cellulose powder samples were manufactured and characterized by X-ray diffraction and N2 BET gas adsorption. The degradation patterns in ASA/cellulose mixtures were monitored as a function of salicylic acid increase versus time under various relative humidity conditions at 50 degrees C. The crystallinity index of cellulose samples varied between approximately 49 and 95%. The results indicated that cellulose powder with the lowest crystallinity index exhibited lower degradation rates than the samples with the higher crystallinity index. It should be noted that higher ASA degradation rates were observed in the samples with comparably lower moisture contents. This effect was most pronounced in the 1:3 (w/w), ASA/cellulose mixtures, whereas in 3:1 (w/w), ASA/cellulose mixtures the effect was less obvious. The findings emphasise the importance of cellulose structural organisation when governing the moisture's partition between cellulose and ASA during the hydrolytic degradation. PMID:16311024

  11. Molecular-level origins of biomass recalcitrance: decrystallization free energies for four common cellulose polymorphs.

    PubMed

    Beckham, Gregg T; Matthews, James F; Peters, Baron; Bomble, Yannick J; Himmel, Michael E; Crowley, Michael F

    2011-04-14

    Cellulose is a crystalline polymer of β1,4-D-glucose that is difficult to deconstruct to sugars by enzymes. The recalcitrance of cellulose microfibrils is a function of both the shape of cellulose microfibrils and the intrinsic work required to decrystallize individual chains, the latter of which is calculated here from the surfaces of four crystalline cellulose polymorphs: cellulose Iβ, cellulose Iα, cellulose II, and cellulose III(I). For edge chains, the order of decrystallization work is as follows (from highest to lowest): Iβ, Iα, ΙΙΙ(Ι), and II. For cellulose Iβ, we compare chains from three different locations on the surface and find that an increasing number of intralayer hydrogen bonds (from 0 to 2) increases the intrinsic decrystallization work. From these results, we propose a microkinetic model for the deconstruction of cellulose (and chitin) by processive enzymes, which when taken with a previous study [Horn et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 18089] identifies the thermodynamic and kinetic attributes of enzyme and substrate engineering for enhanced cellulose (or chitin) conversion. Overall, this study provides new insights into the molecular interactions that form the structural basis of cellulose, which is the primary building block of plant cell walls, and highlights the need for experimentally determining microfibril shape at the nanometer length scale when comparing conversion rates of cellulose polymorphs by enzymes. PMID:21425804

  12. Cytocompatible cellulose hydrogels containing trace lignin.

    PubMed

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43N/mm(2) and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. PMID:27127053

  13. Crystalline Membranes

    NASA Technical Reports Server (NTRS)

    Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)

    2008-01-01

    In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.

  14. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose.

    PubMed

    Haafiz, M K Mohamad; Hassan, Azman; Zakaria, Zainoha; Inuwa, I M; Islam, M S; Jawaid, M

    2013-10-15

    In this work, polylactic acid (PLA) composites filled with microcrystalline cellulose (MCC) from oil palm biomass were successfully prepared through solution casting. Fourier transform infrared (FT-IR) spectroscopy indicates that there are no significant changes in the peak positions, suggesting that incorporation of MCC in PLA did not result in any significant change in chemical structure of PLA. Thermogravimetric analysis was conducted on the samples. The T50 decomposition temperature improved with addition of MCC, showing increase in thermal stability of the composites. The synthesized composites were characterized in terms of tensile properties. The Young's modulus increased by about 30%, while the tensile strength and elongation at break for composites decreased with addition of MCC. Scanning electron microscopy (SEM) of the composites fractured surface shows that the MCC remained as aggregates of crystalline cellulose. Atomic force microscopy (AFM) topographic image of the composite surfaces show clustering of MCC with uneven distribution. PMID:23987327

  15. Mutation analysis of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A.

    PubMed Central

    Goldstein, M A; Doi, R H

    1994-01-01

    Cellulose-binding protein A (CbpA) has been previously shown to mediate the interaction between crystalline cellulose substrates and the cellulase enzyme complex of Clostridium cellulovorans. CbpA contains a family III cellulose-binding domain (CBD) which, when expressed independently, binds specifically to crystalline cellulose. A series of N- and C-terminal deletions and a series of small internal deletions of the CBD were created to determine whether the entire region previously described as a CBD is required for the cellulose-binding function. The N- and C-terminal deletions reduced binding affinity by 10- to 100-fold. Small internal deletions of the CBD resulted in substantial reduction of CBD function. Some, but not all, point mutations throughout the sequence had significant disruptive effects on the binding ability of the CBD. Thus, mutations in any region of the CBD had effects on the binding of the fragment to cellulose. The results indicate that the entire 163-amino-acid region of the CBD is required for maximal binding to crystalline cellulose. Images PMID:7961505

  16. Cellulose is not degraded in the tunic of the edible ascidian Halocynthia roretzi contracting soft tunic syndrome.

    PubMed

    Kimura, Satoshi; Nakayama, Kei; Wada, Masahisa; Kim, Ung-Jin; Azumi, Kaoru; Ojima, Takao; Nozawa, Akino; Kitamura, Shin-Ichi; Hirose, Euichi

    2015-10-16

    Soft tunic syndrome is a fatal disease in the edible ascidian Halocynthia roretzi, causing serious damage to ascidian aquaculture in Korea and Japan. In diseased individuals, the tunic, an integumentary extracellular matrix of ascidians, softens and eventually tears. This is an infectious disease caused by the kinetoplastid flagellate Azumiobodo hoyamushi. However, the mechanism of tunic softening remains unknown. Because cellulose fibrils are the main component of the tunic, we compared the contents and structures of cellulose in healthy and diseased tunics by means of biochemical quantification and X-ray diffractometry. Unexpectedly, the cellulose contents and structures of cellulose microfibrils were almost the same regardless of the presence or absence of the disease. Therefore, it is unlikely that thinning of the microfibrils occurred in the softened tunic, because digestion should have resulted in decreases in crystallinity index and crystallite size. Moreover, cellulase was not detected in pure cultures of A. hoyamushi in biochemical and expressed sequence tag analyses. These results indicate that cellulose degradation does not occur in the softened tunic. PMID:26480917

  17. Pretreatment for cellulose hydrolysis by carbon dioxide explosion

    SciTech Connect

    Zheng, Y.; Lin, H.M.; Tsao, G.T.

    1998-11-01

    Cellulosic materials were treated with supercritical carbon dioxide to increase the reactivity of cellulose, thereby to enhance the rate and the extent of cellulose hydrolysis. In this pretreatment process, the cellulosic materials such as Avicel, recycled paper mix, sugarcane bagasse and the repulping waste of recycled paper are placed in a reactor under pressurized carbon dioxide at 35 C for a controlled time period. Upon an explosive release of the carbon dioxide pressure, the disruption of the cellulosic structure increases the accessible surface area of the cellulosic substrate to enzymatic hydrolysis. Results indicate that supercritical carbon dioxide is effective for pretreatment of cellulose. An increase in pressure facilitates the faster penetration of carbon dioxide molecules into the crystalline structures, thus more glucose is produced from cellulosic materials after the explosion as compared to those without the pretreatment. This explosion pretreatment enhances the rate of cellulosic material hydrolysis as well as increases glucose yield by as much as 50%. Results from the simultaneous saccharification and fermentation tests also show the increase in the available carbon source from the cellulosic materials for fermentation to produce ethanol. As an alternative method, this supercritical carbon dioxide explosion has a possibility to reduce expense compared with ammonia explosion, and since it is operated at the low temperature, it will not cause degradation of sugars such as those treated with steam explosion due to the high-temperature involved.

  18. The effect of different anti-solvent and coconut shell content on properties of coconut shell regenerated cellulose biocomposite films

    NASA Astrophysics Data System (ADS)

    Hahary, Farah Norain; Husseinsyah, Salmah; Mostapha@Zakaria, Marliza

    2016-07-01

    In this study, coconut shell (CS) regenerated cellulose (RC) biocomposite films was prepared using dimethylacetamide/lithium chloride (DMAc/LiCl) solvent system. The effect of anti-solvents such as water and methanol for regeneration of cellulose and coconut shell content on properties of CS-RC biocomposite films was investigated. The used of water as anti-solvent for cellulose regeneration was found to have higher tensile properties compared to regenerated cellulose using methanol. Besides, the X-Ray diffraction (XRD) analysis also revealed that RC using water as anti-solvent have higher crystallinity index (CrI) than CS-RC biocomposite film using methanol. The tensile strength and modulus elasticity of CS-RC biocomposite films increased up to 3 wt% CS and decreased with further addition of CS. The elongation at break of CS-RC biocomposite films decreased with the increment of CS. The CrI of CS-RC bioocmposite films up to 3 wt% and decreased with at higher content of CS.

  19. Does the Cellulose-Binding Module Move on the Cellulose Surface?

    SciTech Connect

    Liu, Y. S.; Zeng, Y.; Luo, Y.; Xu, Q.; Himmel, M. E.; Smith, S. J.; Ding, S. Y.

    2009-01-01

    Exoglucanases are key enzymes required for the efficient hydrolysis of crystalline cellulose. It has been proposed that exoglucanases hydrolyze cellulose chains in a processive manner to produce primarily cellobiose. Usually, two functional modules are involved in the processive mechanism: a catalytic module and a carbohydrate-binding module (CBM). In this report, single molecule tracking techniques were used to analyze the molecular motion of CBMs labeled with quantum dots (QDs) and bound to cellulose crystals. By tracking the single QD, we observed that the family 2 CBM from Acidothermus cellulolyticus (AcCBM2) exhibited linear motion along the long axis of the cellulose fiber. This apparent movement was observed consistently when different concentrations (25 {micro}M to 25 nM) of AcCBM2 were used. Although the mechanism of AcCBM2 motion remains unknown, single-molecule spectroscopy has been demonstrated to be a promising tool for acquiring new fundamental understanding of cellulase action.

  20. Preparation of cellulose II and IIII films by allomorphic conversion of bacterial cellulose I pellicles.

    PubMed

    Faria-Tischer, Paula C S; Tischer, Cesar A; Heux, Laurent; Le Denmat, Simon; Picart, Catherine; Sierakowski, Maria-R; Putaux, Jean-Luc

    2015-06-01

    The structural changes resulting from the conversion of native cellulose I (Cel I) into allomorphs II (Cel II) and IIII (Cel IIII) have usually been studied using powder samples from plant or algal cellulose. In this work, the conversion of Cel I into Cel II and Cel IIII was performed on bacterial cellulose films without any mechanical disruption. The surface texture of the films was observed by atomic force microscopy (AFM) and the morphology of the constituting cellulose ribbons, by transmission electron microscopy (TEM). The structural changes were characterized using solid-state NMR spectroscopy as well as X-ray and electron diffraction. The allomorphic change into Cel II and Cel IIII resulted in films with different crystallinity, roughness and hydrophobic/hydrophilicity surface and the films remained intact during all process of allomorphic conversion. PMID:25842122

  1. Isolation and characterization of cellulose nanocrystals from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis).

    PubMed

    Lamaming, Junidah; Hashim, Rokiah; Leh, Cheu Peng; Sulaiman, Othman; Sugimoto, Tomoko; Nasir, Mohammed

    2015-12-10

    In this study cellulose nanocrystals were isolated through acid hydrolysis process from parenchyma and vascular bundle of oil palm trunk (Elaeis guineensis). The morphological properties of obtained cellulose nanocrystals were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The microscopy images showed smoother and cleaner surface of parenchyma cellulose nanocrystals when compared to vascular bundle cellulose nanocrystals. The TEM image shows a higher length and diameter for parenchyma cellulose nanocrystals compared to vascular bundle cellulose nanocrystals. The Fourier transform infrared (FTIR) spectra showed changes in functional groups after acid hydrolysis due to removal of lignin, hemicelluloses and other impurities in both type of cellulose nanocrystals. Crystallinity index of cellulose nanocrystals was observed higher for vascular bundle as compared to parenchyma. Thermogravimetric analysis (TGA) was performed to study the thermal stability of cellulose nanocrystals and it was observed higher for parenchyma cellulose nanocrystals compared to vascular bundle. PMID:26428155

  2. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  3. (13)C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy.

    PubMed

    Idström, Alexander; Schantz, Staffan; Sundberg, Johan; Chmelka, Bradley F; Gatenholm, Paul; Nordstierna, Lars

    2016-10-20

    From the assignment of the solid-state (13)C NMR signals in the C4 region, distinct types of crystalline cellulose, cellulose at crystalline surfaces, and disordered cellulose can be identified and quantified. For regenerated cellulose, complete (13)C assignments of the other carbon regions have not previously been attainable, due to signal overlap. In this study, two-dimensional (2D) NMR correlation methods were used to resolve and assign (13)C signals for all carbon atoms in regenerated cellulose. (13)C-enriched bacterial nanocellulose was biosynthesized, dissolved, and coagulated as highly crystalline cellulose II. Specifically, four distinct (13)C signals were observed corresponding to conformationally different anhydroglucose units: two signals assigned to crystalline moieties and two signals assigned to non-crystalline species. The C1, C4 and C6 regions for cellulose II were fully examined by global spectral deconvolution, which yielded qualitative trends of the relative populations of the different cellulose moieties, as a function of wetting and drying treatments. PMID:27474592

  4. Investigation and characterization of oxidized cellulose and cellulose nanofiber films

    NASA Astrophysics Data System (ADS)

    Yang, Han

    Over the last two decades, a large amount of research has focused on natural cellulose fibers, since they are "green" and renewable raw materials. Recently, nanomaterials science has attracted wide attention due to the large surface area and unique properties of nanoparticles. Cellulose certainly is becoming an important material in nanomaterials science, with the increasing demand of environmentally friendly materials. In this work, a novel method of preparing cellulose nanofibers (CNF) is being presented. This method contains up to three oxidation steps: periodate, chlorite and TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl) oxidation. The first two oxidation steps are investigated in the first part of this work. Cellulose pulp was oxidized to various extents by a two step-oxidation with sodium periodate, followed by sodium chlorite. The oxidized products can be separated into three different fractions. The mass ratio and charge content of each fraction were determined. The morphology, size distribution and crystallinity index of each fraction were measured by AFM, DLS and XRD, respectively. In the second part of this work, CNF were prepared and modified under various conditions, including (1) the introduction of various amounts of aldehyde groups onto CNF by periodate oxidation; (2) the carboxyl groups in sodium form on CNF were converted to acid form by treated with an acid type ion-exchange resin; (3) CNF were cross-linked in two different ways by employing adipic dihydrazide (ADH) as cross-linker and water-soluble 1-ethyl-3-[3-(dimethylaminopropyl)] carbodiimide (EDC) as carboxyl-activating agent. Films were fabricated with these modified CNF suspensions by vacuum filtration. The optical, mechanical and thermo-stability properties of these films were investigated by UV-visible spectrometry, tensile test and thermogravimetric analysis (TGA). Water vapor transmission rates (WVTR) and water contact angle (WCA) of these films were also studied.

  5. Cellulose biosynthesis and function in bacteria.

    PubMed Central

    Ross, P; Mayer, R; Benziman, M

    1991-01-01

    The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most evident for Acetobacter xylinum, polymerization and assembly appear to be tightly coupled. To date, only bacteria have been effectively studied at the biochemical and genetic levels. In A. xylinum, the cellulose synthase, composed of at least two structurally similar but functionally distinct subunits, is subject to a multicomponent regulatory system. Regulation is based on the novel nucleotide cyclic diguanylic acid, a positive allosteric effector, and the regulatory enzymes maintaining its intracellular turnover: diguanylate cyclase and Ca2(+)-sensitive bis-(3',5')-cyclic diguanylic acid (c-di-GMP) phosphodiesterase. Four genes have been isolated from A. xylinum which constitute the operon for cellulose synthesis. The second gene encodes the catalytic subunit of cellulose synthase; the functions of the other three gene products are still unknown. Exclusively an extracellular product, bacterial cellulose appears to fulfill diverse biological roles within the natural habitat, conferring mechanical, chemical, and physiological protection in A. xylinum and Sarcina ventriculi or facilitating cell adhesion during symbiotic or infectious interactions in Rhizobium and Agrobacterium species. A. xylinum is proving to be most amenable for industrial purposes, allowing the unique features of bacterial cellulose to be exploited for novel product applications. Images PMID:2030672

  6. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution

    PubMed Central

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  7. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE PAGESBeta

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy; Lai, Hsin -Chih

    2016-05-23

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation

  8. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution.

    PubMed

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  9. Salmonella promotes virulence by repressing cellulose production

    PubMed Central

    Pontes, Mauricio H.; Lee, Eun-Jin; Choi, Jeongjoon; Groisman, Eduardo A.

    2015-01-01

    Cellulose is the most abundant organic polymer on Earth. In bacteria, cellulose confers protection against environmental insults and is a constituent of biofilms typically formed on abiotic surfaces. We report that, surprisingly, Salmonella enterica serovar Typhimurium makes cellulose when inside macrophages. We determine that preventing cellulose synthesis increases virulence, whereas stimulation of cellulose synthesis inside macrophages decreases virulence. An attenuated mutant lacking the mgtC gene exhibited increased cellulose levels due to increased expression of the cellulose synthase gene bcsA and of cyclic diguanylate, the allosteric activator of the BcsA protein. Inactivation of bcsA restored wild-type virulence to the Salmonella mgtC mutant, but not to other attenuated mutants displaying a wild-type phenotype regarding cellulose. Our findings indicate that a virulence determinant can promote pathogenicity by repressing a pathogen's antivirulence trait. Moreover, they suggest that controlling antivirulence traits increases long-term pathogen fitness by mediating a trade-off between acute virulence and transmission. PMID:25848006

  10. Salmonella promotes virulence by repressing cellulose production.

    PubMed

    Pontes, Mauricio H; Lee, Eun-Jin; Choi, Jeongjoon; Groisman, Eduardo A

    2015-04-21

    Cellulose is the most abundant organic polymer on Earth. In bacteria, cellulose confers protection against environmental insults and is a constituent of biofilms typically formed on abiotic surfaces. We report that, surprisingly, Salmonella enterica serovar Typhimurium makes cellulose when inside macrophages. We determine that preventing cellulose synthesis increases virulence, whereas stimulation of cellulose synthesis inside macrophages decreases virulence. An attenuated mutant lacking the mgtC gene exhibited increased cellulose levels due to increased expression of the cellulose synthase gene bcsA and of cyclic diguanylate, the allosteric activator of the BcsA protein. Inactivation of bcsA restored wild-type virulence to the Salmonella mgtC mutant, but not to other attenuated mutants displaying a wild-type phenotype regarding cellulose. Our findings indicate that a virulence determinant can promote pathogenicity by repressing a pathogen's antivirulence trait. Moreover, they suggest that controlling antivirulence traits increases long-term pathogen fitness by mediating a trade-off between acute virulence and transmission. PMID:25848006

  11. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.

    PubMed

    Lee, Koon-Yang; Tammelin, Tekla; Schulfter, Kerstin; Kiiskinen, Harri; Samela, Juha; Bismarck, Alexander

    2012-08-01

    This work investigates the surface and bulk properties of nanofibrillated cellulose (NFC) and bacterial cellulose (BC), as well as their reinforcing ability in polymer nanocomposites. BC possesses higher critical surface tension of 57 mN m(-1) compared to NFC (41 mN m(-1)). The thermal degradation temperature in both nitrogen and air atmosphere of BC was also found to be higher than that of NFC. These results are in good agreement with the higher crystallinity of BC as determined by XRD, measured to be 71% for BC as compared to NFC of 41%. Nanocellulose papers were prepared from BC and NFC. Both papers possessed similar tensile moduli and strengths of 12 GPa and 110 MPa, respectively. Nanocomposites were manufactured by impregnating the nanocellulose paper with an epoxy resin using vacuum assisted resin infusion. The cellulose reinforced epoxy nanocomposites had a stiffness and strength of approximately ∼8 GPa and ∼100 MPa at an equivalent fiber volume fraction of 60 vol.-%. In terms of the reinforcing ability of NFC and BC in a polymer matrix, no significant difference between NFC and BC was observed. PMID:22839594

  12. Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release.

    PubMed

    Ciolacu, Diana; Rudaz, Cyrielle; Vasilescu, Mihai; Budtova, Tatiana

    2016-10-20

    Porous cellulose matrices were prepared via cellulose dissolution in 8wt% NaOH-water, physical gelation and chemical cross-linking with epichlorohydrin (ECH), coagulation in water and lyophilisation. Cellulose and cross-linker concentration were varied. The behaviour of gels upon coagulation and the swelling of cryogels in water were analysed. An anomalous high swelling at cross-linker concentration around stoichiometric molar ratio with cellulose was observed. Cellulose cryogel morphology, crystallinity and density were studied. The influence of chemical cross-linking on cellulose swelling was explained by suggesting that ECH acts as a spacer preventing cellulose chains tight packing during coagulation. Cellulose was loaded with a model drug, procaine hydrochloride, and the kinetics of its release was investigated. PMID:27474581

  13. Transcriptomic and genomic analysis of cellulose fermentation by Clostridium thermocellum ATCC 27405

    SciTech Connect

    Raman, Babu; McKeown, Catherine K; Rodriguez, Jr., Miguel; Brown, Steven D; Mielenz, Jonathan R

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  14. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    PubMed

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry. PMID:26352877

  15. Loosening xyloglucan accelerates the enzymatic degradation of cellulose in wood.

    PubMed

    Kaida, Rumi; Kaku, Tomomi; Baba, Kei'ichi; Oyadomari, Masafumi; Watanabe, Takashi; Nishida, Koji; Kanaya, Toshiji; Shani, Ziv; Shoseyov, Oded; Hayashi, Takahisa

    2009-09-01

    In order to create trees in which cellulose, the most abundant component in biomass, can be enzymatically hydrolyzed highly for the production of bioethanol, we examined the saccharification of xylem from several transgenic poplars, each overexpressing either xyloglucanase, cellulase, xylanase, or galactanase. The level of cellulose degradation achieved by a cellulase preparation was markedly greater in the xylem overexpressing xyloglucanase and much greater in the xylems overexpressing xylanase and cellulase than in the xylem of the wild-type plant. Although a high degree of degradation occurred in all xylems at all loci, the crystalline region of the cellulose microfibrils was highly degraded in the xylem overexpressing xyloglucanase. Since the complex between microfibrils and xyloglucans could be one region that is particularly resistant to cellulose degradation, loosening xyloglucan could facilitate the enzymatic hydrolysis of cellulose in wood. PMID:19825667

  16. In-situ glyoxalization during biosynthesis of bacterial cellulose.

    PubMed

    Castro, Cristina; Cordeiro, Nereida; Faria, Marisa; Zuluaga, Robin; Putaux, Jean-Luc; Filpponen, Ilari; Velez, Lina; Rojas, Orlando J; Gañán, Piedad

    2015-08-01

    A novel method to synthesize highly crosslinked bacterial cellulose (BC) is reported. The glyoxalization is started in-situ, in the culture medium during biosynthesis of cellulose by Gluconacetobacter medellensis bacteria. Strong crosslinked networks were formed in the contact areas between extruded cellulose ribbons by reaction with the glyoxal precursors. The crystalline structure of cellulose was preserved while the acidic component of the surface energy was reduced. As a consequence, its predominant acidic character and the relative contribution of the dispersive component increased, endowing the BC network with a higher hydrophobicity. This route for in-situ crosslinking is expected to facilitate other modifications upon biosynthesis of cellulose ribbons by microorganisms and to engineer the strength and surface energy of their networks. PMID:25933519

  17. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization.

    PubMed

    Yang, Quanling; Saito, Tsuguyuki; Berglund, Lars A; Isogai, Akira

    2015-11-14

    All-cellulose nanocomposite films containing crystalline TEMPO-oxidized cellulose nanofibrils (TOCNs) of 0-1 wt% were fabricated by mixing aqueous TOCN dispersions with alkali/urea/cellulose (AUC) solutions at room temperature. The mixtures were cast on glass plates, soaked in an acid solution, and the regenerated gel-like films were washed with water and then dried. The TOCN did not form agglomerates in the composites, and had the structure of TOCN-COOH, forming hydrogen bonds with the hydroxyl groups of the regenerated cellulose molecules. X-ray diffraction analysis revealed that the matrix cellulose molecules increased the cellulose II crystal size upon incorporation of TOCN. As a result, the TOCN/AUC composite films had high Young's modulus, tensile strength, thermal stability and oxygen-barrier properties. The TOCN/AUC composite films are promising all-cellulose nanocomposites for versatile applications as new bio-based materials. PMID:26465589

  18. Electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  19. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films.

    PubMed

    Oun, Ahmed A; Rhim, Jong-Whan

    2016-10-01

    Cellulose nanocrystals (CNCs) were isolated from rice straw (RS), wheat straw (WS), and barley straw (BS) by using acid hydrolysis method. They were fibrous in shape with length (L) of 120-800nm and width (W) of 10-25nm, aspect ratio (L/W) of 18, 16 and 19, crystallinity index (CI) of 0.663, 0.710, and 0.634, and yield of 64, 75, and 69wt% for RS, WS, and BS respectively. Carboxymethyl cellulose (CMC)/CNC composite films were prepared with various concentration of the CNCs. SEM results showed that the CNCs were evenly distributed in the polymer to form homogeneous films. Mechanical and water vapor barrier properties were varied depending on the type of CNCs and their concentration. Tensile strength (TS) increased by 45.7%, 25.2%, and 42.6%, and the water vapor permeability (WVP) decreased by 26.3%, 19.1%, and 20.4% after forming composite with 5wt% of CNCs obtained from RS, WS, and BS, respectively. PMID:27312629

  20. Cellulose amorphization by swelling in ionic liquid/water mixtures: a combined macroscopic and second-harmonic microscopy study.

    PubMed

    Glas, Daan; Paesen, Rik; Depuydt, Daphne; Binnemans, Koen; Ameloot, Marcel; De Vos, Dirk E; Ameloot, Rob

    2015-01-01

    Amorphization of cellulose by swelling in ionic liquid (IL)/water mixtures at room temperature is a suitable alternative to the dissolution-precipitation pretreatment known to facilitate enzymatic digestion. When soaking microcrystalline cellulose in the IL 1-ethyl-3-methylimidazolium acetate containing 20 wt % water, the crystallinity of the cellulose sample is strongly reduced. As less than 4 % of the cellulose dissolves in this mixture, this swelling method makes a precipitation step and subsequent energy-intensive IL purification redundant. Second-harmonic generation (SHG) microscopy is used as a structure-sensitive technique for in situ monitoring of the changes in cellulose crystallinity. Combined optical and SHG observations confirm that in the pure IL complete dissolution takes place, while swelling without dissolution in the optimal IL/water mixture yields a solid cellulose with a significantly reduced crystallinity in a single step. PMID:25363520

  1. Exploring biosensor applications with cotton cellulose nanocrystalline protein and peptide conjugates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensor I: Nano-crystalline preparations were produced through acid hydrolysis and mechanical breakage of the cotton fibers from a scoured and bleached cotton fabric and a scoured and bleached, mercerized fabric, which was shown to produce cellulose I (NCI) and cellulose II (NCII) crystals respective...

  2. Combining computational chemistry and crystallography for a better understanding of the structure of cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The approaches in this article seek to enhance understanding of cellulose at the molecular level, independent of the source and the particular crystalline form of cellulose. Four main areas of structure research are reviewed. Initially the molecular shape is inferred from the crystal structures of m...

  3. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.

    1998-04-14

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  4. Kits and methods of detection using cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Recycling of cellulosic fibers by enzymatic process.

    PubMed

    Shojaei, K M; Dadashian, F; Montazer, M

    2012-02-01

    In this research, enzymatic treatment as an environmental friendly process has been used for recycling process of old cellulosic wastes such as cotton, viscose, and lyocell. Cellulase hydrolyses cellulosic chains and shortens cellulosic fibers. This study investigates to detect the optimum enzyme concentration and time of treatments for suitable changes of length and weight loss. The main purposes of this article are shortening of cellulosic fibers and evaluating of enzymatic treatment in different kind of cellulosic fibers. According to the data of experiments, with the increase of enzyme concentration and the treatment time, the length and weight loss percentage of the cellulosic fibers has been decreased. The length and weight loss percentage of treated viscose is more than that of lyocell and cotton fibers. Optimized condition, reaction time, and enzyme concentration have been determined by mean length of treated cellulosic samples. Suitable longitudinal distribution of fiber for papermaking industries is in the range of 0 to 4 mm. Optimum enzyme concentration and treatment time for recycling cotton, lyocell, and viscose fibers are 2% and 48 h for cotton and lyocell and 0.5% and 48 h for viscose, respectively. According to the data of experiment, the length of treated fibers is appropriate for its usage as a raw material in papermaking industries. PMID:22161212

  6. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    SciTech Connect

    Stipanovic, Arthur J

    2014-11-17

    Consistent with the US-DOE and USDA “Roadmap” objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled “The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases” was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by “pure” enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH “pretreatment” provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  7. Nitrogen and Sulfur Requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on Cellulosic Substrates in Minimal Nutrient Media

    SciTech Connect

    Kridelbaugh, Donna M; Nelson, Josh C; Engle, Nancy L; Tschaplinski, Timothy J; Graham, David E

    2013-01-01

    Growth media for cellulolytic Clostridium thermocellum and Caldicellulosiruptor bescii bacteria usually contain excess nutrients that would increase costs for consolidated bioprocessing for biofuel production and create a waste stream with nitrogen, sulfur and phosphate. C. thermocellum was grown on crystalline cellulose with varying concentrations of nitrogen and sulfur compounds, and growth rate and alcohol production response curves were determined. Both bacteria assimilated sulfate in the presence of ascorbate reductant, increasing the ratio of oxidized to reduced fermentation products. From these results, a low ionic strength, defined minimal nutrient medium with decreased nitrogen, sulfur, phosphate and vitamin supplements was developed for the fermentation of cellobiose, cellulose and acid-pretreated Populus. Carbon and electron balance calculations indicate the unidentified residual fermentation products must include highly reduced molecules. Both bacterial populations were maintained in co-cultures with substrates containing xylan or hemicellulose in defined medium with sulfate and basal vitamin supplements.

  8. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.

    PubMed

    Palme, Anna; Theliander, Hans; Brelid, Harald

    2016-01-20

    The behaviour of different cellulosic fibres during acid hydrolysis has been investigated and the levelling-off degree of polymerisation (LODP) has been determined. The study included a bleached kraft pulp (both never-dried and once-dried) and two dissolving pulps (once-dried). Additionally, cotton cellulose from new cotton sheets and sheets discarded after long-time use was studied. Experimental results from the investigation, together with results found in literature, imply that ultrastructural differences between different fibres affect their susceptibility towards acid hydrolysis. Drying of a bleached kraft pulp was found to enhance the rate of acid hydrolysis and also result in a decrease in LODP. This implies that the susceptibility of cellulosic fibres towards acid hydrolysis is affected by drying-induced stresses in the cellulose chains. In cotton cellulose, it was found that use and laundering gave a substantial loss in the degree of polymerisation (DP), but that the LODP was only marginally affected. PMID:26572472

  9. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    PubMed

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth. PMID:21452895

  10. Synthesis of carboxymethyl cellulose from waste of cotton ginning industry.

    PubMed

    Haleem, Noor; Arshad, Muhammad; Shahid, Muhammad; Tahir, Muhammad Ashraf

    2014-11-26

    The aim of present work was to isolate cellulose from cotton gin waste (CGW) and synthesis of carboxymethyl cellulose (CMC) from it. Scoured and bleached CGW was used to investigate the effects of temperature, reaction time, acid-base concentration on the physiology of the resultant cellulose polymer. The isolated cellulose from CGW was converted to CMC by etherification using sodium monochloroacetic acid and different sodium hydroxide (NaOH) concentrations (5-40 g/100mL) were tested to get high quality product. The optimum condition for carboxymethylation was found to be 20 g/100mL NaOH which provided the highest viscosity and degree of substitution (DS=0.874). Isolated cellulose and CMC were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). FT-IR analysis revealed that the produced cellulose was of very good quality. Furthermore, X-ray diffraction (XRD) analysis spotlighted crystalline nature of cellulose. SEM images showed rough structure of cellulose while that of the CMC had a smooth surface. This optimized method will be tested at pilot scale in collaboration with local industry. PMID:25256482

  11. Cellulose synthesizing Complexes in Vascular Plants andProcaryotes

    SciTech Connect

    Brown, Richard M, Jr; Saxena, Inder Mohan

    2009-07-07

    Continuing the work initiated under DE-FG03-94ER20145, the following major accomplishments were achieved under DE-FG02-03ER15396 from 2003-2007: (a) we purified the acsD gene product of the Acetobacter cellulose synthase operon as well as transferred the CesA cellulose gene from Gossypium into E. coli in an attempt to crystallize this protein for x-ray diffraction structural analysis; however, crystallization attempts proved unsuccessful; (b) the Acetobacter cellulose synthase operon was successfully incorporated into Synechococcus, a cyanobacterium2; (c) this operon in Synechococcus was functionally expressed; (d) we successfully immunolabeled Vigna cellulose and callose synthase components and mapped their distribution before and after wounding; (e) we developed a novel method to produce replicas of cellulose synthases in tobacco BY-2 cells, and we demonstrated the cytoplasmic domain of the rosette TC; (f) from the moss Physcomitrella, we isolated two full-length cDNA sequences of cellulose synthase (PpCesA1 and PpCesA2) and attempted to obtain full genomic DNA sequences; (g) we examined the detailed molecular structure of a new form of non-crystalline cellulose known as nematic ordered cellulose (=NOC)3.

  12. Cellulose: A review as natural, modified and activated carbon adsorbent.

    PubMed

    Suhas; Gupta, V K; Carrott, P J M; Singh, Randhir; Chaudhary, Monika; Kushwaha, Sarita

    2016-09-01

    Cellulose is a biodegradable, renewable, non-meltable polymer which is insoluble in most solvents due to hydrogen bonding and crystallinity. Natural cellulose shows lower adsorption capacity as compared to modified cellulose and its capacity can be enhanced by modification usually by chemicals. This review focuses on the utilization of cellulose as an adsorbent in natural/modified form or as a precursor for activated carbon (AC) for adsorbing substances from water. The literature revealed that cellulose can be a promising precursor for production of activated carbon with appreciable surface area (∼1300m(2)g(-1)) and total pore volume (∼0.6cm(3)g(-1)) and the surface area and pore volume varies with the cellulose content. Finally, the purpose of review is to report a few controversies and unresolved questions concerning the preparation/properties of ACs from cellulose and to make aware to readers that there is still considerable scope for future development, characterization and utilization of ACs from cellulose. PMID:27265088

  13. Cellulose-clay layered nanocomposite films fabricated from aqueous cellulose/LiOH/urea solution.

    PubMed

    Yang, Quanling; Wu, Chun-Nan; Saito, Tsuguyuki; Isogai, Akira

    2014-01-16

    Transparent and flexible cellulose-clay (montmorillonite, MTM) nanocomposite films are prepared from cellulose/LiOH/urea solutions. The results show that the composites possess intercalated nanolayered structures. Almost no Na ions are present in MTM, probably because they are substituted by Li ions. The nanocomposite films possess high mechanical strength and gas barrier properties, and lower coefficients of thermal expansion than those of the original cellulose film. In particular, the composite film of 85% cellulose and 15% MTM has the highest tensile strength and Young's modulus 161 and 180% greater than those of the 100% cellulose film, and coefficient of thermal expansion and oxygen permeability at 50-75% RH decrease to 60 and 42-33%, respectively. Moreover, the initial hydrophilic nature of cellulose film changes to somewhat hydrophobic through incorporation of hydrophilic MTM platelets. This is probably because the orientation of cellulose chains on the film surface changes by the formation of numerous hydrogen bonds between cellulose molecules and MTM platelets. PMID:24188852

  14. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production

    PubMed Central

    Liu, Zhuo; Ho, Shih-Hsin; Sasaki, Kengo; den Haan, Riaan; Inokuma, Kentaro; Ogino, Chiaki; van Zyl, Willem H.; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-01-01

    Cellulosic biofuel is the subject of increasing attention. The main obstacle toward its economic feasibility is the recalcitrance of lignocellulose requiring large amount of enzyme to break. Several engineered yeast strains have been developed with cellulolytic activities to reduce the need for enzyme addition, but exhibiting limited effect. Here, we report the successful engineering of a cellulose-adherent Saccharomyces cerevisiae displaying four different synergistic cellulases on the cell surface. The cellulase-displaying yeast strain exhibited clear cell-to-cellulose adhesion and a “tearing” cellulose degradation pattern; the adhesion ability correlated with enhanced surface area and roughness of the target cellulose fibers, resulting in higher hydrolysis efficiency. The engineered yeast directly produced ethanol from rice straw despite a more than 40% decrease in the required enzyme dosage for high-density fermentation. Thus, improved cell-to-cellulose interactions provided a novel strategy for increasing cellulose hydrolysis, suggesting a mechanism for promoting the feasibility of cellulosic biofuel production. PMID:27079382

  15. Interactions of Endoglucanases with Amorphous Cellulose Films Resolved by Neutron Reflectometry and Quartz Crystal Microbalance with Dissipation Monitoring

    SciTech Connect

    Cheng, Gang; Liu, Zelin; Kent, Michael S; Majewski, Jaroslaw; Michael, Jablin; Jaclyn, Murton K; Halbert, Candice E; Datta, Supratim; Chao, Wang; Brown, Page

    2012-01-01

    A study of the interaction of four endoglucanases with amorphous cellulose films by neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) is reported. The endoglucanases include a mesophilic fungal endoglucanase (Cel45A from H. insolens), a processive endoglucanase from a marine bacterium (Cel5H from S. degradans), and two from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima). The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. The endoglucanases displayed highly diverse behavior. Cel45A and Cel5H, which possess carbohydrate-binding modules (CBMs), penetrated and digested within the bulk of the films to a far greater extent than Cel9A and Cel5A, which lack CBMs. While both Cel45A and Cel5H were active within the bulk of the films, striking differences were observed. With Cel45A, substantial film expansion and interfacial broadening were observed, whereas for Cel5H the film thickness decreased with little interfacial broadening. These results are consistent with Cel45A digesting within the interior of cellulose chains as a classic endoglucanase, and Cel5H digesting predominantly at chain ends consistent with its designation as a processive endoglucanase.

  16. Influence of water on swelling and dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate.

    PubMed

    Olsson, Carina; Idström, Alexander; Nordstierna, Lars; Westman, Gunnar

    2014-01-01

    In this study the effect of residual coagulation medium (water) on cellulose dissolution in an ionic liquid is discussed. Solubility of dissolving grade pulp; HWP and SWP, and microcrystalline cellulose in binary solvents, mixtures of 1-ethyl-3-methyl-imidazolium acetate and water, was investigated by turbidity measurements, light microscopy, rheometry, and CP/MAS (13)C-NMR spectroscopy. The viscoelastic properties of the cellulose solutions imply that residual water affect the cellulose dissolution. However, it is not obvious that this always necessarily poses serious drawbacks for the solution properties or that the effects are as severe as previously believed. Turbidity measurements, viscosity data and crystallinity of the regenerated cellulose correlated well and an increased conversion to cellulose II was found at low water and cellulose contents with an apparent maximum of conversion at 2-5 wt% water. At high water content, above 10 wt%, dissolution and conversion was largely inhibited. PMID:24274528

  17. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Wulandari, W. T.; Rochliadi, A.; Arcana, I. M.

    2016-02-01

    Cellulose in nanometer range or called by nano-cellulose has attracted much attention from researchers because of its unique properties. Nanocellulose can be obtained by acid hydrolysis of cellulose. The cellulose used in this study was isolated from sugarcane bagasse, and then it was hydrolyzed by 50% sulfuric acid at 40 °C for 10 minutes. Nanocellulose has been characterized by Transmission Electron Microscope (TEM), Particle Size Analyzer (PSA), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Analysis of FTIR showed that there were not a new bond which formed during the hydrolysis process. Based on the TEM analysis, nano-cellulose has a spherical morphology with an average diameter of 111 nm and a maximum distribution of 95.9 nm determined by PSA. The XRD analysis showed that the crystallinity degree of nano-cellulose was higher than cellulose in the amount of 76.01%.

  18. Separation and recovery of cellulose from Zoysia japonica by 1-allyl-3-methylimidazolium chloride.

    PubMed

    Li, Wei-Zun; Ju, Mei-Ting; Wang, Yan-Nan; Liu, Le; Jiang, Yang

    2013-01-30

    We investigated the use of ionic liquid (IL) 1-allyl-3-methylimidazolium chloride (AMIMCl) for extracting cellulose from Zoysia japonica by using Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy and thermogravimetric analysis to analyze the IL and its effects on cellulose extraction. After water pretreatment at 121 °C for several minutes, cellulose extraction rate was 71% under optimized conditions, and the yield of cellulose was >99% by AMIMCl. The effectiveness of AMIMCl as an extraction agent can be attributed to the prevalence of intra- and inter-molecular hydrogen bonding in cellulose. By contrast, hemicelluloses were not recovered by AMIMCl because hemicelluloses in plant cell walls are connected to lignin by covalent bonding. Results also showed that the regenerated cellulose was exactly the same as untreated cellulose, except for the degree of crystallinity. PMID:23218288

  19. Multi-scale model for the hierarchical architecture of native cellulose hydrogels.

    PubMed

    Martínez-Sanz, Marta; Mikkelsen, Deirdre; Flanagan, Bernadine; Gidley, Michael J; Gilbert, Elliot P

    2016-08-20

    The structure of protiated and deuterated cellulose hydrogels has been investigated using a multi-technique approach combining small-angle scattering with diffraction, spectroscopy and microscopy. A model for the multi-scale structure of native cellulose hydrogels is proposed which highlights the essential role of water at different structural levels characterised by: (i) the existence of cellulose microfibrils containing an impermeable crystalline core surrounded by a partially hydrated paracrystalline shell, (ii) the creation of a strong network of cellulose microfibrils held together by hydrogen bonding to form cellulose ribbons and (iii) the differential behaviour of tightly bound water held within the ribbons compared to bulk solvent. Deuterium labelling provides an effective platform on which to further investigate the role of different plant cell wall polysaccharides in cellulose composite formation through the production of selectively deuterated cellulose composite hydrogels. PMID:27178962

  20. Hairy cellulose nanocrystalloids: a novel class of nanocellulose.

    PubMed

    van de Ven, Theo G M; Sheikhi, Amir

    2016-08-18

    Nanomaterials have secured such a promising role in today's life that imagining the modern world without them is almost impossible. A large fraction of nanomaterials is synthesized from environmentally-dangerous elements such as heavy metals, which have posed serious side-effects to ecosystems. Despite numerous advantages of synthetic nanomaterials, issues such as renewability, sustainability, biocompatibility, and cost efficiency have drawn significant attention towards natural products such as cellulose-based nanomaterials. Within the past decade, nanocelluloses, most remarkably nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC), have successfully been used for a wide spectrum of applications spanning from nanocomposites, packaging, and mechanical and rheological property modifications, to chemical catalysis and organic templating. Yet, there has been little effort to introduce fundamentally new polysaccharide-based nanomaterials. We have been able to develop the first kind of cellulose-based nanoparticles bearing both crystalline and amorphous regions. These nanoparticles comprise a crystalline body, similar to conventional NCC, but with polymer chains protruding from both ends; therefore, these particles are called hairy cellulose nanocrystalloids (HCNC). In this article, we touch on the philosophy of HCNC synthesis, the striking superiority over existing nanocelluloses, and applications of this novel class of nanocelluloses. We hope that the emergence of hairy cellulose nanocrystalloids extends the frontiers of sustainable, green nanotechnology. PMID:27453347

  1. Cellulose and the twofold screw axis: Modeling and experimental arguments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crystallography indicates that molecules in crystalline cellulose either have 2-fold screw-axis (21) symmetry or closely approximate it, leading to short distances between H4 and H1' across the glycosidic linkage. Therefore, modeling studies of cellobiose often show elevated energies for 21 structur...

  2. Stability of two-fold screw axis structures for cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffraction crystallography indicates that most forms of crystalline cellulose have two-fold screw axis symmetry. Even if exact symmetry is absent, the degree of pseudo symmetry is very high. On the other hand, this symmetry leads to short contacts between H4 and H1' across the glycosidic linkage....

  3. Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent.

    PubMed

    Dong, Cuihua; Zhang, Fulong; Pang, Zhiqiang; Yang, Guihua

    2016-10-20

    Contamination of heavy metal in wastewater has caused great concerns on human life and health. Developing an efficient material to eliminate the heavy metal ions has been a popular topic in recent years. In this work, sulfonated cellulose (SC) was explored as efficient adsorbent for metal ions in solution. Thermo gravimetric analyzer (TGA), X-ray diffraction (XRD) and Fourier-transform infrared spectrometer (FTIR) first analyzed the characterizations of SC. Subsequently, effects of solution pH, adsorbent loading, temperature and initial metal ion concentration on adsorption performance were investigated. The results showed that sulfonated modification of cellulose could decrease the crystallinity and thermostability of cellulose. Due to its excellent performance of adsorption to metal ions, SC could reach adsorption equilibrium status within as short as 2min. In multi-component solution, SC can orderly removes Fe(3+), Pb(2+) and Cu(2+) with excellent selectivity and high efficiency. In addition, SC is a kind of green and renewable adsorbent because it can be easily regenerated by treatment with acid or chelating liquors. The mechanism study shows that the sulfonic group play a major role in the adsorption process. PMID:27474562

  4. Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose.

    PubMed Central

    Tormo, J; Lamed, R; Chirino, A J; Morag, E; Bayer, E A; Shoham, Y; Steitz, T A

    1996-01-01

    The crystal structure of a family-III cellulose-binding domain (CBD) from the cellulosomal scaffoldin subunit of Clostridium thermocellum has been determined at 1.75 A resolution. The protein forms a nine-stranded beta sandwich with a jelly roll topology and binds a calcium ion. conserved, surface-exposed residues map into two defined surfaces located on opposite sides of the molecule. One of these faces is dominated by a planar linear strip of aromatic and polar residues which are proposed to interact with crystalline cellulose. The other conserved residues are contained in a shallow groove, the function of which is currently unknown, and which has not been observed previously in other families of CBDs. On the basis of modeling studies combined with comparisons of recently determined NMR structures for other CBDs, a general model for the binding of CBDs to cellulose is presented. Although the proposed binding of the CBD to cellulose is essentially a surface interaction, specific types and combinations of amino acids appear to interact selectively with glucose moieties positioned on three adjacent chains of the cellulose surface. The major interaction is characterized by the planar strip of aromatic residues, which align along one of the chains. In addition, polar amino acid residues are proposed to anchor the CBD molecule to two other adjacent chains of crystalline cellulose. Images PMID:8918451

  5. In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate.

    PubMed

    Ruka, Dianne R; Simon, George P; Dean, Katherine M

    2013-02-15

    Bacterial cellulose is a pure, highly crystalline form of cellulose produced from the bacteria Gluconacetobacter xylinus that has become of increasing interest in materials science due to its nanofibrillar structure, ideal for incorporation into other materials as a reinforcing material. The morphology and properties of bacterial cellulose can be altered by including additives not specifically required for growth of the bacteria in liquid media. The bioplastic poly-3-hydroxybutyrate (PHB), along with hydroxypropylmethyl cellulose (HPMC) and Tween 80 were selected and added to the growth media at different concentrations to examine their impact on the resulting cellulose, leading to changes in yield, crystallinity and morphology. The crystallinity index of the nanofibrils was found to vary greatly when using these different methods to calculate it from XRD data, indicating that particular care must be taken when comparing crystallinity results reported in the literature. PHB was able to be incorporated into the bacterial cellulose fibrils during production, increasing the potential for favourable interactions of the bacterial cellulose microfibrils with a neat PHB matrix with the aim of making a fully degradable nanocomposite system. PMID:23399211

  6. Surface structure, crystallographic and ice-nucleating properties of cellulose

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kiselev, Alexei; Saathoff, Harald; Weidler, Peter; Shutthanandan, Shuttha; Kulkarni, Gourihar; Jantsch, Evelyn; Koop, Thomas

    2015-04-01

    Increasing evidence of the high diversity and efficient freezing ability of biological ice-nucleating particles is driving a reevaluation of their impact upon climate. Despite their potential importance, little is known about their atmospheric abundance and ice nucleation efficiency, especially non-proteinaceous ones, in comparison to non-biological materials (e.g., mineral dust). Recently, microcrystalline cellulose (MCC; non-proteinaceous plant structural polymer) has been identified as a potential biological ice-nucleating particle. However, it is still uncertain if the ice-nucleating activity is specific to the MCC structure or generally relevant to all cellulose materials, such that the results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to address its role in clouds and the climate system. Here we use the helium ion microscopy (HIM) imaging and the X-ray diffraction (XRD) technique to characterize the nanoscale surface structure and crystalline properties of the two different types of cellulose (MCC and fibrous cellulose extracted from natural wood pulp) as model proxies for atmospheric cellulose particles and to assess their potential accessibility for water molecules. To complement these structural characterizations, we also present the results of immersion freezing experiments using the cold stage-based droplet freezing BINARY (Bielefeld Ice Nucleation ARaY) technique. The HIM results suggest that both cellulose types have a complex porous morphology with capillary spaces between the nanoscale fibrils over the microfiber surface. These surface structures may make cellulose accessible to water. The XRD results suggest that the structural properties of both cellulose materials are in agreement (i.e., P21 space group; a=7.96 Å, b=8.35 Å, c=10.28 Å) and comparable to the crystallographic properties of general monoclinic cellulose (i.e., Cellulose Iβ). The results obtained from the BINARY measurements suggest

  7. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    SciTech Connect

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel

  8. Wrinkle resistant cellulosic textiles

    SciTech Connect

    Kitchens, J.D.; Patton, R.T.; Nadar, R.S.

    1991-08-27

    This patent describes a process for treating a cellulosic textile material so as to impart wrinkle resistance and smooth drying properties. It comprises treating the cellulosic textile material with an aqueous solution comprising trans-1,2,3,4-cyclobutane tetracarboxylic acid, and a curing catalyst, and heating the treated material so as to produce esterification and crosslinking of the material with the acid.

  9. Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability.

    PubMed

    Li, Bin; Konecke, Stephanie; Harich, Kim; Wegiel, Lindsay; Taylor, Lynne S; Edgar, Kevin J

    2013-02-15

    Amorphous solid dispersions (ASD) of quercetin (Que) in cellulose derivative matrices, carboxymethylcellulose acetate butyrate (CMCAB), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and cellulose acetate adipate propionate (CAAdP) were prepared with the goal of identifying an ASD that effectively increased Que aqueous solution concentration. Crystalline quercetin and Que/poly(vinylpyrrolidinone) (PVP) ASD were evaluated for comparison. Powder X-ray diffraction (XRPD) and differential scanning calorimetry (DSC) were used to examine the crystallinity of ASDs, physical mixtures (PM) and quercetin. ASDs were amorphous up to 50 wt% Que. Que stability against crystallization and solution concentrations from these ASDs were significantly higher than those observed for physical mixtures and crystalline Que. PVP stabilizes against both Que degradation and recrystallization; in contrast, these carboxylated cellulose derivatives inhibit recrystallization but release Que slowly. PVP ASDs afforded fast and complete drug release, while ASDs using these three cellulose derivatives provide slow, incomplete, pH-triggered drug release. PMID:23399255

  10. Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate.

    PubMed

    Rosli, Noor Afizah; Ahmad, Ishak; Abdullah, Ibrahim; Anuar, Farah Hannan; Mohamed, Faizal

    2015-07-10

    Graft copolymerisation of methyl methacrylate (MMA) onto Agave angustifolia was conducted with ceric ammonium nitrate (CAN) as the redox initiator. The maximum grafting efficiency was observed at CAN and MMA concentrations of 0.91 × 10(-3) and 5.63 × 10(-2)M, respectively, at 45°C for 3h reaction time. Four characteristic peaks at 2995, 1738, 1440, and 845 cm(-1), attributed to PMMA, were found in the IR spectrum of grafted cellulose. The crystallinity index dropped from 0.74 to 0.46, while the thermal stability improved upon grafting. The water contact angle increased with grafting yield, indicating increased hydrophobicity of cellulose. SEM images showed the grafted cellulose to be enlarged and rougher. The changes in the physical nature of PMMA-grafted cellulose can be attributed to the PMMA grafting in the amorphous regions of cellulose, causing it to expand at the expense of the crystalline component. PMID:25857961

  11. The reuse of wastepaper for the extraction of cellulose nanocrystals.

    PubMed

    Danial, Wan Hazman; Abdul Majid, Zaiton; Mohd Muhid, Mohd Nazlan; Triwahyono, Sugeng; Bakar, Mohd Bakri; Ramli, Zainab

    2015-03-15

    The study reports on the preparation of cellulose nanocrystals (CNCs) from wastepaper, as an environmental friendly approach of source material, which can be a high availability and low-cost precursor for cellulose nanomaterial processing. Alkali and bleaching treatments were employed for the extraction of cellulose particles followed by controlled-conditions of acid hydrolysis for the isolation of CNCs. Attenuated total reflectance Fourier Transform Infrared (ATR FTIR) spectroscopy was used to analyze the cellulose particles extracted while Transmission electron microscopy images confirmed the presence of CNCs. The diameters of CNCs are in the range of 3-10nm with a length of 100-300nm while a crystallinity index of 75.9% was determined from X-ray diffraction analysis. The synthesis of this high aspect ratio of CNCs paves the way toward alternative reuse of wastepaper in the production of CNCs. PMID:25542122

  12. A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres.

    PubMed

    Mtibe, A; Linganiso, Linda Z; Mathew, Aji P; Oksman, K; John, Maya J; Anandjiwala, Rajesh D

    2015-03-15

    Cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were successfully extracted from cellulose obtained from maize stalk residues. A variety of techniques, such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used for characterization and the experimental results showed that lignin and hemicellulose were removed to a greater extent by following the chemical methods. Atomic force microscopy (AFM) results confirmed that the diameters of CNCs and CNFs were ranging from 3 to 7 nm and 4 to 10nm, respectively, with their lengths in micro scale. CNCs suspension showed a flow of birefringence, however, the same was not observed in the case of suspension containing CNFs. XRD analysis confirmed that CNCs had high crystallinity index in comparison to cellulose and CNFs. Nanopapers were prepared from CNCs and CNFs by solvent evaporation method. Micropapers were also prepared from cellulose pulp by the same technique. Nanopapers made from CNFs showed less transparency as compared to nanopapers produced from CNCs whereas high transparency as compared to micropaper. Nanopapers produced from CNFs provided superior mechanical properties as compared to both micropaper and nanopapers produced from CNCs. Also, nanopapers produced from CNFs were thermally more stable as compared to nanopapers produced from CNCs but thermally less stable as compared to micropapers. PMID:25542099

  13. Bacterial cellulose-kaolin nanocomposites for application as biomedical wound healing materials

    NASA Astrophysics Data System (ADS)

    Wanna, Dwi; Alam, Catharina; Toivola, Diana M.; Alam, Parvez

    2013-12-01

    This short communication provides preliminary experimental details on the structure-property relationships of novel biomedical kaolin-bacterial cellulose nanocomposites. Bacterial cellulose is an effective binding agent for kaolin particles forming reticulated structures at kaolin-cellulose interfaces and entanglements when the cellulose fraction is sufficiently high. The mechanical performance of these materials hence improves with an increased fraction of bacterial cellulose, though this also causes the rate of blood clotting to decrease. These composites have combined potential as both short-term (kaolin) and long-term (bacterial cellulose) wound healing materials.

  14. The effect of cellulose molar mass on the properties of palmitate esters.

    PubMed

    Willberg-Keyriläinen, Pia; Talja, Riku; Asikainen, Sari; Harlin, Ali; Ropponen, Jarmo

    2016-10-20

    Nowadays one of the growing trends is to replace oil-based products with cellulose-based materials. Currently most cellulose esters require a huge excess of chemicals and have therefore, not been broadly used in the industry. Here, we show that decreasing the molar mass of cellulose by ozone hydrolysis provides cellulose functionalization with less chemical consumption. To reveal the differences in reactivity and chemical consumption, we showed esterification of both native cellulose and ozone treated hydrolyzed cellulose. Based on the results, the molar mass of the starting cellulose has a significant effect on the end product's degree of substitution and properties. Furthermore, molar mass controlled palmitate esters form mechanically strong, flexible and optically transparent films with excellent water barrier properties. We anticipate that molar mass controlled cellulose will provide a starting point for the greater use of cellulose based materials, in various application, such as films and composites. PMID:27474646

  15. Analysis of mercerization process based on the intensity change of deconvoluted resonances of (13)C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions.

    PubMed

    Miura, Kento; Nakano, Takato

    2015-08-01

    The area intensity change of C1, C4, and C6 in spectrum obtained by (13)C CP/MAS NMR and the mutual relationship between their changes were examined for cellulose samples treated with various concentrations of aqueous NaOH solutions under non-cooling and cooling conditions. The area intensity of C1-up and C6-down changed cooperatively with that of C4-down which corresponds to the crystallinity of samples: "-up" and "-down" are the up- and down- field component in a splitting peak of NMR spectrum, respectively. The intensity change of C1-up starts to decrease with decreasing in that of C4-down after that of C6-down is almost complete. These changes were more clearly observed for samples treated under cooling condition. It can be suggested that their characteristic change relates closely to the change in conformation of cellulose chains by induced decrystallization and the subsequent crystallization of cellulose II, and presumed that their changes at microscopic level relate to the macroscopic morphological changes such as contraction along the length of cellulose chains and recovery along the length. PMID:26042706

  16. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    PubMed

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  17. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density.

    PubMed

    Lee, Christopher M; Gu, Jin; Kafle, Kabindra; Catchmark, Jeffrey; Kim, Seong H

    2015-11-20

    The pellicle formation, crystallinity, and bundling of cellulose microfibrils produced by bacterium Gluconacetobacter xylinus were studied. Cellulose pellicles were produced by two strains (ATCC 53524 and ATCC 23769) for 1 and 7 days; pellicles were analyzed with scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrational sum-frequency-generation (SFG) spectroscopy, and attenuated total reflectance infrared (ATR-IR) spectroscopy. The bacterial cell population was higher at the surface exposed to air, indicating that the newly synthesized cellulose is deposited at the top of the pellicle. XRD, ATR-IR, and SFG analyses found no significant changes in the cellulose crystallinity, crystal size or polymorphic distribution with the culture time. However, SEM and SFG analyses revealed cellulose macrofibrils produced for 7 days had a higher packing density at the top of the pellicle, compared to the bottom. These findings suggest that the physical properties of cellulose microfibrils are different locally within the bacterial pellicles. PMID:26344281

  18. Enzymatic hydrolysis of cellulose pretreated with ionic liquids and N-methyl Morpholine N-Oxide

    NASA Astrophysics Data System (ADS)

    Yau Li, Elizabeth

    The effect of N-methyl Morpholine N-Oxide (NMMO), 1-ethyl-3-methyl-imidazolium acetate ([Emim]Ac) and 1-ethyl-3-methyl-imidazolium diethyl phosphate ([Emim]DEP) on pretreatment and enzymatic hydrolysis of dissolving pulp was studied. X-ray diffraction measurements of regenerated cellulose from these solvents showed that solvent pretreatment reduces the crystallinity of cellulose. However, crystallinity might not be a major factor affecting the in-situ enzymatic hydrolysis of cellulose in these solvents. Although regenerated cellulose from [Emim]DEP showed the lowest crystallinity index (˜15%), in-situ enzymatic hydrolysis of cellulose dissolved in NMMO showed the highest cellulose conversion (68% compared to 65% for [Emim]Ac and 37% for [Emim]DEP at enzyme loading of 122 FPU/g). Moreover, results showed that enzymes could tolerate up to NMMO concentration of 100 g/L and still yield full conversion of cellulose. Since it is not necessary to remove all the NMMO, less amount of water will be required for the washing step and thus the process will be more economical. The HCH-1 model was used in an attempt to model the enzymatic hydrolysis of cellulose in NMMO. With the incorporation of NMMO inhibition and a factor to account for unreacted cellulose, the model was able to correlate the experimental data of the enzymatic hydrolysis of cellulose (6.68 g/L) at various NMMO concentrations (0, 50, 100, 150 and 250 g/L). However, the experimental results also suggest that NMMO might be deactivating the enzymes rather than inhibiting them. More studies need to be done at varying cellulose, NMMO and enzyme concentrations to find the exact nature of this deactivation of NMMO.

  19. Simple X-ray diffraction algorithm for direct determination of cotton crystallinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, XRD had been used to study the crystalline structure of cotton celluloses. Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI), in its present state, XRD measurement can only provide a qualitative or semi-quantitative assessme...

  20. Cellulose microfibril formation within a coarse grained molecular dynamics

    NASA Astrophysics Data System (ADS)

    Nili, Abdolmadjid; Shklyaev, Oleg; Crespi, Vincent; Zhao, Zhen; Zhong, Linghao; CLSF Collaboration

    2014-03-01

    Cellulose in biomass is mostly in the form of crystalline microfibrils composed of 18 to 36 parallel chains of polymerized glucose monomers. A single chain is produced by cellular machinery (CesA) located on the preliminary cell wall membrane. Information about the nucleation stage can address important questions about intermediate region between cell wall and the fully formed crystalline microfibrils. Very little is known about the transition from isolated chains to protofibrils up to a full microfibril, in contrast to a large body of studies on both CesA and the final crystalline microfibril. In addition to major experimental challenges in studying this transient regime, the length and time scales of microfibril nucleation are inaccessible to atomistic molecular dynamics. We have developed a novel coarse grained model for cellulose microfibrils which accounts for anisotropic interchain interactions. The model allows us to study nucleation, kinetics, and growth of cellulose chains/protofibrils/microfibrils. This work is supported by the US Department of Energy, Office of Basic Energy Sciences as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center.

  1. Cellulose Nanocrystals as Water in Water Emulsion Stabilizers

    NASA Astrophysics Data System (ADS)

    Peddireddy, Karthik Reddy; Capron, Isabelle; Nicolai, Taco; Benyahia, Lazhar

    Cellulose is the most abundant polymer on the earth. Thus, it is very much desirable to find as many practical applications as possible for it. Cellulose, in its original form, contains both amorphous and crystalline parts. It is possible to separate both parts by dissolving the amorphous part in concentrated sulfuric acid. The remaining crystalline cellulose part exist in the form of rod-like particles. The dimensions of the particles depend on the source. We produce the particles from the acid hydrolysis of cotton cellulose fibers. It results in cellulose nanocrystals (CNCs) with dimensions of ~150 nm x 6 nm x 6 nm. It is well known that CNCs could very efficiently stabilize oil in water (O/W) emulsions by forming very dense monolayers of CNCs at O-W interfaces. However, it is not yet known whether they could also stabilize water in water (W/W) emulsions. The W/W emulsions can be produced by any two incompatible polymers. It is challenging to find effective stabilizers for W/W emulsions due to ultralow interfacial tension and large interfacial thickness. In this talk, I will show the efficiency and effectiveness of these one-dimensional rods as W/W emulsion stabilizers.

  2. Fulton Cellulosic Ethanol Biorefinery

    SciTech Connect

    Sumait, Necy; Cuzens, John; Klann, Richard

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  3. Acid hydrolysis of cellulose in zinc chloride solution

    SciTech Connect

    Cao, N.J.; Xu, Q.; Chen, L.F.

    1995-12-31

    The efficient conversion of cellulosic materials to ethanol has been hindered by the low yield of sugars, the high energy consumption in pretreatment processes, and the difficulty of recycling the pre-treatment agents. Zinc chloride may provide an alternative for pre-treating biomass prior to the hydrolysis of cellulose. The formation of a zinc-cellulose complex during the pretreatment of cellulose improves the yield of glucose in both the enzymatic and acid hydrolysis of cellulose. Low-temperature acid hydrolysis of cellulose in zinc chloride solution is carried out in two stages, a liquefaction stage and a saccharification stage. Because of the formation of zinc-cellulose complex in the first stage, the required amount of acid in the second stage has been decreased significantly. In 67% zinc chloride solution, a 99.5% yield of soluble sugars has been obtained at 70{degrees}C and 0.5M acid concentration. The ratio of zinc chloride to cellulose has been reduced from 4.5 to 1.5, and the yield of soluble sugars is kept above 80%. The rate of hydrolysis is affected by the ratio of zinc chloride to cellulose, acid concentration, and temperature.

  4. Cellulose nanocrystals with tunable surface charge for nanomedicine

    NASA Astrophysics Data System (ADS)

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.

    2015-10-01

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For

  5. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency.

    PubMed

    Eibinger, Manuel; Ganner, Thomas; Bubner, Patricia; Rošker, Stephanie; Kracher, Daniel; Haltrich, Dietmar; Ludwig, Roland; Plank, Harald; Nidetzky, Bernd

    2014-12-26

    Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization. PMID:25361767

  6. Application of a water jet system to the pretreatment of cellulose.

    PubMed

    Watanabe, Yuka; Kitamura, Shinichi; Kawasaki, Kazunori; Kato, Tomoki; Uegaki, Koichi; Ogura, Kota; Ishikawa, Kazuhiko

    2011-12-01

    Plant cellulose is the most abundant organic compound on earth. Technologies for producing cellulose fiber or improving the enzymatic saccharification of cellulose hold the key to biomass applications. A technology for atomizing biomass without strong acid catalysis remains to be developed. The water jet is a well-known device used in machines (e.g., washing machines, cutters, and mills) that use high-pressure water. In this study, we examined whether a water jet system could be used to atomize crystalline cellulose, which comprises approximately 50% of plant biomass. The Star Burst System manufactured by Sugino Machine Limited (Sugino Machine; Toyama, Japan) is a unique atomization machine that uses a water jet to atomize materials and thereby places lower stress on the environment. After treatment with this system, the crystalline cellulose was converted into a gel-like form. High-angular annular dark-field scanning transmission electron microscopy showed that the cellulose fibers had been converted from a solid crystalline into a matrix of cellulose nanofibers. In addition, our results show that this system can improve the saccharification efficiency of cellulases by more than three-fold. Hence, the Star Burst System provides a new and mild pretreatment system for processing biomass materials. PMID:21698594

  7. Crystallite width determines monolayer hydration across a wide spectrum of celluloses isolated from plants.

    PubMed

    Driemeier, Carlos; Bragatto, Juliano

    2013-01-10

    Relating cellulose structure to its water uptake is a classical problem with many investigations done through measurements of cellulose "crystallinity". However, there is presently a growing consensus that crystallinity measurements are appreciably uncertain, leading to ambiguous interpretations of underlying cellulose organization. In this scenario, this article revisits the relations between cellulose structure and water uptake, moving the emphasis away from degree of crystallinity and directing it toward crystallite width, which is inferred with less ambiguity from the broadening of 200 X-ray diffraction peaks. With this approach, analysis of a wide spectrum of celluloses isolated from plants (preserving cellulose I phase and having variable contents of residual hemicelluloses) reveals a simple linear relation (R(2) = 0.98) between reciprocal crystallite width and monolayer hydration (determined from vapor sorption). The primary role of crystallite width supports that most water-accessible polysaccharides are laterally associated with the crystallites, with a minor fraction in disordered domains along the fibrils. Furthermore, the secondary role left to hemicellulosic contents indicates cellulose being partly decrystallized to complement the disordered amount required to interface the crystallites. Finally, a substantial part of hydration is attributed to polysaccharides in voids left by the imperfect packing of aggregated crystallites. PMID:23256770

  8. Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency*

    PubMed Central

    Eibinger, Manuel; Ganner, Thomas; Bubner, Patricia; Rošker, Stephanie; Kracher, Daniel; Haltrich, Dietmar; Ludwig, Roland; Plank, Harald; Nidetzky, Bernd

    2014-01-01

    Lytic polysaccharide monooxygenase (LPMO) represents a unique principle of oxidative degradation of recalcitrant insoluble polysaccharides. Used in combination with hydrolytic enzymes, LPMO appears to constitute a significant factor of the efficiency of enzymatic biomass depolymerization. LPMO activity on different cellulose substrates has been shown from the slow release of oxidized oligosaccharides into solution, but an immediate and direct demonstration of the enzyme action on the cellulose surface is lacking. Specificity of LPMO for degrading ordered crystalline and unordered amorphous cellulose material of the substrate surface is also unknown. We show by fluorescence dye adsorption analyzed with confocal laser scanning microscopy that a LPMO (from Neurospora crassa) introduces carboxyl groups primarily in surface-exposed crystalline areas of the cellulosic substrate. Using time-resolved in situ atomic force microscopy we further demonstrate that cellulose nano-fibrils exposed on the surface are degraded into shorter and thinner insoluble fragments. Also using atomic force microscopy, we show that prior action of LPMO enables cellulases to attack otherwise highly resistant crystalline substrate areas and that it promotes an overall faster and more complete surface degradation. Overall, this study reveals key characteristics of LPMO action on the cellulose surface and suggests the effects of substrate morphology on the synergy between LPMO and hydrolytic enzymes in cellulose depolymerization. PMID:25361767

  9. Adherence of Clostridium thermocellum to cellulose.

    PubMed Central

    Bayer, E A; Kenig, R; Lamed, R

    1983-01-01

    The adherence of Clostridium thermocellum, a cellulolytic, thermophilic anaerobe, to its insoluble substrate (cellulose) was studied. The adherence phenomenon was determined to be selective for cellulose. The observed adherence was not significantly affected by various parameters, including salts, pH, temperature, detergents, or soluble sugars. A spontaneous adherence-defective mutant strain (AD2) was isolated from the wild-type strain YS. Antibodies were prepared against the bacterial cell surface and rendered specific to the cellulose-binding factor (CBF) by adsorption to mutant AD2 cells. By using these CBF-specific antibodies, crossed immunoelectrophoresis of cell extracts revealed a single discrete precipitation peak in the parent strain which was absent in the mutant. This difference was accompanied by an alteration in the polypeptide profile whereby sonicates of strain YS contained a 210,000-molecular-weight band which was missing in strain AD2. The CBF antigen could be removed from cell extracts by adsorption to cellulose. A combined gel-overlay--immunoelectrophoretic technique demonstrated that the cellulose-binding properties of the CBF were accompanied by carboxymethylcellulase activity. During the exponential phase of growth, a large part of the CBF antigen and related carboxymethylcellulase activity was associated with the cells of wild-type strain YS. However, the amounts decreased in stationary-phase cells. Cellobiose-grown mutant AD2 cells lacked the cell-associated CBF, but the latter was detected in the extracellular fluid. Increased levels of CBF were observed when cells were grown on cellulose. In addition, mutant AD2 regained cell-associated CBF together with the property of cellulose adherence. The presence of the CBF antigen and related adherence characteristics appeared to be a phenomenon common to other naturally occurring strains of this species. Images PMID:6630152

  10. Cellulose nanocrystals with tunable surface charge for nanomedicine.

    PubMed

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G M

    2015-10-28

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g(-1)) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g(-1) and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL(-1)). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g(-1). A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge. PMID:26154822

  11. A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture.

    PubMed

    Nagashima, Aya; Tsuji, Tsubasa; Kondo, Tetsuo

    2016-01-01

    An aerobic, Gram-negative bacterium, Gluconacetobacter xylinus, was successfully employed to produce a stretchable cellulose nanofiber pellicle using dissolved oxygen in a conventional cultured medium. The obtained nanofibers were highly crystalline with the metastable cellulose Iα phase being apparently the dominant phase by more than 90%. The obtained pellicle could be stretched by up to 1.5 times to provide oriented crystalline nanofibrous films. Low heating of the nanofibrous film induced the transformation of the dominant cellulosecrystalline phase into the Iβ crystalline phase without a loss of crystallinity or the high Young's modulus. The film also exhibited unique and anisotropic viscoelastic and mechanical properties as well as superior thermal stability compared with conventional high-performance synthetic polymeric materials. In addition, when G. xylinus cells were transferred to the oriented surface after stretched, they started to synthesize cellulose ribbons that parallel the nanofiber orientation of the substrate. This function as a template was evidenced by direct video imaging of the motion of the bacteria. The application of a bacterial culture using dissolved oxygen in the medium offers the fabrication of novel anisotropic and nanofibrous scaffold of cellulose Iα. PMID:26453871

  12. Crystalline and Crystalline International Disposal Activities

    SciTech Connect

    Viswanathan, Hari S.; Chu, Shaoping; Reimus, Paul William; Makedonska, Nataliia; Hyman, Jeffrey De'Haven; Karra, Satish; Dittrich, Timothy M.

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  13. Interactions of arabinoxylan and (1,3)(1,4)-β-glucan with cellulose networks.

    PubMed

    Mikkelsen, Deirdre; Flanagan, Bernadine M; Wilson, Sarah M; Bacic, Antony; Gidley, Michael J

    2015-04-13

    To identify interactions of relevance to the structure and properties of the primary cell walls of cereals and grasses, we used arabinoxylan and (1,3)(1,4)-β-glucan, major polymers in cereal/grass primary cell walls, to construct composites with cellulose produced by Gluconacetobacter xylinus. Both polymers associated prolifically with cellulose without becoming rigid or altering the nature or extent of cellulose crystallinity. Mechanical properties were modestly affected compared with xyloglucan or pectin (characteristic components of nongrass primary cell walls) composites with cellulose. In situ depletion of arabinoxylan arabinose side chains within preformed cellulose composites resulted in phase separation, with only limited enhancement of xylan-cellulose interactions. These results suggest that arabinoxylan and (1 → 3)(1 → 4)-β-d-glucan are not functional homologues for either xyloglucan or pectin in the way they interact with cellulose networks. Association of cell-wall polymers with cellulose driven by entropic amelioration of high energy cellulose/water interfaces should be considered as a third type of interaction within cellulose-based cell walls, in addition to molecular binding (enthalpic driving force) exhibited by, for example, xyloglucans or mannans, and interpenetrating networks based on, for example, pectins. PMID:25756836

  14. Modification of bacterial cellulose through exposure to the rotating magnetic field.

    PubMed

    Fijałkowski, Karol; Żywicka, Anna; Drozd, Radosław; Niemczyk, Agata; Junka, Adam Feliks; Peitler, Dorota; Kordas, Marian; Konopacki, Maciej; Szymczyk, Patrycja; Fray, Mirosława El; Rakoczy, Rafał

    2015-11-20

    The aim of the study was to assess the influence of rotating magnetic field (RMF) on production rate and quality parameters of bacterial cellulose synthetized by Glucanacetobacter xylinus. Bacterial cultures were exposed to RMF (frequency f=50Hz, magnetic induction B=34mT) for 72h at 28°C. The study revealed that cellulose obtained under RMF influence displayed higher water absorption, lower density and less interassociated microfibrils comparing to unexposed control. The application of RMF significantly increased the amount of obtained wet cellulose pellicles but decreased the weight and thickness of dry cellulose. Summarizing, the exposure of cellulose-synthesizing G. xylinus to RMF alters cellulose biogenesis and may offer a new biotechnological tool to control this process. As RMF-modified cellulose displays better absorbing properties comparing to non-modified cellulose, our finding, if developed, may find application in the production of dressings for highly exudative wounds. PMID:26344254

  15. Structure of cellulose-deficient secondary cell walls from the irx3 mutant of Arabidopsis thaliana.

    PubMed

    Ha, Marie-Ann; MacKinnon, Iain M; Sturcová, Adriana; Apperley, David C; McCann, Maureen C; Turner, Simon R; Jarvis, Michael C

    2002-09-01

    In the Arabidopsis mutant irx3, truncation of the AtCesA7 gene encoding a xylem-specific cellulose synthase results in reduced cellulose synthesis in the affected xylem cells and collapse of mature xylem vessels. Here we describe spectroscopic experiments to determine whether any cellulose, normal or abnormal, remained in the walls of these cells and whether there were consequent effects on other cell-wall polysaccharides. Xylem cell walls from irx3 and its wild-type were prepared by anatomically specific isolation and were examined by solid-state NMR spectroscopy and FTIR microscopy. The affected cell walls of irx3 contained low levels of crystalline cellulose, probably associated with primary cell walls. There was no evidence that crystalline cellulose was replaced by less ordered glucans. From the molecular mobility of xylans and lignin it was deduced that these non-cellulosic polymers were cross-linked together in both irx3 and the wild-type. The disorder previously observed in the spatial pattern of non-cellulosic polymer deposition in the secondary walls of irx3 xylem could not be explained by any alteration in the structure or cross-linking of these polymers and may be attributed directly to the absence of cellulose microfibrils which, in the wild-type, scaffold the organisation of the other polymers into a coherent secondary cell wall. PMID:12165296

  16. Cellulose fermentation by nitrogen-fixing anaerobic bacteria

    SciTech Connect

    Canale-Parola, E.

    1992-12-13

    In anaerobic natural environments cellulose is degraded to methane, carbon dioxide and other products by the combined activities of many diverse microorganisms. We are simulating processes occurring in natural environments by constructing biologically-defined, stable, heterogeneous bacterial communities (consortia) that we use as in vitro systems for quantitative studies of cellulose degradation under conditions of combined nitrogen deprivation. These studies include the investigation of (i) metabolic interactions among members of cellulose-degrading microbial populations, and (ii) processes that regulate the activity or biosynthesis of cellulolytic enzymes. In addition, we are studying the sensory mechanisms that, in natural environments, may enable motile cellulolytic bacteria to migrate toward cellulose. This part of our work includes biochemical characterization of the cellobiose chemoreceptor of cellulolytic bacteria. Finally, an important aspect of our research is the investigation of the mechanisms by which multienzyme complexes of anaerobic bacteria catalyze the depolymerization of crystalline cellulose and of other plant cell wall polysacchaddes. The research will provide fundamental information on the physiology and ecology of cellulose-fermenting, N{sub 2}-fixing bacteria, and on the intricate processes involved in C and N cycling in anaerobic environments. Furthermore, the information will be valuable for the development of practical applications, such as the conversion of plant biomass (e.g., agricultural, forestry and municipal wastes) to automotive fuels such as ethanol.

  17. High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solution.

    PubMed

    Ma, Yibo; Asaadi, Shirin; Johansson, Leena-Sisko; Ahvenainen, Patrik; Reza, Mehedi; Alekhina, Marina; Rautkari, Lauri; Michud, Anne; Hauru, Lauri; Hummel, Michael; Sixta, Herbert

    2015-12-01

    Composite fibres that contain cellulose and lignin were produced from ionic liquid solutions by dry-jet wet spinning. Eucalyptus dissolving pulp and organosolv/kraft lignin blends in different ratios were dissolved in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate to prepare a spinning dope from which composite fibres were spun successfully. The composite fibres had a high strength with slightly decreasing values for fibres with an increasing share of lignin, which is because of the reduction in crystallinity. The total orientation of composite fibres and SEM images show morphological changes caused by the presence of lignin. The hydrophobic contribution of lignin reduced the vapour adsorption in the fibre. Thermogravimetric analysis curves of the composite fibres reveal the positive effect of the lignin on the carbonisation yield. Finally, the composite fibre was found to be a potential raw material for textile manufacturing and as a precursor for carbon fibre production. PMID:26542190

  18. One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels.

    PubMed

    Si, Hongjuan; Luo, Honglin; Xiong, Guangyao; Yang, Zhiwei; Raman, Sudha R; Guo, Ruisong; Wan, Yizao

    2014-10-01

    Graphene oxide-bacterial cellulose (GO/BC) nanocomposite hydrogels with well-dispersed GO in the network of BC are successfully developed using a facile one-step in situ biosynthesis by adding GO suspension into the culture medium of BC. During the biosynthesis process, the crystallinity index of BC decreases and GO is partially reduced. The experimental results indicate that GO nanosheets are uniformly dispersed and well-bound to the BC matrix and that the 3D porous structure of BC is sustained. This is responsible for efficient load transfer between the GO reinforcement and BC matrix. Compared with the pure BC, the tensile strength and Young's modulus of the GO/BC nanocomposite hydrogel containing 0.48 wt% GO are significantly improved by about 38 and 120%, respectively. The GO/BC nanocomposite hydrogels are promising as a new material for tissue engineering scaffolds. PMID:25180660

  19. The correlation between cellulose allomorphs (I and II) and conversion after removal of hemicellulose and lignin of lignocellulose.

    PubMed

    Song, Yanliang; Zhang, Jingzhi; Zhang, Xu; Tan, Tianwei

    2015-10-01

    H2SO4, NaOH and H3PO4 were applied to decompose lignocellulose samples (giant reeds, pennisetum and cotton stalks) to investigate the correlation between cellulose allomorphs (cellulose I and II) and conversion of cellulose. The effect of removal of hemicellulose and lignin on the surface morphology, crystallinity index (CrI), cellulose allomorphs (cellulose I and II), and enzymatic hydrolysis under different pretreatments was also studied. CrI caused by H3PO4 pretreatment reached 11.19%, 24.93% and 8.15% for the three samples, respectively. Corn stalk showed highest conversion of cellulose among three samples, irrespective of the pretreatment used. This accounted for the widely use of corn stalk as the renewable crop substrate to synthesize biofuels like ethanol. CrI of cellulose I (CrI-I) negatively affects cellulose conversion but CrI of cellulose II (CrI-II) positively affects cellulose conversion. It contributes to make the strategy to transform cellulose I to cellulose II and enhancing enzymatic hydrolysis of lignocellulose. PMID:26133473

  20. Simple XRD algorithm for direct determination of cotton crystallinity

    NASA Astrophysics Data System (ADS)

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-06-01

    Traditionally, XRD had been used to study the crystalline structure of cotton celluloses. Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI), in its present state, XRD measurement can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline and amorphous cellulosic components in a sample. The greatest barrier to establish quantitative XRD is the lack of appropriate cellulose standards needed to calibrate the measurements. In practical, samples with known CIs are very difficult to be prepared or determined. As an approach, we might assign the samples with reported CIs from FT-IR procedure, in which the threeband ratios were first calculated and then were converted into CIs within a large and diversified pool of cotton fibers. This study reports the development of simple XRD algorithm, over time-consuming and subjective curve-fitting process, for direct determination of cotton cellulose CI by correlating XRD with the FT-IR CI references.

  1. Review: Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-07-16

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  2. Multiple perturbation two-dimensional correlation analysis of cellulose by attenuated total reflection infrared spectroscopy.

    PubMed

    Shinzawa, Hideyuki; Morita, Shin-Ich; Awa, Kimie; Okada, Mariko; Noda, Isao; Ozaki, Yukihiro; Sato, Hidetoshi

    2009-05-01

    An extension of the two-dimensional (2D) correlation analysis scheme for multi-dimensional perturbation is described. A simple computational form is provided to construct synchronous correlation and disrelation maps for the analysis of microscopic imaging data based on two independent perturbation variables. Sets of time-dependent attenuated total reflection infrared (ATR-IR) spectra of water and cellulose mixtures were collected during the evaporation of water from finely ground cellulose. The system exhibits complex behaviors in response to two independent perturbations, i.e., evaporation time and grinding time. Multiple perturbation 2D analysis reveals a specific difference in the rate of evaporation of water molecules when accompanied by crystallinity changes of cellulose. It identifies subtle differences in the volatility of water, which is related to the crystalline structure of cellulose. PMID:19470205

  3. Preparation and characterization of durum wheat (Triticum durum) straw cellulose nanofibers by electrospinning.

    PubMed

    Montaño-Leyva, Beatriz; Rodriguez-Felix, Francisco; Torres-Chávez, Patricia; Ramirez-Wong, Benjamin; López-Cervantes, Jaime; Sanchez-Machado, Dalia

    2011-02-01

    Cellulose nanofibers from durum wheat straw ( Triticum durum ) were produced and characterized to study their potential as reinforcement fibers in biocomposites. Cellulose was isolated from wheat straw by chemical treatment. Nanofibers were produced via an electrospinning method using trifluoroacetic acid (TFA) as the solvent. The nanofibers were 270 ± 97 nm in diameter. Analysis of the FT-IR spectra demonstrated that the chemical treatment of the wheat straw removed hemicellulose and lignin. XRD revealed that the crystallinity of the cellulose was reduced after electrospinning, but nanofibers remained highly crystalline. The glass transition temperature (T(g) value) of the fibers was 130 °C, higher than that of cellulose (122 °C), and the degradation temperature of the fibers was 236 °C. Residual TFA was not present in the nanofibers as assessed by the FT-IR technique. PMID:21207978

  4. The cellulose resource matrix.

    PubMed

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  5. Acid hydrolysis of cellulose

    SciTech Connect

    Salazar, H.

    1980-12-01

    One of the alternatives to increase world production of etha nol is by the hydrolysis of cellulose content of agricultural residues. Studies have been made on the types of hydrolysis: enzimatic and acid. Data obtained from the sulphuric acid hydrolysis of cellulose showed that this process proceed in two steps, with a yield of approximately 95% glucose. Because of increases in cost of alternatives resources, the high demand of the product and the more economic production of ethanol from cellulose materials, it is certain that this technology will be implemented in the future. At the same time further studies on the disposal and reuse of the by-products of this production must be undertaken.

  6. Modeling of Cellulose Crystals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crystalline acylated cyclodextrins (CDs) in the literature were studied to gain perspective on maltose octapropanoate in the preceding paper. That led to studies of other CDs and to increased understanding of distortion in CDs and, ultimately, non-crystalline regions in starch. Classic CDs have si...

  7. A new route to improved glucose yields in cellulose hydrolysis

    SciTech Connect

    Zhao, Haibo; Holladay, John E.; Kwak, Ja Hun; Zhang, Z. Conrad

    2007-08-01

    An unusual inverse temperature-dependent pathway was discovered for cellulose decrystallization in trifluoroacetic acid (TFA). Cellulose was completely decrystallized by TFA at 0 °C in less than 2 hours, a result not achieved in 48 hours at 25°C in the same medium. The majority of TFA used in cellulose decrystallization was recycled via a vacuum process. The small remaining amount of TFA was diluted with water to make a 0.5% TFA solution and used as a catalyst in dilute acid hydrolysis. After one minute, under batch conditions at 185 °C, the glucose yield reached 63.5% without production of levulinic acid. In comparison, only 15.0% glucose yield was achieved in the hydrolysis of untreated cellulose by 0.5% H2SO4 under the same condition. Further improvement of glucose yield is possible by optimizing reaction conditions. Alternatively, the remaining TFA can be completely removed by water while keeping the regenerated cellulose in a highly amorphous state. This regenerated cellulose is much more reactive than untreated cellulose in hydrolysis reactions, but still less reactive than corn starch. The lower temperatures and shorter reaction times with this activated cellulose makes it possible to reduce operating costs and decrease byproduct yields such as HMF and levulinic acid.

  8. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers.

    PubMed

    Cao, Xinwang; Ding, Bin; Yu, Jianyong; Al-Deyab, Salem S

    2012-10-01

    Cellulose nanowhiskers is a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Here, for the first time, a novel controllable fabrication of cellulose nanowhiskers from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization is reported. The versatile jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and high crystallinity (69.72%), contains C6 carboxylate groups converted from C6 primary hydroxyls, which would be particularly useful for applications in the nanocomposites as reinforcing phase, as well as in tissue engineering, pharmaceutical and optical industries as additives. PMID:22840042

  9. Enhancement of enzymatic hydrolysis of cellulose by surfactant

    SciTech Connect

    Ooshima, H.; Sakata, M.; Harano, Y.

    1986-01-01

    Effects of surfactants on enzymatic saccharification of cellulose have been studied. Nonionic, amphoteric, and cationic surfactants enhanced the saccharification, while anionic surfactant did not. Cationic and anionic surfactants denatured cellulase in their relatively low concentrations, namely, more than 0.008 and 0.001%, respectively. Using nonionic surfactant Tween 20, which is most effective to the enhancement (e.g., the fractional conversion attained by 72 h saccharification of 5 wt % Avicel in the presence of 0.05 wt % Tween 20 is increased by 35%), actions of surfactant have been examined. As the results, it was suggested that Tween 20 plays an important role in the hydrolysis of crystalline cellulose and that Tween 20 disturbs the adsorption of endoglucanase on cellulose, i.e., varies the adsorption balance of endo- and exoglucanase, resulting in enhancing the reaction. The influence of Tween 20 to the saccharification was found to remain in simultaneous saccharification and fermentation of Avicel.

  10. Cellulose nanofibrils extracted from the byproduct of cotton plant.

    PubMed

    Miao, Xiaran; Lin, Jinyou; Tian, Feng; Li, Xiuhong; Bian, Fenggang; Wang, Jie

    2016-01-20

    Cotton stalk bark, as the byproduct of cotton plant, was usually discarded and/or combusted, leading to waste of resources and environment pollution. How to efficiently utilize this kind of cellulosic materials is of significative to energy saving and environment protection. Herein, we report on the extraction of cellulose nanofibrils (CNF) from the cotton stalk bark for the first time by a combination of TEMPO-oxidation and mechanical disintegration method. The obtained CNF showed a yield more than 20 wt%. The morphologies, crystalline structures and thermal properties of CNF were extensively investigated by the transmission electron microscopy, scanning electron microscopy, synchrotron radiation wide-angle X-ray scattering, Fourier transform infrared spectra and differential scanning calorimetry, respectively. The results showed that the final extracted CNF have similar polymorphs with their starting materials and a significantly increased crystallinity. This work will provide a new way to utilize the cotton stalk barks. PMID:26572420

  11. Solid-State 13C Nuclear Magnetic Resonance Characterization of Cellulose in the Cell Walls of Arabidopsis thaliana Leaves.

    PubMed Central

    Newman, R. H.; Davies, L. M.; Harris, P. J.

    1996-01-01

    Solid-state 13C nuclear magnetic resonance was used to characterize the molecular ordering of cellulose in a cell-wall preparation containing mostly primary walls obtained from the leaves of Arabidopsis thaliana. Proton and 13C spin relaxation time constants showed that the cellulose was in a crystalline rather than a paracrystalline state or amorphous state. Cellulose chains were distributed between the interiors (40%) and surfaces (60%) of crystallites, which is consistent with crystallite cross-sectional dimensions of about 3 nm. Digital resolution enhancement revealed signals indicative of triclinic and monoclinic crystalline forms of cellulose mixed in similar proportions. Of the five nuclear spin relaxation processes used, proton rotating-frame relaxation provided the clearest distinction between cellulose and other cell-wall components for purposes of editing solid-state 13C nuclear magnetic resonance spectra. PMID:12226303

  12. The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon.

    PubMed

    Jahn, Courtney E; Selimi, Dija A; Barak, Jeri D; Charkowski, Amy O

    2011-10-01

    Dickeya dadantii is a plant-pathogenic bacterium that produces cellulose-containing biofilms, called pellicles, at the air-liquid interface of liquid cultures. D. dadantii pellicle formation appears to be an emergent property dependent upon at least three gene clusters, including cellulose synthesis, type III secretion system (T3SS) and flagellar genes. The D. dadantii cellulose synthesis operon is homologous to that of Gluconacetobacter xylinus, which is used for industrial cellulose production, and the cellulose nanofibres produced by D. dadantii were similar in diameter and branching pattern to those produced by G. xylinus. Salmonella enterica, an enterobacterium closely related to D. dadantii, encodes a second type of cellulose synthesis operon, and it produced biofilm strands that differed in width and branching pattern from those of D. dadantii and G. xylinus. Unlike any previously described cellulose fibre, the D. dadantii cellulose nanofibres were decorated with bead-like structures. Mutation of the cellulose synthesis operon genes resulted in loss of cellulose synthesis and production of a cellulase-resistant biofilm. Mutation of other genes required for pellicle formation, including those encoding FliA (a sigma factor that regulates flagella production), HrpL (a sigma factor that regulates the T3SS), and AdrA, a GGDEF protein, affected both biofilm and cell morphology. Mutation of the cellulose synthase bcsA or of bcsC resulted in decreased accumulation of the T3SS-secreted protein HrpN. PMID:21719543

  13. Influence of Hydroxypropyl Methylcellulose on Metronidazole Crystallinity in Spray-Congealed Polyethylene Glycol Microparticles and Its Impact with Various Additives on Metronidazole Release.

    PubMed

    Oh, Ching Mien; Heng, Paul Wan Sia; Chan, Lai Wah

    2015-12-01

    The purpose of this study was to investigate the effect of a hydrophilic polymer, hydroxypropyl methylcellulose (HPMC), on the crystallinity and drug release of metronidazole (MNZ) in spray-congealed polyethylene glycol (PEG) microparticles and to further modify the drug release using other additives in the formulation. HPMC has been used in many pharmaceutical formulations and processes but to date, it has not been employed as an additive in spray congealing. Crystallinity of a drug is especially important to the development of pharmaceutical products as active pharmaceutical ingredients (APIs) are mostly crystalline in nature. A combination of X-ray diffractometry, differential scanning calorimetry, Raman spectroscopy and Fourier transform-infrared spectroscopy (FT-IR) spectroscopy was employed to investigate the degree of crystallinity and possible solid-state structure of MNZ in the microparticles. The microparticles with HPMC were generally spherical. Spray congealing decreased MNZ crystallinity, and the presence of HPMC reduced the drug crystallinity further. The reduction in MNZ crystallinity was dependent on the concentration of HPMC. Smaller HPMC particles also resulted in a greater percentage reduction in MNZ crystallinity. Appreciable modification to MNZ release could be obtained with HPMC. However, this was largely attributed to the role of HPMC in forming a diffusion barrier. Further modification of drug release from spray-congealed PEG-HPMC microparticles was achieved with the addition of 5% w/w dicalcium phosphate but not with magnesium stearate, methyl cellulose, polyvinylpyrrolidone, silicon dioxide and sodium oleate/citric acid. Dicalcium phosphate facilitated formation of the diffusion barrier. PMID:25933626

  14. Correlation between cellulose thin film supramolecular structures and interactions with water.

    PubMed

    Tammelin, Tekla; Abburi, Ramarao; Gestranius, Marie; Laine, Christiane; Setälä, Harri; Österberg, Monika

    2015-06-01

    Water interactions of ultra-thin films of wood-derived polysaccharides were investigated by using surface sensitive methods, Quartz Crystal Microbalance with Dissipation (QCM-D) and Atomic Force Microscopy (AFM). These approaches allow systematic molecular level detection and reveal information on the inherent behaviour of biobased materials with nanosensitivity. The influence of structural features of cellulose films i.e. crystallinity, surface roughness and porosity on water interactions was clarified. Cellulose films were prepared using spin-coating and Langmuir-Schaefer deposition to obtain thin films of equal thickness, identical cellulose origin, simultaneously with different supramolecular structures. The uptake/release of water molecules and swelling were characterized using QCM-D, and the structural features of the films were evaluated by AFM. More crystalline cellulose film possessed nanoporosity and as a consequence higher accessible surface area (more binding sites for water) and thus, it was capable of binding more water molecules in humid air and when immersed in water when compared to amorphous cellulose film. Due to the ordered structure, more crystalline cellulose film remained rigid and elastic although the water binding ability was more pronounced compared to amorphous film. The lower amount of bound water induced softening of the amorphous cellulose film and the elastic layer became viscoelastic at high humidity. Finally, cellulose thin films were modified by adsorbing a layer of 1-butyloxy-2-hydroxypropyl xylan, and the effect on moisture uptake was investigated. It was found that the supramolecular structure of the cellulose substrate has an effect not only on the adsorbed amount of xylan derivative but also on the water interactions of the material. PMID:25903294

  15. Cellulose nanofibrils improve the properties of all-cellulose composites by the nano-reinforcement mechanism and nanofibril-induced crystallization

    NASA Astrophysics Data System (ADS)

    Yang, Quanling; Saito, Tsuguyuki; Berglund, Lars A.; Isogai, Akira

    2015-10-01

    All-cellulose nanocomposite films containing crystalline TEMPO-oxidized cellulose nanofibrils (TOCNs) of 0-1 wt% were fabricated by mixing aqueous TOCN dispersions with alkali/urea/cellulose (AUC) solutions at room temperature. The mixtures were cast on glass plates, soaked in an acid solution, and the regenerated gel-like films were washed with water and then dried. The TOCN did not form agglomerates in the composites, and had the structure of TOCN-COOH, forming hydrogen bonds with the hydroxyl groups of the regenerated cellulose molecules. X-ray diffraction analysis revealed that the matrix cellulose molecules increased the cellulose II crystal size upon incorporation of TOCN. As a result, the TOCN/AUC composite films had high Young's modulus, tensile strength, thermal stability and oxygen-barrier properties. The TOCN/AUC composite films are promising all-cellulose nanocomposites for versatile applications as new bio-based materials.All-cellulose nanocomposite films containing crystalline TEMPO-oxidized cellulose nanofibrils (TOCNs) of 0-1 wt% were fabricated by mixing aqueous TOCN dispersions with alkali/urea/cellulose (AUC) solutions at room temperature. The mixtures were cast on glass plates, soaked in an acid solution, and the regenerated gel-like films were washed with water and then dried. The TOCN did not form agglomerates in the composites, and had the structure of TOCN-COOH, forming hydrogen bonds with the hydroxyl groups of the regenerated cellulose molecules. X-ray diffraction analysis revealed that the matrix cellulose molecules increased the cellulose II crystal size upon incorporation of TOCN. As a result, the TOCN/AUC composite films had high Young's modulus, tensile strength, thermal stability and oxygen-barrier properties. The TOCN/AUC composite films are promising all-cellulose nanocomposites for versatile applications as new bio-based materials. Electronic supplementary information (ESI) available: Fig. S1-S3 show an AFM image of TOCN, SEM

  16. Cellulose Supplementation Early in Life Ameliorates Colitis in Adult Mice

    PubMed Central

    Nagy-Szakal, Dorottya; Hollister, Emily B.; Luna, Ruth Ann; Szigeti, Reka; Tatevian, Nina; Smith, C. Wayne; Versalovic, James; Kellermayer, Richard

    2013-01-01

    Decreased consumption of dietary fibers, such as cellulose, has been proposed to promote the emergence of inflammatory bowel diseases (IBD: Crohn disease [CD] and ulcerative colitis [UC]) where intestinal microbes are recognized to play an etiologic role. However, it is not known if transient fiber consumption during critical developmental periods may prevent consecutive intestinal inflammation. The incidence of IBD peaks in young adulthood indicating that pediatric environmental exposures may be important in the etiology of this disease group. We studied the effects of transient dietary cellulose supplementation on dextran sulfate sodium (DSS) colitis susceptibility during the pediatric period in mice. Cellulose supplementation stimulated substantial shifts in the colonic mucosal microbiome. Several bacterial taxa decreased in relative abundance (e.g., Coriobacteriaceae [p = 0.001]), and other taxa increased in abundance (e.g., Peptostreptococcaceae [p = 0.008] and Clostridiaceae [p = 0.048]). Some of these shifts persisted for 10 days following the cessation of cellulose supplementation. The changes in the gut microbiome were associated with transient trophic and anticolitic effects 10 days following the cessation of a cellulose-enriched diet, but these changes diminished by 40 days following reversal to a low cellulose diet. These findings emphasize the transient protective effect of dietary cellulose in the mammalian large bowel and highlight the potential role of dietary fibers in amelioration of intestinal inflammation. PMID:23437211

  17. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61.

    PubMed

    Langston, James A; Shaghasi, Tarana; Abbate, Eric; Xu, Feng; Vlasenko, Elena; Sweeney, Matt D

    2011-10-01

    Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization. PMID:21821740

  18. Novel In Vivo-Degradable Cellulose-Chitin Copolymer from Metabolically Engineered Gluconacetobacter xylinus▿ †

    PubMed Central

    Yadav, Vikas; Paniliatis, Bruce J.; Shi, Hai; Lee, Kyongbum; Cebe, Peggy; Kaplan, David L.

    2010-01-01

    Despite excellent biocompatibility and mechanical properties, the poor in vitro and in vivo degradability of cellulose has limited its biomedical and biomass conversion applications. To address this issue, we report a metabolic engineering-based approach to the rational redesign of cellular metabolites to introduce N-acetylglucosamine (GlcNAc) residues into cellulosic biopolymers during de novo synthesis from Gluconacetobacter xylinus. The cellulose produced from these engineered cells (modified bacterial cellulose [MBC]) was evaluated and compared with cellulose produced from normal cells (bacterial cellulose [BC]). High GlcNAc content and lower crystallinity in MBC compared to BC make this a multifunctional bioengineered polymer susceptible to lysozyme, an enzyme widespread in the human body, and to rapid hydrolysis by cellulase, an enzyme commonly used in biomass conversion. Degradability in vivo was demonstrated in subcutaneous implants in mice, where modified cellulose was completely degraded within 20 days. We provide a new route toward the production of a family of tailorable modified cellulosic biopolymers that overcome the longstanding limitation associated with the poor degradability of cellulose for a wide range of potential applications. PMID:20656868

  19. X-ray coherent diffraction imaging of cellulose fibrils in situ.

    PubMed

    Lal, Jyotsana; Harder, Ross; Makowski, Lee

    2011-01-01

    Cellulose is the most abundant renewable source of organic molecules on earth[1]. As fossil fuel reserves become depleted, the use of cellulose as a feed stock for fuels and chemicals is being aggressively explored. Cellulose is a linear polymer of glucose that packs tightly into crystalline fibrils that make up a substantial proportion of plant cell walls. Extraction of the cellulose chains from these fibrils in a chemically benign process has proven to be a substantial challenge [2]. Monitoring the deconstruction of the fibrils in response to physical and chemical treatments would expedite the development of efficient processing methods. As a step towards achieving that goal, we here describe Bragg-coherent diffraction imaging (CDI) as an approach to producing images of cellulose fibrils in situ within vascular bundles from maize. PMID:22254364

  20. The fast and effective isolation of nanocellulose from selected cellulosic feedstocks.

    PubMed

    Kunaver, Matjaž; Anžlovar, Alojz; Žagar, Ema

    2016-09-01

    A new process for the production of nanocellulose from selected cellulose-containing natural materials has been developed. The liquefaction reaction, using glycols and mild acid catalysis (methane sulphonic acid), was applied to four model materials, namely cotton linters, spruce wood, eucalyptus wood and Chinese silver grass. The process contains only four steps, the milling, the glycolysis reaction, centrifugation and final rinsing with an organic solvent. The nanocrystalline cellulose recovery was between 56% and 75%. The crystallinity index was greater than that of the starting materials due to the liquefaction of lignin, hemicelluloses and amorphous cellulose. The final product was a stable, highly concentrated nanocrystalline cellulose suspension in the organic medium. The liquid residue, after the liquefaction of the cotton linters contained significant quantities of levulinic acid. Different sugars were identified in the liquid residues that were derived from cellulose and hemicelluloses during the liquefaction reaction. PMID:27185138

  1. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp.

    PubMed

    Li, Meng; Wang, Li-jun; Li, Dong; Cheng, Yan-ling; Adhikari, Benu

    2014-02-15

    Cellulose nanofibers (diameter=10-70 nm) were produced using chemical treatments (alkali treatment and bleaching) and high pressure homogenization from de-pectinated sugar beet pulp (DSBP). Chemical analysis and Fourier transform infrared spectroscopy (FTIR) indicated that the chemical treatments greatly removed the hemicellulose and lignin from the DSBP and significantly increased the cellulose content. The crystallinity of the cellulose nanofibers increased from 35.67% to 69.62% after alkali treatment and bleaching. The thermal degradation temperature of DSBP cellulose nanofibers was 271.7 °C which was found to be 47.3 °C higher than that of the untreated DSBP. The DSBP cellulose nanofibers can be preferably used as reinforcement in the biocomposite material at high temperature. PMID:24507265

  2. X-ray Coherent Diffraction Imaging of Cellulose Fibrils in Situ

    SciTech Connect

    Lal, Jyotsana; Harder, Ross J.; Makowski, Lee

    2011-01-01

    Cellulose is the most abundant renewable source of organic molecules on earth[1]. As fossil fuel reserves become depleted, the use of cellulose as a feed stock for fuels and chemicals is being aggressively explored. Cellulose is a linear polymer of glucose that packs tightly into crystalline fibrils that make up a substantial proportion of plant cell walls. Extraction of the cellulose chains from these fibrils in a chemically benign process has proven to be a substantial challenge [2]. Monitoring the deconstruction of the fibrils in response to physical and chemical treatments would expedite the development of efficient processing methods. As a step towards achieving that goal, we here describe Bragg-coherent diffraction imaging (CDI) as an approach to producing images of cellulose fibrils in situ within vascular bundles from maize.

  3. Modeling of cellulose crystals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers are single cells, and the substance of the fiber is the secondary cell wall that is nearly pure, microcrystalline cellulose. Normally there is about 5% moisture in cotton fiber, but variations of a few percent make differences as large as 40% in the strength, with more water resulting ...

  4. Calculating cellulose diffraction patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  5. Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber

    PubMed Central

    2012-01-01

    Background Cellulose consisting of arrays of linear beta-1,4 linked glucans, is the most abundant carbon-containing polymer present in biomass. Recalcitrance of crystalline cellulose towards enzymatic degradation is widely reported and is the result of intra- and inter-molecular hydrogen bonds within and among the linear glucans. Cellobiohydrolases are enzymes that attack crystalline cellulose. Here we report on two forms of glycosyl hydrolase family 7 cellobiohydrolases common to all Aspergillii that attack Avicel, cotton cellulose and other forms of crystalline cellulose. Results Cellobiohydrolases Cbh1 and CelD have similar catalytic domains but only Cbh1 contains a carbohydrate-binding domain (CBD) that binds to cellulose. Structural superpositioning of Cbh1 and CelD on the Talaromyces emersonii Cel7A 3-dimensional structure, identifies the typical tunnel-like catalytic active site while Cbh1 shows an additional loop that partially obstructs the substrate-fitting channel. CelD does not have a CBD and shows a four amino acid residue deletion on the tunnel-obstructing loop providing a continuous opening in the absence of a CBD. Cbh1 and CelD are catalytically functional and while specific activity against Avicel is 7.7 and 0.5 U.mg prot-1, respectively specific activity on pNPC is virtually identical. Cbh1 is slightly more stable to thermal inactivation compared to CelD and is much less sensitive to glucose inhibition suggesting that an open tunnel configuration, or absence of a CBD, alters the way the catalytic domain interacts with the substrate. Cbh1 and CelD enzyme mixtures on crystalline cellulosic substrates show a strong combinatorial effort response for mixtures where Cbh1 is present in 2:1 or 4:1 molar excess. When CelD was overrepresented the combinatorial effort could only be partially overcome. CelD appears to bind and hydrolyze only loose cellulosic chains while Cbh1 is capable of opening new cellulosic substrate molecules away from the cellulosic

  6. Preparation and physical properties of tara gum film reinforced with cellulose nanocrystals.

    PubMed

    Ma, Qianyun; Hu, Dongying; Wang, Lijuan

    2016-05-01

    Cellulose nanocrystals (CNC) prepared from microcrystalline cellulose were blended in tara gum solution to prepare nanocomposite films. The morphology, crystallinity, and thermal properties of the CNC and films were evaluated by using transmission electron microscopy, X-ray diffractometry, and thermogravimetric analysis, respectively. The resultant CNC was rod-shaped with diameters of around 8.6 nm. The effect of CNC content on physical and thermal properties of films was studied. The composite film tensile strength increased from 27.86 to 65.73 MPa, elastic modulus increased from 160.98 MPa to 882.49 MPa and the contact angle increased from 55.8° to 98.7° with increasing CNC content from 0 to 6 wt%. However, CNC addition increased the thermal stability slightly and CNC content above 6 wt% decreased the tensile strength by CNC aggregation in the matrix. The nanocomposite film containing 6 wt% CNC possessed the highest light transmittance, mechanical properties, and lowest oxygen permeability. CNC addition is a suitable method to modify tara gum matrix polymer properties. PMID:26845479

  7. Effects of Plant Cell Wall Matrix Polysaccharides on Bacterial Cellulose Structure Studied with Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction

    SciTech Connect

    Park, Yong Bum; Lee, Christopher M; Kafle, Kabindra; Park, Sunkyu; Cosgrove, Daniel; Kim, Seong H

    2014-07-14

    The crystallinity, allomorph content, and mesoscale ordering of cellulose produced by Gluconacetobacter xylinus cultured with different plant cell wall matrix polysaccharides were studied with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD).

  8. Cellulose Synthesis and Its Regulation

    PubMed Central

    Li, Shundai; Bashline, Logan; Lei, Lei; Gu, Ying

    2014-01-01

    Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1–4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the recent advances using a combination of molecular genetics, live cell imaging, and spectroscopic tools, many aspects of the cellulose synthesis remain a mystery. In this chapter, we highlight recent research progress towards understanding the mechanism of cellulose synthesis in Arabidopsis. PMID:24465174

  9. Monitoring Meso-Scale Ordering of Cellulose in Intact Plant Cell Walls Using Sum Frequency Generation Spectroscopy1[C][W][OPEN

    PubMed Central

    Park, Yong Bum; Lee, Christopher M.; Koo, Bon-Wook; Park, Sunkyu; Cosgrove, Daniel J.; Kim, Seong H.

    2013-01-01

    Sum frequency generation (SFG) vibration spectroscopy can selectively detect crystalline cellulose without spectral interference from cell wall matrix components. Here, we show that the cellulose SFG spectrum is sensitive to cellulose microfibril alignment and packing within the cell wall. SFG intensity at 2,944 cm−1 correlated well with crystalline cellulose contents of various regions of the Arabidopsis (Arabidopsis thaliana) inflorescence, while changes in the 3,320/2,944 cm−1 intensity ratio suggest subtle changes in cellulose ordering as tissues mature. SFG analysis of two cellulose synthase mutants (irx1/cesa8 and irx3/cesa7) indicates a reduction in cellulose content without evidence of altered cellulose structure. In primary cell walls of Arabidopsis, cellulose exhibited a characteristic SFG peak at 2,920 and 3,320 cm−1, whereas in secondary cell walls, it had peaks at 2,944 and 3,320 cm−1. Starch (amylose) gave an SFG peak at 2,904 cm−1 (CH methine) whose intensity increased with light exposure prior to harvest. Selective removal of matrix polysaccharides from primary cell walls by acid hydrolysis resulted in an SFG spectrum resembling that of secondary wall cellulose. Our results show that SFG spectroscopy is sensitive to the ordering of cellulose microfibrils in plant cell walls at the meso scale (nm to μm) that is important for cell wall architecture but cannot be probed by other spectroscopic or diffraction techniques. PMID:23995148

  10. Cellulose in Cyanobacteria. Origin of Vascular Plant Cellulose Synthase?

    PubMed Central

    Nobles, David R.; Romanovicz, Dwight K.; Brown, R. Malcolm

    2001-01-01

    Although cellulose biosynthesis among the cyanobacteria has been suggested previously, we present the first conclusive evidence, to our knowledge, of the presence of cellulose in these organisms. Based on the results of x-ray diffraction, electron microscopy of microfibrils, and cellobiohydrolase I-gold labeling, we report the occurrence of cellulose biosynthesis in nine species representing three of the five sections of cyanobacteria. Sequence analysis of the genomes of four cyanobacteria revealed the presence of multiple amino acid sequences bearing the DDD35QXXRW motif conserved in all cellulose synthases. Pairwise alignments demonstrated that CesAs from plants were more similar to putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and Nostoc punctiforme American Type Culture Collection 29133 than any other cellulose synthases in the database. Multiple alignments of putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and N. punctiforme American Type Culture Collection 29133 with the cellulose synthases of other prokaryotes, Arabidopsis, Gossypium hirsutum, Populus alba × Populus tremula, corn (Zea mays), and Dictyostelium discoideum showed that cyanobacteria share an insertion between conserved regions U1 and U2 found previously only in eukaryotic sequences. Furthermore, phylogenetic analysis indicates that the cyanobacterial cellulose synthases share a common branch with CesAs of vascular plants in a manner similar to the relationship observed with cyanobacterial and chloroplast 16s rRNAs, implying endosymbiotic transfer of CesA from cyanobacteria to plants and an ancient origin for cellulose synthase in eukaryotes. PMID:11598227

  11. Cellulose production in Pseudomonas syringae pv. syringae: a compromise between epiphytic and pathogenic lifestyles.

    PubMed

    Arrebola, Eva; Carrión, Víctor J; Gutiérrez-Barranquero, José Antonio; Pérez-García, Alejandro; Rodríguez-Palenzuela, Pablo; Cazorla, Francisco M; de Vicente, Antonio

    2015-07-01

    Genome sequencing and annotation have revealed a putative cellulose biosynthetic operon in the strain Pseudomonas syringae pv. syringae UMAF0158, the causal agent of bacterial apical necrosis. Bioinformatics analyses and experimental methods were used to confirm the functionality of the cellulose biosynthetic operon. In addition, the results showed the contribution of the cellulose operon to important aspects of P. syringae pv. syringae biology, such as the formation of biofilms and adhesion to the leaf surface of mango, suggesting that this operon increases epiphytic fitness. However, based on the incidence and severity of the symptoms observed in tomato leaflets, cellulose expression reduces virulence, as cellulose-deficient mutants increased the area of necrosis, whereas the cellulose-overproducing strain decreased the area of necrosis compared with the wild type. In conclusion, the results of this study show that the epiphytic and pathogenic stages of the P. syringae pv. syringae UMAF0158 lifestyle are intimately affected by cellulose production. PMID:26109133

  12. Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose.

    PubMed

    Deng, Sha; Huang, Rui; Zhou, Mi; Chen, Feng; Fu, Qiang

    2016-12-10

    Cellulose films with excellent mechanical strength are of interest to many researchers, but unfortunately they often lack the ductility and water resistance. This work demonstrates an efficient and easily industrialized method for hydrophobic cellulose films made of modified microfibrillated cellulose (MFC). Prior to film fabrication, the simultaneous exfoliation and acylation of MFC was achieved through the synergetic effect of mechanical and chemical actions generated from ball milling in the presence of hexanoyl chloride. Largely enhanced tensile strength and elongation at break have been achieved (4.98MPa, 4.37% for original MFC films, 140MPa, 21.3% for modified ones). Due to hydrophobicity and compact structure, modified films show excellent water resistance and decreased water vapor permeability. Moreover, optical performance of modified films is also improved compared with the original MFC films. Our work can largely expand the application of this biodegradable resource and ultimately reduce the need for petroleum-based plastics. PMID:27577904

  13. SANS Study of Cellulose Extracted from Switchgrass

    SciTech Connect

    Pingali, Sai Venkatesh; Urban, Volker S; Heller, William T; McGaughey, Joseph; O'Neill, Hugh Michael; Foston, Marcus B; Myles, Dean A A; Ragauskas, Arthur J; Evans, Barbara R

    2010-01-01

    AbstractLignocellulosic biomass, an abundant renewable natural resource, has the potential to play a major role in generation of renewable biofuels through its conversion to bio-ethanol. Unfortunately, it is a complex biological composite material that shows significant recalcitrance making it a cost-ineffective feedstock for bioethanol production. Small-angle neutron scattering (SANS) was employed to probe the multi-scale structure of cellulosic materials. Cellulose was extracted from milled native switchgrass and switchgrass that had undergone the dilute acid pretreatment method to disrupt the lignocellulose structure. The high-Q structural feature (Q > 0.07 -1) can be assigned to cellulose fibrils based on comparison with the switchgrass purified by solvent extraction of native and dilute acid pretreated and a commercial preparation of microcrystalline cellulose. Dilute acid pretreatment results in an increase in the smallest structural size, a decrease in the interconnectivity of the fibrils; and no change in the smooth domain boundaries at length scales larger than 1000 .

  14. Conversion of cellulose materials into nanostructured ceramics by biomineralization

    SciTech Connect

    Shin, Yongsoon; Exarhos, Gregory J

    2007-06-01

    Synthesis of hierarchically ordered silica materials having ordered wood cellular structures has been demonstrated through in-situ mineralization of wood by means of surfactant-directed mineralization in solutions of different pH. At low pH, silicic acid penetrates the buried interfaces of the wood cellular structure without clogging the pores to subsequently “molecularly paint” the interfaces thereby forming a positive replica following calcinations. At high pH, the hydrolyzed silica rapidly condenses to fill the open cells and pits within the structure resulting in a negative replica of the structure. Surfactant-templated mineralization in acid solutions leads to the formation of micelles that hexagonally pack at the wood interfaces preserving structural integrity while integrating hexagonally ordered nanoporosity into the structure of the cell walls following thermal treatment in air. The carbothermal reduction of mineralized wood with silica at high temperature produces biomorphic silicon carbide (SiC) materials, which are typical aggregations of β-SiC nanoparticles. To understand the roles of each component (lignin, crystalline cellulose, amorphous cellulose) comprising the natural biotemplates in the transformation to SiC rods, three different cellulose precursors including unbleached and bleached pulp, and cellulose nanocrystals have been utilized. Lignin in unbleached pulp blocked homogeneous penetration of silica into the pores between cellulose fibers resulting in non-uniform SiC fibers containing thick silica layers. Bleached pulp produced uniform SiC rods with camelback structures (80nm in diameter; ~50m in length), indicating that more silica infiltrates into the amorphous constituent of cellulose to form chunky rather than straight rod structures. The cellulose nanocrystal (CNXL) material produced clean and uniform SiC nanowires (70nm in diameter; >100m in length) without the camelback structure.

  15. Binding of arabinan or galactan during cellulose synthesis is extensive and reversible.

    PubMed

    Lin, Dehui; Lopez-Sanchez, Patricia; Gidley, Michael J

    2015-08-01

    Arabinans and galactans are major components of the side-chains of pectin in plant cell walls. In order to understand how pectin side-chains interact with cellulose, in this work we studied the interaction of de-branched arabinan (from sugar beet) and linear galactan (from potato) during the synthesis of cellulose by Gluconacetobacter xylinus (ATCC 53524) to mimic in muro assembly. The binding studies reveal that arabinan and galactan are able to bind extensively (>200mg/g of cellulose) during cellulose deposition, and more than pectin (from apple) in the absence of calcium. (13)C NMR revealed that associated arabinan, galactan or apple pectin molecules were neither rigid nor affected cellulose crystallinity, and there was no apparent change in cellulose architecture as reflected in scanning electron micrographs. De-binding of arabinan, galactan or apple pectin occurred as a result of washing, indicating a reversible binding to cellulose, which was modelled in terms of a surface-controlled process. Implications for structural models of primary plant cell walls and possible roles for cellulose binding of arabinan- and galactan-rich pectins in biological processes are discussed. PMID:25933529

  16. Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene glycol, POSS-PEG.

    PubMed

    Chinnam, Parameswara Rao; Mantravadi, Ramya; Jimenez, Jayvic C; Dikin, Dmitriy A; Wunder, Stephanie L

    2016-01-20

    Blends of methyl cellulose (MC) and liquid pegylated polyoctahedralsilsesquioxane (POSS-PEG) were prepared from non-gelled, aqueous solutions at room temperature (RT), which was below their gel temperatures (Tm). Lamellar, fibrillated films (pure MC) and increasingly micro-porous morphologies with increasing POSS-PEG content were formed, which had RT moduli between 1 and 5GPa. Evidence of distinct micro-phase separated MC and POSS-PEG domains was indicated by the persistence of the MC and POSS-PEG (at 77K) crystal structures in the X-ray diffraction data, and scanning transmission electron images. Mixing of MC and POSS-PEG in the interface region was indicated by suppression of crystallinity in the POSS-PEG, and increases/decreases in the glass transition temperatures (Tg) of POSS-PEG/MC in the blends compared with the pure components. These interface interactions may serve as cross-link sites between the micro-phase separated domains that permit incorporation of high amounts of POSS-PEG in the blends, prevent macro-phase separation and result in rubbery material properties (at high POSS-PEG content). Above Tg/Tm of POSS-PEG, the moduli of the blends increase with MC content as expected. However, below Tg/Tm of POSS-PEG, the moduli are greater for blends with high POSS-PEG content, suggesting that it behaves like semi-crystalline polyethylene oxide reinforced with silica (SiO1.5). PMID:26572324

  17. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  18. Novel enzymes for the degradation of cellulose.

    PubMed

    Horn, Svein Jarle; Vaaje-Kolstad, Gustav; Westereng, Bjørge; Eijsink, Vincent Gh

    2012-01-01

    The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases) by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first "extracting" these chains from their crystalline matrix. PMID:22747961

  19. Novel enzymes for the degradation of cellulose

    PubMed Central

    2012-01-01

    The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases) by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix. PMID:22747961

  20. Processes for treating cellulosic material

    NASA Technical Reports Server (NTRS)

    Ladisch, Michael R. (Inventor); Kohlman, Karen L. (Inventor); Westgate, Paul L. (Inventor); Weil, Joseph R. (Inventor); Yang, Yiqi (Inventor)

    1998-01-01

    Disclosed are processes for pretreating cellulosic materials in liquid water by heating the materials in liquid water at a temperature at or above their glass transition temperature but not substantially exceeding 220.degree. C., while maintaining the pH of the reaction medium in a range that avoids substantial autohydrolysis of the cellulosic materials. Such pretreatments minimize chemical changes to the cellulose while leading to physical changes which substantially increase susceptibility to hydrolysis in the presence of cellulase.

  1. Liquid crystal-type assembly of native cellulose-glucuronoxylans extracted from plant cell wall.

    PubMed

    Reis, D; Vian, B; Chanzy, H; Roland, J C

    1991-01-01

    In numerous plant cell walls, the cellulose microfibrils are arranged in a helicoidal pattern which has been considered as an analog to a cholesteric order. Here, we report on the spontaneous helicoidal organization which occurs in acellular conditions from aqueous suspensions of cellulose. The cellulosic mucilage of mature seeds of quince (Cydonia oblonga L) was studied both in situ (pre-release mucilage) and after water extraction and in in vitro re-assembly (prolonged high speed ultracentrifugation, further progressive dehydration and embedding in LR White methacrylate or hydrosoluble melamine resin). The cellulosic component was characterized by the use of cellobiohydrolase (CBH1) bound to colloidal gold, and the glucuronic acid residues of the xylan matrix were characterized by the use of cationised gold. Inside the seeds, the pre-release mucilage is mostly helicoidal, with the occurrence of more or less ordered domains, which indicate a fluid organization relevant to an actual liquid crystal state. Cytochemical tests revealed the tight association between cellulose and glucuronoxylans, the latter constituting a charged coat around each microfibril. Following the hydration of the seed, a cellulosic suspension was extracted in which microfibrils were totally dispersed. The progressive dehydration of the suspension gave rise to concentrated viscous drops. Ultrastructural observations revealed the occurrence of multidomain organization, from non-ordered to cholesteric-like regions, revealing that the mucilage is at the same time crystalline and liquid. This constitutes the first demonstration that liquid crystal type assemblies can arise from crystalline and biological cellulose in aqueous suspension. It strengthens the hypothesis that a transient liquid crystal state must occur during the cellulose ordering. The possible morphogenetic role of the glucuronoxylans in the cholesteric organization of the cellulose is discussed. PMID:1804508

  2. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    PubMed Central

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  3. Electro-active paper made with aqueous cellulose solution

    NASA Astrophysics Data System (ADS)

    Wang, Niangui; Chen, Yi; Lee, Sunkon; Kim, Jaehwan

    2006-03-01

    Electro-Active Paper (EAPap) is attractive for EAP actuator due to its merits in terms of lightweight, dry condition, large displacement output, low actuation voltage and low power consumption. EAPap actuator has been made with cellulose material. Cellulose fibers are dissolved into a solution and cast in a sheet form, and a thin gold electrode is made on it. The cellulose solution has been made according to the viscous process that uses aqueous solvent NaOH/Urea. The use of strong alkali aqueous solvent results in decreasing hydrogen-bond of cellulose molecules. It makes EAPap material possessing ionic behavior. This paper presents the fabrication process and the performance evaluation of EAPap in terms of free displacement with respect to frequency and activation voltage.

  4. Cellulose Deficiency Is Enhanced on Hyper Accumulation of Sucrose by a H+-Coupled Sucrose Symporter.

    PubMed

    Yeats, Trevor H; Sorek, Hagit; Wemmer, David E; Somerville, Chris R

    2016-05-01

    In order to understand factors controlling the synthesis and deposition of cellulose, we have studied the Arabidopsis (Arabidopsis thaliana) double mutant shaven3 shaven3-like1 (shv3svl1), which was shown previously to exhibit a marked cellulose deficiency. We discovered that exogenous sucrose (Suc) in growth medium greatly enhances the reduction in hypocotyl elongation and cellulose content of shv3svl1 This effect was specific to Suc and was not observed with other sugars or osmoticum. Live-cell imaging of fluorescently labeled cellulose synthase complexes revealed a slowing of cellulose synthase complexes in shv3svl1 compared with the wild type that is enhanced in a Suc-conditional manner. Solid-state nuclear magnetic resonance confirmed a cellulose deficiency of shv3svl1 but indicated that cellulose crystallinity was unaffected in the mutant. A genetic suppressor screen identified mutants of the plasma membrane Suc/H(+) symporter SUC1, indicating that the accumulation of Suc underlies the Suc-dependent enhancement of shv3svl1 phenotypes. While other cellulose-deficient mutants were not specifically sensitive to exogenous Suc, the feronia (fer) receptor kinase mutant partially phenocopied shv3svl1 and exhibited a similar Suc-conditional cellulose defect. We demonstrate that shv3svl1, like fer, exhibits a hyperpolarized plasma membrane H(+) gradient that likely underlies the enhanced accumulation of Suc via Suc/H(+) symporters. Enhanced intracellular Suc abundance appears to favor the partitioning of carbon to starch rather than cellulose in both mutants. We conclude that SHV3-like proteins may be involved in signaling during cell expansion that coordinates proton pumping and cellulose synthesis. PMID:27013021

  5. Insights on how the activity of an endoglucanase is affected by physical properties of insoluble celluloses.

    PubMed

    Bragatto, Juliano; Segato, Fernando; Cota, Junio; Mello, Danilo B; Oliveira, Marcelo M; Buckeridge, Marcos S; Squina, Fabio M; Driemeier, Carlos

    2012-05-31

    Cellulose physical properties like crystallinity, porosity, and particle size are known to influence cellulase activity, but knowledge is still insufficient for activity prediction from such measurable substrate characteristics. With the aim of illuminating enzyme-substrate relationships, this work evaluates a purified hyperthermophilic endo-1,4-beta-glucanase (from Pyrococcus furiosus) acting on 13 celluloses characterized for crystallinity and crystal width (by X-ray diffraction), wet porosity (by thermoporometry), and particle size (by light scattering). Activities are analyzed by the Michaelis-Menten kinetic equation, which is justified by low enzyme-substrate affinity. Michaelis-Menten coefficients K(m) and k(cat) are reinterpreted in the context of heterogeneous cellulose hydrolysis. For a set of as-received and milled microcrystalline celluloses, activity is successfully described as a function of accessible substrate concentration, with accessibility proportional to K(m)(-1). Accessibility contribution from external particle areas, pore areas, and crystalline packing are discriminated to have comparable magnitudes, implying that activity prediction demands all these substrate properties to be considered. Results additionally suggest that looser crystalline packing increases the lengths of released cello-oligomers as well as the maximum endoglucanase specific activity (k(cat)). PMID:22577872

  6. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  7. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Liu, Weiguo

    2015-04-01

    The objective of this study was to get fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose from sugarcane bagasse. Hemicellulose could be easily hydrolyzed by dilute acid as sugars. The remained solid residue of acid hydrolysis was utilized to get levoglucosan by fast pyrolysis economically. Levoglucosan yield from crystalline cellulose could be as high as 61.47%. Dilute acid hydrolysis was also a promising pretreatment for levoglucosan production from lignocellulose. The dilute acid pretreated sugarcane bagasse resulted in higher levoglucosan yield (40.50%) in fast pyrolysis by micropyrolyzer, which was more effective than water washed (29.10%) and un-pretreated (12.84%). It was mainly ascribed to the effective removal of alkali and alkaline earth metals and the accumulation of crystalline cellulose. This strategy seems a promising route to achieve inexpensive fermentable sugars from lignocellulose for biorefinery. PMID:25690683

  8. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; Rayón, E; López, J; Kenny, J M

    2014-07-17

    Cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose by acid hydrolysis were added into poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends to improve the final properties of the multifunctional systems. CNC were also modified with a surfactant (CNCs) to increase the interfacial adhesion in the systems maintaining the thermal stability. Firstly, masterbatch pellets were obtained for each formulation to improve the dispersion of the cellulose structures in the PLA-PHB and then nanocomposite films were processed. The thermal stability as well as the morphological and structural properties of nanocomposites was investigated. While PHB increased the PLA crystallinity due to its nucleation effect, well dispersed CNC and CNCs not only increased the crystallinity but also improved the processability, the thermal stability and the interaction between both polymers especially in the case of the modified CNCs based PLA-PHB formulation. Likewise, CNCs were better dispersed in PLA-CNCs and PLA-PHB-CNCs, than CNC. PMID:24702913

  9. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation.

    PubMed

    Liimatainen, Henrikki; Visanko, Miikka; Sirviö, Juho Antti; Hormi, Osmo E O; Niinimaki, Jouko

    2012-05-14

    Sequential regioselective periodate-chlorite oxidation was employed as a new and efficient pretreatment to enhance the nanofibrillation of hardwood cellulose pulp through homogenization. The oxidized celluloses with carboxyl contents ranging from 0.38 to 1.75 mmol/g could nanofibrillate to highly viscous and transparent gels with yields of 100-85% without clogging the homogenizer (one to four passes). On the basis of field-emission scanning electron microscopy images, the nanofibrils obtained were of typical widths of approximately 25 ± 6 nm. All of the nanofibrillar samples maintained their cellulose I crystalline structure according to wide-angle X-ray diffraction results, and the crystallinity index was approximately 40% for all samples. PMID:22512713

  10. SO2 -catalyzed steam explosion: the effects of different severity on digestibility, accessibility, and crystallinity of lignocellulosic biomass.

    PubMed

    Kang, Yuzhi; Bansal, Prabuddha; Realff, Matthew J; Bommarius, Andreas S

    2013-01-01

    Lignocellulosic biomass is the most promising feedstock for biofuels production. To enhance the efficiency of enzymatic hydrolysis, lignocellulosics needs to be pretreated to lower their recalcitrance. SO(2) -catalyzed steam explosion is an efficient and relatively cost-efficient pretreatment method for softwood. This work investigates the effects of steam explosion severity on the digestibility, accessibility, and crystallinity of Loblolly pine. Higher severity was found to increase the accessibility of the feedstock while also promoting nonselective degradation of carbohydrates. The adsorption behavior of Celluclast® enzymes on steam-exploded Loblolly pine (SELP) can be described by a Langmuir isotherm. Cellulose crystallinity was found to first increase and then decrease with increasing pretreatment severity. A linear relationship between initial hydrolysis rates and crystallinity index (CrI) of pretreated Loblolly pine was found; moreover, a strong correlation between X-ray diffraction intensities and initial rates was confirmed. The findings demonstrate the significance of CrI in enzymatic hydrolysis of pretreated lignocellulosic biomass. PMID:23749425

  11. Triamterene crystalline nephropathy.

    PubMed

    Nasr, Samih H; Milliner, Dawn S; Wooldridge, Thomas D; Sethi, Sanjeev

    2014-01-01

    Medications can cause a tubulointerstitial insult leading to acute kidney injury through multiple mechanisms. Acute tubular injury, a dose-dependent process, occurs due to direct toxicity on tubular cells. Acute interstitial nephritis characterized by interstitial inflammation and tubulitis develops from drugs that incite an allergic reaction. Other less common mechanisms include osmotic nephrosis and crystalline nephropathy. The latter complication is rare but has been associated with several drugs, such as sulfadiazine, indinavir, methotrexate, and ciprofloxacin. Triamterene crystalline nephropathy has been reported only rarely, and its histologic characteristics are not well characterized. We report 2 cases of triamterene crystalline nephropathy, one of which initially was misdiagnosed as 2,8-dihydroxyadenine crystalline nephropathy. PMID:23958399

  12. Crystalline Silica Primer

    USGS Publications Warehouse

    Staff- Branch of Industrial Minerals

    1992-01-01

    substance and will present a nontechnical overview of the techniques used to measure crystalline silica. Because this primer is meant to be a starting point for anyone interested in learning more about crystalline silica, a list of selected readings and other resources is included. The detailed glossary, which defines many terms that are beyond the scope of this publication, is designed to help the reader move from this presentation to a more technical one, the inevitable next step.

  13. Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from Macro- to Nano-Dimensions.

    PubMed

    Moriana, Rosana; Vilaplana, Francisco; Ek, Monica

    2016-03-30

    This study investigates for the first time the feasibility of extracting cellulose nanocrystals (CNCs) from softwood forestry logging residues (woody chips, branches and pine needles), with an obtained gravimetric yield of over 13%. Compared with the other residues, woody chips rendered a higher yield of bleached cellulosic fibers with higher hemicellulose, pectin and lignin content, longer diameter, and lower crystallinity and thermal stability. The isolation of CNCs from these bleached cellulosic fibers was verified by the removal of most of their amorphous components, the increase in the crystallinity index, and the nano-dimensions of the individual crystals. The differences in the physico-chemical properties of the fibers extracted from the three logging residues resulted in CNCs with specific physico-chemical properties. The potential of using the resulting CNCs as reinforcements in nanocomposites was discussed in terms of aspect ratio, crystallinity and thermal stability. PMID:26794957

  14. Cellulose Synthesis in Agrobacterium tumefaciens

    SciTech Connect

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  15. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. PMID:26964959

  16. Production of nanotubes in delignified porous cellulosic materials after hydrolysis with cellulase.

    PubMed

    Koutinas, Αthanasios Α; Papafotopoulou-Patrinou, Evgenia; Gialleli, Angelika-Ioanna; Petsi, Theano; Bekatorou, Argyro; Kanellaki, Maria

    2016-08-01

    In this study, tubular cellulose (TC), a porous cellulosic material produced by delignification of sawdust, was treated with a Trichoderma reesei cellulase in order to increase the proportion of nano-tubes. The effect of enzyme concentration and treatment duration on surface characteristics was studied and the samples were analyzed with BET, SEM and XRD. Also, a composite material of gelatinized starch and TC underwent enzymatic treatment in combination with amylase (320U) and cellulase (320U) enzymes. For TC, the optimum enzyme concentration (640U) led to significant increase of TC specific surface area and pore volume along with the reduction of pore diameter. It was also shown that the enzymatic treatment did not result to a significant change of cellulose crystallinity index. The produced nano-tubular cellulose shows potential for application to drug and chemical preservative delivery systems. PMID:26996258

  17. Cellulose acetate from oil palm empty fruit bunch via a one step heterogeneous acetylation.

    PubMed

    Wan Daud, Wan Rosli; Djuned, Fauzi Muhammad

    2015-11-01

    Acetone soluble oil palm empty fruit bunch cellulose acetate (OPEFB-CA) of DS 2.52 has been successfully synthesized in a one-step heterogeneous acetylation of OPEFB cellulose without necessitating the hydrolysis stage. This has only been made possible by the mathematical modeling of the acetylation process by manipulating the variables of reaction time and acetic anhydride/cellulose ratio (RR). The obtained model was verified by experimental data with an error of less than 2.5%. NMR analysis showed that the distribution of the acetyl moiety among the three OH groups of cellulose indicates a preference at the C6 position, followed by C3 and C2. XRD revealed that OPEFB-CA is highly amorphous with a degree of crystallinity estimated to be ca. 6.41% as determined from DSC. The OPEFB-CA films exhibited good mechanical properties being their tensile strength and Young's modulus higher than those of the commercial CA. PMID:26256348

  18. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M

    2015-05-01

    Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials. PMID:25659698

  19. Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose.

    PubMed

    Chandra, Richard P; Arantes, Valdeir; Saddler, Jack

    2015-06-01

    The origins of lignocellulosic biomass and the pretreatment used to enhance enzyme accessibility to the cellulosic component are known to be strongly influenced by various substrate characteristics. To assess the impact that fibre properties might have on enzymatic hydrolysis, seven agricultural residues were characterised before and after steam pretreatment using a single pretreatment condition (190°C, 5min, 3% SO2) previously shown to enhance fractionation and hydrolysis of the cellulosic component of corn stover. When the fibre length, width and coarseness, viscosity, water retention value and cellulose crystallinity were monitored, no clear correlation was observed between any single substrate characteristic and the substrate's ease of enzymatic hydrolysis. However, the amount of hemicellulose that was solubilised during pretreatment correlated (r(2)=0.98) with the effectiveness of enzyme hydrolysis of each pretreated substrate. Simons's staining, to measure the cellulose accessibility, showed good correlation (r(2)=0.83) with hemicellulose removal and the extent of enzymatic hydrolysis. PMID:25780906

  20. Synchrotron SAXS and WAXD Studies of Cellulose Nascent Crystals: Experiment and Structure Analysis

    NASA Astrophysics Data System (ADS)

    Su, Ying; Burger, Christian; Hsiao, Benjamin S.; Chu, Benjamin

    2012-02-01

    Cellulose nascent crystals extracted from biomass (wood pulp, jute and cotton)by combined chemical and mechanical treatments are low cost, environmentally friendly and high performance materials to form the barrier layer in ultrafiltration membranes. This research project is aimed at using the synchrotron X-ray scattering methods to characterize the nascent crystalline nanofibers in different formats. The SAXS (Small Angle X-ray Scattering) data of cellulose nanofiber suspensions was analyzed and the polydisperse ribbon model with rectangular cross section fit the data well. The 2D and 3D simulations of WAXD (Wide Angle X-ray Diffraction) pattern of jute cellulose fibers solved the contents ratio of cellulose I-alpha and I-beta and Hermans' orientation parameter P2.

  1. Modeling the minimum enzymatic requirements for optimal cellulose conversion

    NASA Astrophysics Data System (ADS)

    den Haan, R.; van Zyl, J. M.; Harms, T. M.; van Zyl, W. H.

    2013-06-01

    Hydrolysis of cellulose is achieved by the synergistic action of endoglucanases, exoglucanases and β-glucosidases. Most cellulolytic microorganisms produce a varied array of these enzymes and the relative roles of the components are not easily defined or quantified. In this study we have used partially purified cellulases produced heterologously in the yeast Saccharomyces cerevisiae to increase our understanding of the roles of some of these components. CBH1 (Cel7), CBH2 (Cel6) and EG2 (Cel5) were separately produced in recombinant yeast strains, allowing their isolation free of any contaminating cellulolytic activity. Binary and ternary mixtures of the enzymes at loadings ranging between 3 and 100 mg g-1 Avicel allowed us to illustrate the relative roles of the enzymes and their levels of synergy. A mathematical model was created to simulate the interactions of these enzymes on crystalline cellulose, under both isolated and synergistic conditions. Laboratory results from the various mixtures at a range of loadings of recombinant enzymes allowed refinement of the mathematical model. The model can further be used to predict the optimal synergistic mixes of the enzymes. This information can subsequently be applied to help to determine the minimum protein requirement for complete hydrolysis of cellulose. Such knowledge will be greatly informative for the design of better enzymatic cocktails or processing organisms for the conversion of cellulosic biomass to commodity products.

  2. Studies of cellulose binding by cellobiose dehydrogenase and a comparison with cellobiohydrolase 1.

    PubMed Central

    Henriksson, G; Salumets, A; Divne, C; Pettersson, G

    1997-01-01

    The binding isotherm to cellulose of cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium has been compared with that of cellobiohydrolase 1 (CBH 1) from Trichoderma reesei. CDH binds more strongly but more sparsely to cellulose than does CBH 1. In a classical Scatchard analysis, a better fit to a one-site binding model was obtained for CDH than for CBH 1. The binding of both enzymes decreased in the presence of ethylene glycol, increased in the presence of ammonium sulphate and was unaffected by sodium chloride. Attempts to localize the cellulose-binding site on CDH have also been made by exposing enzymically digested CDH to cellulose and isolating the cellulose-bound peptides. The results suggest that the cellulose-binding site is located internally in the amino acid sequence of CDH. PMID:9210407

  3. Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics

    NASA Astrophysics Data System (ADS)

    Mahadeva, Suresha K.; Kim, Jaehwan

    2011-10-01

    A highly flexible nanocomposite was developed by coating a regenerated cellulose film with a thin layer of tin oxide (SnO2) by liquid-phase deposition. Tin oxide was crystallized in solution and formed nanocrystal coatings on regenerated cellulose. The nanocrystalline layers did not exfoliate from cellulose. Transmission electron microscopy and energy dispersive x-ray spectroscopy suggest that SnO2 was not only deposited over the cellulose surface, but also nucleated and grew inside the cellulose film. Current-voltage characteristics of the nanocomposite revealed that its electrical resistivity decreases with deposition time, with the lowest value obtained for 24 h of deposition. The cellulose-SnO2 hybrid nanocomposite can be used for biodegradable and disposable chemical, humidity and biosensors.

  4. Anomalous scaling law of strength and toughness of cellulose nanopaper

    PubMed Central

    Zhu, Hongli; Zhu, Shuze; Jia, Zheng; Parvinian, Sepideh; Li, Yuanyuan; Vaaland, Oeyvind; Hu, Liangbing; Li, Teng

    2015-01-01

    The quest for both strength and toughness is perpetual in advanced material design; unfortunately, these two mechanical properties are generally mutually exclusive. So far there exists only limited success of attaining both strength and toughness, which often needs material-specific, complicated, or expensive synthesis processes and thus can hardly be applicable to other materials. A general mechanism to address the conflict between strength and toughness still remains elusive. Here we report a first-of-its-kind study of the dependence of strength and toughness of cellulose nanopaper on the size of the constituent cellulose fibers. Surprisingly, we find that both the strength and toughness of cellulose nanopaper increase simultaneously (40 and 130 times, respectively) as the size of the constituent cellulose fibers decreases (from a mean diameter of 27 μm to 11 nm), revealing an anomalous but highly desirable scaling law of the mechanical properties of cellulose nanopaper: the smaller, the stronger and the tougher. Further fundamental mechanistic studies reveal that reduced intrinsic defect size and facile (re)formation of strong hydrogen bonding among cellulose molecular chains is the underlying key to this new scaling law of mechanical properties. These mechanistic findings are generally applicable to other material building blocks, and therefore open up abundant opportunities to use the fundamental bottom-up strategy to design a new class of functional materials that are both strong and tough. PMID:26150482

  5. A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation.

    PubMed

    Rohrbach, Kathleen; Li, Yuanyuan; Zhu, Hongli; Liu, Zhen; Dai, Jiaqi; Andreasen, Julia; Hu, Liangbing

    2014-11-11

    A hydrated regular cellulose paper filter modified with nanofibrillated cellulose (NFC) hydrogel was successfully fabricated for water/oil separation. The fabricated filter's hydrophilic and oleophobic properties resulted in increased filter life and decreased environmental impact, while displaying water flux of 89.6 L h(-1) m(-2) with efficiency ≥99% under gravitational force. PMID:25229071

  6. Changes in Molecular Size Distribution of Cellulose during Attack by White Rot and Brown Rot Fungi.

    PubMed

    Kleman-Leyer, K; Agosin, E; Conner, A H; Kirk, T K

    1992-04-01

    The kinetics of cotton cellulose depolymerization by the brown rot fungus Postia placenta and the white rot fungus Phanerochaete chrysosporium were investigated with solid-state cultures. The degree of polymerization (DP; the average number of glucosyl residues per cellulose molecule) of cellulose removed from soil-block cultures during degradation by P. placenta was first determined viscosimetrically. Changes in molecular size distribution of cellulose attacked by either fungus were then determined by size exclusion chromatography as the tricarbanilate derivative. The first study with P. placenta revealed two phases of depolymerization: a rapid decrease to a DP of approximately 800 and then a slower decrease to a DP of approximately 250. Almost all depolymerization occurred before weight loss. Determination of the molecular size distribution of cellulose during attack by the brown rot fungus revealed single major peaks centered over progressively lower DPs. Cellulose attacked by P. chrysosporium was continuously consumed and showed a different pattern of change in molecular size distribution than cellulose attacked by P. placenta. At first, a broad peak which shifted at a slightly lower average DP appeared, but as attack progressed the peak narrowed and the average DP increased slightly. From these results, it is apparent that the mechanism of cellulose degradation differs fundamentally between brown and white rot fungi, as represented by the species studied here. We conclude that the brown rot fungus cleaved completely through the amorphous regions of the cellulose microfibrils, whereas the white rot fungus attacked the surfaces of the microfibrils, resulting in a progressive erosion. PMID:16348694

  7. Changes in Molecular Size Distribution of Cellulose during Attack by White Rot and Brown Rot Fungi

    PubMed Central

    Kleman-Leyer, Karen; Agosin, Eduardo; Conner, Anthony H.; Kirk, T. Kent

    1992-01-01

    The kinetics of cotton cellulose depolymerization by the brown rot fungus Postia placenta and the white rot fungus Phanerochaete chrysosporium were investigated with solid-state cultures. The degree of polymerization (DP; the average number of glucosyl residues per cellulose molecule) of cellulose removed from soil-block cultures during degradation by P. placenta was first determined viscosimetrically. Changes in molecular size distribution of cellulose attacked by either fungus were then determined by size exclusion chromatography as the tricarbanilate derivative. The first study with P. placenta revealed two phases of depolymerization: a rapid decrease to a DP of approximately 800 and then a slower decrease to a DP of approximately 250. Almost all depolymerization occurred before weight loss. Determination of the molecular size distribution of cellulose during attack by the brown rot fungus revealed single major peaks centered over progressively lower DPs. Cellulose attacked by P. chrysosporium was continuously consumed and showed a different pattern of change in molecular size distribution than cellulose attacked by P. placenta. At first, a broad peak which shifted at a slightly lower average DP appeared, but as attack progressed the peak narrowed and the average DP increased slightly. From these results, it is apparent that the mechanism of cellulose degradation differs fundamentally between brown and white rot fungi, as represented by the species studied here. We conclude that the brown rot fungus cleaved completely through the amorphous regions of the cellulose microfibrils, whereas the white rot fungus attacked the surfaces of the microfibrils, resulting in a progressive erosion. PMID:16348694

  8. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    SciTech Connect

    Leschine, Susan

    2009-10-31

    Clostridium papyrosolvens. We discovered that C. papyrosolvens produces a multiprotein, multicomplex cellulase-xylanase enzyme system that hydrolyzes crystalline cellulose, and we have described this system in detail.

  9. A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods

    NASA Astrophysics Data System (ADS)

    Rahimi Kord Sofla, M.; Brown, R. J.; Tsuzuki, T.; Rainey, T. J.

    2016-09-01

    This study compared the fundamental properties of cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) extracted from sugarcane bagasse. Conventional hydrolysis was used to extract CNC while ball milling was used to extract CNF. Images generated by scanning electron microscope and transmission electron microscope showed CNC was needle-like with relatively lower aspect ratio and CNF was rope-like in structure with higher aspect ratio. Fourier-transformed infrared spectra showed that the chemical composition of nanocellulose and extracted cellulose were identical and quite different from bagasse. Dynamic light scattering studies showed that CNC had uniform particle size distribution with a median size of 148 nm while CNF had a bimodal size distribution with median size 240 ± 12 nm and 10 μm. X-ray diffraction showed that the amorphous portion was removed during hydrolysis; this resulted in an increase in the crystalline portion of CNC compared to CNF. Thermal degradation of cellulose initiated at a much lower temperature, in the case of the nanocrystals while the CNF prepared by ball milling were not affected, indicating higher thermal stability.

  10. Morphology and thermal properties of PLA-cellulose nanofibers composites.

    PubMed

    Frone, Adriana N; Berlioz, Sophie; Chailan, Jean-François; Panaitescu, Denis M

    2013-01-01

    Biodegradable nanocomposites were obtained from polylactic acid (PLA) and cellulose nanofibers with diameters ranging from 11 nm to 44 nm. The influence of treated (with 3-aminopropyltriethoxysilane) and untreated nanofibers on the thermal properties of PLA was investigated in detail using multiple session Differential Scanning Calorimetry (DSC) analysis. The nucleating effect of the cellulose nanofibers was confirmed by all the DSC runs (two melting and two crystallization steps). The morphology of both neat PLA and nanocomposites was explored for the first time using a new powerful AFM technique, Peak Force QNM (Quantitative Mechanical Property Mapping at the Nanoscale), which emphasized the nanolevel characteristics by elastic modulus mapping. QNM analyses showed a better dispersion of the silane treated nanofibers in the matrix as compared to the untreated ones. Moreover, a higher degree of crystallinity was detected in the PLA composites containing untreated nanofibers compared to the composites with treated ones. PMID:23044146

  11. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre.

    PubMed

    C S, Julie Chandra; George, Neena; Narayanankutty, Sunil K

    2016-05-20

    The isolation of cellulose nanofibres from arecanut husk was achieved by a chemo-mechanical method thereby opening up a means for utilizing a waste product more effectively. The chemical processes involved alkali treatment, acid hydrolysis, and bleaching. The mechanical fibrillation was performed via grinding and homogenization. The chemical constituents at different stages of treatment of fibres were analyzed according to the ASTM standards. Morphological characterization was done using the scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The isolated nanofibers had an average diameter of below 10 nanometres and a very high aspect ratio in the range 120-150. Fourier transform infrared spectroscopy (FT-IR) showed the effective removal of the non cellulosic components. The crystallinity was increased with successive treatments as shown by the X-ray diffraction analysis (XRD). The TGA studies revealed a good thermal stability for the isolated nanofibres. PMID:26917386

  12. Microcrystalline cellulose as reinforcing agent in silicone elastomers.

    PubMed

    Deng, S; Binauld, S; Mangiante, G; Frances, J M; Charlot, A; Bernard, J; Zhou, X; Fleury, E

    2016-10-20

    Cellulose is commonly used as filler for the reinforcement of polymer materials but data in the case of silicones remain rare. In this work we report the modification of microcrystalline cellulose (MCC) fibers from cotton linters by propargyl bromide, in aqueous medium without alteration of the crystalline domains. The analysis evidenced the efficient grafting of alkyne functions at the surface of the fibers, the DS being 0.5. The resulting MCC-Alkyne fibers were introduced within a bi-component reactive silicone formulation (up to 20wt%), allowing the formation of network through hydrosilylation reaction in which MCC-Alkyne played the role of a reactive fillers. Comparison between the properties of composites prepared with unmodified MCC and MCC-Alkyne highlighted a densification of the network and an enhancement of mechanical and thermal properties when coupling reactions occurred. Mechanical properties of silicone elastomers were better if the load of MCC-Alkyne remains low. PMID:27474638

  13. Hydrated fractions of cellulosics probed by infrared spectroscopy coupled with dynamics of deuterium exchange.

    PubMed

    Driemeier, Carlos; Mendes, Fernanda M; Ling, Liu Yi

    2015-08-20

    This article presents a novel method to selectively probe the non-crystalline, hydrated fractions of cellulosic biomass. The method is based on time-resolved infrared spectra analyzed to provide information on spectral and dynamical features of deuterium exchange (OH → OD) in D2O atmosphere. We assign deuterium exchange spectral regions (700-3800 cm(-1)) and explore changes due to relative humidity, different cellulosic samples, and infrared polarization. Here, two results are highlighted. First, a wide range of celluloses isolated from plants show remarkable spectral similarities whatever the relative amounts of cellulose and xylan. This result supports an inherent type of hydrated disorder which is mostly insensitive to the molecular identities of the associated polysaccharides. Second, polarized infrared analysis of cotton reveals hydrated cellulose having chains preferentially aligned with those of crystals, while the hydroxyls of hydrated cellulose present much more randomized orientation. Our results provide new insights on molecular and group orientation and on hydrogen bonding in hydrated fractions of cellulosic biomass. PMID:25965468

  14. Noncovalent Dispersion and Functionalization of Cellulose Nanocrystals with Proteins and Polysaccharides.

    PubMed

    Fang, Wenwen; Arola, Suvi; Malho, Jani-Markus; Kontturi, Eero; Linder, Markus B; Laaksonen, Päivi

    2016-04-11

    Native cellulose nanocrystals (CNCs) are valuable high quality materials with potential for many applications including the manufacture of high performance materials. In this work, a relatively effortless procedure was introduced for the production of CNCs, which gives a nearly 100% yield of crystalline cellulose. However, the processing of the native CNCs is hindered by the difficulty in dispersing them in water due to the absence of surface charges. To overcome these difficulties, we have developed a one-step procedure for dispersion and functionalization of CNCs with tailored cellulose binding proteins. The process is also applicable for polysaccharides. The tailored cellulose binding proteins are very efficient for the dispersion of CNCs due to the selective interaction with cellulose, and only small fraction of proteins (5-10 wt %, corresponds to about 3 μmol g(-1)) could stabilize the CNC suspension. Xyloglucan (XG) enhanced the CNC dispersion above a fraction of 10 wt %. For CNC suspension dispersed with carboxylmethyl cellulose (CMC) we observed the most long-lasting stability, up to 1 month. The cellulose binding proteins could not only enhance the dispersion of the CNCs, but also functionalize the surface. This we demonstrated by attaching gold nanoparticles (GNPs) to the proteins, thus, forming a monolayer of GNPs on the CNC surface. Cryo transmission electron microscopy (Cryo-TEM) imaging confirmed the attachment of the GNPs to CNC solution conditions. PMID:26907991

  15. AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.

    PubMed

    McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming

    2016-01-01

    The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx. PMID:26672449

  16. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko, David J.

    2004-07-13

    The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

  17. CHITINASE-LIKE1/POM-POM1 and Its Homolog CTL2 Are Glucan-Interacting Proteins Important for Cellulose Biosynthesis in Arabidopsis[W][OA

    PubMed Central

    Sánchez-Rodríguez, Clara; Bauer, Stefan; Hématy, Kian; Saxe, Friederike; Ibáñez, Ana Belén; Vodermaier, Vera; Konlechner, Cornelia; Sampathkumar, Arun; Rüggeberg, Markus; Aichinger, Ernst; Neumetzler, Lutz; Burgert, Ingo; Somerville, Chris; Hauser, Marie-Theres; Persson, Staffan

    2012-01-01

    Plant cells are encased by a cellulose-containing wall that is essential for plant morphogenesis. Cellulose consists of β-1,4-linked glucan chains assembled into paracrystalline microfibrils that are synthesized by plasma membrane–located cellulose synthase (CESA) complexes. Associations with hemicelluloses are important for microfibril spacing and for maintaining cell wall tensile strength. Several components associated with cellulose synthesis have been identified; however, the biological functions for many of them remain elusive. We show that the chitinase-like (CTL) proteins, CTL1/POM1 and CTL2, are functionally equivalent, affect cellulose biosynthesis, and are likely to play a key role in establishing interactions between cellulose microfibrils and hemicelluloses. CTL1/POM1 coincided with CESAs in the endomembrane system and was secreted to the apoplast. The movement of CESAs was compromised in ctl1/pom1 mutant seedlings, and the cellulose content and xyloglucan structures were altered. X-ray analysis revealed reduced crystalline cellulose content in ctl1 ctl2 double mutants, suggesting that the CTLs cooperatively affect assembly of the glucan chains, which may affect interactions between hemicelluloses and cellulose. Consistent with this hypothesis, both CTLs bound glucan-based polymers in vitro. We propose that the apoplastic CTLs regulate cellulose assembly and interaction with hemicelluloses via binding to emerging cellulose microfibrils. PMID:22327741

  18. Cellulose Derivatives for Water Repellent Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this poster presentation, we will discuss the synthesis and structural characterizations of nitro-benzyl cellulose (1), amino-benzyl cellulose (2) and pentafluoro –benzyl cellulose (3). All cellulose derivatives are synthesized by etherification process in lithium chloride/N,N-dimethylacetamide h...

  19. Cellulose Derivatives for Water Repellent Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synthesis and structural characterizations of nitro-benzyl cellulose, amino-benzyl cellulose and pentafluoro –benzyl cellulose were carried out. Cellulose derivatives were synthesized by etherification process in lithium chloride/N,N-dimethylacetamide homogeneous solution. Nitrobenzylation was effec...

  20. Assemblies of Cellulose Nanocrystals

    NASA Astrophysics Data System (ADS)

    Kumacheva, Eugenia

    The entropically driven coassembly of nanorods (cellulose nanocrystals, CNCs) and different types of nanoparticles (NPs), including dye-labeled latex NPs, carbon dots and plasmonic NPs was experimentally studied in aqueous suspensions and in solid films. In mixed CNC-NP suspensions, phase separation into an isotropic NP-rich and a chiral nematic CNC-rich phase took place; the latter contained a significant amount of NPs. Drying the mixed suspension resulted in CNC-NP films with planar disordered layers of NPs, which alternated with chiral nematic CNC-rich regions. In addition, NPs were embedded in the chiral nematic domains. The stratified morphology of the films, together with a random distribution of NPs in the anisotropic phase, led to the films having close-to-uniform fluorescence, birefringence, and circular dichroism properties.

  1. Radiation degradation of cellulose

    NASA Astrophysics Data System (ADS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Hübert, S.

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20 % up to about 80 %. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given.

  2. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis.

    PubMed

    Moxley, Geoffrey; Zhu, Zhiguang; Zhang, Y-H Percival

    2008-09-10

    Efficient liberation of fermentable soluble sugars from lignocellulosic biomass waste not only decreases solid waste handling but also produces value-added biofuels and biobased products. Industrial hemp, a special economic crop, is cultivated for its high-quality fibers and high-value seed oil, but its hollow stalk cords (hurds) are a cellulosic waste. The cellulose-solvent-based lignocellulose fractionation (CSLF) technology has been developed to separate lignocellulose components under modest reaction conditions (Zhang, Y.-H. P.; Ding, S.-Y.; Mielenz, J. R.; Elander, R.; Laser, M.; Himmel, M.; McMillan, J. D.; Lynd, L. R. Biotechnol. Bioeng. 2007, 97 (2), 214- 223). Three pretreatment conditions (acid concentration, reaction temperature, and reaction time) were investigated to treat industrial hemp hurds for a maximal sugar release: a combinatorial result of a maximal retention of solid cellulose and a maximal enzymatic cellulose hydrolysis. At the best treatment condition (84.0% H3PO4 at 50 degrees C for 60 min), the glucan digestibility was 96% at hour 24 at a cellulase loading of 15 filter paper units of cellulase per gram of glucan. The scanning electron microscopic images were presented for the CSLF-pretreated biomass for the first time, suggesting that CSLF can completely destruct the plant cell-wall structure, in a good agreement with the highest enzymatic cellulose digestibility and fastest hydrolysis rate. It was found that phosphoric acid only above a critical concentration (83%) with a sufficient reaction time can efficiently disrupt recalcitrant lignocellulose structures. PMID:18702466

  3. Magnetic cellulose-derivative structures

    DOEpatents

    Walsh, Myles A.; Morris, Robert S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

  4. Thermophilic degradation of cellulosic biomass

    NASA Astrophysics Data System (ADS)

    Ng, T.; Zeikus, J. G.

    1982-12-01

    The conversion of cellulosic biomass to chemical feedstocks and fuel by microbial fermentation is an important objective of developing biotechnology. Direct fermentation of cellulosic derivatives to ethanol by thermophilic bacteria offers a promising approach to this goal. Fermentations at elevated temperatures lowers the energy demand for cooling and also facilitates the recovery of volatile products. In addition, thermophilic microorganisms possess enzymes with greater stability than those from mesophilic microorganisms. Three anaerobic thermophilic cocultures that ferment cellulosic substrate mainly to ethanol have been described: Clostridium thermocellum/Clostriidium thermohydrosulfuricum, C. thermocellum/Clostridium thermosaccharolyticum, and C. thermocellum/Thermoanaerobacter ethanolicus sp. nov. The growth characteristics and metabolic features of these cocultures are reviewed.

  5. Magnetic cellulose-derivative structures

    DOEpatents

    Walsh, M.A.; Morris, R.S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.

  6. Factors influencing α-crystallin association with phospholipid vesicles

    PubMed Central

    Cobb, Brian A.; Petrash, J. Mark

    2010-01-01

    Purpose Lens lipids undergo a number of changes with age, including an overall increase in phospholipid acyl chain saturation and a decrease in length. In addition, the amount of membrane bound α-crystallin increases dramatically with age and with the onset of cataract. The aim of this study was to determine if a link exists between age and cataract associated changes in lens lipids and the changes in α-crystallin membrane association. Methods Protein-free lipid vesicles composed of a wide variety of synthetic and lens-derived lipid vesicles were formed by sonication. These vesicles were used with fluorescent native and recombinant α-crystallin conjugates in vesicle binding assays. Vesicles were collected by centrifugation and bound α-crystallin was quantified with fluorescence intensity measurements. Results α-Crystallin complexes showed remarkably similar binding profiles for all lipid vesicles tested, regardless of lipid origin, phospholipid head group, acyl chain length or saturation, and inclusion of cholesterol. In addition, recombinant α-crystallin complexes bind to these vesicles in a manner that is essentially indistinguishable from that of native human and bovine α-crystallins. Unlike α-crystallin binding to lens membranes containing intrinsic proteins, binding of α-crystallin to protein-free vesicles was very high capacity and unsaturable. Conclusions We conclude from these data that the binding of α-crystallin to lens membranes is not lipid-specific. Furthermore, protein post-translational changes, such as phosphorylation, do not appear to alter α-crystallin binding to these vesicles. Given the linearity of the binding curves, we propose that the only limiting factor for normal α-crystallin membrane binding is available surface area on the bilayer. Finally, the present data suggests that increased in vivo membrane association of α-crystallin is not a result of lipid changes, but more likely a result of non-lipid factors such as the

  7. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    PubMed

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  8. Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass.

    PubMed

    Uju; Nakamoto, Aya; Shoda, Yasuhiro; Goto, Masahiro; Tokuhara, Wataru; Noritake, Yoshiyuki; Katahira, Satoshi; Ishida, Nobuhiro; Ogino, Chiaki; Kamiya, Noriho

    2013-05-01

    The potential of 1-hexylpyridinium chloride ([Hpy][Cl]), to pretreat cellulosic feedstocks was investigated using microcrystalline cellulose (Avicel) and Bagasse at 80 °C or 100 °C. Short [Hpy][Cl] pretreatments, <30 min, at lower temperature accelerate subsequent enzymatic saccharification of Avicel. Over 95% conversion of pretreated Avicel to glucose was attained after 24h enzymatic saccharification under optimal conditions, whereas regenerated Bagasse showed 1-3-fold higher conversion than untreated biomass. FT-IR analysis of both Avicel and Bagasse samples pretreated with [Hpy][Cl] or 1-ethyl-3-methyimidazolium acetate ([Emim][OAc]) revealed that these ionic liquids behaved differently during pretreatment. [Hpy][Cl] pretreatment for an extended duration (180 min) released mono- and disaccharides without using cellulase enzymes, suggesting [Hpy][Cl] has capability for direct saccharification of cellulosic feedstocks. On the basis of the results obtained, [Hpy][Cl] pretreatment enhanced initial reaction rates in enzymatic saccharification by either crystalline polymorphic alteration of cellulose or partial degradation of the crystalline cellulosic fraction in biomass. PMID:22850175

  9. A functional cellulose synthase from ascidian epidermis

    PubMed Central

    Matthysse, Ann G.; Deschet, Karine; Williams, Melanie; Marry, Mazz; White, Alan R.; Smith, William C.

    2004-01-01

    Among animals, urochordates (e.g., ascidians) are unique in their ability to biosynthesize cellulose. In ascidians cellulose is synthesized in the epidermis and incorporated into a protective coat know as the tunic. A putative cellulose synthase-like gene was first identified in the genome sequences of the ascidian Ciona intestinalis. We describe here a cellulose synthase gene from the ascidian Ciona savignyi that is expressed in the epidermis. The predicted C. savignyi cellulose synthase amino acid sequence showed conserved features found in all cellulose synthases, including plants, but was most similar to cellulose synthases from bacteria, fungi, and Dictyostelium discoidium. However, unlike other known cellulose synthases, the predicted C. savignyi polypeptide has a degenerate cellulase-like region near the carboxyl-terminal end. An expression construct carrying the C. savignyi cDNA was found to restore cellulose biosynthesis to a cellulose synthase (CelA) minus mutant of Agrobacterium tumefaciens, showing that the predicted protein has cellulose synthase activity. The lack of cellulose biosynthesis in all other groups of metazoans and the similarity of the C. savignyi cellulose synthase to enzymes from cellulose-producing organisms support the hypothesis that the urochordates acquired the cellulose biosynthetic pathway by horizontal transfer. PMID:14722352

  10. Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores in cellulosics, XII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The CRI (chromophore release and identification) method isolates well-defined chromophoric substances from different cellulosic matrices, such as highly bleached pulps, cotton linters, bacterial cellulose, viscose or lyocell fibers, and cellulose acetates. The chromophores are present only in extrem...

  11. Cellulose supplementation early in life ameliorates colitis in adult mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decreased consumption of dietary fibers, such as cellulose, has been proposed to promote the emergence of inflammatory bowel diseases (Crohn disease and ulcerative colitis) where intestinal microbes are recognized to play an etiologic role. However, it is not known if transient fiber consumption dur...

  12. Swelling and dissolution of cellulose in amine oxide/water systems

    SciTech Connect

    Chanzy, H.; Noe, P.; Paillet, M.; Smith, P.

    1983-01-01

    The swelling behavior and the dissolution process of various cellulosic fibers, both native and regenerated, in N-methylmorpholine N-oxide (MMNO), dimethylethanolamine N-oxide (DMEAO), and mixtures thereof were studied in the presence of various amounts of water. The principal tools in this investigation were optical microscopy and wide-angle X-ray scattering (WAXS). The two amine oxides could either dissolve or only swell cellulose, depending on the water concentration, which was found to be of critical importance. Three domains of water concentration were found important. When only a few percent water was present, cellulose fibers, such as ramie, cotton, rayon, etc., dissolved readily without noticeable swelling in the amine oxide/water system brought above its melting point. At a relatively high water concentration (e.g., 18% w/w for MMNO), the cellulose fibers exhibited an extensive swelling (up to sevenfold increase in the fiber diameter) but no dissolution. In that case, the removal of the swelling agent showed that the initial native cellulose fibers were converted into an unoriented cellulose II structure. With still greater water content (e.g., 20% and more for MMNO or 15% for DMEAO), only partial swelling was observed, and the native cellulose fibers recovered their initial oriented cellulose I structure after removal of the swelling medium. X-ray investigations provided no evidence forthe formation of cellulose/solvent complexes in the swollen fibers. A relatively large decrease of the cellulose I (110) reflection was found in the WAXS patterns of the gels. This is interpreted as due to a preferential cleavage of the cellulose crystals along the corresponding plane when the cellulose fibers are exposed to the swelling forces of the amine oxide/water systems. 29 references, 13 figures, 1 table.

  13. Oxidized Cellulose with Different Carboxyl Content: Structure and Properties before and after Beating

    NASA Astrophysics Data System (ADS)

    Vendula, Hejlová; Miloslav, Milichovský

    Our recent studies concentrated in investigating influence of beating oxidized cellulose, with different carboxyl content, on changing their basic properties (degree of polymerization, WRV - water resistant value and X-ray diffraction). Cellulose samples of oxidized cellulose were beated by toroidal beating machine. Cellulose consists of both amorphous and crystalline regions. Cellulose consists of linear chains of poly[ß-1,4-D- anhydroglucopyranose] (C6nH10n + 2O5n + 1 (n = degree of polymerization of glucose)), which crystallize through hydrogen bonding between the chains and has cellobiose as repeat unit. Oxidized cellulose is preparing by oxidation of cellulose in the C6 position of the glucopyranose units to carboxylic group (-COOH) and polyanhydroglukuronic acid (PAGA) is arised. An other option is oxidation with sodium hypochlorite with catalytic amounts of sodium bromide and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) under various conditions. Beating and refining or mechanical treatment of fibers in water is an important step in using pulps for papermaking. It is an energy intensive process. The purpose of the treatment is to modify fiber properties to obtain the most desirable paper machine runnability and product properties. End of beating pulps was characterized by position, when all beated pulps under mixture passed through of riddle (about sizes mesh of 50). During beating of samples about different ratio of oxidation it was found, that samples with higher contents of COOH groups in starting pulp are characterized by a significantly lower specific beating energy consumption needed to achieving the same sizes of particles. X-ray analyse shows that for non-beated oxidized cellulose was perceptible high share amorphous contents compared with beated oxidized cellulose.

  14. Cleavage of cellulose by a CBM33 protein

    PubMed Central

    Forsberg, Zarah; Vaaje-Kolstad, Gustav; Westereng, Bjørge; Bunæs, Anne C; Stenstrøm, Yngve; MacKenzie, Alasdair; Sørlie, Morten; Horn, Svein J; Eijsink, Vincent GH

    2011-01-01

    Bacterial proteins categorized as family 33 carbohydrate-binding modules (CBM33) were recently shown to cleave crystalline chitin, using a mechanism that involves hydrolysis and oxidation. We show here that some members of the CBM33 family cleave crystalline cellulose as demonstrated by chromatographic and mass spectrometric analyses of soluble products released from Avicel or filter paper on incubation with CelS2, a CBM33-containing protein from Streptomyces coelicolor A3(2). These enzymes act synergistically with cellulases and may thus become important tools for efficient conversion of lignocellulosic biomass. Fungal proteins classified as glycoside hydrolase family 61 that are known to act synergistically with cellulases are likely to use a similar mechanism. PMID:21748815

  15. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends.

    PubMed

    Zhang, Xuzhen; Zhang, Yong

    2016-04-20

    Poly(butylene succinate) (PBS)/polylactic acid (PLA) blends modified with dicumyl peroxide (DCP) were reinforced by PBS-g-cellulose nanocrystal (CNC) through melt mixing. PBS-g-CNC was prepared through in situ polymerization and its structure was confirmed by FTIR, (13)C NMR, XPS and GPC analysis after saponification. The morphological analysis of PBS/PLA/PBS-g-CNC composites before and after etched by CH2Cl2 shows that the addition of DCP and PBS-g-CNC could decrease the size of PBS as a dispersed phase in PLA matrix and improve the dispersion of PBS-g-CNC in both PBS and PLA phases, which could affect the crystallization and mechanical properties of composites. The crystallinity of PLA α'-phase crystal in PBS/PLA/PBS-g-CNC composites is increased obviously by the addition of PBS-g-CNC, leading to an increase of the crystallinity of the composites. PBS/PLA blends modified by DCP have high Notched Izod impact strength and moduli, and the values are increased by the addition of PBS-g-CNC. Both storage modulus and glass translation temperature of PBS/PLA blend are increased by DCP and PBS-g-CNC, which is proved by DMA results, showing a weak molecular segment mobility of PBS/PLA matrix. The addition of DCP decreases the crystallization temperature and crystallinity of PBS/PLA composite, but increases the thermal stability of composites, mostly because of the crosslink effect of DCP on PBS/PLA matrix. PMID:26876864

  16. Preparation and characterization of transparent PMMA-cellulose-based nanocomposites.

    PubMed

    Kiziltas, Esra Erbas; Kiziltas, Alper; Bollin, Shannon C; Gardner, Douglas J

    2015-01-01

    Nanocomposites of polymethylmethacrylate (PMMA) and cellulose were made by a solution casting method using acetone as the solvent. The nanofiber networks were prepared using three different types of cellulose nanofibers: (i) nanofibrillated cellulose (NFC), (ii) cellulose nanocrystals (CNC) and (iii) bacterial cellulose from nata de coca (NDC). The loading of cellulose nanofibrils in the PMMA varied between 0.25 and 0.5 wt%. The mechanical properties of the composites were evaluated using a dynamic mechanical thermal analyzer (DMTA). The flexural modulus of the nanocomposites reinforced with NDC at the 0.5 wt% loading level increased 23% compared to that of pure PMMA. The NFC composite also exhibited a slightly increased flexural strength around 60 MPa while PMMA had a flexural strength of 57 MPa. The addition of NDC increased the storage modulus (11%) compared to neat PMMA at room temperature while the storage modulus of PPMA/CNC nanocomposite containing 0.25 and 0.5 wt% cellulose increased about 46% and 260% to that of the pure PMMA at the glass transition temperature, respectively. Thermogravimetric analysis (TGA) indicated that there was no significant change in thermal stability of the composites. The UV-vis transmittance of the CNF nanocomposites decreased by 9% and 27% with the addition of 0.25 wt% CNC and NDC, respectively. This work is intended to spur research and development activity for application of CNF reinforced PMMA nanocomposites in applications such as: packaging, flexible screens, optically transparent films and light-weight transparent materials for ballistic protection. PMID:25965497

  17. Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases.

    PubMed

    Beeson, William T; Phillips, Christopher M; Cate, Jamie H D; Marletta, Michael A

    2012-01-18

    Fungal-derived, copper-dependent polysaccharide monooxygenases (PMOs), formerly known as GH61 proteins, have recently been shown to catalyze the O(2)-dependent oxidative cleavage of recalcitrant polysaccharides. Different PMOs isolated from Neurospora crassa were found to generate oxidized cellodextrins modified at the reducing or nonreducing ends upon incubation with cellulose and cellobiose dehydrogenase. Here we show that the nonreducing end product formed by an N. crassa PMO is a 4-ketoaldose. Together with isotope labeling experiments, further support is provided for a mechanism involving oxygen insertion and subsequent elimination to break glycosidic bonds in crystalline cellulose. PMID:22188218

  18. Cellulose and cellobiose. Adventures of a wandering organic chemist in theoretical chemistry

    SciTech Connect

    Baluyut, John

    2012-04-03

    The energies arising from the rotation of free hydroxyl groups in the central glucose residue of a cellulose crystalline assembly, calculated using RHF, DFT, and FMO2/MP2 methods, will be presented. In addition, interactions of this central glucose residue with some of the surrounding residues (selected on the basis of the interaction strengths) are analyzed. The mechanism of acid-catalyzed hydrolysis of cellobiose, which is the repeating unit of cellulose. Energies corresponding to the different steps of this mechanism calculated using RHF and DFT are compared with those previously reported using molecular dynamics calculations and with experimental data.

  19. Isolation and properties of cellulose nanofibrils from coconut palm petioles by different mechanical process.

    PubMed

    Xu, Changyan; Zhu, Sailing; Xing, Cheng; Li, Dagang; Zhu, Nanfeng; Zhou, Handong

    2015-01-01

    In this study, cellulose nanofibrils (CNFs) were successfully isolated from coconut palm petiole residues falling off naturally with chemical pretreatments and mechanical treatments by a grinder and a homogenizor. FTIR spectra analysis showed that most of hemicellulose and lignin were removed from the fiber after chemical pretreatments. The compositions of CNFS indicated that high purity of nanofibrils with cellulose contain more than 95% was obtained. X-ray diffractogram demonstrated that chemical pretreatments significantly increased the crystallinity of CNFs from 38.00% to 70.36%; however, 10-15 times of grinding operation followed by homogenizing treatment after the chemical pretreatments did not significantly improve the crystallinity of CNFs. On the contrary, further grinding operation could destroy crystalline regions of the cellulose. SEM image indicated that high quality of CNFs could be isolated from coconut palm petiole residues with chemical treatments in combination of 15 times of grinding followed by 10 times of homogenization and the aspect ratio of the obtained CNFs ranged from 320 to 640. The result of TGA-DTG revealed that the chemical-mechanical treatments improved thermal stability of fiber samples, and the CNFs with 15 grinding passing times had the best thermal stability. This work suggests that the CNFs can be successfully extracted from coconut palm petiole residues and it may be a potential feedstock for nanofiber reinforced composites due to its high aspect ratio and crystallinity. PMID:25875280

  20. Isolation and Properties of Cellulose Nanofibrils from Coconut Palm Petioles by Different Mechanical Process

    PubMed Central

    Li, Dagang; Zhu, Nanfeng

    2015-01-01

    In this study, cellulose nanofibrils (CNFs) were successfully isolated from coconut palm petiole residues falling off naturally with chemical pretreatments and mechanical treatments by a grinder and a homogenizor. FTIR spectra analysis showed that most of hemicellulose and lignin were removed from the fiber after chemical pretreatments. The compositions of CNFS indicated that high purity of nanofibrils with cellulose contain more than 95% was obtained. X-ray diffractogram demonstrated that chemical pretreatments significantly increased the crystallinity of CNFs from 38.00% to 70.36%; however, 10-15 times of grinding operation followed by homogenizing treatment after the chemical pretreatments did not significantly improve the crystallinity of CNFs. On the contrary, further grinding operation could destroy crystalline regions of the cellulose. SEM image indicated that high quality of CNFs could be isolated from coconut palm petiole residues with chemical treatments in combination of 15 times of grinding followed by 10 times of homogenization and the aspect ratio of the obtained CNFs ranged from 320 to 640. The result of TGA-DTG revealed that the chemical-mechanical treatments improved thermal stability of fiber samples, and the CNFs with 15 grinding passing times had the best thermal stability. This work suggests that the CNFs can be successfully extracted from coconut palm petiole residues and it may be a potential feedstock for nanofiber reinforced composites due to its high aspect ratio and crystallinity. PMID:25875280

  1. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods.

    PubMed

    Sacui, Iulia A; Nieuwendaal, Ryan C; Burnett, Daniel J; Stranick, Stephan J; Jorfi, Mehdi; Weder, Christoph; Foster, E Johan; Olsson, Richard T; Gilman, Jeffery W

    2014-05-14

    This work describes the measurement and comparison of several important properties of native cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs), such as crystallinity, morphology, aspect ratio, and surface chemistry. Measurement of the fundamental properties of seven different CNCs/CNFs, from raw material sources (bacterial, tunicate, and wood) using typical hydrolysis conditions (acid, enzymatic, mechanical, and 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation), was accomplished using a variety of measurement methods. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and 13C cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy were used to conclude that CNCs, which are rodlike in appearance, have a higher crystallinity than CNFs, which are fibrillar in appearance. CNC aspect ratio distributions were measured and ranged from 148±147 for tunicate-CNCs to 23±12 for wood-CNCs. Hydrophobic interactions, measured using inverse gas chromatography (IGC), were found to be an important contribution to the total surface energy of both types of cellulose. In all cases, a trace amount of naturally occurring fluorescent compounds was observed after hydrolysis. Confocal and Raman microscopy were used to confirm that the fluorescent species were unique for each cellulose source, and demonstrated that such methods can be useful for monitoring purity during CNC/CNF processing. This study reveals the broad, tunable, multidimensional material space in which CNCs and CNFs exist. PMID:24746103

  2. Effect of cellulose physical characteristics, especially the water sorption value, on the efficiency of its hydrolysis catalyzed by free or immobilized cellulase.

    PubMed

    Ogeda, Thais L; Silva, Igor B; Fidale, Ludmila C; El Seoud, Omar A; Petri, Denise F S

    2012-01-01

    Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO(2) wafers at 60°C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (I(C)), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either I(C) or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion. PMID:22146618

  3. Radiation grafting of styrene and acrylonitrile to cellulose and polyethylene

    NASA Astrophysics Data System (ADS)

    Hassanpour, S.

    1999-06-01

    Radiation induced graft polymerization is one of the best methods for obtaining material with new properties. In this work, radiation grafting of styrene, mixture of styrene and acrylonitrile to cellulose and polyethylene in the presence of methanol as a solvent by mutual method is discussed. At a low dose rate, high grafting yields were obtained from the two systems used, due to lesser termination of free radicals with the polymer growing radicals and recombination of primary radicals, resulting in a longer chain length of the grafted copolymer. In the system of styrene and acrylonitrile, comonomer technique was used and the styrene controlled the homopolymer formation during graft polymerization. Water uptake of cellulose decreased by increasing the grafting yields. Grafted cellulose can be molded to some extent and in a high percent of grafting, a new transparent material was obtained. By radiation grafting of styrene-acrylonitrile to low density polyethylene a high degree of crosslinking was observed.

  4. Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw.

    PubMed

    Candido, R G; Gonçalves, A R

    2016-11-01

    Sugarcane straw (SCS) is a raw material with high potential for production of cellulose derivatives due to its morphology and structure. The proposal of this work was to synthesize cellulose acetate (CA) and carboxymethylcellulose (CMC) from sugarcane straw cellulose, and applied the CA in the preparation of a membrane. The cellulose extraction was carried out in four steps. Firstly, SCS was treated with H2SO4 (10% v/v) followed by NaOH (5% w/v) treatment. Subsequently, a chelating process was performed before ending the extraction process with chemical bleaching using H2O2 (5% v/v). The extracted cellulose was employed in the obtainment of CA and CMC. The CA presented a degree of substitution (DS) of 2.72. Its FTIR spectrum showed that practically all hydroxyl groups were replaced by acetate groups. The membrane synthesized from CA was dense and homogeneous. The presence of small particles on the top and bottom surfaces decreased the mechanical resistance of the membrane. The CMC presented a low DS (0.4) demonstrating the carboxymethylation reaction was not very effective due to the presence of lignin. These results proved that SCS can be utilized in the synthesis of CA and CMC. PMID:27516319

  5. Molecular modeling and imaging of initial stages of cellulose fibril assembly: evidence for a disordered intermediate stage.

    PubMed

    Haigler, Candace H; Grimson, Mark J; Gervais, Julien; Le Moigne, Nicolas; Höfte, Herman; Monasse, Bernard; Navard, Patrick

    2014-01-01

    The remarkable mechanical strength of cellulose reflects the arrangement of multiple β-1,4-linked glucan chains in a para-crystalline fibril. During plant cellulose biosynthesis, a multimeric cellulose synthesis complex (CSC) moves within the plane of the plasma membrane as many glucan chains are synthesized from the same end and in close proximity. Many questions remain about the mechanism of cellulose fibril assembly, for example must multiple catalytic subunits within one CSC polymerize cellulose at the same rate? How does the cellulose fibril bend to align horizontally with the cell wall? Here we used mathematical modeling to investigate the interactions between glucan chains immediately after extrusion on the plasma membrane surface. Molecular dynamics simulations on groups of six glucans, each originating from a position approximating its extrusion site, revealed initial formation of an uncrystallized aggregate of chains from which a protofibril arose spontaneously through a ratchet mechanism involving hydrogen bonds and van der Waals interactions between glucose monomers. Consistent with the predictions from the model, freeze-fracture transmission electron microscopy using improved methods revealed a hemispherical accumulation of material at points of origination of apparent cellulose fibrils on the external surface of the plasma membrane where rosette-type CSCs were also observed. Together the data support the possibility that a zone of uncrystallized chains on the plasma membrane surface buffers the predicted variable rates of cellulose polymerization from multiple catalytic subunits within the CSC and acts as a flexible hinge allowing the horizontal alignment of the crystalline cellulose fibrils relative to the cell wall. PMID:24722535

  6. Molecular Modeling and Imaging of Initial Stages of Cellulose Fibril Assembly: Evidence for a Disordered Intermediate Stage

    PubMed Central

    Haigler, Candace H.; Grimson, Mark J.; Gervais, Julien; Le Moigne, Nicolas; Höfte, Herman; Monasse, Bernard; Navard, Patrick

    2014-01-01

    The remarkable mechanical strength of cellulose reflects the arrangement of multiple β-1,4-linked glucan chains in a para-crystalline fibril. During plant cellulose biosynthesis, a multimeric cellulose synthesis complex (CSC) moves within the plane of the plasma membrane as many glucan chains are synthesized from the same end and in close proximity. Many questions remain about the mechanism of cellulose fibril assembly, for example must multiple catalytic subunits within one CSC polymerize cellulose at the same rate? How does the cellulose fibril bend to align horizontally with the cell wall? Here we used mathematical modeling to investigate the interactions between glucan chains immediately after extrusion on the plasma membrane surface. Molecular dynamics simulations on groups of six glucans, each originating from a position approximating its extrusion site, revealed initial formation of an uncrystallized aggregate of chains from which a protofibril arose spontaneously through a ratchet mechanism involving hydrogen bonds and van der Waals interactions between glucose monomers. Consistent with the predictions from the model, freeze-fracture transmission electron microscopy using improved methods revealed a hemispherical accumulation of material at points of origination of apparent cellulose fibrils on the external surface of the plasma membrane where rosette-type CSCs were also observed. Together the data support the possibility that a zone of uncrystallized chains on the plasma membrane surface buffers the predicted variable rates of cellulose polymerization from multiple catalytic subunits within the CSC and acts as a flexible hinge allowing the horizontal alignment of the crystalline cellulose fibrils relative to the cell wall. PMID:24722535

  7. Cellulose Deficiency Is Enhanced on Hyper Accumulation of Sucrose by a H+-Coupled Sucrose Symporter1[OPEN

    PubMed Central

    Yeats, Trevor H.; Sorek, Hagit

    2016-01-01

    In order to understand factors controlling the synthesis and deposition of cellulose, we have studied the Arabidopsis (Arabidopsis thaliana) double mutant shaven3 shaven3-like1 (shv3svl1), which was shown previously to exhibit a marked cellulose deficiency. We discovered that exogenous sucrose (Suc) in growth medium greatly enhances the reduction in hypocotyl elongation and cellulose content of shv3svl1. This effect was specific to Suc and was not observed with other sugars or osmoticum. Live-cell imaging of fluorescently labeled cellulose synthase complexes revealed a slowing of cellulose synthase complexes in shv3svl1 compared with the wild type that is enhanced in a Suc-conditional manner. Solid-state nuclear magnetic resonance confirmed a cellulose deficiency of shv3svl1 but indicated that cellulose crystallinity was unaffected in the mutant. A genetic suppressor screen identified mutants of the plasma membrane Suc/H+ symporter SUC1, indicating that the accumulation of Suc underlies the Suc-dependent enhancement of shv3svl1 phenotypes. While other cellulose-deficient mutants were not specifically sensitive to exogenous Suc, the feronia (fer) receptor kinase mutant partially phenocopied shv3svl1 and exhibited a similar Suc-conditional cellulose defect. We demonstrate that shv3svl1, like fer, exhibits a hyperpolarized plasma membrane H+ gradient that likely underlies the enhanced accumulation of Suc via Suc/H+ symporters. Enhanced intracellular Suc abundance appears to favor the partitioning of carbon to starch rather than cellulose in both mutants. We conclude that SHV3-like proteins may be involved in signaling during cell expansion that coordinates proton pumping and cellulose synthesis. PMID:27013021

  8. Improvement of pesticide adsorption capacity of cellulose fibre by high-energy irradiation-initiated grafting of glycidyl methacrylate

    NASA Astrophysics Data System (ADS)

    Takács, Erzsébet; Wojnárovits, László; Koczog Horváth, Éva; Fekete, Tamás; Borsa, Judit

    2012-09-01

    Cellulose as a renewable raw material was used for preparation of adsorbent of organic impurities in wastewater treatment. Hydrophobic surface of cellulose substrate was developed by grafting glycidyl methacrylate in simultaneous grafting using gamma irradiation initiation. Water uptake of cellulose significantly decreased while adsorption of phenol and a pesticide molecule (2,4-dichlorophenoxyacetic acid: 2,4-D) increased upon grafting. Adsorption equilibrium data fitted the Freundlich isotherm for both solutes.

  9. Cellulose triacetate doped with ionic liquids for membrane gas separation

    NASA Astrophysics Data System (ADS)

    Lam, Benjamin Fatt Soon

    The doping of cellulose triacetate (CTA) with imidazolium based ionic liquids (ILs) is investigated in order to reduce the polymer crystallinity and enhance the affinity with CO2, thus increasing CO2 permeability and CO2/light gas selectivity. CTA membranes doped with [emim] BF4 or [emim] DCA were prepared, and the effect of the ILs loading on properties, such as crystallinity, density, degradation temperature, glass transition temperature, and gas transport properties, has been determined. In general, doping with IL reduces the crystallinity in CTA, increasing gas solubility, diffusivity and permeability. The ILs doping also increases CO 2/CH4 solubility selectivity and CO2/N2 permeability selectivity, due to the affinity of these ILs with CO2, instead of light gases such as CH4 and N2. This study provides a mechanistic understanding of interaction of ILs and CTA, and demonstrates an effective route in manipulating the morphology and gas transport properties of semi crystalline polymers by doping with ILs.

  10. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko; David J.

    2007-05-08

    The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

  11. Predicting cellulose solvating capabilities of acid-base conjugate ionic liquids.

    PubMed

    Parviainen, Arno; King, Alistair W T; Mutikainen, Ilpo; Hummel, Michael; Selg, Christoph; Hauru, Lauri K J; Sixta, Herbert; Kilpeläinen, Ilkka

    2013-11-01

    Different acid-base conjugates were made by combining a range of bases and superbases with acetic and propionic acid. Only the combinations that contained superbases were capable of dissolving cellulose. Proton affinities were calculated for the bases. A range, within which cellulose dissolution occurred, when combined with acetic or propionic acid, was defined for further use. This was above a proton affinity value of about 240 kcal mol(-1) at the MP2/6-311+G(d,p)//MP2/ 6-311+G(d,p) ab initio level. Understanding dissolution allowed us to determine that cation acidity contributed considerably to the ability of ionic liquids to dissolve cellulose and not just the basicity of the anion. By XRD analyses of suitable crystals, hydrogen bonding interactions between anion and cation were found to be the dominant interactions in the crystalline state. From determination of viscosities of these conjugates over a temperature range, certain structures were found to have as low a viscosity as 1-ethyl-3-methylimidazolium acetate, which was reflected in their high rate of cellulose dissolution but not necessarily the quantitative solubility of cellulose in those ionic liquids. 1,5-Diazabicyclo[4.3.0]non-5-enium propionate, which is one of the best structures for cellulose dissolution, was then distilled using laboratory equipment to demonstrate its recyclability. PMID:24106149

  12. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites.

    PubMed

    Fortunati, E; Peltzer, M; Armentano, I; Torre, L; Jiménez, A; Kenny, J M

    2012-10-01

    The aim of this paper is to report the impact of the addition of cellulose nanocrystals on the barrier properties and on the migration behaviour of poly(lactic acid), PLA, based nano-biocomposites prepared by the solvent casting method. Their microstructure, crystallinity, barrier and overall migration properties were investigated. Pristine (CNC) and surfactant-modified cellulose nanocrystals (s-CNC) were used, and the effect of the cellulose modification and content in the nano-biocomposites was investigated. The presence of surfactant on the nanocrystal surface favours the dispersion of CNC in the PLA matrix. Electron microscopy analysis shows the good dispersion of s-CNC in the nanoscale with well-defined single crystals indicating that the surfactant allowed a better interaction between the cellulose structures and the PLA matrix. Reductions of 34% in water permeability were obtained for the cast films containing 1 wt.% of s-CNC while good oxygen barrier properties were detected for nano-biocomposites with both 1 wt.% and 5 wt.% of modified and un-modified cellulose nanocrystals, underlining the improvement provided by cellulose on the PLA films. Moreover, the migration level of the studied nano-biocomposites was below the overall migration limits required by the current normative for food packaging materials in both non-polar and polar simulants. PMID:22840025

  13. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  14. Crystalline titanate catalyst supports

    SciTech Connect

    Anthony, R.G.; Dosch, R.G.

    1991-12-31

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  15. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  16. COLLIDING CRYSTALLINE BEAMS.

    SciTech Connect

    WEI, J.

    1998-06-26

    The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. We study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. We initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then overlapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, we find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong cooling, although theoretically achievable, is a challenge in practice.

  17. Colliding Crystalline Beams

    SciTech Connect

    Wei, Jie; Sessler, A.M.

    1998-06-01

    The understanding of crystalline beams has advanced to the point where one can now, with reasonable confidence, undertake an analysis of the luminosity of colliding crystalline beams. Such a study is reported here. It is necessary to observe the criteria, previously stated, for the creation and stability of crystalline beams. This requires, firstly, the proper design of a lattice. Secondly, a crystal must be formed, and this can usually be done at various densities. Thirdly, the crystals in a colliding-beam machine are brought into collision. We study all of these processes using the molecular dynamics (MD) method. The work parallels what was done previously, but the new part is to study the crystal-crystal interaction in collision. We initially study the zero-temperature situation. If the beam-beam force (or equivalent tune shift) is too large then over-lapping crystals can not be created (rather two spatially separated crystals are formed). However, if the beam-beam force is less than but comparable to that of the space-charge forces between the particles, we find that overlapping crystals can be formed and the beam-beam tune shift can be of the order of unity. Operating at low but non-zero temperature can increase the luminosity by several orders of magnitude over that of a usual collider. The construction of an appropriate lattice, and the development of adequately strong coding, although theoretically achievable, is a challenge in practice.

  18. Pretreatment of microcrystalline cellulose flakes with CaCl2 increases the surface area, and thus improves enzymatic saccharification.

    PubMed

    Tokuyasu, Ken; Tabuse, Mine; Miyamoto, Maki; Matsuki, Junko; Yoza, Koichi

    2008-05-19

    Glucose production from cellulose flakes with cellulases was improved after pretreatment with saturated CaCl2 at room temperature. When pretreated microcrystalline cellulose flakes (Funacel II, Funakoshi Co., Ltd, Tokyo, Japan) were saccharified with the cellulases, 76.8% of the substrate was converted into glucose within 5 h, whereas the corresponding conversion rate of water-pretreated cellulose flakes was 33.8%. To clarify the mechanism of the promotion, cellobiohydrolase I purified from Trichoderma longibrachiatum was used as the model cellulase, which degraded CaCl2-pretreated cellulose more quickly than the water-pretreated cellulose under tested conditions. The maximum amount of the enzyme bound to CaCl2-pretreated cellulose at 37 degrees C was estimated as 1.14 nmol/mg of cellulose, whereas that to water-pretreated cellulose was 0.527 nmol/mg of cellulose. The specific activity of the bound enzyme greatly decreased with the increase of the surface density (rho) of the bound enzyme, and no significant positive effects of the CaCl2-pretreatment on the specific activity could be observed at the same rho value, suggesting that the promotion was attributed mainly to the increase of the surface area of cellulose. The effect was also observed with dewaxed cotton or filter paper, but not with nata de coco cellulose or bagasse cellulose as the substrates. This suggests that the CaCl2-pretreatment serves to increase the surface area of cellulose flakes via liberation of cellulose particles which were artificially aggregated during harsh drying processes of the flakes. PMID:18384760

  19. Use of a capillary rheometer to evaluate the rheological properties of microcrystalline cellulose and silicified microcrystalline cellulose wet masses.

    PubMed

    Luukkonen, P; Newton, J M; Podczeck, F; Yliruusi, J

    2001-03-23

    The influence of microcrystalline cellulose (MCC) type and water content on the rheological properties of the wet powder masses were studied using two different MCC grades (Avicel and Emcocel) and silicified microcrystalline cellulose (SMCC, Prosolv). A ram extruder was used as a capillary rheometer and unique flow curves for each cellulose grade and moisture content were derived. In addition, the elastic parameters of recoverable shear and compliance were determined. From different flow curve models evaluated, it was not possible to obtain clear evidence, which model best described the rheological properties of each cellulose grade at each water level. Furthermore, the residuals were shear rate dependent, which indicates that the models do not perfectly agree with physical properties of the wet masses. The elastic properties of wet masses increased with increasing water content and decreased with increasing shear stresses. SMCC grade proved to be more elastic than the simple MCC grades at each moisture content. Thus, the rheological properties of MCC and SMCC wet masses were different and changed with water content. Consequently, it was not possible to achieve similar rheological properties between different grades of cellulose by altering the water content of the wet mass. PMID:11274816

  20. A novel method for preparing microfibrillated cellulose from bamboo fibers

    NASA Astrophysics Data System (ADS)

    Dat Nguyen, Huu; Thanh Thuy Mai, Thi; Bich Nguyen, Ngoc; Duy Dang, Thanh; Loan Phung Le, My; Dang, Tan Tai; Tran, Van Man

    2013-03-01

    The bamboo fiber is a potential candidate for biomass and power source application. In this study, microfibrillated cellulose (MFC) is prepared from raw fibers of bamboo tree (Bambusa Blumeana J A & J H Schultes) by an alkali treatment at room temperature in association with a bleaching treatment followed by a sulfuric acid hydrolysis. Field-emission scanning electron microscopy (FESEM) images indicated that final products ranged from 20 to 40 nm in diameter. The chemical composition measurement and Fourier transform infrared (FTIR) spectroscopy showed that both hemicellulose and lignin are mostly removed in the MFC. The x-ray diffraction (XRD) results also show that MFC has crystallinity of more than 70%. The thermogravimetric analysis (TGA) curves revealed that cellulose microfibers have a two-step thermal decomposition behavior owing to the attachment of sulfated groups onto the cellulose surface in the hydrolysis process with sulfuric acid. The obtained MFCs may have potential applications in alternative power sources as biomass, in pharmaceutical and optical industries as additives, as well as in composite fields as a reinforcement phase.

  1. Two-Dimensional Aggregation and Semidilute Ordering in Cellulose Nanocrystals.

    PubMed

    Uhlig, Martin; Fall, Andreas; Wellert, Stefan; Lehmann, Maren; Prévost, Sylvain; Wågberg, Lars; von Klitzing, Regine; Nyström, Gustav

    2016-01-19

    The structural properties and aggregation behavior of carboxymethylated cellulose nanocrystals (CNC-COOH) were analyzed with small angle neutron scattering (SANS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS) and compared to sulfuric acid hydrolyzed cellulose nanocrystals (CNC-SO3H). The CNC-COOH system, prepared from single carboxymethylated cellulose nanofibrils, was shown to laterally aggregate into 2D-stacks that were stable both in bulk solution and when adsorbed to surfaces. CNC-SO3H also showed a 2D aggregate structure with similar cross sectional dimensions (a width to height ratio of 8) as CNC-COOH, but a factor of 2 shorter length. SANS and DLS revealed a reversible ordering of the 2D aggregates under semidilute conditions, and a structure peak was observed for both systems. This indicates an early stage of liquid crystalline arrangement of the crystal aggregates, at concentrations below those assessed using birefringence or polarized optical microscopy. PMID:26684549

  2. Cellulose nanocrystal isolation from tomato peels and assembled nanofibers.

    PubMed

    Jiang, Feng; Hsieh, You-Lo

    2015-05-20

    Pure cellulose has been successfully isolated from tomato peels by either acidified sodium chlorite or chlorine-free alkaline peroxide routes, at 10.2-13.1% yields. Negatively charged (ζ = -52.4 mV, 0.48 at% S content) and flat spindle shaped (41:2:1 length:width:thickness) cellulose nanocrystals (CNCs) were isolated at a 15.7% yield via sulfuric acid hydrolysis (64% H2SO4, 8.75 mL/g, 45 °C, 30 min). CNCs could be facilely assembled from dilute aqueous suspensions into highly crystalline (80.8%) cellulose Iβ fibrous mass containing mostly sub-micron fibers (ϕ = 260 nm) and few interconnected nanofibers (ϕ = 38 nm), with 21.7 m(2)/g specific surface and 0.049 m(3)/g pore volume. More uniformly nanofibers with average 42 nm width and significantly improved specific surface area (101.8m(2)/g), mesoporosity and pore volume (0.4m(3)/g) could be assembled from CNCs in 1:1 v/v tert-butanol/water mixture. PMID:25817643

  3. Microfibrillated cellulose: morphology and accessibility

    SciTech Connect

    Herrick, F.W.; Casebier, R.L.; Hamilton, J.K.; Sandberg, K.R.

    1983-01-01

    Microfibrillated cellulose (MFC) is prepared by subjecting dilute slurries of cellulose fibers to repeated high-pressure homogenizing action. A highly microfibrillated product will have a gel-like appearance at 2% concentration in water. Such gels have pseudoplastic viscosity properties and are very fluid when stirred at high shear rate. The relative viscosity of 2% MFC dispersions may be used as a measure of the degree of homogenization or microfibrillation of a given wood cellulose pulp. The water retention value of an MFC product can also be used as an indicator for degree of homogenization. Structurally, MFC appears to be a web of interconnected fibrils and microfibrils, the latter having diameters in the range 10-100 nm as observed in scanning and transmission electron micrographs. Chemical studies have revealed that MFC is only moderately degraded, while being greatly expanded in surface area. The accessibility of cellulose in MFC is only moderately degraded, while being greatly expanded in surface area. The accessibility of cellulose in MFC toward chemical reagents is greatly increased. Higher reactivity was demonstrated in dilute cupriethylenediamine solubility, triphenylmethylation, acetylation, periodate oxidation, and mineral acid and cellulase enzyme hydrolysis rates. 16 references, 8 figures, 7 tables.

  4. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    PubMed

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. PMID:26253917

  5. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum.

    PubMed

    Li, Zheng; Wang, Lifen; Hua, Jiachuan; Jia, Shiru; Zhang, Jianfei; Liu, Hao

    2015-04-20

    The work is aimed to investigate the suitability of waste water of candied jujube-processing industry for the production of bacterial cellulose (BC) by Gluconacetobacter xylinum CGMCC No.2955 and to study the structure properties of bacterial cellulose membranes. After acid pretreatment, the glucose of hydrolysate was higher than that of waste water of candied jujube. The volumetric yield of bacterial cellulose in hydrolysate was 2.25 g/L, which was 1.5-folds of that in waste water of candied jujube. The structures indicated that the fiber size distribution was 3-14 nm in those media with an average diameter being around 5.9 nm. The crystallinity index of BC from pretreatment medium was lower than that of without pretreatment medium and BCs from various media had similar chemical binding. Ammonium citrate was a key factor for improving production yield and the crystallinity index of BC. PMID:25662694

  6. Inhibition of Trehalose Breakdown Increases New Carbon Partitioning into Cellulosic Biomass in Nicotiana tabacum

    SciTech Connect

    Best, F.M.; Ferrieri, R.; Best, F.M.; Koenig, K.; McDonald, K.; Schueller, M.J.; Rogers, A.; Ferrieri, R.A.

    2011-01-18

    Validamycin A was used to inhibit in vivo trehalase activity in tobacco enabling the study of subsequent changes in new C partitioning into cellulosic biomass and lignin precursors. After 12-h exposure to treatment, plants were pulse labeled using radioactive {sup 11}CO{sub 2}, and the partitioning of isotope was traced into [{sup 11}C]cellulose and [{sup 11}C]hemicellulose, as well as into [{sup 11}C]phenylalanine, the precursor for lignin. Over this time course of treatment, new carbon partitioning into hemicellulose and cellulose was increased, while new carbon partitioning into phenylalanine was decreased. This trend was accompanied by a decrease in phenylalanine ammonia-lyase activity. After 4 d of exposure to validamycin A, we also measured leaf protein content and key C and N metabolite pools. Extended treatment increased foliar cellulose and starch content, decreased sucrose, and total amino acid and nitrate content, and had no effect on total protein.

  7. Development of nonflammable cellulosic foams

    NASA Technical Reports Server (NTRS)

    Luttinger, M.

    1972-01-01

    The development of a moldable cellulosic foam for use in Skylab instrument storage cushions is considered. Requirements include density of 10 lb cu ft or less, minimal friability with normal handling, and nonflammability in an atmosphere of 70 percent oxygen and 30 percent nitrogen at 6.2 psia. A study of halogenated foam components was made, including more highly chlorinated binders, halogen-containing additives, and halogenation of the cellulose. The immediate objective was to reduce the density of the foam through reduction in inorganic phosphate without sacrificing flame-retarding properties of the foams. The use of frothing techniques was investigated, with particular emphasis on a urea-formaldehyde foam. Halogen-containing flame retardants were deemphasized in favor of inorganic salts and the preparation of phosphate and sulphate esters of cellulose. Utilization of foam products for civilian applications was also considered.

  8. Microbial Cellulose Assembly in Microgravity

    NASA Technical Reports Server (NTRS)

    Brown, R. Malcolm, Jr.

    1998-01-01

    Based on evidence indicating a possible correlation between hypo-gravity conditions and alteration of cellulose production by the gram negative bacterium, Acetobacter xylinum, a ground-based study for a possible long term Space Shuttle flight has been conducted. The proposed experiment for A. xylinum aboard the Shuttle is the BRIC (Biological Research in a Canister), a metal container containing spaces for nine Petri plates. Using a common experimental design, the cellulose production capability as well as the survivability of the A. xylinum strains NQ5 and AY201 have been described. It should now be possible to use the BRIC for the first long term microgravity experiments involving the biosynthesis of cellulose.

  9. Degradation of cellulose under alkaline conditions: new insights from a 12 years degradation study.

    PubMed

    Glaus, Martin A; Van Loon, Luc R

    2008-04-15

    Cellulose degradation under alkaline conditions is of relevance to the mobility of many cations of the transition metal, lanthanide, and actinide series in the geosphere because strong complexants such as isosaccharinic acids, 3-deoxy-2-C-hydroxymethyl-D-erythro-pentonic acid (alpha-ISA) and 3-deoxy-2-C-hydroxymethyl-D-threo-pentonic acid (beta-ISA) may be formed. In the context of the long-term safety of cementitious repositories for low- and intermediate-level radioactive waste, where large amounts of cellulose may be present, the question of the time scales needed for the complete degradation of cellulose is important. The present paper reports the results of a 12 year study of the degradation of four different cellulosic materials (pure cellulose, tissue, cotton, paper) in an artificial cement pore water under anaerobic conditions at approximately 25 degrees C. The observed reaction characteristics can be divided into a fast reaction phase (2-3 years), dominated by the stepwise conversion of terminal glucose monomeric units to alpha-ISA and beta-ISA, and a very slow reaction phase during which the same products were found. The slow rate of the alkaline degradation of cellulose during this second reaction phase shows that previous kinetic models of cellulose degradation did not adequately describe the long-term behavior under alkaline conditions and need to be reassessed. It is postulated that a previously unknown mechanism by which crystalline or inaccessible reducing end groups of the polysaccharide chain become temporarily susceptible to alkaline attack is responsible for the slow rate of cellulose degradation. PMID:18497142

  10. A Molecular Description of Cellulose Biosynthesis

    PubMed Central

    McNamara, Joshua T.; Morgan, Jacob L.W.; Zimmer, Jochen

    2016-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed. PMID:26034894

  11. Characterization of Cellulose Synthesis in Plant Cells

    PubMed Central

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  12. Cellulose Modifications and Their Future Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this poster, we will describe the synthesis and structural characterizations of a benzyl-, nitrobenzyl-, and aminobenzyl celluloses. Nitrobenzyl- and aminobenzyl cellulose derivatives are synthesized by etherification process in lithium chloride/N,N-dimethylacetamide homogeneous solution. Nitrobe...

  13. A molecular description of cellulose biosynthesis.

    PubMed

    McNamara, Joshua T; Morgan, Jacob L W; Zimmer, Jochen

    2015-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by which it is synthesized is now only beginning to emerge. On the basis of recent advances in structural and molecular biology on bacterial cellulose synthases, we review emerging concepts of how the enzymes polymerize glucose molecules, how the nascent polymer is transported across the plasma membrane, and how bacterial cellulose biosynthesis is regulated during biofilm formation. Additionally, we review evolutionary commonalities and differences between cellulose synthases that modulate the nature of the cellulose product formed. PMID:26034894

  14. Characterization of Cellulose Synthesis in Plant Cells.

    PubMed

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-Shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  15. Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications.

    PubMed

    Kwak, Moon Hwa; Kim, Ji Eun; Go, Jun; Koh, Eun Kyoung; Song, Sung Hwa; Son, Hong Joo; Kim, Hye Sung; Yun, Young Hyun; Jung, Young Jin; Hwang, Dae Youn

    2015-05-20

    Bacteria cellulose membranes (BCM) are used for wound dressings, bone grafts, tissue engineering, artificial vessels, and dental implants because of their high tensile strength, crystallinity and water holding ability. In this study, the effects of BCM application for 15 days on healing of burn wounds were investigated based on evaluation of skin regeneration and angiogenesis in burn injury skin of Sprague-Dawley (SD) rats. BCM showed a randomly organized fibrils network, 12.13 MPa tensile strength, 12.53% strain, 17.63% crystallinity, 90.2% gel fraction and 112.14 g × m(2)/h highest water vapor transmission rate (WVTR) although their swelling ratio was enhanced to 350% within 24h. In SD rats with burned skin, the skin severity score was lower in the BCM treated group than the gauze (GZ) group at all time points, while the epidermis and dermis thickness and number of blood vessels was greater in the BCM treated group. Furthermore, a significant decrease in the number of infiltrated mast cells and in vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) expression was observed in the BCM treated group at day 10 and 15. Moreover, a significant high level in collagen expression was observed in the BCM treated group at day 5 compared with GZ treated group, while low level was detected in the same group at day 10 and 15. However, the level of metabolic enzymes representing liver and kidney toxicity in the serum of BCM treated rats was maintained at levels consistent with GZ treated rats. Overall, BCM may accelerate the process of wound healing in burn injury skin of SD rats through regulation of angiogenesis and connective tissue formation as well as not induce any specific toxicity against the liver and kidney. PMID:25817683

  16. Phase diagram, solubility limit and hydrodynamic properties of cellulose in binary solvents with ionic liquid.

    PubMed

    Le, Kim Anh; Rudaz, Cyrielle; Budtova, Tatiana

    2014-05-25

    Cellulose solubility phase diagrams in two binary solvents based on 1-ethyl-3-methylimidazolium acetate (EmimAc) mixed with water and with dimethylsulfoxide (DMSO) were built. The minimal amount of EmimAc molecules needed to dissolve cellulose is 2.5-3moles per anhydroglucose unit. This proportion allows calculation of the maximal cellulose concentration soluble in EmimAc-DMSO at any composition; in EmimAc it is around 25-27wt%. Water forms hydrogen bonds with EmimAc and thus competes with cellulose for ionic liquid; the solubility of cellulose in EmimAc-water is much lower than that in EmimAc-DMSO. Hydrodynamic properties of cellulose in two solvent systems were compared. In EmimAc-DMSO cellulose intrinsic viscosity practically does not depend on DMSO content as predicted by the phase diagram. The intrinsic viscosity in EmimAc-water first increases with water content due to cellulose self-aggregation and then abruptly decreases due to coagulation. PMID:24708976

  17. Monitoring of cellulose depolymerization in 1-ethyl-3-methylimidazolium acetate by shear and elongational rheology.

    PubMed

    Michud, Anne; Hummel, Michael; Haward, Simon; Sixta, Herbert

    2015-03-01

    The thermal stability of cellulose in the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate, [emim]OAc was investigated. For this purpose, Eucalyptus urugrandis prehydrolysis kraft pulp was first dissolved in [emim]OAc by means of a vertical kneader and then stored at three different temperatures to study the time-depended behavior of the cellulose-[emim]OAc system. Cellulose depolymerization was assessed by characterizing the precipitated cellulose and the rheological behavior of the cellulose-[emim]OAc solutions. The results show decreases in the weight average molecular mass and in the shear viscosity at temperatures exceeding 60 °C, which can be related to progressing degradation of cellulose in the IL upon storage at elevated temperature. The changes in behavior of the solutions under extensional stresses also attest the gradual depolymerization of cellulose. The degradation has been analyzed using appropriate kinetic models. Propyl gallate appeared to be an efficient stabilizer of the cellulose-[emim]OAc system during the dissolution step even though the mechanism has not been fully understood yet. PMID:25498646

  18. Thermally induced gel from cellulose/NaOH/PEG solution: preparation, characterization and mechanical properties

    NASA Astrophysics Data System (ADS)

    Wan, Caichao; Lu, Yun; Jin, Chunde; Sun, Qingfeng; Li, Jian

    2015-04-01

    In this paper, we reported a thermally induced gel with strong mechanical properties prepared from cellulose/NaOH/PEG aqueous solution following the procedures of dissolution, heating and freeze-drying. The as-prepared gel showed undeveloped networks composed of cross-linked fiber aggregations tightly coated with plenty of NaOH·H2O and PEG-aggregated fine particles, which led to the significant enhancement of thermal stability and the disappearance of the original cellulose crystalline structures. Furthermore, the elastic modulus, yield stress and toughness of the mechanically strong gel were measured to be up to 3,210, 325 kPa and 389 kJ m-3, respectively, comparable to those of cross-linked polymer gel materials with strong mechanical strength such as the microfibrillated cellulose aerogels and the three-dimensional architectures of graphene hydrogels.

  19. Membrane-based recovery of glucose from enzymatic hydrolysis of ionic liquid pretreated cellulose.

    PubMed

    Abels, Christian; Thimm, Kristof; Wulfhorst, Helene; Spiess, Antje Christine; Wessling, Matthias

    2013-12-01

    In this work, a membrane-based downstream process for the recovery of glucose from cellulose hydrolysis is described and evaluated. The cellulose is pretreated with the ionic liquid 1,3-dimethyl-imidazolium dimethylphosphate to reduce its crystallinity. After enzymatic conversion of cellulose to glucose the hydrolysate is filtered with an ultrafiltration membrane to remove residual particulates and enzymes. Nanofiltration is applied to purify the glucose from molecular intermediates, such as cellobiose originating from the hydrolysis reaction. Finally, the ionic liquid is removed from the hydrolysate via electrodialysis. Technically, these process steps are feasible. An economic analysis of the process reveals that the selling price of glucose from this production process is about 2.75 €/kg which is too high as compared to the current market price. PMID:24084205

  20. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding.

    PubMed

    Wan, Caichao; Li, Jian

    2016-10-01

    Hybrid aerogels consisting of graphene oxide (GO) and cellulose were prepared via a solution mixing-regeneration-freeze drying process. The presence of GO affected the micromorphology of the hybrid aerogels, and a self-assembly behavior of cellulose was observed after the incorporation of GO. Moreover, there is no remarkable modification in the crystallinity index and thermal stability after the insertion of GO. After the reduction of GO in the hybrid aerogels by l-ascorbic acid and the subsequent pyrolysis of the aerogels, the resultant displays some interesting characteristics, including good electromagnetic interference (EMI) shielding capacity (SEtotal=58.4dB), high electrical conductivity (19.1Sm(-1)), hydrophobicity, and fire resistance, which provide an opportunity for some advanced applications such as EMI protection, electrochemical devices, water-proofing agents, and fire retardants. Moreover, this work possibly helps to facilitate the development of both cellulose and GO-based materials and expand their application scope. PMID:27312627

  1. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue.

    PubMed

    Mohamad Haafiz, M K; Eichhorn, S J; Hassan, Azman; Jawaid, M

    2013-04-01

    In this work, we successfully isolated microcrystalline cellulose (MCC) from oil palm empty fruit bunch (OPEFB) fiber-total chlorine free (TCF) pulp using acid hydrolysis method. TCF pulp bleaching carried out using an oxygen-ozone-hydrogen peroxide bleaching sequence. Fourier transform infrared (FT-IR) spectroscopy indicates that acid hydrolysis does not affect the chemical structure of the cellulosic fragments. The morphology of the hydrolyzed MCC was investigated using scanning electron microscopy (SEM), showing a compact structure and a rough surface. Furthermore, atomic force microscopy (AFM) image of the surface indicates the presence of spherical features. X-ray diffraction (XRD) shows that the MCC produced is a cellulose-I polymorph, with 87% crystallinity. The MCC obtained from OPEFB-pulp is shown to have a good thermal stability. The potential for a range of applications such as green nano biocomposites reinforced with this form of MCC and pharmaceutical tableting material is discussed. PMID:23499105

  2. Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth.

    PubMed

    Cao, Yang; Jiang, Yaoquan; Song, Yuanyuan; Cao, Shaomei; Miao, Miao; Feng, Xin; Fang, Jianhui; Shi, Liyi

    2015-10-20

    A convenient and low cost process to prepare cellulose nanofibrils (CNF) from waste sackcloth by using H2O2/HNO3 solution as both bleaching agent and hydrolysis medium was recommended. The resultant CNF with high crystallinity was initially synthesized by the chemical disintegration process for the removal of non-cellulosic components and the crystallinity of CNF was 68.11% compared with that of sackcloth fibers (48.28%). The decomposition temperature of CNF was about 340°C, which indicated that the thermal stability of the fibers was increased after the combined bleaching and hydrolysis. Subsequently, the homogenous CNF colloidal suspensions in water, ethanol and acetone were obtained after sonication treatment. The CNF in water suspensions with 20-50nm in width and hundreds of nanometers in length was ultimately prepared under the conditions of different ultrasonic time. PMID:26256171

  3. Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestibility

    PubMed Central

    2013-01-01

    Background The investigation of structural organisation in lignocellulose materials is important to understand changes in cellulase accessibility and reactivity resulting from hydrothermal deconstruction, to allow development of strategies to maximise bioethanol process efficiencies. To achieve progress, wheat straw lignocellulose and comparative model wood cellulose were characterised following increasing severity of hydrothermal treatment. Powder and fibre wide-angle X-ray diffraction techniques were employed (WAXD), complemented by enzyme kinetic measurements up to high conversion. Results Evidence from WAXD indicated that cellulose fibrils are not perfectly crystalline. A reduction in fibril crystallinity occurred due to hydrothermal treatment, although dimensional and orientational data showed that fibril coherency and alignment were largely retained. The hypothetical inter-fibril spacing created by hydrothermal deconstruction of straw was calculated to be insufficient for complete access by cellulases, although total digestion of cellulose in both treated straw and model pulp was observed. Both treated straw and model pulps were subjected to wet mechanical attrition, which caused separation of smaller fibril aggregates and fragments, significantly increasing enzyme hydrolysis rate. No evidence from WAXD measurements was found for preferential hydrolysis of non-crystalline cellulose at intermediate extent of digestion, for both wood pulp and hydrothermally treated straw. Conclusions The increased efficiency of enzyme digestion of cellulose in the lignocellulosic cell wall following hydrothermal treatment is a consequence of the improved fibril accessibility due to the loss of hemicellulose and disruption of lignin. However, incomplete accessibility of cellulase at the internal surfaces of fibrillar aggregates implies that etching type mechanisms will be important in achieving complete hydrolysis. The reduction in crystalline perfection following hydrothermal

  4. Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family.

    PubMed

    Morgenstern, Ingo; Powlowski, Justin; Tsang, Adrian

    2014-11-01

    Our understanding of fungal cellulose degradation has shifted dramatically in the past few years with the characterization of a new class of secreted enzymes, the lytic polysaccharide monooxygenases (LPMO). After a period of intense research covering structural, biochemical, theoretical and evolutionary aspects, we have a picture of them as wedge-like copper-dependent metalloenzymes that on reduction generate a radical copper-oxyl species, which cleaves mainly crystalline cellulose. The main biological function lies in the synergism of fungal LPMOs with canonical hydrolytic cellulases in achieving efficient cellulose degradation. Their important role in cellulose degradation is highlighted by the wide distribution and often numerous occurrences in the genomes of almost all plant cell-wall degrading fungi. In this review, we provide an overview of the latest achievements in LPMO research and consider the open questions and challenges that undoubtedly will continue to stimulate interest in this new and exciting group of enzymes. PMID:25217478

  5. Fungal cellulose degradation by oxidative enzymes: from dysfunctional GH61 family to powerful lytic polysaccharide monooxygenase family

    PubMed Central

    Powlowski, Justin; Tsang, Adrian

    2014-01-01

    Our understanding of fungal cellulose degradation has shifted dramatically in the past few years with the characterization of a new class of secreted enzymes, the lytic polysaccharide monooxygenases (LPMO). After a period of intense research covering structural, biochemical, theoretical and evolutionary aspects, we have a picture of them as wedge-like copper-dependent metalloenzymes that on reduction generate a radical copper-oxyl species, which cleaves mainly crystalline cellulose. The main biological function lies in the synergism of fungal LPMOs with canonical hydrolytic cellulases in achieving efficient cellulose degradation. Their important role in cellulose degradation is highlighted by the wide distribution and often numerous occurrences in the genomes of almost all plant cell-wall degrading fungi. In this review, we provide an overview of the latest achievements in LPMO research and consider the open questions and challenges that undoubtedly will continue to stimulate interest in this new and exciting group of enzymes. PMID:25217478

  6. Arabidopsis thaliana KORRIGAN1 protein: N-glycan modification, localization, and function in cellulose biosynthesis and osmotic stress responses.

    PubMed

    von Schaewen, Antje; Rips, Stephan; Jeong, In Sil; Koiwa, Hisashi

    2015-01-01

    Plant cellulose biosynthesis is a complex process involving cellulose-synthase complexes (CSCs) and various auxiliary factors essential for proper orientation and crystallinity of cellulose microfibrils in the apoplast. Among them is KORRIGAN1 (KOR1), a type-II membrane protein with multiple N-glycans within its C-terminal cellulase domain. N-glycosylation of the cellulase domain was important for KOR1 targeting to and retention within the trans-Golgi network (TGN), and prevented accumulation of KOR1 at tonoplasts. The degree of successful TGN localization of KOR1 agreed well with in vivo-complementation efficacy of the rsw2-1 mutant, suggesting non-catalytic functions in the TGN. A dynamic interaction network involving microtubules, CSCs, KOR1, and currently unidentified glycoprotein component(s) likely determines stress-triggered re-organization of cellulose biosynthesis and resumption of cell-wall growth under stress. PMID:26039485

  7. Arabidopsis thaliana KORRIGAN1 protein: N-glycan modification, localization, and function in cellulose biosynthesis and osmotic stress responses

    PubMed Central

    von Schaewen, Antje; Rips, Stephan; Jeong, In Sil; Koiwa, Hisashi

    2015-01-01

    Plant cellulose biosynthesis is a complex process involving cellulose-synthase complexes (CSCs) and various auxiliary factors essential for proper orientation and crystallinity of cellulose microfibrils in the apoplast. Among them is KORRIGAN1 (KOR1), a type-II membrane protein with multiple N-glycans within its C-terminal cellulase domain. N-glycosylation of the cellulase domain was important for KOR1 targeting to and retention within the trans-Golgi network (TGN), and prevented accumulation of KOR1 at tonoplasts. The degree of successful TGN localization of KOR1 agreed well with in vivo-complementation efficacy of the rsw2–1 mutant, suggesting non-catalytic functions in the TGN. A dynamic interaction network involving microtubules, CSCs, KOR1, and currently unidentified glycoprotein component(s) likely determines stress-triggered re-organization of cellulose biosynthesis and resumption of cell-wall growth under stress. PMID:26039485

  8. A novel non-hydrolytic protein from Pseudomonas oryzihabitans enhances the enzymatic hydrolysis of cellulose.

    PubMed

    Qin, Yi-Min; Tao, Heng; Liu, You-Yan; Wang, Yan-Dong; Zhang, Jing-Ru; Tang, Ai-Xing

    2013-10-10

    Several kinds of protein such as the expansin, expansin-like proteins and LPMOs (lytic polysaccharide monooxygenases) are known to exert enhancement effects on cellulase activity. In this study, a novel cellulase synergistic protein named POEP1 was purified from the culture filtrate of Pseudomonas oryzihabitans CGMCC 6169, and was homogeneous on SDS-PAGE with a molecular weight of 60kDa. Mass spectrometry analysis indicated that it was an unknown protein without sequence similarity to the expansin and expansin-like proteins. Evaluation of the enzymatic hydrolysis of filter paper revealed that POEP1 had no cellulase activity but displayed high synergistic activity of 364% at a cellulase concentration of 0.1FPU/g of filter paper. When a mixture containing 0.6FPU cellulase and 700μg POEP1 per g of cellulose was evaluated, the maximal sugar yield was achieved, which was 2.2-fold greater than that with the cellulase alone. POEP1 was found to have functional similarity to the expansin and expansin-like proteins, which could decrease both the hydrogen-bond intensity and crystallinity, and cause the filter paper disruption. This study provided evidence for the existence of novel bacterial proteins in nature serving the same function as expansin and expansin-like proteins. PMID:23916949

  9. Effects of ethyl cellulose on the crystallization and mechanical properties of poly(β-hydroxybutyrate).

    PubMed

    Chen, Jianxiang; Wu, Defeng; Pan, Keren

    2016-07-01

    Ethyl cellulose (EC) was blended with poly(β-hydroxybutyrate) (PHB), aiming at controlling crystallization and mechanical properties of PHB. The obtained PHB/EC blend is an immiscible system, and the discrete EC phase behaves dual characteristics in the PHB matrix, as the viscoelastic droplets during processing, and as the rigid filler particles during shear flow. This is confirmed by the rheological tests. The presence of EC domains acts as the tackifier, sharply increasing system viscosity from 1000Pas to 5000Pas, and as a result, has large influence on the spherulite morphology of PHB and its crystallization kinetics. The PHB spherulite growth rate reduces in the presence of inert EC, accompanied by decreased degree of crystallinity and reduced lamella defects. These affect the mechanical properties of PHB strongly, together with reinforcing effect of EC itself. At the lower content level, EC can act as both reinforcement and toughener. The presence of 1wt% EC enhances the tensile strength of PHB by about 22%, from 27.5MPa to 33.3MPa, accompanied by 15% increase of impact strength. This work provide an easy way to control the structure and properties of PHB using EC. PMID:27017982

  10. Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells.

    PubMed

    Cacicedo, Maximiliano L; León, Ignacio E; Gonzalez, Jimena S; Porto, Luismar M; Alvarez, Vera A; Castro, Guillermo R

    2016-04-01

    Bacterial cellulose (BC) films modified by the in situ method with the addition of alginate (Alg) during the microbial cultivation of Gluconacetobacter hansenii under static conditions increased the loading of doxorubicin by at least three times. Biophysical analysis of BC-Alg films by scanning electron microscopy, thermogravimetry, X-ray diffraction and FTIR showed a highly homogeneous interpenetrated network scaffold without changes in the BC crystalline structure but with an increased amorphous phase. The main molecular interactions determined by FTIR between both biopolymers clearly suggest high compatibility. These results indicate that alginate plays a key role in the biophysical properties of the hybrid BC matrix. BC-Alg scaffold analysis by nitrogen adsorption isotherms revealed by the Brunauer-Emmett-Teller (BET) method an increase in surface area of about 84% and in pore volume of more than 200%. The Barrett-Joyner-Halenda (BJH) model also showed an increase of about 25% in the pore size compared to the BC film. Loading BC-Alg scaffolds with different amounts of doxorubicin decreased the cell viability of HT-29 human colorectal adenocarcinoma cell line compared to the free Dox from around 95-53% after 24h and from 63% to 37% after 48 h. Dox kinetic release from the BC-Alg nanocomposite displayed hyperbolic curves related to the different amounts of drug payload and was stable for at least 14 days. The results of the BC-Alg nanocomposites show a promissory potential for anticancer therapies of solid tumors. PMID:26784658

  11. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  12. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  13. 21 CFR 573.420 - Ethyl cellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  14. Iodine catalyzed acetylation of starch and cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch and cellulose, earth's most abundant biopolymers, are of tremendous economic importance. Over 90% of cotton and 50% of wood are made of cellulose. Wood and cotton are the major resources for all cellulose products such as paper, textiles, construction materials, cardboard, as well as such c...

  15. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  16. Microbial Cellulose Utilization: Fundamentals and Biotechnology

    PubMed Central

    Lynd, Lee R.; Weimer, Paul J.; van Zyl, Willem H.; Pretorius, Isak S.

    2002-01-01

    Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for “consolidated bioprocessing” (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts. PMID:12209002

  17. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    PubMed Central

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  18. Photorefractivity in liquid crystalline composite materials

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R.

    1997-09-01

    We report recent improvements in the photorefractive of liquid crystalline thin film composites containing electron donor and acceptor molecules. The improvements primarily result from optimization of the exothermicity of the intermolecular charge transfer reaction and improvement of the diffusion characteristics of the photogenerated ions. Intramolecular charge transfer dopants produce greater photorefractivity and a 10-fold decrease in the concentration of absorbing chromophores. The mechanism for the generation of mobile ions is discussed.

  19. A green and efficient technology for the degradation of cellulosic materials: structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt.

    PubMed

    Zhang, Yanjuan; Li, Qian; Su, Jianmei; Lin, Ye; Huang, Zuqiang; Lu, Yinghua; Sun, Guosong; Yang, Mei; Huang, Aimin; Hu, Huayu; Zhu, Yuanqin

    2015-02-01

    A new technology for the pretreatment of natural cellulose was developed, which combined mechanical activation (MA) and metal salt treatments in a stirring ball mill. Different valent metal nitrates were used to investigate the changes in degree of polymerization (DP) and crystallinity index (CrI) of cellulose after MA+metal salt (MAMS) pretreatment, and Al(NO3)3 showed better pretreatment effect than NaNO3 and Zn(NO3)2. The destruction of morphological structure of cellulose was mainly resulted from intense ball milling, and the comparative studies on the changes of DP and crystal structure of MA and MA+Al(NO3)3 pretreated cellulose samples showed a synergistic interaction of MA and Al(NO3)3 treatments with more effective changes of structural characteristics of MA+Al(NO3)3 pretreated cellulose and substantial increase of reducing sugar yield in enzymatic hydrolysis of cellulose. In addition, the results indicated that the presence of Al(NO3)3 had significant enhancement for the enzymatic hydrolysis of cellulose. PMID:25490099

  20. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations.

    PubMed

    Oehme, Daniel P; Downton, Matthew T; Doblin, Monika S; Wagner, John; Gidley, Michael J; Bacic, Antony

    2015-05-01

    The question of how many chains an elementary cellulose microfibril contains is critical to understanding the molecular mechanism(s) of cellulose biosynthesis and regulation. Given the hexagonal nature of the cellulose synthase rosette, it is assumed that the number of chains must be a multiple of six. We present molecular dynamics simulations on three different models of Iβ cellulose microfibrils, 18, 24, and 36 chains, to investigate their structure and dynamics in a hydrated environment. The 36-chain model stays in a conformational space that is very similar to the initial crystalline phase, while the 18- and 24-chain models sample a conformational space different from the crystalline structure yet similar to conformations observed in recent high-temperature molecular dynamics simulations. Major differences in the conformations sampled between the different models result from changes to the tilt of chains in different layers, specifically a second stage of tilt, increased rotation about the O2-C2 dihedral, and a greater sampling of non-TG exocyclic conformations, particularly the GG conformation in center layers and GT conformation in solvent-exposed exocyclic groups. With a reinterpretation of nuclear magnetic resonance data, specifically for contributions made to the C6 peak, data from the simulations suggest that the 18- and 24-chain structures are more viable models for an elementary cellulose microfibril, which also correlates with recent scattering and diffraction experimental data. These data inform biochemical and molecular studies that must explain how a six-particle cellulose synthase complex rosette synthesizes microfibrils likely comprised of either 18 or 24 chains. PMID:25786828

  1. Role of four major cellulases in triggering of cellulase gene expression by cellulose in Trichoderma reesei.

    PubMed Central

    Seiboth, B; Hakola, S; Mach, R L; Suominen, P L; Kubicek, C P

    1997-01-01

    The relative contributions of four major cellulases of Trichoderma reesei (1,4-beta-D-glucan cellobiohydrolase I [CBH I], CBH II, endo-1,4-beta-D-glucanase I [EG I], and EG II) to the generation of the cellulase inducer from cellulose were studied with isogenic strains in which the corresponding genes (cbh1, cbh2, egl1, and egl2) had been deleted by insertion of the Aspergillus nidulans amdS marker gene. During growth on lactose (a soluble carbon source provoking cellulase gene expression), these strains showed no significant alterations in their ability to express the respective other cellulase genes, with the exception of the strain containing delta cbh1, which exhibited an increased steady-state level of cbh2 mRNA. On crystalline cellulose as the only carbon source, however, significant differences were apparent: strains in which cbh2 and egl2, respectively, had been deleted showed no expression of the other cellulase genes, whereas strains carrying the cbh1 or egl1 deletion showed these transcripts. The delta cbh1-containing strain also showed enhanced cbh2 mRNA levels under these conditions. A strain in which both cbh1 and cbh2 had been deleted, however, was unable to initiate growth on cellulose. Addition of 2 mM sophorose, a putative inducer of cellulase gene expression, to such cultures induced the transcription of egl1 and egl2 and restored the ability to grow on cellulose. We conclude that CBH II and EG II are of major importance for the efficient formation of the inducer from cellulose in T. reesei and that removal of both cellobiohydrolases renders T. reesei unable to attack crystalline cellulose. PMID:9286982

  2. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments.

    PubMed

    Tian, Cuihua; Yi, Jianan; Wu, Yiqiang; Wu, Qinglin; Qing, Yan; Wang, Lijun

    2016-01-20

    Cellulose nanofibrils (CNFs) are attracting much attention for the advantages of excellent mechanical strength, good optical transparency, and high surface area. An eco-friendly and energy-saving method was created in this work to produce highly negative charged CNFs using high-pressure mechanical defibrillation coupled with strong acid hydrolysis pretreatments. The morphological development, zeta potential, crystal structure, chemical composition and thermal degradation behavior of the resultant materials were evaluated by transmission electron microscopy (TEM), zeta potential analysis, X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and thermogravimetric analysis (TGA). These CNFs were fully separated, surface-charged, and highly entangled. They showed a large fiber aspect ratio compared to traditional cellulose nanocrystrals that are produced by strong acid hydrolysis. Compared to hydrochloric acid hydrolysis, the CNFs produced by sulfuric acid pretreatments were completely defibrillated and presented stable suspensions (or gels) even at low fiber content. On the other hand, CNFs pretreated by hydrochloric acid hydrolysis trended to aggregate because of the absence of surface charge. The crystallinity index (CI) of CNFs decreased because of mechanical defibrillation, and then increased dramatically with increased sulfuric acid concentration and reaction time. FTIR analysis showed that the C-O-SO3 group was introduced on the surfaces of CNFs during sulfuric acid hydrolysis. These sulfate groups accelerated the thermal degradation of CNFs, which occurred at lower temperature than wood pulp, indicating that the thermal stability of sulfuric acid hydrolyzed CNFs was decreased. The temperature of the maximum decomposition rate (Tmax) and the maximum weight-loss rates (MWLRmax) were much lower than for wood pulp because of the retardant effect of sulfuric acid during the combustion of CNFs. By contrast, the CNFs treated with hydrochloric acid

  3. Solar assisted alkali pretreatment of garden biomass: Effects on lignocellulose degradation, enzymatic hydrolysis, crystallinity and ultra-structural changes in lignocellulose.

    PubMed

    Gabhane, Jagdish; William, S P M Prince; Vaidya, Atul N; Das, Sera; Wate, Satish R

    2015-06-01

    A comprehensive study was carried out to assess the effectiveness of solar assisted alkali pretreatment (SAAP) on garden biomass (GB). The pretreatment efficiency was assessed based on lignocellulose degradation, conversion of cellulose into reducing sugars, changes in the ultra-structure and functional groups of lignocellulose and impact on the crystallinity of cellulose, etc. SAAP was found to be efficient for the removal of lignin and hemicellulose that facilitated enzymatic hydrolysis of cellulose. FTIR and XRD studies provided details on the effectiveness of SAAP on lignocellulosic moiety and crystallinity of cellulose. Scanning electron microscopic analysis showed ultra-structural disturbances in the microfibrils of GB as a result of pretreatment. The mass balance closer of 97.87% after pretreatment confirmed the reliability of SAAP pretreatment. Based on the results, it is concluded that SAAP is not only an efficient means of pretreatment but also economical as it involved no energy expenditure for heat generation during pretreatment. PMID:25816769

  4. Radiolysis of crystalline nickel oxalates

    NASA Astrophysics Data System (ADS)

    Basahel, S. N.; Diefallah, El-H. M.; El-Fass, M. M.; Al-Sabban, E. A.

    Radiolysis of crystalline K 2Ni(C 2O 4) 2);6H 2O, K 2Ni(C 2O 4) 2 and Ni(C 2O 4));2H 2O has been investigated. The results showed that in K 2Ni(C 2O 4) 2);6H 2O, the initial G(Ni 3+) has a value of 3.75 and drops to about 1.27 when the dose approaches 1.2 × 10 22 eV g -1. The decrease in G(Ni 3+) with increasing radiation dose is accompanied with an increase in G(Ni 2+). In the irradiated anhydrated complex, the results however show an increase in G(Ni 3+) and a decrease in G(Ni 2+) with increasing radiation dose. The radiolysis of Ni(C 2O 4)·2H 2O showed an increase in G(Ni 3+) with increasing radiation dose. A mechanism has been suggested to explain the observed results.

  5. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems

    PubMed Central

    López-Mondéjar, Rubén; Zühlke, Daniela; Becher, Dörte; Riedel, Katharina; Baldrian, Petr

    2016-01-01

    Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, β-glucosidases, endoxylanases, β-xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides. PMID:27125755

  6. Theoretical Insights into the Role of Water in the Dissolution of Cellulose Using IL/Water Mixed Solvent Systems.

    PubMed

    Parthasarathi, Ramakrishnan; Balamurugan, Kanagasabai; Shi, Jian; Subramanian, Venkatesan; Simmons, Blake A; Singh, Seema

    2015-11-12

    The use of certain ionic liquids (ILs) as pretreatment solvents for lignocellulosic biomass has gained great interest in recent years due to the IL's capacity for efficient cellulose dissolution in aqueous solution as compared to other common pretreatment techniques. A fundamental understanding on how these ILs in aqueous environments act on cellulose, particularly at lower IL concentrations with water as a cosolvent, is essential for optimizing pretreatment efficiency, lowering pretreatment cost, and improving IL recyclability. The IL 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) is one of the most efficient cellulose solvents known, greatly altering cellulose structure for improved enzymatic saccharification. To understand the role of water as a cosolvent with [C2C1Im][OAc], we investigated the dissolution mechanism of microcrystalline cellulose, type Iβ, in different [C2C1Im][OAc]:water ratios at room (300 K) and pretreatment (433 K) temperatures using all atom molecular dynamics (MD) simulations. These simulations show that 80:20 ratios of [C2C1Im][OAc]:water should be considered as "the tipping point" above which [C2C1Im][OAc]:water mixtures are equally effective on decrystallization of cellulose by disrupting the interchain hydrogen bonding interactions. Simulations also reveal that the resulting decrystallized cellulose from 100% [C2C1Im][OAc] begins to repack in the presence of water but into a less crystalline, or more amorphous, form. PMID:26407132

  7. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems

    NASA Astrophysics Data System (ADS)

    López-Mondéjar, Rubén; Zühlke, Daniela; Becher, Dörte; Riedel, Katharina; Baldrian, Petr

    2016-04-01

    Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, β-glucosidases, endoxylanases, β-xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides.

  8. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems.

    PubMed

    López-Mondéjar, Rubén; Zühlke, Daniela; Becher, Dörte; Riedel, Katharina; Baldrian, Petr

    2016-01-01

    Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, β-glucosidases, endoxylanases, β-xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides. PMID:27125755

  9. Purification of aqueous cellulose ethers

    SciTech Connect

    Bartscherer, K.A.; de Pablo, J.J.; Bonnin, M.C.; Prausnitz, J.M.

    1990-07-01

    Manufacture of cellulose ethers usually involves high amounts of salt by-products. For application of the product, salt must be removed. In this work, we have studied the injection of high-pressure CO{sub 2} into an aqueous polymer-salt solution; we find that upon addition of isopropanol in addition to CO{sub 2}, the solution separates into two phases. One phase is rich in polymer and water, and the other phase contains mostly isopropanol, water and CO{sub 2}. The salt distributes between the two phases, thereby offering interesting possibilities for development of a new purification process for water-soluble polymers. This work presents experimental phase-equilibrium data for hydroxyethyl cellulose and sodium carboxymethyl cellulose with sodium acetate and potassium sulfate, respectively, in the region 40{degree}C and 30 to 80 bar. Based on these data, we suggest a process for the manufacture and purification of water-soluble cellulose ethers. 15 refs., 14 figs., 9 tabs.

  10. Preliminary modulus calculations for cellulose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Young's modulus is a measure of the inherent stiffness of an elastic material. In the case of cellulose, it quantifies the ability of the material to undergo changes in length as tension or compression forces are applied. The modulus can be calculated by performing tensile tests on cotton fiber...

  11. Production of Bacterial Cellulose from Alternate Feedstocks

    SciTech Connect

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  12. Production of bacterial cellulose from alternate feedstocks

    SciTech Connect

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  13. A morpholinium ionic liquid for cellulose dissolution.

    PubMed

    Raut, Dilip G; Sundman, Ola; Su, Weiqing; Virtanen, Pasi; Sugano, Yasuhito; Kordas, Krisztian; Mikkola, Jyri-Pekka

    2015-10-01

    A series of substituted morpholinium ionic salts and allyl ammonium acetates were prepared. Amongst those, N-allyl-N-methylmorpholinium acetate ([AMMorp][OAc]) was found to dissolve cellulose readily without any pre-processing of native cellulose. At 120°C, [AMMorp][OAc] could dissolve 30 wt%, 28 wt% and 25 wt% of cellulose with degree of polymerization (DPn) - 789, 1644 and 2082 respectively, in 20 min. Importantly, SEC analysis indicated that no discernible changes occurred in terms of the degree of polymerization of the different celluloses after regeneration. Furthermore, when comparing the cellulose dissolution capability of these newly synthesized ionic liquids, it is evident that the combination of all three constituents - the morpholinium cation, the existence of an allyl group and choosing the acetate anion are essential for efficient cellulose dissolution. The structure and morphology of the regenerated cellulosic materials were characterized by SEM, XRD, TGA, CP/MAS (13)C NMR and FTIR, respectively. PMID:26076596

  14. Cellulose nanomaterials in water treatment technologies.

    PubMed

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  15. Cellulose nanocrystals: synthesis, functional properties, and applications.

    PubMed

    George, Johnsy; Sabapathi, S N

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  16. Cellulose Nanomaterials in Water Treatment Technologies

    PubMed Central

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  17. Cellulose nanocrystals: synthesis, functional properties, and applications

    PubMed Central

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  18. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier.

    PubMed

    Wang, Wei; Zhou, Weibiao

    2015-02-01

    This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying. PMID:25172729

  19. Liquid Crystalline Microemulsions

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yueh; Petschek, Rolfe G.

    2000-03-01

    If an isotropic component of an emulsion is replaced by one having liquid crystalline (e.g. nematic) order the equilibrium behavior can change dramatically. There are long range enthalpic effects which can result in either repulsive or attractive interactions between the surfaces of an emulsion and entropic effects which generally result in an attractive interaction between these surfaces. We review briefly the possibility of stable blue-phase like microemulsions in mixtures of chiral nematics, appropriate surfactants and an incompatible isotropic solvent. We discuss the entropic effects in a lamellar phase, including the effects of changes in elastic constants and surface-nematic coupling. The effects of fluctuations on blue phases will be briefly discussed.

  20. Liquid crystalline polymers

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The remarkable mechanical properties and thermal stability of fibers fabricated from liquid crystalline polymers (LCPs) have led to the use of these materials in structural applications where weight savings are critical. Advances in processing of LCPs could permit the incorporation of these polymers into other than uniaxial designs and extend their utility into new areas such as nonlinear optical devices. However, the unique feature of LCPs (intrinsic orientation order) is itself problematic, and current understanding of processing with control of orientation falls short of allowing manipulation of macroscopic orientation (except for the case of uniaxial fibers). The current and desirable characteristics of LCPs are reviewed and specific problems are identified along with issues that must be addressed so that advances in the use of these unique polymers can be expedited.

  1. Nanocomposites with Crystalline Polymers

    NASA Astrophysics Data System (ADS)

    Kumar, Sanat

    2015-03-01

    The creation of ordered (layered) biomimetic materials typically follows a series of steps: first mix nanoparticles with water, organize the NPs by ice templating, evaporate the ice and then back fill with metal or polymer. We propose a simple method exploiting the in situ self-assembly of a crystalline polymer in the presence of nanoparticles to facilitate this process, and provide a completely new pathway for the synthesis of biomimetic materials. A suite of complementary experimental tools are used in this analysis. In parallel, we are developing theoretical tools to a priori predict the morphologies adopted by semicrystalline polymers. The convergence of these novel experimental and theoretical developments in the venerable field of semicrystalline polymers could lead to new applications for this largest class of commercially relevant polymeric materials. With Jacques Jestin, Brian Benicewicz, Dan Zhao, Longxi Zhao

  2. Single crystalline magnetite nanotubes.

    PubMed

    Liu, Zuqin; Zhang, Daihua; Han, Song; Li, Chao; Lei, Bo; Lu, Weigang; Fang, Jiye; Zhou, Chongwu

    2005-01-12

    We descried a method to synthesize single crystalline Fe3O4 nanotubes by wet-etching the MgO inner cores of MgO/Fe3O4 core-shell nanowires. Homogeneous Fe3O4 nanotubes with controllable length, diameter, and wall thickness have been obtained. Resistivity of the Fe3O4 nanotubes was estimated to be approximately 4 x 10-2 Omega cm at room temperature. Magnetoresistance of approximately 1% was observed at T = 77 K when a magnetic field of B = 0.7 T was applied. The synthetic strategy presented here may be extended to a variety of materials such as YBCO, PZT, and LCMO which should provide ideal candidates for fundamental studies of superconductivity, piezoelectricity, and ferromagnetism in nanoscale structures. PMID:15631421

  3. Synthesis of Hierarchical Titanium Carbide from Titania-Coated Cellulose Paper

    SciTech Connect

    Shin, Yongsoon; Li, Xiaohong S.; Wang, Chongmin; Coleman, James E.; Exarhos, Gregory J.

    2004-07-19

    An aqueous-based, inexpensive, TiO2 precursor, Tyzor-LA, and cellulose paper have been used to prepare TiC via carbothermal reduction in an Ar flow. The hierarchical cellulose structures were also completely maintained through the agglomeration of 10-50nm TiC nanoparticles, and the lattice parameter of TiC increased with the increase of reaction temperature, while the oxygen content in the sample decreased (0.24wt% at 1500 C).

  4. The effect of fire retardants on the fire response characteristics of cellulosic materials

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brauer, D. P.

    1978-01-01

    The resistance to ignition of fire retardant-treated wood, cotton, and cellulose insulation was studied. The proprietary composition used to treat wood was found to increase resistance to ignition and to reduce smoke toxicity. Cotton treated with boric acid (added by padding on or by vapor phase process) was found to have increased resistance to ignition and decreased smoke toxicity. Boric acid increased the resistance of cellulose insulation to ignition but also slightly increased the smoke toxicity.

  5. Mimicking the Humidity Response of the Plant Cell Wall by Using Two-Dimensional Systems: The Critical Role of Amorphous and Crystalline Polysaccharides.

    PubMed

    Niinivaara, Elina; Faustini, Marco; Tammelin, Tekla; Kontturi, Eero

    2016-03-01

    Of the composite materials occurring in nature, the plant cell wall is among the most intricate, consisting of a complex arrangement of semicrystalline cellulose microfibrils in a dissipative matrix of lignin and hemicelluloses. Here, a biomimetic, two-dimensional cellulose system of the cell wall structure is introduced where cellulose nanocrystals compose the crystalline portion and regenerated amorphous cellulose composes the dissipative matrix. Spectroscopic ellipsometry and QCM-D are used to study the water vapor uptake of several two-layer systems. Quantitative analysis shows that the vapor-induced swelling of these ultrathin films can be controlled by varying ratios of the chemically identical ordered and unordered cellulose components. Intriguingly, increasing the share of crystalline cellulose appeared to increase the vapor uptake but only in cases for which the interfacial area between the crystalline and amorphous area was relatively large and the thickness of an amorphous overlayer was relatively small. The results show that a biomimetic approach may occasionally provide answers as to why certain native structures exist. PMID:26829372

  6. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes

    SciTech Connect

    Chauvigne-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-12-19

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic cellulose degrading systems, and facilitates a greater understanding of the organismal role associated within biofuel development.

  7. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation

    SciTech Connect

    Xiong, Yi; Coradetti, Samuel T.; Li, Xin; Gritsenko, Marina A.; Clauss, Therese; Petyuk, Vlad; Camp, David; Smith, Richard; Cate, Jamie H. D.; Yang, Feng; Glass, N. Louise

    2014-05-29

    Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ) -based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggests that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium versus sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Finally, we found mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi.

  8. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation

    DOE PAGESBeta

    Xiong, Yi; Coradetti, Samuel T.; Li, Xin; Gritsenko, Marina A.; Clauss, Therese; Petyuk, Vlad; Camp, David; Smith, Richard; Cate, Jamie H. D.; Yang, Feng; et al

    2014-05-29

    Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ) -based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggestsmore » that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium versus sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Finally, we found mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi.« less

  9. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation

    SciTech Connect

    Xiong, Yi; Coradetti, Samuel T.; Li, Xin; Gritsenko, Marina A.; Clauss, Therese RW; Petyuk, Vladislav A.; Camp, David G.; Smith, Richard D.; Cate, Jamie H.; Yang, Feng; Glass, Louise

    2014-11-01

    Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ) -based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggests that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium versus sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi.

  10. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation.

    PubMed

    Xiong, Yi; Coradetti, Samuel T; Li, Xin; Gritsenko, Marina A; Clauss, Therese; Petyuk, Vlad; Camp, David; Smith, Richard; Cate, Jamie H D; Yang, Feng; Glass, N Louise

    2014-11-01

    Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ)-based LC-MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggests that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium vs sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi. PMID:24881580

  11. A Suite of Activity-Based Probes for Cellulose Degrading Enzymes

    PubMed Central

    Chauvigné-Hines, Lacie M.; Anderson, Lindsey N.; Weaver, Holly M.; Brown, Joseph N.; Koech, Phillip K.; Nicora, Carrie D.; Hofstad, Beth A.; Smith, Richard D.; Wilkins, Michael J.; Callister, Stephen J.; Wright, Aaron T.

    2012-01-01

    Microbial glycoside hydrolases play a dominant role in the biochemical conversion of cellulosic biomass to high-value biofuels. Anaerobic cellulolytic bacteria are capable of producing multicomplex catalytic subunits containing cell-adherent cellulases, hemicellulases, xylanases, and other glycoside hydrolases to facilitate the degradation of highly recalcitrant cellulose and other related plant cell wall polysaccharides. Clostridium thermocellum is a cellulosome producing bacterium that couples rapid reproduction rates to highly efficient degradation of crystalline cellulose. Herein, we have developed and applied a suite of difluoromethylphenyl aglycone, N-halogenated glycosylamine, and 2-deoxy-2-fluoroglycoside activity-based protein profiling (ABPP) probes to the direct labeling of the C. thermocellum cellulosomal secretome. These activity-based probes (ABPs) were synthesized with alkynes to harness the utility and multimodal possibilities of click chemistry, and to increase enzyme active site inclusion for LC-MS analysis. We directly analyzed ABP-labeled and unlabeled global MS data, revealing ABP selectivity for glycoside hydrolase (GH) enzymes, in addition to a large collection of integral cellulosome-containing proteins. By identifying reactivity and selectivity profiles for each ABP, we demonstrate our ability to widely profile the functional cellulose degrading machinery of the bacterium. Derivatization of the ABPs, including reactive groups, acetylation of the glycoside binding groups, and mono- and disaccharide binding groups, resulted in considerable variability in protein labeling. Our probe suite is applicable to aerobic and anaerobic microbial cellulose degrading systems, and facilitates a greater understanding of the organismal role associated with biofuel development. PMID:23176123

  12. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers’ tricks

    PubMed Central

    Mazzoli, Roberto

    2012-01-01

    Cellulose waste biomass is the most abundant and attractive substrate for “biorefinery strategies” that are aimed to produce high-value products (e.g. solvents, fuels, building blocks) by economically and environmentally sustainable fermentation processes. However, cellulose is highly recalcitrant to biodegradation and its conversion by biotechnological strategies currently requires economically inefficient multistep industrial processes. The need for dedicated cellulase production continues to be a major constraint to cost-effective processing of cellulosic biomass. Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step biomass fermentation (consolidated bioprocessing, CBP). Two paradigms have been applied for such, so far unsuccessful, attempts: a) “native cellulolytic strategies”, aimed at conferring high-value product properties to natural cellulolytic microorganisms; b) “recombinant cellulolytic strategies”, aimed to confer cellulolytic ability to microorganisms exhibiting high product yields and titers. By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen) biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes) benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose) with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms. PMID:24688667

  13. The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation

    PubMed Central

    Xiong, Yi; Coradetti, Samuel T.; Li, Xin; Gritsenko, Marina A.; Clauss, Therese; Petyuk, Vlad; Camp, David; Smith, Richard; Cate, Jamie H.D.; Yang, Feng; Glass, N. Louise

    2014-01-01

    Improving cellulolytic enzyme production by plant biomass degrading fungi holds great potential in reducing costs associated with production of next-generation biofuels generated from lignocellulose. How fungi sense cellulosic materials and respond by secreting enzymes has mainly been examined by assessing function of transcriptional regulators and via transcriptional profiling. Here, we obtained global proteomic and phosphoproteomic profiles of the plant biomass degrading filamentous fungus Neurospora crassa grown on different carbon sources, i.e. sucrose, no carbon, and cellulose, by performing isobaric tags for relative and absolute quantification (iTRAQ)-based LC–MS/MS analyses. A comparison between proteomes and transcriptomes under identical carbon conditions suggests that extensive post-transcriptional regulation occurs in N. crassa in response to exposure to cellulosic material. Several hundred amino acid residues with differential phosphorylation levels on crystalline cellulose (Avicel) or carbon-free medium vs sucrose medium were identified, including phosphorylation sites in a major transcriptional activator for cellulase genes, CLR1, as well as a cellobionic acid transporter, CBT1. Mutation of phosphorylation sites on CLR1 did not have a major effect on transactivation of cellulase production, while mutation of phosphorylation sites in CBT1 increased its transporting capacity. Our data provides rich information at both the protein and phosphorylation levels of the early cellular responses to carbon starvation and cellulosic induction and aids in a greater understanding of the underlying post-transcriptional regulatory mechanisms in filamentous fungi. PMID:24881580

  14. Bacterial Cellulose-Binding Domain Modulates in Vitro Elongation of Different Plant Cells1

    PubMed Central

    Shpigel, Etai; Roiz, Levava; Goren, Raphael; Shoseyov, Oded

    1998-01-01

    Recombinant cellulose-binding domain (CBD) derived from the cellulolytic bacterium Clostridium cellulovorans was found to modulate the elongation of different plant cells in vitro. In peach (Prunus persica L.) pollen tubes, maximum elongation was observed at 50 μg mL−1 CBD. Pollen tube staining with calcofluor showed a loss of crystallinity in the tip zone of CBD-treated pollen tubes. At low concentrations CBD enhanced elongation of Arabidopsis roots. At high concentrations CBD dramatically inhibited root elongation in a dose-responsive manner. Maximum effect on root hair elongation was at 100 μg mL−1, whereas root elongation was inhibited at that concentration. CBD was found to compete with xyloglucan for binding to cellulose when CBD was added first to the cellulose, before the addition of xyloglucan. When Acetobacter xylinum L. was used as a model system, CBD was found to increase the rate of cellulose synthase in a dose-responsive manner, up to 5-fold compared with the control. Electron microscopy examination of the cellulose ribbons produced by A. xylinum showed that CBD treatment resulted in a splayed ribbon composed of separate fibrillar subunits, compared with a thin, uniform ribbon in the control. PMID:9701575

  15. Production of bacterial cellulose and enzyme from waste fiber sludge

    PubMed Central

    2013-01-01

    Background Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Results Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. Conclusions It was shown that waste fiber sludge is a suitable raw material for production of

  16. Cellulose degradation in alkaline media upon acidic pretreatment and stabilisation.

    PubMed

    Testova, Lidia; Nieminen, Kaarlo; Penttilä, Paavo A; Serimaa, Ritva; Potthast, Antje; Sixta, Herbert

    2014-01-16

    The present study reports on a revised kinetic model for alkaline degradation of cellulose accounting for primary peeling/stopping reactions as well as for alkaline hydrolysis followed by secondary peeling. Oxalic acid pretreated cotton linters was utilised as the model substrate for the prehydrolysis-soda anthraquinone process. The main emphasis was investigating the effect of end-group stabilising additives such as sodium borohydride (BH), anthraquinone (AQ), and anthraquinone-2-sulphonic acid sodium salt (AQS) on the rates of the yield loss reactions. BH and AQS ensured a cellulose yield gain of 13% and 11%, respectively, compared to the reference. Both stabilisation agents decreased the content of the reducing end groups in the samples, while in the case of AQS stabilisation a 25% increase in carboxyl group content compared to the reference was also observed. As expected, the addition of end group stabilisers resulted in a significant decrease in the peeling-to-stopping rate constants ratio. PMID:24188853

  17. In Vivo Substrates of the Lens Molecular Chaperones αA-Crystallin and αB-Crystallin

    PubMed Central

    Andley, Usha P.; Malone, James P.; Townsend, R. Reid

    2014-01-01

    αA-crystallin and αB-crystallin are members of the small heat shock protein family and function as molecular chaperones and major lens structural proteins. Although numerous studies have examined their chaperone-like activities in vitro, little is known about the proteins they protect in vivo. To elucidate the relationships between chaperone function, substrate binding, and human cataract formation, we used proteomic and mass spectrometric methods to analyze the effect of mutations associated with hereditary human cataract formation on protein abundance in αA-R49C and αB-R120G knock-in mutant lenses. Compared with age-matched wild type lenses, 2-day-old αA-R49C heterozygous lenses demonstrated the following: increased crosslinking (15-fold) and degradation (2.6-fold) of αA-crystallin; increased association between αA-crystallin and filensin, actin, or creatine kinase B; increased acidification of βB1-crystallin; increased levels of grifin; and an association between βA3/A1-crystallin and αA-crystallin. Homozygous αA-R49C mutant lenses exhibited increased associations between αA-crystallin and βB3-, βA4-, βA2-crystallins, and grifin, whereas levels of βB1-crystallin, gelsolin, and calpain 3 decreased. The amount of degraded glutamate dehydrogenase, α-enolase, and cytochrome c increased more than 50-fold in homozygous αA-R49C mutant lenses. In αB-R120G mouse lenses, our analyses identified decreased abundance of phosphoglycerate mutase, several β- and γ-crystallins, and degradation of αA- and αB-crystallin early in cataract development. Changes in the abundance of hemoglobin and histones with the loss of normal α-crystallin chaperone function suggest that these proteins also play important roles in the biochemical mechanisms of hereditary cataracts. Together, these studies offer a novel insight into the putative in vivo substrates of αA- and αB-crystallin. PMID:24760011

  18. Preparation of food grade carboxymethyl cellulose from corn husk agrowaste.

    PubMed

    Mondal, Md Ibrahim H; Yeasmin, Mst Sarmina; Rahman, Md Saifur

    2015-08-01

    Alpha-cellulose extracted from corn husks was used as the raw material for the production of food-grade carboxymethyl cellulose (CMC). Preparation of CMC from husk cellulose was carried out by an etherification process, using sodium hydroxide and monochloroacetic acid (MCA), with ethanol as the supporting medium. Characterizations of CMC were carried out by analyzing the spectra of FTIR, XRD patterns and SEM photomicrographs. Degree of substitution (DS) was determined with respect to particle size using chemical methods. Solubility, molecular weight and DS of CMC increased with decreased cellulose particle sizes. Microbiological testing of the prepared CMC was done by the pour plate method. Concentrations of heavy metals such as arsenic, lead, cadmium and mercury in the purified CMC were measured by Atomic Absorption Spectroscopy technique and found to be within the WHO/FAO recommended value. A comparative study with CMC available in the international market was conducted. The purity of the prepared CMC was higher, at 99.99% well above the purity of 99.5% for standard CMC. High purity CMC showed a yield 2.4 g/g with DS 2.41, water holding capacity 5.11 g/g, oil holding capacity 1.59 g/g. The obtained product is well suited for pharmaceutical and food additives. PMID:25936282

  19. Permeability of water and oleic acid in composite films of phase separated polypropylene and cellulose stearate blends.

    PubMed

    Krasnou, Illia; Gårdebjer, Sofie; Tarasova, Elvira; Larsson, Anette; Westman, Gunnar; Krumme, Andres

    2016-11-01

    Cellulose esters with long carbon side chains (e.g. stearate) were produced via a homogenous reaction in ionic liquids. The degree of substitution was calculated to approximately 2. The melt rheology was studied for the pure cellulose esters but also combinations of the esters and polypropylene to study the processability of a blended composite material. It was shown that the compatibility between the two components was weak, which resulted in a phase-separated composite material. The morphology and permeability of water and oleic acid of the composite films were studied and it was shown that the water permeability decreased upon addition of the cellulose ester to the polymer. The permeability of oleic acid was however unchanged, which is most probable a result of high solubility in the cellulose ester rich domains of the composites. Also, the following hypothesis is stated: cellulose stearate influence the polypropylene crystallization process by decreasing the size of spherulites. PMID:27516292

  20. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.

    PubMed

    Oun, Ahmed A; Rhim, Jong-Whan

    2015-12-10

    Cellulose nanocrystals (CNCs) were prepared by acid hydrolysis of cotton linter pulp fibers and three different purification methods, i.e., without post purification (CNC1), dialyzed against distilled water (CNC2), and neutralized with NaOH (CNC3), and their effect on film properties was evaluated by preparation of agar/CNCs composite films. All the CNCs were rod in shape with diameter of 15-50 nm and length of 210-480 nm. FTIR result indicated that there was no distinctive differences in the chemical structure between CNCs and cotton linter cellulose fiber. No significant relationship was observed between the sulfate content and crystallinity index of CNCs. The CNC3 showed higher thermal stability than the other type of CNCs due to the less adverse effect on the thermal stability of sulfate groups induced by the neutralization with NaOH. The tensile strength (TS) of agar film increased by 15% with incorporation of 5 wt% of CNC3, on the contrary, it decreased by 10% and 15% with incorporation of CNC1 and CNC2, respectively. Other performance properties of agar/CNCs composite films such as optical and water vapor barrier properties showed that the CNC3 was more effective filler than the other CNCs. In the range of concentration of CNC3 tested (1-10 wt%), inclusion of 5 wt% of CNC3 was the maximum concentration for improving or maintaining film properties of the composite films. The neutralization of acid hydrolyzed cellulose using NaOH was simple and convenient for the preparation of CNC and bionanocomposite films. PMID:26428095

  1. Cellulose Dissolution and In Situ Grafting in a Reversible System using an Organocatalyst and Carbon Dioxide.

    PubMed

    Song, Longchu; Yang, Yunlong; Xie, Haibo; Liu, Enhui

    2015-10-12

    Cellulose is a promising renewable material, but cannot easily be processed homogeneously owing to the stiffness of the molecules and the dense packing of its chains, due to intermolecular hydrogen bonds. Cellulose processability can be improved by chemical modification. The reversible reaction of cellulose with carbon dioxide in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) allows dissolution of cellulose in dimethyl sulfoxide (DMSO). This DMSO solution is an effective medium for grafting L-lactide (LLA) from cellulose by ring-opening polymerization (ROP) under mild conditions, allowing to prepare cellulose-graft-poly(L-lactide) co-polymers with a molar substitution (MSPLLA ) of poly(L-lactide) in the range of 0.37-5.32, at 80 °C. This makes DBU not only an important reagent to achieve cellulose dissolution, but it also acts as organocatalyst for the subsequent ring-opening polymerization process. Characterization of the structure and thermal properties of the co-polymers by a variety of techniques reveals that they have a single glass-transition temperature (Tg ), which decreases with increasing MSPLLA . Thus, the modification results in a transformation of the originally semirigid cellulose into a thermoplastic material with tunable Tg . The carbon dioxide dissolution strategy is an efficient platform for cellulose derivatization by homogeneous organocatalysis. PMID:26220825

  2. A Strategy to Develop Bioactive Nanoarchitecture Cellulose: Sustained Release and Multifarious Applications.

    PubMed

    Karuppusamy, Sembanadar; Pratheepkumar, Annamalai; Dhandapani, Perumal; Maruthamuthu, Sundaram; Kulandainathan, Manickam Anbu

    2015-09-01

    Cellulose membranes were engineered to produce hydrophobic surfaces via a simple and soft chemical process to introduce multifunctional properties of an otherwise hydrophilic cellulose surface with polymer-grafted nanosilver to form a core-shell nanostructure. A superhydrophobic domain of the polymer on cellulose was created through the amide bond formation between the anhydride units of the polymer and the aminosiloxane-functionalized cellulose through layer-over-layer formulation. This formulation was confirmed through XPS, XRD, 29Si-NMR, and FTIR studies. Further, SEM and TEM analysis revealed that short linear silver nanowires were uniformly obtained with an average diameter of 60 nm and length of 288 nm, using a mild reducing agent at 60 degrees C, which resulted in a hierarchical cellulose surface. The nanosilver colloids released from the hierarchical cellulose surface were stabilized by the polymer matrix in solution, which led to a decrease in the rate of formation of Ag+ enhancing the material's killing efficacy against microbes. This biodegradable nanocomposite-based cellulose hierarchical surface development has potential for application as superhydrophobic membranes for oil-water separation, antimicrobial activity, and pH-triggered sustained release of colloidal silver for wound healing, which could possibly be applied for use as smart bandages. PMID:26485925

  3. Degradation of hemicellulosic and cellulosic polysaccharides in pickled green olives.

    PubMed

    Sánchez-Romero, C; Guillén, R; Heredia, A; Jiménez, A; Fernández-Bolaños, J

    1998-01-01

    Changes that take place in the hemicellulosic and cellulosic polysaccharide fractions of the cell wall of olives (Olea europaea pomiformis, Manzanilla variety) during "Spanish style" processing have been studied. A comparative study of the extraction of hemicellulosic polysaccharides with and without prior delignification showed that these compounds could be extracted without previous delignification of the cell wall material. The depectinated material was sequentially extracted with 1 M and 4 M potassium hydroxide. In the unprocessed fruit, the neutral polysaccharides of the 1 M potassium hydroxide-soluble fraction contained mainly xyloglucans with significant amounts of arabinans. In the 4 M potassium hydroxide-soluble fraction, xyloglucans were the most important polysaccharide. The apparent molecular weight of these polysaccharides was 40 to 250 kDa. In addition, hemicelluloses (xylans and xyloglucans), which it was not possible to isolate in the previous stages of fractionation, were also found to be closely linked to the cellulose fraction. The most important changes during processing were the decrease in the molecular weight of xyloglucans in the 4 M potassium hydroxide-soluble fraction and the substantial decrease in the cellulose fraction, which in quantitative terms was one of the largest decreases that took place in the components of the total cell wall polysaccharides. PMID:9708258

  4. Magnetic Mesoporous Photonic Cellulose Films.

    PubMed

    Giese, Michael; Blusch, Lina K; Schlesinger, Maik; Meseck, Georg R; Hamad, Wadood Y; Arjmand, Mohammad; Sundararaj, Uttandaraman; MacLachlan, Mark J

    2016-09-13

    Novel hybrid materials of cellulose and magnetic nanoparticles (NPs) were synthesized and characterized. The materials combine the chiral nematic structural features of mesoporous photonic cellulose (MPC) with the magnetic properties of cobalt ferrite (CoFe2O4). The photonic, magnetic, and dielectric properties of the hybrid materials were investigated during the dynamic swelling and deswelling of the MPC films. It was observed that the dielectric properties of the generated MPC films increased tremendously following swelling in water, endorsing efficient swelling ability of the generated mesoporous films. The high magnetic permeability of the developed MPC films in conjunction with their superior dielectric properties, predominantly in the swollen state, makes them interesting for electromagnetic interference shielding applications. PMID:27588561

  5. Polyimide Cellulose Nanocrystal Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  6. From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids.

    PubMed

    Yuan, Xueming; Cheng, Gang

    2015-12-21

    Cellulose is the most abundant and renewable organic compound on Earth, it is however not soluble in common organic solvents and aqueous solutions. Cellulose dissolution is a key aspect to promote its value-added applications. Ionic liquids (ILs) have been shown to solubilize cellulose under relatively mild conditions. The easy processability of cellulose with ILs and their environmental-friendly nature prompted research in various fields such as biomass pretreatment and conversion, cellulose fiber and composite production, and chemical conversion of cellulose in ILs. Progress has been made on understanding the mechanism of cellulose dissolution in ILs, including the structural characteristics of ILs that are cellulose solvents, however many details remain unknown. In light of rapid development and importance of cellulose dissolution in the field of IL-based cellulose and biomass processing, it is necessary to provide an overview of current understanding of cellulose dissolution in ILs and outline possible future research trends. Recent literature studies suggest that synergistic effects between the anions and the cations of ILs need to be revealed, which requires refining the structure of cellulose elementary fibrils, simulation of more realistic cellulose fibrils and detailed studies on the solution structure of cellulose in ILs. After analyzing literature studies, three interacting modules are identified, which are crucial to understand the process of cellulose dissolution in ILs: (1) the structure of elementary fibrils; (2) solvation of cellulose in ILs; and (3) solution structure of cellulose solubilized in ILs. A coherent analysis of these modules will aid in better design of more efficient ILs and processes. PMID:26562500

  7. CRYSTALLINS IN RETINAL GANGLION CELL SURVIVAL AND REGENERATION

    PubMed Central

    Piri, Natik; Kwong, Jacky MK; Caprioli, Joseph

    2013-01-01

    Crystallins are heterogeneous proteins classified into alpha, beta, and gamma families. Although crystallins were first identified as the major structural components of the ocular lens with a principal function to maintain lens transparency, further studies have demonstrated the expression of these proteins in a wide variety of tissues and cell types. Alpha crystallins (alpha A and alpha B) share significant homology with small heat shock proteins and have chaperone-like properties, including the ability to bind and prevent the precipitation of denatured proteins and to increase cellular resistance to stress-induced apoptosis. Stress-induced upregulation of crystallin expression is a commonly observed phenomenon and viewed as a cellular response mechanism against environmental and metabolic insults. However, several studies reported downregulation of crystallin gene expression in various models of glaucomatous nerodegeneration suggesting that that the decreased levels of crystallins may affect the survival properties of retinal ganglion cells and thus, be associated with their degeneration. This hypothesis was corroborated by increased survival of axotomized retinal ganglion cells (RGCs) in retinas overexpressing alpha A or alpha B crystallins. In addition to RGC protective functions of alpha crystallins, beta or gamma crystallins were implicated in RGC axonal regeneration. These findings demonstrate the importance of crystallin genes in RGC survival and regeneration and further in-depth studies are necessary to better understand the mechanisms underlying the functions of these proteins in healthy RGCs as well as during glaucomatous neurodegeneration, which in turn could help in designing new therapeutic strategies to preserve or regenerate these cells. PMID:23709342

  8. Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry.

    PubMed

    Kocherbitov, Vitaly; Ulvenlund, Stefan; Kober, Maria; Jarring, Kjell; Arnebrant, Thomas

    2008-03-27

    The hydration of two different polymorphs of microcrystalline cellulose (cellulose I and II), as well as the hydration of amorphous cellulose was studied using water sorption calorimetry, gravimetric water vapor sorption, nitrogen sorption, and X-ray powder diffraction. Amorphous cellulose was prepared by means of ball-milling of microcrystalline cellulose (MCC). Whereas X-ray data showed the untreated MCC to consist of cellulose I, the amorphous cellulose was found to recrystallize into cellulose II after contact with water or water vapor at relative humidities (RHs) above 90%. Sorption isotherms show an increase of water sorption in the sequence cellulose I<cellulose IIcellulose. The enthalpy of water sorption becomes more exothermic in the same sequence. The specific area of cellulose is dramatically higher when calculated from the water adsorption than when calculated from nitrogen adsorption. A proposed mechanism of water sorption by MCC implies the adsorption of water molecules at solid-solid interfaces, i.e., between neighboring microfibrils, which explains the observed difference between water and nitrogen. The Brunauer-Emmett-Teller (BET) model is therefore not appropriate for the description of the hydration of cellulose. Rather, the Langmuir model represents a more accurate description of water sorption by MCC at low RH. At higher RH, the water adsorption competes with capillary condensation. The thickness of microfibrils, as calculated using the fitting of the sorption isotherm of MCC with the Langmuir equation, is about 4 nm. This value compares favorably with literature data. PMID:18307340

  9. Topological Crystalline Insulators

    NASA Astrophysics Data System (ADS)

    Hsieh, Timothy

    2015-03-01

    Topological crystalline insulators (TCI) are new phases of matter in which nontrivial band topology and crystal symmetry unite to protect metallic states on the boundary. Remarkably, TCIs have been predicted and observed in the conveniently simple rocksalt SnTe class of IV-VI semiconductors. Despite the simple crystal structure, the interplay between topology and crystal symmetry in these materials have led to a rich variety of new phenomena, including the coexistence of massless and massive Dirac fermions arising from ferroelectric distortion and strain-induced flat band superconductivity. These new physical mechanisms are not only of intrinsic interest but may also find application in new transistor devices. After discussing the topological nature and potential uses of IV-VI family TCIs, I will present recent predictions of TCIs in several anti-perovskite materials. The origin of TCI in this new class of materials is strikingly different and involves the band inversion of two J = 3/2 quartets of Dirac fermions, which together form a ``Dirac octet.'' As interactions play a significant role in many anti-perovskites, this prediction serves as first step toward realizing TCIs in strongly correlated systems. This work is supported by NSF Graduate Research Fellowship No. 0645960 and DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.

  10. Development of Cellulosic Secondary Walls in Flax Fibers Requires β-Galactosidase1[C][W][OA

    PubMed Central

    Roach, Melissa J.; Mokshina, Natalia Y.; Badhan, Ajay; Snegireva, Anastasiya V.; Hobson, Neil; Deyholos, Michael K.; Gorshkova, Tatyana A.

    2011-01-01

    Bast (phloem) fibers, tension wood fibers, and other cells with gelatinous-type secondary walls are rich in crystalline cellulose. In developing bast fibers of flax (Linum usitatissimum), a galactan-enriched matrix (Gn-layer) is gradually modified into a mature cellulosic gelatinous-layer (G-layer), which ultimately comprises most of the secondary cell wall. Previous studies have correlated this maturation process with expression of a putative β-galactosidase. Here, we demonstrate that β-galactosidase activity is in fact necessary for the dynamic remodeling of polysaccharides that occurs during normal secondary wall development in flax fibers. We found that developing stems of transgenic (LuBGAL-RNAi) flax with reduced β-galactosidase activity had lower concentrations of free Gal and had significant reductions in the thickness of mature cellulosic G-layers compared with controls. Conversely, Gn-layers, labeled intensively by the galactan-specific LM5 antibody, were greatly expanded in LuBGAL-RNAi transgenic plants. Gross morphology and stem anatomy, including the thickness of bast fiber walls, were otherwise unaffected by silencing of β-galactosidase transcripts. These results demonstrate a specific requirement for β-galactosidase in hydrolysis of galactans during formation of cellulosic G-layers. Transgenic lines with reduced β-galactosidase activity also had biochemical and spectroscopic properties consistent with a reduction in cellulose crystallinity. We further demonstrated that the tensile strength of normal flax stems is dependent on β-galactosidase-mediated development of the phloem fiber G-layer. Thus, the mechanical strength that typifies flax stems is dependent on a thick, cellulosic G-layer, which itself depends on β-galactosidase activity within the precursor Gn-layer. These observations demonstrate a novel role for matrix polysaccharides in cellulose deposition; the relevance of these observations to the development of cell walls in other

  11. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    PubMed Central

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Lampugnani, Edwin R.; Persson, Staffan

    2016-01-01

    ABSTRACT Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated with the CesA complex and microtubules, and that we named COMPANIONS OF CELLULOSE SYNTHASE (CC). The CC proteins protect the cellulose synthesising capacity of Arabidopsis seedlings during exposure to adverse environmental conditions by enhancing microtubule dynamics. In this paper we provide cell biology and genetic evidence that the CSI1 and the CC proteins fulfil distinct functions during cellulose synthesis. We also show that the CC proteins are necessary to aid cellulose synthesis when components of the CesA complex are impaired. These data indicate that the CC proteins have a broad role in aiding cellulose synthesis during environmental changes and when core complex components are non-functional. PMID:26829351

  12. Feasibility of e-paper made with cellulose

    NASA Astrophysics Data System (ADS)

    Yoo, K. H.; Han, K. J.; Chen, Yi; Kang, K. S.; Kim, Jaehwan

    2008-03-01

    Cellulose is a beneficial material that has low cost, light weight, high compatibility, and biodegradability. Recently electro-active paper (EAPap) composed with cellulose was discovered as a smart material for application to variety industrial fields such as smart wall-paper, actuator, and magic carpet. It also exhibited actuator property through ion migration and piezoelectric effect. Since cellulose acetate (CA) film has optically transparent property, we focused on optical field application, such as electronic paper, prismsheet, and polarized film. Since CA can be easily dissolved in variety of organic solvent, various weight % (from 1 to 25 wt. %) of CA solution in acetone was prepared. Polydimethylsilane (PDMS) master pattern was fabricated on the silicone wafer. CA solution was poured to the master mold and dried using spin-coating or tape casting method. Various shape and height patterns, such as circle, honeycomb, and rectangular patterns were fabricated using 12 wt. % CA solution. The resulting pattern showed uniform size in the large area without defect. These patterns can be utilized as a substrate and cell pattern for the electronic paper. To investigate saponification (SA) effect to convert CA to regenerated cellulose, CA film was immersed into the sodium methoxide solution in methanol for various times. The fabricated CA films were stretched and immersed into the sodium methoxide solution in methanol to desubstitute the acetate group. These regenerated cellulose films have larger mechanical strength than CA films. Although the UV-visible transmittance was decreased as increasing SA time, the transmittance of the further SA process and stretched film backed up near untreated CA film. Although the cross-sectional image of the saponified and unstretched CA film did not have specific directional structure, the cross-sectional FESEM image of the saponified and stretched CA film had one directional fiber structure. The fiber was aligned to the stretched

  13. Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases.

    PubMed

    Penttilä, Paavo A; Sugiyama, Junji; Imai, Tomoya

    2016-01-20

    Cellulose was synthesized by cellulose synthases extracted from the Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus). The effects of temperature and centrifugation of the reaction solution on the synthesis products were investigated. Cellulose with number-average degree of polymerization (DPn) roughly in the range 60-80 and cellulose II crystal structure was produced under all conditions. The amount of cellulose varied with temperature and centrifugation, and the centrifugation at 2000 × g also slightly reduced the DPn. Cellulose production was maximal around the temperature 35 °C and without centrifugation. At higher temperatures and during centrifugation at 2000 × g the proteins started to denature, causing differences also in the morphology of the cellulosic aggregates, as seen with electron microscopy. These observations serve as a basis for discussions about the factors affecting the structure formation and chain length of in vitro synthesized cellulose. PMID:26572398

  14. Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis

    PubMed Central

    2012-01-01

    Background Cellulose amorphogenesis, described as the non-hydrolytic “opening up” or disruption of a cellulosic substrate, is becoming increasingly recognized as one of the key steps in the enzymatic deconstruction of cellulosic biomass when used as a feedstock for fuels and chemicals production. Although this process is thought to play a major role in facilitating hydrolysis, the lack of quantitative techniques capable of accurately describing the molecular-level changes occurring in the substrate during amorphogenesis has hindered our understanding of this process. Results In this work, techniques for measuring changes in cellulose accessibility are reviewed and a new quantitative assay method is described. Carbohydrate binding modules (CBMs) with specific affinities for crystalline (CBM2a) or amorphous (CBM44) cellulose were used to track specific changes in the surface morphology of cotton fibres during amorphogenesis. The extents of phosphoric acid-induced and Swollenin-induced changes to cellulose accessibility were successfully quantified using this technique. Conclusions The adsorption of substructure-specific CBMs can be used to accurately quantify the extent of changes to cellulose accessibility induced by non-hydrolytic disruptive proteins. The technique provided a quick, accurate and quantitative measure of the accessibility of cellulosic substrates. Expanding the range of CBMs used for adsorption studies to include those specific for such compounds as xylan or mannan should also allow for the accurate quantitative tracking of the accessibility of these and other polymers within the lignocellulosic biomass matrix. PMID:22828270

  15. Micromechanics and poroelasticity of hydrated cellulose networks.

    PubMed

    Lopez-Sanchez, P; Rincon, Mauricio; Wang, D; Brulhart, S; Stokes, J R; Gidley, M J

    2014-06-01

    The micromechanics of cellulose hydrogels have been investigated using a new rheological experimental approach, combined with simulation using a poroelastic constitutive model. A series of mechanical compression steps at different strain rates were performed as a function of cellulose hydrogel thickness, combined with small amplitude oscillatory shear after each step to monitor the viscoelasticity of the sample. During compression, bacterial cellulose hydrogels behaved as anisotropic materials with near zero Poisson's ratio. The micromechanics of the hydrogels altered with each compression as water was squeezed out of the structure, and microstructural changes were strain rate-dependent, with increased densification of the cellulose network and increased cellulose fiber aggregation observed for slower compressive strain rates. A transversely isotropic poroelastic model was used to explain the observed micromechanical behavior, showing that the mechanical properties of cellulose networks in aqueous environments are mainly controlled by the rate of water movement within the structure. PMID:24784575

  16. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading

    DOE PAGESBeta

    Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.; Amador-Noguez, Daniel; Engle, Nancy L.; Tschaplinski, Timothy J.; van Dijken, Johannes P.; Lynd, Lee R.

    2014-10-21

    Background: Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Results: Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel)more » initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. In conclusion: C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.« less

  17. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading

    SciTech Connect

    Holwerda, Evert K.; Thorne, Philip G.; Olson, Daniel G.; Amador-Noguez, Daniel; Engle, Nancy L.; Tschaplinski, Timothy J.; van Dijken, Johannes P.; Lynd, Lee R.

    2014-10-21

    Background: Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Results: Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel) initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. In conclusion: C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.

  18. EndB, a Multidomain Family 44 Cellulase from Ruminococcus flavefaciens 17, Binds to Cellulose via a Novel Cellulose-Binding Module and to Another R. flavefaciens Protein via a Dockerin Domain

    PubMed Central

    Rincón, Marco T.; McCrae, Sheila I.; Kirby, James; Scott, Karen P.; Flint, Harry J.

    2001-01-01

    The mechanisms by which cellulolytic enzymes and enzyme complexes in Ruminococcus spp. bind to cellulose are not fully understood. The product of the newly isolated cellulase gene endB from Ruminococcus flavefaciens 17 was purified as a His-tagged product after expression in Escherichia coli and found to be able to bind directly to crystalline cellulose. The ability to bind cellulose is shown to be associated with a novel cellulose-binding module (CBM) located within a region of 200 amino acids that is unrelated to known protein sequences. EndB (808 amino acids) also contains a catalytic domain belonging to glycoside hydrolase family 44 and a C-terminal dockerin-like domain. Purified EndB is also shown to bind specifically via its dockerin domain to a polypeptide of ca. 130 kDa present among supernatant proteins from Avicel-grown R. flavefaciens that attach to cellulose. The protein to which EndB attaches is a strong candidate for the scaffolding component of a cellulosome-like multienzyme complex recently identified in this species (S.-Y. Ding et al., J. Bacteriol. 183:1945–1953, 2001). It is concluded that binding of EndB to cellulose may occur both through its own CBM and potentially also through its involvement in a cellulosome complex. PMID:11571138

  19. Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers.

    PubMed

    Lee, Tae-Won; Lee, Sang-Eui; Jeong, Young Gyu

    2016-05-25

    We fabricated silver nanowire (AgNW)-coated cellulose papers with a hierarchical structure by an efficient and facile dip-coating process, and investigated their microstructures, electrical conductivity and electromagnetic interference (EMI) shielding effectiveness. SEM images confirm that AgNWs are coated dominantly on the paper surfaces, although they exist partially in the inner parts of the cellulose papers, which demonstrates that the AgNW density gradually decreases in thickness direction of the AgNW/cellulose papers. This result is supported by the anisotropic apparent electrical conductivity of the AgNW/cellulose papers depending on in-plane or thickness direction. Even for a AgNW/cellulose paper obtained by a single dip-coating cycle, the apparent electrical conductivity in the in-plane direction of 0.34 S/cm is achieved, which is far higher than the neat cellulose paper with ∼10(-11) S/cm. In addition, the apparent electrical conductivity of the papers in the in-plane direction increases significantly from 0.34 to 67.51 S/cm with increasing the number of dip-coating cycle. Moreover, although the AgNW/cellulose paper with 67.51 S/cm possesses 0.53 vol % AgNW only, it exhibits high EMI shielding performance of ∼48.6 dB at 1 GHz. This indicates that the cellulose paper structure is highly effective to form a conductive AgNW network. Overall, it can be concluded that the AgNW/cellulose papers with high flexibility and low density can be used as electrically conductive components and EMI shielding elements in advanced application areas. PMID:27156577

  20. The case for cellulose production on Mars

    NASA Technical Reports Server (NTRS)

    Volk, Tyler; Rummel, John D.

    1989-01-01

    From examining the consequences of not requiring that all wastes from life support be recycled back to the food plants, it is concluded that cellulose production on Mars could be an important input for many nonmetabolic material requirements on Mars. The fluxes of carbon in cellulose production would probably exceed those in food production, and therefore settlements on Mars could utilize cellulose farms in building a Mars infrastructure.