Science.gov

Sample records for decreases airway hyperresponsiveness

  1. Rhinitis Patients With Sputum Eosinophilia Show Decreased Lung Function in the Absence of Airway Hyperresponsiveness

    PubMed Central

    Yang, Min-Suk; Lee, Hyun-Seung; Kim, Min-Hye; Song, Woo-Jung; Kim, Tae-Wan; Kwon, Jae-Woo; Kim, Sae-Hoon; Park, Heung-Woo; Chang, Yoon-Seok; Min, Kyung-Up

    2013-01-01

    Purpose Sputum eosinophilia is observed frequently in patients with rhinitis. Sputum eosinophilia in patients with non-asthmatic allergic rhinitis has been suggested to be related to nonspecific airway hyperresponsiveness (AHR). However, the clinical significance of sputum eosinophilia in patients with non-asthmatic rhinitis without AHR has not been determined. We conducted a retrospective study examining the influence of sputum eosinophilia in patients with non-asthmatic rhinitis without AHR on pulmonary function and expression of fibrosis-related mediators. Methods Eighty-nine patients with moderate-to-severe perennial rhinitis without AHR were included. All underwent lung function tests (forced expiratory volume in 1 second [FEV1] and forced vital capacity [FVC]), skin tests to inhalant allergens, methacholine bronchial challenge tests, and hypertonic saline-induced sputum to determine eosinophil counts. Sputum mRNA levels for transforming growth factor-β (TGF-β), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1) were also examined. Patients were divided into two groups according to the presence of sputum eosinophilia (≥3%, eosinophilia-positive [EP] and <3%, eosinophilia-negative [EN] groups). Results FEV1 was significantly lower (P=0.04) and FEV1/FVC tended to be lower (P=0.1) in the EP group than in the EN group. In sputum analyses, the MMP-9 mRNA level (P=0.005) and the ratio of MMP-9 to TIMP-1 expression (P=0.01) were significantly higher in the EP group than in the EN group. There was no significant difference in TGF-β mRNA expression between the two groups. Conclusions Sputum eosinophilia in patients with moderate-to-severe perennial rhinitis without AHR influenced FEV1 and the expression pattern of fibrosis-related mediators. PMID:23814677

  2. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  3. Airway smooth muscle responsiveness from dogs with airway hyperresponsiveness after O/sub 3/ inhalation

    SciTech Connect

    Jones, G.L.; O'Byrne, P.M.; Pashley, M.; Serio, R.; Jury, J.; Lane, C.G.; Daniel, E.E.

    1988-07-01

    Airway hyperresponsiveness occurs after inhalation of O3 in dogs. The purpose of this study was to examine the responsiveness of trachealis smooth muscle in vitro to electrical field stimulation, exogenous acetylcholine, and potassium chloride from dogs with airway hyperresponsiveness after inhaled O3 in vivo and to compare this with the responsiveness of trachealis muscle from control dogs. In addition, excitatory junction potentials were measured with the use of single and double sucrose gap techniques in both groups of dogs to determine whether inhaled O3 affects the release of acetylcholine from parasympathetic nerves in trachealis muscle. Airway hyperresponsiveness developed in all dogs after inhaled O3 (3 ppm for 30 min). The acetylcholine provocative concentration decreased from 4.11 mg/ml before O3 inhalation to 0.66 mg/ml after O3 (P less than 0.0001). The acetylcholine provocative concentration increased slightly after control inhalation of dry room air. Airway smooth muscle showed increased responses to both electrical field stimulation and exogenous acetylcholine but not to potassium chloride in preparations from dogs with airway hyperresponsiveness in vivo. The increased response to electrical field stimulation was not associated with a change in excitatory junctional potentials. These results suggest that a postjunctional alteration in trachealis muscle function occurs after inhaled O3 in dogs, which may account for airway hyperresponsiveness after O3 in vivo.

  4. Bronchial hyperresponsiveness decreases through childhood.

    PubMed

    Riiser, Amund; Hovland, Vegard; Mowinckel, Petter; Carlsen, Kai-Håkon; Carlsen, Karin Lødrup

    2012-02-01

    Limited knowledge exists about development of bronchial hyperresponsiveness (BHR) through adolescence. We aimed to assess changes in and risk factors for BHR in adolescence. From a Norwegian birth cohort 517 subjects underwent clinical examinations, structured interviews and methacholine challenges at age 10 and 16. BHR was divided into four categories: no BHR (cumulative methacholine dose required to reduce FEV(1) by 20% (PD(20)) >16 μmol), borderline BHR (PD(20) ≤16 and >8 μmol), mild to moderate BHR (PD(20) ≤8 and >1 μmol), and severe BHR (PD(20) ≤ 1 μmol). Logistic regression analysis was used to assess risk factors and possible confounders. The number of children with PD(20) ≤ 8 decreased from 172 (33%) to 79 (15%) from age 10-16 (p < 0.001). Most children (n = 295, 57%) remained in the same BHR (category) from age 10-16 (50% with no BHR), whereas the majority 182 (82%) of the 222 children who changed BHR category, had decreased severity at age 16. PD(20) ≤ 8 at age 10 was the major risk factor for PD(20) ≤ 8 6 years later (odds ratio 6.3), without significant confounding effect (>25% change) of gender, active rhinitis, active asthma, height, FEV(1)/FVC, or allergic sensitization. BHR decreased overall in severity through adolescence, was stable for the majority of children and only a minority (8%) had increased BHR from age 10 to 16. Mild to moderate and severe BHR at age 10 were major risk factors for PD(20) ≤ 8 at 16 years and not modified by asthma or body size. PMID:22015380

  5. Effect of ozone exposure on antigen-induced airway hyperresponsiveness in guinea pigs

    SciTech Connect

    Vargas, M.H.; Segura, P.; Campos, M.G.; Hong, E.; Montano, L.M.

    1994-12-31

    Airway hyperresponsiveness can be induced by several stimuli including antigen and ozone, both of which may be present in the air of polluted cities. Though the effect of ozone on the bronchoconstrictor response to antigen has been well described, the combined effect of these stimuli on airway hyperresponsiveness has not yet been studied. Sensitized guinea pigs with or without ozone exposure for 1 h at 3 ppm, 18 h prior to study, were challenged with a dose-response curve to histamine (0.01-1.8 {mu}g/kg, iv), and then by a second histamine dose-response curve 1 h later. Airway responses were measured as the increase in pulmonary insufflation pressure. In sensitized guinea pigs, the histamine ED50 significantly decreased after antigen challenge, demonstrating the development of airway hyperresponsiveness. Sensitized guinea pigs exposed to ozone showed airway hyperresponsiveness to histamine when compared with nonexposed animals, and such hyperresponsiveness was further enhanced after antigen challenge. We conclude that in this guinea pig model of acute allergic bronchoconstriction both antigen challenge and ozone induce airway hyperresponsiveness, while ozone exposure does not modify the development of antigen-induced hyperresponsiveness. 25 refs., 1 fig., 1 tab.

  6. Importance of airway inflammation for hyperresponsiveness induced by ozone. [Dogs

    SciTech Connect

    Holtzman, M.J.; Fabbri, L.M.; O'Byrne, P.M.; Gold, B.D.; Aizawa, H.; Walters, E.H.; Alpert, S.E.; Nadel, J.A.

    1983-06-01

    We studied whether ozone-induced airway hyperresponsiveness correlates with the development of airway inflammation in dogs. To assess airway responsiveness, we determined increases in pulmonary resistance produced by delivering acetylcholine aerosol to the airways. To assess airway inflammation, we biopsied the airway mucosa and counted the number of neutrophils present in the epithelium. Airway responsiveness and inflammation were assessed in anesthetized dogs before ozone exposure and then 1 h and 1 wk after ozone (2.1 ppm, 2 h). Airway responsiveness increased markedly at 1 h after ozone and returned to control levels 1 wk later in each of 6 dogs, but it did not change after ozone in another 4 dogs. Furthermore, dogs that became hyperresponsive also developed a marked and reversible increase in the number of neutrophils in the epithelium, whereas dogs that did not become hyperresponsive had no change in the number of neutrophils. For the group of dogs, the level of airway responsiveness before and after ozone exposure correlated closely with the number of epithelial neutrophils. The results suggest that ozone-induced airway hyperresponsiveness may depend on the development of an acute inflammatory response in the airways.

  7. Mitochondrial Transplantation Attenuates Airway Hyperresponsiveness by Inhibition of Cholinergic Hyperactivity

    PubMed Central

    Su, Yuan; Zhu, Liping; Yu, Xiangyuan; Cai, Lei; Lu, Yankai; Zhang, Jiwei; Li, Tongfei; Li, Jiansha; Xia, Jingyan; Xu, Feng; Hu, Qinghua

    2016-01-01

    Increased cholinergic activity has been highlighted in the pathogenesis of airway hyperresponsiveness, and alternations of mitochondrial structure and function appear to be involved in many lung diseases including airway hyperresponsiveness. It is crucial to clarify the cause-effect association between mitochondrial dysfunction and cholinergic hyperactivity in the pathogenesis of airway hyperresponsiveness. Male SD rats and cultured airway epithelial cells were exposed to cigarette smoke plus lipopolysaccharide administration; mitochondria isolated from airway epithelium were delivered into epithelial cells in vitro and in vivo. Both the cigarette smoke plus lipopolysaccharide-induced cholinergic hyperactivity in vitro and the airway hyperresponsiveness to acetylcholine in vivo were reversed by the transplantation of exogenous mitochondria. The rescue effects of exogenous mitochondria were imitated by the elimination of excessive reactive oxygen species or blockage of muscarinic M3 receptor, but inhibited by M receptor enhancer. Mitochondrial transplantation effectively attenuates cigarette smoke plus lipopolysaccharide-stimulated airway hyperresponsiveness through the inhibition of ROS-enhanced epithelial cholinergic hyperactivity. PMID:27279915

  8. Immunomodulatory Effects of Ambroxol on Airway Hyperresponsiveness and Inflammation.

    PubMed

    Takeda, Katsuyuki; Miyahara, Nobuaki; Matsubara, Shigeki; Taube, Christian; Kitamura, Kenichi; Hirano, Astushi; Tanimoto, Mitsune; Gelfand, Erwin W

    2016-06-01

    Ambroxol is used in COPD and asthma to increase mucociliary clearance and regulate surfactant levels, perhaps through anti-oxidant and anti-inflammatory activities. To determine the role and effect of ambroxol in an experimental model of asthma, BALB/c mice were sensitized to ovalbumin (OVA) followed by 3 days of challenge. Airway hyperresponsiveness (AHR), lung cell composition and histology, and cytokine and protein carbonyl levels in bronchoalveolar lavage (BAL) fluid were determined. Ambroxol was administered either before the first OVA challenge or was begun after the last allergen challenge. Cytokine production levels from lung mononuclear cells (Lung MNCs) or alveolar macrophages (AM) were also determined. Administration of ambroxol prior to challenge suppressed AHR, airway eosinophilia, goblet cell metaplasia, and reduced inflammation in subepithelial regions. When given after challenge, AHR was suppressed but without effects on eosinophil numbers. Levels of IL-5 and IL-13 in BAL fluid were decreased when the drug was given prior to challenge; when given after challenge, increased levels of IL-10 and IL-12 were detected. Decreased levels of protein carbonyls were detected in BAL fluid following ambroxol treatment after challenge. In vitro, ambroxol increased levels of IL-10, IFN-γ, and IL-12 from Lung MNCs and AM, whereas IL-4, IL-5, and IL-13 production was not altered. Taken together, ambroxol was effective in preventing AHR and airway inflammation through upregulation of Th1 cytokines and protection from oxidative stress in the airways. PMID:27340385

  9. Immunomodulatory Effects of Ambroxol on Airway Hyperresponsiveness and Inflammation

    PubMed Central

    Miyahara, Nobuaki; Matsubara, Shigeki; Taube, Christian; Kitamura, Kenichi; Hirano, Astushi; Tanimoto, Mitsune; Gelfand, Erwin W.

    2016-01-01

    Ambroxol is used in COPD and asthma to increase mucociliary clearance and regulate surfactant levels, perhaps through anti-oxidant and anti-inflammatory activities. To determine the role and effect of ambroxol in an experimental model of asthma, BALB/c mice were sensitized to ovalbumin (OVA) followed by 3 days of challenge. Airway hyperresponsiveness (AHR), lung cell composition and histology, and cytokine and protein carbonyl levels in bronchoalveolar lavage (BAL) fluid were determined. Ambroxol was administered either before the first OVA challenge or was begun after the last allergen challenge. Cytokine production levels from lung mononuclear cells (Lung MNCs) or alveolar macrophages (AM) were also determined. Administration of ambroxol prior to challenge suppressed AHR, airway eosinophilia, goblet cell metaplasia, and reduced inflammation in subepithelial regions. When given after challenge, AHR was suppressed but without effects on eosinophil numbers. Levels of IL-5 and IL-13 in BAL fluid were decreased when the drug was given prior to challenge; when given after challenge, increased levels of IL-10 and IL-12 were detected. Decreased levels of protein carbonyls were detected in BAL fluid following ambroxol treatment after challenge. In vitro, ambroxol increased levels of IL-10, IFN-γ, and IL-12 from Lung MNCs and AM, whereas IL-4, IL-5, and IL-13 production was not altered. Taken together, ambroxol was effective in preventing AHR and airway inflammation through upregulation of Th1 cytokines and protection from oxidative stress in the airways. PMID:27340385

  10. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury.

    PubMed

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F; Aggarwal, Saurabh; Emala, Charles W; Stober, Vandy P; Trempus, Carol S; Garantziotis, Stavros; Matalon, Sadis

    2015-05-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca(2+), and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca(2+), blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca(2+) channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  11. Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury

    PubMed Central

    Lazrak, Ahmed; Creighton, Judy; Yu, Zhihong; Komarova, Svetlana; Doran, Stephen F.; Aggarwal, Saurabh; Emala, Charles W.; Stober, Vandy P.; Trempus, Carol S.; Garantziotis, Stavros

    2015-01-01

    Chlorine (Cl2) inhalation induces severe oxidative lung injury and airway hyperresponsiveness (AHR) that lead to asthmalike symptoms. When inhaled, Cl2 reacts with epithelial lining fluid, forming by-products that damage hyaluronan, a constituent of the extracellular matrix, causing the release of low-molecular-weight fragments (L-HA, <300 kDa), which initiate a series of proinflammatory events. Cl2 (400 ppm, 30 min) exposure to mice caused an increase of L-HA and its binding partner, inter-α-trypsin-inhibitor (IαI), in the bronchoalveolar lavage fluid. Airway resistance following methacholine challenge was increased 24 h post-Cl2 exposure. Intratracheal administration of high-molecular-weight hyaluronan (H-HA) or an antibody against IαI post-Cl2 exposure decreased AHR. Exposure of human airway smooth muscle (HASM) cells to Cl2 (100 ppm, 10 min) or incubation with Cl2-exposed H-HA (which fragments it to L-HA) increased membrane potential depolarization, intracellular Ca2+, and RhoA activation. Inhibition of RhoA, chelation of intracellular Ca2+, blockade of cation channels, as well as postexposure addition of H-HA, reversed membrane depolarization in HASM cells. We propose a paradigm in which oxidative lung injury generates reactive species and L-HA that activates RhoA and Ca2+ channels of airway smooth muscle cells, increasing their contractility and thus causing AHR. PMID:25747964

  12. S-Nitrosoglutathione Attenuates Airway Hyperresponsiveness in Murine Bronchopulmonary Dysplasia.

    PubMed

    Raffay, Thomas M; Dylag, Andrew M; Di Fiore, Juliann M; Smith, Laura A; Einisman, Helly J; Li, Yuejin; Lakner, Mitchell M; Khalil, Ahmad M; MacFarlane, Peter M; Martin, Richard J; Gaston, Benjamin

    2016-10-01

    Bronchopulmonary dysplasia (BPD) is characterized by lifelong obstructive lung disease and profound, refractory bronchospasm. It is observed among survivors of premature birth who have been treated with prolonged supplemental oxygen. Therapeutic options are limited. Using a neonatal mouse model of BPD, we show that hyperoxia increases activity and expression of a mediator of endogenous bronchoconstriction, S-nitrosoglutathione (GSNO) reductase. MicroRNA-342-3p, predicted in silico and shown in this study in vitro to suppress expression of GSNO reductase, was decreased in hyperoxia-exposed pups. Both pretreatment with aerosolized GSNO and inhibition of GSNO reductase attenuated airway hyperresponsiveness in vivo among juvenile and adult mice exposed to neonatal hyperoxia. Our data suggest that neonatal hyperoxia exposure causes detrimental effects on airway hyperreactivity through microRNA-342-3p-mediated upregulation of GSNO reductase expression. Furthermore, our data demonstrate that this adverse effect can be overcome by supplementing its substrate, GSNO, or by inhibiting the enzyme itself. Rates of BPD have not improved over the past two decades; nor have new therapies been developed. GSNO-based therapies are a novel treatment of the respiratory problems that patients with BPD experience. PMID:27484068

  13. Role of the parasympathetic nervous system in airway hyperresponsiveness after ozone inhalation

    SciTech Connect

    Jones, G.L.; Lane, C.G.; Manning, P.J.; O'Byrne, P.M.

    1987-09-01

    Airway hyperresponsiveness develops in dogs after ozone inhalation. This study examined the role of the parasympathetic nervous system in ozone-induced airway hyperresponsiveness in dogs. Dose-response curves to acetylcholine (n = 8) and histamine (n = 4) were measured before and after exposure to ozone (3 ppm for 30 min). The provocative concentration of each agonist was measured on two randomly assigned days separated by at least 1 wk. On one day a control experiment was performed, and on the other day the dogs were pretreated with the ganglionic blocker hexamethonium bromide in doses that block ganglionic transmission. The acetylcholine provocative concentration decreased on the control day from 5.5 mg/ml (%SE 1.8) before ozone to 0.5 mg/ml (%SE 2.0) after ozone (P less than 0.0001). After pretreatment with hexamethonium the acetylcholine provocative concentration decreased from 9.0 mg/ml (%SE 1.8) before ozone to 1.0 mg/ml (%SE 2.0) after ozone (P = 0.002). The results were similar when histamine was used as the agonist. Therefore, ganglionic blockade does not prevent airway hyperresponsiveness after ozone inhalation, and a parasympathetic reflex mechanism is not responsible for airway hyperresponsiveness after ozone inhalation in dogs.

  14. Omega-3 Fatty acids and airway hyperresponsiveness in asthma.

    PubMed

    Mickleborough, Timothy D; Ionescu, Alina A; Rundell, Kenneth W

    2004-12-01

    Despite the progress that has been made in the treatment of asthma, the prevalence and burden of this disease has continued to increase. Exercise is a powerful trigger of asthma symptoms and reversible airflow obstruction and may result in the avoidance of physical activity by patients with asthma, resulting in detrimental consequences to their health. Approximately 90% of patients with asthma are hyperresponsive to exercise and experience exercise-induced bronchoconstriction (EIB). While pharmacologic treatment of asthma is usually highly effective, medications often have significant side-effects or exhibit tachyphylaxis. Alternative therapies for treatment (complementary medicine) that reduce the dose requirements of pharmacologic interventions would be beneficial, and could potentially reduce the public health burden of this disease. There is accumulating evidence that dietary modification has potential to influence the severity of asthma and reduce the prevalence and incidence of this condition. A possible contributing factor to the increased incidence of asthma in Western societies may be the consumption of a proinflammatory diet. In the typical Western diet, 20- to 25-fold more omega- 6 polyunsaturated fatty acids (PUFA) than omega-3 PUFA are consumed, which causes the release of proinflammatory arachidonic acid metabolites (leukotrienes and prostanoids). This review analyzes the existing literature on omega-3 PUFA supplementation as a potential modifier of airway hyperresponsiveness in asthma and includes studies concerning the efficacy of omega-3 PUFA supplementation in EIB. While clinical data evaluating the effect of omega-3 PUFA supplementation in asthma has been equivocal, it has recently been shown that pharmaceutical-grade fish oil (omega-3 PUFA) supplementation reduces airway hyperresponsiveness after exercise, medication use, and proinflammatory mediator generation in nonatopic elite athletes with EIB. These findings are provocative and suggest that

  15. ICOS ligand expression is essential for allergic airway hyperresponsiveness.

    PubMed

    Kadkhoda, Kamran; Wang, Shuhe; Fan, Yijun; Qiu, Hongyu; Basu, Sujata; Halayko, Andrew J; Yang, Xi

    2011-04-01

    Inducible co-stimulator ligand (ICOSL) is a rather newly defined co-stimulatory molecule, which, through interaction with ICOS expressed on T cells, plays an important role in T-cell activation, differentiation and function. T(h)2-type immune responses are critical for the development and maintenance of allergic responses including asthma. Using knockout (KO) mice, we have assessed the role of ICOSL in allergic airway inflammation and responsiveness using a standard mouse asthma model induced by ovalbumin (OVA) sensitization and challenge. Our data show that OVA-treated ICOSL KO mice exhibit significantly less lung eosinophilic infiltration, histopathology, mucus production and virtually no airway hyperresponsiveness in contrast to wild-type (Wt) counterparts. Serum antibody analysis showed that antigen-specific IgG1, IgG2a and IgE titers in ICOSL KO mice were significantly lower than those of Wt controls. Also, CD4(+) T cells isolated from ICOSL KO mice produced less T(h)2 cytokines (IL-4, IL-5, IL-10 and IL-13) but more T(h)1 (IFN-γ) and IL-17 than their Wt controls. Taken together, we conclude that ICOSL plays an important role in predisposing individuals to allergic airway hyperresponsiveness by enhancing IgE antibody class switching and T(h)2 cytokine production and diminishing the T(h)17 response and airway eosinophilia. PMID:21402623

  16. Markers of airway inflammation and airway hyperresponsiveness in patients with well-controlled asthma.

    PubMed

    Leuppi, J D; Salome, C M; Jenkins, C R; Koskela, H; Brannan, J D; Anderson, S D; Andersson, M; Chan, H K; Woolcock, A J

    2001-09-01

    In steroid-naive asthmatics, airway hyperresponsiveness correlates with noninvasive markers of airway inflammation. Whether this is also true in steroid-treated asthmatics, is unknown. In 31 stable asthmatics (mean age 45.4 yrs, range 22-69; 17 females) taking a median dose of 1,000 microg inhaled corticosteroids (ICS) per day (range 100-3,600 microg x day(-1)), airway responsiveness to the "direct" agent histamine and to the "indirect" agent mannitol, lung function (forced expiratory volume in one second (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF)), exhaled nitric oxide (eNO), and number of inflammatory cells in induced sputum as a percentage of total cell count were measured. Of the 31 subjects, 16 were hyperresponsive to mannitol and 11 to histamine. The dose-response ratio (DRR: % fall in FEV1/cumulative dose) to both challenge tests was correlated (r=0.59, p=0.0004). However, DRR for histamine and DRR for mannitol were not related to basic lung function, eNO, per cent sputum eosinophils and ICS dose. In addition, NO was not related to basic lung function and per cent sputum eosinophils. In clinically well-controlled asthmatics taking inhaled corticosteroids, there is no relationship between markers of airway inflammation (such as exhaled nitric oxide and sputum eosinophils) and airway responsiveness to either direct (histamine) or indirect (mannitol) challenge. Airway hyperresponsiveness in clinically well-controlled asthmatics appears to be independent of eosinophilic airway inflammation. PMID:11589340

  17. CD38 and Airway hyperresponsiveness: Studies on human airway smooth muscle cells and mouse models

    PubMed Central

    Guedes, Alonso GP; Deshpande, Deepak A; Dileepan, Mythili; Walseth, Timothy F; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2015-01-01

    Asthma is an inflammatory disease in which altered calcium regulation, contractility and airway smooth muscle (ASM) proliferation contribute to airway hyperresponsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g. TNF-α) that requires activation of MAP kinases and the transcription factors, NF-ƙB and AP-1 and post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3’ Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in CD38 exhibit reduced airway responsiveness to inhaled methacholine relative to response in wild-type mice. Intranasal challenge of CD38 deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared to wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyperresponsiveness to inhaled methacholine in the Cd38 deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyperresponsiveness, a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and/or activity are warranted. PMID:25594684

  18. Molecular Mechanisms of Airway Hyperresponsiveness in a Murine Model of Steroid-Resistant Airway Inflammation.

    PubMed

    Manni, Michelle L; Mandalapu, Sivanarayana; McHugh, Kevin J; Elloso, M Merle; Dudas, Paul L; Alcorn, John F

    2016-02-01

    IL-13 and IL-17A, produced mainly by Th2 and Th17 cells, respectively, have an influential role in asthma pathogenesis. We examined the role of IL-13 and IL-17A in mediating airway hyperresponsiveness (AHR), lung inflammation, and mucus metaplasia in a dual Th2/Th17 model of asthma. IL-13 and/or IL-17A were neutralized using mAbs. Th2/Th17 adoptive transfer induced a mixed asthma phenotype characterized by elevated eosinophilia and neutrophilia, tissue inflammation, mucus metaplasia, and AHR that were partially reversible with steroid treatment. Pulmonary inflammation and quasi-static lung compliance were largely unaffected by neutralization of IL-13 and/or IL-17A. However, neutralization of IL-13 alone or in combination with IL-17A significantly attenuated AHR and mucus metaplasia. Further, STAT6 activation was attenuated following IL-13 and IL-13/IL-17A Ab treatment. We next assessed the role of STAT6 in Th2/Th17-mediated allergic airway disease using STAT6(-/-) mice. STAT6(-/-) mice adoptively transferred with Th2/Th17 cells had decreased AHR compared with controls. These data suggest that IL-13 drives AHR and mucus metaplasia in a STAT6-dependent manner, without directly contributing to airway or tissue inflammation. IL-17A independently contributes to AHR, but it only partially mediates inflammation and mucus metaplasia in a mixed Th2/Th17 model of steroid-resistant asthma. PMID:26729801

  19. Airway hyperresponsiveness; smooth muscle as the principal actor.

    PubMed

    Lauzon, Anne-Marie; Martin, James G

    2016-01-01

    Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway. PMID:26998246

  20. Airway hyperresponsiveness; smooth muscle as the principal actor

    PubMed Central

    Lauzon, Anne-Marie; Martin, James G.

    2016-01-01

    Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway. PMID:26998246

  1. Three Paradigms of Airway Smooth Muscle Hyperresponsiveness in Young Guinea Pigs

    PubMed Central

    Chitano, Pasquale; Wang, Lu; Murphy, Thomas M.

    2008-01-01

    Evidence for contributions of airway smooth muscle (ASM) to the hyperresponsiveness of newborn and juvenile airways continues to accumulate. In our laboratory three novel paradigms of hyperresponsiveness of newborn and young ASM have recently emerged using a guinea pig model of maturation in three age groups-- 1 week (newborn); 3 week (juvenile) and 2−3 months (adult). These include 1) evidence for a natural decline after newborn and juvenile life of the shortening velocity of ASM shortening associated with a decrease in regulatory myosin light chain (MLC) phosphorylation and a parallel decline in the content of MLC kinase. Associated with the decrease in ASM shortening with age is an increase in the internal resistance to shortening. This relationship can be approximated as dP/dtmax ≈ dP/dLpassive × dL/dtmax (the maximal rate of increase of active stress generation ≈ the passive stiffness × the maximal shortening velocity V0). 2) The second paradigm demonstrates that newborn ASM, unlike that in adults, does not relax with prolonged electrical field stimulation. The impaired relaxation is related to changes in prostaglandin synthesis and acetylcholinesterase function; 3) the third paradigm demonstrates that while oscillatory strain serves to relax adult ASM, the response in newborns is the potentiation of active stress. This is related to developmental changes in the cytoskeleton. Oscillatory stiffness is shown to relate inversely to the expression of myosin light chain kinase. This suggests that developmental changes in shortening relate inversely to the stiffness of the ASM early in shortening, suggesting a dynamic role for the cytoskeleton in facilitating and opposing ASM shortening. Together these paradigms demonstrate that ASM contributes by multiple mechanisms to the natural hyperresponsiveness of newborn and juvenile airways. Future studies will elaborate the mechanisms and extend these paradigms relate to ASM hyperresponsiveness that is increased

  2. Delivered dose estimate to standardize airway hyperresponsiveness assessment in mice.

    PubMed

    Robichaud, Annette; Fereydoonzad, Liah; Schuessler, Thomas F

    2015-04-15

    Airway hyperresponsiveness often constitutes a primary outcome in respiratory studies in mice. The procedure commonly employs aerosolized challenges, and results are typically reported in terms of bronchoconstrictor concentrations loaded into the nebulizer. Yet, because protocols frequently differ across studies, especially in terms of aerosol generation and delivery, direct study comparisons are difficult. We hypothesized that protocol variations could lead to differences in aerosol delivery efficiency and, consequently, in the dose delivered to the subject, as well as in the response. Thirteen nebulization patterns containing common protocol variations (nebulization time, duty cycle, particle size spectrum, air humidity, and/or ventilation profile) and using increasing concentrations of methacholine and broadband forced oscillations (flexiVent, SCIREQ, Montreal, Qc, Canada) were created, characterized, and studied in anesthetized naïve A/J mice. A delivered dose estimate calculated from nebulizer-, ventilator-, and subject-specific characteristics was introduced and used to account for protocol variations. Results showed that nebulization protocol variations significantly affected the fraction of aerosol reaching the subject site and the delivered dose, as well as methacholine reactivity and sensitivity in mice. From the protocol variants studied, addition of a slow deep ventilation profile during nebulization was identified as a key factor for optimization of the technique. The study also highlighted sensitivity differences within the lung, as well as the possibility that airway responses could be selectively enhanced by adequate control of nebulizer and ventilator settings. Reporting results in terms of delivered doses represents an important standardizing element for assessment of airway hyperresponsiveness in mice. PMID:25637610

  3. Influence of TRPV4 gene polymorphisms on the development of osmotic airway hyperresponsiveness in patients with bronchial asthma.

    PubMed

    Naumov, D E; Kolosov, V P; Perelman, J M; Prikhodko, A G

    2016-07-01

    The effect of single nucleotide polymorphisms (SNP) of TRPV4 gene on the development of airway hyperresponsiveness (39.7% of cases) in response to the decrease in osmolarity under inspiration of distilled water aerosol was studies in 189 patients with uncontrolled bronchial asthma. rs6606743 SNP was found to significantly contribute to the development of osmotic airway hyperresponsiveness. Analysis of the dominant genetic model revealed substantial prevalence of AG + GG genotype frequency in the group of patients with asthma with osmotic hyperresponsiveness in comparison with the patients who had negative response to bronchoprovocation. In addition, carriers of GG or AG genotypes had significantly more profound decrease of lung function parameters in relation to A homozygous patients. PMID:27599507

  4. ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice.

    PubMed

    Kasahara, David I; Mathews, Joel A; Park, Chan Y; Cho, Youngji; Hunt, Gabrielle; Wurmbrand, Allison P; Liao, James K; Shore, Stephanie A

    2015-10-01

    Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1(+/-), and ROCK2(+/-) mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ROCK2 haploinsufficiency did not affect airway responsiveness in air-exposed mice but significantly reduced ozone-induced AHR, with a greater reduction in ROCK2(+/-) mice despite increased bronchoalveolar lavage (BAL) inflammatory cells in ROCK2(+/-) mice. Compared with wild-type mice, ozone-induced increases in BAL hyaluronan, a matrix protein implicated in ozone-induced AHR, were lower in ROCK1(+/-) but not ROCK2(+/-) mice. Ozone-induced increases in other inflammatory moieties reported to contribute to ozone-induced AHR (IL-17A, osteopontin, TNFα) were not different in wild-type vs. ROCK1(+/-) or ROCK2(+/-) mice. We also observed a dose-dependent reduction in ozone-induced AHR after treatment with the ROCK1/ROCK2 inhibitor fasudil, even though fasudil was administered after induction of inflammation. Ozone increased pulmonary expression of ROCK2 but not ROCK1 or RhoA. A ROCK2 inhibitor, SR3677, reduced contractile forces in primary human airway smooth muscle cells, confirming a role for ROCK2 in airway smooth muscle contraction. Our results demonstrate that ozone-induced AHR requires ROCK. Whereas ROCK1-dependent changes in hyaluronan may contribute to ROCK1's role in O3-induced AHR, the role of ROCK2 is downstream of inflammation, likely at the level of airway smooth muscle contraction. PMID:26276827

  5. Acid aspiration-induced airways hyperresponsiveness in mice.

    PubMed

    Allen, Gilman B; Leclair, Timothy R; von Reyn, Jessica; Larrabee, Yuna C; Cloutier, Mary E; Irvin, Charles G; Bates, Jason H T

    2009-12-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 microl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (R(N)), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak R(N), G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways. PMID:19797689

  6. Acid aspiration-induced airways hyperresponsiveness in mice

    PubMed Central

    Leclair, Timothy R.; von Reyn, Jessica; Larrabee, Yuna C.; Cloutier, Mary E.; Irvin, Charles G.; Bates, Jason H. T.

    2009-01-01

    The role of gastroesophageal reflux and micro-aspiration as a trigger of airways hyperresponsiveness (AHR) in patients with asthma is controversial. The role of acid reflux and aspiration as a direct cause of AHR in normal subjects is also unclear. We speculated that aspiration of a weak acid with a pH (1.8) equivalent to the upper range of typical gastric contents would lead to AHR in naive mice. We further speculated that modest reductions in aspirate acidity to a level expected during gastric acid suppression therapy (pH 4.0) would impede aspiration-induced AHR. BALB/c female mice were briefly anesthetized with isoflurane and allowed to aspirate 75 μl of saline with HCl (pH 1.8, 4.0, or 7.4) or underwent sham aspiration. Mice were re-anesthetized 2 or 24 h later, underwent tracheostomy, and were coupled to a mechanical ventilator. Forced oscillations were used to periodically measure respiratory impedance (Zrs) following aerosol delivery of saline and increasing doses of methacholine to measure for AHR. Values for elastance (H), airways resistance (RN), and tissue damping (G) were derived from Zrs. Aspirate pH of 1.8 led to a significant overall increase in peak RN, G, and H compared with pH 4.0 and 7.4 at 2 and 24 h. Differences between pH 7.4 and 4.0 were not significant. In mice aspirating pH 1.8 compared with controls, airway lavage fluid contained more neutrophils, higher protein, and demonstrated higher permeability. We conclude that acid aspiration triggers an acute AHR, driven principally by breakdown of epithelial barrier integrity within the airways. PMID:19797689

  7. Dose-response relationship of ozone-induced airway hyperresponsiveness in unanesthetized guinea pigs

    SciTech Connect

    Nishikawa, M.; Suzuki, S.; Ikeda, H.; Fukuda, T.; Suzuki, J.; Okubo, T. )

    1990-06-01

    The effect of ozone dose (the product of ozone concentration and exposure time) on airway responsiveness was examined in unanesthetized, spontaneously breathing guinea pigs. Airway responsiveness was assessed by measuring specific airway resistance (sRaw) as a function of increasing concentration of inhaled methacholine (Mch) aerosol (the concentration of Mch required in order to double the baseline sRaw: PC200Mch). The airway responsiveness was measured before and at 5 min, 5 h, and 24 h after exposure. A 30-min exposure to 1 ppm ozone (dose 30 ppm.min) did not change PC200Mch at any time after exposure. Both a 90-min exposure to 1 ppm ozone and a 30-min exposure to 3 ppm ozone, which are identical in terms of ozone dose (90 ppm.min), decreased PC200Mch to a similar degree. A 120-min exposure to 3 ppm ozone (360 ppm.min) produced a much greater decrease of PC200Mch at 5 min and 5 h after exposure, compared with low-dose exposure. There was a significant correlation between ozone dose and the change in airway responsiveness. In all groups, the baseline sRaw was increased by approximately 50% at 5 min after exposure, but there was no correlation between the changes in PC200Mch and the baseline sRaw. This study suggests that ozone-induced airway hyperresponsiveness in guinea pigs is closely related to ozone dose.

  8. Thalidomide attenuates airway hyperresponsiveness and eosinophilic inflammation in a murine model of allergic asthma.

    PubMed

    Asano, Toshiaki; Kume, Hiroaki; Taki, Fumitaka; Ito, Satoru; Hasegawa, Yoshinori

    2010-01-01

    Asthma is characterized by chronic eosinophilic inflammation and hyperresponsiveness of the airways. We hypothesized that thalidomide, which has numerous immunomodulatory properties, may have anti-inflammatory effects in allergic asthma. BALB/c mice sensitized and challenged with ovalbumin (OVA) were treated orally with thalidomide (30, 100, or 300 mg/kg) or a vehicle. When thalidomide was administered to OVA-challenged mice, the number of eosinophils in bronchoalveolar lavage fluid (BALF) was significantly decreased. The numbers of inflammatory cells other than eosinophils were not reduced by thalidomide. Thalidomide inhibited the elevated levels of interleukin-5 (IL-5) and tumor necrosis factor-alpha (TNF-alpha) in BALF by OVA challenges. Histological analysis of the lung revealed that both the infiltration of inflammatory cells and the hyperplasia of goblet cells were significantly suppressed by thalidomide treatment. Furthermore, thalidomide significantly inhibited the response to methacholine induced by OVA challenges. Taken together, thalidomide treatment decreased airway inflammation and hyperresponsiveness in a murine model of allergic asthma. These results might provide an opportunity for the development of novel therapeutics to treat severe asthma. PMID:20522972

  9. A fungal protease allergen provokes airway hyper-responsiveness in asthma.

    PubMed

    Balenga, Nariman A; Klichinsky, Michael; Xie, Zhihui; Chan, Eunice C; Zhao, Ming; Jude, Joseph; Laviolette, Michel; Panettieri, Reynold A; Druey, Kirk M

    2015-01-01

    Asthma, a common disorder that affects >250 million people worldwide, is defined by exaggerated bronchoconstriction to inflammatory mediators including acetylcholine (ACh), bradykinin and histamine-also termed airway hyper-responsiveness. Nearly 10% of people with asthma have severe, treatment-resistant disease, which is frequently associated with immunoglobulin-E sensitization to ubiquitous fungi, typically Aspergillus fumigatus (Af). Here we show that a major Af allergen, Asp f13, which is a serine protease, alkaline protease 1 (Alp 1), promotes airway hyper-responsiveness by infiltrating the bronchial submucosa and disrupting airway smooth muscle (ASM) cell-extracellular matrix (ECM) interactions. Alp 1-mediated ECM degradation evokes pathophysiological RhoA-dependent Ca(2+) sensitivity and bronchoconstriction. These findings support a pathogenic mechanism in asthma and other lung diseases associated with epithelial barrier impairment, whereby ASM cells respond directly to inhaled environmental allergens to generate airway hyper-responsiveness. PMID:25865874

  10. Pituitary Adenylate Cyclase-Activating Polypeptide Reverses Ammonium Metavanadate-Induced Airway Hyperresponsiveness in Rats

    PubMed Central

    Tlili, Mounira; Rouatbi, Sonia; Sriha, Badreddine; Ben Rhouma, Khémais; Sakly, Mohsen; Vaudry, David; Wurtz, Olivier; Tebourbi, Olfa

    2015-01-01

    The rate of atmospheric vanadium is constantly increasing due to fossil fuel combustion. This environmental pollution favours vanadium exposure in particular to its vanadate form, causing occupational bronchial asthma and bronchitis. Based on the well admitted bronchodilator properties of the pituitary adenylate cyclase-activating polypeptide (PACAP), we investigated the ability of this neuropeptide to reverse the vanadate-induced airway hyperresponsiveness in rats. Exposure to ammonium metavanadate aerosols (5 mg/m3/h) for 15 minutes induced 4 hours later an array of pathophysiological events, including increase of bronchial resistance and histological alterations, activation of proinflammatory alveolar macrophages, and increased oxidative stress status. Powerfully, PACAP inhalation (0.1 mM) for 10 minutes alleviated many of these deleterious effects as demonstrated by a decrease of bronchial resistance and histological restoration. PACAP reduced the level of expression of mRNA encoding inflammatory chemokines (MIP-1α, MIP-2, and KC) and cytokines (IL-1α and TNF-α) in alveolar macrophages and improved the antioxidant status. PACAP reverses the vanadate-induced airway hyperresponsiveness not only through its bronchodilator activity but also by counteracting the proinflammatory and prooxidative effects of the metal. Then, the development of stable analogs of PACAP could represent a promising therapeutic alternative for the treatment of inflammatory respiratory disorders. PMID:26199679

  11. Influenza A infection enhances antigen-induced airway inflammation and hyper-responsiveness in young but not aged mice

    PubMed Central

    Birmingham, Janette M.; Gillespie, Virginia L.; Srivastava, Kamal; Li, Xiu-Min; Busse, Paula J.

    2015-01-01

    Background Although morbidity and mortality rates from asthma are highest in patients > 65 years of age, the effect of older age on airway inflammation in asthma is not well established. Objective To investigate age-related differences in the promotion of allergic inflammation after influenza A viral respiratory infection on antigen specific IgE production, antigen-induced airway inflammation and airway hyper-responsiveness in mice. Methods To accomplish this objective, the following model system was used. Young (six-week) and aged (18-month) BALB/c mice were first infected with a non-lethal dose of influenza virus A (H/HK×31). Mice were then ovalbumin (OVA) sensitized during the acute-infection (3-days post inoculation) and then chronically underwent challenge to the airways with OVA. Forty-eight hours after the final OVA-challenge, airway hyperresponsiveness (AHR), bronchoalveolar fluid (BALF) cellular and cytokine profile, antigen-specific IgE and IgG1, and lung tissue inflammation were measured. Results Age-specific differences were noted on the effect of a viral infection, allergic sensitization, airway inflammation and airway hyperresponsiveness. Serum OVA-specific IgE was significantly increased in only the aged mice infected with influenza virus. Despite greater morbidity (e.g. weight loss and sickness scores) during the acute infection in the 18-month old mice that were OVA-sensitized there was little effect on the AHR and BALF cellular differential. In contrast, BALF neutrophils and AHR increased, but eosinophils decreased in 6-week mice that were OVA-sensitized during an acute influenza infection. Conclusion With increased age in a mouse model, viral infection prior to antigen sensitization affects the airway and systemic allergic response differently. These differences may reflect distinct phenotypic features of allergic inflammation in older patients with asthma PMID:25039815

  12. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling.

    PubMed

    Tang, Dale D

    2015-01-01

    Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma. PMID:26517982

  13. The effect of antioxidants on ozone-induced airway hyperresponsiveness in dogs

    SciTech Connect

    Matsui, S.; Jones, G.L.; Woolley, M.J.; Lane, C.G.; Gontovnick, L.S.; O'Byrne, P.M. )

    1991-12-01

    The role of oxygen radicals in causing ozone-induced airway hyperresponsiveness in dogs was examined by pretreating dogs with allopurinol and/or deferoxamine mesylate (desferal), which are inhibitors of oxygen radical generation, before ozone inhalation. Acetylcholine airway responsiveness was measured before and after either air or ozone inhalation (3 ppm for 20 min) on 5 experimental days separated by at least 2 wk. On each day, the dogs were pretreated intravenously with allopurinol (50 mg/kg) followed by inhaled desferal (1,000 mg inhalation) or with allopurinol followed by the diluent for desferal or with the diluent for allopurinol and desferal or with both diluents. The effect of ozone on acetylcholine airway responsiveness was expressed as the differences in the log-transformed preozone-postozone acetylcholine provocative concentrations. When dogs received both diluents or either treatment alone, ozone inhalation caused airway hyperresponsiveness. The mean log differences for the preozone-postozone acetylcholine provocative concentration were 0.804 (SEM, 0.17) for both diluents, 0.524 (SEM, 0.16) for allopurinol alone, and 0.407 (SEM, 0.22) for desferal alone. However, the combination of allopurinol and desferal significantly inhibited the development of ozone-induced airway hyperresponsiveness, the log difference being 0.195 (SEM, 0.11) (p less than 0.05), without inhibiting ozone-induced neutrophil influx into the airways. The results suggest that the production of oxygen radicals is important in the pathogenesis of ozone-induced airway hyperresponsiveness.

  14. Hyperresponsiveness in the human nasal airway: new targets for the treatment of allergic airway disease.

    PubMed Central

    Turner, P J; Foreman, J C

    1999-01-01

    Allergic rhinitis is a condition which affects over 15% of the population in the United Kingdom. The pathological process involves two stages: nasal inflammation, and the development of nasal airway hyperresponsiveness (AHR) to allergen and a number of other stimuli. This results in the amplification of any subsequent allergic reaction, contributing to the chronic allergic state. A number of different hypotheses have been proposed to explain the underlying mechanism of AHR, including a role for eosinophil-derived proteins, free radicals and neuropeptides. While there may be a number of independent pathways which can result in AHR, evidence obtained from both animal models and in vivo experiments in humans indicate that some mediators may interact with one another, resulting in AHR. Further research into these interactions may open new avenues for the pharmacological treatment of chronic allergic rhinitis, and possibly other allergic airway diseases. PMID:10704051

  15. Does the length dependency of airway smooth muscle force contribute to airway hyperresponsiveness?

    PubMed

    Lee-Gosselin, Audrey; Pascoe, Chris D; Couture, Christian; Paré, Peter D; Bossé, Ynuk

    2013-11-01

    Airway wall remodeling and lung hyperinflation are two typical features of asthma that may alter the contractility of airway smooth muscle (ASM) by affecting its operating length. The aims of this study were as follows: 1) to describe in detail the "length dependency of ASM force" in response to different spasmogens; and 2) to predict, based on morphological data and a computational model, the consequence of this length dependency of ASM force on airway responsiveness in asthmatic subjects who have both remodeled airway walls and hyperinflated lungs. Ovine tracheal ASM strips and human bronchial rings were isolated and stimulated to contract in response to increasing concentrations of spasmogens at three different lengths. Ovine tracheal strips were more sensitive and generated greater force at longer lengths in response to acetylcholine (ACh) and K(+). Equipotent concentrations of ACh were approximately a log less for ASM stretched by 30% and approximately a log more for ASM shortened by 30%. Similar results were observed in human bronchi in response to methacholine. Morphometric and computational analyses predicted that the ASM of asthmatic subjects may be elongated by 6.6-10.4% (depending on airway generation) due to remodeling and/or hyperinflation, which could increase ACh-induced force by 1.8-117.8% (depending on ASM length and ACh concentration) and enhance the increased resistance to airflow by 0.4-4,432.8%. In conclusion, elongation of ASM imposed by airway wall remodeling and/or hyperinflation may allow ASM to operate at a longer length and to consequently generate more force and respond to lower concentration of spasmogens. This phenomenon could contribute to airway hyperresponsiveness. PMID:23970527

  16. Increased Th2 cytokine secretion, eosinophilic airway inflammation, and airway hyperresponsiveness in neurturin-deficient mice.

    PubMed

    Michel, Tatiana; Thérésine, Maud; Poli, Aurélie; Domingues, Olivia; Ammerlaan, Wim; Brons, Nicolaas H C; Hentges, François; Zimmer, Jacques

    2011-06-01

    Neurotrophins such as nerve growth factor and brain-derived neurotrophic factor have been described to be involved in the pathogenesis of asthma. Neurturin (NTN), another neurotrophin from the glial cell line-derived neurotrophic factor family, was shown to be produced by human immune cells: monocytes, B cells, and T cells. Furthermore, it was previously described that the secretion of inflammatory cytokines was dramatically stimulated in NTN knockout (NTN(-/-)) mice. NTN is structurally similar to TGF-β, a protective cytokine in airway inflammation. This study investigates the implication of NTN in a model of allergic airway inflammation using NTN(-/-) mice. The bronchial inflammatory response of OVA-sensitized NTN(-/-) mice was compared with wild-type mice. Airway inflammation, Th2 cytokines, and airway hyperresponsiveness (AHR) were examined. NTN(-/-) mice showed an increase of OVA-specific serum IgE and a pronounced worsening of inflammatory features. Eosinophil number and IL-4 and IL-5 concentration in the bronchoalveolar lavage fluid and lung tissue were increased. In parallel, Th2 cytokine secretion of lung draining lymph node cells was also augmented when stimulated by OVA in vitro. Furthermore, AHR was markedly enhanced in NTN(-/-) mice after sensitization and challenge when compared with wild-type mice. Administration of NTN before challenge with OVA partially rescues the phenotype of NTN(-/-) mice. These findings provide evidence for a dampening role of NTN on allergic inflammation and AHR in a murine model of asthma. PMID:21508262

  17. Small Airway Impairment and Bronchial Hyperresponsiveness in Asthma Onset

    PubMed Central

    Scalese, Marco; Migliorini, Maria Giovanna; Di Tomassi, Maurizio; Scala, Raffaele

    2014-01-01

    Purpose Our study tried to find a relationship between baseline FEF25-75% and airway hyperresponsiveness (AHR) and whether a greater FEF25-75% impairment may be a marker of a more severe hyperresponsiveness in subjects with normal FEV1 and FEV1/FVC and suggestive asthma symptoms. Besides, we tried to asses a FEF25-75% cut-off value to identify hyper-reactive subjects. Methods 4,172 subjects (2,042 M; mean age: 38.3±14.9; mean FEV1 % predicted: 100.5±12.7 and FEV1/FVC: 85.4±6.8) were examined after performing a methacholine (Mch) test. All subjects reported a symptom onset within 3 years before the test. Subjects with PD20<400 or >400 µg were arbitrarily considered affected by moderate/severe and borderline AHR, respectively. Results PD20 values were 213 (IQR:86-557), 340 (IQR:157-872) and 433 (IQR:196-1032) µg in subjects with baseline FEF25-75≤50%, FEF25-75 between 50 and 70% and FEF25-75>70% respectively (P<0.0001). Only in moderate/severe hyper-reactive subjects (excluded borderlines), PD20 was lower in the FEF25-75≤50% subgroup than in the 1 with FEF25-75>70%. The hyperreactive subjects percentage, was higher in those with FEF25-75≤50% and lower in those with FEF25-75>70% (P<0.0001). FEF25-75<50% (compared to FEF25-75>70%) was a higher AHR risk factor, especially in subjects with moderate/severe AHR (OR: 2.18 [IQR:1.41-3.37]; P<0.0001). Thresholds yielding the highest combined sensitivity/specificity for FEF25-75% were 75.19 (area under curve [AUC]: 0.653) and 74.95 (AUC:0.688) in subjects with PD20<2,400 and <400 µg respectively. FEV1, FVC, and FEV1/FVC measured in subjects with different FEF25-75≤50%, FEF25-75>50 and ≤70% or FEF25-75>70% levels were similar both in normoreactive and hyperreactive subjects. Conclusions At asthma onset, reduced baseline FEF25-75 values with normal FEV1 and FEV1/FVC may predict AHR. Detectable predictive cut-off values do not exist because even normoreactive subjects can show lower FEF25-75 values. Furthermore, a

  18. Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model

    PubMed Central

    Spaziano, Giuseppe; Piegari, Elena; Matteis, Maria; Cappetta, Donato; Esposito, Grazia; Russo, Rosa; Tartaglione, Gioia; De Palma, Raffaele; Rossi, Francesco; D’Agostino, Bruno

    2016-01-01

    Background The need for new options for chronic lung diseases promotes the research on stem cells for lung repair. Bone marrow-derived mesenchymal stem cells (MSCs) can modulate lung inflammation, but the data on cellular processes involved in early airway remodeling and the potential involvement of neuropeptides are scarce. Objectives To elucidate the mechanisms by which local administration of MSCs interferes with pathophysiological features of airway hyperresponsiveness in an animal model. Methods GFP-tagged mouse MSCs were intratracheally delivered in the ovalbumin mouse model with subsequent functional tests, the analysis of cytokine levels, neuropeptide expression and histological evaluation of MSCs fate and airway pathology. Additionally, MSCs were exposed to pro-inflammatory factors in vitro. Results Functional improvement was observed after MSC administration. Although MSCs did not adopt lung cell phenotypes, cell therapy positively affected airway remodeling reducing the hyperplastic phase of the gain in bronchial smooth muscle mass, decreasing the proliferation of epithelium in which mucus metaplasia was also lowered. Decrease of interleukin-4, interleukin-5, interleukin-13 and increase of interleukin-10 in bronchoalveolar lavage was also observed. Exposed to pro-inflammatory cytokines, MSCs upregulated indoleamine 2,3-dioxygenase. Moreover, asthma-related in vivo upregulation of pro-inflammatory neurokinin 1 and neurokinin 2 receptors was counteracted by MSCs that also determined a partial restoration of VIP, a neuropeptide with anti-inflammatory properties. Conclusion Intratracheally administered MSCs positively modulate airway remodeling, reduce inflammation and improve function, demonstrating their ability to promote tissue homeostasis in the course of experimental allergic asthma. Because of a limited tissue retention, the functional impact of MSCs may be attributed to their immunomodulatory response combined with the interference of neuropeptide

  19. Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model

    PubMed Central

    Bazett, Mark; Bergeron, Marie-Eve; Haston, Christina K.

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator deficient mouse models develop phenotypes of relevance to clinical cystic fibrosis (CF) including airway hyperresponsiveness, small intestinal bacterial overgrowth and an altered intestinal microbiome. As dysbiosis of the intestinal microbiota has been recognized as an important contributor to many systemic diseases, herein we investigated whether altering the intestinal microbiome of BALB/c Cftrtm1UNC mice and wild-type littermates, through treatment with the antibiotic streptomycin, affects the CF lung, intestinal and bone disease. We demonstrate that streptomycin treatment reduced the intestinal bacterial overgrowth in Cftrtm1UNC mice and altered the intestinal microbiome similarly in Cftrtm1UNC and wild-type mice, principally by affecting Lactobacillus levels. Airway hyperresponsiveness of Cftrtm1UNC mice was ameliorated with streptomycin, and correlated with Lactobacillus abundance in the intestine. Additionally, streptomycin treated Cftrtm1UNC and wild-type mice displayed an increased percentage of pulmonary and mesenteric lymph node Th17, CD8 + IL-17+ and CD8 + IFNγ+ lymphocytes, while the CF-specific increase in respiratory IL-17 producing γδ T cells was decreased in streptomycin treated Cftrtm1UNC mice. Bone disease and intestinal phenotypes were not affected by streptomycin treatment. The airway hyperresponsiveness and lymphocyte profile of BALB/c Cftrtm1UNC mice were affected by streptomycin treatment, revealing a potential intestinal microbiome influence on lung response in BALB/c Cftrtm1UNC mice. PMID:26754178

  20. The effect of ozone on inflammatory cell infiltration and airway hyperresponsiveness in the guinea pig lung

    SciTech Connect

    Schultheis, A.J.H.

    1993-01-01

    Inflammatory cells may contribute to the development of exaggerated bronchoconstrictor responses since a persistent link has been noted between pulmonary inflammation and airway hyperresponsiveness. In these studies guinea pigs were exposed to 2.0 ppm ozone for 4 hours, then immediately sacrificed or allowed to breathe filtered air for up to 14 days. Following ozone exposure there was an immediate massive neutrophil infiltration into the lung. Neutrophils in lung digest dropped to control values within 3-12 hours post-ozone but remained elevated in BAL fluid for 3 days. There was probable eosinophil degranulation within the first 24 hours post-ozone. Guinea pigs were hyperresponsive to vigal stimulation through 3 days post-ozone. Although they were also hyperresponsive to ACh, responses to MCh were unchanged. Neuronal M[sub 2] receptors were dysfunctional through 3 days post-ozone. There was resolution of inflammation, airway responsiveness, and neuronal M[sub 2] receptor function by 14 days post-exposure. This investigation has (1) confirmed an immediate lung inflammation following acute ozone exposure; (2) established that cells in BAL give a distorted reflection of inflammatory events in lung digest; (3) demonstrated that ozone-induced hyperresponsiveness is at least partially due to efferent cholinergic mechanisms without functional changes of muscarinic receptors on airway smooth muscle; (4) shown that ACh may not be an appropriate agent to test ozone-induced airway hyperresponsiveness; and (5) demonstrated that inhibitory neuronal M[sub 2] receptors are dysfunctional following ozone exposure. There was close linkage between these events, suggesting that they may be causally related. This investigation proposes a specific mechanism, dysfunction of neuronal M[sub 2] receptors, by which inflammatory cells could cause airway hyperresponsiveness following acute ozone exposure.

  1. Roflumilast Ameliorates Airway Hyperresponsiveness Caused by Diet-Induced Obesity in a Murine Model.

    PubMed

    Park, Hye Jung; Lee, Jae-Hyun; Park, Yoon Hee; Han, Heejae; Sim, Da Woon; Park, Kyung Hee; Park, Jung-Won

    2016-07-01

    Obese patients with asthma respond poorly to conventional asthma medications, resulting in severe symptoms and poor prognosis. Roflumilast, a phosphodiesterase-4 inhibitor that lowers the levels of various substances that are implicated in obese subjects with asthma, may be effective in the treatment of those subjects. We evaluated the potential of roflumilast as a novel therapeutic agent for obese subjects with asthma. We designed three models: diet-induced obesity (DIO); DIO with ovalbumin (OVA); and OVA. We fed C57BL/6J mice a high-fat diet for 3 months with or without OVA sensitization and challenge. Roflumilast or dexamethasone was administered orally three times at 2-day intervals in the last experimental week. Airway hyperresponsiveness resulting from DIO significantly improved in the roflumilast-treated group compared with the dexamethasone-treated groups. Although DIO did not affect the cell proliferation in bronchoalveolar lavage fluid, increased fibrosis was seen in the DIO group, which significantly improved from treatment with roflumilast. DIO-induced changes in adiponectin and leptin levels were improved by roflumilast, whereas dexamethasone aggravated them. mRNA levels and proteins of TNF-α, transforming growth factor-β, IL-1β, and IFN-γ increased in the DIO group and decreased with roflumilast. The reactive oxygen species levels were also increased in the DIO group and decreased by roflumilast. In the DIO plus OVA and OVA models, roflumilast improved Th1 and Th2 cell activation to a greater extent than dexamethasone. Roflumilast is significantly more effective than dexamethasone against airway hyperresponsiveness caused by DIO in the murine model. Roflumilast may represent a promising therapeutic agent for the treatment of obese patients with asthma. PMID:26756251

  2. Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness.

    PubMed

    Zhang, Pengyu; Li, Feng; Wiegman, Coen H; Zhang, Min; Hong, Yan; Gong, Jicheng; Chang, Yan; Zhang, Junfeng Jim; Adcock, Ian; Chung, Kian Fan; Zhou, Xin

    2015-01-01

    Exposure to ozone has been associated with airway inflammation, oxidative stress, and bronchial hyperresponsiveness. The goal of this study was to examine whether these adverse effects of ozone could be prevented or reversed by hydrogen sulfide (H2S) as a reducing agent. The H2S donor sodium (NaHS) (2 mg/kg) or vehicle (PBS) was intraperitoneally injected into mice 1 hour before and after 3-hour ozone (2.5 ppm) or air exposure, and the mice were studied 24 hours later. Preventive and therapeutic treatment with NaHS reduced the ozone-induced increases in the total cells, including neutrophils and macrophages; this treatment also reduced levels of cytokines, including TNF-α, chemokine (C-X-C motif) ligand 1, IL-6, and IL-1β levels in bronchial alveolar lavage fluid; inhibited bronchial hyperresponsiveness; and attenuated ozone-induced increases in total malondialdehyde in bronchoalveolar lavage fluid and decreases in the ratio of reduced glutathione/oxidized glutathione in the lung. Ozone exposure led to decreases in the H2S production rate and in mRNA and protein levels of cystathionine-β-synthetase and cystathionine-γ-lyase in the lung. These effects were prevented and reversed by NaHS treatment. Furthermore, NaHS prevented and reversed the phosphorylation of p38 mitogen-activated protein kinase and heat shock protein 27. H2S may have preventive and therapeutic value in the treatment of airway diseases that have an oxidative stress basis. PMID:25010831

  3. Chronic exposure to perfluorinated compounds: Impact on airway hyperresponsiveness and inflammation

    PubMed Central

    Ryu, Min H.; Jha, Aruni; Ojo, Oluwaseun O.; Mahood, Thomas H.; Basu, Sujata; Detillieux, Karen A.; Nikoobakht, Neda; Wong, Charles S.; Loewen, Mark; Becker, Allan B.

    2014-01-01

    Emerging epidemiological evidence reveals a link between lung disease and exposure to indoor pollutants such as perfluorinated compounds (PFCs). PFC exposure during critical developmental stages may increase asthma susceptibility. Thus, in a murine model, we tested the hypothesis that early life and continued exposure to two ubiquitous household PFCs, perfluorooctanoic acid (PFOA) and perflurooctanesulfonic acid (PFOS), can induce lung dysfunction that exacerbates allergen-induced airway hyperresponsiveness (AHR) and inflammation. Balb/c mice were exposed to PFOA or PFOS (4 mg/kg chow) from gestation day 2 to 12 wk of age by feeding pregnant and nursing dams, and weaned pups. Some pups were also sensitized and challenged with ovalbumin (OVA). We assessed lung function and inflammatory cell and cytokine expression in the lung and examined bronchial goblet cell number. PFOA, but not PFOS, without the OVA sensitization/challenge induced AHR concomitant with a 25-fold increase of lung macrophages. PFOA exposure did not affect OVA-induced lung inflammatory cell number. In contrast, PFOS exposure inhibited OVA-induced lung inflammation, decreasing total cell number in lung lavage by 68.7%. Interferon-γ mRNA in the lung was elevated in all PFC-exposed groups. Despite these effects, neither PFOA nor PFOS affected OVA-induced AHR. Our data do not reveal PFOA or PFOS exposure as a risk factor for more severe allergic asthma-like symptoms, but PFOA alone can induce airway inflammation and alter airway function. PMID:25217661

  4. Rosmarinic Acid Attenuates Airway Inflammation and Hyperresponsiveness in a Murine Model of Asthma.

    PubMed

    Liang, Zhengmin; Xu, Yangfeng; Wen, Xuemei; Nie, Haiying; Hu, Tingjun; Yang, Xiaofeng; Chu, Xiao; Yang, Jian; Deng, Xuming; He, Jiakang

    2016-01-01

    Rosmarinic acid (RA) has numerous pharmacologic effects, including anti-oxidant, anti-inflammatory, and analgesic effects. This study aimed to evaluate the preventive activity of RA in a murine model of asthma and to investigate its possible molecular mechanisms. Female BALB/c mice sensitized and challenged with ovalbumin (Ova) were pretreated with RA (5, 10 or 20 mg/kg) at 1 h before Ova challenge. The results demonstrated that RA markedly inhibited increases in inflammatory cells and Th2 cytokines in the bronchoalveolar lavage fluid (BALF), significantly reduced the total IgE and Ova-specific IgE concentrations, and greatly ameliorated airway hyperresponsiveness (AHR) compared with the control Ova-induced mice. Histological analyses showed that RA substantially decreased the number of inflammatory cells and mucus hypersecretion in the airway. In addition, our results suggested that the protective effects of RA might be mediated by the suppression of ERK, JNK and p38 phosphorylation and activation of nuclear factor-κB (NF-κB). Furthermore, RA pretreatment resulted in a noticeable reduction in AMCase, CCL11, CCR3, Ym2 and E-selectin mRNA expression in lung tissues. These findings suggest that RA may effectively delay the progression of airway inflammation. PMID:27304950

  5. Acute exposure to hair bleach causes airway hyperresponsiveness in a rabbit model.

    PubMed

    Mensing, T; Marek, W; Raulf-Heimsoth, M; Baur, X

    1998-12-01

    Ammonium persulphate (APS) and hydrogen peroxide (H2O2) are used as oxidants in many industrial processes and are the main constituents of standard hair bleaching products. In a previous study, it was demonstrated that aerosols of APS induce alterations in airway responsiveness. The present study examined whether exposure for 4 h to a hair bleach composition (containing APS, potassium persulphate and H2O2) or H2O2 could induce airway hyperresponsiveness and/or an obstructive ventilation pattern in a rabbit model. Exposure to the aerosols altered neither baseline airway resistance, dynamic elastance, slope of inspiratory pressure generation nor arterial blood pressure and blood gas measurements. Similarly to APS, hair bleach aerosols containing > or =10.9 mg x m(-3) persulphate (ammonium and potassium salt) in air and > or =1.36 mg x m(-3) H2O2 in air caused airway hyperresponsiveness to acetylcholine after 4 h of exposure. Aerosolized H2O2 (> or =37 mg x m(-3) in air) did not influence airway responsiveness to acetylcholine. The results demonstrate that hair bleaching products containing persulphates dissolved in H2O2 cause airway hyperresponsiveness to acetylcholine in rabbits. PMID:9877493

  6. O3-induced airway hyperresponsiveness to noncholinergic system and other stimuli

    SciTech Connect

    Campos, M.G.; Segura, P.; Vargas, M.H.; Vanda, B.; Ponce-Monter, H.; Selman, M.; Montano, L.M. )

    1992-07-01

    The effect of O3 exposure (3 ppm, 1 h) on the in vivo and in vitro airway responsiveness, as well as the changes in cell contents in bronchoalveolar lavage (BAL) fluid, were evaluated 16-18 h after O3 exposure in sensitized and nonsensitized male guinea pigs. The sensitization procedure was performed through repeated inhalation of ovalbumin for 3 wk. Increase in pulmonary insufflation pressure produced by the excitatory nonadrenergic noncholinergic (eNANC) system, histamine, and antigen were assessed in in vivo conditions, whereas airway responsiveness to histamine and substance P was evaluated in in vitro conditions by use of tracheal chains with or without epithelium and lung parenchymal strips. The authors found that O3 exposure (1) increased the neutrophil content in BAL fluids in both sensitized and nonsensitized guinea pigs, (2) caused hyperresponsiveness to eNANC stimulation in nonsensitized guinea pigs (although combination of sensitization and O3 exposure paradoxically abolished the hyperresponsiveness to eNANC stimulation), (3) increased the in vivo bronchoconstrictor responses to histamine and antigen, (4) caused hyperresponsiveness to substance P in nonsensitized tracheae with or without epithelium and in sensitized tracheae with epithelium, (5) did not modify the responsiveness to histamine in tracheae with or without epithelium (and in addition, epithelium removal caused hyperresponsiveness to histamine even in those tracheae exposed to O3), and (6) produced hyperresponsiveness to histamine in lung parenchymal strips either from sensitized or nonsensitized guinea pigs.

  7. Anti-inflammatory drug (BW755C) inhibits airway hyperresponsiveness induced by ozone in dogs

    SciTech Connect

    Fabbri, L.M.; Aizawa, H.; O'Byrne, P.M.; Bethel, R.A.; Walters, E.H.; Holtzman, M.J.; Nadel, J.A.

    1985-08-01

    To follow up a previous observation that airway hyperresponsiveness induced by ozone is linked to airway inflammation, the authors investigated the effect of BW755C, an anti-inflammatory drug, on ozone-induced hyperresponsiveness in dogs. Airway responsiveness was assessed with dose-response curves of acetylcholine aerosol versus pulmonary resistance in two sets of experiments. In one set (placebo treatment), five dogs were given only saline solution treatment and were studied before treatment or ozone exposure and then after treatment both before and after ozone (3.0 ppm, 2 hours); in another set (BW755C treatment), the same dogs were studied before BW755C treatment or ozone and then after treatment (10 mg/kg intravenously) both before and after ozone. When the dogs were given no BW755C treatment, ozone induced a marked increase in airway responsiveness to acetylcholine. When the dogs were given BW755C, responsiveness was no different during treatment than before treatment but, more importantly, responsiveness did not increase significantly after ozone. The authors conclude that BW755C markedly inhibits ozone-induced airway hyperresponsiveness in dogs, probably by inhibiting the formation of oxygenation products of arachidonic acid.

  8. O3-induced mucosa-linked airway muscle hyperresponsiveness in the guinea pig

    SciTech Connect

    Murlas, C.G.; Murphy, T.P.; Chodimella, V. )

    1990-07-01

    We investigated the effects of ozone exposure (3.0 ppm, 2 h) on the responsiveness of guinea pig airway muscle in vitro from animals developing bronchial hyperreactivity. Muscarinic reactivity in vivo was determined by measuring specific airway resistance (sRaw) in response to increasing concentrations of aerosolized acetylcholine (ACh) administered before and 30 min after exposure. Immediately after reactivity testing, multiple tracheal rings from ozone- and air-exposed animals were prepared and the contractile responses to increasing concentrations of substance P, ACh, or KCl were assessed in the presence of 10 microM indomethacin with or without 1 microM phosphoramidon, an inhibitor of neutral endopeptidase. Isometric force generation in vitro was measured on stimulation by cumulative concentrations of the agonists, and force generation (in g/cm2) was calculated after determination of muscle cross-sectional area. The smooth muscle of mucosa-intact airways from guinea pigs with ozone-induced bronchial hyper-reactivity proved to be hyperresponsive in vitro to substance P and ACh but not to KCl. Pretreatment with phosphoramidon abolished the increase in substance P responsiveness but had no effect on muscarinic hyperresponsiveness after ozone exposure. Furthermore, substance P responsiveness was not augmented in ozone-exposed airways in which the mucosa had been removed before testing in vitro. Likewise, muscarinic hyperresponsiveness was not present in ozone-exposed airways without mucosa. Our data indicate that airway smooth muscle responsiveness is increased in guinea pigs with ozone-induced bronchial hyperreactivity and suggest that this hyperresponsiveness may be linked to non-cyclooxygenase mucosa-derived factors.

  9. Arachidonic acid metabolites do not mediate toluene diisocyanate-induced airway hyperresponsiveness in guinea pigs

    SciTech Connect

    Gordon, T.; Thompson, J.E.; Sheppard, D.

    1988-05-01

    Arachidonic acid metabolites have previously been demonstrated to mediate the airway hyperresponsiveness observed in guinea pigs and dogs after exposure to ozone. Guinea pigs were treated with indomethacin (a cyclooxygenase inhibitor), U-60,257 (piriprost, a 5-lipoxygenase inhibitor), or BW775c (a lipoxygenase and cyclooxygenase inhibitor) and exposed to air or 3 ppm TDI. Airway responsiveness to acetylcholine aerosol was examined 2 h after exposure. In control animals, the provocative concentration of acetylcholine which caused a 200% increase in pulmonary resistance over baseline (PC200) was significantly less (p less than 0.05) after exposure to TDI (8.6 +/- 2.0 mg/ml, geometric mean + geometric SE, n = 10) than after exposure to air (23.9 + 2.5 mg/ml, n = 14). The airway responsiveness to acetylcholine in animals treated with indomethacin or piriprost and exposed to TDI was not different from that of control animals exposed to TDI. Treatment with BW755c enhanced the airway hyperresponsiveness observed in animals exposed to TDI without altering the PC200 of animals exposed to air. The PC200 of animals treated with BW755c and exposed to TDI (2.3 + 0.8 mg/ml, n = 8) was significantly lower than the PC200 of control animals exposed to TDI (p less than 0.025). These results suggest that products of arachidonic acid metabolism are not responsible for TDI-induced airway hyperresponsiveness in guinea pigs. BW755c, however, appears to potentiate the TDI-induced airway hyperresponsiveness to acetylcholine by an as yet unidentified mechanism.

  10. The effect of phytocannabinoids on airway hyper-responsiveness, airway inflammation, and cough.

    PubMed

    Makwana, Raj; Venkatasamy, Radhakrishnan; Spina, Domenico; Page, Clive

    2015-04-01

    of airway smooth muscle in response to nerve stimulation by enhancing postganglionic acetylcholine release. Δ(9)-Tetrahydrocannabinol and CP55940 inhibited the TNF-α-enhanced acetylcholine release, and hence contraction and bronchoconstriction, through activation of presynaptic CB(1) and CB(2) receptors. The other cannabinoids did not influence cholinergic transmission, and only Δ(9)-THC demonstrated effects on airway hyper-responsiveness, anti-inflammatory activity, and antitussive activity in the airways. PMID:25655949

  11. A standardized aqueous extract of Anoectochilus formosanus modulated airway hyperresponsiveness in an OVA-inhaled murine model.

    PubMed

    Hsieh, C-C; Hsiao, H-B; Lin, W-C

    2010-07-01

    Anoectochilus formosanus HAYATA, a Chinese herb, is a valued folk medicine for fever, pain, and diseases of the lung and liver. Allergic asthma is characterized by increased serum IgE level and inflammation of the airways with high levels of interleukin (IL)-4 and IL-5 in bronchoalveolar lavage fluids (BALF). Constriction of airway smooth muscle and development of airway hyperresponsiveness (AHR) are the most important symptoms of allergic asthma. In our previous study, a standardized aqueous extract of A. formosanus (SAEAF) was used to modulate innate immunity of normal mice. In this study, airway inflammatory infiltrations, including T cell differentiation, cytokine modulation, allergic antibodies estimation, pulmonary pathology, and enhanced pause (Penh) of AHR were used to evaluate SAEAF treatment of an ovalbumin (OVA)-inhaled airway allergic murine model. The resulting cytokine profiles demonstrated that SAEAF can significantly reduce Th2 polarization after administration of SAEAF in OVA inhalation. These results also suggest that SAEAF modulates cytokine secretion in allergic asthma. Modulated natural T regulatory cells (CD25+/CD4+, Treg) were also shown to increase immuno-suppression in the allergic lung inflammation and further down-regulate airway inflammatory infiltration in eosinophils and macrophages. Finally, decreased airway anti-OVA IgE secretion and reduced AHR were observed. Our results indicate that the administration of SAEAF can modulate cytokines and T cell subpopulation by regulating inflammatory cell infiltration and modulating the allergic response. PMID:20092984

  12. Indomethacin inhibits the airway hyperresponsiveness but not the neutrophil influx induced by ozone in dogs

    SciTech Connect

    O'Byrne, P.M.; Walters, E.H.; Aizawa, H.; Fabbri, L.M.; Holtzman, M.J.; Nadel, J.A.

    1984-08-01

    To determine whether oxygenation products of arachidonic acid may be involved in the airway hyperresponsiveness induced by ozone exposure, we studied whether ozone-induced hyperresponsiveness could be inhibited by the prostaglandin synthetase inhibitor, indomethacin, in dogs. Airway responsiveness was assessed with dose-response curves of acetylcholine aerosol versus pulmonary resistance in 2 sets of experiments: in one set, 5 dogs were given no indomethacin treatment and were studied both before and after ozone exposure (3.0 ppm, 2 h); in another set, the same dogs were studied before indomethacin treatment or ozone exposure and then during treatment (1 mg/kg every 12 h for 4 days) both before and after ozone exposure. On each occasion, we also determined the number of neutrophils in biopsies of the airway epithelium. When the dogs were not treated with indomethacin, ozone caused a marked increase in responsiveness to acetylcholine and a marked increase in the number of neutrophils in the airway epithelium. When the dogs were given indomethacin, responsiveness was no different during treatment than before treatment, but more importantly, responsiveness did not increase significantly after they were exposed to ozone. Interestingly, indomethacin treatment did not affect either the baseline number of epithelial neutrophils before ozone exposure or the increase in the number of neutrophils after exposure. The results suggest that oxygenation products of arachidonic acid that are sensitive to inhibition by indomethacin play a role in ozone-induced hyperresponsiveness without affecting the influx of neutrophils.

  13. Induction by inhibitors of nitric oxide synthase of hyperresponsiveness in the human nasal airway

    PubMed Central

    Turner, P J; Maggs, J R L; Foreman, J C

    2000-01-01

    The effects of inhibitors of nitric oxide synthase (NOS) on the responsiveness of the human nasal airway were investigated, by measuring the nasal response to histamine and bradykinin. Repeated intranasal administration of NG-nitro-L-arginine methyl ester (L-NAME) or NG-monomethyl-L-arginine (L-NMMA), 1 μmol per nostril every 30 min for 6 h, increased the nasal obstruction induced by histamine, 50–500 μg, and bradykinin, 200 μg per nostril. A single administration of L-NAME, 1 μmol per nostril did not induce hyperresponsiveness to histamine. Pretreatment with L-arginine, 30 μmol, abolished the hyperresponsiveness to histamine caused by L-NAME, 1 μmol. Pretreatment with NG-nitro-D-arginine methyl ester (D-NAME), 1 μmol, did not induce hyperresponsiveness to histamine. Repeated administration of L-NAME, 1 μmol, caused a significant reduction in the amount of nitric oxide measured in the nasal cavity. Neither L-NMMA, 1 μmol, nor L-arginine, 30 μmol, altered the nasal hyperresponsiveness induced by platelet activating factor (PAF), 60 μg. PAF did not alter the levels of nitric oxide in the nasal cavity. The results suggest that inhibition of nitric oxide synthase induces a hyperresponsiveness in the human nasal airway, and that this occurs by a mechanism different from that involved in PAF-induced hyperresponsiveness. PMID:10991932

  14. Effect of an anti-Mo1 MAb on ozone-induced airway inflammation and airway hyperresponsiveness in dogs

    SciTech Connect

    Li, Z.; Daniel, E.E.; Lane, C.G.; Arnaout, M.A.; O'Byrne, P.M. )

    1992-12-01

    Ozone inhalation causes neutrophil migration into the airway and airway hyperresponsiveness in dogs. The leukocyte adhesion molecule Mo1 (CD11b/CD18) is a heterodimeric glycoprotein the expression of which is necessary for neutrophil adhesion to endothelium. To evaluate the contribution of Mo1 to ozone-induced neutrophil influx and airway hyperresponsiveness, six dogs were treated intravenously with an Anti-Mo1 monoclonal antibody (3.75 mg/kg in normal saline) that binds to both human and canine Mo1, or the diluent alone, 1.5 h before inhaling ozone (3 ppm for 30 min), or dry air. Airway responses to doubling doses of inhaled acetylcholine (ACh) were measured before and after inhalation of ozone. Neutrophil influx was assessed by bronchoalveolar lavage (BAL) performed after the second ACh inhalation. Treatment with anti-Mo1 prevented the ozone-induced influx of neutrophils into BAL. After diluent and inhaled dry air, the neutrophil count in BAL was 1.49 +/- 1.26 (SE) x 10(4) (5.0% of total cells). After diluent and inhaled ozone, the neutrophil count increased to 7.27 +/- 3.22 (SE) x 10(4) (22.6% of total cells) (P < 0.05). After anti-Mo1 and inhaled ozone, the neutrophil count was 1.48 +/- 0.62 (SE) x 10(4) (8.5% of total cells). Treatment with anti-Mo1 also significantly reduced the number of eosinophils in BAL after ozone. Ozone-induced ACh airway hyperresponsiveness was not prevented by treatment with anti-Mo1. These results indicate that expression of Mo1 is necessary for ozone-induced neutrophil migration into the airway lumen.

  15. Airways Hyperresponsiveness Following a Single Inhalation Exposure to Doxorubicin-Induced Heart Failure Prevents Airways Transition Metal-Rich Particulate Matter in Hypertensive Rats

    EPA Science Inventory

    Exposure to particulate matter (PM) air pollution results in airways hyperresponsiveness (AHR), however it also results in adverse cardiovascular effects, particularly in individuals with underlying cardiovascular disease. The impact of pre-existing cardiac deficit on PM-induced ...

  16. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma

    PubMed Central

    Yarova, Polina L.; Stewart, Alecia L.; Sathish, Venkatachalem; Britt, Rodney D; Thompson, Michael A.; Lowe, Alexander P. P.; Freeman, Michelle; Aravamudan, Bharathi; Kita, Hirohito; Brennan, Sarah C.; Schepelmann, Martin; Davies, Thomas; Yung, Sun; Cholisoh, Zakky; Kidd, Emma J.; Ford, William R.; Broadley, Kenneth J.; Rietdorf, Katja; Chang, Wenhan; Khayat, Mohd E. Bin; Ward, Donald T.; Corrigan, Christopher J.; Ward, Jeremy P. T.; Kemp, Paul J.; Pabelick, Christina M.; Prakash, Y. S.; Riccardi, Daniela

    2016-01-01

    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyper-reactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics. PMID:25904744

  17. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma.

    PubMed

    Yarova, Polina L; Stewart, Alecia L; Sathish, Venkatachalem; Britt, Rodney D; Thompson, Michael A; P Lowe, Alexander P; Freeman, Michelle; Aravamudan, Bharathi; Kita, Hirohito; Brennan, Sarah C; Schepelmann, Martin; Davies, Thomas; Yung, Sun; Cholisoh, Zakky; Kidd, Emma J; Ford, William R; Broadley, Kenneth J; Rietdorf, Katja; Chang, Wenhan; Bin Khayat, Mohd E; Ward, Donald T; Corrigan, Christopher J; T Ward, Jeremy P; Kemp, Paul J; Pabelick, Christina M; Prakash, Y S; Riccardi, Daniela

    2015-04-22

    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics. PMID:25904744

  18. Angiotensin-(1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation

    PubMed Central

    Magalhães, G S; Rodrigues-Machado, M G; Motta-Santos, D; Silva, A R; Caliari, M V; Prata, L O; Abreu, S C; Rocco, P R M; Barcelos, L S; Santos, R A S; Campagnole-Santos, M J

    2015-01-01

    Background and Purpose A long-term imbalance between pro- and anti-inflammatory mediators leads to airway remodelling, which is strongly correlated to most of the symptoms, severity and progression of chronic lung inflammation. The Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis of the renin-angiotensin system is associated with attenuation of acute and chronic inflammatory processes. In this study, we investigated the effects of Ang-(1-7) treatment in a model of chronic allergic lung inflammation. Experimental Approach Mice were sensitized to ovalbumin (OVA; 4 injections over 42 days, 14 days apart) and were challenged three times per week (days 21–46). These mice received Ang-(1-7) (1 μg·h−1, s.c.) by osmotic mini-pumps, for the last 28 days. Histology and morphometric analysis were performed in left lung and right ventricle. Airway responsiveness to methacholine, analysis of Ang-(1-7) levels (RIA), collagen I and III (qRT-PCR), ERK1/2 and JNK (Western blotting), IgE (elisa), cytokines and chemokines (elisa multiplex), and immunohistochemistry for Mas receptors were performed. Key Results Infusion of Ang-(1-7) in OVA-sensitized and challenged mice decreased inflammatory cell infiltration and collagen deposition in the airways and lung parenchyma, and prevented bronchial hyperresponsiveness. These effects were accompanied by decreased IgE and ERK1/2 phosphorylation, and decreased pro-inflammatory cytokines. Mas receptors were detected in the epithelium and bronchial smooth muscle, suggesting a site in the lung for the beneficial actions of Ang-(1-7). Conclusions and Implications Ang-(1-7) exerted beneficial attenuation of three major features of chronic asthma: lung inflammation, airway remodelling and hyperresponsiveness. Our results support an important protective role of Ang-(1-7) in lung inflammation. PMID:25559763

  19. Epithelium-generated neuropeptide Y induces smooth muscle contraction to promote airway hyperresponsiveness.

    PubMed

    Li, Shanru; Koziol-White, Cynthia; Jude, Joseph; Jiang, Meiqi; Zhao, Hengjiang; Cao, Gaoyuan; Yoo, Edwin; Jester, William; Morley, Michael P; Zhou, Su; Wang, Yi; Lu, Min Min; Panettieri, Reynold A; Morrisey, Edward E

    2016-05-01

    Asthma is one of the most common chronic diseases globally and can be divided into presenting with or without an immune response. Current therapies have little effect on nonimmune disease, and the mechanisms that drive this type of asthma are poorly understood. Here, we have shown that loss of the transcription factors forkhead box P1 (Foxp1) and Foxp4, which are critical for lung epithelial development, in the adult airway epithelium evokes a non-Th2 asthma phenotype that is characterized by airway hyperresponsiveness (AHR) without eosinophilic inflammation. Transcriptome analysis revealed that loss of Foxp1 and Foxp4 expression induces ectopic expression of neuropeptide Y (Npy), which has been reported to be present in the airways of asthma patients, but whose importance in disease pathogenesis remains unclear. Treatment of human lung airway explants with recombinant NPY increased airway contractility. Conversely, loss of Npy in Foxp1- and Foxp4-mutant airway epithelium rescued the AHR phenotype. We determined that NPY promotes AHR through the induction of Rho kinase activity and phosphorylation of myosin light chain, which induces airway smooth muscle contraction. Together, these studies highlight the importance of paracrine signals from the airway epithelium to the underlying smooth muscle to induce AHR and suggest that therapies targeting epithelial induction of this phenotype may prove useful in treatment of noneosinophilic asthma. PMID:27088802

  20. Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness

    PubMed Central

    Lui, Justin K.; Parameswaran, Harikrishnan; Albert, Mitchell S.; Lutchen, Kenneth R.

    2015-01-01

    Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject’s forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P < 0.0001), the difference between high and low frequency lung resistance (R = 0.668, P < 0.0001), and low-frequency lung elastance (R = 0.547, P = 0.0003). In asthmatic subjects with PC20 values <25 mg/mL, the coefficient of variation at baseline exhibited a strong negative trend (R = -0.798, P = 0.02) to PC20 dose. Our findings were consistent with the notion of peripheral rather than central involvement of ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy. PMID:26569412

  1. Inhalation of stable dust extract prevents allergen induced airway inflammation and hyperresponsiveness

    PubMed Central

    Peters, M; Kauth, M; Schwarze, J; Körner‐Rettberg, C; Riedler, J; Nowak, D; Braun‐Fahrländer, C; von Mutius, E; Bufe, A; Holst, O

    2006-01-01

    Background Recent epidemiological studies have shown that growing up on a traditional farm provides protection from the development of allergic disorders such as hay fever and allergic asthma. We present experimental evidence that substances providing protection from the development of allergic diseases can be extracted from dust collected in stables of animal farms. Methods Stable dust was collected from 30 randomly selected farms located in rural regions of the Alps (Austria, Germany and Switzerland). The dust was homogenised with glass beads and extracted with physiological sodium chloride solution. This extract was used to modulate immune response in a well established mouse model of allergic asthma. Results Treatment of mice by inhalation of stable dust extract during sensitisation to ovalbumin inhibited the development of airway hyperresponsiveness and airway eosinophilia upon challenge, as well as the production of interleukin 5 by splenocytes and of antigen specific IgG1 and IgE. Dust extract also suppressed the generation of human dendritic cells in vitro. The biological activity of the dust extract was not exclusively mediated by lipopolysaccharide. Conclusions Stable dust from animal farms contains strong immune modulating substances. These substances can interfere with the development of both cellular and humoral immunity against allergens, thus suppressing allergen sensitisation, airway inflammation, and airway hyperresponsiveness in a murine model of allergic asthma. PMID:16244088

  2. Chlamydophila pneumoniae induces a sustained airway hyperresponsiveness and inflammation in mice

    PubMed Central

    Blasi, Francesco; Aliberti, Stefano; Allegra, Luigi; Piatti, Gioia; Tarsia, Paolo; Ossewaarde, Jacobus M; Verweij, Vivienne; Nijkamp, Frans P; Folkerts, Gert

    2007-01-01

    Background It has been reported that Chlamydophila (C.) pneumoniae is involved in the initiation and promotion of asthma and chronic obstructive pulmonary diseases (COPD). Surprisingly, the effect of C. pneumoniae on airway function has never been investigated. Methods In this study, mice were inoculated intranasally with C. pneumoniae (strain AR39) on day 0 and experiments were performed on day 2, 7, 14 and 21. Results We found that from day 7, C. pneumoniae infection causes both a sustained airway hyperresponsiveness and an inflammation. Interferon-γ (IFN-γ) and macrophage inflammatory chemokine-2 (MIP-2) levels in bronchoalveolar lavage (BAL)-fluid were increased on all experimental days with exception of day 7 where MIP-2 concentrations dropped to control levels. In contrast, tumor necrosis factor-α (TNF-α) levels were only increased on day 7. From day 7 to 21 epithelial damage and secretory cell hypertrophy was observed. It is suggested that, the inflammatory cells/mediators, the epithelial damage and secretory cell hypertrophy contribute to initiation of airway hyperresponsiveness. Conclusion Our study demonstrates for the first time that C. pneumoniae infection can modify bronchial responsiveness. This has clinical implications, since additional changes in airway responsiveness and inflammation-status induced by this bacterium may worsen and/or provoke breathlessness in asthma and COPD. PMID:18021431

  3. Lipopolysaccharide exposure makes allergic airway inflammation and hyper-responsiveness less responsive to dexamethasone and inhibition of iNOS.

    PubMed

    Komlósi, Z I; Pozsonyi, E; Tábi, T; Szöko, E; Nagy, A; Bartos, B; Kozma, G T; Tamási, L; Orosz, M; Magyar, P; Losonczy, G

    2006-07-01

    Allergic airway disease can be refractory to anti-inflammatory treatment, whose cause is unclarified. Therefore, in the present experiment, we have tested the hypothesis that co-exposure to lipopolysacharide (Lps) and allergen results in glucocorticoid-resistant eosinophil airway inflammation and hyper-responsiveness (AHR). Ovalbumin (Ova)-sensitized BALB/c mice were primed with 10 microg intranasal Lps 24 h before the start of Ova challenges (20 min on 3 consecutive days). Dexamethasone (5 mg/kg/day) was given on the last 2 days of Ova challenges. AHR, cellular build-up, cytokine and nitrite concentrations of bronchoalveolar lavage fluid (BALF) and lung histology were examined. To assess the role of iNOS-derived NO in airway responsiveness, mice were treated with a selective inhibitor of this enzyme (1400W) 2 h before AHR measurements. More severe eosinophil inflammation and higher nitrite formation were found in Lps-primed than in non-primed allergized mice. After Lps priming, AHR and concentrations of T-helper type 2 cytokines in BALF were decreased, but still remained significantly higher than in controls. Eosinophil inflammation was partially, while nitrite production and AHR were observed to be largely dexamethasone resistant in Lps-primed allergized animals. 1400W effectively and rapidly diminished the AHR in Ova-sensitized and challenged mice, but failed to affect it after Lps priming plus allergization. In conclusion, Lps inhalation may exaggerate eosinophil inflammation and reduce responsiveness to anti-inflammatory treatment in allergic airway disease. PMID:16839411

  4. Concomitant exposure to ovalbumin and endotoxin augments airway inflammation but not airway hyperresponsiveness in a murine model of asthma.

    PubMed

    Mac Sharry, John; Shalaby, Karim H; Marchica, Cinzia; Farahnak, Soroor; Chieh-Li, Tien; Lapthorne, Susan; Qureshi, Salman T; Shanahan, Fergus; Martin, James G

    2014-01-01

    Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then underwent challenge with the same OVA (10 µg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1β, IL-12, IFN-γ, TNF-α and KC. Both OVA-challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator of the neutrophil, Th1 and T regulatory cell responses to OVA. PMID:24968337

  5. Concomitant Exposure to Ovalbumin and Endotoxin Augments Airway Inflammation but Not Airway Hyperresponsiveness in a Murine Model of Asthma

    PubMed Central

    Mac Sharry, John; Shalaby, Karim H.; Marchica, Cinzia; Farahnak, Soroor; Chieh-Li, Tien; Lapthorne, Susan; Qureshi, Salman T.; Shanahan, Fergus; Martin, James G.

    2014-01-01

    Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then underwent challenge with the same OVA (10 µg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1β, IL-12, IFN-γ, TNF-α and KC. Both OVA-challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator of the neutrophil, Th1 and T regulatory cell responses to OVA. PMID:24968337

  6. Phosphodiesterase 4B is essential for TH2-cell function and development of airway hyperresponsiveness in allergic asthma

    PubMed Central

    Catherine Jin, S.-L.; Goya, Sho; Nakae, Susumu; Wang, Dan; Bruss, Matthew; Hou, Chiaoyin; Umetsu, Dale; Conti, Marco

    2010-01-01

    Background Cyclic AMP (cAMP) signaling modulates functions of inflammatory cells involved in the pathogenesis of asthma, and type 4 cAMP-specific phosphodiesterases (PDE4s) are essential components of this pathway. Induction of the PDE4 isoform PDE4B is necessary for Toll-like receptor signaling in monocytes and macrophages and is associated with T cell receptor/CD3 in T cells; however, its exact physiological function in the development of allergic asthma remains undefined. Objectives We investigated the role of PDE4B in the development of allergen-induced airway hyperresponsiveness (AHR) and TH2-driven inflammatory responses. Methods Wild-type and PDE4B−/− mice were sensitized and challenged with ovalbumin and AHR measured in response to inhaled methacholine. Airway inflammation was characterized by analyzing leukocyte infiltration and cytokine accumulation in the airways. Ovalbumin-stimulated cell proliferation and TH2 cytokine production were determined in cultured bronchial lymph node cells. Results Mice deficient in PDE4B do not develop AHR. This protective effect was associated with a significant decrease in eosinophils recruitment to the lungs and decreased TH2 cytokine levels in the bronchoalveolar lavage fluid. Defects in T-cell replication, TH2 cytokine production, and dendritic cell migration were evident in cells from the airway-draining lymph nodes. Conversely, accumulation of the TH1 cytokine IFN-γ was not affected in PDE4B−/− mice. Ablation of the orthologous PDE4 gene PDE4A has no impact on airway inflammation. Conclusion By relieving a cAMP-negative constraint, PDE4B plays an essential role in TH2-cell activation and dendritic cell recruitment during airway inflammation. These findings provide proof of concept that PDE4 inhibitors with PDE4B selectivity may have efficacy in asthma treatment. PMID:21047676

  7. Induction of transient airway hyperresponsiveness by exposure to 4 ppm nitrogen dioxide in guinea pigs

    SciTech Connect

    Kobayashi, T.; Shinozaki, Y. )

    1992-11-01

    In the present study, we investigated (1) whether airway responsiveness to inhaled histamine-aerosol could be induced during 7-d exposure of guinea pigs to 4 ppm NO[sub 2] and, if so, (2) whether thromboxane A2 may be involved in such increase. Female Hartley guinea pigs were divided into 6 groups (n = 15/group). Three groups were exposed to filtered air and the other 3 groups were exposed to NO[sub 2] for 1, 3, or 7 d (24 h/d). Baseline specific airway resistance (SRaw) did not change significantly after exposure to 4 ppm NO[sub 2] or air. Airway responsiveness was determined 1 wk before the beginning of exposure and on the day of termination of the exposure. Prior to exposure to NO[sub 2], the EC200His, the concentrations of inhaled histamine necessary to double SRawNaCl (SRaw after inhalation of 0.9% NaCl), were 1.07 [plus minus] 0.20, 1.30 [plus minus] 0.20, and 1.01 [plus minus] 0.18 mM for the 3 groups later given NO[sub 2] for 1, 3, and 7 d, respectively. Following exposure to NO[sub 2] for 1, 3, or 7 d, EC200His values were 1.42 [plus minus] 0.25, 0.66 [plus minus] 0.10 (p < .05), and 1.05 [plus minus] 0.22 mM, respectively. These results show that 7-d exposure to 4 ppm NO[sub 2] induced a significant increase in airway responsiveness on d 3. Exposure to air had no significant effect on the airway responsiveness. This transient hyperresponsiveness was inhibited by a specific inhibitor of thromboxane synthetase, OKY 046. These results indicated that (1) a lower concentration (4 ppm) of NO[sub 2] than that previously reported can induce transient hyperresponsiveness in guinea pigs during appropriate long-term exposure, and (2) thromboxane A2 may play an important role in this transient airway hyperresponsiveness.

  8. An α4β1 integrin antagonist decreases airway inflammation in ovalbumin-exposed mice

    PubMed Central

    Kenyon, Nicholas J.; Liu, Ruiwu; O’Roark, Erin M.; Huang, Wenzhe; Peng, Li; Lam, Kit S.

    2008-01-01

    Inhibition of the α4 subunit of both the α4β1 and α4β7 integrins has shown promise in decreasing airway inflammation and airway hyperresponsiveness in various animal models. We hypothesized that a novel, high-affinity α4β1 antagonist (LLP2A) would decrease the migration of eosinophils to the lung and ameliorate the airway hyperresponsiveness in a mouse model of ovalbumin-induced airway inflammation. To test this hypothesis, we administered LLP2A, or scrambled LLP2A (a negative control), prior to exposure of sensitized BALB/c mice to ovalbumin aerosol. We can partially prevent, or reverse, the airway inflammatory response, but not airways hyperresponsiveness, by treatment of mice with LLP2A, a synthetic peptidomimetic α4β1 antagonist LLP2A. Specifically engineered, PEGylated (PEG) formulations of this antagonist further reduce the airway inflammatory response to ovalbumin lbumin, presumably by improving the circulating half-life of the drug. PMID:19103195

  9. Obesity Increases Airway Hyperresponsiveness via the TNF-α Pathway and Treating Obesity Induces Recovery

    PubMed Central

    Kim, Joo Young; Sohn, Jung-Ho; Lee, Jae-Hyun; Park, Jung-Won

    2015-01-01

    Obesity is a known risk factor for allergic asthma. It has been recognized as a key player in the pathogenesis of several inflammatory disorders via activation of macrophages, which is also vital to the development of allergic asthma. We investigated the mechanism of obesity-related asthma and whether treating obesity through exercise or diet ameliorates the severity of asthma in the obesity-related asthma model. We generated diet-induced obesity (DIO) in C57BL/6 mice by high-fat-feeding and ovalbumin-induced asthma (lean-OVA or DIO-OVA). The DIO-OVA mice were then treated with tumor necrosis factor (TNF)-α neutralizing antibody as a TNF-α blockade or a Cl2MDP-containing liposome to induce an alveolar macrophage deficiency. To treat obesity, the DIO-OVA mice were under dietary restrictions or exercised. The pathophysiological and immunological responses were analyzed. Airway hyperresponsiveness (AHR), serum IgE and TNF-α levels in the lung tissue increased in the DIO-OVA mice compared to the lean-OVA mice. Both the TNF-α blockade and depletion of alveolar macrophages in the DIO-OVA mice decreased AHR compared to the DIO-OVA mice. Treating obesity by exercise or through dietary means also reduced pulmonary TNF-α levels and AHR in the DIO-OVA mice. These results suggest that restoring normal body weight is an appropriate strategy for reducing TNF-α levels, and controlling inflammation may help improve asthma severity and control in obesity-related asthma. PMID:25658739

  10. Placenta growth factor augments airway hyperresponsiveness via leukotrienes and IL-13

    PubMed Central

    Eiymo Mwa Mpollo, Marthe-Sandrine; Brandt, Eric B.; Shanmukhappa, Shiva Kumar; Arumugam, Paritha I.; Tiwari, Swati; Loberg, Anastacia; Pillis, Devin; Rizvi, Tilat; Lindsey, Mark; Jonck, Bart; Carmeliet, Peter; Kalra, Vijay K.; Le Cras, Timothy D.; Ratner, Nancy; Wills-Karp, Marsha; Hershey, Gurjit K. Khurana; Malik, Punam

    2015-01-01

    Airway hyperresponsiveness (AHR) affects 55%–77% of children with sickle cell disease (SCD) and occurs even in the absence of asthma. While asthma increases SCD morbidity and mortality, the mechanisms underlying the high AHR prevalence in a hemoglobinopathy remain unknown. We hypothesized that placenta growth factor (PlGF), an erythroblast-secreted factor that is elevated in SCD, mediates AHR. In allergen-exposed mice, loss of Plgf dampened AHR, reduced inflammation and eosinophilia, and decreased expression of the Th2 cytokine IL-13 and the leukotriene-synthesizing enzymes 5-lipoxygenase and leukotriene-C4-synthase. Plgf–/– mice treated with leukotrienes phenocopied the WT response to allergen exposure; conversely, anti-PlGF Ab administration in WT animals blunted the AHR. Notably, Th2-mediated STAT6 activation further increased PlGF expression from lung epithelium, eosinophils, and macrophages, creating a PlGF/leukotriene/Th2-response positive feedback loop. Similarly, we found that the Th2 response in asthma patients is associated with increased expression of PlGF and its downstream genes in respiratory epithelial cells. In an SCD mouse model, we observed increased AHR and higher leukotriene levels that were abrogated by anti-PlGF Ab or the 5-lipoxygenase inhibitor zileuton. Overall, our findings indicate that PlGF exacerbates AHR and uniquely links the leukotriene and Th2 pathways in asthma. These data also suggest that zileuton and anti-PlGF Ab could be promising therapies to reduce pulmonary morbidity in SCD. PMID:26690703

  11. Placenta growth factor augments airway hyperresponsiveness via leukotrienes and IL-13.

    PubMed

    Eiymo Mwa Mpollo, Marthe-Sandrine; Brandt, Eric B; Shanmukhappa, Shiva Kumar; Arumugam, Paritha I; Tiwari, Swati; Loberg, Anastacia; Pillis, Devin; Rizvi, Tilat; Lindsey, Mark; Jonck, Bart; Carmeliet, Peter; Kalra, Vijay K; Le Cras, Timothy D; Ratner, Nancy; Wills-Karp, Marsha; Hershey, Gurjit K Khurana; Malik, Punam

    2016-02-01

    Airway hyperresponsiveness (AHR) affects 55%-77% of children with sickle cell disease (SCD) and occurs even in the absence of asthma. While asthma increases SCD morbidity and mortality, the mechanisms underlying the high AHR prevalence in a hemoglobinopathy remain unknown. We hypothesized that placenta growth factor (PlGF), an erythroblast-secreted factor that is elevated in SCD, mediates AHR. In allergen-exposed mice, loss of Plgf dampened AHR, reduced inflammation and eosinophilia, and decreased expression of the Th2 cytokine IL-13 and the leukotriene-synthesizing enzymes 5-lipoxygenase and leukotriene-C4-synthase. Plgf-/- mice treated with leukotrienes phenocopied the WT response to allergen exposure; conversely, anti-PlGF Ab administration in WT animals blunted the AHR. Notably, Th2-mediated STAT6 activation further increased PlGF expression from lung epithelium, eosinophils, and macrophages, creating a PlGF/leukotriene/Th2-response positive feedback loop. Similarly, we found that the Th2 response in asthma patients is associated with increased expression of PlGF and its downstream genes in respiratory epithelial cells. In an SCD mouse model, we observed increased AHR and higher leukotriene levels that were abrogated by anti-PlGF Ab or the 5-lipoxygenase inhibitor zileuton. Overall, our findings indicate that PlGF exacerbates AHR and uniquely links the leukotriene and Th2 pathways in asthma. These data also suggest that zileuton and anti-PlGF Ab could be promising therapies to reduce pulmonary morbidity in SCD. PMID:26690703

  12. Regulator of G-protein signaling 2 repression exacerbates airway hyper-responsiveness and remodeling in asthma.

    PubMed

    Jiang, Haihong; Xie, Yan; Abel, Peter W; Wolff, Dennis W; Toews, Myron L; Panettieri, Reynold A; Casale, Thomas B; Tu, Yaping

    2015-07-01

    G protein-coupled receptors (GPCRs) are important regulators of cell functions in asthma. We recently reported that regulator of G-protein signaling (RGS) 2, a selective modulator of Gq-coupled GPCRs, is a key regulator of airway hyper-responsiveness (AHR), the pathophysiologic hallmark of asthma. Because RGS2 protein levels in airway cells were significantly lower in patients with asthma compared with patients without asthma, we further investigated the potential pathological importance of RGS2 repression in asthma. The human RGS2 gene maps to chromosome 1q31. We first screened patients with asthma for RGS2 gene promoter single-nucleotide polymorphisms (SNPs) and found significant differences in the distribution of two RGS2 SNPs (A638G, rs2746071 and C395G, rs2746072) between patients with asthma and nonasthmatic subjects. These two SNPs are always associated with each other and have the same higher prevalence in patients with asthma (65%) as compared with nonasthmatic subjects (35%). Point mutations corresponding to these SNPs decrease RGS2 promoter activity by 44%. The importance of RGS2 down-regulation was then determined in an acute IL-13 mouse model of asthma. Intranasal administration of IL-13 in mice also decreased RGS2 expression in lungs by ∼50% and caused AHR. Although naive RGS2 knockout (KO) mice exhibit spontaneous AHR, acute IL-13 exposure further increased AHR in RGS2 KO mice. Loss of RGS2 also significantly enhanced IL-13-induced mouse airway remodeling, including peribronchial smooth muscle thickening and fibrosis, without effects on goblet cell hyperplasia or airway inflammation in mice. Thus, genetic variations and increased inflammatory cytokines can lead to RGS2 repression, which exacerbates AHR and airway remodeling in asthma. PMID:25368964

  13. Neutrophilic oxidative stress mediates organic dust-induced pulmonary inflammation and airway hyperresponsiveness.

    PubMed

    McGovern, Toby K; Chen, Michael; Allard, Benoit; Larsson, Kjell; Martin, James G; Adner, Mikael

    2016-01-15

    Airway exposure to organic dust (OD) from swine confinement facilities induces airway inflammation dominated by neutrophils and airway hyperresponsiveness (AHR). One important neutrophilic innate defense mechanism is the induction of oxidative stress. Therefore, we hypothesized that neutrophils exacerbate airway dysfunction following OD exposure by increasing oxidant burden. BALB/C mice were given intranasal challenges with OD or PBS (1/day for 3 days). Mice were untreated or treated with a neutrophil-depleting antibody, anti-Ly6G, or the antioxidant dimethylthiourea (DMTU) prior to OD exposure. Twenty-four hours after the final exposure, we measured airway responsiveness in response to methacholine (MCh) and collected bronchoalveolar lavage fluid to assess pulmonary inflammation and total antioxidant capacity. Lung tissue was harvested to examine the effect of OD-induced antioxidant gene expression and the effect of anti-Ly6G or DMTU. OD exposure induced a dose-dependent increase of airway responsiveness, a neutrophilic pulmonary inflammation, and secretion of keratinocyte cytokine. Depletion of neutrophils reduced OD-induced AHR. DMTU prevented pulmonary inflammation involving macrophages and neutrophils. Neutrophil depletion and DMTU were highly effective in preventing OD-induced AHR affecting large, conducting airways and tissue elastance. OD induced an increase in total antioxidant capacity and mRNA levels of NRF-2-dependent antioxidant genes, effects that are prevented by administration of DMTU and neutrophil depletion. We conclude that an increase in oxidative stress and neutrophilia is critical in the induction of OD-induced AHR. Prevention of oxidative stress diminishes neutrophil influx and AHR, suggesting that mechanisms driving OD-induced AHR may be dependent on neutrophil-mediated oxidant pathways. PMID:26545900

  14. The Endogenous Th17 Response in NO2-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer

    PubMed Central

    Martin, Rebecca A.; Ather, Jennifer L.; Daggett, Rebecca; Hoyt, Laura; Alcorn, John F.; Suratt, Benjamin T.; Weiss, Daniel J.; Lundblad, Lennart K. A.; Poynter, Matthew E.

    2013-01-01

    Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. PMID:24069338

  15. Early treatment of chlorine-induced airway hyperresponsiveness and inflammation with corticosteroids

    SciTech Connect

    Jonasson, Sofia; Wigenstam, Elisabeth; Koch, Bo; Bucht, Anders

    2013-09-01

    Chlorine (Cl{sub 2}) is an industrial gas that is highly toxic and irritating when inhaled causing tissue damage and an acute inflammatory response in the airways followed by a long-term airway dysfunction. The aim of this study was to evaluate whether early anti-inflammatory treatment can protect against the delayed symptoms in Cl{sub 2}-exposed mice. BALB/c mice were exposed by nose-only inhalation using 200 ppm Cl{sub 2} during 15 min. Assessment of airway hyperresponsiveness (AHR), inflammatory cell counts in bronchoalveolar lavage, occurrence of lung edema and lung fibrosis were analyzed 24 h or 14 days post-exposure. A single dose of the corticosteroid dexamethasone (10 or 100 mg/kg) was administered intraperitoneally 1, 3, 6, or 12 h following Cl{sub 2} exposure. High-dose of dexamethasone reduced the acute inflammation if administered within 6 h after exposure but treated animals still displayed a significant lung injury. The effect of dexamethasone administered within 1 h was dose-dependent; high-dose significantly reduced acute airway inflammation (100 mg/kg) but not treatment with the relatively low-dose (10 mg/kg). Both doses reduced AHR 14 days later, while lung fibrosis measured as collagen deposition was not significantly reduced. The results point out that the acute inflammation in the lungs due to Cl{sub 2} exposure only partly is associated with the long-term AHR. We hypothesize that additional pathogenic mechanisms apart from the inflammatory reactions contribute to the development of long-term airway dysfunction. By using this mouse model, we have validated early administration of corticosteroids in terms of efficacy to prevent acute lung injury and delayed symptoms induced by Cl{sub 2} exposure. - Highlights: • Inhalation of Cl{sub 2} may lead to a long-standing airway hyperresponsiveness. • The symptoms in Cl{sub 2}-exposed mice are similar to those described for RADS in humans. • Corticosteroids prevent delayed symptoms such as AHR in

  16. Neurokinin B- and specific tachykinin NK3 receptor agonists-induced airway hyperresponsiveness in the guinea-pig

    PubMed Central

    Daoui, Samira; Naline, Emmanuel; Lagente, Vincent; Emonds-Alt, Xavier; Advenier, Charles

    2000-01-01

    The aim of this study was to determine whether neurokinin B (NKB) or specific agonists of tachykinin NK3 receptors, [MePhe7]NKB and senktide, were able to induce airway hyperresponsiveness in guinea-pigs. The effects of these compounds were compared to those of substance P (SP), neurokinin A (NKA) and the preferential tachykinin NK1 ([Sar9, Met(02)11]SP) or NK2 ([βAla8]NKA (4-10)) receptor agonists.In guinea-pigs pretreated with phosphoramidon (10−4 M aerosol for 10 min) and salbutamol (8.7×10−3 M for 10 min), all tachykinins administrated by aerosol (3×10−7 to 10−4 M) induced airway hyperresponsiveness 24 h later, displayed by an exaggerated response to the bronchoconstrictor effect of acetylcholine (i.v.). The rank order of potency was: [βAla8]NKA (4-10)>NKA=NKB=senktide=[MePhe7]NKB=[Sar9,Met(02)11]SP>SP.Airway hyperresponsiveness induced by [MePhe7]NKB was prevented by the tachykinin NK3 (SR 142801) and NK2 (SR 48968) receptor antagonists.Bronchoconstriction induced by tachykinins administered by aerosol was also determined. SP, NKA, NKB and the tachykinin NK1 and NK2 receptor agonist induced bronchoconstriction. The rank order of potency was: NKA=[βAla8]NKA (4-10)>NKB=SP=[Sar9,Met(02)11]SP. Under similar conditions, and for concentrations which induce airway hyperresponsiveness, senktide and [MePhe7]NKB failed to induce bronchoconstriction.It is concluded that tachykinin NK3-receptor stimulation can induce airway hyperresponsiveness and that this effect is not related to the ability of tachykinins to induce bronchoconstriction. PMID:10780997

  17. Vitamin D deficiency causes airway hyperresponsiveness, increases airway smooth muscle mass, and reduces TGF‐β expression in the lungs of female BALB/c mice

    PubMed Central

    Foong, Rachel E.; Shaw, Nicole C.; Berry, Luke J.; Hart, Prue H.; Gorman, Shelley; Zosky, Graeme R.

    2014-01-01

    Abstract Vitamin D deficiency is associated with disease severity in asthma. We tested whether there is a causal association between vitamin D deficiency, airway smooth muscle (ASM) mass, and the development of airway hyperresponsiveness (AHR). A physiologically relevant mouse model of vitamin D deficiency was developed by raising BALB/c mice on vitamin D‐deficient or ‐replete diets. AHR was assessed by measuring lung function responses to increasing doses of inhaled methacholine. Five‐micron sections from formalin‐fixed lungs were used for ASM measurement and assessment of lung structure using stereological methods. Transforming growth factor (TGF)‐β levels were measured in bronchoalveolar lavage fluid (BALF). Lungs were dissected from embryonic day (E) 17.5 vitamin D‐deficient and ‐replete fetal mice for quantification of ASM density and relative gene expression of TGF‐β signaling pathway molecules. Eight‐week‐old adult vitamin D‐deficient female mice had significantly increased airway resistance and ASM in the large airways compared with controls. Vitamin D‐deficient female mice had a smaller lung volume, volume of parenchyma, and alveolar septa. Both vitamin D‐deficient male and female mice had reduced TGF‐β levels in BALF. Vitamin D deficiency did not have an effect on ASM density in E17.5 mice, however, expression of TGF‐β1 and TGF‐β receptor I was downregulated in vitamin D‐deficient female fetal mice. Decreased expression of TGF‐β1 and TGF‐β receptor I during early lung development in vitamin D‐deficient mice may contribute to airway remodeling and AHR in vitamin D‐deficient adult female mice. This study provides a link between vitamin D deficiency and respiratory symptoms in chronic lung disease. PMID:24760528

  18. The antidiabetic agent glibenclamide protects airway hyperresponsiveness and inflammation in mice.

    PubMed

    Cui, Wei; Zhang, Shufang; Cai, Zhijian; Hu, Xinlei; Zhang, Ruifeng; Wang, Yong; Li, Na; Chen, Zhihua; Zhang, Gensheng

    2015-04-01

    Glibenclamide has a newly discovered role in inflammation regulation besides its antidiabetic effect. As an inhibitor of ATP-sensitive potassium (KATP) channel, glibenclamide antagonizes the relaxation of the tracheal smooth muscle. This indicates that glibenclamide might attenuate airway inflammation while aggravate airway hyperresponsiveness (AHR) in asthmatics. Clinically, many diabetics with asthma are prescribed with glibenclamide to control blood glucose. However, whether glibenclamide could exert any effects on asthmatic inflammation remains unknown. Using an ovalbumin (OVA)-induced mouse model of asthma, we evaluated the effects of glibenclamide on the AHR and inflammation. Interestingly, glibenclamide reduced all the cardinal features of asthma in OVA-challenged mice, including AHR, airway inflammation, and T-helper type 2 (Th2) cytokines. Glibenclamide also downregulated OVA-induced expressions of vascular cell adhesion molecule 1 (VCAM-1) and phosphorylated signal transducer and activator of transcription 6 (p-STAT6) in the lung. In addition, increased sulfonylurea receptor 1 (SUR1) expression in the lung was observed after the OVA challenge. These findings suggest that the classic sulfonylurea glibenclamide plays an important protective role in the development of asthma, which not only provides the evidence for the safety of prescribed glibenclamide in diabetics combined with asthma but also indicates a possible new therapeutic for asthma via targeting glibenclamide-related pathways. PMID:25113133

  19. A Multi-Scale Approach to Airway Hyperresponsiveness: From Molecule to Organ

    PubMed Central

    Lauzon, Anne-Marie; Bates, Jason H. T.; Donovan, Graham; Tawhai, Merryn; Sneyd, James; Sanderson, Michael J.

    2012-01-01

    Airway hyperresponsiveness (AHR), a characteristic of asthma that involves an excessive reduction in airway caliber, is a complex mechanism reflecting multiple processes that manifest over a large range of length and time scales. At one extreme, molecular interactions determine the force generated by airway smooth muscle (ASM). At the other, the spatially distributed constriction of the branching airways leads to breathing difficulties. Similarly, asthma therapies act at the molecular scale while clinical outcomes are determined by lung function. These extremes are linked by events operating over intermediate scales of length and time. Thus, AHR is an emergent phenomenon that limits our understanding of asthma and confounds the interpretation of studies that address physiological mechanisms over a limited range of scales. A solution is a modular computational model that integrates experimental and mathematical data from multiple scales. This includes, at the molecular scale, kinetics, and force production of actin-myosin contractile proteins during cross-bridge and latch-state cycling; at the cellular scale, Ca2+ signaling mechanisms that regulate ASM force production; at the tissue scale, forces acting between contracting ASM and opposing viscoelastic tissue that determine airway narrowing; at the organ scale, the topographic distribution of ASM contraction dynamics that determine mechanical impedance of the lung. At each scale, models are constructed with iterations between theory and experimentation to identify the parameters that link adjacent scales. This modular model establishes algorithms for modeling over a wide range of scales and provides a framework for the inclusion of other responses such as inflammation or therapeutic regimes. The goal is to develop this lung model so that it can make predictions about bronchoconstriction and identify the pathophysiologic mechanisms having the greatest impact on AHR and its therapy. PMID:22701430

  20. Deficiency of RAMP1 Attenuates Antigen-Induced Airway Hyperresponsiveness in Mice

    PubMed Central

    Hua, Xiaoyang; Tilley, Stephen L.; Oswald, Erin; Krummel, Matthew F.; Caron, Kathleen M.

    2014-01-01

    Asthma is a chronic inflammatory disease affecting the lung, characterized by breathing difficulty during an attack following exposure to an environmental trigger. Calcitonin gene-related peptide (CGRP) is a neuropeptide that may have a pathological role in asthma. The CGRP receptor is comprised of two components, which include the G-protein coupled receptor, calcitonin receptor-like receptor (CLR), and receptor activity-modifying protein 1 (RAMP1). RAMPs, including RAMP1, mediate ligand specificity in addition to aiding in the localization of receptors to the cell surface. Since there has been some controversy regarding the effect of CGRP on asthma, we sought to determine the effect of CGRP signaling ablation in an animal model of asthma. Using gene-targeting techniques, we generated mice deficient for RAMP1 by excising exon 3. After determining that these mice are viable and overtly normal, we sensitized the animals to ovalbumin prior to assessing airway resistance and inflammation after methacholine challenge. We found that mice lacking RAMP1 had reduced airway resistance and inflammation compared to wildtype animals. Additionally, we found that a 50% reduction of CLR, the G-protein receptor component of the CGRP receptor, also ameliorated airway resistance and inflammation in this model of allergic asthma. Interestingly, the loss of CLR from the smooth muscle cells did not alter the airway resistance, indicating that CGRP does not act directly on the smooth muscle cells to drive airway hyperresponsiveness. Together, these data indicate that signaling through RAMP1 and CLR plays a role in mediating asthma pathology. Since RAMP1 and CLR interact to form a receptor for CGRP, our data indicate that aberrant CGRP signaling, perhaps on lung endothelial and inflammatory cells, contributes to asthma pathophysiology. Finally, since RAMP-receptor interfaces are pharmacologically tractable, it may be possible to develop compounds targeting the RAMP1/CLR interface to

  1. Airway hyperresponsiveness, prevalence of chronic respiratory symptoms, and lung function in workers exposed to irritants.

    PubMed

    Kremer, A M; Pal, T M; Boleij, J S; Schouten, J P; Rijcken, B

    1994-01-01

    The association between occupational exposure to airway irritants and the prevalence of chronic respiratory symptoms and level of lung function, and whether these associations were modified by airway hyperresponsiveness, smoking, and a history of allergy were studied in 668 workers from synthetic fibre plants. Respiratory symptoms were recorded with a self administered Dutch version of the British Medical Research Council questionnaire, with additional questions on allergy. Airway responsiveness was measured by a 30 second tidal breathing histamine challenge test. On the basis of job titles and working department, the current state of exposure of all workers was characterised as (1) no exposure, reference group; (2) white collar workers; (3) SO2 HCl, SO4(2); (4) polyester vapour; (5) oil mist and vapour; (6) polyamide and polyester vapour; (7) multiple exposure. Workers exposed to airway irritants were not simultaneously exposed to airborne dust. Airway hyperresponsiveness (AHR), defined as a 20% fall in forced expiratory volume in one second (FEV1) at < or = 32 mg/ml histamine, was present in 23% of the subjects. The association between exposure groups and prevalence of symptoms was estimated by means of multiple logistic regression; the association with level of lung function (forced vital capacity (FVC), FEV1, maximum mid-expiratory flow rate (MMEF)) was estimated by means of multiple linear regression. Both methods allow simultaneous adjustment for potential confounding factors. The exposure groups were associated with a higher prevalence of chronic respiratory symptoms. Lower prevalence of symptoms was found for workers exposed to SO2, HCl, and SO4(2-), most likely due to pre-employment selection procedures. Current smoking, AHR, and a history of allergy were significantly associated with a higher prevalence of chronic respiratory symptoms, independent of each other, and independent of irritant exposure. The association between exposure and prevalence of

  2. Allergen-triggered airway hyperresponsiveness and lung pathology in mice sensitized with the biopesticide Metarhizium anisopliae.

    PubMed

    Ward, M D; Madison, S L; Sailstad, D M; Gavett, S H; Selgrade, M K

    2000-02-21

    Metarhizium anisopliae is an entomopathogenic fungus recently licensed for indoor control of cockroaches, a major source of allergens. While M. anisopliae has been shown to be non-infectious and non-toxic to mammals there has been only limited research on potential allergenicity. Using a mouse model, we previously demonstrated allergic immune and inflammatory responses to this agent. The present study was designed to determine whether these responses were associated with changes in pulmonary responses, lung pathology, and the cytokine profile in bronchoalveolar lavage fluid (BALF). Soluble factors from fungal components were combined in equal protein amounts to form M. anisopliae crude antigen (MACA). BALB/C mice were intratracheally (i.t.) challenged with 10 microg MACA 14 days post intraperitoneal sensitization with 25 microg fungal antigen in aluminum hydroxide adjuvant. Physiological and cellular changes were examined. The mice were tested for airway hyperresponsiveness before (No Chal) and after (1, 3, and 8 days post challenge (DPIT)) MACA IT challenge. Subsequently, serum, BALF and the lungs were harvested. All treatment groups concurrently demonstrated significant non-specific pulmonary inflammation (neutrophil influx) and increased pulmonary sensitivity to methacholine (Mch) at 1 DPIT MACA challenge. Where as both adjuvant treated and naïve mice airway responses had returned to near normal levels by 3 DPIT, mice which were previously sensitized with MACA were still hyperresponsive to Mch challenge at 3 and 8 DPIT. This hyperresponsiveness correlates with eosinophil and lymphocyte influx, which is maximal at 3 DPIT and still elevated at 8 DPIT. Interleukin (IL) 5 was elevated for all treatment groups at 1 DPIT but only the MACA sensitized mice maintained elevated levels for both 3 and 8 DPIT. Furthermore, MACA sensitized mice had a more extensive inflammatory histopathology at all examined time points with peribronchial and perivascular infiltrates, like

  3. Lower airway inflammation and hyperresponsiveness in non-asthmatic patients with non-allergic rhinitis

    PubMed Central

    Wang, Qiuping; Ji, Junfeng; Xie, Yanqing; Guan, Weijie; Zhang, Yong; Wang, Zhiyi; Wu, Kunmin

    2015-01-01

    Background Potential associations between non-allergic rhinitis (NAR) and asthma have been verified epidemiologically, but these associations remain not very clear. It is necessary to further explore the possible implication of lower airway abnormities in NAR patients but without asthma. This study aims to determine lower airway hyperresponsiveness (AHR), inflammation and lung function in non-asthmatic patients with NAR. Methods We recruited 262 non-asthmatic patients with NAR, 377 with AR and 264 healthy subjects. All subjects were non-smokers who underwent meticulous history taking, nasal examination, allergen skin prick test (SPT), blood routine test, measurement of fractional exhaled nitric oxide (FeNO), methacholine bronchial challenge test and induced sputum eosinophil count, in this order. Results Compared with healthy subjects, non-asthmatic patients with NAR yielded markedly lower FEV1/FVC, maximal mid-expiratory flow (MMEF), mid-expiratory flow when 50% of FVC has been expired (MEF50%) and mid-expiratory flow when 75% of FVC has been expired (MEF25%) (P<0.05). Differences in spirometry between group AR and NAR were unremarkable (P>0.05). Patients with NAR yielded higher rate of AHR and higher FeNO levels than healthy subjects but lower than those with AR. The proportion of lower airways disorders (sputum eosinophilia, high FeNO levels or AHR) was highest in group AR (70.8%), followed by NAR (53.4%) and healthy subjects (24.2%) (P<0.01). However, sputum eosinophils in NAR patients were not higher compared with healthy subjects (P>0.05). Sputum eosinophils and FeNO had significant correlation with positive AHR and MMEF in group AR but not in NAR. Conclusions Non-asthmatic patients with NAR harbor lower AHR, small airways dysfunction and inflammation, despite being less significant than those with AR. This offers clues to unravel the link between NAR and asthma. PMID:26623098

  4. Chronic Low Dose Chlorine Exposure Aggravates Allergic Inflammation and Airway Hyperresponsiveness and Activates Inflammasome Pathway

    PubMed Central

    Kim, Sae-Hoon; Park, Da-Eun; Lee, Hyun-Seung; Kang, Hye-Ryun; Cho, Sang-Heon

    2014-01-01

    Background Epidemiologic clinical studies suggested that chronic exposure to chlorine products is associated with development of asthma and aggravation of asthmatic symptoms. However, its underlying mechanism was not clearly understood. Studies were undertaken to define the effects and mechanisms of chronic low-dose chlorine exposure in the pathogenesis of airway inflammation and airway hyperresponsiveness (AHR). Methods Six week-old female BALB/c mice were sensitized and challenged with OVA in the presence and absence of chronic low dose chlorine exposure of naturally vaporized gas of 5% sodium hypochlorite solution. Airway inflammation and AHR were evaluated by bronchoalveolar lavage (BAL) cell recovery and non-invasive phlethysmography, respectively. Real-time qPCR, Western blot assay, and ELISA were used to evaluate the mRNA and protein expressions of cytokines and other inflammatory mediators. Human A549 and murine epithelial (A549 and MLE12) and macrophage (AMJ2-C11) cells were used to define the responses to low dose chlorine exposure in vitro. Results Chronic low dose chlorine exposure significantly augmented airway inflammation and AHR in OVA-sensitized and challenged mice. The expression of Th2 cytokines IL-4 and IL-5 and proinflammatory cytokine IL-1β and IL-33 were significantly increased in OVA/Cl group compared with OVA group. The chlorine exposure also activates the major molecules associated with inflammasome pathway in the macrophages with increased expression of epithelial alarmins IL-33 and TSLP in vitro. Conclusion Chronic low dose exposure of chlorine aggravates allergic Th2 inflammation and AHR potentially through activation of inflammasome danger signaling pathways. PMID:25202911

  5. Alterations of the Lung Methylome in Allergic Airway Hyper-Responsiveness

    PubMed Central

    Cheng, Robert YS; Shang, Yan; Limjunyawong, Nathachit; Dao, Tyna; Das, Sandhya; Rabold, Richard; Sham, James SK; Mitzner, Wayne; Tang, Wan-Yee

    2014-01-01

    Asthma is a chronic airway disorder characterized by recurrent attacks of breathlessness and wheezing, affecting 300 million people around the world (available at: www.who.int). To date, genetic factors associated with asthma susceptibility have been unable to explain the full etiology of asthma. Recent studies have demonstrated that the epigenetic disruption of gene expression plays an equally important role in the development of asthma through interaction with our environment. We sensitized 6-week-old C57BL/6J mice with house-dust-mite (HDM) extracts intraperitoneally followed by 5 weeks of exposure to HDM challenges (three times a week) intratracheally. HDM-exposed mice showed an increase in airway hyper-responsiveness (AHR) and inflammation together with structural remodeling of the airways. We applied methylated DNA immunoprecipitation-next generation sequencing (MeDIP-seq) for profiling of DNA methylation changes in the lungs in response to HDM. We observed about 20 million reads by a single-run of massive parallel sequencing. We performed bioinformatics and pathway analysis on the raw sequencing data to identify differentially methylated candidate genes in HDM-exposed mice. Specifically, we have revealed that the transforming growth factor beta signaling pathway is epigenetically modulated by chronic exposure to HDM. Here, we demonstrated that a specific allergen may play a role in AHR through an epigenetic mechanism by disrupting the expression of genes in lungs that might be involved in airway inflammation and remodeling. Our findings provide new insights into the potential mechanisms by which environmental allergens induce allergic asthma and such insights may assist in the development of novel preventive and therapeutic options for this debilitative disease. PMID:24446183

  6. Alterations of the lung methylome in allergic airway hyper-responsiveness.

    PubMed

    Cheng, Robert Ys; Shang, Yan; Limjunyawong, Nathachit; Dao, Tyna; Das, Sandhya; Rabold, Richard; Sham, James Sk; Mitzner, Wayne; Tang, Wan-Yee

    2014-04-01

    Asthma is a chronic airway disorder characterized by recurrent attacks of breathlessness and wheezing, affecting 300 million people around the world (available at: www.who.int). To date, genetic factors associated with asthma susceptibility have been unable to explain the full etiology of asthma. Recent studies have demonstrated that the epigenetic disruption of gene expression plays an equally important role in the development of asthma through interaction with our environment. We sensitized 6-week-old C57BL/6J mice with house-dust-mite (HDM) extracts intraperitoneally followed by 5 weeks of exposure to HDM challenges (three times a week) intratracheally. HDM-exposed mice showed an increase in airway hyper-responsiveness (AHR) and inflammation together with structural remodeling of the airways. We applied methylated DNA immunoprecipitation-next generation sequencing (MeDIP-seq) for profiling of DNA methylation changes in the lungs in response to HDM. We observed about 20 million reads by a single-run of massive parallel sequencing. We performed bioinformatics and pathway analysis on the raw sequencing data to identify differentially methylated candidate genes in HDM-exposed mice. Specifically, we have revealed that the transforming growth factor beta signaling pathway is epigenetically modulated by chronic exposure to HDM. Here, we demonstrated that a specific allergen may play a role in AHR through an epigenetic mechanism by disrupting the expression of genes in lungs that might be involved in airway inflammation and remodeling. Our findings provide new insights into the potential mechanisms by which environmental allergens induce allergic asthma and such insights may assist in the development of novel preventive and therapeutic options for this debilitative disease. PMID:24446183

  7. Natural killer T cells are dispensable in the development of allergen-induced airway hyperresponsiveness, inflammation and remodelling in a mouse model of chronic asthma.

    PubMed

    Koh, Y-I; Shim, J-U; Lee, J-H; Chung, I-J; Min, J-J; Rhee, J H; Lee, H C; Chung, D H; Wi, J-O

    2010-07-01

    Natural killer T (NK T) cells have been shown to play an essential role in the development of allergen-induced airway hyperresponsiveness (AHR) and/or airway inflammation in mouse models of acute asthma. Recently, NK T cells have been reported to be required for the development of AHR in a virus induced chronic asthma model. We investigated whether NK T cells were required for the development of allergen-induced AHR, airway inflammation and airway remodelling in a mouse model of chronic asthma. CD1d-/- mice that lack NK T cells were used for the experiments. In the chronic model, AHR, eosinophilic inflammation, remodelling characteristics including mucus metaplasia, subepithelial fibrosis and increased mass of the airway smooth muscle, T helper type 2 (Th2) immune response and immunoglobulin (Ig)E production were equally increased in both CD1d-/- mice and wild-type mice. However, in the acute model, AHR, eosinophilic inflammation, Th2 immune response and IgE production were significantly decreased in the CD1d-/- mice compared to wild-type. CD1d-dependent NK T cells may not be required for the development of allergen-induced AHR, eosinophilic airway inflammation and airway remodelling in chronic asthma model, although they play a role in the development of AHR and eosinophilic inflammation in acute asthma model. PMID:20456411

  8. TSG-6 protein is crucial for the development of pulmonary hyaluronan deposition, eosinophilia, and airway hyperresponsiveness in a murine model of asthma.

    PubMed

    Swaidani, Shadi; Cheng, Georgiana; Lauer, Mark E; Sharma, Manisha; Mikecz, Katalin; Hascall, Vincent C; Aronica, Mark A

    2013-01-01

    Hyaluronan (HA) deposition is often correlated with mucosal inflammatory responses, where HA mediates both protective and pathological responses. By modifying the HA matrix, Tnfip6 (TNF-α-induced protein-6; also known as TSG-6 (TNF-stimulated gene-6)) is thought to potentiate anti-inflammatory and anti-plasmin effects that are inhibitory to leukocyte extravasation. In this study, we examined the role of endogenous TSG-6 in the pathophysiological responses associated with acute allergic pulmonary inflammation. Compared with wild-type littermate controls, TSG-6(-/-) mice exhibited attenuated inflammation marked by a significant decrease in pulmonary HA concentrations measured in the bronchoalveolar lavage and lung tissue. Interestingly, despite the equivalent induction of both humoral and cellular Th2 immunity and the comparable levels of cytokines and chemokines typically associated with eosinophilic pulmonary inflammation, airway eosinophilia was significantly decreased in TSG-6(-/-) mice. Most importantly, contrary to their counterpart wild-type littermates, TSG-6(-/-) mice were resistant to the induction of airway hyperresponsiveness and manifested improved lung mechanics in response to methacholine challenge. Our study demonstrates that endogenous TSG-6 is dispensable for the induction of Th2 immunity but is essential for the robust increase in pulmonary HA deposition, propagation of acute eosinophilic pulmonary inflammation, and development of airway hyperresponsiveness. Thus, TSG-6 is implicated in the experimental murine model of allergic pulmonary inflammation and is likely to contribute to the pathogenesis of asthma. PMID:23118230

  9. Airway hyperresponsiveness in asthma: a problem of limited smooth muscle relaxation with inspiration.

    PubMed Central

    Skloot, G; Permutt, S; Togias, A

    1995-01-01

    We hypothesized that hyperresponsiveness in asthma is caused by an impairment in the ability of inspiration to stretch airway smooth muscle. If the hypothesis was correct, we reasoned that the sensitivity to inhaled methacholine in normal and asthmatic subjects should be the same if the challenge was carried out under conditions where deep inspirations were prohibited. 10 asthmatic and 10 normal subjects received increasing concentrations of inhaled methacholine under conditions where forced expirations from a normal end-tidal inspiration were performed. When no deep inspirations were allowed, the response to methacholine was similar in the normal and asthmatic subjects, compatible with the hypothesis we propose. Completely contrary to our expectations, however, was the marked responsivity to methacholine that remained in the normal subjects after deep breaths were initiated. 6 of the 10 normal subjects had > 20% reduction in forced expiratory volume in one second (FEV 1) at doses of methacholine < 8 mg/ml, whereas there was < 15% reduction with 75 mg/ml during routine challenge. The ability of normal subjects to develop asthmatic responses when the modulating effects of increases in lung volume was voluntarily suppressed suggests that an intrinsic impairment of the ability of inspiration to stretch airway smooth muscle is a major feature of asthma. PMID:7593627

  10. Mechanisms of Airway Hyperresponsiveness in Asthma: The Past, Present and Yet to Come

    PubMed Central

    Chapman, David G.; Irvin, Charles G.

    2015-01-01

    Airway hyperresponsiveness (AHR) has long been considered a cardinal feature of asthma. The development of the measurement of AHR forty years ago initiated many important contributions to our understanding of asthma and other airway diseases. However, our understanding of AHR in asthma remains complicated by the multitude of potential underlying mechanisms which in reality are likely to have different contributions amongst individual patients. Therefore the present review will discuss the current state of understanding of the major mechanisms proposed to contribute to AHR and highlight the way in which AHR testing is beginning to highlight distinct abnormalities associated with clinically relevant patient populations. In doing so we aim to provide a foundation by which future research can begin to ascribe certain mechanisms to specific patterns of bronchoconstriction and subsequently match phenotypes of bronchoconstriction with clinical phenotypes. We believe that this approach is not only within our grasp but will lead to improved mechanistic understanding of asthma phenotypes and hopefully better inform the development of phenotype-targeted therapy. PMID:25651937

  11. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma

    SciTech Connect

    Ribeiro-Filho, Jaime; Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana; Moraes de Carvalho, Katharinne Ingrid; Silva Mendes, Diego da; Melo, Christianne Bandeira; Martins, Marco Aurélio; Silva Dias, Celidarque da; Piuvezam, Márcia Regina; and others

    2013-11-15

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca{sup ++} influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. - Highlights: • Curine is a bisbenzylisoquinoline alkaloid from Chondrodendron platyphyllum. • Curine inhibits eosinophil influx and activation and airway hyper-responsiveness. • Curine

  12. Retracted: Hyaluronan Activation of the Nlrp3 Inflammasome Contributes to the Development of Airway Hyperresponsiveness

    PubMed Central

    Feng, Feifei; Li, Zhuowei; Potts-Kant, Erin N.; Wu, Yiming; Foster, W. Michael; Williams, Kristi L.

    2012-01-01

    Background: The role of the Nlrp3 inflammasome in nonallergic airway hyperresponsiveness (AHR) has not previously been reported. Recent evidence supports both interleukin (IL) 1β and short fragments of hyaluronan (HA) as contributors to the biological response to inhaled ozone. Objective: Because extracellular secretion of IL-1β requires activation of the inflammasome, we investigated the role of the inflammasome proteins ASC, caspase1, and Nlrp3 in the biological response to ozone and HA. Methods: C57BL/6J wild-type mice and mice deficient in ASC, caspase1, or Nlrp3 were exposed to ozone (1 ppm for 3 hr) or HA followed by analysis of airway resistance, cellular inflammation, and total protein and cytokines in bronchoalveolar lavage fluid (BALF). Transcription levels of IL-1β and IL-18 were determined in two populations of lung macrophages. In addition, we examined levels of cleaved caspase1 and cleaved IL-1β as markers of inflammasome activation in isolated alveolar macrophages harvested from BALF from HA-treated mice. Results: We observed that genes of the Nlrp3 inflammasome were required for development of AHR following exposure to either ozone or HA fragments. These genes are partially required for the cellular inflammatory response to ozone. The expression of IL-1β mRNA in alveolar macrophages was up-regulated after either ozone or HA challenge and was not dependent on the Nlrp3 inflammasome. However, soluble levels of IL-1β protein were dependent on the inflammasome after challenge with either ozone or HA. HA challenge resulted in cleavage of macrophage-derived caspase1 and IL-1β, suggesting a role for alveolar macrophages in Nlrp3-dependent AHR. Conclusions: The Nlrp3 inflammasome is required for the development of ozone-induced reactive airways disease. PMID:23010656

  13. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis.

    PubMed

    McCuaig, Sarah; Martin, James G

    2013-04-01

    Among patients with cystic fibrosis there is a high prevalence (40-70%) of asthma signs and symptoms such as cough and wheezing and airway hyper-responsiveness to inhaled histamine or methacholine. Whether these abnormal airway responses are due to a primary deficiency in the cystic fibrosis transmembrane conductance regulator (CFTR) or are secondary to the inflammatory environment in the cystic fibrosis lungs is not clear. A role for the CFTR in smooth muscle function is emerging, and alterations in contractile signalling have been reported in CFTR-deficient airway smooth muscle. Persistent bacterial infection, especially with Pseudomonas aeruginosa, stimulates interleukin-8 release from the airway epithelium, resulting in neutrophilic inflammation. Increased neutrophilia and skewing of CFTR-deficient T-helper cells to type 2 helper T cells creates an inflammatory environment characterised by high concentrations of tumour necrosis factor α, interleukin-8, and interleukin-13, which might all contribute to increased contractility of airway smooth muscle in cystic fibrosis. An emerging role of interleukin-17, which is raised in patients with cystic fibrosis, in airway smooth muscle proliferation and hyper-responsiveness is apparent. Increased understanding of the molecular mechanisms responsible for the altered smooth muscle physiology in patients with cystic fibrosis might provide insight into airway dysfunction in this disease. PMID:24429094

  14. Interaction of ozone exposure with airway hyperresponsiveness and inflammation induced by trimellitic anhydride in sensitized guinea pigs

    SciTech Connect

    Sun, Jian; Chung, K.Fan

    1997-09-01

    The effect of prior ozone (O{sub 3}) exposure on airway hyperresponsiveness and inflammation induced by trimellitic anhydride (TMA) has been investigated in TMA-sensitized guinea pigs. Airway responsiveness was measured as the concentration of acetylcholine needed to increase baseline lung resistance (RL) by 300% (PC300). Ozone (3 ppm, for 3 h) caused an increase in-log PC300 at 1 h after exposure, with return of -log PC300 to control levels at 8 h. Ozone also increased baseline RL at 8 h. TMA challenge increase -log PC300 in TMA-sensitized guinea pigs at 8 h after challenge from 3.85 {+-} 0.09 to 4.11 {+-} 0.09. Ozone exposure prior to TMA challenge prevented the induction of airway hyperresponsiveness with a mean -log PC300 of 3.51 {+-} 0.20, which was not different from that of control TMA-Sensitized group. Baseline RL was significantly higher in ozone-pretreated animals after TMA challenge when compared to those of either control or challenged with TMA alone. Ozone had no effect on TMA challenge-induced BAL eosinophilia and neutrophilia. We conclude that a single exposure to ozone inhibits the increase in airway responsiveness, but increases the bronchoconstrictor response induced by TMA in TMA-Sensitized guinea pigs; however, the inflammatory airway response to TMA is unchanged by preexposure to ozone. 29 refs., 2 figs., 1 tab.

  15. The effect of platelet activating factor antagonist on ozone-induced airway inflammation and bronchial hyperresponsiveness in guinea pigs

    SciTech Connect

    Tan, W.C.; Bethel, R.A. )

    1992-10-01

    We investigated the role of platelet-activating factor (PAF) in ozone-induced airway responses by examining the effects of L659,989, a potent PAF antagonist, on bronchial hyperresponsiveness and airway inflammation. Twenty-four male guinea pigs were studied in four equal groups. Total lung resistance (RL) in intubated and spontaneously breathing animals was measured in a constant-volume body plethysmograph. Dose-response curves to methacholine were determined in all animals at the start of the experiment. These were repeated on a separate day after the following types of treatments: air exposure in Group 1, intraperitoneally administered alcohol and air exposure in Group 2; intraperitoneally administered alcohol and ozone exposure in Group 3, and intraperitoneally administered L659,989 (a specific PAF antagonist), 5 mg/kg dissolved in alcohol, and ozone exposure in Group 4. Bronchoalveolar lavage (BAL) was performed after the second methacholine challenge, and the bronchial mucosa was also examined for inflammatory cells. Exposure to 3 ppm ozone for 2 h resulted in a three-doubling concentration increase in bronchial responsiveness, which was not significantly inhibited by prior treatment with L659,989. Ozone induced a 1.8-fold increase in BAL total cell count, increased eosinophilic influx into the airways, and increased eosinophilic infiltration in the bronchial mucosa, which were all not inhibited by L659,989 pretreatment. The results suggest that PAF may not have an essential role in ozone-induced airway hyperresponsiveness and nonallergic airway inflammation.

  16. Mechanism of airway hyperresponsiveness to adenosine induced by allergen challenge in actively sensitized Brown Norway rats

    PubMed Central

    Hannon, J P; Tigani, B; Williams, I; Mazzoni, L; Fozard, J R

    2001-01-01

    We have explored the role of allergen sensitization and challenge in defining the response of the airways of the Brown Norway (BN) rat to adenosine. In naïve animals or in rats sensitized to ovalbumin (OA) adenosine induced only weak bronchoconstrictor responses. Challenge of sensitized animals with OA induced a marked airway hyperresponsiveness to adenosine which was not seen with methacholine or bradykinin. The augmented bronchoconstrictor response to adenosine was not affected by acute bivagotomy or atropine nor mimicked by an i.v. injection of capsaicin. It was, however, blocked selectively by disodium cromoglycate methysergide or ketanserin and reduced in animals treated sub-chronically with compound 48/80. The augmented response to adenosine was associated with increases in the plasma concentrations of both histamine and 5-hydroxytryptamine (5-HT), which were attenuated by pretreatment with disodium cromoglycate, and degranulation of mast cells in the lung. Parenchymal strips from lungs removed from sensitized rats challenged with OA gave augmented bronchoconstrictor responses to adenosine relative to strips from sensitized animals challenged with saline. Responses were inhibited by methysergide and disodium cromoglycate. These data demonstrate a marked augmentation of the bronchoconstrictor response to adenosine in actively sensitized BN rats challenged with OA. The augmented response is primarily a consequence of mast cell activation, leading to the release of 5-HT, which in turn induces bronchoconstriction. Our data further suggest the involvement of a discrete lung-based population of mast cells containing and releasing mainly 5-HT and brought into play by prior exposure to allergen. PMID:11264245

  17. Curine inhibits eosinophil activation and airway hyper-responsiveness in a mouse model of allergic asthma.

    PubMed

    Ribeiro-Filho, Jaime; Calheiros, Andrea Surrage; Vieira-de-Abreu, Adriana; de Carvalho, Katharinne Ingrid Moraes; da Silva Mendes, Diego; Melo, Christianne Bandeira; Martins, Marco Aurélio; da Silva Dias, Celidarque; Piuvezam, Márcia Regina; Bozza, Patrícia T

    2013-11-15

    Allergic asthma is a chronic inflammatory airway disease with increasing prevalence around the world. Current asthma therapy includes drugs that usually cause significant side effects, justifying the search for new anti-asthmatic drugs. Curine is a bisbenzylisoquinoline alkaloid that modulates calcium influx in many cell types; however, its anti-allergic and putative toxic effects remain to be elucidated. Our aim was to investigate the effects of curine on eosinophil activation and airway hyper-responsiveness (AHR) and to characterize its potential toxic effects. We used a mouse model of allergic asthma induced by sensitization and challenge with ovalbumin (OVA) to evaluate the anti-allergic effects of oral treatment with curine. The oral administration of curine significantly inhibited eosinophilic inflammation, eosinophil lipid body formation and AHR in animals challenged with OVA compared with animals in the untreated group. The curine treatment also reduced eotaxin and IL-13 production triggered by OVA. Verapamil, a calcium channel antagonist, had similar anti-allergic properties, and curine pre-treatment inhibited the calcium-induced tracheal contractile response ex-vivo, suggesting that the mechanism by which curine exerts its effects is through the inhibition of a calcium-dependent response. A toxicological evaluation showed that orally administered curine did not significantly alter the biochemical, hematological, behavioral and physical parameters measured in the experimental animals compared with saline-treated animals. In conclusion, curine showed anti-allergic activity through mechanisms that involve inhibition of IL-13 and eotaxin and of Ca(++) influx, without inducing evident toxicity and as such, has the potential for the development of anti-asthmatic drugs. PMID:23994558

  18. Bronchial hyperresponsiveness to mannitol, airway inflammation and Asthma Control Test in atopic asthmatic children

    PubMed Central

    Consilvio, Nicola P.; Rapino, Daniele; Nicola, Marta Di; Scaparrotta, Alessandra; Cingolani, Anna; Petrosino, Marianna I.; Filippo, Paola Di; Pillo, Sabrina Di; Chiarelli, Francesco

    2016-01-01

    Introduction The aim of this study was to evaluate the relationship between airway hyperresponsiveness (AHR) to mannitol and bronchial inflammation measured as exhaled nitric oxide (FeNO) and to assess whether asthma control correlates with AHR to mannitol and FeNO in atopic asthmatic children. Material and methods Allergy evaluation, the mannitol challenge test, FeNO levels and the Asthma Control Test (ACT) questionnaire were assessed in 40 children with intermittent and mild persistent allergic asthma. Results All the subjects showed positive AHR to mannitol. Pearson's correlation test revealed a significant inverse correlation between AHR (mannitol PD15) and FeNO (p = 0.020). There was also a significant positive correlation between ACT and PD15 (p = 0.020) and a significant negative correlation between ACT and FeNO levels (p = 0.003). The study population was divided into two groups according to FeNO levels (group A ≥ 16 ppb vs. group B < 16 ppb). In group A mannitol PD15 was significantly lower (p = 0.040) and ACT score values were significantly lower (p = 0.001) compared to group B. In group A, the ACT showed that 13.3% of subjects had well-controlled asthma, 80% had partially controlled asthma and 6.7% had uncontrolled asthma. In group B, the ACT showed that 72% of subjects had well-controlled asthma and 28% had partially controlled asthma. Conclusions Our findings indicate that the degree of AHR to mannitol correlates with the degree of airway inflammation in asthmatic atopic children; moreover, better control of asthma correlates with a lower degree of AHR to both mannitol and FeNO. PMID:26925129

  19. Relationship between sputum inflammatory markers and osmotic airway hyperresponsiveness during induction of sputum in asthmatic patients.

    PubMed Central

    Jang, A. S.; Choi, I. S.

    2001-01-01

    Hypertonic saline aerosols are being used increasingly for bronchial provocation testing and induction of sputum. The aims of this study were to assess the response to challenge with 3% hypertonic saline administered via a ultrasonic nebulizer in patients with asthma, and to evaluate relationship between % fall of FEV1 during induction of sputum (osmotic airway hyperresponsiveness; osmotic AHR) and biochemical markers of induced sputum. We investigated changes in FEV1 in response to inhaling ultrasonically nebulized 3% saline in 25 patients with asthma and 10 control subjects. FEV1 was measured before, during, and after induction of sputum. We used fluoroimmunoassay to detect eosinophil cationic protein (ECP), immunohistochemical staining to detect EG2+ (secretory form of ECP) eosinophils, and a sandwich ELISA to detect interleukin (IL)-5. Protein concentration was determined by using bicinchoninic acid protein assay reagent. Asthmatics, compared with controls, had significantly higher osmotic AHR. Moderate to severe asthmatics had significantly higher osmotic AHR compared to mild asthmatics. Osmotic AHR was significantly correlated with the proportion of eosinophils, the levels of ECP, EG2+ eosinophils, IL-5, and proteins. These data suggest that osmotic AHR is closely related to the clinical status and biochemical markers of sputum supernatant in asthmatic patients. PMID:11511785

  20. Airway hyper-responsiveness in lipopolysaccharide-challenged common marmosets (Callithrix jacchus)

    PubMed Central

    Curths, Christoph; Wichmann, Judy; Dunker, Sarah; Windt, Horst; Hoymann, Heinz-Gerd; Lauenstein, Hans D.; Hohlfeld, Jens; Becker, Tamara; Kaup, Franz-Josef; Braun, Armin; Knauf, Sascha

    2013-01-01

    Animal models with a high predictive value for human trials are needed to develop novel human-specific therapeutics for respiratory diseases. The aim of the present study was to examine lung-function parameters in marmoset monkeys (Callithrix jacchus) that can be used to detect pharmacologically or provocation-induced AHR (airway hyper-responsiveness). Therefore a custom-made lung-function device that allows application of defined aerosol doses during measurement was developed. It was hypothesized that LPS (lipopolysaccharide)-challenged marmosets show AHR compared with non-challenged healthy subjects. Invasive plethysmography was performed in 12 anaesthetized orotracheally intubated and spontaneously breathing marmosets. Pulmonary data of RL (lung resistance), Cdyn (dynamic compliance), EF50 (mid-expiratory flow), Poes (oesophageal pressure), MV (minute volume), respiratory frequency (f) and VT (tidal volume) were collected. Measurements were conducted under baseline conditions and under MCh (methacholine)-induced bronchoconstriction. The measurement was repeated with the same group of animals after induction of an acute lung inflammation by intratracheal application of LPS. PDs (provocative doses) of MCh to achieve a certain increase in RL were significantly lower after LPS administration. AHR was demonstrated in the LPS treated compared with the naïve animals. The recorded lung-function data provide ground for pre-clinical efficacy and safety testing of anti-inflammatory substances in the common marmoset, a new translational NHP (non-human primate) model for LPS-induced lung inflammation. PMID:23879175

  1. An overview of asthma and airway hyper-responsiveness in Olympic athletes.

    PubMed

    Fitch, Kenneth D

    2012-05-01

    Data from the past five Olympic Games obtained from athletes seeking to inhale β2 adrenoceptor agonists (IBA) have identified those athletes with documented asthma and airway hyper-responsiveness (AHR). With a prevalence of about 8%, asthma/AHR is the commonest chronic medical condition experienced by Olympic athletes. In Summer and Winter athletes, there is a marked preponderance of asthma/AHR in endurance-trained athletes. The relatively late onset of asthma/AHR in many older athletes is suggestive that years of endurance training may be a contributory cause. Inspiring polluted or cold air is considered a significant aetiological factor in some but not all sports. During the last five Olympic Games, there has been improved management of athletes with asthma/AHR with a much higher proportion of athletes combining inhaled corticosteroids (ICS) with IBA and few using long-acting IBA as monotherapy. Athletes with asthma/AHR have consistently outperformed their peers, which research suggests is not due to their treatment enhancing sports performance. Research is necessary to determine how many athletes will continue to experience asthma/AHR in the years after they cease intensive endurance training. PMID:22228581

  2. CTLA4Ig inhibits airway eosinophilia and hyperresponsiveness by regulating the development of Th1/Th2 subsets in a murine model of asthma.

    PubMed

    Padrid, P A; Mathur, M; Li, X; Herrmann, K; Qin, Y; Cattamanchi, A; Weinstock, J; Elliott, D; Sperling, A I; Bluestone, J A

    1998-04-01

    Complete T-cell activation requires two distinct signals, one delivered via the T-cell receptor, and the second "co-stimulatory" signal through CD28/B7 ligation. Previous studies showed that the blockade of CD28/B7 ligation alters differentiation of Th1/Th2 lymphocyte subsets in vitro and in vivo. The present study was designed to determine the effect of a CD28/B7 antagonist (CTLA4Ig) on Th1/Th2 development in Schistosoma mansoni-sensitized and airway-challenged mice. Treatment of mice with CTLA4Ig beginning 1 wk after sensitization abolished airway responsiveness to intravenous methacholine determined 96 h following antigen challenge. We also found a significant reduction in bronchoalveolar lavage (BAL) eosinophilia, and reduced peribronchial eosinophilic infiltration and mucoid-cell hyperplasia. Furthermore, CTLA4Ig treatment significantly decreased interleukin (IL)-4 and IL-5 content in BAL fluid in vivo, and the production of IL-5 by lung lymphocytes stimulated with soluble egg antigen (SEA) in vitro. In contrast, the content of interferon-gamma in BAL fluid and supernatant from SEA-stimulated lung lymphocytes from CTLA4Ig-treated mice was increased significantly compared with untreated animals. Thus, CTLA4Ig inhibits eosinophilic airway inflammation and airway hyperresponsiveness in S. mansoni-sensitized and airway-challenged mice, most likely due to attenuated secretion of Th2-type cytokines and increased secretion of Th1-type cytokines. PMID:9533932

  3. Ozone-induced oxygen radical release from bronchoalveolar lavage cells and airway hyper-responsiveness in dogs.

    PubMed Central

    Stevens, W H; Conlon, P D; O'Byrne, P M

    1995-01-01

    1. Ozone inhalation causes airway hyper-responsiveness and airway inflammation in dogs. The purpose of this study was to determine whether these effects are associated with increases in oxygen radical production from bronchoalveolar lavage (BAL) cells. 2. Twelve randomly selected dogs were studied twice, 4 weeks apart. On each study day, acetylcholine (ACh) airway responsiveness was measured before and 1 h after ozone (3 p.p.m., 30 min) or dry air inhalation, followed by BAL. The response to ACh was expressed as the concentration causing an increase in lung resistance of 5 cmH2O l-1 s-1 above baseline. Spontaneous and phorbol myristate acetate (PMA) (2.4 mumol l-1)-stimulated oxygen radical release from washed BAL cells (4 x 10(6) cells ml-1) was measured by luminol-enhanced chemiluminescence in a luminometer at 37 degrees C. 3. Ozone inhalation caused airway hyper-responsiveness. The concentration of ACh causing an increase in lung resistance of 5 cmH2O l-1 s-1 (the 'provocative' concentration) fell from 4.68 mg ml-1 (% S.E.M., 1.43) before, to 0.48 mg ml-1 (% S.E.M., 1.60) after ozone (P < 0.0001). Spontaneous chemiluminescence area under the curve (AUC) significantly increased after ozone from 4.08 mV (10 min) (% S.E.M., 1.28) after dry air to 8.25 mV (10 min; % S.E.M., 1.29) after ozone (P = 0.007). Ozone inhalation also increased PMA-stimulated chemiluminescence AUC from 18.97 mV (10 min; % S.E.M., 1.18) after dry air to 144.03 mV (10 min; % S.E.M., 1.45) after ozone (P = 0.0001). The increase in PMA-stimulated chemiluminescence was significantly correlated with ozone-induced ACh airway hyper-responsiveness (r = 0.83, P < 0.001). 4. These results indicate that inhaled ozone increases oxygen radical release from BAL cells and suggest that oxygen radicals are important in causing ozone-induced airway hyper-responsiveness. PMID:7562641

  4. Virus-induced airway hyperresponsiveness in the guinea-pig: possible involvement of histamine and inflammatory cells.

    PubMed Central

    Folkerts, G.; De Clerck, F.; Reijnart, I.; Span, P.; Nijkamp, F. P.

    1993-01-01

    1. Guinea-pig tracheal contractions by histamine and by the cholinoceptor agonist, arecoline, are significantly enhanced (30% and 20%, respectively), 96 h after intra-tracheal inoculation with Parainfluenza-3 (PI-3) virus. 2. The airway hyperresponsiveness in animals inoculated with virus coincides with a significant increase in the number of broncho-alveolar cells (82%), and in the albumin concentration (121%) in lung lavage fluid, relative to values obtained in guinea-pigs challenged with control solution. 3. The chemiluminescence production by isolated broncho-alveolar cells, obtained from virus-infected guinea-pigs 96 h after inoculation stimulated with PI-3 virus in vitro, is significantly reduced by 42% relative to broncho-alveolar cells obtained from animals inoculated with control solution. This diminution was not specific for stimulation by PI-3 virus since the chemiluminescence production was also significantly reduced by 30% in response to zymosan. 4. Pretreatment of the guinea-pigs with the anti-allergic drugs, oxatomide (2.5 mg kg-1) or nedocromil (2.5 mg kg-1), or the specific H1-histamine receptor antagonist, levocabastine (0.25 mg kg-1), administered intra-peritoneally twice a day for five successive days, inhibits the virus-induced airway hyperresponsiveness, suppresses the influx of broncho-alveolar cells and increase in albumin content, and corrects the reduced chemiluminescence production by broncho-alveolar cells in response to zymosan. 5. In contrast, the cyclo-oxygenase inhibitor, suprofen (5.0 mg kg-1), the 5-HT2 receptor antagonist, ketanserin (0.63 mg kg-1), or the Ca2+ overload blocker, flunarizine (2.5 mg kg-1) do not modify the above mentioned processes. 6. The platelet-activating factor receptor antagonist, WEB 2170 (10 mg kg-1), reduces virus-induced airway hyperresponsiveness and influx of broncho-alveolar cells into the lungs but does not attenuate the increase of albumin in the bronchial lavage fluid. 7. Guinea-pigs nebulized with

  5. Trigger of bronchial hyperresponsiveness development may not always need eosinophilic airway inflammation in very early stage of asthma

    PubMed Central

    Obase, Yasushi; Kishikawa, Reiko; Kohno, Shigeru; Iwanaga, Tomoaki

    2016-01-01

    Background: Cough variant asthma (CVA), a suggested precursor of standard bronchial asthma (SBA), is characterized by positive bronchial hyperresponsiveness (BHR) and a chronic cough response to bronchodilator that persists for >8 weeks. Objective: Airway inflammation, BHR, and airway obstructive damage were analyzed to assess whether CVA represents early or mild-stage SBA. Methods: Patients with newly diagnosed CVA (n = 72) and SBA (n = 84) naive to oral or inhaled corticosteroids and without exacerbated asthma were subjected to spirometry, impulse oscillometry, BHR tests, sputum induction, and fractional exhaled nitric oxide measurements. Results: In the patients with CVA, spirometry demonstrated higher forced expiratory volume in 1 second (FEV1) to forced vital capacity ratio, FEV1 percent predicted, flow volume at 50% of vital capacity % predicted, and flow volume at 25% of vital capacity % predicted values, and impulse oscillometry demonstrated lower R5–Z20, AX, and Fres, and higher X5 values. In addition, the fractional exhaled nitric oxide and sputum eosinophil numbers were lower and the PC20 was higher than in patients with moderate SBA. However, these factors were similar in the patients with CVA and in the patients with intermittent mild SBA. A significantly smaller proportion of the patients with CVA had increased sputum eosinophils than the patients with intermittent mild SBA (p < 0.0001). However, interestingly, among the patients with CVA, no significant differences in the PC20 values were found between the patients with and those without increased sputum eosinophils. Conclusions: All measures of central and peripheral airway obstruction, eosinophilic inflammation, and airway hyperresponsiveness in patients with CVA were milder than in patients with moderate SBA but were similar to those of patients with intermittent mild SBA. In CVA, the BHR was not affected by airway eosinophilic inflammation, which indicated that the very early development of BHR

  6. Pneumocystis Elicits a STAT6-Dependent, Strain-Specific Innate Immune Response and Airway Hyperresponsiveness

    PubMed Central

    Meissner, Nicole N.; Siemsen, Dan W.; McInnerney, Kate; Harmsen, Allen G.

    2012-01-01

    It is widely held that exposure to pathogens such as fungi can be an agent of comorbidity, such as exacerbation of asthma or chronic obstructive pulmonary disease. Although many studies have examined allergic responses to fungi and their effects on pulmonary function, the possible pathologic implications of the early innate responses to fungal pathogens have not been explored. We examined early responses to the atypical fungus Pneumocystis in two common strains of mice in terms of overall immunological response and related pathology, such as cell damage and airway hyperresponsiveness (AHR). We found a strong strain-specific response in BALB/c mice that included recruitment of neutrophils, NK, NKT, and CD4 T cells. This response was accompanied by elevated indicators of lung damage (bronchoalveolar lavage fluid albumin and LDH) and profound AHR. This early response was absent in C57BL/6 mice, although both strains exhibited a later response associated with the clearance of Pneumocystis. We found that this AHR could not be attributed exclusively to the presence of recruited neutrophils, NKT, NK, or CD4 cells or to the actions of IFN-γ or IL-4. However, in the absence of STAT6 signaling, AHR and inflammatory cell recruitment were virtually absent. Gene expression analysis indicated that this early response included activation of several transcription factors that could be involved in pulmonary remodeling. These results show that exposure to a fungus such as Pneumocystis can elicit pulmonary responses that may contribute to morbidity, even without prior sensitization, in the context of certain genetic backgrounds. PMID:21960549

  7. Effects of add-on montelukast on airway hyperresponsiveness in patients with well-controlled asthma – a pilot study

    PubMed Central

    Kononowa, Nina; Michel, Sandra; Miedinger, David; Pichler, Christiane E.; Chhajed, Prashant N.; Helbling, Arthur; Leuppi, Jörg D.

    2013-01-01

    Objective Control of airway inflammation is the cornerstone of asthma management. The aim of the present pilot study was to assess the effects of a leukotriene receptor antagonist (LTRA) added to a basic treatment of inhaled corticosteroids (ICS) and long-acting beta-agonist (LABA) on airway hyperresponsiveness, inflammation, and quality of life in well-controlled patients with asthma. Research design and methods Seventeen patients (age 18–65, 11 women) with well-controlled asthma presenting airway hyperresponsiveness to mannitol and methacholine challenge were given add-on montelukast on a stable ICS + LABA for 4 weeks. Quality of life and selected parameters of airway inflammation were measured at baseline and at study end. (ClinicalTrials.gov (NCT01725360)). Results Adding montelukast to ICS + LABA resulted in an increase in mean FEV1 (+4.5%, p = 0.057), cumulated higher dose of mannitol (+32.5%, p = 0.023) and methacholine (+17.2%, 0.237) in the provocation test, lower airway reactivity with mannitol and methacholine (response dose ratio (RDR) –50.0%, p = 0.024 and –44.3%, p = 0.006, respectively), and improved airway sensitivity to mannitol and methacholine (+12.1%, p = 0.590 and +48.0%, p = 0.129 for PD15 and PD20 FEV1, respectively). Changes in inflammation parameters (blood eosinophil count, serum eosinophil cationic protein, and exhaled nitric oxide) were consistent with these findings. Asthma-related quality of life improved significantly in all domains and overall (from 5.3 at baseline to 6.1 at the final visit, p < 0.001). The main limitation was the absence of a control group. Conclusion The consistency of the changes in airway hyperresponsiveness and inflammation as well as in quality of life observed with an add-on therapy with montelukast in well-controlled asthma patients during 4 weeks suggests that residual inflammation may represent an area for further improvement of asthma control to be explored in

  8. Pulmonary C Fibers Modulate MMP-12 Production via PAR2 and Are Involved in the Long-Term Airway Inflammation and Airway Hyperresponsiveness Induced by Respiratory Syncytial Virus Infection

    PubMed Central

    Zang, Na; Zhuang, Jianguo; Deng, Yu; Yang, Zhimei; Ye, Zhixu; Xie, Xiaohong; Ren, Luo; Fu, Zhou; Luo, Zhengxiu; Xu, Fadi

    2015-01-01

    ABSTRACT Children with acute respiratory syncytial virus (RSV) infection often develop sequelae of persistent airway inflammation and wheezing. Pulmonary C fibers (PCFs) are involved in the generation of airway inflammation and resistance; however, their role in persistent airway diseases after RSV is unexplored. Here, we elucidated the pathogenesis of PCF activation in RSV-induced persistent airway disorders. PCF-degenerated and intact mice were used in the current study. Airway inflammation and airway resistance were evaluated. MMP408 and FSLLRY-NH2 were the selective antagonists for MMP-12 and PAR2, respectively, to investigate the roles of MMP-12 and PAR2 in PCFs mediating airway diseases. As a result, PCF degeneration significantly reduced the following responses to RSV infection: augmenting of inflammatory cells, especially macrophages, and infiltrating of inflammatory cells in lung tissues; specific airway resistance (sRaw) response to methacholine; and upregulation of MMP-12 and PAR2 expression. Moreover, the inhibition of MMP-12 reduced the total number of cells and macrophages in bronchiolar lavage fluid (BALF), as well infiltrating inflammatory cells, and decreased the sRaw response to methacholine. In addition, PAR2 was upregulated especially at the later stage of RSV infection. Downregulation of PAR2 ameliorated airway inflammation and resistance following RSV infection and suppressed the level of MMP-12. In all, the results suggest that PCF involvement in long-term airway inflammation and airway hyperresponsiveness occurred at least partially via modulating MMP-12, and the activation of PAR2 might be related to PCF-modulated MMP-12 production. Our initial findings indicated that the inhibition of PCF activity would be targeted therapeutically for virus infection-induced long-term airway disorders. IMPORTANCE The current study is critical to understanding that PCFs are involved in long-term airway inflammation and airway resistance after RSV infection

  9. Vaccination against IL-33 Inhibits Airway Hyperresponsiveness and Inflammation in a House Dust Mite Model of Asthma

    PubMed Central

    Lei, Ying; Adner, Mikael; Hellman, Lars; Nilsson, Gunnar

    2015-01-01

    In several clinical and experimental studies IL-33 and its receptor have been found to play important roles in the development of asthma and allergic airway inflammation. We evaluated the effects of vaccination against IL-33 in a mouse model of airway inflammation induced by house dust mite (HDM) allergen. Balb/c mice received the IL-33 vaccine subcutaneously, followed by intranasal administration of HDM for up to six weeks. Vaccination against IL-33 induced high titers of specific anti-IL-33 IgG antibodies that inhibited HDM-induced airway hyperresponsiveness (AHR) in the conducting airways and tissue damping. The vaccination also attenuated the HDM-induced elevation in the numbers of eosinophils in bronchoalveolar lavage fluid (BALF) and suppressed the accumulation of inflammatory cells in the airways. Furthermore, the levels of IL-17A, IL-25, IL-33 and TSLP in lung tissue homogenates were reduced by vaccination against IL-33. These observations demonstrate that vaccination against IL-33 inhibits HDM-induced development of AHR, airway inflammation and production of inflammatory cytokines. The results also indicate an important role of IL-33 in the regulation of AHR of the distal lung compartments. Thus, administration of such a vaccine is potentially an effective therapeutic tool for treating allergic asthma. PMID:26214807

  10. Andrographolide Restores Steroid Sensitivity To Block Lipopolysaccharide/IFN-γ-Induced IL-27 and Airway Hyperresponsiveness in Mice.

    PubMed

    Liao, Wupeng; Tan, W S Daniel; Wong, W S Fred

    2016-06-01

    LPS and IFN-γ alone or in combination have been implicated in the development of steroid resistance. Combined LPS/IFN-γ strongly upregulates IL-27 production, which has been linked to steroid-resistant airway hyperresponsiveness (AHR). Andrographolide, a bioactive molecule isolated from the plant Andrographis paniculata, has demonstrated anti-inflammatory and antioxidant properties. The present study investigated whether andrographolide could restore steroid sensitivity to block LPS/IFN-γ-induced IL-27 production and AHR via its antioxidative property. The mouse macrophage cell line Raw 264.7, mouse primary lung monocytes/macrophages, and BALB/c mice were treated with LPS/IFN-γ, in the presence and absence of dexamethasone and/or andrographolide. Levels of IL-27 in vitro and in vivo were examined and mouse AHR was assessed. Dexamethasone alone failed to inhibit LPS/IFN-γ-induced IL-27 production and AHR in mice. Andrographolide significantly restored the suppressive effect of dexamethasone on LPS/IFN-γ-induced IL-27 mRNA and protein levels in the macrophage cell line and primary lung monocytes/macrophages, mouse bronchoalveolar lavage fluid and lung tissues, and AHR in mice. LPS/IFN-γ markedly reduced the nuclear level of histone deacetylase (HDAC)2, an essential epigenetic enzyme that mediates steroid anti-inflammatory action. LPS/IFN-γ also decreased total HDAC activity but increased the total histone acetyltransferase/HDAC activity ratio in mouse lungs. Andrographolide significantly restored nuclear HDAC2 protein levels and total HDAC activity, and it diminished the total histone acetyltransferase/HDAC activity ratio in mouse lungs exposed to LPS/IFN-γ, possibly via suppression of PI3K/Akt/HDAC2 phosphorylation, and upregulation of the antioxidant transcription factor NF erythroid-2-related factor 2 level and DNA binding activity. Our data suggest that andrographolide may have therapeutic value in resensitizing steroid action in respiratory disorders

  11. AIRWAY HYPERRESPONSIVENESS IN MICE FOLLOWING ANTIGEN AND PARTICULATE MATTER EXPOSURE IS VAGALLY MEDIATED

    EPA Science Inventory

    Sensory nerves within the airways can initiate a variety of protective reflexes. We hypothesized that insults such as exposure to antigen and particulate matter (PM) might dysregulate airway sensory nerve function, thereby contributing to enhanced airway inflammation and hyperre...

  12. Hesperetin, a Selective Phosphodiesterase 4 Inhibitor, Effectively Suppresses Ovalbumin-Induced Airway Hyperresponsiveness without Influencing Xylazine/Ketamine-Induced Anesthesia

    PubMed Central

    Shih, Chung-Hung; Lin, Ling-Hung; Hsu, Hsin-Te; Wang, Kuo-Hsien; Lai, Chi-Yin; Chen, Chien-Ming; Ko, Wun-Chang

    2012-01-01

    Hesperetin, a selective phosphodiesterase (PDE)4 inhibitor, is present in the traditional Chinese medicine, “Chen Pi.” Therefore, we were interested in investigating its effects on ovalbumin- (OVA-) induced airway hyperresponsiveness, and clarifying its rationale for ameliorating asthma and chronic obstructive pulmonary disease (COPD). Hesperetin was revealed to have a therapeutic (PDE4H/PDE4L) ratio of >11. Hesperetin (10 ~ 30 μmol/kg, intraperitoneally (i.p.)) dose-dependently and significantly attenuated the airway hyperresponsiveness induced by methacholine. It also significantly suppressed the increases in total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL)-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF). It dose-dependently and significantly suppressed total and OVA-specific immunoglobulin E levels in the BALF and serum. However, hesperetin did not influence xylazine/ketamine-induced anesthesia, suggesting that hesperetin has few or no emetic effects. In conclusion, the rationales for ameliorating allergic asthma and COPD by hesperetin are anti-inflammation, immunoregulation, and bronchodilation. PMID:22454667

  13. Inhibition of the 5-lipoxygenase pathway with piriprost (U-60,257) protects normal primates from ozone-induced methacholine hyperresponsive small airways

    SciTech Connect

    Johnson, H.G.; Stout, B.K.; Ruppel, P.L.

    1988-03-01

    Weekly exposure to ozone in seven normal Rhesus monkeys led to induction of methacholine hypersensitive airways (RL increases 242 +/- 60% and Cdyn decreases 68 +/- 13% of baseline methacholine responses). It took 19 weeks to establish this hyperresponse that persisted for greater than 15 weeks once ozone was stopped. A second exposure led to similar response peaks in 6 weeks. At the peak of the second response, weekly 1% piriprost exposure before ozone led to a return to baseline that was not different between placebo and piriprost treated animals (9.4 +/- 1.0 and 4.3 +/- 2.9 weeks, placebo and treated, respectively P = 0.09 NS). A statistical difference in the mecholyl response in placebo and piriprost treated groups while on ozone was shown only in the Cdyn measurement (Cdyn% change 68 +/- 13 vs 24 +/- 14, placebo and piriprost, respectively P = 0.03). Off ozone (or return to baseline), a statistical difference could be detected both in RL and Cdyn (RL% changed 151 +/- 41 vs 31.1 +/- 49, P = 0.03, and for Cdyn 62.7 +/- 8 vs 9 +/- 10, P = 0.0006, placebo and piriprost, respectively). We conclude tha the primate provides a chronic model of airways reactivity in which the role of lipoxygenase is implicated because of the beneficial role of piriprost, and further that the ozone lesion is primarily in the smaller airways (possibly and alveolitis).

  14. Contrasting roles for the receptor for advanced glycation end-products on structural cells in allergic airway inflammation vs. airway hyperresponsiveness.

    PubMed

    Taniguchi, Akihiko; Miyahara, Nobuaki; Waseda, Koichi; Kurimoto, Etsuko; Fujii, Utako; Tanimoto, Yasushi; Kataoka, Mikio; Yamamoto, Yasuhiko; Gelfand, Erwin W; Yamamoto, Hiroshi; Tanimoto, Mitsune; Kanehiro, Arihiko

    2015-10-15

    The receptor for advanced glycation end-products (RAGE) is a multiligand receptor that belongs to the immunoglobulin superfamily. RAGE is reported to be involved in various inflammatory disorders; however, studies that address the role of RAGE in allergic airway disease are inconclusive. RAGE-sufficient (RAGE+/+) and RAGE-deficient (RAGE-/-) mice were sensitized to ovalbumin, and airway responses were monitored after ovalbumin challenge. RAGE-/- mice showed reduced eosinophilic inflammation and goblet cell metaplasia, lower T helper type 2 (Th2) cytokine production from spleen and peribronchial lymph node mononuclear cells, and lower numbers of group 2 innate lymphoid cells in the lung compared with RAGE+/+ mice following sensitization and challenge. Experiments using irradiated, chimeric mice showed that the mice expressing RAGE on radio-resistant structural cells but not hematopoietic cells developed allergic airway inflammation; however, the mice expressing RAGE on hematopoietic cells but not structural cells showed reduced airway inflammation. In contrast, absence of RAGE expression on structural cells enhanced innate airway hyperresponsiveness (AHR). In the absence of RAGE, increased interleukin (IL)-33 levels in the lung were detected, and blockade of IL-33 receptor ST2 suppressed innate AHR in RAGE-/- mice. These data identify the importance of RAGE expressed on lung structural cells in the development of allergic airway inflammation, T helper type 2 cell activation, and group 2 innate lymphoid cell accumulation in the airways. RAGE on lung structural cells also regulated innate AHR, likely through the IL-33-ST2 pathway. Thus manipulating RAGE represents a novel therapeutic target in controlling allergic airway responses. PMID:26472810

  15. Suhuang antitussive capsule at lower doses attenuates airway hyperresponsiveness, inflammation, and remodeling in a murine model of chronic asthma

    PubMed Central

    Zhang, Chao; Zhang, Lan-Hong; Wu, Yin-Fang; Lai, Tian-Wen; Wang, Hai-Sheng; Xiao, Hui; Che, Luan-Qing; Ying, Song-Min; Li, Wen; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-01-01

    Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-β1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-β1. Suhuang might be a promising therapy for patients with allergic asthma in the future. PMID:26861679

  16. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease

    PubMed Central

    Han, Bing; Poppinga, Wilfred J.; Zuo, Haoxiao; Zuidhof, Annet B.; Bos, I. Sophie T.; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H.; Maarsingh, Harm; Halayko, Andrew J.; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  17. The novel compound Sul-121 inhibits airway inflammation and hyperresponsiveness in experimental models of chronic obstructive pulmonary disease.

    PubMed

    Han, Bing; Poppinga, Wilfred J; Zuo, Haoxiao; Zuidhof, Annet B; Bos, I Sophie T; Smit, Marieke; Vogelaar, Pieter; Krenning, Guido; Henning, Robert H; Maarsingh, Harm; Halayko, Andrew J; van Vliet, Bernard; Stienstra, Stef; Graaf, Adrianus Cornelis van der; Meurs, Herman; Schmidt, Martina

    2016-01-01

    COPD is characterized by persistent airflow limitation, neutrophilia and oxidative stress from endogenous and exogenous insults. Current COPD therapy involving anticholinergics, β2-adrenoceptor agonists and/or corticosteroids, do not specifically target oxidative stress, nor do they reduce chronic pulmonary inflammation and disease progression in all patients. Here, we explore the effects of Sul-121, a novel compound with anti-oxidative capacity, on hyperresponsiveness (AHR) and inflammation in experimental models of COPD. Using a guinea pig model of lipopolysaccharide (LPS)-induced neutrophilia, we demonstrated that Sul-121 inhalation dose-dependently prevented LPS-induced airway neutrophilia (up to ~60%) and AHR (up to ~90%). Non-cartilaginous airways neutrophilia was inversely correlated with blood H2S, and LPS-induced attenuation of blood H2S (~60%) was prevented by Sul-121. Concomitantly, Sul-121 prevented LPS-induced production of the oxidative stress marker, malondialdehyde by ~80%. In immortalized human airway smooth muscle (ASM) cells, Sul-121 dose-dependently prevented cigarette smoke extract-induced IL-8 release parallel with inhibition of nuclear translocation of the NF-κB subunit, p65 (each ~90%). Sul-121 also diminished cellular reactive oxygen species production in ASM cells, and inhibited nuclear translocation of the anti-oxidative response regulator, Nrf2. Our data show that Sul-121 effectively inhibits airway inflammation and AHR in experimental COPD models, prospectively through inhibition of oxidative stress. PMID:27229886

  18. Suhuang antitussive capsule at lower doses attenuates airway hyperresponsiveness, inflammation, and remodeling in a murine model of chronic asthma.

    PubMed

    Zhang, Chao; Zhang, Lan-Hong; Wu, Yin-Fang; Lai, Tian-Wen; Wang, Hai-Sheng; Xiao, Hui; Che, Luan-Qing; Ying, Song-Min; Li, Wen; Chen, Zhi-Hua; Shen, Hua-Hao

    2016-01-01

    Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-β1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-β1. Suhuang might be a promising therapy for patients with allergic asthma in the future. PMID:26861679

  19. A semisynthetic diterpenoid lactone inhibits NF-κB signalling to ameliorate inflammation and airway hyperresponsiveness in a mouse asthma model.

    PubMed

    Lim, J C-W; Goh, F-Y; Sagineedu, S-R; Yong, A C-H; Sidik, S M; Lajis, N H; Wong, W S F; Stanslas, J

    2016-07-01

    Andrographolide (AGP) and 14-deoxy-11,12-didehydroandrographolide (DDAG), two main diterpenoid constituents of Andrographis paniculata were previously shown to ameliorate asthmatic symptoms in a mouse model. However, due to inadequacies of both compounds in terms of drug-likeness, DDAG analogues were semisynthesised for assessment of their anti-asthma activity. A selected analogue, 3,19-diacetyl-14-deoxy-11,12-didehydroandrographolide (SRS27), was tested for inhibitory activity of NF-κB activation in TNF-α-induced A549 cells and was subsequently evaluated in a mouse model of ovalbumin (OVA)-induced asthma. Female BALB/c mice, 6-8weeks old were sensitized on days 0 and 14, and challenged on days 22, 23 and 24 with OVA. Compound or vehicle (3% dimethyl sulfoxide) was administered intraperitoneally 1h before and 11h after each OVA aerosol challenge. On day 25, pulmonary eosinophilia, airway hyperresponsiveness, mucus hypersecretion, inflammatory cytokines such as IL-4, -5 and -13 in BAL fluid, gene expression of inflammatory mediators such as 5-LOX, E-selectin, VCAM-1, CCL5, TNF-α, AMCase, Ym2, YKL-40, Muc5ac, CCL2 and iNOS in animal lung tissues, and serum IgE were determined. SRS27 at 30μM was found to suppress NF-κB nuclear translocation in A549 cells. In the ovalbumin-induced mouse asthma model, SRS27 at 3mg/kg displayed a substantial decrease in pulmonary eosinophilia, BAL fluid inflammatory cytokines level, serum IgE production, mucus hypersecretion and gene expression of inflammatory mediators in lung tissues. SRS27 is the first known DDAG analogue effective in ameliorating inflammation and airway hyperresponsiveness in the ovalbumin-induced mouse asthma model. PMID:27089844

  20. Soluble Epoxide Hydrolase Inhibitor Attenuates Inflammation and Airway Hyperresponsiveness in Mice

    PubMed Central

    Yang, Jun; Bratt, Jennifer; Franzi, Lisa; Liu, Jun-Yan; Zhang, Guodong; Zeki, Amir A.; Vogel, Christoph F. A.; Williams, Keisha; Dong, Hua; Lin, Yanping; Hwang, Sung Hee; Kenyon, Nicholas J.

    2015-01-01

    Control of airway inflammation is critical in asthma treatment. Soluble epoxide hydrolase (sEH) has recently been demonstrated as a novel therapeutic target for treating inflammation, including lung inflammation. We hypothesized that pharmacological inhibition of sEH can modulate the inflammatory response in a murine ovalbumin (OVA) model of asthma. BALB/c mice were sensitized and exposed to OVA over 6 weeks. A sEH inhibitor (sEHI) was administered for 2 weeks. Respiratory system compliance, resistance, and forced exhaled nitric oxide were measured. Lung lavage cell counts were performed, and selected cytokines and chemokines in the lung lavage fluid were measured. A LC/MS/MS method was used to measure 87 regulatory lipids mediators in plasma, lung tissue homogenates, and lung lavage fluid. The pharmacological inhibition of sEH increased concentrations of the antiinflammatory epoxy eicosatrienoic acids and simultaneously decreased the concentrations of the proinflammatory dihydroxyeicosatrienoic acids and dihydroxyoctadecenoic acids. All monitored inflammatory markers, including FeNO levels, and total cell and eosinophil numbers in the lung lavage of OVA-exposed mice were reduced by sEHI. The type 2 T helper cell (Th2) cytokines (IL-4, IL-5) and chemokines (Eotaxin and RANTES) were dramatically reduced after sEHI administration. Resistance and dynamic lung compliance were also improved by sEHI. We demonstrated that sEHI administration attenuates allergic airway inflammation and airway responsiveness in a murine model. sEHI may have potential as a novel therapeutic strategy for allergic asthma. PMID:24922186

  1. Soluble epoxide hydrolase inhibitor attenuates inflammation and airway hyperresponsiveness in mice.

    PubMed

    Yang, Jun; Bratt, Jennifer; Franzi, Lisa; Liu, Jun-Yan; Zhang, Guodong; Zeki, Amir A; Vogel, Christoph F A; Williams, Keisha; Dong, Hua; Lin, Yanping; Hwang, Sung Hee; Kenyon, Nicholas J; Hammock, Bruce D

    2015-01-01

    Control of airway inflammation is critical in asthma treatment. Soluble epoxide hydrolase (sEH) has recently been demonstrated as a novel therapeutic target for treating inflammation, including lung inflammation. We hypothesized that pharmacological inhibition of sEH can modulate the inflammatory response in a murine ovalbumin (OVA) model of asthma. BALB/c mice were sensitized and exposed to OVA over 6 weeks. A sEH inhibitor (sEHI) was administered for 2 weeks. Respiratory system compliance, resistance, and forced exhaled nitric oxide were measured. Lung lavage cell counts were performed, and selected cytokines and chemokines in the lung lavage fluid were measured. A LC/MS/MS method was used to measure 87 regulatory lipids mediators in plasma, lung tissue homogenates, and lung lavage fluid. The pharmacological inhibition of sEH increased concentrations of the antiinflammatory epoxy eicosatrienoic acids and simultaneously decreased the concentrations of the proinflammatory dihydroxyeicosatrienoic acids and dihydroxyoctadecenoic acids. All monitored inflammatory markers, including FeNO levels, and total cell and eosinophil numbers in the lung lavage of OVA-exposed mice were reduced by sEHI. The type 2 T helper cell (Th2) cytokines (IL-4, IL-5) and chemokines (Eotaxin and RANTES) were dramatically reduced after sEHI administration. Resistance and dynamic lung compliance were also improved by sEHI. We demonstrated that sEHI administration attenuates allergic airway inflammation and airway responsiveness in a murine model. sEHI may have potential as a novel therapeutic strategy for allergic asthma. PMID:24922186

  2. Absence of c-Jun NH2-terminal kinase 1 protects against house dust mite-induced pulmonary remodeling but not airway hyperresponsiveness and inflammation

    PubMed Central

    van der Velden, Jos L. J.; Hoffman, Sidra M.; Alcorn, John F.; Tully, Jane E.; Chapman, David G.; Lahue, Karolyn G.; Guala, Amy S.; Lundblad, Lennart K. A.; Aliyeva, Minara; Daphtary, Nirav; Irvin, Charles G.

    2014-01-01

    Chronic allergic asthma leads to airway remodeling and subepithelial fibrosis via mechanisms not fully understood. Airway remodeling is amplified by profibrotic mediators, such as transforming growth factor-β1 (TGF-β1), which plays a cardinal role in various models of fibrosis. We recently have identified a critical role for c-Jun-NH2-terminal-kinase (JNK) 1 in augmenting the profibrotic effects of TGF-β1, linked to epithelial-to-mesenchymal transition of airway epithelial cells. To examine the role of JNK1 in house dust mite (HDM)-induced airway remodeling, we induced allergic airway inflammation in wild-type (WT) and JNK1−/− mice by intranasal administration of HDM extract. WT and JNK1−/− mice were sensitized with intranasal aspirations of HDM extract for 15 days over 3 wk. HDM caused similar increases in airway hyperresponsiveness, mucus metaplasia, and airway inflammation in WT and JNK1−/− mice. In addition, the profibrotic cytokine TGF-β1 and phosphorylation of Smad3 were equally increased in WT and JNK1−/− mice. In contrast, increases in collagen content in lung tissue induced by HDM were significantly attenuated in JNK1−/− mice compared with WT controls. Furthermore HDM-induced increases of α-smooth muscle actin (α-SMA) protein and mRNA expression as well as the mesenchymal markers high-mobility group AT-hook 2 and collagen1A1 in WT mice were attenuated in JNK1−/− mice. The let-7 family of microRNAs has previously been linked to fibrosis. HDM exposure in WT mice and primary lung epithelial cells resulted in striking decreases in let-7g miRNA that were not observed in mice or primary lung epithelial cells lacking JNK1−/− mice. Overexpression of let-7g in lung epithelial cells reversed the HDM-induced increases in α-SMA. Collectively, these findings demonstrate an important requirement for JNK1 in promoting HDM-induced fibrotic airway remodeling. PMID:24610935

  3. Airway hyperresponsiveness with chest strapping: A matter of heterogeneity or reduced lung volume?

    PubMed

    Pellegrino, Riccardo; Pompilio, Pasquale P; Bruni, Giulia Innocenti; Scano, Giorgio; Crimi, Claudia; Biasco, Luigi; Coletta, Giuseppe; Cornara, Giuseppe; Torchio, Roberto; Brusasco, Vito; Dellacà, Raffaele L

    2009-03-31

    Chest wall strapping has been recently shown to be associated with an increase in airway responsiveness to methacholine. To investigate whether this is the result of the decreased lung volume or an increased heterogeneity due to chest wall distortion, ten healthy volunteers underwent a methacholine challenge at control conditions and after selective strapping of the rib cage, the abdomen or the whole chest wall resulting in similar decrements of functional residual capacity and total lung capacity but causing different distribution of the bronchoconstrictor. Methacholine during strapping reduced forced expiratory flow, dynamic compliance, and reactance at 5Hz and increased pulmonary resistance and respiratory resistance at 5Hz that were significantly greater than at control and associated with a blunted bronchodilator effect of the deep breath. However, no significant differences were observed between selective and total chest wall strapping, suggesting that the major mechanism for increasing airway responsiveness with chest wall strapping is the breathing at low lung volume rather than regional heterogeneities. PMID:19429518

  4. Overexpression of Smad2 Drives House Dust Mite–mediated Airway Remodeling and Airway Hyperresponsiveness via Activin and IL-25

    PubMed Central

    Gregory, Lisa G.; Mathie, Sara A.; Walker, Simone A.; Pegorier, Sophie; Jones, Carla P.; Lloyd, Clare M.

    2010-01-01

    Rationale: Airway hyperreactivity and remodeling are characteristic features of asthma. Interactions between the airway epithelium and environmental allergens are believed to be important in driving development of pathology, particularly because altered epithelial gene expression is common in individuals with asthma. Objectives: To investigate the interactions between a modified airway epithelium and a common aeroallergen in vivo. Methods: We used an adenoviral vector to generate mice overexpressing the transforming growth factor-β signaling molecule, Smad2, in the airway epithelium and exposed them to house dust mite (HDM) extract intranasally. Measurements and Main Results: Smad2 overexpression resulted in enhanced airway hyperreactivity after allergen challenge concomitant with changes in airway remodeling. Subepithelial collagen deposition was increased and smooth muscle hyperplasia was evident resulting in thickening of the airway smooth muscle layer. However, there was no increase in airway inflammation in mice given the Smad2 vector compared with the control vector. Enhanced airway hyperreactivity and remodeling did not correlate with elevated levels of Th2 cytokines, such as IL-13 or IL-4. However, mice overexpressing Smad2 in the airway epithelium showed significantly enhanced levels of IL-25 and activin A after HDM exposure. Blocking activin A with a neutralizing antibody prevented the increase in lung IL-25 and inhibited subsequent collagen deposition and also the enhanced airway hyperreactivity observed in the Smad2 overexpressing HDM-exposed mice. Conclusions: Epithelial overexpression of Smad2 can specifically alter airway hyperreactivity and remodeling in response to an aeroallergen. Moreover, we have identified novel roles for IL-25 and activin A in driving airway hyperreactivity and remodeling. PMID:20339149

  5. Sulfuric acid induces airway hyperresponsiveness to substance P in the guinea pig.

    PubMed

    Stengel, P W; Bendele, A M; Cockerham, S L; Silbaugh, S A

    1993-01-01

    We investigated whether sulfuric acid inhalation would cause hyperresponsiveness to substance P. Guinea pigs became dyspneic during a 1 h sulfuric acid exposure, but recovered by 24 h when they were challenged with substance P or histamine aerosols. Eight minutes after the start of challenge, animals were killed and excised lung gas volumes measured. Sulfuric acid slightly increased histamine responsiveness compared to controls. However, sulfuric acid caused a much more pronounced leftward shift in the dose response to substance P. Coadministration of the neutral endopeptidase (NEP) inhibitor, thiorphan, did not reduce sulfuric acid-related hyperresponsiveness to substance P. By 72 h, sensitization to substance P was absent. Histological evaluation of sulfuric acid-treated lungs revealed mild alveolitis at 24 h, but not at 72 h. We conclude that sulfuric acid produces a marked sensitization to substance P. Inactivation of NEP does not appear to account for this effect. PMID:7505997

  6. An open-label study examining the effect of pharmacological treatment on mannitol- and exercise-induced airway hyperresponsiveness in asthmatic children and adolescents with exercise-induced bronchoconstriction

    PubMed Central

    2014-01-01

    Background Mannitol- and exercise bronchial provocation tests are both used to diagnose exercise-induced bronchoconstriction. The study aim was to compare the short-term treatment response to budesonide and montelukast on airway hyperresponsiveness to mannitol challenge test and to exercise challenge test in children and adolescents with exercise-induced bronchoconstriction. Methods Patients were recruited from a paediatric asthma rehabilitation clinic located in the Swiss Alps. Individuals with exercise-induced bronchoconstriction and a positive result in the exercise challenge test underwent mannitol challenge test on day 0. All subjects then received a treatment with 400 μg budesonide and bronchodilators as needed for 7 days, after which exercise- and mannitol-challenge tests were repeated (day 7). Montelukast was then added to the previous treatment and both tests were repeated again after 7 days (day 14). Results Of 26 children and adolescents with exercise-induced bronchoconstriction, 14 had a positive exercise challenge test at baseline and were included in the intervention study. Seven of 14 (50%) also had a positive mannitol challenge test. There was a strong correlation between airway responsiveness to exercise and to mannitol at baseline (r = 0.560, p = 0.037). Treatment with budesonide and montelukast decreased airway hyperresponsiveness to exercise challenge test and to a lesser degree to mannitol challenge test. The fall in forced expiratory volume in one second during exercise challenge test was 21.7% on day 0 compared to 6.7% on day 14 (p = 0.001) and the mannitol challenge test dose response ratio was 0.036%/mg on day 0 compared to 0.013%/mg on day 14 (p = 0.067). Conclusion Short-term treatment with an inhaled corticosteroid and an additional leukotriene receptor antagonist in children and adolescents with exercise-induced bronchoconstriction decreases airway hyperresponsiveness to exercise and to mannitol. PMID:25084607

  7. Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of Diet-Induced Obese Asthma.

    PubMed

    Ather, Jennifer L; Chung, Michael; Hoyt, Laura R; Randall, Matthew J; Georgsdottir, Anna; Daphtary, Nirav A; Aliyeva, Minara I; Suratt, Benjamin T; Bates, Jason H T; Irvin, Charles G; Russell, Sheila R; Forgione, Patrick M; Dixon, Anne E; Poynter, Matthew E

    2016-08-01

    Obese asthma presents with inherent hyperresponsiveness to methacholine or augmented allergen-driven allergic asthma, with an even greater magnitude of methacholine hyperresponsiveness. These physiologic parameters and accompanying obese asthma symptoms can be reduced by successful weight loss, yet the underlying mechanisms remain incompletely understood. We implemented mouse models of diet-induced obesity, dietary and surgical weight loss, and environmental allergen exposure to examine the mechanisms and mediators of inherent and allergic obese asthma. We report that the methacholine hyperresponsiveness in these models of inherent obese asthma and obese allergic asthma manifests in distinct anatomical compartments but that both are amenable to interventions that induce substantial weight loss. The inherent obese asthma phenotype, with characteristic increases in distal airspace tissue resistance and tissue elastance, is associated with elevated proinflammatory cytokines that are reduced with dietary weight loss. Surprisingly, bariatric surgery-induced weight loss further elevates these cytokines while reducing methacholine responsiveness to levels similar to those in lean mice or in formerly obese mice rendered lean through dietary intervention. In contrast, the obese allergic asthma phenotype, with characteristic increases in central airway resistance, is not associated with increased adaptive immune responses, yet diet-induced weight loss reduces methacholine hyperresponsiveness without altering immunological variables. Diet-induced weight loss is effective in models of both inherent and allergic obese asthma, and our examination of the fecal microbiome revealed that the obesogenic Firmicutes/Bacteroidetes ratio was normalized after diet-induced weight loss. Our results suggest that structural, immunological, and microbiological factors contribute to the manifold presentations of obese asthma. PMID:27064658

  8. Inflammatory Pattern of the Bronchial Mucosa in Patients with Asthma with Airway Hyperresponsiveness to Hypoosmotic Stimulus.

    PubMed

    Pirogov, A B; Prikhod'ko, A G; Perelman, Yu M; Zinovyev, S V; Afanasyeva, E Yu; Kolosov, V P

    2016-08-01

    Positive reaction of the bronchi to distilled water inhalation in asthmatics is associated with significant stimulation of the respiratory epithelium desquamation against the background of increased content of eosinophilic and neutrophilic leukocytes in induced sputum, predomination of eosinophil and neutrophil cytolysis, and lower activity of myeloperoxidase in leukocyte granules (in comparison with the parameter in patients with a negative response to bronchostimulation). Enhanced cytolysis and destruction of leukocytes and high myeloperoxidase concentration in the extracellular space are essential for the development of bronchial hyperresponsiveness to hypoosmotic stimulus in asthma. PMID:27591875

  9. Airway hyperresponsiveness and inflammation induced by toluene diisocyanate in guinea pigs

    SciTech Connect

    Gordon, T.; Sheppard, D.; McDonald, D.M.; Distefano, S.; Scypinski, L.

    1985-11-01

    The authors examined the changes in airway responsiveness to increasing doses of an acetylcholine aerosol in anesthetized and ventilated guinea pigs 2, 6, or 24 h after exposure to 2 ppm toluene diisocyanate (TDI) or 2 h after exposure to air or 1 ppm TDI. The concentration of acetylcholine calculated to cause a 200% increase in RL was significantly lower for animals studied at 2 h (0.68%) or at 6 h (0.77%), but not at 24 h (2.39%), after TDI than for air animals (3.07%). The increase in airway responsiveness in the TDI-exposed animals was associated with histologic changes in the trachea and intrapulmonary airways. Exposure to 2 ppm TDI caused a patchy loss of cilia, shedding of epithelial cells into the airway lumen, and an influx of inflammatory cells into the trachea and other airways. In the lamina propria of the trachea, the concentration of extravascular polymorphonuclear leukocytes (PMN) was 13- to 26-fold greater in animals studied 2 or 6 h after exposure to 2 ppm TDI or at 2 h after 1 ppm TDI than in animals exposed to air. The concentration of PMN in the epithelium was significantly increased only in animals examined 2 h after 2 ppm TDI. These results indicate that a single exposure to TDI can cause an increase in airway responsiveness that is associated with epithelial injury and acute airway inflammation.

  10. Adoptive transfer of allergen-specific CD4+ T cells induces airway inflammation and hyperresponsiveness in brown-Norway rats.

    PubMed

    Haczku, A; Macary, P; Huang, T J; Tsukagoshi, H; Barnes, P J; Kay, A B; Kemeny, D M; Chung, K F; Moqbel, R

    1997-06-01

    Following allergen exposure, sensitized Brown-Norway rats develop airway hyperresponsiveness (AHR) and eosinophilic inflammation together with an increase in activated T cells (CD25+) in the airways. We tested the hypothesis that CD4+ T cells are involved directly in the acquisition of AHR. Spleen T cells from animals that were injected intraperitoneally on three consecutive days with ovalbumin/Al(OH)3, showed a dose-dependent proliferative response in vitro to ovalbumin, but not to bovine serum albumin, as measured by [3H]thymidine uptake. For total T-cell transfer, spleen cells obtained from donor rats 4 days after sensitization were depleted of adherent cells by a nylon wool column separation. CD4+ and CD8+ T cells were purified by immunomagnetic beads cell separation. Recipient naive rats were injected intravenously with 50 x 10(6) total T cells, 20 x 10(6) and 5 x 10(6) CD4+ cells, and 5 x 10(6) CD8+ cells, and were exposed to ovalbumin aerosol 24 hr afterwards. After a further 24 hr, airway responsiveness to acetylcholine (ACh) was measured and provocative concentration (PC) values PC100, PC200 and PC300) (the ACh concentration needed to achieve 100, 200 and 300% increase in lung resistance above baseline) were calculated. Airway responsiveness was significantly increased in recipients of sensitized total T cells compared with recipients of cells from saline-injected donor rats (P < 0.05). There were significantly increased eosinophil major basic protein (MBP)+ cell counts/mm2 in airway submucosal tissue in the hyperreactive rats and a significant correlation was found between the number of MBP+ cells and PC100 (r = 0.75; P < 0.03) in recipients of sensitized total T cells. Purified CD4+ T cells from sensitized donors induced AHR in naive recipients (P < 0.05), while sensitized CD8+ and naive CD4+ cells failed to do so. Our data indicate that T cells may induce AHR through an eosinophilic airway inflammation and that CD4+ T cells may have a direct effect in

  11. Airway Hyperresponsiveness in Asthma Model Occurs Independently of Secretion of β1 Integrins in Airway Wall and Focal Adhesions Proteins Down Regulation.

    PubMed

    Álvarez-Santos, Mayra; Carbajal, Verónica; Tellez-Jiménez, Olivia; Martínez-Cordero, Erasmo; Ruiz, Victor; Hernández-Pando, Rogelio; Lascurain, Ricardo; Santibañez-Salgado, Alfredo; Bazan-Perkins, Blanca

    2016-10-01

    The extracellular domains of some membrane proteins can be shed from the cell. A similar phenomenon occurs with β1 integrins (α1β1 and α2β1) in guinea pig. The putative role of β1 integrin subunit alterations due to shedding in airway smooth muscle (ASM) in an allergic asthma model was evaluated. Guinea pigs were sensitized and challenged with antigen. Antigenic challenges induced bronchoobstruction and hyperresponsiveness at the third antigenic challenge. Immunohistochemistry and immunoelectronmicroscopy studies showed that the cytosolic and extracellular domains of the β1 integrin subunit shared the same distribution in airway structures in both groups. Various polypeptides with similar molecular weights were detected with both the cytosolic and extracellular β1 integrin subunit antibodies in isolated airway myocytes and the connective tissue that surrounds the ASM bundle. Flow cytometry and Western blot studies showed that the expression of cytosolic and extracellular β1 integrin subunit domains in ASM was similar between groups. An increment of ITGB1 mRNA in ASM was observed in the asthma model group. RACE-PCR of ITGB1 in ASM did not show splicing variants. The expression levels of integrin-linked kinase (ILK) and paxillin diminished in the asthma model, but not talin. The levels of phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Thr(696) increased in asthma model. Our work suggests that β1 integrin is secreted in guinea pig airway wall. This secretion is not altered in asthma model; nevertheless, β1 integrin cytodomain assembly proteins in focal cell adhesions in which ILK and paxillin are involved are altered in asthma model. J. Cell. Biochem. 117: 2385-2396, 2016. © 2016 Wiley Periodicals, Inc. PMID:26969873

  12. Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma

    PubMed Central

    2011-01-01

    Background Arginase overexpression contributes to airways hyperresponsiveness (AHR) in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR. Methods To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA) and challenged with nebulized PBS (OVA/PBS) or OVA (OVA/OVA) for three consecutive days (sub-acute model) or 12 weeks (chronic model), which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3), or HEPA-filtered air (FA), for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC) or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization. Results Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models. Conclusions This study demonstrates that arginase is upregulated following environmental exposures in murine models of asthma, and contributes

  13. Side-stream tobacco smoke-induced airway hyperresponsiveness in early postnatal period is involved nerve growth factor.

    PubMed

    Wu, Z-X; Hunter, D D; Batchelor, T P; Dey, R D

    2016-03-01

    Epidemiological studies have shown that children are more susceptible to adverse respiratory effects of passive smoking than adults. The goal of this study is to elucidate the possible neural mechanism induced by exposure to passive smoking during early life. Postnatal day (PD) 2 and PD 21 mice were exposed to side-stream tobacco smoke (SS), a surrogate to secondhand smoke, or filtered air (FA) for 10 consecutive days. Pulmonary function, substance P (SP) airway innervation, neurotrophin gene expression in lung and nerve growth factor (NGF) release in bronchoalveolar lavage (BAL) fluid were measured at different times after the last SS or FA exposure. Exposure to SS significantly altered pulmonary function in PD2, accompanied with an enhanced SP innervation in airway. However, exposure to SS during the later developmental period (PD21) did not appear to affect pulmonary function and SP innervation of the airways. Interestingly, SS exposure in PD2 group significantly induced an increased gene expression on NGF, and decreased NGF receptor P75 in lung; parallel with high levels of NGF protein in BAL. Furthermore, pretreatment with NGF antibody significantly diminished SS-induced airway hyperresponsivenss and the increased SP airway innervation in the PD2 group. These findings suggest that enhanced NGF released in the lung contributes to SS-enhanced SP tracheal innervation and airway responsiveness in early life. PMID:26638730

  14. COLCHICINE DECREASES AIRWAY HYPERACTIVITY AFTER PHOSGENE EXPOSURE

    EPA Science Inventory

    Phosgene (COCl(2)) exposure affects an influx of inflammatory cells into the lung, which can be reduced in an animal model by pretreatment with colchicine. Inflammation in the respiratory tract can be associated with an increase in airway hyperreactivity. We tested the hypotheses...

  15. Inhibition of antigen-induced airway inflammation and hyperresponsiveness in guinea pigs by a selective antagonist of "chemoattractant receptor homologous molecule expressed on Th2 cells" (CRTH2).

    PubMed

    Tasaki, Mamoru; Kobayashi, Miki; Tenda, Yoshiyuki; Tsujimoto, Susumu; Nakazato, Shoko; Numazaki, Mako; Hirano, Yasuno; Matsuda, Hiroshi; Terasaka, Tadashi; Miyao, Yasuhiro; Shimizu, Yasuaki; Hirayama, Yoshitaka

    2013-06-14

    Chemoattractant receptor homologous molecule expressed on T helper type 2 cells (CRTH2) is a PGD2 receptor found on eosinophils, basophils, and Th2 type T cells which exhibits chemotaxis and functions in activation cascades. However, while a number of CRTH2 antagonists, including ramatroban, are known to exert activity in certain animal models, activity in a guinea pig model of EA-induced airway hyperresponsiveness has not been demonstrated. The newly developed CRTH2 antagonist ASP5642 has shown antagonistic activity against human and guinea pig CRTH2 in previous studies and has also been found effective in treating guinea pig models of airway inflammation and airway hyperresponsiveness. While previous studies have used animals such as rats and mice to evaluate CRTH2 antagonist effects, ours is the first attempt to evaluate CRTH2 function in a guinea pig asthma model, which may prove useful in evaluating the compound's effects in humans, given the comparable airway function between the two species taken together, these data from the present study strongly suggest the utility of ASP5642 in investigating the role of CRTH2 in inflammatory responses and as a drug treatment for human asthma. PMID:23624353

  16. Airway hyperresponsiveness to adenosine induced by lipopolysaccharide in Brown Norway rats

    PubMed Central

    Tigani, B; Hannon, J P; Rondeau, C; Mazzoni, L; Fozard, J R

    2002-01-01

    We have explored the effects of bacterial endotoxin (lipopolysaccharide; LPS) on the response of the airways of Brown Norway (BN) rats to adenosine. Comparisons have been drawn with the effects on responses to methacholine and 5-hydroxytryptamine.In vehicle-challenged animals, adenosine, given i.v. was only a weak bronchoconstrictor. In contrast, 1 h following intratracheal administration of LPS, 0.3 mg kg−1, bronchoconstrictor responses to adenosine were markedly and selectively enhanced. At this time point, there were no significant changes in leukocyte numbers, eosinophil peroxidase and myeloperoxidase activities or protein concentrations in bronchoalveolar lavage (BAL) fluid. Twenty-four hours after challenge, the sensitivity of the airways to both adenosine and methacholine was reduced relative to the earlier time point and there were substantial increases in each marker of inflammation in BAL fluid.The bronchoconstrictor response to adenosine was blocked selectively by methysergide, disodium cromoglycate and the broad-spectrum adenosine receptor antagonist, 8-SPT, but not by DPCPX or ZM 243185, selective antagonists for the A1 and A2A receptors, respectively.Thus, the response to adenosine augmented following LPS is mast cell mediated and involves a receptor which can be blocked by 8-SPT but not by selective A1 or A2A receptor antagonists. It thus bears similarity to the augmented response to adenosine induced by allergen challenge in actively sensitized BN rats. Exposure to LPS could be a factor along with allergen in determining the increased sensitivity of the airways of asthmatics to adenosine. PMID:11976275

  17. Nitrogen dioxide enhances allergic airway inflammation and hyperresponsiveness in the mouse.

    PubMed

    Poynter, Matthew E; Persinger, Rebecca L; Irvin, Charles G; Butnor, Kelly J; van Hirtum, Hans; Blay, Wendy; Heintz, Nicholas H; Robbins, Justin; Hemenway, David; Taatjes, Douglas J; Janssen-Heininger, Yvonne

    2006-01-01

    In addition to being an air pollutant, NO2 is a potent inflammatory oxidant generated endogenously by myeloperoxidase and eosinophil peroxidase. In these studies, we sought to determine the effects of NO2 exposure on mice with ongoing allergic airway disease pathology. Mice were sensitized and challenged with the antigen ovalbumin (OVA) to generate airway inflammation and subsequently exposed to 5 or 25 ppm NO2 for 3 days or 5 days followed by a 20-day recovery period. Whereas 5 ppm NO2 elicited no pathological changes, inhalation of 25 ppm NO2 alone induced acute lung injury, which peaked after 3 days and was characterized by increases in protein, LDH, and neutrophils recovered by BAL, as well as lesions within terminal bronchioles. Importantly, 25 ppm NO2 was also sufficient to cause AHR in mice, a cardinal feature of asthma. The inflammatory changes were ameliorated after 5 days of inhalation and completely resolved after 20 days of recovery after the 5-day inhalation. In contrast, in mice immunized and challenged with OVA, inhalation of 25 ppm NO2 caused a marked augmentation of eosinophilic inflammation and terminal bronchiolar lesions, which extended significantly into the alveoli. Moreover, 20 days postcessation of the 5-day 25 ppm NO2 inhalation regimen, eosinophilic and neutrophilic inflammation, pulmonary lesions, and AHR were still present in mice immunized and challenged with OVA. Collectively, these observations suggest an important role for NO2 in airway pathologies associated with asthma, both in modulation of degree and duration of inflammatory response, as well as in induction of AHR. PMID:16085673

  18. Essential role of T lymphocytes in the development of allergen-driven airway hyperresponsiveness.

    PubMed

    Gelfand, E W

    1998-01-01

    Asthma now affects more than 15 million Americans and results in significant expenditure of resources. Despite intensive investigation into the pathogenesis of asthma, debate continues over which cells or which mediators are the primary contributors to the disease. Increasingly, asthma is recognized as a chronic, inflammatory disease. T lymphocytes, T-cell derived cytokines, and eosinophils play major roles in the initiation and perpetuation of the inflammatory response. Animal models have enabled us to link directly T cells with eosinophilic inflammation of the airways, providing new insights into pathogenesis and novel opportunities for therapeutic interventions. PMID:9876776

  19. Comparison of allergen-induced changes in bronchial hyperresponsiveness and airway inflammation between mildly allergic asthma patients and allergic rhinitis patients.

    PubMed

    Alvarez, M J; Olaguibel, J M; Garcia, B E; Tabar, A I; Urbiola, E

    2000-06-01

    Bronchial eosinophilic inflammation and bronchial hyperresponsiveness (BHR) are the main features of allergic asthma (AA), but they have also been demonstrated in allergic rhinitis (AR), suggesting a continuity between both diseases. In spite of not fully reproducing natural allergenic exposure, the allergen bronchial provocation test (A-BPT) has provided important knowledge of the pathophysiology of AA. Our aim was to verify the existence of a behavior of AA and AR airways different from the allergen bronchial challenge-induced airway eosinophilic inflammation and BHR changes. We studied a group of 31 mild and short-evolution AA and 15 AR patients, sensitized to Dermatophagoides pteronyssinus. The A-BPT was performed with a partially biologically standardized D. pteronyssinus extract, and known quantities of Der p 1 were inhaled. Peripheral blood (eosinophils and ECP) and induced sputum (percentage cell counts, ECP, albumin, tryptase, and interleukin [IL]-5) were analyzed, before and 24 h after A-BPT. Methacholine BHR, assessed before and 32 h after the A-BPT, was defined by M-PD20 values and, when possible, by maximal response plateau (MRP). The A-BPT was well tolerated by all the patients. AA presented a lower Der p 1 PD20 and a higher occurrence of late-phase responses (LPR). M-PD20 values decreased in AA, but not in AR, patients. MRP values increased in both groups. Eosinophils numbers and ECP levels increased in blood and sputum from both AA and AR, but only the absolute increment of sputum ECP levels was higher in AA than AR patients (P = 0.025). The A-BPT induced no change in sputum albumin, tryptase, or IL-5 values. We conclude as follows: 1) In spite of presenting a lower degree of bronchial sensitivity to allergen, AR patients responded to allergen inhalation with an eosinophilic inflammation enhancement very similar to that observed among AA. 2) MRP levels increased in both AA and AR patients after allergen challenge; however, M-PD20 values

  20. Polygonum multiflorum Decreases Airway Allergic Symptoms in a Murine Model of Asthma.

    PubMed

    Lee, Chen-Chen; Lee, Yueh-Lun; Wang, Chien-N; Tsai, Hsing-Chuan; Chiu, Chun-Lung; Liu, Leroy F; Lin, Hung-Yun; Wu, Reen

    2016-01-01

    The root of Polygonum multiflorum (also called He-Shou-Wu in Chinese) is a common herb and medicinal food in Asia used for its anti-aging properties. Our study investigated the therapeutic potential of an extract of the root of Polygonum multiflorum (PME) in allergic asthma by using a mouse model. Feeding of 0.5 and 1 mg/mouse PME inhibited ovalbumin (OVA)-induced allergic asthma symptoms, including airway inflammation, mucus production, and airway hyper-responsiveness (AHR), in a dose-dependent manner. To discern PME's mechanism of action, we examined the profile and cytokine production of inflammatory cells in bronchial alveolar lavage fluid (BALF). We found that eosinophils, the main inflammatory cell infiltrate in the lung of OVA-immunized mice, significantly decreased after PME treatment. Th2 cytokine levels, including interleukin (IL)-4, IL-5, IL-13, eotaxin, and the proinflammatory cytokine tumor necrosis factor (TNF)-[Formula: see text], decreased in PME-treated mice. Elevated mRNA expression of Th2 transcription factor GATA-3 in the lung tissue was also inhibited after oral feeding of PME in OVA-immunized mice. Thus, we conclude that PME produces anti-asthma activity through the inhibition of Th2 cell activation. PMID:26916919

  1. Inhalation of chlorine causes long-standing lung inflammation and airway hyperresponsiveness in a murine model of chemical-induced lung injury.

    PubMed

    Jonasson, Sofia; Koch, Bo; Bucht, Anders

    2013-01-01

    Chlorine is highly irritating when inhaled, and is a common toxic industrial gas causing tissue damage in the airways followed by an acute inflammatory response. In this study, we investigated mechanisms by which chlorine exposure may cause reactive airways dysfunction syndrome (RADS) and we examined the dose-dependency of the development of symptoms. Mice were exposed to 50 or 200 ppm Cl(2) during a single 15 min exposure in a nose-only container. The experiment terminated 2, 6, 12, 24, 48, 72 h and 7, 14, 28 and 90 days post exposure. Inflammatory cell counts in bronchoalveolar lavage (BAL), secretion of inflammatory mediators in BAL, occurrence of lung edema and histopathological changes in lung tissue was analyzed at each time-point. Airway hyperresponsiveness (AHR) was studied after 24 and 48 h and 7, 14, 28 and 90 days. The results showed a marked acute response at 6h (50 ppm) and 12h (200 ppm) post exposure as indicated by induced lung edema, increased airway reactivity in both central and peripheral airways, and an airway inflammation dominated by macrophages and neutrophils. The inflammatory response declined rapidly in airways, being normalized after 48 h, but inflammatory cells were sustained in lung tissue for at least seven days. In addition, a sustained AHR was observed for at least 28 days. In summary, this mouse model of chlorine exposure shows delayed symptoms of hyperreactive airways similar to human RADS. We conclude that the model can be used for studies aimed at improved understanding of adverse long-term responses following inhalation of chlorine. PMID:23146759

  2. Ovalbumin sensitization of guinea pig at birth prevents the ontogenetic decrease in airway smooth muscle responsiveness

    PubMed Central

    Chitano, Pasquale; Wang, Lu; Degan, Simone; Worthington, Charles L.; Pozzato, Valeria; Hussaini, Syed H.; Turner, Wesley C.; Dorscheid, Delbert R.; Murphy, Thomas M.

    2014-01-01

    Abstract Airway smooth muscle (ASM) displays a hyperresponsive phenotype at young age and becomes less responsive in adulthood. We hypothesized that allergic sensitization, which causes ASM hyperresponsiveness and typically occurs early in life, prevents the ontogenetic loss of the ASM hyperresponsive phenotype. We therefore studied whether neonatal allergic sensitization, not followed by later allergen challenges, alters the ontogenesis of ASM properties. We neonatally sensitized guinea pigs to ovalbumin and studied them at 1 week, 3 weeks, and 3 months (adult). A Schultz‐Dale response in isolated tracheal rings confirmed sensitization. The occurrence of inflammation was evaluated in the blood and in the submucosa of large airways. We assessed ASM function in tracheal strips as ability to produce force and shortening. ASM content of vimentin was also studied. A Schultz‐Dale response was observed in all 3‐week or older sensitized animals. A mild inflammatory process was characterized by eosinophilia in the blood and in the airway submucosa. Early life sensitization had no effect on ASM force generation, but prevented the ontogenetic decline of shortening velocity and the increase in resistance to shortening. Vimentin increased with age in control but not in sensitized animals. Allergic sensitization at birth without subsequent allergen exposures is sufficient to prevent normal ASM ontogenesis, inducing persistence to adulthood of an ASM hyperresponsive phenotype. PMID:25501429

  3. Hesperetin-7,3'-O-dimethylether selectively inhibits phosphodiesterase 4 and effectively suppresses ovalbumin-induced airway hyperresponsiveness with a high therapeutic ratio

    PubMed Central

    2011-01-01

    Background Hesperetin was reported to selectively inhibit phosphodiesterase 4 (PDE4). While hesperetin-7,3'-O-dimethylether (HDME) is a synthetic liposoluble hesperetin. Therefore, we were interested in investigating its selectivity on PDE4 and binding ability on high-affinity rolipram-binding sites (HARBs) in vitro, and its effects on ovalbumin-induced airway hyperresponsiveness in vivo, and clarifying its potential for treating asthma and chronic obstructive pulmonary disease (COPD). Methods PDE1~5 activities were measured using a two-step procedure. The binding of HDME on high-affinity rolipram-binding sites was determined by replacing 2 nM [3H]-rolipram. AHR was assessed using the FlexiVent system and barometric plethysmography. Inflammatory cells were counted using a hemocytometer. Cytokines were determined using mouse T helper (Th)1/Th2 cytokine CBA kits, and total immunoglobulin (Ig)E or IgG2a levels were done using ELISA method. Xylazine (10 mg/kg)/ketamine (70 mg/kg)-induced anesthesia was performed. Results HDME revealed selective phosphodiesterase 4 (PDE4) inhibition with a therapeutic (PDE4H/PDE4L) ratio of 35.5 in vitro. In vivo, HDME (3~30 μmol/kg, orally (p.o.)) dose-dependently and significantly attenuated the airway resistance (RL) and increased lung dynamic compliance (Cdyn), and decreased enhanced pause (Penh) values induced by methacholine in sensitized and challenged mice. It also significantly suppressed the increases in the numbers of total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL)-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF) of these mice. In addition, HDME (3~30 μmol/kg, p.o.) dose-dependently and significantly suppressed total and ovalbumin-specific immunoglobulin (Ig)E levels in the BALF and serum, and enhanced IgG2a level in the serum of these mice. Conclusions HDME exerted anti-inflammatory effects

  4. A small molecule, orally active, α4β1/α4β7 dual antagonist reduces leukocyte infiltration and airway hyper-responsiveness in an experimental model of allergic asthma in Brown Norway rats

    PubMed Central

    Cortijo, Julio; Sanz, María-Jesús; Iranzo, Arantxa; Montesinos, José Luis; Nabah, Yafa Naim Abu; Alfón, José; Gómez, Luis A; Merlos, Manuel; Morcillo, Esteban J

    2006-01-01

    α4β1 and α4β7 integrins are preferentially expressed on eosinophils and mononuclear leukocytes and play critical roles in their recruitment to inflammatory sites. We investigated the effects of TR14035, a small molecule, α4β1/α4β7 dual antagonist, in a rat model of allergic asthma. Actively sensitized rats were challenged with aerosol antigen or saline on day 21, and the responses evaluated 24 and 48-h later. TR14035 (3 mg kg−1, p.o.) was given 1-h before and 4-h after antigen or saline challenge. Airway hyper-responsiveness to intravenous 5-hydroxytryptamine was suppressed in TR14035-treated rats. Eosinophil, mononuclear cell and neutrophil counts, and eosinophil peroxidase and protein content in the bronchoalveolar lavage fluid (BALF) were decreased in TR14035-treated rats. Histological study showed a marked reduction of lung inflammatory lesions by TR14035. At 24-h postchallenge, antigen-induced lung interleukin (IL)-5 mRNA upregulation was suppressed in TR14035-treated rats. By contrast, IL-4 levels in BALF were not significantly affected by TR14035 treatment. IL-4 selectively upregulates vascular cell adhesion molecule-1 (VCAM-1), which is the main endothelial ligand of α4 integrins. Intravital microscopy within the rat mesenteric microcirculation showed that 24-h exposure to 1 μg per rat of IL-4 induced a significant increase in leukocyte rolling flux, adhesion and emigration. These responses were decreased by 48, 100 and 99%, respectively in animals treated with TR14035. In conclusion, TR14035, by acting on α4β1 and α4β7 integrins, is an orally active inhibitor of airway leukocyte recruitment and hyper-responsiveness in animal models with potential interest for the treatment of asthma. PMID:16432509

  5. Influence of treatment on peak expiratory flow and its relation to airway hyperresponsiveness and symptoms. The Dutch CNSLD Study Group.

    PubMed Central

    Kerstjens, H. A.; Brand, P. L.; de Jong, P. M.; Koëter, G. H.; Postma, D. S.

    1994-01-01

    BACKGROUND--Despite effective treatments, the morbidity and mortality of obstructive airways disease (asthma and COPD) remains high. Home monitoring of peak expiratory flow (PEF) is increasingly being advocated as an aid to better management of obstructive airways disease. The few available studies describing effects of treatment on the level and variation of PEF have involved relatively small numbers of subjects and did not use control groups. METHODS--Patients aged 18-60 years were selected with PC20 < or = 8 mg/ml and FEV1 < 95% confidence interval of predicted normal. They were randomised to receive, in addition to a beta 2 agonist, either an inhaled corticosteroid (BA+CS), an anticholinergic (BA+AC), or a placebo (BA+PL). One hundred and forty one of these subjects with moderately severe obstructive airways disease completed seven periods of two weeks of morning and afternoon PEF measurements at home during 18 months of blind follow up. RESULTS--Improvements in PEF occurred within the first three months of treatment with BA+CS and was subsequently maintained: the mean (SE) increase in morning PEF was 51 (8) l/min in the BA+CS group compared with no change in the other two groups. Similarly, afternoon PEF increased by 22 (7) l/min. Diurnal variation in PEF (amplitude %mean) decreased from 18.0% to 10.2% in the first three months of treatment with BA+CS. Within-subject relations between changes in diurnal variation in PEF and changes in PC20 were found to be predominantly negative (median rho-0.40) but with a large scatter. Relations between diurnal variation in PEF and changes in symptom scores, FEV1, and bronchodilator response were even weaker. CONCLUSIONS--In patients with moderately severe obstructive airways disease, PEF rates and variation are greatly improved by inhaled corticosteroids. Since the relation of diurnal PEF variation with PC20, symptoms, FEV1, and bronchodilator response were all weak, these markers of disease severity may all provide

  6. A mouse model of airway disease: oncostatin M-induced pulmonary eosinophilia, goblet cell hyperplasia, and airway hyperresponsiveness are STAT6 dependent, and interstitial pulmonary fibrosis is STAT6 independent.

    PubMed

    Fritz, Dominik K; Kerr, Christine; Fattouh, Ramzi; Llop-Guevara, Alba; Khan, Waliul I; Jordana, Manel; Richards, Carl D

    2011-01-15

    Oncostatin M (OSM), a pleiotropic cytokine of the gp130 cytokine family, has been implicated in chronic allergic inflammatory and fibrotic disease states associated with tissue eosinophilia. Mouse (m)OSM induces airway eosinophilic inflammation and interstitial pulmonary fibrosis in vivo and regulates STAT6 activation in vitro. To determine the requirement of STAT6 in OSM-induced effects in vivo, we examined wild-type (WT) and STAT6-knockout (STAT6(-/-)) C57BL/6 mouse lung responses to transient ectopic overexpression of mOSM using an adenoviral vector (AdmOSM). Intratracheal AdmOSM elicited persistent eosinophilic lung inflammation that was abolished in STAT6(-/-) mice. AdmOSM also induced pronounced pulmonary remodeling characterized by goblet cell hyperplasia and parenchymal interstitial fibrosis. Goblet cell hyperplasia was STAT6 dependent; however, parenchymal interstitial fibrosis was not. OSM also induced airway hyperresponsiveness in WT mice that was abolished in STAT6(-/-) mice. OSM stimulated an inflammatory signature in the lungs of WT mice that demonstrated STAT6-dependent regulation of Th2 cytokines (IL-4, IL-13), chemokines (eotaxin-1/2, MCP-1, keratinocyte chemoattractant), and extracellular matrix modulators (tissue inhibitor of matrix metalloproteinase-1, matrix metalloproteinase-13), but STAT6-independent regulation of IL-4Rα, total lung collagen, collagen-1A1, -1A2 mRNA, and parenchymal collagen and α smooth muscle actin accumulation. Thus, overexpression of mOSM induces STAT6-dependent pulmonary eosinophilia, mucous/goblet cell hyperplasia, and airway hyperresponsiveness but STAT6-independent mechanisms of lung tissue extracellular matrix accumulation. These results also suggest that eosinophil or neutrophil accumulation in mouse lungs is not required for OSM-induced lung parenchymal collagen deposition and that OSM may have unique roles in the pathogenesis of allergic and fibrotic lung disease. PMID:21160052

  7. Lymphocyte Gene Expression Characteristic of Immediate Airway Responses (IAR) and Methacholine (MCH) Hyperresponsiveness in Mice Sensitized and Challenged with Isocyanates

    EPA Science Inventory

    Exposure to isocyanates has been associated with occupational airway diseases, including asthma. Previously we reported on respiratory and immune responses following dermal sensitization and intranasal challenge of BALB/c mice with 6 different isocyanates. The purpose of this st...

  8. Acute hemorrhagic shock decreases airway resistance in anesthetized rat.

    PubMed

    Bayat, Sam; Albu, Gergely; Layachi, Skander; Portier, Flore; Fathi, Marc; Peták, Ferenc; Habre, Walid

    2011-08-01

    We studied the relation between changes in pulmonary and systemic hemodynamics to those in the airway resistance, respiratory tissue mechanics, and thoracic gas volume (TGV) following acute hemorrhage and blood reinfusion in rats. Forced oscillation technique was used to measure airway resistance (Raw), respiratory tissue damping, and elastance at baseline and after stepwise 1-ml blood withdrawals up to 5 ml total, followed by stepwise reinfusion up to full restoration. Mean systemic (Pam) and pulmonary arterial pressures and suprarenal aortic blood flow were measured at each step. In supplemental animals, plethysmographic TGV, Pam, and respiratory mechanics measurements were performed. Blood volume loss (BVL) led to proportional decreases in Raw (66.5 ± 8.8 vs. 44.8 ± 9.0 cmH(2)O·s·l(-1) with 5 ml, P < 0.001), Pam, and aortic blood flow. In contrast, tissue damping increased significantly (1,070 ± 91 vs. 1,235 ± 105 cmH(2)O/l, P = 0.009 with 5 ml BVL), whereas tissue elastance did not change significantly. TGV significantly increased with acute BVL (3.7 ± 0.2 vs. 4.2 ± 0.2 ml, P = 0.01). Stepwise reinfusions produced opposite changes in the above parameters, with Raw reaching a higher value than baseline (P = 0.001) upon full volume restoration. Both adrenalin (P = 0.015) and noradrenalin levels were elevated (P = 0.010) after 5-ml blood withdrawal. Our data suggest that the decreases in Raw following BVL may be attributed to the following: 1) an increased TGV enhancing airway parenchymal tethering forces; and 2) an increase in circulating catecholamines. The apparent beneficial effect of a reduction in Raw in acute hemorrhagic shock is counteracted by an increase in dead space and the appearance of peripheral mechanical heterogeneities due to de-recruitment of the pulmonary vasculature. PMID:21596916

  9. Does bronchial hyperresponsiveness in asthma matter?

    PubMed

    Currie, Graeme P; Jackson, Catherine M; Lipworth, Brian J

    2004-01-01

    Bronchial hyperresponsiveness is a fundamental component of the asthmatic inflammatory process causing airway narrowing on exposure to a bronchoconstrictor stimulus. This in turn causes patients to experience symptoms of breathlessness, chest tightness, cough and wheeze. Bronchial challenge tests can be performed in the laboratory to establish the degree of bronchial hyperresponsiveness to both direct and indirect stimuli. The extent to which asthma pharmacotherapy attenuates bronchial hyperresponsiveness is therefore an important measure of efficacy. This review article discusses the effects of inhaled and oral asthma treatment upon bronchial hyperresponsiveness and highlights how, in conjunction with conventional measures of asthma control, it can be used as an aid to optimally manage patients. PMID:15260457

  10. BLUNTING AIRWAYS EOSINOPHILIC INFLAMMATION RESULTS IN A DECREASED AIRWAY NEUTROPHIL RESPONSE TO INHALED LPS IN ATOPIC ASTHMATICS A ROLE FOR CD-14

    EPA Science Inventory

    Recent data demonstrate that atopic inflammation might enhance airway responses to inhaled LPS in individuals with atopic asthma by increasing CD14 expression on airway macrophages. We sought to determine whether blunting airway eosinophilic inflammation decreases CD14 expressio...

  11. Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity.

    PubMed

    Ibba, Salome' V; Ghonim, Mohamed A; Pyakurel, Kusma; Lammi, Matthew R; Mishra, Anil; Boulares, A Hamid

    2016-01-01

    Although expression of inducible NO synthase (iNOS) in the lungs of asthmatics and associated nitrosative damage are established, iNOS failed as a therapeutic target for blocking airway hyperresponsiveness (AHR) and inflammation in asthmatics. This dichotomy calls for better strategies with which the enzyme is adequately targeted. Here, we confirm iNOS expression in the asthmatic lung with concomitant protein nitration and poly(ADP-ribose) polymerase (PARP) activation. We show, for the first time, that iNOS is highly expressed in peripheral blood mononuclear cells (PBMCs) of asthmatics with uncontrolled disease, which did not correspond to protein nitration. Selective iNOS inhibition with L-NIL protected against AHR upon acute, but not chronic, exposure to ovalbumin or house dust mite (HDM) in mice. Supplementation of NO by nitrite administration significantly blocked AHR in chronically HDM-exposed mice that were treated with L-NIL. Protection against chronic HDM exposure-induced AHR by olaparib-mediated PARP inhibition may be associated with the partial but not the complete blockade of iNOS expression. Indeed, L-NIL administration prevented olaparib-mediated protection against AHR in chronically HDM-exposed mice. Our study suggests that the amount of iNOS and NO are critical determinants in the modulation of AHR by selective iNOS inhibitors and renews the potential of iNOS as a therapeutic target for asthma. PMID:27524861

  12. Potential of Inducible Nitric Oxide Synthase as a Therapeutic Target for Allergen-Induced Airway Hyperresponsiveness: A Critical Connection to Nitric Oxide Levels and PARP Activity

    PubMed Central

    Ghonim, Mohamed A.; Pyakurel, Kusma; Mishra, Anil

    2016-01-01

    Although expression of inducible NO synthase (iNOS) in the lungs of asthmatics and associated nitrosative damage are established, iNOS failed as a therapeutic target for blocking airway hyperresponsiveness (AHR) and inflammation in asthmatics. This dichotomy calls for better strategies with which the enzyme is adequately targeted. Here, we confirm iNOS expression in the asthmatic lung with concomitant protein nitration and poly(ADP-ribose) polymerase (PARP) activation. We show, for the first time, that iNOS is highly expressed in peripheral blood mononuclear cells (PBMCs) of asthmatics with uncontrolled disease, which did not correspond to protein nitration. Selective iNOS inhibition with L-NIL protected against AHR upon acute, but not chronic, exposure to ovalbumin or house dust mite (HDM) in mice. Supplementation of NO by nitrite administration significantly blocked AHR in chronically HDM-exposed mice that were treated with L-NIL. Protection against chronic HDM exposure-induced AHR by olaparib-mediated PARP inhibition may be associated with the partial but not the complete blockade of iNOS expression. Indeed, L-NIL administration prevented olaparib-mediated protection against AHR in chronically HDM-exposed mice. Our study suggests that the amount of iNOS and NO are critical determinants in the modulation of AHR by selective iNOS inhibitors and renews the potential of iNOS as a therapeutic target for asthma. PMID:27524861

  13. Exposure to cigarette smoke impacts myeloid-derived regulatory cell function and exacerbates airway hyper-responsiveness.

    PubMed

    Wang, Yong; Jin, Tong Huan; Farhana, Aisha; Freeman, Jason; Estell, Kim; Zmijewski, Jaroslaw W; Gaggar, Amit; Thannickal, Victor J; Schwiebert, Lisa M; Steyn, Adrie J C; Deshane, Jessy S

    2014-12-01

    Cigarette smoking enhances oxidative stress and airway inflammation in asthma, the mechanisms of which are largely unknown. Myeloid-derived regulatory cells (MDRC) are free radical producing immature myeloid cells with immunoregulatory properties that have recently been demonstrated as critical regulators of allergic airway inflammation. NO (nitric oxide)-producing immunosuppressive MDRC suppress T-cell proliferation and airway-hyper responsiveness (AHR), while the O2(•-) (superoxide)-producing MDRC are proinflammatory. We hypothesized that cigarette smoke (CS) exposure may impact MDRC function and contribute to exacerbations in asthma. Exposure of bone marrow (BM)-derived NO-producing MDRC to CS reduced the production of NO and its metabolites and inhibited their potential to suppress T-cell proliferation. Production of immunoregulatory cytokine IL-10 was significantly inhibited, while proinflammatory cytokines IL-6, IL-1β, TNF-α and IL-33 were enhanced in CS-exposed BM-MDRC. Additionally, CS exposure increased NF-κB activation and induced BM-MDRC-mediated production of O2(•-), via NF-κB-dependent pathway. Intratracheal transfer of smoke-exposed MDRC-producing proinflammatory cytokines increased NF-κB activation, reactive oxygen species and mucin production in vivo and exacerbated AHR in C57BL/6 mice, mice deficient in Type I IFNR and MyD88, both with reduced numbers of endogenous MDRC. Thus CS exposure modulates MDRC function and contributes to asthma exacerbation and identifies MDRC as potential targets for asthma therapy. PMID:25365203

  14. Exposure to cigarette smoke impacts myeloid-derived regulatory cell function and exacerbates airway hyper-responsiveness

    PubMed Central

    Wang, Yong; Jin, Tong Huan; Farhana, Aisha; Freeman, Jason; Estell, Kim; Zmijewski, Jaroslaw; Gaggar, Amit; Thannickal, Victor J; Schwiebert, Lisa M; Steyn, Adrie JC; Deshane, Jessy S

    2014-01-01

    Cigarette smoking enhances oxidative stress and airway inflammation in asthma, the mechanisms of which are largely unknown. Myeloid-derived regulatory cells (MDRC) are free radical producing immature myeloid cells with immunoregulatory properties which have recently been demonstrated as critical regulators of allergic airway inflammation. NO (nitric oxide)-producing immunosuppressive MDRC suppress T cell proliferation and airway-hyper responsiveness (AHR), while the O2•− (superoxide)-producing MDRC are proinflammatory. We hypothesized that cigarette smoke (CS) exposure may impact MDRC function and contribute to exacerbations in asthma. Exposure of bone marrow (BM) derived NO-producing MDRC to CS reduced the production of NO and its metabolites and inhibited their potential to suppress T cell proliferation. Production of immunoregulatory cytokine IL-10 was significantly inhibited, while proinflammatory cytokines IL-6, IL-1β, TNF-α and IL-33 were enhanced in CS exposed BMMDRC. Additionally, CS exposure increased NF-κB activation and induced BM-MDRC-mediated production of O2•−, via NF-κB dependent pathway. Intratracheal transfer of smoke exposed MDRC producing proinflammatory cytokines increased NF-κB activation, reactive oxygen species and mucin production in vivo and exacerbated AHR in C57BL/6 mice, mice deficient in Type I IFNR and MyD88, both with reduced numbers of endogenous MDRC. Thus, CS exposure modulates MDRC function and contributes to asthma exacerbation and identifies MDRC as potential targets for asthma therapy. PMID:25365203

  15. Prevention of Th2-like cell responses by coadministration of IL-12 and IL-18 is associated with inhibition of antigen-induced airway hyperresponsiveness, eosinophilia, and serum IgE levels.

    PubMed

    Hofstra, C L; Van Ark, I; Hofman, G; Kool, M; Nijkamp, F P; Van Oosterhout, A J

    1998-11-01

    Allergic asthma is thought to be regulated by Th2 cells, and inhibiting this response is a promising mode of intervention. Many studies have focused on differentiation of Th cells to the Th1 or Th2 subset in vitro. IL-4 is essential for Th2 development, while IL-12 induces Th1 development, which can be enhanced by IL-18. In the present study, we investigated whether IL-12 and IL-18 were able to interfere in Th2 development and the associated airway symptoms in a mouse model of allergic asthma. Mice were sensitized with OVA using a protocol that induces IgE production. Repeated challenges by OVA inhalation induced elevated serum levels of IgE, airway hyperresponsiveness, and a predominantly eosinophilic infiltrate in the bronchoalveolar lavage concomitant with the appearance of Ag-specific Th2-like cells in lung tissue and lung-draining lymph nodes. Whereas treatments with neither IL-12 nor IL-18 during the challenge period were effective, combined treatment of IL-12 and IL-18 inhibited Ag-specific Th2-like cell development. This inhibition was associated with an absence of IgE up-regulation, airway hyperresponsiveness, and cellular infiltration in the lavage. These data show that, in vivo, the synergistic action of IL-12 and IL-18 is necessary to prevent Th2-like cell differentiation, and consequently inhibits the development of airway symptoms in a mouse model of allergic asthma. PMID:9794443

  16. Alveolar macrophages from allergic lungs are not committed to a pro-allergic response and can reduce airway hyperresponsiveness following ex vivo culture

    PubMed Central

    Pouliot, P.; Spahr, A.; Careau, É.; Turmel, V.; Bissonnette, E. Y.

    2016-01-01

    Summary Background We already demonstrated that adoptive transfer of alveolar macrophages (AMs) from non-allergic rats into AM-depleted allergic rats prevents airway hyperresponsiveness (AHR). We also showed that AMs from non-sensitized, but not from sensitized, allergy-prone rats can prevent AHR following allergen challenge in sensitized allergic animals, establishing the importance of rat immunological status on the modulation of AM functions and suggesting that an allergic lung environment alters AM functions. Objective We investigated how the activation of allergic AMs can be modulated to reinstitute them with their capacity to reduce AHR. Methods AMs from sensitized Brown Norway rats were cultured ex vivo for up to 18 h in culture media to deprogram them from the influence of the allergic lung before being reintroduced into the lung of AM-depleted sensitized recipient. AHR and cytokines in bronchoalveolar lavage (BAL) were measured following allergen challenge. AMs stimulated ex vivo with Bacillus Calmette-Guerin(BCG) were used as positive controls as BCG induces a T-helper type 1 activation in AMs. Results AMs ex vivo cultured for 4–18 h reduced AHR to normal level. Interestingly, pro-allergic functions of AMs were dampened by 18 h culture and they reduced AHR even after spending 48 h in an allergic lung microenvironment. Furthermore, transfer of cultured AMs caused an increase in the levels of IFN-γ and IL-12 in BAL when compared with their ovalbumin control. After 18 h of ex vivo culture, AMs expressed reduced levels of TNF, IL-1α, IL-6, and Arginase-2 mRNAs compared with freshly isolated AMs, suggesting that ex vivo culture exempted AMs from lung stimuli that affected their functions. Conclusions There is a significant crosstalk between lung microenvironment and AMs, affecting their functions. It is also the first report showing that sensitized AMs can be modulated ex vivo to reduce lung pro-allergic environment, opening the way to therapies targetting

  17. Effect of current exposure to Der p 1 on asthma symptoms, airway inflammation, and bronchial hyperresponsiveness in mite-allergic asthmatics.

    PubMed

    Alvarez, M J; Olaguibel, J M; Acero, S; García, B E; Tabar, A I; Urbiola, E

    2000-02-01

    The existence of a dose-response relationship between indoor allergen exposure and sensitization has been widely described, but the effect of allergen exposure on asthma activity (symptoms, bronchial hyperresponsiveness [BHR], and inflammation) is not clear. Our aim was to determine the existence of an association among current exposure to mite allergens and symptoms, BHR, and airway inflammation assessed in blood and sputum from asthmatic patients sensitized to Dermatophagoides pteronyssinus. We selected 31 mild and recently diagnosed (12-24 months) asthma patients sensitized to D. pteronyssinus. Allergenic exposure (Der p 1, Der 2) was assessed by a commercial assay based on monoclonal antibodies (mAb), carried out on the dust samples collected from patients' beds in a standardized way. Patients completed an asthma symptom questionnaire and underwent skin tests, methacholine bronchial challenge, and sputum induction. Sputum cell profile was analyzed and eosinophil cationic protein (ECP), tryptase, albumin, and interleukin(IL)-5 levels were quantified in sputum supernatant. Total eosinophil numbers and ECP levels were measured in blood samples. Most patients were exposed to Der p 1 levels under 2 microg/g of dust. Der p 1 exposure was higher among the subjects with positive sputum tryptase detection (P = 0.020). Der p 1 levels showed a trend toward correlation with asthma symptoms (P = 0.066, r = 0.36) and correlated with sputum tryptase levels (P = 0.032, r = 0.42). No relationship between BHR, eosinophilic inflammation, and allergenic exposure was found. Our results suggest that asthma symptoms and lung mast-cell activation are at least partially dependent on current allergen exposure. The lack of correlation between mite exposure, eosinophilic inflammation, and BHR supports the role of other factors that enhance the immunologic response initiated by allergen, increasing the activity of asthma. PMID:10726735

  18. Biochanin A, a Phytoestrogenic Isoflavone with Selective Inhibition of Phosphodiesterase 4, Suppresses Ovalbumin-Induced Airway Hyperresponsiveness

    PubMed Central

    Ko, Wun-Chang; Lin, Ling-Hung; Shen, Hsin-Yi; Lai, Chi-Yin; Chen, Chien-Ming; Shih, Chung-Hung

    2011-01-01

    The present study investigated the potential of biochanin A, a phytoestrogenic isoflavone of red clover (Triflolium pratense), for use in treating asthma or chronic obstructive pulmonary disease (COPD). Biochanin A (100 μmol/kg, orally (p.o.)) significantly attenuated airway resistance (RL), enhanced pause (Penh), and increased lung dynamic compliance (Cdyn) values induced by methacholine (MCh) in sensitized and challenged mice. It also significantly suppressed an increase in the number of total inflammatory cells, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL)-2, IL-4, IL-5, and tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF) of the mice. However, it did not influence interferon (IFN)-γ levels. Biochanin A (100 μmol/kg, p.o.) also significantly suppressed the total and ovalbumin (OVA)-specific immunoglobulin E (IgE) levels in the serum and BALF, and enhanced the total IgG2a level in the serum of these mice. The PDE4H/PDE4L value of biochanin A was calculated as >35. Biochanin A did not influence xylazine/ketamine-induced anesthesia. Biochanin A (10~30 μM) significantly reduced cumulative OVA (10~100 μg/mL)-induced contractions in the isolated guinea pig trachealis, suggesting that it inhibits degranulation of mast cells. In conclusion, red clover containing biochanin A has the potential for treating allergic asthma and COPD. PMID:21437195

  19. CXCR4 inhibitor attenuates ovalbumin-induced airway inflammation and hyperresponsiveness by inhibiting Th17 and Tc17 cell immune response

    PubMed Central

    CHEN, HUILONG; XU, XIANGQIN; TENG, JIEMING; CHENG, SHENG; BUNJHOO, HANSVIN; CAO, YONG; LIU, JIN; XIE, JUNGANG; WANG, CONGYI; XU, YONGJIAN; XIONG, WEINING

    2016-01-01

    Accumulating evidence suggests that chemokine (C-X-C motif) ligand 12 (CXCL12) and its receptor chemokine (C-X-C motif) receptor 4 (CXCR4) may contribute to the pathogenesis of allergic asthma. However, the underlying molecular mechanisms remain to be fully understood. T-helper 17 cells (Th17) and T-cytotoxic 17 cells (Tc17) have been implicated in the development of several allergic disorders, including asthma. The present study aimed to explore the association between CXCL12 signaling and Th17/Tc17 cells in the development of asthma. Ovalbumin (OVA)-sensitized BALB/c mice were treated with AMD3100, a specific CXCR4 antagonist, prior to OVA challenge. Following the final allergen (OVA) challenge, airway responsiveness to methacholine, influx of inflammatory cells to the airway, and cytokine levels in the bronchoalveolar lavage fluids (BALF) and lung homogenate were assessed. Interleukin (IL)-17-expressing CD3+CD8− lymphocytes (Th17 cells) and IL-17+CD3+CD8+ lymphocytes (Tc17 cells) isolated from lung tissue samples were detected by flow cytometry. The results of the present study demonstrated that administration of AMD3100 significantly decreased airway responsiveness to methacholine, attenuated the influx of inflammatory cells to the airway and reduced the levels of IL-4, IL-5 and IL-13 in the BALF. Furthermore, AMD3100 significantly reduced the increased number of lung Th17 and Tc17 cells as well as the levels of IL-17 in the lung homogenate induced by OVA challenge. In conclusion, the CXCR4 inhibitor suppresses the asthmatic response, which is associated with attenuation of the Th17 and Tc17 cell immune response. PMID:27168818

  20. Long-term exposure of adults to outdoor air pollution is associated with increased airway obstruction and higher prevalence of bronchial hyperresponsiveness

    SciTech Connect

    Jammres, Y.; Delpierre, S.; Burnet, H.; Delvolgo, M.J.; Humbert-Tena, C.

    1998-11-01

    The authors studied the association between long-term exposure to outdoor air pollution and the severity of obstructive pulmonary disease and prevalence of bronchial hyperreactivity to {beta}2 agonists in two groups of adult patients who were of similar ages and who had similar smoking habits. The subjects lived in downtown districts or in the outer suburbs of Marseilles, the neighborhood that contained air samplers. The regions were similar with respect to sulfur dioxide levels, but levels of nitric oxides and particulate matter were higher in the downtown area than the suburbs. The authors assessed airway obstruction, as determined by a decrease in forced expiratory volume in 1 s, mean forced expiratory flow measured between 25% and 75% of vital capacity, and an elevated value of central airway resistance. The authors tested the changes in these variables induced by inhalation of a {beta}2 agonist. Baseline lung function was altered more significantly in both male and female patients who lived in downtown Marseilles than in those who resided in the suburbs, and the differences persisted regardless of the season during which the study occurred. Prevalence of bronchial hyperreactivity and symptoms of asthma were higher in the downtown than suburban male subjects. The results of this study suggest that an association exists between actual environmental exposure to outdoor air pollution and respiratory effects in sensitive adults represented by patients with chronic obstructive pulmonary disease or asthma.

  1. Submental negative pressure application decreases collapsibility of the passive pharyngeal airway in nonobese women.

    PubMed

    Kato, Shinichiro; Isono, Shiroh; Amemiya, Megumi; Sato, Shin; Ikeda, Aya; Okazaki, Junko; Sato, Yumi; Ishikawa, Teruhiko

    2015-04-01

    The pharyngeal airway is surrounded by soft tissues that are also enclosed by bony structures such as the mandible, maxilla, and cervical spine. The passive pharyngeal airway is therefore structurally analogous to a collapsible tube within a rigid box. Cross-sectional area of the tube is determined by transmural pressure, the pressure difference between intraluminal and extraluminal pressures. Due to a lack of knowledge on the influence of extraluminal soft tissue pressure on the human pharyngeal airway patency, we hypothesized that application of negative external pressure to the submental region decreases collapsibility of the passive pharynx, and that obese individuals have less response to the intervention than nonobese individuals. Static mechanical properties of the passive pharynx were compared before and during application of submental negative pressure in 10 obese and 10 nonobese adult women under general anesthesia and paralysis. Negative pressure was applied through use of a silicone collar covering the entire submental region and a vacuum pump. In nonobese subjects, application of submental negative pressure (-25 and -50 cmH2O) significantly decreased closing pressures at the retropalatal airway by 2.3 ± 3.2 cmH2O and 2.0 ± 3.0 cmH2O, respectively, and at the retroglossal airway by 2.9 ± 2.7 cmH2O and 3.7 ± 2.6 cmH2O, respectively, and the intervention stiffened the retroglossal pharyngeal airway wall. No significant mechanical changes were observed during application of submental negative pressure in obese subjects. Conclusively, application of submental negative pressure was found to decreases collapsibility of the passive pharyngeal airway in nonobese Japanese women. PMID:25614595

  2. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production.

    PubMed

    Oglesby, Irene K; Vencken, Sebastian F; Agrawal, Raman; Gaughan, Kevin; Molloy, Kevin; Higgins, Gerard; McNally, Paul; McElvaney, Noel G; Mall, Marcus A; Greene, Catherine M

    2015-11-01

    Interleukin (IL)-8 levels are higher than normal in cystic fibrosis (CF) airways, causing neutrophil infiltration and non-resolving inflammation. Overexpression of microRNAs that target IL-8 expression in airway epithelial cells may represent a therapeutic strategy for cystic fibrosis. IL-8 protein and mRNA were measured in cystic fibrosis and non-cystic fibrosis bronchoalveolar lavage fluid and bronchial brushings (n=20 per group). miRNAs decreased in the cystic fibrosis lung and predicted to target IL-8 mRNA were quantified in βENaC-transgenic, cystic fibrosis transmembrane conductance regulator (Cftr)-/- and wild-type mice, primary cystic fibrosis and non-cystic fibrosis bronchial epithelial cells and a range of cystic fibrosis versus non-cystic fibrosis airway epithelial cell lines or cells stimulated with lipopolysaccharide, Pseudomonas-conditioned medium or cystic fibrosis bronchoalveolar lavage fluid. The effect of miRNA overexpression on IL-8 protein production was measured. miR-17 regulates IL-8 and its expression was decreased in adult cystic fibrosis bronchial brushings, βENaC-transgenic mice and bronchial epithelial cells chronically stimulated with Pseudomonas-conditioned medium. Overexpression of miR-17 inhibited basal and agonist-induced IL-8 protein production in F508del-CFTR homozygous CFTE29o(-) tracheal, CFBE41o(-) and/or IB3 bronchial epithelial cells. These results implicate defective CFTR, inflammation, neutrophilia and mucus overproduction in regulation of miR-17. Modulating miR-17 expression in cystic fibrosis bronchial epithelial cells may be a novel anti-inflammatory strategy for cystic fibrosis and other chronic inflammatory airway diseases. PMID:26160865

  3. MAG-EPA and 17,18-EpETE target cytoplasmic signalling pathways to reduce short-term airway hyperresponsiveness.

    PubMed

    Khaddaj-Mallat, Rayan; Rousseau, Éric

    2015-07-01

    This study was aimed to investigate the role of eicosapentaenoic acid monoacylglyceride (MAG-EPA) and 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) on the regulation of contractile reactivity and nuclear protein expression in 72-h-cultured and TNF-α-treated guinea pig tracheal rings. Tension measurements performed on native tissues demonstrated that the cytochrome P-450 epoxygenase (CYP450)-dependent EPA metabolite, 17,18-EpETE, displayed a higher potency than MAG-EPA in inhibiting U-46619-induced tone. Calphostin C (a PKC inhibitor), whether in association or not with MAG-EPA or 17,18-EpETE, had no further effect, while 17,18-EpETE and Y-27632 (a Rho kinase inhibitor) yielded additive effects. Of note, MAG-EPA and 17,18-EpETE pre-treatments normalized the contractile responses to broncho-constrictive agents in 72-h-cultured trachea. The enhanced expression of TNF-α, P-p65-nuclear factor kappaB (NF)-κB, c-fos and c-Jun in 72-h-cultured tissues likely contributed to the hyperresponsiveness. β-Escin-permeabilized preparations demonstrated that 17,18-EpETE abolished Ca(2+) hypersensitivity, suggesting a blunting of PKC and/or Rho kinase activation. Lastly, activation of NF-κB and activating protein-1 (AP-1) signalling by exogenous TNF-α markedly increased the contractile response to MCh, through an increase in 17-kDa PKC-potentiated inhibitory protein of PP1 (CPI-17) phosphorylation and IκBα degradation. Dual incubation of 17,18-EpETE with calphostin C or Y-27632 induced cumulative inhibitory effects on MCh responses in TNF-α-incubated tracheal rings. 17,18-EpETE also reduced the detection level of P-p65-NF-κB and AP-1 subunits. The present data provide evidence that MAG-EPA, through its bioactive metabolite, represents a prospective pharmacological target in respiratory diseases. PMID:25113382

  4. Airway Peroxidases Catalyze Nitration of the β2-Agonist Salbutamol and Decrease Its Pharmacological Activity

    PubMed Central

    Sallans, Larry; Macha, Stephen; Brown, Kari; McGraw, Dennis W.; Kovacic, Melinda Butsch; Britigan, Bradley E.

    2011-01-01

    β2-Agonists are the most effective bronchodilators for the rapid relief of asthma symptoms, but for unclear reasons, their effectiveness may be decreased during severe exacerbations. Because peroxidase activity and nitrogen oxides are increased in the asthmatic airway, we examined whether salbutamol, a clinically important β2-agonist, is subject to potentially inactivating nitration. When salbutamol was exposed to myeloperoxidase, eosinophil peroxidase or lactoperoxidase in the presence of hydrogen peroxide (H2O2) and nitrite (NO2−), both absorption spectroscopy and mass spectrometry indicated formation of a new metabolite with features expected for the nitrated drug. The new metabolites showed an absorption maximum at 410 nm and pKa of 6.6 of the phenolic hydroxyl group. In addition to nitrosalbutamol (m/z 285.14), a salbutamol-derived nitrophenol, formed by elimination of the formaldehyde group, was detected (m/z 255.13) by mass spectrometry. It is noteworthy that the latter metabolite was detected in exhaled breath condensates of asthma patients receiving salbutamol but not in unexposed control subjects, indicating the potential for β2-agonist nitration to occur in the inflamed airway in vivo. Salbutamol nitration was inhibited in vitro by ascorbate, thiocyanate, and the pharmacological agents methimazole and dapsone. The efficacy of inhibition depended on the nitrating system, with the lactoperoxidase/H2O2/NO2− being the most affected. Functionally, nitrated salbutamol showed decreased affinity for β2-adrenergic receptors and impaired cAMP synthesis in airway smooth muscle cells compared with the native drug. These results suggest that under inflammatory conditions associated with asthma, phenolic β2-agonists may be subject to peroxidase-catalyzed nitration that could potentially diminish their therapeutic efficacy. PMID:20974700

  5. Exacerbated Th2-mediated airway inflammation and hyperresponsiveness in autoimmune diabetes-prone NOD mice: a critical role for CD1d-dependent NKT cells.

    PubMed

    Araujo, Luiza M; Lefort, Jean; Nahori, Marie-Anne; Diem, Séverine; Zhu, Ren; Dy, Michel; Leite-de-Moraes, Maria C; Bach, J F; Vargaftig, B Boris; Herbelin, André

    2004-02-01

    The NOD mouse has proved to be a relevant model of insulin-dependent diabetes mellitus, closely resembling the human disease. However, it is unknown whether this strain presents a general biastoward Th1-mediated autoimmunity or remains capable of mounting complete Th2-mediated responses. Here, we show that NOD mice have the capacity to develop a typical Th2-mediated disease, namely experimental allergic asthma. In contrast to what might have been expected, they even developed a stronger Th2-mediated pulmonary inflammatory response than BALB/c mice, a strain that shows a typical Th2 bias in this model. Thus, after allergen sensitization and intra-nasal challenge, the typical features of experimental asthma were exacerbated in NOD mice, including enhanced bronchopulmonary responsiveness, mucus production and eosinophilic inflammation in the lungs as well as specific IgE titers in serum. These hallmarks of allergic asthma were associated with increased IL-4, IL-5, IL-13 and eotaxin production in the lungs, as compared with BALB/c mice. Notwithstanding their quantitative and functional defect in NOD mice, CD1d-dependent NKT cells contribute to aggravate the disease, since in OVA-immunized CD1d(-/-) NOD mice, which are deficient in this particular T cell subset, airway eosinophilia was clearly diminished relative to NOD littermates. This is the first evidence that autoimmune diabetes-prone NOD mice can also give rise to enhanced Th2-mediated responses and might thus provide a useful model for the study of common genetic and cellular components, including NKT cells that contribute to both asthma and type 1 diabetes. PMID:14768037

  6. Putting the Squeeze on Airway Epithelia

    PubMed Central

    Park, Jin-Ah; Fredberg, Jeffrey J.

    2015-01-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  7. Putting the Squeeze on Airway Epithelia.

    PubMed

    Park, Jin-Ah; Fredberg, Jeffrey J; Drazen, Jeffrey M

    2015-07-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  8. NEUROTROPHIN MEDIATION OF ALLERGIC AIRWAYS RESPONSES TO INHALED DIESEL PARTICLES IN MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway hyper-responsiveness. Diesel exhaust particulates (DEP) associated with the combustion of diesel fuel exacerbate many of these allergic airways respons...

  9. Post-Exposure Antioxidant Treatment in Rats Decreases Airway Hyperplasia and Hyperreactivity Due to Chlorine Inhalation

    PubMed Central

    Bracher, Andreas; Doran, Stephen F.; Squadrito, Giuseppe L.; Fernandez, Solana; Postlethwait, Edward M.; Bowen, Larry; Matalon, Sadis

    2012-01-01

    We assessed the safety and efficacy of combined intravenous and aerosolized antioxidant administration to attenuate chlorine gas–induced airway alterations when administered after exposure. Adult male Sprague-Dawley rats were exposed to air or 400 parts per million (ppm) chlorine (a concentration likely to be encountered in the vicinity of industrial accidents) in environmental chambers for 30 minutes, and returned to room air, and they then received a single intravenous injection of ascorbic acid and deferoxamine or saline. At 1 hour and 15 hours after chlorine exposure, the rats were treated with aerosolized ascorbate and deferoxamine or vehicle. Lung antioxidant profiles, plasma ascorbate concentrations, airway morphology, and airway reactivity were evaluated at 24 hours and 7 days after chlorine exposure. At 24 hours after exposure, chlorine-exposed rats had significantly lower pulmonary ascorbate and reduced glutathione concentrations. Treatment with antioxidants restored depleted ascorbate in lungs and plasma. At 7 days after exposure, in chlorine-exposed, vehicle-treated rats, the thickness of the proximal airways was 60% greater than in control rats, with twice the amount of mucosubstances. Airway resistance in response to methacholine challenge was also significantly elevated. Combined treatment with intravenous and aerosolized antioxidants restored airway morphology, the amount of airway mucosubstances, and airway reactivity to control levels by 7 days after chlorine exposure. Our results demonstrate for the first time, to the best of our knowledge, that severe injury to major airways in rats exposed to chlorine, as characterized by epithelial hyperplasia, mucus accumulation, and airway hyperreactivity, can be reversed in a safe and efficacious manner by the post-exposure administration of ascorbate and deferoxamine. PMID:22162906

  10. Down-regulation of 8-oxoguanine DNA glycosylase 1 expression in the airway epithelium ameliorates allergic lung inflammation.

    PubMed

    Bacsi, Attila; Aguilera-Aguirre, Leopoldo; Szczesny, Bartosz; Radak, Zsolt; Hazra, Tapas K; Sur, Sanjiv; Ba, Xueqing; Boldogh, Istvan

    2013-01-01

    Allergic airway inflammation is characterized by increased expression of pro-inflammatory mediators, inflammatory cell infiltration, mucus hypersecretion, and airway hyperresponsiveness, in parallel with oxidative DNA base and strand damage, whose etiological role is not understood. Our goal was to establish the role of 8-oxoguanine (8-oxoG), a common oxidatively damaged base, and its repair by 8-oxoguanine DNA glycosylase 1 (Ogg1) in allergic airway inflammatory processes. Airway inflammation was induced by intranasally administered ragweed (Ambrosia artemisiifolia) pollen grain extract (RWPE) in sensitized BALB/c mice. We utilized siRNA technology to deplete Ogg1 from airway epithelium; 8-oxoG and DNA strand break levels were quantified by Comet assays. Inflammatory cell infiltration and epithelial methaplasia were determined histologically, mucus and cytokines levels biochemically and enhanced pause was used as the main index of airway hyperresponsiveness. Decreased Ogg1 expression and thereby 8-oxoG repair in the airway epithelium conveyed a lower inflammatory response after RWPE challenge of sensitized mice, as determined by expression of Th2 cytokines, eosinophilia, epithelial methaplasia, and airway hyperresponsiveness. In contrast, 8-oxoG repair in Ogg1-proficient airway epithelium was coupled to an increase in DNA single-strand break (SSB) levels and exacerbation of allergen challenge-dependent inflammation. Decreased expression of the Nei-like glycosylases Neil1 and Neil2 that preferentially excise ring-opened purines and 5-hydroxyuracil, respectively, did not alter the above parameters of allergic immune responses to RWPE. These results show that DNA SSBs formed during Ogg1-mediated repair of 8-oxoG augment antigen-driven allergic immune responses. A transient modulation of OGG1 expression/activity in airway epithelial cells could have clinical benefits. PMID:23127499

  11. Irritant-induced airway disorders.

    PubMed

    Brooks, Stuart M; Bernstein, I Leonard

    2011-11-01

    Thousands of persons experience accidental high-level irritant exposures each year but most recover and few die. Irritants function differently than allergens because their actions proceed nonspecifically and by nonimmunologic mechanisms. For some individuals, the consequence of a single massive exposure to an irritant, gas, vapor or fume is persistent airway hyperresponsiveness and the clinical picture of asthma, referred to as reactive airways dysfunction syndrome (RADS). Repeated irritant exposures may lead to chronic cough and continual airway hyperresponsiveness. Cases of asthma attributed to repeated irritant-exposures may be the result of genetic and/or host factors. PMID:21978855

  12. Airway hyperreactivity elicited by toluene diisocyanate (TDI)-albumin conjugate is not accompanied by airway eosinophilic infiltration in guinea pigs.

    PubMed

    Huang, J; Millecchia, L L; Frazer, D G; Fedan, J S

    1998-02-01

    Nonspecific airway hyperresponsiveness is present in many patients with toluene diisocyanate (TDI)-induced asthma; however, the underlying pathophysiological mechanisms of this hyperresponsiveness remain controversial. In the present study, we used a guinea pig model to investigate the association of TDI-induced airway hyperresponsiveness with eosinophilic airway infiltration, which is widely considered to play a key role in the development of allergen-induced hyperresponsiveness. Guinea pigs were sensitized by i.d. injections of 10 microl TDI on day 1 and day 6. Control animals received saline injections. Two weeks after the second injection, airway reactivity to inhaled methacholine and specific airway resistance (sRaw) was measured before and at several times after inhalation challenge with TDI-GSA (guinea pig serum albumin) conjugates. Eosinophils in the airways were detected using enzyme histochemistry and quantified using computer-assisted image analysis. TDI-specific IgG1 antibodies were found in the blood of TDI-sensitized animals. An immediate increase in sRaw was induced in these animals by TDI-GSA challenge; airway hyperresponsiveness to methacholine was observed at 6 h and 18 h after TDI-GSA challenge. However, TDI-GSA challenge did not result in an elevation of eosinophils in the airways, compared with control animals. The results suggest that the development of TDI-induced airway hyperresponsiveness is not dependent upon eosinophil infiltration in airways. PMID:9520137

  13. Levofloxacin decreased chest wall mechanical inhomogeneities and airway and vascular remodeling in rats with induced hepatopulmonary syndrome.

    PubMed

    Gaio, Eduardo; Amado, Veronica; Rangel, Leonardo; Huang, Wilson; Storck, Rodrigo; Melo-Silva, César Augusto

    2013-12-01

    The administration of antibiotics decreases bacterial translocation, reduces the activity of nitric oxide synthase and improves the gas exchange of hepatopulmonary syndrome (HPS) in rats. We hypothesized that levofloxacin could reduce HPS-induced respiratory mechanical inhomogeneities and airway and pulmonary vascular remodeling. We assessed the respiratory mechanical properties and lung tissue structure in 24 rats assigned to the control, HPS (eHPS) and HPS+levofloxacin (eHPS+L) groups. The administration of levofloxacin reduced the HPS-induced chest wall but not the lung mechanical inhomogeneities. The eHPS airway proportion of elastic fibers increased 20% but was similar between the control and eHPS+L groups. The eHPS vascular collagen increased 25% in eHPS but was similar between the control and eHPS+L groups. Compared to the control group, the vascular proportion of elastic fibers of the eHPS and eHPS+L groups increased by 60% and 16%, respectively. The administration of levofloxacin decreased the HPS-induced chest wall mechanical inhomogeneities and airway and vascular remodeling. PMID:23994178

  14. Limonene inhalation reduces allergic airway inflammation in Dermatophagoides farinae-treated mice.

    PubMed

    Hirota, Ryoji; Nakamura, Hiroyuki; Bhatti, Sabah Asif; Ngatu, Nlandu Roger; Muzembo, Basilua Andre; Dumavibhat, Narongpon; Eitoku, Masamitsu; Sawamura, Masayoshi; Suganuma, Narufumi

    2012-05-01

    Limonene is one of the main flavonoids which is reported to inhibit the inflammatory response by suppressing the production of reactive oxygen species. The aim of this study was to evaluate whether limonene can inhibit Dermatophagoides farinae-induced airway hyperresponsiveness (AHR), eosinophilic infiltration and other histological changes in the lung, T helper (Th) 2 cytokine production and airway remodeling in a mice model of asthma. Treatment with limonene significantly reduced the levels of IL-5, IL-13, eotaxin, MCP-1, and TGF-β₁ in bronchoalveolar lavage fluid. The goblet cell metaplasia, thickness of airway smooth muscle, and airway fibrosis were markedly decreased in limonene-treated mice. Furthermore, AHR to acetylcholine was significantly abrogated in limonene-treated mice. These results indicate that limonene has a potential to reduce airway remodeling and AHR in asthma model. PMID:22564095

  15. Methacoline Challenge test as an Evaluator of Response to Statins in Bronchial Hyperresponsiveness

    PubMed Central

    Malek Mohammad, Majid; Fahimi, Fanak; Fakharian, Atefeh; Karimi Gamishan, Masoumeh; Sistanizad, Mohammad; Fayazi, Nader; Khalilzadeh, Soheila

    2012-01-01

    3-hydroxy-3-methylglutaryl-CoA reductase inhibitors (statins), are effective serum cholesterol-lowering agents which also have anti-inflammatory properties. The objective of this study was to evaluate the effect of atorvastatin on bronchial hyperresponsiveness. Adult patients (age 14 to 65 years) with bronchial hyperresponsiveness (BHR) diagnosis based on the spirometry with methacholine challenge test were entered into the study. The study was conducted in the National Research Institute of Tuberculosis and Lung Disease. Patients were randomized to receive either atorvastatin 20 mg/day or placebo for 4 weeks. Spirometric parameters were determined at baseline and at completion of the study. Twenty two patients with the age of 32.95±10.30 years completed the trial. Changes in airway responsiveness categories (moderate to severe, mild, borderline, normal) after the intervention were not significant in atorvastatin group as in placebo group (p-value= 0.131 for atorvastatin group and p-value = 0.305 for placebo group). Also, changes in methacholine solution number (different concentrations of methacholine) which caused at least 20% decrease in FEV1 were not significant between groups (p-value = 0.089). Although we could not find a significant difference, the patients’ fall in FEV1 in atorvastatin group was observed in higher concentrations of methacholine. Median before treatment versus after treatment in atorvastatin group was 1 versus 4 mg/mL, while those were 2 versus 1 mg/mL in placebo group. This study showed a better but not significant hyperresponsiveness control in the treatment group. The result might be presented more pronounced, if we could increase the sample size. PMID:24250526

  16. Airway dysfunction in swimmers.

    PubMed

    Bougault, Valérie; Boulet, Louis-Philippe

    2012-05-01

    Elite competitive swimmers are particularly affected by airway disorders that are probably related to regular and intense training sessions in a chlorinated environment. Upper and lower airway respiratory symptoms, rhinitis, airway hyper-responsiveness, and exercise-induced bronchoconstriction are highly prevalent in these athletes, but their influence on athletic performance is still unclear. The authors reviewed the main upper and lower respiratory ailments observed in competitive swimmers who train in indoor swimming pools, their pathophysiology, clinical significance and possible effects on performance. Issues regarding the screening of these disorders, their management and preventive measures are addressed. PMID:22247299

  17. Hyperresponsive Sensory Patterns in Young Children with Autism, Developmental Delay, and Typical Development

    ERIC Educational Resources Information Center

    Baranek, Grace T.; Boyd, Brian A.; Poe, Michele D.; David, Fabian J.; Watson, Linda R.

    2007-01-01

    The nature of hyperresponsiveness to sensory stimuli in children with autism, using a new observational measure, the SPA, was examined. Three groups of young participants were assessed (autism, developmental delay, typical). Across all groups, MA was a predictor of hyperresponsiveness, such that aversion to multisensory toys decreased as MA…

  18. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.

    PubMed

    Lee, Kyung Sun; Kim, So Ri; Park, Hee Sun; Park, Seoung Ju; Min, Kyung Hoon; Lee, Ka Young; Choe, Yeong Hun; Hong, Sang Hyun; Han, Hyo Jin; Lee, Young Rae; Kim, Jong Suk; Atlas, Daphne; Lee, Yong Chul

    2007-12-31

    Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease. PMID:18160846

  19. Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease.

    PubMed

    Siddesha, Jalahalli M; Nakada, Emily M; Mihavics, Bethany R; Hoffman, Sidra M; Rattu, Gurkiranjit K; Chamberlain, Nicolas; Cahoon, Jonathon M; Lahue, Karolyn G; Daphtary, Nirav; Aliyeva, Minara; Chapman, David G; Desai, Dhimant H; Poynter, Matthew E; Anathy, Vikas

    2016-06-01

    Endoplasmic reticulum (ER) stress-induced unfolded protein response plays a critical role in inflammatory diseases, including allergic airway disease. However, the benefits of inhibiting ER stress in the treatment of allergic airway disease are not well known. Herein, we tested the therapeutic potential of a chemical chaperone, tauroursodeoxycholic acid (TUDCA), in combating allergic asthma, using a mouse model of house dust mite (HDM)-induced allergic airway disease. TUDCA was administered during the HDM-challenge phase (preventive regimen), after the HDM-challenge phase (therapeutic regimen), or therapeutically during a subsequent HDM rechallenge (rechallenge regimen). In the preventive regimen, TUDCA significantly decreased HDM-induced inflammation, markers of ER stress, airway hyperresponsiveness (AHR), and fibrosis. Similarly, in the therapeutic regimen, TUDCA administration efficiently decreased HDM-induced airway inflammation, mucus metaplasia, ER stress markers, and AHR, but not airway remodeling. Interestingly, TUDCA administered therapeutically in the HDM rechallenge regimen markedly attenuated HDM-induced airway inflammation, mucus metaplasia, ER stress markers, methacholine-induced AHR, and airway fibrotic remodeling. These results indicate that the inhibition of ER stress in the lungs through the administration of chemical chaperones could be a valuable strategy in the treatment of allergic airway diseases. PMID:27154200

  20. Kalanchoe pinnata inhibits mast cell activation and prevents allergic airway disease.

    PubMed

    Cruz, E A; Reuter, S; Martin, H; Dehzad, N; Muzitano, M F; Costa, S S; Rossi-Bergmann, B; Buhl, R; Stassen, M; Taube, C

    2012-01-15

    Aqueous extract of Kalanchoe pinnata (Kp) have been found effective in models to reduce acute anaphylactic reactions. In the present study, we investigate the effect of Kp and the flavonoid quercetin (QE) and quercitrin (QI) on mast cell activation in vitro and in a model of allergic airway disease in vivo. Treatment with Kp and QE in vitro inhibited degranulation and cytokine production of bone marrow-derived mast cells following IgE/FcɛRI crosslinking, whereas treatment with QI had no effect. Similarly, in vivo treatment with Kp and QE decreased development of airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and production of IL-5, IL-13 and TNF. In contrast, treatment with QI had no effect on these parameters. These findings demonstrate that treatment with Kp or QE is effective in treatment of allergic airway disease, providing new insights to the immunomodulatory functions of this plant. PMID:21802918

  1. Interaction between haemopoietic regulation and airway inflammation.

    PubMed

    O'Byrne, P M; Gauvreau, G M; Wood, L J

    1999-06-01

    Asthma is characterized by reversible airway narrowing, by airway hyperresponsiveness, and by airway inflammation. Inhaled allergens are the most important of the stimuli known to cause asthma. Methods for studying inhaled allergen in the laboratory have been well standardized and extensively used for the investigation of the pathophysiology and the pharmacological modulation of allergen-induced airway responses. Allergen inhalation by a sensitized subject results in an early asthmatic response, and, in the majority of subjects, a late asthmatic response and airway hyperresponsiveness. The late response and airway hyperresponsiveness are associated with increases in airway eosinophils and metachromatic cells. Allergen-induced airway inflammation in dogs (predominantly neutrophilic) is associated with increased granulocyte-macrophage progenitors in bone marrow, which is dependent on the effects of a circulating serum factor stimulating the bone marrow. The newly formed cells traffic to the airways. These increases in granulocyte-macrophage progenitors are blocked by inhaled corticosteroids. In human subjects, allergen-induced eosinophilic inflammation is associated with increases in Eo/B progenitors, mediated through up-regulation if the IL-5 receptor on progenitors and increases responsiveness to IL-5. Inhaled corticosteroids also attenuate all allergen-induced physiological responses and airway inflammation, an effect possibly mediated, in part, through inhibition of eosinophil and basophil maturation or release from the bone marrow. PMID:10421819

  2. Link between vitamin D and airway remodeling

    PubMed Central

    Berraies, Anissa; Hamzaoui, Kamel; Hamzaoui, Agnes

    2014-01-01

    In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma. PMID:24729717

  3. A Plasminogen Activator Inhibitor-1 Inhibitor Reduces Airway Remodeling in a Murine Model of Chronic Asthma

    PubMed Central

    Lee, Sun H.; Eren, Mesut; Vaughan, Douglas E.; Schleimer, Robert P.

    2012-01-01

    We previously reported that plasminogen activator inhibitor (PAI)-1 deficiency prevents collagen deposition in the airways of ovalbumin (OVA)-challenged mice. In this study, we explored the therapeutic utility of blocking PAI-1 in preventing airway remodeling, using a specific PAI-1 inhibitor, tiplaxtinin. C57BL/6J mice were immunized with intraperitoneal injections of OVA on Days 0, 3, and 6. Starting on Day 11, mice were challenged with phosphate-buffered saline or OVA by nebulization three times per week for 4 weeks. Tiplaxtinin was mixed with chow and administered orally from 1 day before the phosphate-buffered saline or OVA challenge. Lung tissues were harvested after challenge and characterized histologically for infiltrating inflammatory cells, mucus-secreting goblet cells, and collagen deposition. Airway hyperresponsiveness was measured using whole-body plethysmography. Tiplaxtinin treatment significantly decreased levels of PAI-1 activity in bronchoalveolar lavage fluids, which indicates successful blockage of PAI-1 activity in the airways. The number of infiltrated inflammatory cells was reduced by tiplaxtinin treatment in the lungs of the OVA-challenged mice. Furthermore, oral administration of tiplaxtinin significantly attenuated the degree of goblet cell hyperplasia and collagen deposition in the airways of the OVA-challenged mice, and methacholine-induced airway hyperresponsiveness was effectively reduced by tiplaxtinin in these animals. This study supports our previous findings that PAI-1 promotes airway remodeling in a murine model of chronic asthma, and suggests that PAI-1 may be a novel target of treatment of airway remodeling in asthma. PMID:22323366

  4. A plasminogen activator inhibitor-1 inhibitor reduces airway remodeling in a murine model of chronic asthma.

    PubMed

    Lee, Sun H; Eren, Mesut; Vaughan, Douglas E; Schleimer, Robert P; Cho, Seong H

    2012-06-01

    We previously reported that plasminogen activator inhibitor (PAI)-1 deficiency prevents collagen deposition in the airways of ovalbumin (OVA)-challenged mice. In this study, we explored the therapeutic utility of blocking PAI-1 in preventing airway remodeling, using a specific PAI-1 inhibitor, tiplaxtinin. C57BL/6J mice were immunized with intraperitoneal injections of OVA on Days 0, 3, and 6. Starting on Day 11, mice were challenged with phosphate-buffered saline or OVA by nebulization three times per week for 4 weeks. Tiplaxtinin was mixed with chow and administered orally from 1 day before the phosphate-buffered saline or OVA challenge. Lung tissues were harvested after challenge and characterized histologically for infiltrating inflammatory cells, mucus-secreting goblet cells, and collagen deposition. Airway hyperresponsiveness was measured using whole-body plethysmography. Tiplaxtinin treatment significantly decreased levels of PAI-1 activity in bronchoalveolar lavage fluids, which indicates successful blockage of PAI-1 activity in the airways. The number of infiltrated inflammatory cells was reduced by tiplaxtinin treatment in the lungs of the OVA-challenged mice. Furthermore, oral administration of tiplaxtinin significantly attenuated the degree of goblet cell hyperplasia and collagen deposition in the airways of the OVA-challenged mice, and methacholine-induced airway hyperresponsiveness was effectively reduced by tiplaxtinin in these animals. This study supports our previous findings that PAI-1 promotes airway remodeling in a murine model of chronic asthma, and suggests that PAI-1 may be a novel target of treatment of airway remodeling in asthma. PMID:22323366

  5. Airway inflammation, airway responsiveness and cough before and after inhaled budesonide in patients with eosinophilic bronchitis.

    PubMed

    Brightling, C E; Ward, R; Wardlaw, A J; Pavord, I D

    2000-04-01

    Eosinophilic bronchitis is a common cause of chronic cough, characterized by sputum eosinophilia similar to that seen in asthma, but unlike asthma the patients have no objective evidence of variable airflow obstruction or airway hyperresponsiveness. The reason for the different functional associations is unclear. The authors have tested the hypothesis that in eosinophilic bronchitis the inflammation is mainly localized in the upper airway. In an open study the authors measured the lower (provocative concentration causing a 20% fall in forced expiratory volume in one second (PC20)) and upper (PC25 MIF50) airway responsiveness to histamine, lower and upper airway inflammation using induced sputum and nasal lavage, in II patients with eosinophilic bronchitis. The authors assessed changes in these measures and in cough reflex sensitivity to capsaicin and cough severity after 400 microg of inhaled budesonide for 4 weeks. A nasal eosinophilia was present in only three patients with one having upper airway hyperresponsiveness. Following treatment with inhaled corticosteroids the geometric mean sputum eosinophil count decreased from 12.8% to 2.9% (mean difference 4.4-fold, 95% confidence interval (CI) 2.14-10.02), the mean +/- sem cough visual analogue score on a 100 mm scale decreased from 27.2 +/- 6.6 mm to 12.6 +/- 5.7 mm (mean difference 14.6, 95% CI 9.1-20.1) and the cough sensitivity assessed as the capsaicin concentration required to cause two coughs (C2) and five coughs (C5) improved (C2 mean difference 0.75 doubling concentrations, 95% CI 0.36-1.1; C5 mean difference 1.3 doubling concentration, 95% CI 0.6-2.1). There was a significant positive correlation between the fold change in sputum eosinophil count and doubling dose change in C5 after inhaled budesonide (r=0.61). It is concluded that upper airway inflammation is not prominent in eosinophilic bronchitis and that inhaled budesonide improves the sputum eosinophilia, cough severity and sensitivity suggesting a

  6. Lysophosphatidylcholine plays critical role in allergic airway disease manifestation

    PubMed Central

    Bansal, Preeti; Gaur, Shailendera Nath; Arora, Naveen

    2016-01-01

    Phospholipase A2 (sPLA2), pivotal for allergic and inflammatory response, hydrolyses phosphatidylcholine (PC) to lysophosphatidylcholine (LPC). In present study, the role of LPC in allergic airway disease manifestation was studied using mouse model. Balb/c mice were immunized using cockroach extract (CE) and LPC release was blocked by sPLA2 inhibitor. Airway hyperresponse (AHR), lung-histology, total and differential leukocyte count (TLC&DLC), Th2 type cytokines, sPLA2 activity and LPC levels in bronchoalveolar lavage fluid (BALF) were measured. Exogenous LPC was given to the mice with or without CE sensitization, to demonstrate its role in allergic airway disease manifestation. Anti-CD1d antibody was given to study the involvement of natural killer T (NKT) cells in LPC induced response. AHR, lung-inflammation, TLC, DLC, Th2 type cytokines, sPLA2 activity and LPC levels were increased on CE challenge. sPLA2 activity and LPC release was blocked by sPLA2-inhibitor, which decreased AHR, and inflammatory parameters. Exogenous LPC with or without CE sensitization increased above parameters. CE challenge or LPC exposure increased LY49C+TCRβ+ NKT cells in BALF and spleen, which was reduced by anti-CD1d antibody, accompanied with reduction in AHR and allergic airway inflammation parameters. Conclusively, LPC induces allergic airway disease manifestation and it does so probably via CD1d-restricted LY49C+TCRβ+ NKT cells. PMID:27282246

  7. Lysophosphatidylcholine plays critical role in allergic airway disease manifestation.

    PubMed

    Bansal, Preeti; Gaur, Shailendera Nath; Arora, Naveen

    2016-01-01

    Phospholipase A2 (sPLA2), pivotal for allergic and inflammatory response, hydrolyses phosphatidylcholine (PC) to lysophosphatidylcholine (LPC). In present study, the role of LPC in allergic airway disease manifestation was studied using mouse model. Balb/c mice were immunized using cockroach extract (CE) and LPC release was blocked by sPLA2 inhibitor. Airway hyperresponse (AHR), lung-histology, total and differential leukocyte count (TLC&DLC), Th2 type cytokines, sPLA2 activity and LPC levels in bronchoalveolar lavage fluid (BALF) were measured. Exogenous LPC was given to the mice with or without CE sensitization, to demonstrate its role in allergic airway disease manifestation. Anti-CD1d antibody was given to study the involvement of natural killer T (NKT) cells in LPC induced response. AHR, lung-inflammation, TLC, DLC, Th2 type cytokines, sPLA2 activity and LPC levels were increased on CE challenge. sPLA2 activity and LPC release was blocked by sPLA2-inhibitor, which decreased AHR, and inflammatory parameters. Exogenous LPC with or without CE sensitization increased above parameters. CE challenge or LPC exposure increased LY49C(+)TCRβ(+) NKT cells in BALF and spleen, which was reduced by anti-CD1d antibody, accompanied with reduction in AHR and allergic airway inflammation parameters. Conclusively, LPC induces allergic airway disease manifestation and it does so probably via CD1d-restricted LY49C(+)TCRβ(+) NKT cells. PMID:27282246

  8. Airway smooth muscle in the pathophysiology and treatment of asthma

    PubMed Central

    Solway, Julian

    2013-01-01

    Airway smooth muscle (ASM) plays an integral part in the pathophysiology of asthma. It is responsible for acute bronchoconstriction, which is potentiated by constrictor hyperresponsiveness, impaired relaxation and length adaptation. ASM also contributes to airway remodeling and inflammation in asthma. In light of this, ASM is an important target in the treatment of asthma. PMID:23305987

  9. S-Nitrosoglutathione Reductase Inhibition Regulates Allergen-Induced Lung Inflammation and Airway Hyperreactivity

    PubMed Central

    Bassett, David J. P.; Bradley, Matthews O.; Jaffar, Zeina

    2013-01-01

    Allergic asthma is characterized by Th2 type inflammation, leading to airway hyperresponsivenes, mucus hypersecretion and tissue remodeling. S-Nitrosoglutathione reductase (GSNOR) is an alcohol dehydrogenase involved in the regulation of intracellular levels of S-nitrosothiols. GSNOR activity has been shown to be elevated in human asthmatic lungs, resulting in diminished S-nitrosothiols and thus contributing to increased airway hyperreactivity. Using a mouse model of allergic airway inflammation, we report that intranasal administration of a new selective inhibitor of GSNOR, SPL-334, caused a marked reduction in airway hyperreactivity, allergen-specific T cells and eosinophil accumulation, and mucus production in the lungs in response to allergen inhalation. Moreover, SPL-334 treatment resulted in a significant decrease in the production of the Th2 cytokines IL-5 and IL-13 and the level of the chemokine CCL11 (eotaxin-1) in the airways. Collectively, these observations reveal that GSNOR inhibitors are effective not only in reducing airway hyperresponsiveness but also in limiting lung inflammatory responses mediated by CD4+ Th2 cells. These findings suggest that the inhibition of GSNOR may provide a novel therapeutic approach for the treatment of allergic airway inflammation. PMID:23936192

  10. Mechanical effects of obesity on airway responsiveness in otherwise healthy humans.

    PubMed

    Torchio, Roberto; Gobbi, Alessandro; Gulotta, Carlo; Dellacà, Raffaele; Tinivella, Marco; Hyatt, Robert E; Brusasco, Vito; Pellegrino, Riccardo

    2009-08-01

    We investigated whether obesity is associated with airway hyperresponsiveness in otherwise healthy humans and, if so, whether this correlates with a restrictive lung function pattern or a decreased number of sighs at rest and/or during walking. Lung function was studied before and after inhaling methacholine (MCh) in 41 healthy subjects with body mass index ranging from 20 to 56. Breathing pattern was assessed during a 60-min rest period and a 30-min walk. The dose of MCh that produced a 50% decrease in the maximum expiratory flow measured in a body plethysmograph (PD50MCh) was inversely correlated with body mass index (r2=0.32, P<0.001) and waist circumference (r2=0.25, P<0.001). Significant correlations with body mass index were also found with the maximum changes in respiratory resistance (r2=0.19, P<0.001) and reactance (r2=0.40, P<0.001) measured at 5 Hz. PD50MCh was also positively correlated with functional residual capacity (r2=0.56, P<0.001) and total lung capacity (r2=0.59, P<0.001) in men, but not in women. Neither PD50MCh nor body mass index correlated with number of sighs, average tidal volume, ventilation, or breathing frequency. In this study, airway hyperresponsiveness was significantly associated with obesity in otherwise healthy subjects. In obese men, but not in women, airway hyperresponsiveness was associated with the decreases in lung volumes. PMID:19541741

  11. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma.

    PubMed

    Yao, Jing; Jiang, Mingzi; Zhang, Yunshi; Liu, Xing; Du, Qiang; Feng, Ganzhu

    2016-03-01

    Asthma is a chronic airway inflammatory disorder and progresses mainly due to airway remodeling. Chrysin, a natural flavonoid, has been reported to possess multiple biologic activities, including anti-inflammation, anti-oxidation and anti-proliferation. The present study aimed to investigate whether chrysin could relieve allergic airway inflammation and remodeling in a murine model of chronic asthma and the mechanism involved. The female BALB/c mice sensitized and challenged with ovalbumin (OVA) successfully developed airway hyperresponsiveness (AHR), inflammation and remodeling. The experimental data showed that chrysin could alleviate OVA-induced AHR. Chrysin could also reduce OVA-induced increases in the number of inflammatory cells, especially eosinophils, interleukin (IL) -4, and IL-13 in bronchoalveolar lavage fluid (BALF) and total IgE in serum. The decreased interferon-γ (IFN-γ) level in BALF was also upregulated by chrysin. In addition, inflammatory cell infiltration, goblet cell hyperplasia and the expression of α-smooth muscle actin (α-SMA) around bronchioles were suppressed by chrysin. Furthermore, the phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK) could be decreased by chrysin, which are associated with airway smooth muscle cell (ASMC) proliferation. These results indicate the promising therapeutic effect of chrysin on chronic asthma, especially the progression of airway remodeling. PMID:26780233

  12. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma

    PubMed Central

    An, S.S.; Bai, T.R.; Bates, J.H.T.; Black, J.L.; Brown, R.H.; Brusasco, V.; Chitano, P.; Deng, L.; Dowell, M.; Eidelman, D.H.; Fabry, B.; Fairbank, N.J.; Ford, L.E.; Fredberg, J.J.; Gerthoffer, W.T.; Gilbert, S.H.; Gosens, R.; Gunst, S.J.; Halayko, A.J.; Ingram, R.H.; Irvin, C.G.; James, A.L.; Janssen, L.J.; King, G.G.; Knight, D.A.; Lauzon, A.M.; Lakser, O.J.; Ludwig, M.S.; Lutchen, K.R.; Maksym, G.N.; Martin, J.G.; Mauad, T.; McParland, B.E.; Mijailovich, S.M.; Mitchell, H.W.; Mitchell, R.W.; Mitzner, W.; Murphy, T.M.; Paré, P.D.; Pellegrino, R.; Sanderson, M.J.; Schellenberg, R.R.; Seow, C.Y.; Silveira, P.S.P.; Smith, P.G.; Solway, J.; Stephens, N.L.; Sterk, P.J.; Stewart, A.G.; Tang, D.D.; Tepper, R.S.; Tran, T.; Wang, L.

    2008-01-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not “cure” asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored. PMID:17470619

  13. Elevated Body Position Early after Delivery Increased Airway Size during Wakefulness, and Decreased Apnea Hypopnea Index in a Woman with Pregnancy Related Sleep Apnea

    PubMed Central

    Jung, Stefanie; Zaremba, Sebastian; Heisig, Anne; Eikermann, Matthias

    2014-01-01

    We report a patient with pregnancy related obstructive sleep apnea ([OSA]; apnea hypopnea index [AHI] 18/h) early after delivery, with improvement of AHI by 87% following 45-degree elevation in body position compared with the non-elevated position. Improvement associated with this position may be explained, at least in part, by an increased upper airway diameter (as measured during wakefulness). Sleep apnea in this patient resolved at 9 months postpartum. This observation suggests that 45-degree elevated body position may be an effective treatment of pregnancy related OSA during the postpartum period. Citation: Jung S, Zaremba S, Heisig A, Eikermann M. Elevated body position early after delivery increased airway size during wakefulness, and decreased apnea hypopnea index in a woman with pregnancy related sleep apnea. J Clin Sleep Med 2014;10(7):815-817. PMID:25024663

  14. Adoptive transfer of induced-Treg cells effectively attenuates murine airway allergic inflammation.

    PubMed

    Xu, Wei; Lan, Qin; Chen, Maogen; Chen, Hui; Zhu, Ning; Zhou, Xiaohui; Wang, Julie; Fan, Huimin; Yan, Chun-Song; Kuang, Jiu-Long; Warburton, David; Togbe, Dieudonnée; Ryffel, Bernhard; Zheng, Song-Guo; Shi, Wei

    2012-01-01

    Both nature and induced regulatory T (Treg) lymphocytes are potent regulators of autoimmune and allergic disorders. Defects in endogenous Treg cells have been reported in patients with allergic asthma, suggesting that disrupted Treg cell-mediated immunological regulation may play an important role in airway allergic inflammation. In order to determine whether adoptive transfer of induced Treg cells generated in vitro can be used as an effective therapeutic approach to suppress airway allergic inflammation, exogenously induced Treg cells were infused into ovalbumin-sensitized mice prior to or during intranasal ovalbumin challenge. The results showed that adoptive transfer of induced Treg cells prior to allergen challenge markedly reduced airway hyperresponsiveness, eosinophil recruitment, mucus hyper-production, airway remodeling, and IgE levels. This effect was associated with increase of Treg cells (CD4(+)FoxP3(+)) and decrease of dendritic cells in the draining lymph nodes, and with reduction of Th1, Th2, and Th17 cell response as compared to the controls. Moreover, adoptive transfer of induced Treg cells during allergen challenge also effectively attenuate airway inflammation and improve airway function, which are comparable to those by natural Treg cell infusion. Therefore, adoptive transfer of in vitro induced Treg cells may be a promising therapeutic approach to prevent and treat severe asthma. PMID:22792275

  15. Lung morphometry changes in prevention of airway remodeling by protocatechuic aldehyde in asthmatic mice.

    PubMed

    Zhang, Jiankai; Ma, Mulan; Qin, Dongyun; Huang, Jianping; Cui, Xiaojun; Wu, Yongfu; Yang, Huiling; Fu, Hui; Liao, Cui

    2015-01-01

    Airway remodeling can lead to irreversible airflow obstruction and persistent airway hyper-responsiveness, which is the pathological basis of refractory asthma. To investigate the preventive effect of protocatechuic aldehyde on airway remodeling in asthmatic mice by lung morphometry methods. BALB/c mice were used to establish model of airway remodeling by ovalbumin (OVA) inhalation. Bronchoalveolar lavage fluid (BALF) were collected for eosinophils (EOS) count and detection of interleukin 4 (IL-4), interleukin-13 (IL-13) and interferon (IFN-γ) content. The left lung pathological sections were performed HE, AB-PAS and Masson staining. The epithelial lamina thickness of the left main bronchus (Re), the smooth muscle layer thickness (Rm), the number of goblet cells and goblet cell area percentage (%Ac) and gas side of the road and vascular collagen deposition (%Aco, %Avc) situation were measured. Protocatechuic aldehyde gavage made the reduction of BALF EOS count. IL-4 and IL-13 levels also decreased, while the IFN-γ level increased. The left main bronchus Re, Rm, goblet cell count, Ac% and Aco% and Avc% reduced. Protocatechuic aldehyde can significantly control airway inflammation and prevent airway remodeling. PMID:26221226

  16. The Effects of Proresolution of Ellagic Acid in an Experimental Model of Allergic Airway Inflammation

    PubMed Central

    de Freitas Alves, Claudiney; Angeli, Giovanna Natalia; Favarin, Daniely Cornélio; Lemos de Andrade, Edinéia; Lazo Chica, Javier Emilio; Faccioli, Lúcia Helena; Roberto da Silva, Paulo; de Paula Rogerio, Alexandre

    2013-01-01

    Asthma is a disease of airway inflammation characterized by airway hyperresponsiveness, eosinophilic inflammation, and hypersecretion of mucus. Ellagic acid, a compound derived from medicinal plants and fruits, has shown anti-inflammatory activity in several experimental disease models. We used the classical experimental model, in BALB/c mice, of sensibilization with ovalbumin to determine the effect of ellagic acid (10 mg/kg; oral route) in the resolution of allergic airways response. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. The control group consisted of nonimmunized mice that received challenge with ovalbumin. Ellagic acid and dexamethasone or vehicle (water) were administered before or after intranasal allergen challenge. Ellagic acid accelerated the resolution of airways inflammation by decreasing total leukocytes and eosinophils numbers in the bronchoalveolar lavage fluid (BALF), the mucus production and lung inflammation in part by reducing IL-5 concentration, eosinophil peroxidase (EPO) activity, and P-selectin expression, but not activator protein 1 (AP-1) and nuclear factor kappa B (NF-κB) pathways. In addition, ellagic acid enhanced alveolar macrophage phagocytosis of IgG-OVA-coated beads ex vivo, a new proresolving mechanism for the clearance of allergen from the airways. Together, these findings identify ellagic acid as a potential therapeutic agent for accelerating the resolution of allergic airways inflammation. PMID:24376308

  17. Lung morphometry changes in prevention of airway remodeling by protocatechuic aldehyde in asthmatic mice

    PubMed Central

    Zhang, Jiankai; Ma, Mulan; Qin, Dongyun; Huang, Jianping; Cui, Xiaojun; Wu, Yongfu; Yang, Huiling; Fu, Hui; Liao, Cui

    2015-01-01

    Airway remodeling can lead to irreversible airflow obstruction and persistent airway hyper-responsiveness, which is the pathological basis of refractory asthma. To investigate the preventive effect of protocatechuic aldehyde on airway remodeling in asthmatic mice by lung morphometry methods. BALB/c mice were used to establish model of airway remodeling by ovalbumin (OVA) inhalation. Bronchoalveolar lavage fluid (BALF) were collected for eosinophils (EOS) count and detection of interleukin 4 (IL-4), interleukin-13 (IL-13) and interferon (IFN-γ) content. The left lung pathological sections were performed HE, AB-PAS and Masson staining. The epithelial lamina thickness of the left main bronchus (Re), the smooth muscle layer thickness (Rm), the number of goblet cells and goblet cell area percentage (%Ac) and gas side of the road and vascular collagen deposition (%Aco, %Avc) situation were measured. Protocatechuic aldehyde gavage made the reduction of BALF EOS count. IL-4 and IL-13 levels also decreased, while the IFN-γ level increased. The left main bronchus Re, Rm, goblet cell count, Ac% and Aco% and Avc% reduced. Protocatechuic aldehyde can significantly control airway inflammation and prevent airway remodeling. PMID:26221226

  18. [Allergens-induced sensitization alters airway epithelial adhesion molecules expression in mice].

    PubMed

    Zeng, Dan; Tan, Mei-Ling; Xiang, Yang; Qin, Xiao-Qun; Zhu, Li-Ming; Dai, Ai-Guo

    2015-12-25

    To explore the relationship between the epithelial adhesion molecules and immune responses of airway epithelium, we observed the expression of integrin β4 and intercellular adhesion molecule-1 (ICAM-1) in the mice airway epithelium after sensitization with allergens. BALB/c mice were sensitized with intraperitoneal injection of ovalbumin (OVA) or house dust mite (HDM) and then developed airway hyper-responsiveness as determined by barometric whole-body plethysmography. Both OVA and HDM sensitization led to increases of the number of peripheral leukocytes as well as inflammatory cells infiltration in lungs. OVA sensitized mice showed more severe inflammatory cells infiltration than HDM sensitized mice. Immunohistochemistry analysis of mice lung tissues revealed that sensitization with both allergens also led to a decrease of integrin β4 expression and an increase of ICAM-1 expression in airway epithelia. OVA sensitized mice showed a more significant increase of ICAM-1 expression compared with HDM sensitized mice. siRNA mediated silencing of integrin β4 gene in 16HBE cells resulted in an up-regulation of ICAM-1 expression. Our results indicate a possible role of airway epithelial adhesion molecules in allergen-induced airway immune responses. PMID:26701635

  19. Reduced GM1 ganglioside in CFTR-deficient human airway cells results in decreased β1-integrin signaling and delayed wound repair

    PubMed Central

    Itokazu, Yutaka; Pagano, Richard E.; Schroeder, Andreas S.; O'Grady, Scott M.; Limper, Andrew H.

    2014-01-01

    Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function reduces chloride secretion and increases sodium uptake, but it is not clear why CFTR mutation also results in progressive lung inflammation and infection. We previously demonstrated that CFTR-silenced airway cells migrate more slowly during wound repair than CFTR-expressing controls. In addition, CFTR-deficient cells and mouse models have been reported to have altered sphingolipid levels. Here, we investigated the hypothesis that reduced migration in CFTR-deficient airway epithelial cells results from altered sphingolipid composition. We used cell lines derived from a human airway epithelial cell line (Calu-3) stably transfected with CFTR short hairpin RNA (CFTR-silenced) or nontargeting short hairpin RNA (controls). Cell migration was measured by electric cell substrate impedance sensing (ECIS). Lipid analyses, addition of exogenous glycosphingolipids, and immunoblotting were performed. We found that levels of the glycosphingolipid, GM1 ganglioside, were ∼60% lower in CFTR-silenced cells than in controls. CFTR-silenced cells exhibited reduced levels of activated β1-integrin, phosphorylated tyrosine 576 of focal adhesion kinase (pFAK), and phosphorylation of Crk-associated substrate (pCAS). Addition of GM1 (but not GM3) ganglioside to CFTR-silenced cells restored activated β1-integrin, pFAK, and pCAS to near control levels and partially restored (∼40%) cell migration. Our results suggest that decreased GM1 in CFTR-silenced cells depresses β1-integrin signaling, which contributes to the delayed wound repair observed in these cells. These findings have implications for the pathology of cystic fibrosis, where altered sphingolipid levels in airway epithelial cells could result in a diminished capacity for wound repair after injury. PMID:24500283

  20. Silibinin attenuates allergic airway inflammation in mice

    SciTech Connect

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  1. The effects of in utero vitamin D deficiency on airway smooth muscle mass and lung function.

    PubMed

    Foong, Rachel E; Bosco, Anthony; Jones, Anya C; Gout, Alex; Gorman, Shelley; Hart, Prue H; Zosky, Graeme R

    2015-11-01

    We have previously demonstrated increased airway smooth muscle (ASM) mass and airway hyperresponsiveness in whole-life vitamin D-deficient female mice. In this study, we aimed to uncover the molecular mechanisms contributing to altered lung structure and function. RNA was extracted from lung tissue of whole-life vitamin D-deficient and -replete female mice, and gene expression patterns were profiled by RNA sequencing. The data showed that genes involved in embryonic organ development, pattern formation, branching morphogenesis, Wingless/Int signaling, and inflammation were differentially expressed in vitamin D-deficient mice. Network analysis suggested that differentially expressed genes were connected by the hubs matrix metallopeptidase 9; NF-κ light polypeptide gene enhancer in B cells inhibitor, α; epidermal growth factor receptor; and E1A binding protein p300. Given our findings that developmental pathways may be altered, we investigated if the timing of vitamin D exposure (in utero vs. postnatal) had an impact on lung health outcomes. Gene expression was measured in in utero or postnatal vitamin D-deficient mice, as well as whole-life vitamin D-deficient and -replete mice at 8 weeks of age. Baseline lung function, airway hyperresponsiveness, and airway inflammation were measured and lungs fixed for lung structure assessment using stereological methods and quantification of ASM mass. In utero vitamin D deficiency was sufficient to increase ASM mass and baseline airway resistance and alter lung structure. There were increased neutrophils but decreased lymphocytes in bronchoalveolar lavage. Expression of inflammatory molecules S100A9 and S100A8 was mainly increased in postnatal vitamin D-deficient mice. These observations suggest that in utero vitamin D deficiency can alter lung structure and function and increase inflammation, contributing to symptoms in chronic diseases, such as asthma. PMID:25867172

  2. Airway injury during high-level exercise.

    PubMed

    Kippelen, Pascale; Anderson, Sandra D

    2012-05-01

    Airway epithelial cells act as a physical barrier against environmental toxins and injury, and modulate inflammation and the immune response. As such, maintenance of their integrity is critical. Evidence is accumulating to suggest that exercise can cause injury to the airway epithelium. This seems the case particularly for competitive athletes performing high-level exercise, or when exercise takes place in extreme environmental conditions such as in cold dry air or in polluted air. Dehydration of the small airways and increased forces exerted on to the airway surface during severe hyperpnoea are thought to be key factors in determining the occurrence of injury of the airway epithelium. The injury-repair process of the airway epithelium may contribute to the development of the bronchial hyper-responsiveness that is documented in many elite athletes. PMID:22247295

  3. Trefoil factor-2 reverses airway remodeling changes in allergic airways disease.

    PubMed

    Royce, Simon G; Lim, Clarice; Muljadi, Ruth C; Samuel, Chrishan S; Ververis, Katherine; Karagiannis, Tom C; Giraud, Andrew S; Tang, Mimi L K

    2013-01-01

    Trefoil factor 2 (TFF2) is a small peptide with an important role in mucosal repair. TFF2 is up-regulated in asthma, suggesting a role in asthma pathogenesis. Given its known biological role in promoting epithelial repair, TFF2 might be expected to exert a protective function in limiting the progression of airway remodeling in asthma. The contribution of TFF2 to airway remodeling in asthma was investigated by examining the expression of TFF2 in the airway and lung, and evaluating the effects of recombinant TFF2 treatment on established airway remodeling in a murine model of chronic allergic airways disease (AAD). BALB/c mice were sensitized and challenged with ovalbumin (OVA) or saline for 9 weeks, whereas mice with established OVA-induced AAD were treated with TFF2 or vehicle control (intranasally for 14 d). Effects on airway remodeling, airway inflammation, and airway hyperresponsiveness were then assessed, whereas TFF2 expression was determined by immunohistochemistry. TFF2 expression was significantly increased in the airways of mice with AAD, compared with expression levels in control mice. TFF2 treatment resulted in reduced epithelial thickening, subepithelial collagen deposition, goblet-cell metaplasia, bronchial epithelium apoptosis, and airway hyperresponsiveness (all P < 0.05, versus vehicle control), but TFF2 treatment did not influence airway inflammation. The increased expression of endogenous TFF2 in response to chronic allergic inflammation is insufficient to prevent the progression of airway inflammation and remodeling in a murine model of chronic AAD. However, exogenous TFF2 treatment is effective in reversing aspects of established airway remodeling. TFF2 has potential as a novel treatment for airway remodeling in asthma. PMID:22652198

  4. Glucocorticoids decrease Treg cell numbers in lungs of allergic mice.

    PubMed

    Olsen, P C; Kitoko, J Z; Ferreira, T P; de-Azevedo, C T; Arantes, A C; Martins, Μ A

    2015-01-15

    Glucocorticoids have been the hallmark anti-inflammatory drug used to treat asthma. It has been shown that glucocorticoids ameliorate asthma by increasing numbers and activity of Tregs, in contrast recent data show that glucocorticoid might have an opposite effect on Treg cells from normal mice. Since Tregs are target cells that act on the resolution of asthma, the aim of this study was to elucidate the effect of glucocorticoid treatment on lung Tregs in mouse models of asthma. Allergen challenged mice were treated with either oral dexamethasone or nebulized budesonide. Broncoalveolar lavage and airway hyperresponsiveness were evaluated after allergenic challenge. Lung, thymic and lymph node cells were phenotyped on Treg through flow cytometry. Lung cytokine secretion was detected by ELISA. Although dexamethasone inhibited airway inflammation and hyperresponsiveness, improving resolution, we have found that both dexamethasone and budesonide induce a reduction of Treg numbers on lungs and lymphoid organs of allergen challenged mice. The reduction of lung Treg levels was independent of mice strain or type of allergen challenge. Our study also indicates that both glucocorticoids do not increase Treg activity through production of IL-10. Glucocorticoid systemic or localized treatment induced thymic atrophy. Taken together, our results demonstrate that glucocorticoids decrease Treg numbers and activity in different asthma mouse models, probably by reducing thymic production of T cells. Therefore, it is possible that glucocorticoids do not have beneficial effects on lung populations of Treg cells from asthmatic patients. PMID:25499819

  5. Effect of intranasal rosiglitazone on airway inflammation and remodeling in a murine model of chronic asthma

    PubMed Central

    Lee, Hwa Young; Rhee, Chin Kook; Kang, Ji Young; Park, Chan Kwon; Lee, Sook Young; Kwon, Soon Suk; Kim, Young Kyoon; Yoon, Hyoung Kyu

    2016-01-01

    Background/Aims: Asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Peroxisome proliferator-activated receptors have been reported to regulate inflammatory responses in many cells. In this study, we examined the effects of intranasal rosiglitazone on airway remodeling in a chronic asthma model. Methods: We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated intranasally with rosiglitazone with or without an antagonist during OVA challenge. We determined airway inflammation and the degree of airway remodeling by smooth muscle actin area and collagen deposition. Results: Mice chronically exposed to OVA developed sustained eosinophilic airway inflammation, compared with control mice. Additionally, the mice developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Administration of rosiglitazone intranasally inhibited the eosinophilic inflammation significantly, and, importantly, airway smooth muscle remodeling in mice chronically exposed to OVA. Expression of Toll-like receptor (TLR)-4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was increased in the OVA group and decreased in the rosiglitazone group. Co-treatment with GW9660 (a rosiglitazone antagonist) and rosiglitazone increased the expression of TLR-4 and NF-κB. Conclusions: These results suggest that intranasal administration of rosiglitazone can prevent not only air way inf lammation but also air way remodeling associated with chronic allergen challenge. This beneficial effect is mediated by inhibition of TLR-4 and NF-κB pathways. PMID:26767862

  6. Airway Surface Dehydration by Transforming Growth Factor β (TGF-β) in Cystic Fibrosis Is Due to Decreased Function of a Voltage-dependent Potassium Channel and Can Be Rescued by the Drug Pirfenidone.

    PubMed

    Manzanares, Dahis; Krick, Stefanie; Baumlin, Nathalie; Dennis, John S; Tyrrell, Jean; Tarran, Robert; Salathe, Matthias

    2015-10-16

    Transforming growth factor β1 (TGF-β1) is not only elevated in airways of cystic fibrosis (CF) patients, whose airways are characterized by abnormal ion transport and mucociliary clearance, but TGF-β1 is also associated with worse clinical outcomes. Effective mucociliary clearance depends on adequate airway hydration, governed by ion transport. Apically expressed, large-conductance, Ca(2+)- and voltage-dependent K(+) (BK) channels play an important role in this process. In this study, TGF-β1 decreased airway surface liquid volume, ciliary beat frequency, and BK activity in fully differentiated CF bronchial epithelial cells by reducing mRNA expression of the BK γ subunit leucine-rich repeat-containing protein 26 (LRRC26) and its function. Although LRRC26 knockdown itself reduced BK activity, LRRC26 overexpression partially reversed TGF-β1-induced BK dysfunction. TGF-β1-induced airway surface liquid volume hyper-absorption was reversed by the BK opener mallotoxin and the clinically useful TGF-β signaling inhibitor pirfenidone. The latter increased BK activity via rescue of LRRC26. Therefore, we propose that TGF-β1-induced mucociliary dysfunction in CF airways is associated with BK inactivation related to a LRRC26 decrease and is amenable to treatment with clinically useful TGF-β1 inhibitors. PMID:26338706

  7. Airway Inflammation and Hypersensitivity Induced by Chronic Smoking

    PubMed Central

    Kou, Yu Ru; Kwong, Kevin; Lee, Lu-Yuan

    2011-01-01

    Airway hypersensitivity, characterized by enhanced excitability of airway sensory nerves, is a prominent pathophysiological feature in patients with airway inflammatory diseases. Although the underlying pathogenic mechanism is not fully understood, chronic airway inflammation is believed to be primarily responsible. Cigarette smoking is known to cause chronic airway inflammation, accompanied by airway hyperresponsiveness. Experimental evidence indicates that enhanced excitability of vagal bronchopulmonary sensory nerves and increased tachykinin synthesis in these nerves resulting from chronic inflammation are important contributing factors to the airway hyperresponsiveness. Multiple inflammatory mediators released from various types of structural and inflammatory cells are involved in the smoking-induced airway inflammation, which is mainly regulated by redox-sensitive signaling pathways and transcription factors. Furthermore, recent studies have reported potent sensitizing and stimulatory effects of these inflammatory mediators such as prostanoids and reactive oxygen species on these sensory nerves. In summary, these studies using cigarette smoking as an experimental approach have identified certain potentially important cell signaling pathways and underlying mechanisms of the airway hypersensitivity induced by chronic airway inflammation. PMID:21397052

  8. Phenotyping airways disease: an A to E approach.

    PubMed

    Gonem, S; Raj, V; Wardlaw, A J; Pavord, I D; Green, R; Siddiqui, S

    2012-12-01

    The airway diseases asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous conditions with overlapping pathophysiological and clinical features. It has previously been proposed that this heterogeneity may be characterized in terms of five relatively independent domains labelled from A to E, namely airway hyperresponsiveness (AHR), bronchitis, cough reflex hypersensitivity, damage to the airways and surrounding lung parenchyma, and extrapulmonary factors. Airway hyperresponsiveness occurs in both asthma and COPD, accounting for variable day to day symptoms, although the mechanisms most likely differ between the two conditions. Bronchitis, or airway inflammation, may be predominantly eosinophilic or neutrophilic, with different treatments required for each. Cough reflex hypersensitivity is thought to underlie the chronic dry cough out of proportion to other symptoms that can occur in association with airways disease. Structural changes associated with airway disease (damage) include bronchial wall thickening, airway smooth muscle hypertrophy, bronchiectasis and emphysema. Finally, a variety of extrapulmonary factors may impact upon airway disease, including rhinosinusitis, gastroesophageal reflux disease, obesity and dysfunctional breathing. This article discusses the A to E concept in detail and describes how this framework may be used to assess and treat patients with airway diseases in the clinic. PMID:23181785

  9. Perturbed equilibrium of myosin binding in airway smooth muscle and its implications in bronchospasm.

    PubMed

    Fredberg, J J; Inouye, D S; Mijailovich, S M; Butler, J P

    1999-03-01

    In asthma, the mechanisms relating airway obstruction, hyperresponsiveness, and inflammation remain rather mysterious. We show here that regulation of airway smooth muscle length corresponds to a dynamically equilibrated steady state, not the static mechanical equilibrium that had been previously assumed. This dynamic steady state requires as an essential feature a continuous supply of external mechanical energy (derived from tidal lung inflations) that acts to perturb the interactions of myosin with actin, drive the molecular state of the system far away from thermodynamic equilibrium, and bias the muscle toward lengthening. This mechanism leads naturally to the suggestion that excessive airway narrowing in asthma may be associated with the destabilization of that dynamic process and its resulting collapse back to static equilibrium. With this collapse the muscle undergoes a phase transition and virtually freezes at its static equilibrium length. This mechanism may help to elucidate several unexplained phenomena including the multifactorial origins of airway hyperresponsiveness, how allergen sensitization leads to airway hyperresponsiveness, how hyperresponsiveness can persist long after airway inflammation is resolved, and the inability in asthma of deep inspirations to relax airway smooth muscle. PMID:10051279

  10. A novel peptide ADAM8 inhibitor attenuates bronchial hyperresponsiveness and Th2 cytokine mediated inflammation of murine asthmatic models.

    PubMed

    Chen, Jun; Deng, Linhong; Dreymüller, Daniela; Jiang, Xuemei; Long, Jiaoyue; Duan, Yiyuan; Wang, Yue; Luo, Mingzhi; Lin, Feng; Mao, Lizhen; Müller, Bernd; Koller, Garrit; Bartsch, Jörg W

    2016-01-01

    A disintegrin and metalloproteinase 8 (ADAM8) has been identified as a signature gene associated with moderate and severe asthma. Studies in mice have demonstrated that the severity of asthma can be reduced by either transgenic knock-out or by antibodies blocking ADAM8 function, highlighting ADAM8 as potential drug target for asthma therapy. Here, we examined the therapeutic effect of an ADAM8 inhibitor peptide (BK-1361) that specifically blocks cellular ADAM8 activity in ovalbumin-sensitized and challenged Balb/c mice. We found that BK-1361 (25 μg/g body weight) attenuated airway responsiveness to methacholine stimulation by up to 42%, concomitantly reduced tissue remodeling by 50%, and decreased inflammatory cells (e.g. eosinophils down by 54%)/inflammatory factors (e.g. sCD23 down by 50%)/TH2 cytokines (e.g. IL-5 down by 70%)/ADAM8-positive eosinophils (down by 60%) in the lung. We further verified that BK-1361 specifically targets ADAM8 in vivo as the peptide caused significantly reduced levels of soluble CD23 in wild-type but not in ADAM8-deficient mice. These findings suggest that BK-1361 blocks ADAM8-dependent asthma effects in vivo by inhibiting infiltration of eosinophils and TH2 lymphocytes, thus leading to reduction of TH2-mediated inflammation, tissue remodeling and bronchial hyperresponsiveness. Taken together, pharmacological ADAM8 inhibition appears as promising novel therapeutic strategy for the treatment of asthma. PMID:27458083

  11. A novel peptide ADAM8 inhibitor attenuates bronchial hyperresponsiveness and Th2 cytokine mediated inflammation of murine asthmatic models

    PubMed Central

    Chen, Jun; Deng, Linhong; Dreymüller, Daniela; Jiang, Xuemei; Long, Jiaoyue; Duan, Yiyuan; Wang, Yue; Luo, Mingzhi; Lin, Feng; Mao, Lizhen; Müller, Bernd; Koller, Garrit; Bartsch, Jörg W.

    2016-01-01

    A disintegrin and metalloproteinase 8 (ADAM8) has been identified as a signature gene associated with moderate and severe asthma. Studies in mice have demonstrated that the severity of asthma can be reduced by either transgenic knock-out or by antibodies blocking ADAM8 function, highlighting ADAM8 as potential drug target for asthma therapy. Here, we examined the therapeutic effect of an ADAM8 inhibitor peptide (BK-1361) that specifically blocks cellular ADAM8 activity in ovalbumin-sensitized and challenged Balb/c mice. We found that BK-1361 (25 μg/g body weight) attenuated airway responsiveness to methacholine stimulation by up to 42%, concomitantly reduced tissue remodeling by 50%, and decreased inflammatory cells (e.g. eosinophils down by 54%)/inflammatory factors (e.g. sCD23 down by 50%)/TH2 cytokines (e.g. IL-5 down by 70%)/ADAM8-positive eosinophils (down by 60%) in the lung. We further verified that BK-1361 specifically targets ADAM8 in vivo as the peptide caused significantly reduced levels of soluble CD23 in wild-type but not in ADAM8-deficient mice. These findings suggest that BK-1361 blocks ADAM8-dependent asthma effects in vivo by inhibiting infiltration of eosinophils and TH2 lymphocytes, thus leading to reduction of TH2-mediated inflammation, tissue remodeling and bronchial hyperresponsiveness. Taken together, pharmacological ADAM8 inhibition appears as promising novel therapeutic strategy for the treatment of asthma. PMID:27458083

  12. A locus regulating bronchial hyperresponsiveness maps to chromosome 5q

    SciTech Connect

    Levitt, R.C.; Meyers, D.A.; Bleecker, E.R.

    1994-09-01

    Bronchial hyperresponsiveness (BHR) is one of the hallmarks of asthma. BHR correlates well with asthmatic symptoms and the response to treatment. Moreover, BHR appears to be closely related to airways inflammation. Numerous studies have demonstrated a familial aggregation; however, this phenotype is not likely inherited as a simple Mendelian trait. BHR is also closely associated with total serum IgE levels, as are allergy and asthma. We studied 92 families from Northern Holland ascertained through a parent with asthma who were originally studied between 1962-1970. Since there are a number of candidate genes on chromosome 5q potentially important in producing BHR, families were genotyped for markers in this region. These genes regulate IgE production and the cellular elements that are likely involved in inflammation associated with BHR, allergy and asthma. They include IL-4, IL-3, IL-5, IL-9, IL-12, IL-13 and GM-CSF. Linkage of BHR with markers on 5q was tested using a model free sib-pair method. The data suggest a locus for BHR maps near the cytokine gene cluster on 5q. This region appears critical in producing susceptibility to BHR and possibly to asthma.

  13. Reactive airways dysfunction syndrome: two case reports.

    PubMed

    Tabar, A I; Alvarez, M J; Acero, S; Olaguíbel, J M; García, B E; Quirce, S

    1998-01-01

    Reactive airways dysfunction syndrome (RADS) is a type of asthma that develops in subjects without prior pulmonary disease, following single or multiple exposure to high levels of nonimmunogenic irritants. The main difference from classic occupational asthma is the absence of a latency period. Non-specific bronchial hyperresponsiveness is characteristic of the disease and usually persists after cessation of exposure. We report the cases of two subjects in whom RADS developed after occupational exposure to irritants. PMID:9615307

  14. [Reactive airways dysfunction syndrome].

    PubMed

    Costa, R; Orriols, R

    2005-01-01

    Reactive airways dysfunction syndrome, better known as RADS, was described as a clinical entity consisting in the appearance of bronchial asthma due to massive toxic inhalation. The term was coined and recognised for the first time in 1985. Since then different publications have verified new cases as well as different causal agents. It usually arises from an accident at the work place and in closed or poorly ventilated spaces, where high concentrations of irritant products are inhaled in the form of gas, smoke or vapour. In the following minutes or hours symptoms of bronchial obstruction appear in an acute form, with bronchial hyperresponsiveness persisting for months or years. The affected patients do not show a recurrence of symptoms following exposure to non-toxic doses of the same agent that started the symptoms. This is why diagnosis is based on clinical manifestations as it is not reproducible through a provocation test. PMID:15915173

  15. Immunomodulation of airway epithelium cell activation by mesenchymal stromal cells ameliorates house dust mite-induced airway inflammation in mice.

    PubMed

    Duong, Khang M; Arikkatt, Jaisy; Ullah, M Ashik; Lynch, Jason P; Zhang, Vivian; Atkinson, Kerry; Sly, Peter D; Phipps, Simon

    2015-11-01

    Allergic asthma is underpinned by T helper 2 (Th2) inflammation. Redundancy in Th2 cytokine function and production by innate and adaptive immune cells suggests that strategies aimed at immunomodulation may prove more beneficial. Hence, we sought to determine whether administration of mesenchymal stromal cells (MSCs) to house dust mite (HDM) (Dermatophagoides pteronyssinus)-sensitized mice would suppress the development of Th2 inflammation and airway hyperresponsiveness (AHR) after HDM challenge. We report that the intravenous administration of allogeneic donor MSCs 1 hour before allergen challenge significantly attenuated the features of allergic asthma, including tissue eosinophilia, Th2 cytokine (IL-5 and IL-13) levels in bronchoalveolar lavage fluid, and AHR. The number of infiltrating type 2 innate lymphoid cells was not affected by MSC transfer, suggesting that MSCs may modulate the adaptive arm of Th2 immunity. The effect of MSC administration was long lasting; all features of allergic airway disease were significantly suppressed in response to a second round of HDM challenge 4 weeks after MSC administration. Further, we observed that MSCs decreased the release of epithelial cell-derived alarmins IL-1α and high mobility group box-1 in an IL-1 receptor antagonist-dependent manner. This significantly decreased the expression of the pro-Th2 cytokine IL-25 and reduced the number of activated and antigen-acquiring CD11c(+)CD11b(+) dendritic cells in the lung and mediastinal lymph nodes. Our findings suggest that MSC administration can ameliorate allergic airway inflammation by blunting the amplification of epithelial-derived inflammatory cytokines induced by HDM exposure and may offer long-term protection against Th2-mediated allergic airway inflammation and AHR. PMID:25789608

  16. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice.

    PubMed

    Long, Xiaoru; Xie, Jun; Zhao, Keting; Li, Wei; Tang, Wei; Chen, Sisi; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei

    2016-10-01

    RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection. PMID:27329138

  17. Polymorphisms at the glutathione S-transferase, GSTP1 locus: a novel mechanism for susceptibility and development of atopic airway inflammation.

    PubMed

    Spiteri, M A; Bianco, A; Strange, R C; Fryer, A A

    2000-01-01

    A common feature of environmental irritants is their ability to cause local inflammation which could alter airway function. The principal targets of such injury are the epithelial cells lining the airway passages and the lower respiratory gas-exchange areas. While host atopy is a recognized risk factor for airway inflammation, atopy alone cannot cause asthma. We hypothesize that susceptibility to persistent airway inflammation in atopic individuals is characterized by an inherited deficiency in the effectiveness of detoxification of inhaled irritants and products of oxidative stress such as reactive oxygen species (ROS). Our case-control studies show that polymorphisms at the glutathione S-transferase, GSTP1, locus on chromosome 11q13 may account for variation in host response to oxidative stress, a key component of airway inflammation. Frequency of the GSTP1 Val/Val genotype is reduced in atopic subjects compared with nonatopic subjects. Trend analysis also shows a significant decrease of GSTP1 Val/Val (with parallel increase of GSTP1 Ile/Ile) genotype frequency with increasing severity of airflow obstruction/bronchial hyperresponsiveness. The implication of specific polymorphisms at the GSTP1 locus in airway inflammation is entirely novel: however, GST are recognized as a supergene family of enzymes critical in 1) cell protection from the toxic products of ROS-mediated reactions, 2) modulation of eicosanoid synthesis. PMID:10919500

  18. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation.

    PubMed

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A; Korfhagen, Thomas R; Whitsett, Jeffrey A

    2015-05-01

    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef(-/-) mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  19. Increase in passive stiffness at reduced airway smooth muscle length: potential impact on airway responsiveness.

    PubMed

    Bossé, Ynuk; Solomon, Dennis; Chin, Leslie Y M; Lian, Kevin; Paré, Peter D; Seow, Chun Y

    2010-03-01

    The amplitude of strain in airway smooth muscle (ASM) produced by oscillatory perturbations such as tidal breathing or deep inspiration (DI) influences the force loss in the muscle and is therefore a key determinant of the bronchoprotective and bronchodilatory effects of these breathing maneuvers. The stiffness of unstimulated ASM (passive stiffness) directly influences the amplitude of strain. The nature of the passive stiffness is, however, not clear. In this study, we measured the passive stiffness of ovine ASM at different muscle lengths (relative to in situ length, which was used as a reference length, L(ref)) and states of adaptation to gain insights into the origin of this muscle property. The results showed that the passive stiffness was relatively independent of muscle length, possessing a constant plateau value over a length range from 0.62 to 1.25 L(ref). Following a halving of ASM length, passive stiffness decreased substantially (by 71%) but redeveloped over time ( approximately 30 min) at the shorter length to reach 65% of the stiffness value at L(ref), provided that the muscle was stimulated to contract at least once over a approximately 30-min period. The redevelopment and maintenance of passive stiffness were dependent on the presence of Ca(2+) but unaffected by latrunculin B, an inhibitor of actin filament polymerization. The maintenance of passive stiffness was also not affected by blocking myosin cross-bridge cycling using a myosin light chain kinase inhibitor or by blocking the Rho-Rho kinase (RhoK) pathway using a RhoK inhibitor. Our results suggest that the passive stiffness of ASM is labile and capable of redevelopment following length reduction. Redevelopment and maintenance of passive stiffness following muscle shortening could contribute to airway hyperresponsiveness by attenuating the airway wall strain induced by tidal breathing and DI. PMID:20008114

  20. Role of platelets in allergic airway inflammation.

    PubMed

    Idzko, Marco; Pitchford, Simon; Page, Clive

    2015-06-01

    Increasing evidence suggests an important role for platelets and their products (e.g., platelet factor 4, β-thromboglobulin, RANTES, thromboxane, or serotonin) in the pathogenesis of allergic diseases. A variety of changes in platelet function have been observed in patients with asthma, such as alterations in platelet secretion, expression of surface molecules, aggregation, and adhesion. Moreover, platelets have been found to actively contribute to most of the characteristic features of asthma, including bronchial hyperresponsiveness, bronchoconstriction, airway inflammation, and airway remodeling. This review brings together the current available data from both experimental and clinical studies that have investigated the role of platelets in allergic airway inflammation and asthma. It is anticipated that a better understanding of the role of platelets in the pathogenesis of asthma might lead to novel promising therapeutic approaches in the treatment of allergic airway diseases. PMID:26051948

  1. Allergen-induced airway responses.

    PubMed

    Gauvreau, Gail M; El-Gammal, Amani I; O'Byrne, Paul M

    2015-09-01

    Environmental allergens are an important cause of asthma and can contribute to loss of asthma control and exacerbations. Allergen inhalation challenge has been a useful clinical model to examine the mechanisms of allergen-induced airway responses and inflammation. Allergen bronchoconstrictor responses are the early response, which reaches a maximum within 30 min and resolves by 1-3 h, and late responses, when bronchoconstriction recurs after 3-4 h and reaches a maximum over 6-12 h. Late responses are followed by an increase in airway hyperresponsiveness. These responses occur when IgE on mast cells is cross-linked by an allergen, causing degranulation and the release of histamine, neutral proteases and chemotactic factors, and the production of newly formed mediators, such as cysteinyl leukotrienes and prostaglandin D2. Allergen-induced airway inflammation consists of an increase in airway eosinophils, basophils and, less consistently, neutrophils. These responses are mediated by the trafficking and activation of myeloid dendritic cells into the airways, probably as a result of the release of epithelial cell-derived thymic stromal lymphopoietin, and the release of pro-inflammatory cytokines from type 2 helper T-cells. Allergen inhalation challenge has also been a widely used model to study potential new therapies for asthma and has an excellent negative predictive value for this purpose. PMID:26206871

  2. Airway compliance and dynamics explain the apparent discrepancy in length adaptation between intact airways and smooth muscle strips.

    PubMed

    Dowie, Jackson; Ansell, Thomas K; Noble, Peter B; Donovan, Graham M

    2016-01-01

    Length adaptation is a phenomenon observed in airway smooth muscle (ASM) wherein over time there is a shift in the length-tension curve. There is potential for length adaptation to play an important role in airway constriction and airway hyper-responsiveness in asthma. Recent results by Ansell et al., 2015 (JAP 2014 10.1152/japplphysiol.00724.2014) have cast doubt on this role by testing for length adaptation using an intact airway preparation, rather than strips of ASM. Using this technique they found no evidence for length adaptation in intact airways. Here we attempt to resolve this apparent discrepancy by constructing a minimal mathematical model of the intact airway, including ASM which follows the classic length-tension curve and undergoes length adaptation. This allows us to show that (1) no evidence of length adaptation should be expected in large, cartilaginous, intact airways; (2) even in highly compliant peripheral airways, or at more compliant regions of the pressure-volume curve of large airways, the effect of length adaptation would be modest and at best marginally detectable in intact airways; (3) the key parameters which control the appearance of length adaptation in intact airways are airway compliance and the relaxation timescale. The results of this mathematical simulation suggest that length adaptation observed at the level of the isolated ASM may not clearly manifest in the normal intact airway. PMID:26376002

  3. Airway and Extracellular Matrix Mechanics in COPD

    PubMed Central

    Bidan, Cécile M.; Veldsink, Annemiek C.; Meurs, Herman; Gosens, Reinoud

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD. PMID:26696894

  4. Rhinovirus upper respiratory infection increases airway hyperreactivity and late asthmatic reactions.

    PubMed Central

    Lemanske, R F; Dick, E C; Swenson, C A; Vrtis, R F; Busse, W W

    1989-01-01

    Although viral upper respiratory infections (URIs) provoke wheezing in many asthma patients, the effect of these illnesses on the airway response to inhaled antigen is not established. The following study evaluated the effect of an experimental rhinovirus (RV) illness on airway reactivity and response to antigen in 10 adult ragweed allergic rhinitis patients. Preinfection studies included measurements of airway reactivity to histamine and ragweed antigen. Furthermore, the patients were also evaluated for late asthmatic reactions (LARs) to antigen (a 15% decrease in forced expiratory volume of the first second approximately 6 h after antigen challenge). 1 mo after baseline studies, the patients were intranasally inoculated with live RV16. All 10 patients were infected as evidenced by rhinovirus recovery in nasal washings and respiratory symptoms. Baseline FEV1 values were stable throughout the study. During the acute RV illness, there was a significant increase in airway reactivity to both histamine and ragweed antigen (P = 0.019 and 0.014, respectively). Before RV inoculation, only 1 of the 10 subjects had an LAR after antigen challenge. However, during the acute RV illness, 8 of 10 patients had an LAR (P less than 0.0085 compared with baseline); the development of LARs was independent of changes in airway reactivity and the intensity of the immediate response to antigen. Therefore, we found that not only does a RV respiratory tract illness enhance airway reactivity, but it also predisposes the allergic patient to develop LARs, which may be an important factor in virus-induced bronchial hyperresponsiveness. PMID:2536042

  5. Therapeutic expansion of CD4+FoxP3+ regulatory T cells limits allergic airway inflammation during pulmonary fungal infection.

    PubMed

    Schulze, Bianca; Piehler, Daniel; Eschke, Maria; Heyen, Laura; Protschka, Martina; Köhler, Gabriele; Alber, Gottfried

    2016-06-01

    Allergic asthma can be frequently caused and exacerbated by sensitization to ubiquitous fungal allergens associated with pulmonary mucus production, airway hyperresponsiveness and bronchial constriction, resulting in a complex disease that is often difficult to treat. Fungal infections are frequently complicated by the development of a type 2 immune response that prevents successful elimination of the fungal pathogen. Furthermore, production of type 2 cytokines triggers allergic airway inflammation. Following intranasal infection of BALB/c mice with the fungusCryptococcus neoformans, we recently described a more pronounced type 2 immune response in the absence of regulatory T (Treg) cells. To determine whether Treg cell expansion is able to suppress type 2-related fungal allergic inflammation, we increased Treg cell numbers during pulmonaryC. neoformansinfection by administration of an interleukin (IL)-2/anti-IL-2 complex. Expansion of Treg cells resulted in reduced immunoglobulin E production and decreased allergic airway inflammation including reduced production of pulmonary mucus and type 2 cytokines as well as production of immunosuppressive cytokines such as IL-10 and transforming growth factor-β1. From our data we conclude that Treg cells and/or their suppressive mediators represent potential targets for therapeutic intervention during allergic fungal airway disease. PMID:27001975

  6. Bystander immunotherapy as a strategy to control allergen-driven airway inflammation.

    PubMed

    Navarro, S; Lazzari, A; Kanda, A; Fleury, S; Dombrowicz, D; Glaichenhaus, N; Julia, V

    2015-07-01

    Allergic asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), lung infiltration of Th2 cells, and high levels of IgE. To date, allergen-specific immunotherapy (SIT) is the only treatment that effectively alleviates clinical symptoms and has a long-term effect after termination. Unfortunately, SIT is unsuitable for plurisensitized patients, and highly immunogenic allergens cannot be used. To overcome these hurdles, we sought to induce regulatory CD4(+) T cells (Treg) specific to an exogenous antigen that could be later activated as needed in vivo to control allergic responses. We have established an experimental approach in which mice tolerized to ovalbumin (OVA) were sensitized to the Leishmania homolog of receptors for activated c kinase (LACK) antigen, and subsequently challenged with aerosols of LACK alone or LACK and OVA together. Upon OVA administration, AHR and allergic airway responses were strongly reduced. OVA-induced suppression was mediated by CD25(+) Treg, required CTLA-4 and ICOS signaling and resulted in decreased numbers of migrating airway dendritic cells leading to a strong impairment in the proliferation of allergen-specific Th2 cells. Therefore, inducing Treg specific to a therapeutic antigen that could be further activated in vivo may represent a safe and novel curative approach for allergic asthma. PMID:25425267

  7. Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma.

    PubMed

    Zhou, Ershun; Fu, Yunhe; Wei, Zhengkai; Yu, Yuqiang; Zhang, Xichen; Yang, Zhengtao

    2014-07-01

    Thymol, a naturally occurring monocyclic phenolic compound derived from Thymus vulgaris (Lamiaceae), has been reported to exhibit anti-inflammatory property in vivo and vitro. However, the mechanism of thymol is not clear. The aim of the present study was to investigate the effects of thymol on allergic inflammation in OVA-induced mice asthma and explore its mechanism. The model of mouse asthma was established by the induction of OVA. Thymol was orally administered at a dose of 4, 8, and 16 mg/kg body weight 1h before OVA challenge. At 24h after the last challenge, mice were sacrificed, and the data were collected by various experimental methods. The results revealed that pretreatment with thymol reduced the level of OVA-specific IgE, inhibited recruitment of inflammatory cells into airway, and decreased the levels of IL-4, IL-5, and IL-13 in BALF. Moreover, the pathologic changes of lung tissues were obviously ameliorated and goblet cell hyperplasia was effectively inhibited by the pretreatment of thymol. In addition, thymol reduced the development of airway hyperresponsiveness and blocked the activation of NF-κB pathway. All data suggested that thymol ameliorated airway inflammation in OVA-induced mouse asthma, possibly through inhibiting NF-κB activation. These findings indicated that thymol may be used as an alternative agent for treating allergic asthma. PMID:24785965

  8. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  9. Issues of critical airway management (Which anesthesia; which surgical airway?).

    PubMed

    Bonanno, Fabrizio Giuseppe

    2012-10-01

    Which anesthesia for patients with critical airway? Safe and effective analgesia and anesthesia in critical airway is a skilled task especially after severe maxillofacial injury combined with head injury and hemorrhagic shock. If on one side sedation is wanted, on the other hand it may worsen the airway and hemodynamic situation to a point where hypoventilation and decrease of blood pressure, common side-effect of many opioids, may prejudice the patient's level of consciousness and hemodynamic compensation, compounding an already critical situation. What to do when endotracheal intubation fails and blood is trickling down the airways in an unconscious patient or when a conscious patient has to sit up to breathe? Which surgical airway in critical airway? Comparative studies among the various methods of emergency surgical airway would be unethical; furthermore, operator's training and experience is relevant for indications and performance. PMID:23248494

  10. Surgical Airway

    PubMed Central

    Patel, Sapna A; Meyer, Tanya K

    2014-01-01

    Close to 3% of all intubation attempts are considered difficult airways, for which a plan for a surgical airway should be considered. Our article provides an overview of the different types of surgical airways. This article provides a comprehensive review of the main types of surgical airways, relevant anatomy, necessary equipment, indications and contraindications, preparation and positioning, technique, complications, and tips for management. It is important to remember that the placement of a surgical airway is a lifesaving procedure and should be considered in any setting when one “cannot intubate, cannot ventilate”. PMID:24741501

  11. Serum eosinophil cationic protein and bronchial hyperresponsiveness to hypoosmolar challenge in naive atopic asthmatics.

    PubMed

    Dal Negro, R; Tognella, S; Micheletto, C; Pomari, C; Burti, E; Mauroner, L; Turco, P

    1998-01-01

    also the more peripheral airways, are actively involved. Bronchial hyperresponsiveness to UNDW can then be considered an effective reflection of the existence of underlying inflammation of the airways. PMID:9827426

  12. Exercise-induced airways constriction 1

    PubMed Central

    Simonsson, Bo G.; Skoogh, B-E.; Ekström-Jodal, B.

    1972-01-01

    Airway conductance was measured in a body plethysmograph at different lung volumes before and after graded exercise. In 14 out of 19 patients, mostly asthmatics, airway conductance fell significantly after exercise. These subjects also showed other signs of an increased bronchial reactivity to different stimuli, including forced breathing, hyperventilation, and cold air, but they had no exogenous allergy. The exercise-induced bronchoconstriction could be blocked by atropine in six of the nine patients tested. Exercise-induced bronchoconstriction in patients with clinical and physiological evidence of increased airway reactivity thus seems to be primarily mediated via a vagal reflex, probably from hyperresponsive airway mechanoreceptors reacting to increased ventilatory flow or lung distension. No relation was found between PaCO2 or pH and the severity of airways constriction. Cromoglycic acid failed to block the exercise reaction in five of the six hyperreactive patients tested. In addition to or following the vagal reflex a disturbed relation between beta and alpha receptors in bronchial muscles or a release of humoral spasmogens may contribute to the progression of post-exercise airways constriction. PMID:4624586

  13. Alveolar macrophage-derived vascular endothelial growth factor contributes to allergic airway inflammation in a mouse asthma model.

    PubMed

    Song, C; Ma, H; Yao, C; Tao, X; Gan, H

    2012-06-01

    Vascular endothelial growth factor (VEGF) is a potent proangiogenic factor that correlates with vascular permeability and remodelling in asthma. Recently, alveolar macrophages (AM) were shown to be an important source of VEGF during lung injury. Our previous studies demonstrated that AM are an important subset of macrophages in the initiation of asthmatic symptoms. Here, we further investigated whether AM-derived VEGF was required for allergic airway inflammation in asthma. In this study, we reported that the expression of VEGF in AM was significantly increased after allergen challenge. Depleting AM or neutralizing VEGF in alveolus prevented ovalbumin (OVA)-induced asthma-related inflammation by inhibiting the infiltration of inflammatory cells in the lung, reduced the level of the cytokines, IL-4, IL-5, and IL-13, in the bronchoalveolar lavage fluid (BALF) and decreased airway hyperresponsiveness (AHR). Moreover, the inhibition of miR-20b increased the protein level of VEGF in normal AM; conversely, increasing miR-20b in asthmatic AM resulted in decreased VEGF protein levels. These findings suggest that AM-derived VEGF is necessary for allergic airway inflammation in asthmatic mice and miR-20b negatively regulates this expression. PMID:22324377

  14. Effects of Anti-G and Anti-F Antibodies on Airway Function after Respiratory Syncytial Virus Infection

    PubMed Central

    Han, Junyan; Takeda, Katsuyuki; Wang, Meiqin; Zeng, Wanjiang; Jia, Yi; Shiraishi, Yoshiki; Okamoto, Masakazu; Dakhama, Azzeddine

    2014-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illnesses in infants worldwide. Both RSV-G and RSV-F glycoproteins play pathogenic roles during infection with RSV. The objective of this study was to compare the effects of anti–RSV-G and anti–RSV-F monoclonal antibodies (mAbs) on airway hyperresponsiveness (AHR) and inflammation after primary or secondary RSV infection in mice. In the primary infection model, mice were infected with RSV at 6 weeks of age. Anti–RSV-G or anti–RSV-F mAbs were administered 24 hours before infection or Day +2 postinfection. In a secondary infection model, mice were infected (primary) with RSV at 1 week (neonate) and reinfected (secondary) 5 weeks later. Anti–RSV-G and anti–RSV-F mAbs were administered 24 hours before the primary infection. Both mAbs had comparable effects in preventing airway responses after primary RSV infection. When given 2 days after infection, anti–RSV-G–treated mice showed significantly decreased AHR and airway inflammation, which persisted in anti–RSV-F–treated mice. In the reinfection model, anti–RSV-G but not anti–RSV-F administered during primary RSV infection in neonates resulted in decreased AHR, eosinophilia, and IL-13 but increased levels of IFN-γ in bronchoalveolar lavage on reinfection. These results support the use of anti–RSV-G in the prevention and treatment of RSV-induced disease. PMID:24521403

  15. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  16. 1,25-Dihydroxyvitamin D3 prevents toluene diisocyanate-induced airway epithelial barrier disruption.

    PubMed

    Li, Wenjia; Dong, Hangming; Zhao, Haijin; Song, Jiafu; Tang, Haixiong; Yao, Lihong; Liu, Laiyu; Tong, Wancheng; Zou, Mengchen; Zou, Fei; Cai, Shaoxi

    2015-07-01

    The loss of airway epithelial integrity contributes significantly to asthma pathogenesis. Evidence suggests that vitamin D plays an important role in the prevention and treatment of asthma. However, its role in airway epithelial barrier function remains uncertain. We have previously demonstrated impaired epithelial junctions in a model of toluene diisocyanate (TDI)-induced asthma. In the present study, we hypothesized that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] may prevent TDI-induced epithelial barrier disruption. Male BALB/c mice were dermally sensitized and then challenged with TDI. The mice were then administered 1,25(OH)2D3 intraperitoneally prior to challenge with TDI. For in vitro experiments, 16HBE bronchial epithelial cells were cultured and stimulated with TDI-human serum albumin (HSA). The results revealed that the mice treated with 1,25(OH)2D3 displayed decreased airway hyperresponsiveness (AHR), suppressed neutrophil and eosinophil infiltration into the airways, as well as an increased E-cadherin and zonula occludens-1 (ZO-1) expression at the cell-cell contact sites. In vitro, exposure of the cells to TDI-HSA induced a rapid decline in transepithelial electrical resistance (TER) and an increase in cell permeability, followed by a decrease in occludin expression and the redistribution of E-cadherin, accompanied by a significant upregulation in the levels of phosphorylated extracellular signal-regulated kinase (ERK)1/2. These effects were all partly reversed by treatment with either 1,25(OH)2D3 or an ERK1/2 inhibitor. In conclusion, the findings of our study demonstrate that 1,25(OH)2D3 prevents TDI-induced epithelial barrier disruption, and that the ERK1/2 pathway may play a role in this process. PMID:25998793

  17. Mesenchymal stromal cells mediate Aspergillus hyphal extract-induced allergic airway inflammation by inhibition of the Th17 signaling pathway.

    PubMed

    Lathrop, Melissa J; Brooks, Elice M; Bonenfant, Nick R; Sokocevic, Dino; Borg, Zachary D; Goodwin, Meagan; Loi, Roberto; Cruz, Fernanda; Dunaway, Chad W; Steele, Chad; Weiss, Daniel J

    2014-02-01

    Systemic administration of mesenchymal stromal cells (MSCs) suppresses airway inflammation and methacholine-induced airway hyper-responsiveness (AHR) in mouse models of T helper cell (Th) type 2-mediated eosinophilic allergic airway inflammation (AAI); however, the efficacy of MSCs in mouse models of severe Th17-mediated neutrophilic AAI has not yet been demonstrated. We assessed MSC effects in a mouse model of mixed Th2/Th17 AAI produced by mucosal exposure to Aspergillus fumigatus hyphal extract (AHE). Following sensitization produced by oropharyngeal AHE administration, systemic (tail vein) administration of syngeneic MSCs on the first day of challenge significantly reduced acute AHR predominantly through reduction of Th17-mediated airway inflammation. In parallel experiments, MSCs also mitigated AHR when administered during recurrent challenge 10 weeks after initial sensitization and challenge through reduction in systemic Th17-mediated inflammation. Investigation into potential mechanistic actions of MSCs in this model demonstrated that although T regulatory cells were increased in all AHE-treated mice, MSC administration did not alter T regulatory cell numbers in either the acute or recurrent model. Differential induction of interleukin-17a secretion was observed in ex vivo restimulation of mediastinal lymph node mixed-cell cytokine analyses. Although the mechanisms by which MSCs act to decrease inflammation and AHR in this model are not yet fully elucidated, decrease in Th17-mediated airway inflammation appears to play a significant role. These results provide a basis for further investigations of MSC administration as a potential therapeutic approach for severe refractory neutrophilic asthma. PMID:24436442

  18. Bronchial hyperresponsiveness in women cooks and cleaners.

    PubMed

    Karadzinska-Bislimovska, Jovanka; Minov, Jordan; Risteska-Kuc, Snezana; Stoleski, Saso; Mijakoski, Dragan

    2007-06-01

    The aim of this cross-sectional study was to assess the prevalence and characteristics of bronchial hyperresponsiveness (BHR) in 43 women cleaners (aged 26 to 57) and 37 women cooks (aged 29 to 55) and compare them with 45 controls (women office workers aged 27 to 58). The evaluation of all subjects included a questionnaire, skin prick tests to common aeroallergens, spirometry, and histamine challenge (PC20 < or = 8 mg mL(-1)). We found higher BHR prevalence in cleaners and cooks than in office workers (30.2 % and 29.7 %, vs. 17.7 %, respectively), but statistical significance was not reached. The prevalence of mild and moderate to severe BHR was similar in all groups. Borderline BHR prevalence was significantly higher in cleaners than in controls (16.2 % vs. 6.6 %, P=0.032) whereas the difference was on the verge of significance in cooks (13.5 % vs. 6.6 %, P=0.081). Moderate to severe BHR was strongly associated with positive family history of asthma and atopy in all groups. Mild BHR was significantly associated with daily smoking in cleaners (P=0.031) and cooks (P=0.021), as well as with the duration of exposure in cleaners (P=0.038). Borderline BHR was closely related to daily smoking and duration of exposure in both cleaners and cooks. Our findings indicate an important role of workplace exposure in borderline BHR development, as well as the significant effect of smoking on mild BHR development in women cleaners and cooks. PMID:17562606

  19. Cyclooxygenase-2/prostaglandin D2/CRTH2 pathway mediates double-stranded RNA-induced enhancement of allergic airway inflammation.

    PubMed

    Shiraishi, Yoshiki; Asano, Koichiro; Niimi, Kyoko; Fukunaga, Koichi; Wakaki, Misa; Kagyo, Junko; Takihara, Takahisa; Ueda, Soichiro; Nakajima, Takeshi; Oguma, Tsuyoshi; Suzuki, Yusuke; Shiomi, Tetsuya; Sayama, Koichi; Kagawa, Shizuko; Ikeda, Eiji; Hirai, Hiroyuki; Nagata, Kinya; Nakamura, Masataka; Miyasho, Taku; Ishizaka, Akitoshi

    2008-01-01

    Respiratory RNA viruses responsible for the common cold often worsen airway inflammation and bronchial responsiveness, two characteristic features of human asthma. We studied the effects of dsRNA, a nucleotide synthesized during viral replication, on airway inflammation and bronchial hyperresponsiveness in murine models of asthma. Intratracheal instillation of poly I:C, a synthetic dsRNA, increased the airway eosinophilia and enhanced bronchial hyperresponsiveness to methacholine in OVA-sensitized, exposed rats. These changes were associated with induction of cyclooxygenase-2 (COX-2) expression and COX-2-dependent PGD2 synthesis in the lungs, particularly in alveolar macrophages. The direct intratracheal instillation of PGD2 enhanced the eosinophilic inflammation in OVA-exposed animals, whereas pretreatment with a dual antagonist against the PGD2 receptor-(CRTH2) and the thromboxane A2 receptor, but not with a thromboxane A2 receptor-specific antagonist, nearly completely eliminated the dsRNA-induced worsening of airway inflammation and bronchial hyperresponsiveness. CRTH2-deficient mice had the same degree of allergen-induced airway eosinophilia as wild-type mice, but they did not exhibit a dsRNA-induced increase in eosinophil accumulation. Our data demonstrate that COX-2-dependent production of PGD2 followed by eosinophil recruitment into the airways via a CRTH2 receptor are the major pathogenetic factors responsible for the dsRNA-induced enhancement of airway inflammation and responsiveness. PMID:18097056

  20. A GM-CSF/IL-33 pathway facilitates allergic airway responses to sub-threshold house dust mite exposure.

    PubMed

    Llop-Guevara, Alba; Chu, Derek K; Walker, Tina D; Goncharova, Susanna; Fattouh, Ramzi; Silver, Jonathan S; Moore, Cheryl Lynn; Xie, Juliana L; O'Byrne, Paul M; Coyle, Anthony J; Kolbeck, Roland; Humbles, Alison A; Stämpfli, Martin R; Jordana, Manel

    2014-01-01

    Allergic asthma is a chronic immune-inflammatory disease of the airways. Despite aeroallergen exposure being universal, allergic asthma affects only a fraction of individuals. This is likely related, at least in part, to the extent of allergen exposure. Regarding house dust mite (HDM), we previously identified the threshold required to elicit allergic responses in BALB/c mice. Here, we investigated the impact of an initial immune perturbation on the response to sub-threshold HDM exposure. We show that transient GM-CSF expression in the lung facilitated robust eosinophilic inflammation, long-lasting antigen-specific Th2 responses, mucus production and airway hyperresponsiveness. This was associated with increased IL-33 levels and activated CD11b(+) DCs expressing OX40L. GM-CSF-driven allergic responses were significantly blunted in IL-33-deficient mice. IL-33 was localized on alveolar type II cells and in vitro stimulation of human epithelial cells with GM-CSF enhanced intracellular IL-33 independently of IL-1α. Likewise, GM-CSF administration in vivo resulted in increased levels of IL-33 but not IL-1α. These findings suggest that exposures to environmental agents associated with GM-CSF production, including airway infections and pollutants, may decrease the threshold of allergen responsiveness and, hence, increase the susceptibility to develop allergic asthma through a GM-CSF/IL-33/OX40L pathway. PMID:24551140

  1. A GM-CSF/IL-33 Pathway Facilitates Allergic Airway Responses to Sub-Threshold House Dust Mite Exposure

    PubMed Central

    Llop-Guevara, Alba; Chu, Derek K.; Walker, Tina D.; Goncharova, Susanna; Fattouh, Ramzi; Silver, Jonathan S.; Moore, Cheryl Lynn; Xie, Juliana L.; O’Byrne, Paul M.; Coyle, Anthony J.; Kolbeck, Roland; Humbles, Alison A.; Stämpfli, Martin R.; Jordana, Manel

    2014-01-01

    Allergic asthma is a chronic immune-inflammatory disease of the airways. Despite aeroallergen exposure being universal, allergic asthma affects only a fraction of individuals. This is likely related, at least in part, to the extent of allergen exposure. Regarding house dust mite (HDM), we previously identified the threshold required to elicit allergic responses in BALB/c mice. Here, we investigated the impact of an initial immune perturbation on the response to sub-threshold HDM exposure. We show that transient GM-CSF expression in the lung facilitated robust eosinophilic inflammation, long-lasting antigen-specific Th2 responses, mucus production and airway hyperresponsiveness. This was associated with increased IL-33 levels and activated CD11b+ DCs expressing OX40L. GM-CSF-driven allergic responses were significantly blunted in IL-33-deficient mice. IL-33 was localized on alveolar type II cells and in vitro stimulation of human epithelial cells with GM-CSF enhanced intracellular IL-33 independently of IL-1α. Likewise, GM-CSF administration in vivo resulted in increased levels of IL-33 but not IL-1α. These findings suggest that exposures to environmental agents associated with GM-CSF production, including airway infections and pollutants, may decrease the threshold of allergen responsiveness and, hence, increase the susceptibility to develop allergic asthma through a GM-CSF/IL-33/OX40L pathway. PMID:24551140

  2. Extracellular matrix remodeling by dynamic strain in a three-dimensional tissue-engineered human airway wall model.

    PubMed

    Choe, Melanie M; Sporn, Peter H S; Swartz, Melody A

    2006-09-01

    Airway wall remodeling is a hallmark of asthma, characterized by subepithelial thickening and extracellular matrix (ECM) remodeling. Mechanical stress due to hyperresponsive smooth muscle cells may contribute to this remodeling, but its relevance in a three-dimensional environment (where the ECM plays an important role in modulating stresses felt by cells) is unclear. To characterize the effects of dynamic compression in ECM remodeling in a physiologically relevant three-dimensional environment, a tissue-engineered human airway wall model with differentiated bronchial epithelial cells atop a collagen gel containing lung fibroblasts was used. Lateral compressive strain of 10 or 30% at 1 or 60 cycles per hour was applied using a novel straining device. ECM remodeling was assessed by immunohistochemistry and zymography. Dynamic strain, particularly at the lower magnitude, induced airway wall remodeling, as indicated by increased deposition of types III and IV collagen and increased secretion of matrix metalloproteinase-2 and -9. These changes paralleled increased myofibroblast differentiation and were fibroblast-dependent. Furthermore, the spatial pattern of type III collagen deposition correlated with that of myofibroblasts; both were concentrated near the epithelium and decreased diffusely away from the surface, indicating some epithelial control of the remodeling response. Thus, in a physiologically relevant three-dimensional model of the bronchial wall, dynamic compressive strain induced tissue remodeling that mimics many features of remodeling seen in asthma, in the absence of inflammation and dependent on epithelial-fibroblast signaling. PMID:16601241

  3. Airway management in trauma.

    PubMed

    Langeron, O; Birenbaum, A; Amour, J

    2009-05-01

    Maintenance of a patent and prevention of aspiration are essential for the management of the trauma patient, that requires experienced physicians in airway control techniques. Difficulties of the airway control in the trauma setting are increased by the vital failures, the risk of aspiration, the potential cervical spine injury, the combative patient, and the obvious risk of difficult tracheal intubation related to specific injury related to the trauma. Endotracheal intubation remains the gold standard in trauma patient airway management and should be performed via the oral route with a rapid sequence induction and a manual in-line stabilization maneuver, to decrease the risks previously mentioned. Different techniques to control the airway in trauma patients are presented: improvement of the laryngoscopic vision, lighted stylet tracheal intubation, retrograde technique for orotracheal intubation, the laryngeal mask and the intubating laryngeal mask airways, the combitube and cricothyroidotomy. Management of the airway in trauma patients requires regular training in these techniques and the knowledge of complementary techniques allowing tracheal intubation or oxygenation to overcome difficult intubation and to prevent major complications as hypoxemia and aspiration. PMID:19412149

  4. Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation.

    PubMed

    Talbot, Sébastien; Abdulnour, Raja-Elie E; Burkett, Patrick R; Lee, Seungkyu; Cronin, Shane J F; Pascal, Maud A; Laedermann, Cedric; Foster, Simmie L; Tran, Johnathan V; Lai, Nicole; Chiu, Isaac M; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M; Kuchroo, Vijay K; Bean, Bruce P; Levy, Bruce D; Woolf, Clifford J

    2015-07-15

    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  5. Treatment with 8-OH-modified adenine (TLR7 ligand)-allergen conjugates decreases T helper type 2-oriented murine airway inflammation.

    PubMed

    Nencini, Francesca; Pratesi, Sara; Petroni, Giulia; Filì, Lucia; Cardilicchia, Elisa; Casini, Andrea; Occhiato, Ernesto Giovanni; Calosi, Laura; Bani, Daniele; Romagnani, Sergio; Maggi, Enrico; Parronchi, Paola; Vultaggio, Alessandra

    2015-08-01

    A strategy to improve allergen-specific immunotherapy is to employ new adjuvants stably linked to allergens. The study is addressed to evaluate the in vivo and in vitro effects of allergens [natural Dermatophagoides pteronyssinus 2 (nDer p 2) and ovalbumin (OVA)] chemically bound to an 8-OH-modified adenine. Humoral and cellular responses were analysed in allergen-sensitized and challenged mice by using conjugates (Conj) in a therapeutic setting. The in vitro activity of the conjugates on cytokine production induced by bone marrow dendritic cells and the co-culture system was also investigated. The nDer p 2-Conj treatment in nDer p 2-primed and challenged BALB/c mice reduced the numbers of eosinophils in bronchoalveolar lavage fluid and lung, airway allergen-driven interleukin-13 (IL-13) production in lung mononuclear cells and IgE, in comparison with nDer p 2-treated mice. The increase of IgG2a paralleled that of interferon-γ (IFN-γ) and IL-10 in allergen-stimulated spleen cells. Similar effects were elicited by treatment with OVA-Conj in an OVA-driven BALB/c model. The nDer p 2-Conj or OVA-Conj redirected memory T helper type 2 cells towards the production of IL-10 and IFN-γ also in C57BL/6 mice and when subcutaneously administered. Interleukin-10, IL-12 and IL-27 were produced in vitro by Conj-stimulated bone marrow dendritic cells, whereas IL-10 and IFN-γ were up-regulated in co-cultures of CD11c(+) and CD4(+) T cells from Conj-treated mice stimulated with allergen. Cytofluorometric analysis indicated that the Conj expanded IFN-γ- and IL-10- producing memory T cells. The Conj effects on IL-10(-/-) and IL-12(-/-) mice confirmed the role of IL-10 and IFN-γ in inducing a protective and balanced redirection the T helper type 2-mediated airway inflammation. PMID:25930741

  6. The impact of vitamin D on asthmatic human airway smooth muscle.

    PubMed

    Hall, Sannette C; Fischer, Kimberly D; Agrawal, Devendra K

    2016-02-01

    Asthma is a chronic heterogeneous disorder, which involves airway inflammation, airway hyperresponsiveness (AHR) and airway remodeling. The airway smooth muscle (ASM) bundle regulates the broncho-motor tone and plays a critical role in AHR as well as orchestrating inflammation. Vitamin D deficiency has been linked to increased severity and exacerbations of symptoms in asthmatic patients. It has been shown to modulate both immune and structural cells, including ASM cells, in inflammatory diseases. Given that current asthma therapies have not been successful in reversing airway remodeling, vitamin D supplementation as a potential therapeutic option has gained a great deal of attention. Here, we highlight the potential immunomodulatory properties of vitamin D in regulating ASM function and airway inflammation in bronchial asthma. PMID:26634624

  7. A positive methacholine challenge based on specific airway conductance: A case report

    PubMed Central

    Haynes, Jeffrey

    2016-01-01

    A 30-year-old Caucasian man presented to the pulmonary function laboratory for a methacholine challenge test. Following inhalation of the final dose of methacholine, the forced expiratory volume in 1 s (FEV1) was 8% below baseline. However, the patient complained of chest tightness and dyspnea, similar to the symptoms he experienced after running. Repeat specific airway conductance was found to be 73% below baseline, indicating marked airway hyper-responsiveness. Because the reduction in specific airway conductance was accompanied by familiar symptoms, the post-test probability of asthma increases, even in the absence of a 20% reduction in FEV1.

  8. Effect of thromboxane antagonists on ozone-induced airway responses in dogs

    SciTech Connect

    Jones, G.L.; Lane, C.G.; O'Byrne, P.M. )

    1990-09-01

    Airway hyperresponsiveness after inhaled ozone in dogs may occur as a result of thromboxane release in the airway. In this study, two thromboxane receptor antagonists, L-655,240 and L-670,596, were used in doses that inhibit the response to an inhaled thromboxane mimetic, U-46619, to determine further the role of thromboxane in ozone-induced airway hyperresponsiveness. Dogs were studied on 2 days separated by 1 wk. On each day, the dogs inhaled ozone (3 ppm) for 30 min. On one randomly assigned day, 10 dogs received an infusion of L-655,240 (5 mg.kg-1.h-1) and 5 dogs received an infusion of L-670,596 (1 mg.kg-1.h-1); on the other day dogs received a control infusion. Airway responses to doubling doses of acetylcholine were measured before and after inhalation of ozone and were expressed as the concentration of acetylcholine giving a rise in resistance of 5 cmH2O.l-1.s from baseline (acetylcholine provocation concentration). The development of airway hyperresponsiveness after ozone was not inhibited by the thromboxane antagonists. The mean log difference in the acetylcholine provocative concentration before and after ozone on the L-655,240 treatment day was 0.62 +/- 0.12 (SE) and on the control day was 0.71 +/- 0.12 (P = 0.48); on the L-670,596 treatment day the mean log difference was 0.68 +/- 0.15 (SE) and on the control day it was 0.75 +/- 0.19 (P = 0.45). These results do not support an important role for thromboxane in causing ozone-induced airway hyperresponsiveness.

  9. Fstl1 Promotes Asthmatic Airway Remodeling by Inducing Oncostatin M.

    PubMed

    Miller, Marina; Beppu, Andrew; Rosenthal, Peter; Pham, Alexa; Das, Sudipta; Karta, Maya; Song, Dae Jin; Vuong, Christine; Doherty, Taylor; Croft, Michael; Zuraw, Bruce; Zhang, Xu; Gao, Xiang; Aceves, Seema; Chouiali, Fazila; Hamid, Qutayba; Broide, David H

    2015-10-15

    Chronic asthma is associated with airway remodeling and decline in lung function. In this article, we show that follistatin-like 1 (Fstl1), a mediator not previously associated with asthma, is highly expressed by macrophages in the lungs of humans with severe asthma. Chronic allergen-challenged Lys-Cre(tg) /Fstl1(Δ/Δ) mice in whom Fstl1 is inactivated in macrophages/myeloid cells had significantly reduced airway remodeling and reduced levels of oncostatin M (OSM), a cytokine previously not known to be regulated by Fstl1. The importance of the Fstl1 induction of OSM to airway remodeling was demonstrated in murine studies in which administration of Fstl1 induced airway remodeling and increased OSM, whereas administration of an anti-OSM Ab blocked the effect of Fstl1 on inducing airway remodeling, eosinophilic airway inflammation, and airway hyperresponsiveness, all cardinal features of asthma. Overall, these studies demonstrate that the Fstl1/OSM pathway may be a novel pathway to inhibit airway remodeling in severe human asthma. PMID:26355153

  10. Residual oil fly ash amplifies allergic cytokines, airway responsiveness, and inflammation in mice.

    PubMed

    Gavett, S H; Madison, S L; Stevens, M A; Costa, D L

    1999-12-01

    Particulate matter (PM) air pollution may increase symptom severity in allergic asthmatics. To examine possible interaction, or greater than additive responses, between PM effects and allergic responses, an ovalbumin-sensitized and challenged (OVA) mouse model of allergic airways disease was utilized. After challenge, mice were intratracheally instilled with saline vehicle or 3 mg/kg (approximately 60 microg) residual oil fly ash (ROFA), a transition metal-rich emission source PM sample. Physiological and inflammatory responses were examined 1, 3, 8, and 15 d later. In response to intravenously administered methacholine, ROFA increased total respiratory system resistance and decreased compliance 1 d after exposure, whereas effects of OVA lasted at least 15 d after exposure. Significant interactions between OVA and ROFA were mainly observed 8 d after challenge and exposure, especially with respect to compliance. A strong interaction (p < 0.01) between OVA and ROFA exposure resulted in 8-fold (1 d) and 3-fold (3 d) increases in bronchoalveolar lavage (BAL) fluid eosinophil numbers. A similarly strong interaction (8-fold) was observed in BAL fluid interleukin-4 (IL-4) 1 d after challenge and exposure. Significant though less strong interactions were also found with respect to IL-4 and IL-5 by 3 d postchallenge/exposure. This study shows that allergen challenge and exposure to emission source particulate matter containing relatively high levels of transitions metals can interact to increase Th2 cytokine production, eosinophil recruitment, and airway hyperresponsiveness in previously sensitized mice. PMID:10588603