Sample records for deep cerebral white

  1. Neonatal deep white matter venous infarction and liquefaction: a pseudo-abscess lesion.

    PubMed

    Ruess, Lynne; Dent, Carly M; Tiarks, Hailey J; Yoshida, Michelle A; Rusin, Jerome A

    2014-11-01

    Deep white matter hemorrhagic venous infarction with subsequent cavitation due to necrosis and liquefaction has been described in neonates and may be associated with infection and meningitis. In our experience, the MRI pattern of these lesions is confused with the pattern seen with cerebral abscesses. The purpose of our study was to characterize the MRI findings of post infarction necrosis and liquefaction after hemorrhagic deep white matter venous infarction in infants and to distinguish these lesions from cerebral abscesses. An institutional review board approved a retrospective review of imaging records to identify all patients with cerebral venous infarction at a children's hospital during a 10-year period. Nine infants had deep white matter hemorrhagic venous infarction with white matter fluid signal cavitary lesions. A diagnosis of cerebral abscess was considered in all. The imaging and laboratory findings in these patients are reviewed and compared to descriptions of abscesses found in the literature. There were six female and three male infants. The mean age at presentation was 20 days (range: 0-90 days), while the corrected age at presentation was less than 30 days for all patients. Seven patients presented with seizures and signs of infection; one infant presented with lethargy and later proved to have protein C deficiency. MRI was performed 0-12 days from presentation in these eight patients. Another patient with known protein C deficiency underwent MRI at 30 days for follow-up of screening US abnormalities. There were a total of 38 deep cerebral white matter fluid signal cavitary lesions: 25 frontal, 9 parietal, 2 temporal, 2 occipital. Larger lesions had dependent debris. All lesions had associated hemorrhage and many lesions had evidence of adjacent small vessel venous thrombosis. Lesions imaged after gadolinium showed peripheral enhancement. Three lesions increased in size on follow-up imaging. Three patients, two with meningitis confirmed via

  2. Convection-enhanced delivery of AAV2 in white matter--a novel method for gene delivery to cerebral cortex.

    PubMed

    Barua, N U; Woolley, M; Bienemann, A S; Johnson, D; Wyatt, M J; Irving, C; Lewis, O; Castrique, E; Gill, S S

    2013-10-30

    Convection-enhanced delivery (CED) is currently under investigation for delivering therapeutic agents to subcortical targets in the brain. Direct delivery of therapies to the cerebral cortex, however, remains a significant challenge. We describe a novel method of targeting adeno-associated viral vector (AAV) mediated gene therapies to specific cerebral cortical regions by performing high volume, high flow rate infusions into underlying white matter in a large animal (porcine) model. Infusion volumes of up to 700 μl at flow rates as high as 10 μl/min were successfully performed in white matter without adverse neurological sequelae. Co-infusion of AAV2/5-GFP with 0.2% Gadolinium in artificial CSF confirmed transgene expression in the deep layers of cerebral cortex overlying the infused areas of white matter. AAV-mediated gene therapies have been previously targeted to the cerebral cortex by performing intrathalamic CED and exploiting axonal transport. The novel method described in this study facilitates delivery of gene therapies to specific regions of the cerebral cortex without targeting deep brain structures. AAV-mediated gene therapies can be targeted to specific cortical regions by performing CED into underlying white matter. This technique could be applied to the treatment of neurological disorders characterised by cerebral cortical degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. [Research on brain white matter network in cerebral palsy infant].

    PubMed

    Li, Jun; Yang, Cheng; Wang, Yuanjun; Nie, Shengdong

    2017-10-01

    Present study used diffusion tensor image and tractography to construct brain white matter networks of 15 cerebral palsy infants and 30 healthy infants that matched for age and gender. After white matter network analysis, we found that both cerebral palsy and healthy infants had a small-world topology in white matter network, but cerebral palsy infants exhibited abnormal topological organization: increased shortest path length but decreased normalize clustering coefficient, global efficiency and local efficiency. Furthermore, we also found that white matter network hub regions were located in the left cuneus, precuneus, and left posterior cingulate gyrus. However, some abnormal nodes existed in the frontal, temporal, occipital and parietal lobes of cerebral palsy infants. These results indicated that the white matter networks for cerebral palsy infants were disrupted, which was consistent with previous studies about the abnormal brain white matter areas. This work could help us further study the pathogenesis of cerebral palsy infants.

  4. Individual variability of cerebral autoregulation, posterior cerebral circulation and white matter hyperintensity.

    PubMed

    Liu, Jie; Tseng, Benjamin Y; Khan, Muhammad Ayaz; Tarumi, Takashi; Hill, Candace; Mirshams, Niki; Hodics, Timea M; Hynan, Linda S; Zhang, Rong

    2016-06-01

    Cerebral autoregulation (CA) is a key mechanism to protect brain perfusion in the face of changes in arterial blood pressure, but little is known about individual variability of CA and its relationship to the presence of brain white matter hyperintensity (WMH) in older adults, a type of white matter lesion related to cerebral small vessel disease (SVD). This study demonstrated the presence of large individual variability of CA in healthy older adults during vasoactive drug-induced changes in arterial pressure assessed at the internal carotid and vertebral arteries. We also observed, unexpectedly, that it was the 'over-' rather than the 'less-reactive' CA measured at the vertebral artery that was associated with WMH severity. These findings challenge the traditional concept of CA and suggest that the presence of cerebral SVD, manifested as WMH, is associated with posterior brain hypoperfusion during acute increase in arterial pressure. This study measured the individual variability of static cerebral autoregulation (CA) and determined its associations with brain white matter hyperintensity (WMH) in older adults. Twenty-seven healthy older adults (13 females, 66 ± 6 years) underwent assessment of CA during steady-state changes in mean arterial pressure (MAP) induced by intravenous infusion of sodium nitroprusside (SNP) and phenylephrine. Cerebral blood flow (CBF) was measured using colour-coded duplex ultrasonography at the internal carotid (ICA) and vertebral arteries (VA). CA was quantified by a linear regression slope (CA slope) between percentage changes in cerebrovascular resistance (CVR = MAP/CBF) and MAP relative to baseline values. Periventricular and deep WMH volumes were measured with T2-weighted magnetic resonance imaging. MAP was reduced by -11 ± 7% during SNP, and increased by 21 ± 8% during phenylephrine infusion. CA demonstrated large individual variability with the CA slopes ranging from 0.37 to 2.20 at the ICA and from 0.17 to 3.18 at the

  5. [Trismus, pseudobulbar syndrome and cerebral deep venous thrombosis].

    PubMed

    Alecu, C; De Bray, J M; Penisson-Besnier, I; Pasco-Papon, A; Dubas, F

    2001-03-01

    We report a case of cerebral deep venous thrombosis that manifested clinically by a pseudobulbar syndrome with major trismus, abnormal movements and static cerebellar syndrome. To our knowledge, only three other cases of deep cerebral venous thrombosis associated with cerebellar or pseudobulbar syndrome have been published since 1985. The relatively good prognosis in our patient could be explained by the partially intact internal cerebral veins as well as use of early anticoagulant therapy. There was a spontaneous hyperdensity of the falx cerebri and the tentorium cerebelli on the brain CT scan, an aspect highly contributive to diagnosis. This hyperdensity of the falx cerebri was found in 19 out of 22 cases of deep venous thrombosis detailed in the literature.

  6. Characterization of White Matter Injury in a Rat Model of Chronic Cerebral Hypoperfusion.

    PubMed

    Choi, Bo-Ryoung; Kim, Dong-Hee; Back, Dong Bin; Kang, Chung Hwan; Moon, Won-Jin; Han, Jung-Soo; Choi, Dong-Hee; Kwon, Kyoung Ja; Shin, Chan Young; Kim, Bo-Ram; Lee, Jongmin; Han, Seol-Heui; Kim, Hahn Young

    2016-02-01

    Chronic cerebral hypoperfusion can lead to ischemic white matter injury resulting in vascular dementia. To characterize white matter injury in vascular dementia, we investigated disintegration of diverse white matter components using a rat model of chronic cerebral hypoperfusion. Chronic cerebral hypoperfusion was modeled in Wistar rats by permanent occlusion of the bilateral common carotid arteries. We performed cognitive behavioral tests, including the water maze task, odor discrimination task, and novel object test; histological investigation of neuroinflammation, oligodendrocytes, myelin basic protein, and nodal or paranodal proteins at the nodes of Ranvier; and serial diffusion tensor imaging. Cilostazol was administered to protect against white matter injury. Diverse cognitive impairments were induced by chronic cerebral hypoperfusion. Disintegration of white matter was characterized by neuroinflammation, loss of oligodendrocytes, attenuation of myelin density, structural derangement at the nodes of Ranvier, and disintegration of white matter tracts. Cilostazol protected against cognitive impairments and white matter disintegration. White matter injury induced by chronic cerebral hypoperfusion can be characterized by disintegration of diverse white matter components. Cilostazol might be a therapeutic strategy against white matter disintegration in patients with vascular dementia. © 2015 American Heart Association, Inc.

  7. Deep cerebral venous thrombosis mimicking influenza-associated acute necrotizing encephalopathy: a case report.

    PubMed

    Taniguchi, Daisuke; Nakajima, Sho; Hayashida, Arisa; Kuroki, Takuma; Eguchi, Hiroto; Machida, Yutaka; Hattori, Nobutaka; Miwa, Hideto

    2017-09-26

    Acute necrotizing encephalopathy is one of the most devastating neurological complications of influenza virus infection. Acute necrotizing encephalopathy preferentially affects the thalamus bilaterally, as does deep cerebral venous thrombosis, which can lead to misdiagnosis. A 52-year-old Japanese woman infected with seasonal influenza B virus presented to the emergency care unit in our hospital with progressive alteration of her level of consciousness. Bilateral thalamic lesions were demonstrated by magnetic resonance imaging, leading to a tentative diagnosis of acute necrotizing encephalopathy. However, she had deep cerebral venous thrombosis, and the presence of diminished signal and enlargement of deep cerebral veins on T2*-weighted imaging contributed to a revised diagnosis of deep cerebral venous thrombosis. Anticoagulant therapy was initiated, leading to her gradual recovery, with recanalization of the deep venous system and straight sinus. To the best of our knowledge, these results represent the first report of deep cerebral venous thrombosis associated with influenza infection. It is clinically important to recognize that deep cerebral venous thrombosis, although rare, might be one of the neurological complications of influenza infection. In the presence of bilateral thalamic lesions in patients with influenza infection, deep cerebral venous thrombosis should be considered in addition to acute necrotizing encephalopathy. Delays in diagnosis and commencement of anticoagulant therapy can lead to unfavorable outcomes.

  8. Cerebellar malformations alter regional cerebral development.

    PubMed

    Bolduc, Marie-Eve; Du Plessis, Adre J; Evans, Alan; Guizard, Nicolas; Zhang, Xun; Robertson, Richard L; Limperopoulos, Catherine

    2011-12-01

    The aim of this study was to compare total and regional cerebral volumes in children with isolated cerebellar malformations (CBMs) with those in typically developing children, and to examine the extent to which cerebellar volumetric reductions are associated with total and regional cerebral volumes. This is a case-control study of children diagnosed with isolated CBMs. Each child was matched on age and sex to two typically developing children. Using advanced three-dimensional volumetric magnetic resonance imaging, the cerebrum was segmented into tissue classes and partitioned into eight regions. Analysis of variance was used to compare cerebral volumes between children with CBMs and control children, and linear regressions to examine the impact of cerebellar volume reduction on cerebral volumes. Magnetic resonance imaging was performed at a mean age of 27 months in 20 children (10 males, 10 females) with CBMs and 40 typically developing children. Children with CBMs showed significantly smaller deep grey matter nuclei (p < 0.001), subgenual white matter (p = 0.03), midtemporal white matter (p = 0.02), and inferior occipital grey matter (p = 0.03) volumes than typically developing children. Greater cerebellar volumetric reduction in children with CBMs was associated with decreased total cerebral volume and deep grey matter nuclei (p = 0.02), subgenual white/grey matter (p = 0.001), midtemporal white (p = 0.02) and grey matter (p = 0.01), and parieto-occipital grey matter (p = 0.004). CBMs are associated with impaired regional cerebral growth, suggesting deactivation of principal cerebello-cerebral pathways. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  9. APOE/TOMM 40 genetic loci, white matter hyperintensities, and cerebral microbleeds

    PubMed Central

    Lyall, Donald M.; Muñoz Maniega, Susana; Harris, Sarah E.; Bastin, Mark E.; Murray, Catherine; Lutz, Michael W.; Saunders, Ann M.; Roses, Allen D.; Valdés Hernández, Maria del C.; Royle, Natalie A.; Starr, John M.; Porteous, David J.; Deary, Ian J.

    2015-01-01

    Background Two markers of cerebral small vessel disease are white matter hyperintensities and cerebral microbleeds, which commonly occur in people with Alzheimer's disease. Aim and/or hypothesis To test for independent associations between two Alzheimer's disease‐susceptibility gene loci – APOE ε and the TOMM 40 ‘523’ poly‐T repeat – and white matter hyperintensities/cerebral microbleed burden in community‐dwelling older adults. Methods Participants in the Lothian Birth Cohort 1936 underwent genotyping for APOE ε and TOMM 40 523, and detailed structural brain magnetic resonance imaging at a mean age of 72·70 years (standard deviation = 0·7; range = 71–74). Results No significant effects of APOE ε or TOMM 40 523 genotypes on white matter hyperintensities or cerebral microbleed burden were found amongst 624 participants. Conclusions Lack of association between two Alzheimer's disease susceptibility gene loci and markers of cerebral small vessel disease may reflect the relative health of this population compared with those in other studies in the literature. PMID:26310205

  10. APOE/TOMM40 genetic loci, white matter hyperintensities, and cerebral microbleeds.

    PubMed

    Lyall, Donald M; Muñoz Maniega, Susana; Harris, Sarah E; Bastin, Mark E; Murray, Catherine; Lutz, Michael W; Saunders, Ann M; Roses, Allen D; Valdés Hernández, Maria del C; Royle, Natalie A; Starr, John M; Porteous, David J; Deary, Ian J; Wardlaw, Joanna M

    2015-12-01

    Two markers of cerebral small vessel disease are white matter hyperintensities and cerebral microbleeds, which commonly occur in people with Alzheimer's disease. To test for independent associations between two Alzheimer's disease-susceptibility gene loci--APOE ε and the TOMM40 '523' poly-T repeat--and white matter hyperintensities/cerebral microbleed burden in community-dwelling older adults. Participants in the Lothian Birth Cohort 1936 underwent genotyping for APOE ε and TOMM40 523, and detailed structural brain magnetic resonance imaging at a mean age of 72·70 years (standard deviation = 0·7; range = 71-74). No significant effects of APOE ε or TOMM40 523 genotypes on white matter hyperintensities or cerebral microbleed burden were found amongst 624 participants. Lack of association between two Alzheimer's disease susceptibility gene loci and markers of cerebral small vessel disease may reflect the relative health of this population compared with those in other studies in the literature. © 2015 The Authors. International Journal of Stroke published by John Wiley & Sons Ltd on behalf of World Stroke Organization.

  11. White Matter Hyperintensity Associations with Cerebral Blood Flow in Elderly Subjects Stratified by Cerebrovascular Risk.

    PubMed

    Bahrani, Ahmed A; Powell, David K; Yu, Guoquiang; Johnson, Eleanor S; Jicha, Gregory A; Smith, Charles D

    2017-04-01

    This study aims to add clarity to the relationship between deep and periventricular brain white matter hyperintensities (WMHs), cerebral blood flow (CBF), and cerebrovascular risk in older persons. Deep white matter hyperintensity (dWMH) and periventricular white matter hyperintensity (pWMH) and regional gray matter (GM) and white matter (WM) blood flow from arterial spin labeling were quantified from magnetic resonance imaging scans of 26 cognitively normal elderly subjects stratified by cerebrovascular disease (CVD) risk. Fluid-attenuated inversion recovery images were acquired using a high-resolution 3-dimensional (3-D) sequence that reduced partial volume effects seen with slice-based techniques. dWMHs but not pWMHs were increased in patients at high risk of CVD; pWMHs but not dWMHs were associated with decreased regional cortical (GM) blood flow. We also found that blood flow in WM is decreased in regions of both pWMH and dWMH, with a greater degree of decrease in pWMH areas. WMHs are usefully divided into dWMH and pWMH regions because they demonstrate differential effects. 3-D regional WMH volume is a potentially valuable marker for CVD based on associations with cortical CBF and WM CBF. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Connectivity-driven white matter scaling and folding in primate cerebral cortex

    PubMed Central

    Herculano-Houzel, Suzana; Mota, Bruno; Kaas, Jon H.

    2010-01-01

    Larger brains have an increasingly folded cerebral cortex whose white matter scales up faster than the gray matter. Here we analyze the cellular composition of the subcortical white matter in 11 primate species, including humans, and one Scandentia, and show that the mass of the white matter scales linearly across species with its number of nonneuronal cells, which is expected to be proportional to the total length of myelinated axons in the white matter. This result implies that the average axonal cross-section area in the white matter, a, does not scale significantly with the number of neurons in the gray matter, N. The surface area of the white matter increases with N0.87, not N1.0. Because this surface can be defined as the product of N, a, and the fraction n of cortical neurons connected through the white matter, we deduce that connectivity decreases in larger cerebral cortices as a slowly diminishing fraction of neurons, which varies with N−0.16, sends myelinated axons into the white matter. Decreased connectivity is compatible with previous suggestions that neurons in the cerebral cortex are connected as a small-world network and should slow down the increase in global conduction delay in cortices with larger numbers of neurons. Further, a simple model shows that connectivity and cortical folding are directly related across species. We offer a white matter-based mechanism to account for increased cortical folding across species, which we propose to be driven by connectivity-related tension in the white matter, pulling down on the gray matter. PMID:20956290

  13. A Stepwise Approach: Decreasing Infection in Deep Brain Stimulation for Childhood Dystonic Cerebral Palsy.

    PubMed

    Johans, Stephen J; Swong, Kevin N; Hofler, Ryan C; Anderson, Douglas E

    2017-09-01

    Dystonia is a movement disorder characterized by involuntary muscle contractions, which cause twisting movements or abnormal postures. Deep brain stimulation has been used to improve the quality of life for secondary dystonia caused by cerebral palsy. Despite being a viable treatment option for childhood dystonic cerebral palsy, deep brain stimulation is associated with a high rate of infection in children. The authors present a small series of patients with dystonic cerebral palsy who underwent a stepwise approach for bilateral globus pallidus interna deep brain stimulation placement in order to decrease the rate of infection. Four children with dystonic cerebral palsy who underwent a total of 13 surgical procedures (electrode and battery placement) were identified via a retrospective review. There were zero postoperative infections. Using a multistaged surgical plan for pediatric patients with dystonic cerebral palsy undergoing deep brain stimulation may help to reduce the risk of infection.

  14. Reduced deep regional cerebral venous oxygen saturation in hemodialysis patients using quantitative susceptibility mapping.

    PubMed

    Chai, Chao; Liu, Saifeng; Fan, Linlin; Liu, Lei; Li, Jinping; Zuo, Chao; Qian, Tianyi; Haacke, E Mark; Shen, Wen; Xia, Shuang

    2018-02-01

    Cerebral venous oxygen saturation (SvO 2 ) is an important indicator of brain function. There was debate about lower cerebral oxygen metabolism in hemodialysis patients and there were no reports about the changes of deep regional cerebral SvO 2 in hemodialysis patients. In this study, we aim to explore the deep regional cerebral SvO 2 from straight sinus using quantitative susceptibility mapping (QSM) and the correlation with clinical risk factors and neuropsychiatric testing . 52 hemodialysis patients and 54 age-and gender-matched healthy controls were enrolled. QSM reconstructed from original phase data of 3.0 T susceptibility-weighted imaging was used to measure the susceptibility of straight sinus. The susceptibility was used to calculate the deep regional cerebral SvO 2 and compare with healthy individuals. Correlation analysis was performed to investigate the correlation between deep regional cerebral SvO 2 , clinical risk factors and neuropsychiatric testing. The deep regional cerebral SvO 2 of hemodialysis patients (72.5 ± 3.7%) was significantly lower than healthy controls (76.0 ± 2.1%) (P < 0.001). There was no significant difference in the measured volume of interests of straight sinus between hemodialysis patients (250.92 ± 46.65) and healthy controls (249.68 ± 49.68) (P = 0.859). There were no significant correlations between the measured susceptibility and volume of interests in hemodialysis patients (P = 0.204) and healthy controls (P = 0.562), respectively. Hematocrit (r = 0.480, P < 0.001, FDR corrected), hemoglobin (r = 0.440, P < 0.001, FDR corrected), red blood cell (r = 0.446, P = 0.003, FDR corrected), dialysis duration (r = 0.505, P = 0.002, FDR corrected) and parathyroid hormone (r = -0.451, P = 0.007, FDR corrected) were risk factors for decreased deep regional cerebral SvO 2 in patients. The Mini-Mental State Examination (MMSE) scores of hemodialysis patients were

  15. Effects of deep brain stimulation in dyskinetic cerebral palsy: a meta-analysis.

    PubMed

    Koy, Anne; Hellmich, Martin; Pauls, K Amande M; Marks, Warren; Lin, Jean-Pierre; Fricke, Oliver; Timmermann, Lars

    2013-05-01

    Secondary dystonia encompasses a heterogeneous group with different etiologies. Cerebral palsy is the most common cause. Pharmacological treatment is often unsatisfactory. There are only limited data on the therapeutic outcomes of deep brain stimulation in dyskinetic cerebral palsy. The published literature regarding deep brain stimulation and secondary dystonia was reviewed in a meta-analysis to reevaluate the effect on cerebral palsy. The Burke-Fahn-Marsden Dystonia Rating Scale movement score was chosen as the primary outcome measure. Outcome over time was evaluated and summarized by mixed-model repeated-measures analysis, paired Student t test, and Pearson's correlation coefficient. Twenty articles comprising 68 patients with cerebral palsy undergoing deep brain stimulation assessed by the Burke-Fahn-Marsden Dystonia Rating Scale were identified. Most articles were case reports reflecting great variability in the score and duration of follow-up. The mean Burke-Fahn-Marsden Dystonia Rating Scale movement score was 64.94 ± 25.40 preoperatively and dropped to 50.5 ± 26.77 postoperatively, with a mean improvement of 23.6% (P < .001) at a median follow-up of 12 months. The mean Burke-Fahn-Marsden Dystonia Rating Scale disability score was 18.54 ± 6.15 preoperatively and 16.83 ± 6.42 postoperatively, with a mean improvement of 9.2% (P < .001). There was a significant negative correlation between severity of dystonia and clinical outcome (P < .05). Deep brain stimulation can be an effective treatment option for dyskinetic cerebral palsy. In view of the heterogeneous data, a prospective study with a large cohort of patients in a standardized setting with a multidisciplinary approach would be helpful in further evaluating the role of deep brain stimulation in cerebral palsy. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.

  16. DEWS (DEep White matter hyperintensity Segmentation framework): A fully automated pipeline for detecting small deep white matter hyperintensities in migraineurs.

    PubMed

    Park, Bo-Yong; Lee, Mi Ji; Lee, Seung-Hak; Cha, Jihoon; Chung, Chin-Sang; Kim, Sung Tae; Park, Hyunjin

    2018-01-01

    Migraineurs show an increased load of white matter hyperintensities (WMHs) and more rapid deep WMH progression. Previous methods for WMH segmentation have limited efficacy to detect small deep WMHs. We developed a new fully automated detection pipeline, DEWS (DEep White matter hyperintensity Segmentation framework), for small and superficially-located deep WMHs. A total of 148 non-elderly subjects with migraine were included in this study. The pipeline consists of three components: 1) white matter (WM) extraction, 2) WMH detection, and 3) false positive reduction. In WM extraction, we adjusted the WM mask to re-assign misclassified WMHs back to WM using many sequential low-level image processing steps. In WMH detection, the potential WMH clusters were detected using an intensity based threshold and region growing approach. For false positive reduction, the detected WMH clusters were classified into final WMHs and non-WMHs using the random forest (RF) classifier. Size, texture, and multi-scale deep features were used to train the RF classifier. DEWS successfully detected small deep WMHs with a high positive predictive value (PPV) of 0.98 and true positive rate (TPR) of 0.70 in the training and test sets. Similar performance of PPV (0.96) and TPR (0.68) was attained in the validation set. DEWS showed a superior performance in comparison with other methods. Our proposed pipeline is freely available online to help the research community in quantifying deep WMHs in non-elderly adults.

  17. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm.

    PubMed

    Witwer, Brian P; Moftakhar, Roham; Hasan, Khader M; Deshmukh, Praveen; Haughton, Victor; Field, Aaron; Arfanakis, Konstantinos; Noyes, Jane; Moritz, Chad H; Meyerand, M Elizabeth; Rowley, Howard A; Alexander, Andrew L; Badie, Behnam

    2002-09-01

    Preserving vital cerebral function while maximizing tumor resection is a principal goal in surgical neurooncology. Although functional magnetic resonance imaging has been useful in the localization of eloquent cerebral cortex, this method does not provide information about the white matter tracts that may be involved in invasive, intrinsic brain tumors. Recently, diffusion-tensor (DT) imaging techniques have been used to map white matter tracts in the normal brain. The aim of this study was to demonstrate the role of DT imaging in preoperative mapping of white matter tracts in relation to cerebral neoplasms. Nine patients with brain malignancies (one pilocytic astrocytoma, five oligodendrogliomas, one low-grade oligoastrocytoma, one Grade 4 astrocytoma, and one metastatic adenocarcinoma) underwent DT imaging examinations prior to tumor excision. Anatomical information about white matter tract location, orientation, and projections was obtained in every patient. Depending on the tumor type and location, evidence of white matter tract edema (two patients), infiltration (two patients), displacement (five patients), and disruption (two patients) could be assessed with the aid of DT imaging in each case. Diffusion-tensor imaging allowed for visualization of white matter tracts and was found to be beneficial in the surgical planning for patients with intrinsic brain tumors. The authors' experience with DT imaging indicates that anatomically intact fibers may be present in abnormal-appearing areas of the brain. Whether resection of these involved fibers results in subtle postoperative neurological deficits requires further systematic study.

  18. Rosiglitazone Promotes White Matter Integrity and Long-Term Functional Recovery After Focal Cerebral Ischemia.

    PubMed

    Han, Lijuan; Cai, Wei; Mao, Leilei; Liu, Jia; Li, Peiying; Leak, Rehana K; Xu, Yun; Hu, Xiaoming; Chen, Jun

    2015-09-01

    Oligodendrogenesis is essential for white matter repair after stroke. Although agonists of peroxisome proliferator-activated receptors γ confer neuroprotection in models of cerebral ischemia, it is not known whether this effect extends to white matter protection. This study tested the hypothesis that the peroxisome proliferator-activated receptors γ agonist rosiglitazone enhances oligodendrogenesis and improves long-term white matter integrity after ischemia/reperfusion. Male adult C57/BL6 mice (25-30 g) were subjected to 60-minute middle cerebral artery occlusion and reperfusion. Rosiglitazone (3 mg/kg) was injected intraperitoneally once daily for 14 days beginning 2 hours after reperfusion. Sensorimotor and cognitive functions were evaluated ≤21 days after middle cerebral artery occlusion. Immunostaining was used to assess infarct volume, myelin loss, and microglial activation. Bromodeoxyuridine (BrdU) was injected for measurements of proliferating NG2(+) oligodendrocyte precursor cells (OPCs) and newly generated adenomatous polyposis coli(+) oligodendrocytes. Mixed glial cultures were used to confirm the effect of rosiglitazone on oligodendrocyte differentiation and microglial polarization. Rosiglitazone significantly reduced brain tissue loss, ameliorated white matter injury, and improved sensorimotor and cognitive functions for at least 21 days after middle cerebral artery occlusion. Rosiglitazone enhanced OPC proliferation and increased the numbers of newly generated mature oligodendrocytes after middle cerebral artery occlusion. Rosiglitazone treatment also reduced the numbers of Iba1(+)/CD16(+) M1 microglia and increased the numbers of Iba1(+)/CD206(+) M2 microglia after stroke. Glial culture experiments confirmed that rosiglitazone promoted oligodendrocyte differentiation, perhaps by promoting microglial M2 polarization. Rosiglitazone treatment improves long-term white matter integrity after cerebral ischemia, at least, in part, by promoting

  19. Cerebral White Matter Integrity Mediates Adult Age Differences in Cognitive Performance

    ERIC Educational Resources Information Center

    Madden, David J.; Spaniol, Julia; Costello, Matthew C.; Bucur, Barbara; White, Leonard E.; Cabeza, Roberto; Davis, Simon W.; Dennis, Nancy A.; Provenzale, James M.; Huettel, Scott A.

    2009-01-01

    Previous research has established that age-related decline occurs in measures of cerebral white matter integrity, but the role of this decline in age-related cognitive changes is not clear. To conclude that white matter integrity has a mediating (causal) contribution, it is necessary to demonstrate that statistical control of the white…

  20. Severe cerebral white matter involvement in a case of dentatorubropallidoluysian atrophy studied at autopsy.

    PubMed

    Muñoz, Esteban; Campdelacreu, Jaume; Ferrer, Isidre; Rey, María J; Cardozo, Adriana; Gómez, Beatriz; Tolosa, Eduardo

    2004-06-01

    The pathophysiology of white matter involvement in dentatorubropallidoluysian atrophy (DRPLA) is controversial. Moreover, the clinical repercussions and evolution of these lesions have not been well documented. To describe a case of DRPLA with severe cerebellar white matter involvement. Case report. Patient A 62-year-old woman with DRPLA. When the genetic diagnosis was made, the patient manifested severe ataxia, slight dysarthria, and subcortical cognitive impairment. Cranial magnetic resonance imaging showed atrophy of the cerebellum and brainstem and moderate high-intensity signal alterations in the periventricular cerebral white matter in T2-weighted sequences. In the following 5 years, she developed uncontrolled head movements associated with severe bruxism and tetraparesis, and became deeply demented. New magnetic resonance imaging showed severe diffuse cerebral white matter alterations in T2 sequences with only slight progression of brainstem and cerebellar atrophy. After her death at 67 years of age, the autopsy study showed diffuse myelin pallor, axonal preservation, and reactive astrogliosis in the cerebral white matter, with only mild atherosclerotic changes, and moderate neuronal loss in the cerebellum and brainstem. Leukoencephalopathy could be a prominent finding in some patients with DRPLA, explaining, at least in part, their clinical evolution. In our case, the disproportion between the severity of white matter damage and vascular changes does not support a cardinal role for ischemic mechanisms in leukoencephalopathy.

  1. White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy.

    PubMed

    Charidimou, Andreas; Boulouis, Gregoire; Haley, Kellen; Auriel, Eitan; van Etten, Ellis S; Fotiadis, Panagiotis; Reijmer, Yael; Ayres, Alison; Vashkevich, Anastasia; Dipucchio, Zora Y; Schwab, Kristin M; Martinez-Ramirez, Sergi; Rosand, Jonathan; Viswanathan, Anand; Greenberg, Steven M; Gurol, M Edip

    2016-02-09

    To identify different white matter hyperintensity (WMH) patterns between 2 hemorrhage-prone cerebral small vessel diseases (SVD): cerebral amyloid angiopathy (CAA) and hypertensive arteriopathy (HA). Consecutive patients with SVD-related intracerebral hemorrhage (ICH) from a single-center prospective cohort were analyzed. Four predefined subcortical WMH patterns were compared between the CAA and HA groups. These WMH patterns were (1) multiple subcortical spots; (2) peri-basal ganglia (BG); (3) large posterior subcortical patches; and (4) anterior subcortical patches. Their associations with other imaging (cerebral microbleeds [CMBs], enlarged perivascular spaces [EPVS]) and clinical markers of SVD were investigated using multivariable logistic regression. The cohort included 319 patients with CAA and 137 patients with HA. Multiple subcortical spots prevalence was higher in the CAA compared to the HA group (29.8% vs 16.8%; p = 0.004). Peri-BG WMH pattern was more common in the HA- vs the CAA-ICH group (19% vs 7.8%; p = 0.001). In multivariable logistic regression, presence of multiple subcortical spots was associated with lobar CMBs (odds ratio [OR] 1.23; 95% confidence interval [CI] 1.01-1.50, p = 0.039) and high degree of centrum semiovale EPVS (OR 2.43; 95% CI 1.56-3.80, p < 0.0001). By contrast, age (OR 1.05; 95% CI 1.02-1.09, p = 0.002), deep CMBs (OR 2.46; 95% CI 1.44-4.20, p = 0.001), total WMH volume (OR 1.02; 95% CI 1.01-1.04, p = 0.002), and high BG EPVS degree (OR 8.81; 95% CI 3.37-23.02, p < 0.0001) were predictors of peri-BG WMH pattern. Different patterns of subcortical leukoaraiosis visually identified on MRI might provide insights into the dominant underlying microangiopathy type as well as mechanisms of tissue injury in patients with ICH. © 2016 American Academy of Neurology.

  2. Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging.

    PubMed

    Gong, Nan-Jie; Wong, Chun-Sing; Chan, Chun-Chung; Leung, Lam-Ming; Chu, Yiu-Ching

    2014-10-01

    Diffusion tensor imaging has already been extensively used to probe microstructural alterations in white matter tracts, and scarcely, in deep gray matter. However, results in literature regarding age-related degenerative mechanisms in white matter tracts and parametric changes in the putamen are inconsistent. Diffusional kurtosis imaging is a mathematical extension of diffusion tensor imaging, which could more comprehensively mirror microstructure, particularly in isotropic tissues such as gray matter. In this study, we used the diffusional kurtosis imaging method and a white-matter model that provided metrics of explicit neurobiological interpretations in healthy participants (58 in total, aged from 25 to 84 years). Tract-based whole-brain analyses and regions-of-interest (anterior and posterior limbs of the internal capsule, cerebral peduncle, fornix, genu and splenium of corpus callosum, globus pallidus, substantia nigra, red nucleus, putamen, caudate nucleus, and thalamus) analyses were performed to examine parametric differences across regions and correlations with age. In white matter tracts, evidence was found supportive for anterior-posterior gradient and not completely supportive for retrogenesis theory. Age-related degenerations appeared to be broadly driven by axonal loss. Demyelination may also be a major driving mechanism, although confined to the anterior brain. In terms of deep gray matter, higher mean kurtosis and fractional anisotropy in the globus pallidus, substantia nigra, and red nucleus reflected higher microstructural complexity and directionality compared with the putamen, caudate nucleus, and thalamus. In particular, the unique age-related positive correlations for fractional anisotropy, mean kurtosis, and radial kurtosis in the putamen opposite to those in other regions call for further investigation of exact underlying mechanisms. In summary, the results suggested that diffusional kurtosis can provide measurements in a new dimension that

  3. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion.

    PubMed

    Kajimoto, Masaki; Ledee, Dolena R; Olson, Aaron K; Isern, Nancy G; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Portman, Michael A

    2016-11-01

    Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography-mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis. © The Author(s) 2016.

  4. Computations in the deep vs superficial layers of the cerebral cortex.

    PubMed

    Rolls, Edmund T; Mills, W Patrick C

    2017-11-01

    A fundamental question is how the cerebral neocortex operates functionally, computationally. The cerebral neocortex with its superficial and deep layers and highly developed recurrent collateral systems that provide a basis for memory-related processing might perform somewhat different computations in the superficial and deep layers. Here we take into account the quantitative connectivity within and between laminae. Using integrate-and-fire neuronal network simulations that incorporate this connectivity, we first show that attractor networks implemented in the deep layers that are activated by the superficial layers could be partly independent in that the deep layers might have a different time course, which might because of adaptation be more transient and useful for outputs from the neocortex. In contrast the superficial layers could implement more prolonged firing, useful for slow learning and for short-term memory. Second, we show that a different type of computation could in principle be performed in the superficial and deep layers, by showing that the superficial layers could operate as a discrete attractor network useful for categorisation and feeding information forward up a cortical hierarchy, whereas the deep layers could operate as a continuous attractor network useful for providing a spatially and temporally smooth output to output systems in the brain. A key advance is that we draw attention to the functions of the recurrent collateral connections between cortical pyramidal cells, often omitted in canonical models of the neocortex, and address principles of operation of the neocortex by which the superficial and deep layers might be specialized for different types of attractor-related memory functions implemented by the recurrent collaterals. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Alcohol Use and Cerebral White Matter Compromise in Adolescence

    PubMed Central

    Elofson, Jonathan; Gongvatana, Win; Carey, Kate B.

    2013-01-01

    Alcohol use is typically initiated during adolescence, a period known to be critical in neurodevelopment. The adolescent brain may be particularly susceptible to the harmful effects of alcohol. While the cognitive deficits associated with alcohol use during adolescence have been well-documented, the neural substrates underlying these effects remain inadequately understood. Cerebral white matter has been suggested as a primary site of alcohol-related damage and diffusion tensor imaging (DTI) allows for the quantification of white matter integrity in vivo. This review summarizes results from both cross-sectional and longitudinal studies employing DTI that indicate that white matter tracts, particularly those thought to be involved in executive functioning, continue to develop throughout adolescence and into adulthood. Numerous DTI studies reveal a positive correlation between white matter integrity and neurocognitive performance and, in adults, the detrimental effects of prolonged alcohol-dependence on white matter integrity. We provide a comprehensive review of the DTI studies exploring the relationship between alcohol use and white matter integrity in adolescents. Results from most of these studies suggest that alcohol use is associated with reduced white matter integrity, particularly in the superior longitudinal fasciculus (SLF), and some evidence suggests that this relationship may be influenced by sex. We conclude by highlighting confounds and limitations of the available research and suggesting directions for future research. PMID:23583835

  6. Association of Key Magnetic Resonance Imaging Markers of Cerebral Small Vessel Disease With Hematoma Volume and Expansion in Patients With Lobar and Deep Intracerebral Hemorrhage

    PubMed Central

    Boulouis, Gregoire; van Etten, Ellis S.; Charidimou, Andreas; Auriel, Eitan; Morotti, Andrea; Pasi, Marco; Haley, Kellen E.; Brouwers, H. Bart; Ayres, Alison M.; Vashkevich, Anastasia; Jessel, Michael J.; Schwab, Kristin M.; Viswanathan, Anand; Greenberg, Steven M.; Rosand, Jonathan; Goldstein, Joshua N.; Gurol, M. Edip

    2017-01-01

    IMPORTANCE Hematoma expansion is an important determinant of outcome in spontaneous intracerebral hemorrhage (ICH) due to small vessel disease (SVD), but the association between the severity of the underlying SVD and the extent of bleeding at the acute phase is unknown to date. OBJECTIVE To investigate the association between key magnetic resonance imaging (MRI) markers of SVD (as per the Standards for Reporting Vascular Changes on Neuroimaging [STRIVE] guidelines) and hematoma volume and expansion in patients with lobar or deep ICH. DESIGN, SETTING, AND PARTICIPANTS Analysis of data collected from 418 consecutive patients admitted with primary lobar or deep ICH to a single tertiary care medical center between January 1, 2000, and October 1, 2012. Data were analyzed on March 4, 2016. Participants were consecutive patients with computed tomographic images allowing ICH volume calculation and MRI allowing imaging markers of SVD assessment. MAIN OUTCOMES AND MEASURES The ICH volumes at baseline and within 48 hours after symptom onset were measured in 418 patients with spontaneous ICH without anticoagulant therapy, and hematoma expansion was calculated. Cerebral microbleeds, cortical superficial siderosis, and white matter hyperintensity volume were assessed on MRI. The associations between these SVD markers and ICH volume, as well as hematoma expansion, were investigated using multivariable models. RESULTS This study analyzed 254 patients with lobar ICH (mean [SD] age, 75 [11] years and 140 [55.1%] female) and 164 patients with deep ICH (mean [SD] age 67 [14] years and 71 [43.3%] female). The presence of cortical superficial siderosis was an independent variable associated with larger ICH volume in the lobar ICH group (odds ratio per quintile increase in final ICH volume, 1.49; 95% CI, 1.14–1.94; P = .004). In multivariable models, the absence of cerebral microbleeds was associated with larger ICH volume for both the lobar and deep ICH groups (odds ratios per

  7. MCP-1-mediated activation of microglia promotes white matter lesions and cognitive deficits by chronic cerebral hypoperfusion in mice.

    PubMed

    Yuan, Bangqing; Shi, Hui; Zheng, Kuang; Su, Zulu; Su, Hai; Zhong, Ming; He, Xuenong; Zhou, Changlong; Chen, Hao; Xiong, Qijiang; Zhang, Yi; Yang, Zhao

    2017-01-01

    Microglia activation played a vital role in the pathogenesis of white matter lesions (WMLs) by chronic cerebral hypoperfusion. In addition, hypoxia induced up-regulated expression of MCP-1, promotes the activation of microglia. However, the role of MCP-1-mediated microglia activation in chronic cerebral ischemia is still unknown. To explore that, chronic cerebral hypoperfusion model was established by permanent stenosis of bilateral common carotid artery in mice. The activation of microglia and the related signal pathway p38MAPK/PKC in white matter, and working memory of mice were observed. We found that stenosis of common carotid arteries could induce MCP-1-mediated activation of microglia through p38MAPK/PKC pathway and white matter lesions. Taken together, our findings represent a novel mechanism of MCP-1 involved in activation of microglia and provide a novel therapeutical strategy for chronic cerebral hypoperfusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Deep cerebral microbleeds are negatively associated with HDL-C in elderly first-time ischemic stroke patients.

    PubMed

    Igase, Michiya; Kohara, Katsuhiko; Igase, Keiji; Yamashita, Shiro; Fujisawa, Mutsuo; Katagi, Ryosuke; Miki, Tetsuro

    2013-02-15

    Cerebral microbleeds (CMBs) detected on T2*-weighted MRI gradient-echo have been associated with increased risk of cerebral infarction. We evaluated risk factors for these lesions in a cohort of first-time ischemic stroke patients. Presence of CMBs in consecutive first-time ischemic stroke patients was evaluated. The location of CMBs was classified by cerebral region as strictly lobar (lobar CMBs) and deep or infratentorial (deep CMBs). Logistic regression analysis was performed to determine the contribution of lipid profile to the presence of CMBs. One hundred and sixteen patients with a mean age of 70±10years were recruited. CMBs were present in 74 patients. The deep CMBs group had significantly lower HDL-C levels than those without CMBs. In univariable analysis, advanced periventricular hyperintensity grade (PVH>2) and decreased HDL-C were significantly associated with the deep but not the lobar CMB group. On logistic regression analysis, HDL-C (beta=-0.06, p=0.002) and PVH grade >2 (beta=3.40, p=0.005) were independent determinants of deep CMBs. Low HDL-C may be a risk factor of deep CMBs, including advanced PVH status, in elderly patients with acute ischemic stroke. Management of HDL-C levels might be a therapeutic target for the prevention of recurrence of stroke. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Linking white matter and deep gray matter alterations in premanifest Huntington disease.

    PubMed

    Faria, Andreia V; Ratnanather, J Tilak; Tward, Daniel J; Lee, David Soobin; van den Noort, Frieda; Wu, Dan; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Younes, Laurent; Miller, Michael I

    2016-01-01

    Huntington disease (HD) is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i) regions of interest surrounding these structures, using (ii) tractography-based analysis, and using (iii) whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores), and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be targeted to delay

  10. A Laboratory Manual for Stepwise Cerebral White Matter Fiber Dissection.

    PubMed

    Koutsarnakis, Christos; Liakos, Faidon; Kalyvas, Aristotelis V; Sakas, Damianos E; Stranjalis, George

    2015-08-01

    White matter fiber dissection is an important method in acquiring a thorough neuroanatomic knowledge for surgical practice. Previous studies have definitely improved our understanding of intrinsic brain anatomy and emphasized on the significance of this technique in modern neurosurgery. However, current literature lacks a complete and concentrated laboratory guide about the entire dissection procedure. Hence, our primary objective is to introduce a detailed laboratory manual for cerebral white matter dissection by highlighting consecutive dissection steps, and to stress important technical comments facilitating this complex procedure. Twenty adult, formalin-fixed cerebral hemispheres were included in the study. Ten specimens were dissected in the lateromedial and 10 in the mediolateral direction, respectively, using the fiber dissection technique and the microscope. Eleven and 8 consecutive and distinctive dissection steps are recommended for the lateromedial and mediolateral dissection procedures, respectively. Photographs highlighting various anatomic landmarks accompany every step. Technical recommendations, facilitating the dissection process, are also indicated. The fiber dissection technique, although complex and time consuming, offers a three-dimensional knowledge of intrinsic brain anatomy and architecture, thus improving both the quality of microneurosurgery and the patient's standard of care. The present anatomic study provides a thorough dissection manual to those who study brain anatomy using this technique. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cerebral White Matter Changes on Therapeutic Response to Rivastigmine in Alzheimer's Disease.

    PubMed

    Ho, Bo-Lin; Kao, Yi-Hui; Chou, Mei-Chuan; Yang, Yuan-Han

    2016-08-10

    Rivastigmine has been approved in the treatment of Alzheimer's disease (AD) patients as it can inhibit acetyl- and butyryl-cholinesterase and provide neuroprotective effects involving the synapses. White matter changes (WMCs) are frequently observed in AD, and clinical-pathological correlations imply their possible impacts on cognitive function by interference with cortical and subcortical neuronal pathways. To evaluate the therapeutic effects of rivastigmine in AD patients with cerebral WMCs. Clinically diagnosed AD patients from Kaohsiung Municipal Ta-Tung hospital were recruited together with their cranial magnetic resonance imaging and a series of annual psychometric tests, including Mini-Mental State Examination (MMSE) and sum of boxes of clinical dementia rating scale (CDR-SB). WMCs were rated through the modified Fazekas scale for the periventricular and deep WMCs. In total, 87 AD patients treated with rivastigmine were enrolled. Patients at severe stage of WMCs, compared to mild stage ones, had significant improvement evaluated by MMSE (periventricular WMCs, p = 0.025; deep WMCs, p = 0.030), but not CDR-SB. Compared to the worsening group, the clinically improving group had a significant higher ratio of pre-existing hypertension in terms of cognitive performance [p = 0.016, odds ratio (OR) = 3.48, 95% CI = 1.25-10.34], while having younger age (p = 0.043, OR = 0.11, 95% CI = 0.01-1.12) in terms of global status. Rivastigmine may provide better benefits in cognitive function, but not global status, for AD patients with more advanced WMCs. The detailed mechanisms still have to be determined in future studies.

  12. Cerebral White Matter Integrity and Cognitive Aging: Contributions from Diffusion Tensor Imaging

    PubMed Central

    Madden, David J.; Bennett, Ilana J.; Song, Allen W.

    2009-01-01

    The integrity of cerebral white matter is critical for efficient cognitive functioning, but little is known regarding the role of white matter integrity in age-related differences in cognition. Diffusion tensor imaging (DTI) measures the directional displacement of molecular water and as a result can characterize the properties of white matter that combine to restrict diffusivity in a spatially coherent manner. This review considers DTI studies of aging and their implications for understanding adult age differences in cognitive performance. Decline in white matter integrity contributes to a disconnection among distributed neural systems, with a consistent effect on perceptual speed and executive functioning. The relation between white matter integrity and cognition varies across brain regions, with some evidence suggesting that age-related effects exhibit an anterior-posterior gradient. With continued improvements in spatial resolution and integration with functional brain imaging, DTI holds considerable promise, both for theories of cognitive aging and for translational application. PMID:19705281

  13. Early treatment of minocycline alleviates white matter and cognitive impairments after chronic cerebral hypoperfusion

    PubMed Central

    Ma, Jing; Zhang, Jing; Hou, Wei Wei; Wu, Xiao Hua; Liao, Ru Jia; Chen, Ying; Wang, Zhe; Zhang, Xiang Nan; Zhang, Li San; Zhou, Yu Dong; Chen, Zhong; Hu, Wei Wei

    2015-01-01

    Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion develops with progressive white matter and cognitive impairments, yet no effective therapy is available. We investigated the temporal effects of minocycline on an experimental SIVD exerted by right unilateral common carotid arteries occlusion (rUCCAO). Minocycline treated at the early stage (day 0–3), but not the late stage after rUCCAO (day 4–32) alleviated the white matter and cognitive impairments, and promoted remyelination. The actions of minocycline may not involve the inhibition of microglia activation, based on the effects after the application of a microglial activation inhibitor, macrophage migration inhibitory factor, and co-treatment with lipopolysaccharides. Furthermore, minocycline treatment at the early stage promoted the proliferation of oligodendrocyte progenitor cells (OPCs) in subventricular zone, increased OPC number and alleviated apoptosis of mature oligodendrocytes in white matter. In vitro, minocycline promoted OPC proliferation and increased the percentage of OPCs in S and G2/M phases. We provided direct evidence that early treatment is critical for minocycline to alleviate white matter and cognitive impairments after chronic cerebral hypoperfusion, which may be due to its robust effects on OPC proliferation and mature oligodendrocyte loss. So, early therapeutic time window may be crucial for its application in SIVD. PMID:26174710

  14. Spatial patterns of whole brain grey and white matter injury in patients with occult spastic diplegic cerebral palsy.

    PubMed

    Mu, Xuetao; Nie, Binbin; Wang, Hong; Duan, Shaofeng; Zhang, Zan; Dai, Guanghui; Ma, Qiaozhi; Shan, Baoci; Ma, Lin

    2014-01-01

    Spastic diplegic cerebral palsy (SDCP) is a common type of cerebral palsy (CP), which presents as a group of motor-impairment syndromes. Previous conventional MRI studies have reported abnormal structural changes in SDCP, such as periventricular leucomalacia. However, there are roughly 27.8% SDCP patients presenting normal appearance in conventional MRI, which were considered as occult SDCP. In this study, sixteen patients with occult SDCP and 16 age- and sex-matched healthy control subjects were collected and the data were acquired on a 3T MR system. We applied voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis to investigate whole brain grey and white matter injury in occult SDCP. By using VBM method, the grey matter volume reduction was revealed in the bilateral basal ganglia regions, thalamus, insula, and left cerebral peduncle, whereas the white matter atrophy was found to be located in the posterior part of corpus callosum and right posterior corona radiata in the occult SDCP patients. By using TBSS, reduced fractional anisotropy (FA) values were detected in multiple white matter regions, including bilateral white matter tracts in prefrontal lobe, temporal lobe, internal and external capsule, corpus callosum, cingulum, thalamus, brainstem and cerebellum. Additionally, several regions of white matter tracts injury were found to be significantly correlated with motor dysfunction. These results collectively revealed the spatial patterns of whole brain grey and white matter injury in occult SDCP.

  15. Characteristics of early MRI in children and adolescents with vanishing white matter.

    PubMed

    van der Lei, Hannemieke D; Steenweg, Marjan E; Barkhof, Frederik; de Grauw, Ton; d'Hooghe, Marc; Morton, Richard; Shah, Siddharth; Wolf, Nicole; van der Knaap, Marjo S

    2012-02-01

    MRI in vanishing white matter typically shows diffuse abnormality of the cerebral white matter, which becomes increasingly rarefied and cystic. We investigated the MRI characteristics preceding this stage. In a retrospective observational study, we evaluated all available MRIs in our database of DNA-confirmed VWM patients and selected MRIs without diffuse cerebral white matter abnormalities and without signs of rarefaction or cystic degeneration in patients below 20 years of age. A previously established scoring list was used to evaluate the MRIs. An MRI of seven patients fulfilled the criteria. All had confluent and symmetrical abnormalities in the periventricular and bordering deep white matter. In young patients, myelination was delayed. The inner rim of the corpus callosum was affected in all patients. In early stages of VWM, MRI does not necessarily display diffuse cerebral white matter involvement and rarefaction or cystic degeneration. If the MRI abnormalities do not meet the criteria for VWM, it helps to look at the corpus callosum. If the inner rim (the callosal-septal interface) is affected, VWM should be considered. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Edaravone, a Free Radical Scavenger, Mitigates Both Gray and White Matter Damages after Global Cerebral Ischemia in Rats

    PubMed Central

    Kubo, Kozue; Nakao, Shinichi; Jomura, Sachiko; Sakamoto, Sachiyo; Miyamoto, Etsuko; Xu, Yan; Tomimoto, Hidekazu; Inada, Takefumi; Shingu, Koh

    2012-01-01

    Recent studies have shown that similar to cerebral gray matter (mainly composed of neuronal perikarya), white matter (composed of axons and glias) is vulnerable to ischemia. Edaravone, a free radical scavenger, has neuroprotective effects against focal cerebral ischemia even in humans. In this study, we investigated the time course and the severity of both gray and white matter damage following global cerebral ischemia by cardiac arrest, and examined whether edaravone protected the gray and the white matter. Male Sprague-Dawley rats were used. Global cerebral ischemia was induced by 5 minutes of cardiac arrest and resuscitation (CAR). Edaravone, 3 mg/kg, was administered intravenously either immediately or 60 minutes after CAR. The morphological damage was assessed by cresyl violet staining. The microtubule-associated protein 2 (a maker of neuronal perikarya and dendrites), the β amyloid precursor protein (the accumulation of which is a maker of axonal damage), and the ionized calcium binding adaptor molecule 1 (a marker of microglia) were stained for immunohistochemical analysis. Significant neuronal perikaryal damage and marked microglial activation were observed in the hippocampal CA1 region with little axonal damage one week after CAR. Two weeks after CAR, the perikaryal damage and microglial activation were unchanged, but obvious axonal damage occurred. Administration of edaravone 60 minutes after CAR significantly mitigated the perikaryal damage, the axonal damage, and the microglial activation. Our results show that axonal damage develops slower than perikaryal damage and that edaravone can protect both gray and white matter after CAR in rats. PMID:19410562

  17. Cerebral amyloid is associated with greater white-matter hyperintensity accrual in cognitively normal older adults.

    PubMed

    Scott, Julia A; Braskie, Meredith N; Tosun, Duygu; Maillard, Pauline; Thompson, Paul M; Weiner, Michael; DeCarli, Charles; Carmichael, Owen T

    2016-12-01

    Cross-sectional studies show that elevated cerebral amyloid is associated with greater white-matter hyperintensity (WMH) burden in cognitively normal (CN) older adults. However, the relative time courses of amyloid and WMH accrual are unclear. To address this, we tested the associations between known WMH correlates-age, hypertension, and amyloid-with WMH accrual rate. We used brain magnetic resonance imaging to measure WMH change in 112 CN Alzheimer's Disease Neuroimaging Initiative (GO/2) participants over a 2-year period. A linear mixed effects model assessed baseline cerebrospinal fluid amyloid beta (Aβ) 1-42, hypertension, age, and their interactions, as predictors of greater WMH accrual. Greater amyloid burden was associated with greater WMH accrual over time. Those with hypertension showed a stronger association between greater amyloid burden and WMH accrual rate. Greater age was not significantly associated with greater WMH accrual in this model. Although the direction of the relationship cannot be tested in this model, CN individuals harboring cerebral amyloid had greater accrual of WMH over a 2-year period after accounting for hypertension and age. Impaired amyloid clearance and cerebral small vessel disease may both underlie the more rapid emergence of WM lesions. The role of cerebral amyloid burden in white-matter injury should thus be considered as a relevant factor when WMHs are detected clinically. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Cerebral amyloid is associated with greater white-matter hyperintensity accrual in cognitively normal older adults

    PubMed Central

    Scott, Julia A.; Braskie, Meredith N.; Tosun, Duygu; Maillard, Pauline; Thompson, Paul M.; Weiner, Michael; DeCarli, Charles; Carmichael, Owen T.

    2017-01-01

    Cross-sectional studies show that elevated cerebral amyloid is associated with greater white-matter hyperintensity (WMH) burden in cognitively normal (CN) older adults. However, the relative time courses of amyloid and WMH accrual are unclear. To address this, we tested the associations between known WMH correlates—age, hypertension, and amyloid—with WMH accrual rate. We used brain magnetic resonance imaging to measure WMH change in 112 CN Alzheimer’s Disease Neuroimaging Initiative (GO/2) participants over a 2-year period. A linear mixed effects model assessed baseline cerebrospinal fluid amyloid beta (Aβ) 1–42, hypertension, age, and their interactions, as predictors of greater WMH accrual. Greater amyloid burden was associated with greater WMH accrual over time. Those with hypertension showed a stronger association between greater amyloid burden and WMH accrual rate. Greater age was not significantly associated with greater WMH accrual in this model. Although the direction of the relationship cannot be tested in this model, CN individuals harboring cerebral amyloid had greater accrual of WMH over a 2-year period after accounting for hypertension and age. Impaired amyloid clearance and cerebral small vessel disease may both underlie the more rapid emergence of WM lesions. The role of cerebral amyloid burden in white-matter injury should thus be considered as a relevant factor when WMHs are detected clinically. PMID:27639120

  19. Retrograde Cerebral Perfusion Results in Better Perfusion to the Striatum Than the Cerebral Cortex During Deep Hypothermic Circulatory Arrest: A Microdialysis Study.

    PubMed

    Liang, Meng-Ya; Chen, Guang-Xian; Tang, Zhi-Xian; Rong, Jian; Yao, Jian-ping; Wu, Zhong-Kai

    2016-03-01

    It remains controversial whether contemporary cerebral perfusion techniques, utilized during deep hypothermic circulatory arrest (DHCA), establish adequate perfusion to deep structures in the brain. This study aimed to investigate whether selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion (RCP) can provide perfusion equally to various anatomical positions in the brain using metabolic evidence obtained from microdialysis. Eighteen piglets were randomly assigned to 40 min of circulatory arrest (CA) at 18°C without cerebral perfusion (DHCA group, n = 6) or with SACP (SACP group, n = 6) or RCP (RCP group, n = 6). Microdialysis parameters (glucose, lactate, pyruvate, and glutamate) were measured every 30 min in cortex and striatum. After 3 h of reperfusion, brain tissue was harvested for Western blot measurement of α-spectrin. After 40 min of CA, the DHCA group showed marked elevations of lactate and glycerol and a reduction in glucose in the microdialysis perfusate (all P < 0.05). The changes in glucose, lactate, and glycerol in the perfusate and α-spectrin expression in brain tissue were similar between cortex and striatum in the SACP group (all P > 0.05). In the RCP group, the cortex exhibited lower glucose, higher lactate, and higher glycerol in the perfusate and higher α-spectrin expression in brain tissue compared with the striatum (all P < 0.05). Glutamate showed no difference between cortex and striatum in all groups (all P > 0.05). In summary, SACP provided uniform and continuous cerebral perfusion to most anatomical sites in the brain, whereas RCP resulted in less sufficient perfusion to the cortex but better perfusion to the striatum. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. Modeling fluid diffusion in cerebral white matter with random walks in complex environments

    NASA Astrophysics Data System (ADS)

    Levy, Amichai; Cwilich, Gabriel; Buldyrev, Sergey V.; Weeden, Van J.

    2012-02-01

    Recent studies with diffusion MRI have shown new aspects of geometric order in the brain, including complex path coherence within the cerebral cortex, and organization of cerebral white matter and connectivity across multiple scales. The main assumption of these studies is that water molecules diffuse along myelin sheaths of neuron axons in the white matter and thus the anisotropy of their diffusion tensor observed by MRI can provide information about the direction of the axons connecting different parts of the brain. We model the diffusion of particles confined in the space of between the bundles of cylindrical obstacles representing fibrous structures of various orientations. We have investigated the directional properties of the diffusion, by studying the angular distribution of the end point of the random walks as a function of their length, to understand the scale over which the distribution randomizes. We will show evidence of qualitative change in the behavior of the diffusion for different volume fractions of obstacles. Comparisons with three-dimensional MRI images will be illustrated.

  1. Quantitative comparison of cortical and deep grey matter in pathological subtypes of unilateral cerebral palsy.

    PubMed

    Scheck, Simon M; Pannek, Kerstin; Fiori, Simona; Boyd, Roslyn N; Rose, Stephen E

    2014-10-01

    The aim of this study was to quantify grey matter changes in children with unilateral cerebral palsy (UCP), differentiating between cortical or deep grey matter (CDGM) lesions, periventricular white matter (PWM) lesions, and unilateral and bilateral lesions. In a cross-sectional study we obtained high resolution structural magnetic resonance images from 72 children (41 males, 31 females, mean age 10y 9mo [SD 3y 1mo], range 5y 1mo-17y 1mo) with UCP (33 left, 39 right hemiplegia; Manual Ability Classification System level I n=29, II n=43; Gross Motor Function Classification System level I n=46, II n=26), and 19 children with typical development (CTD; eight males, 11 females, mean age 11y 2mo [SD 2y 7mo], range 7y 8mo-16y 4mo). Images were classified by lesion type and analyzed using voxel-based morphometry (VBM) and subcortical volumetric analysis. Deep grey matter volumes were not significantly different between children with CDGM and PWM lesions, with the thalamus, putamen, and globus pallidus being reduced unilaterally in both groups compared with CTD (p≤0.001). Children with CDGM lesions additionally showed widespread cortical changes involving all lobes using VBM (p<0.01). Children with bilateral lesions had reduced thalamus and putamen volumes bilaterally (p<0.001). The thalamic volume was reduced bilaterally in children with unilateral lesions (p=0.004). Lesions to the PWM cause secondary changes to the deep grey matter structures similar to primary changes seen in CDGM lesions. Despite having a unilateral phenotype, grey matter changes are observed bilaterally, even in children with unilateral lesions. © 2014 Mac Keith Press.

  2. Methylmercury poisoning in common marmosets--a study of selective vulnerability within the cerebral cortex.

    PubMed

    Eto, K; Yasutake, A; Kuwana, T; Korogi, Y; Akima, M; Shimozeki, T; Tokunaga, H; Kaneko, Y

    2001-01-01

    Neuropathological lesions found in chronic human Minamata disease tend to be localized in the calcarine cortex of occipital lobes, the pre- and postcentral lobuli, and the temporal gyri. The mechanism for the selective vulnerability is still not clear, though several hypotheses have been proposed. One hypothesis is vascular and postulates that the lesions are the result of ischemia secondary to compression of sulcal arteries from methylmercury-induced cerebral edema. To test this hypothesis, we studied common marmosets because the cerebrum of marmosets has 2 distinct deep sulci, the calcarine and Sylvian fissures. MRI analysis, mercury assays of tissue specimens, histologic and histochemical studies of the brain are reported and discussed. Brains sacrificed early after exposure to methylmercury showed high contents of methylmercury and edema of the cerebral white matter. These results may explain the selective cortical degeneration along the deep cerebral fissures or sulci.

  3. APOL1 renal-risk variants associate with reduced cerebral white matter lesion volume and increased gray matter volume.

    PubMed

    Freedman, Barry I; Gadegbeku, Crystal A; Bryan, R Nick; Palmer, Nicholette D; Hicks, Pamela J; Ma, Lijun; Rocco, Michael V; Smith, S Carrie; Xu, Jianzhao; Whitlow, Christopher T; Wagner, Benjamin C; Langefeld, Carl D; Hawfield, Amret T; Bates, Jeffrey T; Lerner, Alan J; Raj, Dominic S; Sadaghiani, Mohammad S; Toto, Robert D; Wright, Jackson T; Bowden, Donald W; Williamson, Jeff D; Sink, Kaycee M; Maldjian, Joseph A; Pajewski, Nicholas M; Divers, Jasmin

    2016-08-01

    To assess apolipoprotein L1 gene (APOL1) renal-risk-variant effects on the brain, magnetic resonance imaging (MRI)-based cerebral volumes and cognitive function were assessed in 517 African American-Diabetes Heart Study (AA-DHS) Memory IN Diabetes (MIND) and 2568 hypertensive African American Systolic Blood Pressure Intervention Trial (SPRINT) participants without diabetes. Within these cohorts, 483 and 197 had cerebral MRI, respectively. AA-DHS participants were characterized as follows: 60.9% female, mean age of 58.6 years, diabetes duration 13.1 years, estimated glomerular filtration rate of 88.2 ml/min/1.73 m(2), and a median spot urine albumin to creatinine ratio of 10.0 mg/g. In additive genetic models adjusting for age, sex, ancestry, scanner, intracranial volume, body mass index, hemoglobin A1c, statins, nephropathy, smoking, hypertension, and cardiovascular disease, APOL1 renal-risk-variants were positively associated with gray matter volume (β = 3.4 × 10(-3)) and negatively associated with white matter lesion volume (β = -0.303) (an indicator of cerebral small vessel disease) and cerebrospinal fluid volume (β= -30707) (all significant), but not with white matter volume or cognitive function. Significant associations corresponding to adjusted effect sizes (β/SE) were observed with gray matter volume (0.16) and white matter lesion volume (-0.208), but not with cerebrospinal fluid volume (-0.251). Meta-analysis results with SPRINT Memory and Cognition in Decreased Hypertension (MIND) participants who had cerebral MRI were confirmatory. Thus, APOL1 renal-risk-variants are associated with larger gray matter volume and lower white matter lesion volume suggesting lower intracranial small vessel disease. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  4. [Therapeutic effects on cerebral white matter injury of premature infants treated with acupuncture for promoting the governor vessel and tranquilizing the mind].

    PubMed

    Cai, Shuying; Liu, Zhenhuan; Peng, Guilan; Huang, Xinfa; Li, Yinlan; Hu, Shuxiang

    2018-01-12

    To explore the repair effects of acupuncture for promoting the governor vessel and tranquilizing the mind (acupuncture technique) on cerebral white matter injury of premature infants. A total of 56 cases of cerebral whiter matter injury of premature infants, the fetal age less than 35 weeks were selected and randomized into an observation group (27 cases) and a control group (29 cases). The routine basic rehabilitation therapy was used in the two groups. Additionally, in the observation group, the acupuncture technique was added, once a day and the treatment for 15 days was as 1 course. Totally, 3 courses of treatment were required. Before and after treatment, the cranial magnetic resonance imaging (MRI) and the diffusion tensor imaging (DTI) were adopted to observe the location and severity of cerebral white matter injury. The Gesell developmental scale was used to assess the nerve motor development. After treatment, the difference was not significant statistically in the severity of cerebral white matter injury in the infants between the two groups ( P >0.05). The FA value of cerebral white matter in the interesting zone was increased as compared with that before treatment in the infants of the two groups (both P <0.05). The result in the observation group was higher than that in the control groups ( P <0.05). After treatment, DQ value of each function zone in Gesell scale was all increased as compared with that before treatment in the two groups (all P <0.05). After treatment, the DQ values of gross motor, fine motor and social adaptability in the observation group were higher than those in the control group (all P <0.05). After treatment, the difference was not significant in DQ value of individual-social and speech behaviors between the two groups (both P >0.05). Acupuncture technique for promoting the governor vessel and tranquilizing the mind promotes the repair of the function in the premature infants with cerebral white matter injury and further benefits

  5. Deep versus periventricular white matter lesions and cognitive function in a community sample of middle-aged participants.

    PubMed

    Soriano-Raya, Juan José; Miralbell, Júlia; López-Cancio, Elena; Bargalló, Núria; Arenillas, Juan Francisco; Barrios, Maite; Cáceres, Cynthia; Toran, Pere; Alzamora, Maite; Dávalos, Antoni; Mataró, Maria

    2012-09-01

    The association of cerebral white matter lesions (WMLs) with cognitive status is not well understood in middle-aged individuals. Our aim was to determine the specific contribution of periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs) to cognitive function in a community sample of asymptomatic participants aged 50 to 65 years. One hundred stroke- and dementia-free adults completed a comprehensive neuropsychological battery and brain MRI protocol. Participants were classified according to PVH and DWMH scores (Fazekas scale). We dichotomized our sample into low grade WMLs (participants without or with mild lesions) and high grade WMLs (participants with moderate or severe lesions). Analyses were performed separately in PVH and DWMH groups. High grade DWMHs were associated with significantly lower scores in executive functioning (-0.45 standard deviations [SD]), attention (-0.42 SD), verbal fluency (-0.68 SD), visual memory (-0.52 SD), visuospatial skills (-0.79 SD), and psychomotor speed (-0.46 SD). Further analyses revealed that high grade DWMHs were also associated with a three- to fourfold increased risk of impaired scores (i.e.,<1.5 SD) in executive functioning, verbal fluency, visuospatial skills, and psychomotor speed. Our findings suggest that only DWMHs, not PVHs, are related to diminished cognitive function in middle-aged individuals. (JINS, 2012, 18, 1-12).

  6. Disconnected Aging: Cerebral White Matter Integrity and Age-Related Differences in Cognition

    PubMed Central

    Bennett, Ilana J.; Madden, David J.

    2013-01-01

    Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging. PMID:24280637

  7. Roflumilast promotes memory recovery and attenuates white matter injury in aged rats subjected to chronic cerebral hypoperfusion.

    PubMed

    Santiago, Amanda; Soares, Lígia Mendes; Schepers, Melissa; Milani, Humberto; Vanmierlo, Tim; Prickaerts, Jos; Weffort de Oliveira, Rúbia M

    2018-06-19

    Chronic cerebral hypoperfusion (CCH) has been associated with aging-related vascular dementia, including Alzheimer's disease. It can be induced by the four-vessel occlusion/internal carotid artery (4VO/ICA) model in aged rats, resulting in persistent memory deficits, white matter injury, and significant neuronal loss in the hippocampus and cerebral cortex. The phosphodiesterase type 4 inhibitor (PDE4-I) roflumilast has been reported to have pro-cognitive effects in several behavioral paradigms. The present study evaluated the effects of repeated roflumilast treatment in aged rats that were subjected to CCH. After surgery, roflumilast (0.003 and 0.01 mg/kg) was administered intraperitoneally once per day for 29 days. Memory performance was assessed in the aversive radial maze (AvRM) 7, 14, and 21 days after CCH. The effects of roflumilast on hippocampal neurodegeneration and white matter injury were investigated using Nissl and Kluver-Barrera staining, respectively. Western blot and RT-qPCR were used to explore microglial polarization using M1 (Iba-1 and iNOS) and M2 (Arginase-1) markers. Chronic cerebral hypoperfusion caused persistent memory deficits, hippocampal neurodegeneration, and vacuolization and fiber disarrangement in white matter. Repeated roflumilast treatment restored CCH-induced cognitive impairments in aged rats but in the absence of the rescue of hippocampal neurons. Attenuation of white matter injury was detected in the optic tract in aged CCH rats that were treated with roflumilast. In vitro, roflumilast increased Arg-1 gene expression in myelin-laden primary microglia. The present data suggest that roflumilast might be useful for the treatment of cognitive sequelae associated with CCH. Copyright © 2018. Published by Elsevier Ltd.

  8. Effects of Surgery and Proton Therapy on Cerebral White Matter of Craniopharyngioma Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org; Merchant, Thomas E.; Li, Yimei

    Purpose: The purpose of this study was to determine radiation dose effect on the structural integrity of cerebral white matter in craniopharyngioma patients receiving surgery and proton therapy. Methods and Materials: Fifty-one patients (2.1-19.3 years of age) with craniopharyngioma underwent surgery and proton therapy in a prospective therapeutic trial. Anatomical magnetic resonance images acquired after surgery but before proton therapy were inspected to identify white matter structures intersected by surgical corridors and catheter tracks. Longitudinal diffusion tensor imaging (DTI) was performed to measure microstructural integrity changes in cerebral white matter. Fractional anisotropy (FA) derived from DTI was statistically analyzed for 51more » atlas-based white matter structures of the brain to determine radiation dose effect. FA in surgery-affected regions in the corpus callosum was compared to that in its intact counterpart to determine whether surgical defects affect radiation dose effect. Results: Surgical defects were seen most frequently in the corpus callosum because of transcallosal resection of tumors and insertion of ventricular or cyst catheters. Longitudinal DTI data indicated reductions in FA 3 months after therapy, which was followed by a recovery in most white matter structures. A greater FA reduction was correlated with a higher radiation dose in 20 white matter structures, indicating a radiation dose effect. The average FA in the surgery-affected regions before proton therapy was smaller (P=.0001) than that in their non–surgery-affected counterparts with more intensified subsequent reduction of FA (P=.0083) after therapy, suggesting that surgery accentuated the radiation dose effect. Conclusions: DTI data suggest that mild radiation dose effects occur in patients with craniopharyngioma receiving surgery and proton therapy. Surgical defects present at the time of proton therapy appear to accentuate the radiation dose effect

  9. Blood Pressure Control in Aging Predicts Cerebral Atrophy Related to Small-Vessel White Matter Lesions.

    PubMed

    Kern, Kyle C; Wright, Clinton B; Bergfield, Kaitlin L; Fitzhugh, Megan C; Chen, Kewei; Moeller, James R; Nabizadeh, Nooshin; Elkind, Mitchell S V; Sacco, Ralph L; Stern, Yaakov; DeCarli, Charles S; Alexander, Gene E

    2017-01-01

    Cerebral small-vessel damage manifests as white matter hyperintensities and cerebral atrophy on brain MRI and is associated with aging, cognitive decline and dementia. We sought to examine the interrelationship of these imaging biomarkers and the influence of hypertension in older individuals. We used a multivariate spatial covariance neuroimaging technique to localize the effects of white matter lesion load on regional gray matter volume and assessed the role of blood pressure control, age and education on this relationship. Using a case-control design matching for age, gender, and educational attainment we selected 64 participants with normal blood pressure, controlled hypertension or uncontrolled hypertension from the Northern Manhattan Study cohort. We applied gray matter voxel-based morphometry with the scaled subprofile model to (1) identify regional covariance patterns of gray matter volume differences associated with white matter lesion load, (2) compare this relationship across blood pressure groups, and (3) relate it to cognitive performance. In this group of participants aged 60-86 years, we identified a pattern of reduced gray matter volume associated with white matter lesion load in bilateral temporal-parietal regions with relative preservation of volume in the basal forebrain, thalami and cingulate cortex. This pattern was expressed most in the uncontrolled hypertension group and least in the normotensives, but was also more evident in older and more educated individuals. Expression of this pattern was associated with worse performance in executive function and memory. In summary, white matter lesions from small-vessel disease are associated with a regional pattern of gray matter atrophy that is mitigated by blood pressure control, exacerbated by aging, and associated with cognitive performance.

  10. Midlife Systemic Inflammation, Late-Life White Matter Integrity, and Cerebral Small Vessel Disease: The Atherosclerosis Risk in Communities Study.

    PubMed

    Walker, Keenan A; Power, Melinda C; Hoogeveen, Ron C; Folsom, Aaron R; Ballantyne, Christie M; Knopman, David S; Windham, B Gwen; Selvin, Elizabeth; Jack, Clifford R; Gottesman, Rebecca F

    2017-12-01

    It is currently unclear whether midlife systemic inflammation promotes the development of white matter (WM) abnormalities and small vessel disease in the elderly. We examined the association of midlife systemic inflammation with late-life WM hyperintensity volume, deep and periventricular WM microstructural integrity (fractional anisotropy and mean diffusivity [MD]), cerebral infarcts, and microbleeds in a biracial prospective cohort study. Linear and logistic regression examined the relation between midlife high-sensitivity C-reactive protein (CRP)-a nonspecific marker of inflammation-and brain magnetic resonance imaging markers assessed 21 years later in the Atherosclerosis Risk in Communities Study. We included 1485 participants (baseline age, 56[5]; 28% black). After adjusting for demographic factors and cardiovascular disease, each SD increase in midlife CRP was associated with lower fractional anisotropy (-0.09 SD; 95% confidence interval, -0.15 to -0.02) and greater MD (0.08 SD; 95% confidence interval, 0.03-0.15) in deep WM and lower fractional anisotropy (-0.07 SD; 95% confidence interval, -0.13 to 0.00) in periventricular WM. We found stronger associations between CRP and periventricular WM microstructural integrity among black participants ( P interaction=0.011). Although an association between higher CRP levels and greater WM hyperintensity volume was found only among APOE ε4-positive participants in our primary analysis (0.14 SD; 95% confidence interval, 0.01-0.26; P interaction=0.028), this relationship extended to the entire sample after accounting for differential attrition. Midlife CRP was not associated with the presence of cerebral infarcts or microbleeds in late life. Our findings support the hypothesis that midlife systemic inflammation may promote the development of chronic microangiopathic structural WM abnormalities in the elderly. © 2017 American Heart Association, Inc.

  11. The Risk of Neurological Dysfunctions after Deep Hypothermic Circulatory Arrest with Retrograde Cerebral Perfusion.

    PubMed

    Gatti, Giuseppe; Benussi, Bernardo; Currò, Placido; Forti, Gabriella; Rauber, Elisabetta; Minati, Alessandro; Gabrielli, Marco; Tognolli, Umberto; Sinagra, Gianfranco; Pappalardo, Aniello

    2017-12-01

    Retrograde cerebral perfusion (RCP) is a brain protection technique that is adopted generally for anticipated short periods of deep hypothermic circulatory arrest (DHCA). However, the real impact of this technique on cerebral protection during DHCA remains a controversial issue. For 344 (59.5%) of 578 consecutive patients (mean age, 66.9 ± 10.9 years) who underwent cardiovascular surgery under DHCA at the present authors' institution (1999-2015), RCP was the sole technique of cerebral protection that was adopted in addition to deep hypothermia. Surgery of the thoracic aorta was performed in 95.9% of these RCP patients; in 92 cases there was an aortic arch involvement. Outcomes were reviewed retrospectively. The focus was on postoperative neurological dysfunctions. There were 33 (9.6%) in-hospital deaths. Thirty-one (9%) patients had permanent neurological dysfunctions and 66 (19.1%) transitory neurological dysfunctions alone. Age older than 74 years (odds ratio [OR], 1.88, P = .023), surgery for acute aortic dissection (OR, 2.57; P = .0009), and DHCA time longer than 25 minutes (OR, 2.44; P = .0021) were predictors of neurological dysfunctions. The 10-year nonparametric estimate of freedom from all-cause death was 61.8% (95% confidence interval, 57.8%-65.8%). Permanent postoperative neurological dysfunctions were risk factors for cardiac or cerebrovascular death (hazard ratio, 2.6; P = .039) even after an adjusted survival analysis (P < .04). According to the study findings, RCP, in addition to deep hypothermia, combines with a low risk of neurological dysfunctions provided that DHCA length is 25 minutes or less. Permanent postoperative neurological dysfunctions are predictors of poor late survival. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Permeability Surface of Deep Middle Cerebral Artery Territory on Computed Tomographic Perfusion Predicts Hemorrhagic Transformation After Stroke.

    PubMed

    Li, Qiao; Gao, Xinyi; Yao, Zhenwei; Feng, Xiaoyuan; He, Huijin; Xue, Jing; Gao, Peiyi; Yang, Lumeng; Cheng, Xin; Chen, Weijian; Yang, Yunjun

    2017-09-01

    Permeability surface (PS) on computed tomographic perfusion reflects blood-brain barrier permeability and is related to hemorrhagic transformation (HT). HT of deep middle cerebral artery (MCA) territory can occur after recanalization of proximal large-vessel occlusion. We aimed to determine the relationship between HT and PS of deep MCA territory. We retrospectively reviewed 70 consecutive acute ischemic stroke patients presenting with occlusion of the distal internal carotid artery or M1 segment of the MCA. All patients underwent computed tomographic perfusion within 6 hours after symptom onset. Computed tomographic perfusion data were postprocessed to generate maps of different perfusion parameters. Risk factors were identified for increased deep MCA territory PS. Receiver operating characteristic curve analysis was performed to calculate the optimal PS threshold to predict HT of deep MCA territory. Increased PS was associated with HT of deep MCA territory. After adjustments for age, sex, onset time to computed tomographic perfusion, and baseline National Institutes of Health Stroke Scale, poor collateral status (odds ratio, 7.8; 95% confidence interval, 1.67-37.14; P =0.009) and proximal MCA-M1 occlusion (odds ratio, 4.12; 95% confidence interval, 1.03-16.52; P =0.045) were independently associated with increased deep MCA territory PS. Relative PS most accurately predicted HT of deep MCA territory (area under curve, 0.94; optimal threshold, 2.89). Increased PS can predict HT of deep MCA territory after recanalization therapy for cerebral proximal large-vessel occlusion. Proximal MCA-M1 complete occlusion and distal internal carotid artery occlusion in conjunction with poor collaterals elevate deep MCA territory PS. © 2017 American Heart Association, Inc.

  13. Disconnected aging: cerebral white matter integrity and age-related differences in cognition.

    PubMed

    Bennett, I J; Madden, D J

    2014-09-12

    Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Cerebral venous infarction: a potentially avoidable complication of deep brain stimulation surgery.

    PubMed

    Morishita, Takashi; Okun, Michael S; Burdick, Adam; Jacobson, Charles E; Foote, Kelly D

    2013-01-01

    Despite numerous reports on the morbidity and mortality of deep brain stimulation (DBS), cerebral venous infarction has rarely been reported. We present four cases of venous infarct secondary to DBS surgery. The diagnosis of venous infarction was based on 1) delayed onset of new neurologic deficits on postoperative day 1 or 2; 2) significant edema surrounding the superficial aspect of the implanted lead, with or without subcortical hemorrhage on CT scan. Four cases (0.8% per lead, 1.3% per patient) of symptomatic cerebral venous infarction were identified out of 500 DBS lead implantation procedures between July 2002 and August 2009. All four patients had Parkinson's disease. Their DBS leads were implanted in the subthalamic nucleus (n = 2), and the globus pallidus internus (n = 2). Retrospective review of the targeting confirmed that the planned trajectory passed within 3 mm of a cortical vein in two cases for which contrast-enhanced preoperative magnetic resonance (MR) imaging was available. In the other two cases, contrasted targeting images were not obtained preoperatively. Cerebral venous infarction is a potentially avoidable, but serious complication. To minimize its incidence, we propose the use of high-resolution, contrast-enhanced, T1-weighted MR images to delineate cerebral venous anatomy, along with careful stereotactic planning of the lead trajectory to avoid injury to venous structures. © 2013 International Neuromodulation Society.

  15. Cerebral arterial bolus arrival time is prolonged in multiple sclerosis and associated with disability

    PubMed Central

    Paling, David; Thade Petersen, Esben; Tozer, Daniel J; Altmann, Daniel R; Wheeler-Kingshott, Claudia AM; Kapoor, Raju; Miller, David H; Golay, Xavier

    2014-01-01

    Alterations in the overall cerebral hemodynamics have been reported in multiple sclerosis (MS); however, their cause and significance is unknown. While potential venous causes have been examined, arterial causes have not. In this study, a multiple delay time arterial spin labeling magnetic resonance imaging sequence at 3T was used to quantify the arterial hemodynamic parameter bolus arrival time (BAT) and cerebral blood flow (CBF) in normal-appearing white matter (NAWM) and deep gray matter in 33 controls and 35 patients with relapsing–remitting MS. Bolus arrival time was prolonged in MS in NAWM (1.0±0.2 versus 0.9±0.2 seconds, P=0.031) and deep gray matter (0.90±0.18 versus 0.80±0.14 seconds, P=0.001) and CBF was increased in NAWM (14±4 versus 10±2 mL/100 g/min, P=0.001). Prolonged BAT in NAWM (P=0.042) and deep gray matter (P=0.01) were associated with higher expanded disability status score. This study demonstrates alteration in cerebral arterial hemodynamics in MS. One possible cause may be widespread inflammation. Bolus arrival time was longer in patients with greater disability independent of atrophy and T2 lesion load, suggesting alterations in cerebral arterial hemodynamics may be a marker of clinically relevant pathology. PMID:24045400

  16. White spots on enamel: treatment protocol by superficial or deep infiltration (part 2).

    PubMed

    Attal, Jean-Pierre; Atlan, Anthony; Denis, Maud; Vennat, Elsa; Tirlet, Gilles

    2014-03-01

    In this 2nd part, the current treatment of white spot lesions by erosion/infiltration is presented, beginning with a reminder of the principle of superficial infiltration, which enables most early carious lesions, fluorosis and post-traumatic lesions to be treated. However, this technique has met with frequent failures in cases of MIH or deep lesions of traumatic origin or those associated with fluorosis. For this reason a new deep infiltration technique is proposed: thanks to its global treatment concept, this enables all white spots to be treated. The place of whitening in these treatment options is discussed, with explanations of the main reasons for its failures. Copyright © 2014 CEO. Published by Elsevier Masson SAS. All rights reserved.

  17. Time-to-Surgery and Pre-operative Cerebral Hemodynamics Predict Post-operative White Matter Injury in Neonates with Hypoplastic Left Heart Syndrome

    PubMed Central

    Lynch, Jennifer M.; Buckley, Erin M.; Schwab, Peter J.; McCarthy, Ann L.; Winters, Madeline E.; Busch, David R.; Xiao, Rui; Goff, Donna A.; Nicolson, Susan C.; Montenegro, Lisa M.; Fuller, Stephanie; Gaynor, J. William; Spray, Thomas L.; Yodh, Arjun G.; Naim, Maryam Y.; Licht, Daniel J.

    2014-01-01

    Objective Hypoxic-ischemic white mater brain injury commonly occurs in neonates with hypoplastic left heart syndrome (HLHS). Approximately half of the HLHS survivors exhibit neurobehavioral symptoms believed to be associated with this injury, though the exact timing of the injury is not known. Methods Neonates with HLHS were recruited for pre- and post-operative monitoring of cerebral oxygen saturation (ScO2), cerebral oxygen extraction fraction (OEF), and cerebral blood flow (CBF) using two non-invasive optical-based techniques, namely diffuse optical spectroscopy and diffuse correlation spectroscopy. Anatomical magnetic resonance imaging (MRI) scans were performed prior to and approximately one week after surgery in order to quantify the extent and timing of the acquired white matter injury. Risk factors for developing new or worsened white matter injury were assessed using uni- and multi-variate logistic regression. Results Thirty-seven neonates with HLHS were studied. In a univariate analysis, neonates who developed a large volume of new, or worsened, postoperative white matter injury had a significantly longer time-to-surgery (p=0.0003). In a multivariate model, longer time between birth and surgery (i.e., time-to-surgery), delayed sternal closure, and higher pre-operative CBF were predictors of post-operative white matter injury. Additionally, longer time-to-surgery and higher pre-operative CBF on morning of surgery were correlated with lower ScO2 (p=0.03 and p=0.05) and higher OEF (p=0.05 and p=0.05). Conclusions Longer time-to-surgery is associated with new post-operative white matter injury in otherwise healthy neonates with HLHS. The results suggest that earlier Norwood palliation may decrease the likelihood of acquiring postoperative white matter injury. PMID:25109755

  18. Does the use of thiopental provide added cerebral protection during deep hypothermic circulatory arrest?

    PubMed Central

    Al-Hashimi, Sara; Zaman, Mahvash; Waterworth, Paul; Bilal, Haris

    2013-01-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: Does the use of thiopental provide added cerebral protection during deep hypothermic circulatory arrest (DHCA)? Altogether, more than 62 papers were found using the reported search, of which 7 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Four of the seven papers used thiopental alongside other neuroprotective methods and agents. The methods included the use of ice packs to the head and core systemic hypothermia. Agents used alongside thiopental included nicardipine and mannitol. Thiopental was found to have the ability to lower oxygen consumption, where oxygen consumption was measured using the phosphocreatinine and adenosine triphosphate ratio. The neuroprotective effect of thiopental was evaluated by assessing the electrical activity of the brain during circulatory arrest, by which it was shown to be advantageous. However, other trials suggested that adding thiopental during circulatory arrest did not provide any extra protection to the brain. The timing of thiopental administration is of importance in order to gain positive outcomes, as it's ability to lower the cerebral energy state may result in unfavourable results if added before hypothermic circulatory arrest, where this may lead to an ischaemic event. We conclude that the use of thiopental during deep hypothermic circulatory arrest is beneficial, but if administered too early, it may replete the cerebral energy state before arrest and prove to be detrimental. PMID:23644730

  19. Does the use of thiopental provide added cerebral protection during deep hypothermic circulatory arrest?

    PubMed

    Al-Hashimi, Sara; Zaman, Mahvash; Waterworth, Paul; Bilal, Haris

    2013-08-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: Does the use of thiopental provide added cerebral protection during deep hypothermic circulatory arrest (DHCA)? Altogether, more than 62 papers were found using the reported search, of which 7 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Four of the seven papers used thiopental alongside other neuroprotective methods and agents. The methods included the use of ice packs to the head and core systemic hypothermia. Agents used alongside thiopental included nicardipine and mannitol. Thiopental was found to have the ability to lower oxygen consumption, where oxygen consumption was measured using the phosphocreatinine and adenosine triphosphate ratio. The neuroprotective effect of thiopental was evaluated by assessing the electrical activity of the brain during circulatory arrest, by which it was shown to be advantageous. However, other trials suggested that adding thiopental during circulatory arrest did not provide any extra protection to the brain. The timing of thiopental administration is of importance in order to gain positive outcomes, as it's ability to lower the cerebral energy state may result in unfavourable results if added before hypothermic circulatory arrest, where this may lead to an ischaemic event. We conclude that the use of thiopental during deep hypothermic circulatory arrest is beneficial, but if administered too early, it may replete the cerebral energy state before arrest and prove to be detrimental.

  20. Pharmacological Effects of Erythropoietin and its Derivative Carbamyl erythropoietin in Cerebral White Matter Injury

    NASA Astrophysics Data System (ADS)

    Liu, Wei

    Periventricular leukomalacia (PVL) is the predominant form of brain injury in the premature infant and the most common cause of cerebral palsy, yet no therapy currently exists for this serious human disorder. As PVL often occurs in preterm infants suffering from cerebral hypoxia/ischemia with or without prior exposure to maternal-fetal infection/inflammation, we used hypoxia/ischemia with or without lipopolysaccharide (LPS) injection, to produce clinically relevant PVL-like lesions in the white matter in postnatal day six (P6) mice. We studied the white matter pathology under different conditions, such as different durations of hypoxia and different doses of LPS, to evaluate the effects of those etiological factors on neonatal white matter injury. Distinct related pathological events were investigated at different time points during the progression of PVL. We used immunohistochemistry, histological analysis, and electron microscopy (EM) to study demylination that occurs in the white matter area, which is consistent with the pathology of human PVL. Previous studies have shown that erythropoietin (EPO) and its derivative carbamylated EPO (CEPO) are neuroprotective in various experimental models of brain injury. However, none of these studies investigated their efficacy against white matter injury using appropriate animal models of PVL. We produced unilateral or bilateral white matter injury in P6 mice using unilateral carotid ligation (UCL) followed by hypoxia (6% oxygen, 35 min) or by UCL/hypoxia plus LPS injection, respectively. We administered a single intraperitoneal (i.p.) dose of EPO or CEPO (5000 IU/kg) immediately after the insult, and found both drugs to provide significant protection against white matter injury in PVL mice compared to vehicle-treated groups. In addition, EPO and CEPO treatments attenuated neurobehavioral dysfunctions in an acute manner after PVL injury. EPO and CEPO have relatively few adverse effects, and thus may be a therapeutic agent

  1. White organic light-emitting diodes utilized by near UV-deep blue emitter and exciplex emission.

    PubMed

    Park, Young Wook; Kim, Young Min; Choi, Jin Hwan; Park, Tae Hyun; Choi, Hyun Ju; Yu, Hong Jung; Cho, Min Ju; Choi, Dong Hoon; Kim, Sung Hyun; Ju, Byeong Kwon

    2011-02-01

    Numerous investigations have been made into the development of wide color gamut displays for deep-blue OLEDs, including the RGB sub pixels, and white OLEDs (WOLEDs). One of the well known deep-blue emissive dopants, tris(phenyl-methyl-benzimidazolyl)iridium(III) [Ir(pmb)3], successfully introduced its fascinating color coordinate of Commission Internationale de l'Eclairage (CIE) 1931 (0.17, 0.06), however there have been no reports utilizing its accomplishments as WOLEDs. In this report, using only one phosphorescent dopant, the near UV-deep blue emissive Ir(pmb)3, the WOLEDs having the CIE 1931 coordinate of (0.33, 0.38) at 100 cd/m2 with a color rendering index of 85 are demonstrated. The white emission of the fabricated OLEDs are oriented from the near UV-deep blue emission of Ir(pmb)3 and the successfully controlled exciplex emission, between the Ir(pmb)3-host, and the Ir(pmb)3-interfaced material.

  2. Longitudinal Volume Quantification of Deep Medullary Veins in Patients with Cerebral Venous Sinus Thrombosis : Venous Volume Assessment in Cerebral Venous Sinus Thrombosis Using SWI.

    PubMed

    Dempfle, A K; Harloff, A; Schuchardt, F; Bäuerle, J; Yang, S; Urbach, H; Egger, K

    2017-06-06

    Susceptibility-weighted imaging (SWI) visualizes small cerebral veins with high sensitivity and could, thus, enable quantification of hemodynamics of deep medullary veins. We aimed to evaluate volume changes of deep medullary veins in patients with acute cerebral venous sinus thrombosis (CVST) over time in comparison to healthy controls. All magnetic resonance imaging (MRI) experiments were executed at 3 T using a 32-channel head coil. Based on SWI and semiautomatic postprocessing (statistical parametric mapping [SPM8] and ANTs), the volume of deep medullary veins was quantified in 14 patients with acute CVST at baseline and the 6‑month follow-up, as well as in 13 healthy controls undergoing repeated MRI examination with an interscan interval of at least 1 month. Deep medullary venous volume change over time was significantly different between healthy controls and patient groups (p < 0.001). Patients with superior sagittal sinus thrombosis (SSST) showed a significant decline from baseline to follow-up measurements (9.8 ± 4.9 ml versus 7.5 ± 4.2 ml; p = 0.02), whereas in patients with transverse sinus thrombosis (TST) and healthy controls no significant volume changes were observable. Venous volume quantification was feasible and reproducible both in healthy volunteers and in patients. The decrease of venous volume in patients over time represents improvement of venous drainage, reduction of congestion, and normalization of microcirculation due to treatment. Thus, quantification of venous microcirculation could be valuable for estimation of prognosis and guidance of CVST therapy in the future.

  3. Reduced thalamic N-acetylaspartate in idiopathic normal pressure hydrocephalus: a controlled 1H-magnetic resonance spectroscopy study of frontal deep white matter and the thalamus using absolute quantification.

    PubMed

    Lundin, F; Tisell, A; Dahlqvist Leinhard, O; Tullberg, M; Wikkelsö, C; Lundberg, P; Leijon, G

    2011-07-01

    Patients with idiopathic normal pressure hydrocephalus (INPH) frequently have a reduction in cerebral blood flow in the subcortical frontal lobe/basal ganglia/thalamic areas. With magnetic resonance spectroscopy, the metabolism in the brain can be examined. The aim of this study was to investigate if there was a compromised metabolism in the thalamus and in the subcortical frontal areas in INPH patients. This was done by measuring total creatine, myo-inositol, total choline, N-acetylaspartate (NAA), total N-acetylaspartate (tNA), glutamate and lactate levels. A comparison was made with healthy individuals (HI). 16 patients (nine males, seven females, mean age 74 years, range 49-83) diagnosed as INPH and 15 HI (nine males, six females, mean age 74 years, range 62-89) were examined. (1)H magnetic resonance spectroscopy (1.5 T, point-resolved spectroscopy, echo time/relaxation time 30/3000 ms, volume of interest 2.5-3 ml) was performed in frontal deep white matter and in the thalamus. Absolute quantification with internal water as a reference was used. INPH patients had lower NAA (p=0.02) and lower tNA (p=0.05) concentrations in the thalamus compared with HI. NAA and tNA in the frontal deep white matter did not differ between patients and HI. The absolute metabolic concentrations of total creatine, myo-inositol total choline, tNA, lactate and Cr ratios in frontal deep white matter and in the thalamus were similar in INPH patients and HI. Reduced thalamic NAA and tNA in INPH patients suggest a compromised metabolic neuronal function in these regions. Thus, the thalamus might have an important role in the pathogenesis of INPH.

  4. Angiotensin-converting enzyme insertion/deletion polymorphism is associated with cerebral white matter changes in Alzheimer's disease.

    PubMed

    Chou, Ping-Song; Wu, Shyh-Jong; Kao, Yi-Hui; Chou, Mei-Chuan; Tai, Shu-Yu; Yang, Yuan-Han

    2017-06-01

    The presence of cerebral white matter changes (WMC) has been reported as an important predictor of the rapidity of cognitive decline in Alzheimer's disease (AD). The association between the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism and WMC in AD is yet to be elucidated. The present study aimed to examine the association between the ACE I/D polymorphism and WMC among AD patients in Taiwan. A total of 403 patients clinically diagnosed with AD were recruited in a cross-sectional study carried out in an area hospital in Kaohsiung, Taiwan. The ACE I/D polymorphism was genotyped, and cerebral white matter rating was carried out using the visual rating scale for age-related white matter changes. The I allele was associated with a significantly lower total age-related white matter changes scale score compared with the D allele (4.83 vs 5.93, P = 0.013). The total age-related white matter changes scale score was significantly lower for the I/I genotype than for the I/D (4.37 vs 5.87, P = 0.009) and I/D + D/D genotypes (4.37 vs 5.91, P = 0.006), with no differences observed between the I/I + I/D and the D/D genotypes (5.08 vs 6.09, P = 0.373), after adjustment for age and hypertension. A stratified analysis by sex demonstrated that the I/I genotype was associated with significant lower WMC than other genotypes in women, but not in men. The present study supports the hypothesis that the ACE I/D polymorphism is associated with the severity of WMC in patients with AD. Patients with AD who are homozygous for the I allele might be less likely to develop WMC, especially women. Geriatr Gerontol Int 2017; 17: 945-950. © 2016 Japan Geriatrics Society.

  5. White Matter Hyperintensities Are Under Strong Genetic Influence.

    PubMed

    Sachdev, Perminder S; Thalamuthu, Anbupalam; Mather, Karen A; Ames, David; Wright, Margaret J; Wen, Wei

    2016-06-01

    The genetic basis of white matter hyperintensities (WMH) is still unknown. This study examines the heritability of WMH in both sexes and in different brain regions, and the influence of age. Participants from the Older Australian Twins Study were recruited (n=320; 92 monozygotic and 68 dizygotic pairs) who volunteered for magnetic resonance imaging scans and medical assessments. Heritability, that is, the ratio of the additive genetic variance to the total phenotypic variance, was estimated using the twin design. Heritability was high for total WMH volume (0.76), and for periventricular WMH (0.64) and deep WMH (0.77), and varied from 0.18 for the cerebellum to 0.76 for the occipital lobe. The genetic correlation between deep and periventricular WMH regions was 0.85, with one additive genetics factor accounting for most of the shared variance. Heritability was consistently higher in women in the cerebral regions. Heritability in deep but not periventricular WMH declined with age, in particular after the age of 75. WMH have a strong genetic influence but this is not uniform through the brain, being higher for deep than periventricular WMH and in the cerebral regions. The genetic influence is higher in women, and there is an age-related decline, most markedly for deep WMH. The data suggest some heterogeneity in the pathogenesis of WMH for different brain regions and for men and women. © 2016 American Heart Association, Inc.

  6. Characterization of the Growth of Deep and Subcortical White Matter Hyperintensity on MR Imaging: A Retrospective Cohort Study.

    PubMed

    Adachi, Michito; Sato, Takamichi

    2017-07-10

    In elderly patients, deep and subcortical white matter hyperintense lesions are frequently observed on MRI; however, the growth process of these lesions is unclear. The aims of this retrospective cohort study were to elucidate the growth characteristics of deep and subcortical white matter hyperintense lesions, and to insight their etiology. We enrolled 103 patients (1610 lesions) whose deep and subcortical white matter hyperintense lesions were monitored for 3 or more years by MRI examination. The area of each hyperintense lesion was measured using a tracing method in the first and last MRI examinations. The annual rate of increase in the area of each lesion was calculated, and using the Pearson product-moment correlation coefficient the correlation between the annual rate of increase in area and the interval between the first and last MRI examinations was determined. The paired t-test showed a significant increase in the mean area of all the deep and subcortical white matter hyperintense lesions between the first and last MRI examinations (P < 0.001). However, hyperintense lesions had decreased in the area or disappeared in 227 (14.1%) lesions in the last MRI examination, particularly in patients with diabetes. The mean annual rate of increase in area of all hyperintense lesions was 0.013 ± 0.021 cm 2 per year. The annual rate of increase in area and the interval between the first and last MRI examinations showed a weak negative correlation (r = -0.121; P < 0.01). Decrease in the area and the disappearance of the subcortical white matter hyperintense lesions, and a decline in the annual rate of increase in the lesion area with time suggest that the interstitial fluid accumulation associated with dysfunctional drainage around the vessels may be involved in the possible etiologies of deep and subcortical white matter hyperintense lesions.

  7. Arterial changes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) in relation to pathogenesis of diffuse myelin loss of cerebral white matter: examination of cerebral medullary arteries by reconstruction of serial sections of an autopsy case.

    PubMed

    Okeda, Riki; Arima, Kunimasa; Kawai, Mitsuru

    2002-11-01

    There is little information regarding the pathogenesis underlying diffuse myelin loss in the cerebral white matter and sparing of the U fibers in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), in which the medial smooth muscle cells of systemic arteries are characteristically involved. We sought to examine the precise extent and severity of changes in the cerebral arteries in an autopsy case of CADASIL in relation to pathogenesis of the diffuse myelin loss. We reconstructed 1000 serial sections of the frontal cerebral medullary arteries of an autopsy subject, which was the first identified Japanese case of CADASIL, as confirmed by the presence of ultrastructural deposits of granular osmiophilic material in the media of some visceral arteries and by genetic analysis. We reconstructed 11 medullary arteries of the frontal lobe showing diffuse myelin loss and atrophy of the white matter with sparing of the U fibers. All of these showed complete loss of medial smooth muscle cells over their entire length and severe adventitial fibrosis. Although intimal fibrosis or hyalinosis was present, luminal occlusion was scarce. These changes were also observed in the small and large arachnoidal arteries but were relatively mild in the latter and in the cortical and subcortical medullary arteries. These arterial changes resulted in transformation of the cerebral arteries, in particular almost all the medullary arteries, to a so-called earthen pipe state. This supports the reported findings of a reduction in vascular reactivity to fluctuations in CO2 levels and systemic blood pressure in CADASIL.

  8. Intranasal Insulin Prevents Cognitive Decline, Cerebral Atrophy and White Matter Changes in Murine Type I Diabetic Encephalopathy

    ERIC Educational Resources Information Center

    Francis, George J.; Martinez, Jose A.; Liu, Wei Q.; Xu, Kevin; Ayer, Amit; Fine, Jared; Tuor, Ursula I.; Glazner, Gordon; Hanson, Leah R.; Frey, William H., II; Toth, Cory

    2008-01-01

    Insulin deficiency in type I diabetes may lead to cognitive impairment, cerebral atrophy and white matter abnormalities. We studied the impact of a novel delivery system using intranasal insulin (I-I) in a mouse model of type I diabetes (streptozotocin-induced) for direct targeting of pathological and cognitive deficits while avoiding potential…

  9. Simple retrograde cerebral perfusion is as good as complex antegrade cerebral perfusion for hemiarch replacement.

    PubMed

    Tanaka, Akiko; Estrera, Anthony L

    2018-01-01

    Cerebral complication is a major concern after aortic arch surgery, which may lead to death. Thus, cerebral protection strategy plays the key role to obtain respectable results in aortic arch repair. Deep hypothermic circulatory arrest was introduced in 1970s to decrease the ischemic insults to the brain. However, safe duration of circulatory arrest time was limited to 30 minutes. The 1990s was the decade of evolution for cerebral protection, in which two adjuncts for deep hypothermic circulatory arrest were introduced: retrograde and antegrade cerebral perfusion (ACP) techniques. These two cerebral perfusion techniques significantly decreased incidence of postoperative neurological dysfunction and mortality after aortic arch surgery. Although there are no large prospective studies that demonstrate which perfusion technique provide better outcomes, multiple retrospective studies implicate that ACP may decrease cerebral complications compared to retrograde cerebral perfusion (RCP) when a long circulatory arrest time is required during aortic arch reconstructions. To date, many surgeons favor ACP over RCP during a complex aortic arch repair, such as total arch replacement and hybrid arch replacement. However, the question is whether the use of ACP is necessary during a short, limited circulatory arrest time, such as hemiarch replacement? There is a paucity of data that proves the advantages of a complex ACP over a simple RCP for a short circulatory arrest time. RCP with deep hypothermic circulatory arrest is the simple, efficient cerebral protection technique with minimal interference to the surgical field-and it potentially allows to flush atheromatous debris out from the arch vessels. Thus, it is the preferred adjunct to deep hypothermic circulatory arrest during hemiarch replacement in our institution.

  10. Simple retrograde cerebral perfusion is as good as complex antegrade cerebral perfusion for hemiarch replacement

    PubMed Central

    Tanaka, Akiko

    2018-01-01

    Cerebral complication is a major concern after aortic arch surgery, which may lead to death. Thus, cerebral protection strategy plays the key role to obtain respectable results in aortic arch repair. Deep hypothermic circulatory arrest was introduced in 1970s to decrease the ischemic insults to the brain. However, safe duration of circulatory arrest time was limited to 30 minutes. The 1990s was the decade of evolution for cerebral protection, in which two adjuncts for deep hypothermic circulatory arrest were introduced: retrograde and antegrade cerebral perfusion (ACP) techniques. These two cerebral perfusion techniques significantly decreased incidence of postoperative neurological dysfunction and mortality after aortic arch surgery. Although there are no large prospective studies that demonstrate which perfusion technique provide better outcomes, multiple retrospective studies implicate that ACP may decrease cerebral complications compared to retrograde cerebral perfusion (RCP) when a long circulatory arrest time is required during aortic arch reconstructions. To date, many surgeons favor ACP over RCP during a complex aortic arch repair, such as total arch replacement and hybrid arch replacement. However, the question is whether the use of ACP is necessary during a short, limited circulatory arrest time, such as hemiarch replacement? There is a paucity of data that proves the advantages of a complex ACP over a simple RCP for a short circulatory arrest time. RCP with deep hypothermic circulatory arrest is the simple, efficient cerebral protection technique with minimal interference to the surgical field—and it potentially allows to flush atheromatous debris out from the arch vessels. Thus, it is the preferred adjunct to deep hypothermic circulatory arrest during hemiarch replacement in our institution. PMID:29682460

  11. Influence of cerebral white matter hyperintensities on cognitive impairment in elderly medical patients.

    PubMed

    Shibata, Koichi; Nishimura, Yoshiko; Otsuka, Kuniaki; Sakura, Hiroshi

    2017-10-01

    We investigated the characteristics of elderly medical patients with white matter hyperintensities on magnetic resonance imaging. A total of 213 patients (123 men and 90 women; mean age 74.8 years) reported their history of hypertension, diabetes, dyslipidemia, previous stroke, coronary heart disease and chronic kidney disease (CKD). All patients completed the Mini-Mental State Examination and Geriatric Depression Scale. White matter hyperintensities were evaluated for the periventricular region, basal ganglia (BGH), deep white matter and infratentorial region, and brain atrophy was calculated as bicaudate ratios. Patients with cognitive impairment (Mini-Mental State Examination score < 24) were significantly older (P = 0.001), had periventricular region hyperintensities (P = 0.029) and BGH (P = 0.0015), and showed atrophy (P < 0.0001). Logistic regression showed that cognitive impairment was predicted by stroke (OR 2.5, 95% CI 0.033-0.894, P = 0.036) and atrophy (OR 8.43, 95% CI 5.71-37.0, P = 0.0109). Multiple regressions showed that BGH was associated with CKD (β = 0.213; P = 0.003), and infratentorial region was associated with stroke (β = 0.157; P =0.035) and CKD (β = 0.172; P = 0.016). Periventricular region was associated with age (β = 0.2; P = 0.011) and Geriatric Depression Scale (β = 0.151; P = 0.037), and deep white matter hyperintensities with age (β = 0.189; P = 0.016). Although cognitive impairment in elderly medical patients is associated with stroke and brain atrophy, white matter hyperintensities, especially BGH and infratentorial region, are associated with cognitive decline in relation to CKD. Geriatr Gerontol Int 2017; 17: 1488-1493. © 2016 Japan Geriatrics Society.

  12. Cerebral Microbleeds in Patients with Dementia with Lewy Bodies and Parkinson Disease Dementia.

    PubMed

    Kim, S W; Chung, S J; Oh, Y-S; Yoon, J H; Sunwoo, M K; Hong, J Y; Kim, J-S; Lee, P H

    2015-09-01

    The burden of amyloid β is greater in patients with dementia with Lewy bodies than in those with Parkinson disease dementia, and an increased amyloid β load is closely related to a higher incidence of cerebral microbleeds. Here, we investigated the prevalence and topography of cerebral microbleeds in patients with dementia with Lewy bodies and those with Parkinson disease dementia to examine whether cerebral microbleeds are more prevalent in patients with dementia with Lewy bodies than in those with Parkinson disease dementia. The study population consisted of 42 patients with dementia with Lewy bodies, 88 patients with Parkinson disease dementia, and 35 controls who underwent brain MR imaging with gradient recalled-echo. Cerebral microbleeds were classified as deep, lobar, or infratentorial. The frequency of cerebral microbleeds was significantly greater in patients with dementia with Lewy bodies (45.2%) than in those with Parkinson disease dementia (26.1%) or in healthy controls (17.1%; P = .017). Lobar cerebral microbleeds were observed more frequently in the dementia with Lewy bodies group (40.5%) than in the Parkinson disease dementia (17%; P = .004) or healthy control (8.6%; P = .001) group, whereas the frequencies of deep and infratentorial cerebral microbleeds did not differ among the 3 groups. Logistic regression analyses revealed that, compared with the healthy control group, the dementia with Lewy bodies group was significantly associated with the presence of lobar cerebral microbleeds after adjusting for age, sex, nonlobar cerebral microbleeds, white matter hyperintensities, and other vascular risk factors (odds ratio, 4.39 [95% CI, 1.27-15.25]). However, compared with the healthy control group, the Parkinson disease dementia group was not significantly associated with lobar cerebral microbleeds. This study showed that patients with dementia with Lewy bodies had a greater burden of cerebral microbleeds and exhibited a lobar predominance of cerebral

  13. Similar cerebral protective effectiveness of antegrade and retrograde cerebral perfusion combined with deep hypothermia circulatory arrest in aortic arch surgery: a meta-analysis and systematic review of 5060 patients.

    PubMed

    Hu, Zhipeng; Wang, Zhiwei; Ren, Zongli; Wu, Hongbing; Zhang, Min; Zhang, Hao; Hu, Xiaoping

    2014-08-01

    Our objective was to determine if antegrade cerebral perfusion (ACP) and retrograde cerebral perfusion (RCP) combined with deep hypothermia circulatory arrest in aortic arch surgery results in different mortality and neurologic outcomes. The Cochrane Library, Medline, EMBASE, CINAHL, Web of Science, and the Chinese Biomedical Database were searched for studies reporting on postoperative strokes, permanent neurologic dysfunction, temporary neurologic dysfunction, and all causes mortality within 30 days postoperation in aortic arch surgery. Meta-analysis for effect size, t test, and I(2) for detecting heterogeneity and sensitivity analysis for assessing the relative influence of each study was performed. Fifteen included studies encompassed a total of 5060 patients of whom 2855 were treated with deep hypothermic circulatory arrest plus ACP and 1897 were treated with deep hypothermic circulatory arrest plus RCP. Pooled analysis showed no significant statistical difference (P > .01) of 30-day mortality, permanent neurologic dysfunction, and transient neurologic dysfunction in the 2 groups. Before sensitivity analysis, postoperative stroke incidence in the ACP group was higher than in the RCP group (7.2% vs 4.7%; P < .01). After a study that included a different percentage of patients with a history of central neurologic events in the 2 groups was ruled out, postoperative stroke incidence in the 2 groups also showed no significant statistical difference (P > .01). ACP and RCP provide similar cerebral protective effectiveness combined with deep hypothermia circulatory arrest and could be selected according to the actual condition in aortic arch surgery. A high-quality randomized controlled trial is urgently needed to confirm this conclusion, especially for stroke morbidity following ACP or RCP. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  14. Mineralocorticoid Receptor Antagonism Prevents Obesity-Induced Cerebral Artery Remodeling and Reduces White Matter Injury in rats.

    PubMed

    Pires, Paulo Wagner; McClain, Jonathon Lee; Hayoz, Sebastian F; Dorrance, Anne McLaren

    2018-05-14

    Midlife obesity is a risk factor for dementia development. Obesity has also been linked to hyperaldosteronism, and this can be modeled in rats by high fat (HF) feeding from weaning. Aldosterone, or activation of the mineralocorticoid receptor (MR) causes cerebrovascular injury in lean hypertensive rats. We hypothesized that rats fed a HF diet would show inward middle cerebral artery (MCA) remodeling that could be prevented by MR antagonism. We further proposed that the cerebral artery remodeling would be associated with white mater injury. Three-week-old male Sprague-Dawley rats were fed a HF diet ± the MR antagonist canrenoic acid (Canr) for 17 weeks. Control rats received normal chow (Control NC). MCA structure was assessed by pressure myography. The MCAs from HF fed rats had smaller lumens and thicker walls when compared to arteries from Control NC rats; Canr prevented the MCA remodeling associated with HF feeding. HF feeding increased the mRNA expression of markers of cell proliferation and vascular inflammation in cerebral arteries and Canr treatment prevented this. White mater injury was increased in the rats fed the HF diet and this was reduced by Canr treatment. The expression of doublecortin, a marker of new and immature neurons was reduced in HF fed rats, and MR antagonism normalized this. These data suggest that HF feeding leads to MR dependent remodeling of the MCA and this is associated with markers of dementia development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Improved power for characterizing longitudinal amyloid-β PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region.

    PubMed

    Chen, Kewei; Roontiva, Auttawut; Thiyyagura, Pradeep; Lee, Wendy; Liu, Xiaofen; Ayutyanont, Napatkamon; Protas, Hillary; Luo, Ji Luo; Bauer, Robert; Reschke, Cole; Bandy, Daniel; Koeppe, Robert A; Fleisher, Adam S; Caselli, Richard J; Landau, Susan; Jagust, William J; Weiner, Michael W; Reiman, Eric M

    2015-04-01

    In this article, we describe an image analysis strategy with improved power for tracking longitudinal amyloid-β (Aβ) PET changes and evaluating Aβ-modifying treatments. Our aims were to compare the power of template-based cerebellar, pontine, and cerebral white matter reference regions to track 24-mo florbetapir standardized uptake value (SUV) ratio (SUVR) changes; to relate those changes to 24-mo clinical declines; and to evaluate Aβ-modifying treatments in Aβ-positive (Aβ+) and Aβ-negative (Aβ-) patients with probable Alzheimer dementia (pAD), in patients with mild cognitive impairment (MCI), in cognitively normal controls (NCs), and in cognitively normal apolipoprotein E4 (APOE4) carriers and noncarriers. We used baseline and follow-up (∼24 mo) florbetapir PET scans from 332 Aβ+ and Aβ- subjects participating in the multicenter Alzheimer's Disease Neuroimaging Initiative. Each of the proposed analyses included 31 pAD patients, 187 MCI patients, and 114 NCs. Cerebral-to-white matter, cerebellar, and pontine SUVRs were characterized in terms of their longitudinal variability; their power to track longitudinal fibrillar Aβ increases in Aβ+ and Aβ- subgroups and cognitively normal APOE4 carriers and noncarriers; the sample sizes needed to detect attenuated accumulation of or clearance of fibrillar Aβ accumulation in randomized clinical trials; and their ability to relate 24-mo fibrillar Aβ increases to clinical declines. As predicted, cerebral-to-white matter SUVR changes were significantly less variable and had significantly greater power to detect 24-mo fibrillar Aβ increases and evaluate Aβ-modifying treatment effects in Aβ+ pAD, MCI, and NC subjects and cognitively normal APOE4 carriers. They were also distinguished by the ability to detect significant associations between 24-mo Aβ increases and clinical declines. A cerebral white matter reference region may improve the power to track longitudinal fibrillar Aβ increases, to characterize

  16. Influence of cerebral white matter lesions on the activities of daily living of older patients with mild stroke.

    PubMed

    Yamashita, Yutaka; Wada, Ikuo; Horiba, Mitsuya; Sahashi, Kento

    2016-08-01

    Neurological symptom severity is a prognostic factor for post-stroke activities of daily living (ADL). Recently, it has been reported that white matter lesions indicate poor functional prognosis in patients with stroke. The present study investigated the influence of white matter lesions on the ADL of older patients with stroke who have mild neurological symptoms. We investigated ADL at discharge in 44 patients with stroke (men, n = 27; women, n = 17; mean age 78 years [range 71-85 years]) aged ≥65 years with National Institutes of Health Stroke Scale scores of ≤5 (cerebral infarction, n = 37; cerebral hemorrhage, n = 7). We used single correlation analysis and multiple regression analysis to investigate factors that correlated with ADL at discharge. ADL at discharge was also evaluated on the basis of white matter lesion severity (Fazekas classification, grades 0-3). Single correlation analysis showed that age (r = -0.36, P = 0.016), male sex (r = 0.362, P = 0.016), neurological symptom severity (r = -0.361, P = 0.016), ADL on starting rehabilitation (r = 0.685, P < 0.001) and white matter lesion severity (r = -0.361, P = 0.016) significantly correlated with ADL at discharge. Multiple regression analysis showed that ADL on starting rehabilitation (β = 0.519, t = 4.723, P < 0.001) and white matter lesion severity (β = -0.309, t = -3.057, P < 0.01) were statistically significant prognostic factors for ADL at discharge. ADL at discharge score was significantly lower in the group with high white matter lesion severity (Fazekas, grade 2) than in the other two groups (Fazekas, grade 0, P < 0.01; Fazekas, grade 1, P < 0.05). Severe white matter lesions are a prognostic factor for poor ADL at discharge in older patients with stroke who have mild neurological symptoms. Geriatr Gerontol Int 2016; 16: 942-947. © 2015 Japan Geriatrics Society.

  17. Sources of Disconnection in Neurocognitive Aging: Cerebral White Matter Integrity, Resting-state Functional Connectivity, and White Matter Hyperintensity Volume

    PubMed Central

    Madden, David J.; Parks, Emily L.; Tallman, Catherine W.; Boylan, Maria A.; Hoagey, David A.; Cocjin, Sally B.; Packard, Lauren E.; Johnson, Micah A.; Chou, Ying-hui; Potter, Guy G.; Chen, Nan-kuei; Siciliano, Rachel E.; Monge, Zachary A.; Honig, Jesse A.; Diaz, Michele T.

    2017-01-01

    Age-related decline in fluid cognition can be characterized as a disconnection among specific brain structures, leading to a decline in functional efficiency. The potential sources of disconnection, however, are unclear. We investigated imaging measures of cerebral white matter integrity, resting-state functional connectivity, and white matter hyperintensity (WMH) volume as mediators of the relation between age and fluid cognition, in 145 healthy, community-dwelling adults 19–79 years of age. At a general level of analysis, with a single composite measure of fluid cognition and single measures of each of the three imaging modalities, age exhibited an independent influence on the cognitive and imaging measures, and the imaging variables did not mediate the age-cognition relation. At a more specific level of analysis, resting-state functional connectivity of sensorimotor networks was a significant mediator of the age-related decline in executive function. These findings suggest that different levels of analysis lead to different models of neurocognitive disconnection, and that resting-state functional connectivity, in particular, may contribute to age-related decline in executive function. PMID:28389085

  18. Clinical significance of the coexistence of carotid artery plaque and white matter disease in patients with symptomatic cerebral infarction.

    PubMed

    Ishikawa, Mami; Sugawara, Hitoshi; Tsuji, Toshiyuki; Nagai, Mutsumi; Kusaka, Gen; Naritaka, Heiji

    2017-12-01

    Symptomatic cerebral infarction (CI) can occur in patients without main cerebral artery stenosis or occlusion. This study investigated the unique features of carotid artery plaque and white matter disease (WMD) in patients with symptomatic CI and transient ischemic attack (TIA) but without stenosis or occlusion of a main cerebral artery. We studied 647 patients who underwent both carotid ultrasound examination and brain magnetic resonance images. Plaque score (PS), plaque number, maximal plaque intima-media thickness and grades of WMD were examined. Subjects were divided into four groups, the CI group, TIA group, myocardial infarction (MI) group and risk factor (RF) group. Plaque and WMD were analyzed in cerebral ischemia group (CI and TIA), compared to non-cerebral ischemia groups and to a high PS group and a high WMD grade group from the RF group. Both of each value of plaque and grades of WMD in the cerebral ischemia group were significantly higher than those in other groups. Grades of WMD in the cerebral ischemia group were significantly higher than those in the high PS group, although there was no significant difference of the each value of plaque between the two groups. The each value of plaque in the cerebral ischemia group was also significantly higher than those in the high WMD grade group, although there was no significant difference of grade of WMD between the two groups. Simultaneous increases in carotid artery plaque and WMD are associated with symptomatic CI, which is not caused by stenosis or occlusion of a main cerebral artery. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Automated and visual scoring methods of cerebral white matter hyperintensities: relation with age and cognitive function.

    PubMed

    Tiehuis, A M; Vincken, K L; Mali, W P T M; Kappelle, L J; Anbeek, P; Algra, A; Biessels, G J

    2008-01-01

    A reliable scoring method for ischemic cerebral white matter hyperintensities (WMH) will help to clarify the causes and consequences of these brain lesions. We compared an automated and two visual WMH scoring methods in their relations with age and cognitive function. MRI of the brain was performed on 154 participants of the Utrecht Diabetic Encephalopathy Study. WMH volumes were obtained with an automated segmentation method. Visual rating of deep and periventricular WMH (DWMH and PWMH) was performed with the Scheltens scale and the Rotterdam Scan Study (RSS) scale, respectively. Cognition was assessed with a battery of 11 tests. Within the whole study group, the association with age was most evident for the automated measured WMH volume (beta = 0.43, 95% CI = 0.29-0.57). With regard to cognition, automated measured WMH volume and Scheltens DWMH were significantly associated with information processing speed (beta = -0.22, 95% CI = -0.40 to -0.06; beta = -0.26, 95% CI = -0.42 to -0.10), whereas RSS PWMH were associated with attention and executive function (beta = -0.19, 95% CI = -0.36 to -0.02). Measurements of WMH with an automated quantitative segmentation method are comparable with visual rating scales and highly suitable for use in future studies to assess the relationship between WMH and subtle impairments in cognitive function. (c) 2007 S. Karger AG, Basel.

  20. Usefulness of Deep Hypothermic Circulatory Arrest and Regional Cerebral Perfusion in Children

    PubMed Central

    Guo, Zheng; Hu, Ren-Jie; Zhu, De-Ming; Zhu, Zhong-Qun; Zhang, Hai-Bo

    2013-01-01

    To compare the safety and usefulness of deep hypothermic circulatory arrest (DHCA) and regional cerebral perfusion (RCP) during pediatric open heart surgery. Between January 1, 2004 and September 30, 2012, 1250 children with congenital cardiac defect underwent corrective operation with the DHCA or RCP technique in the Shanghai Children's Medical Center. Of them, 947 cases underwent the operation with the aid of DHCA (DHCA group), and 303 cases with RCP (RCP group). The mean DHCA time was 30.64±15.81 (7–63) minutes and mean RCP time was 36.18±12.86 (10–82) minutes. The mortality rate was 7.18% (68/947) and 6.60% (20/30) in two groups, respectively. The postoperative incidences of temporary and permanent neurological dysfunction were 6.23% (59/947) in the DHCA group and 2.64% (8/303) in the RCP group (p<0.01). The incidence of other complications such as low cardiac output, renal dysfunction, and lung issues are similar in both groups. RCP is a reliable technique for cerebral protection and it facilitates time-consuming corrected procedures for complex congenital cardiac defect repair procedures. PMID:24066266

  1. SUPERFICIAL AND DEEP CAPILLARY ISCHEMIA AS A PRESENTING SIGN OF RETINAL VASCULOPATHY WITH CEREBRAL LEUKOENCEPHALOPATHY AND SYSTEMIC MANIFESTATIONS.

    PubMed

    Nagiel, Aaron; Lalane, Robert A; Jen, Joanna C; Kreiger, Allan E

    2017-10-12

    The aim of this study was to investigate the presenting sign of retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations, a rare autosomal dominant condition caused by mutations in the TREX1 gene, and to explore the potential efficacy of bevacizumab in preventing capillary occlusions. Observational case report with the use of ultra-widefield fluorescein angiography, optical coherence tomography, and optical coherence tomography angiography. A 31-year-old man with a family history of retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations presented with a scotoma in his left eye. The visual acuity was 20/20 in both eyes, and his examination was notable for scattered cotton wool spots in the retina of both eyes as well as an area of paracentral acute middle maculopathy in the left eye. Ultra-widefield fluorescein angiography revealed peripheral capillary nonperfusion and vascular leakage corresponding to the cotton wool spots. Spectral domain optical coherence tomography and optical coherence tomography angiography confirmed the presence and distribution of superficial capillary plexus and deep capillary plexus ischemia. Neurologic examination and imaging were normal. A trial of monthly intravitreal bevacizumab injections to the left eye over 6 months resulted in diminished capillary leakage. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations is a rare genetic condition manifested most commonly by cerebral and retinal ischemia. This retinal vasculopathy leads to occlusions of small-caliber retinal vessels in the superficial plexus and deep plexus with resulting cotton wool spots and paracentral acute middle maculopathy, respectively. Recognition of the retinal findings by ophthalmologists and neurologists may avoid unnecessary brain biopsies in diagnosing this rare disorder.

  2. Postoperative hematoma involving brainstem, peduncles, cerebellum, deep subcortical white matter, cerebral hemispheres following chronic subdural hematoma evacuation

    PubMed Central

    Patibandla, Mohana Rao; Thotakura, Amit K.; Shukla, Dinesh; Purohit, Anirudh K.; Addagada, Gokul Chowdary; Nukavarapu, Manisha

    2017-01-01

    Among the intracranial hematomas, chronic subdural hematomas (CSDH) are the most benign with a mortality rate of 0.5-4.0%. The elderly and alcoholics are commonly affected by CSDH. Even though high percentage of CSDH patients improves after the evacuation, there are some unexpected potential complications altering the postoperative course with neurological deterioration. Poor outcome in postoperative period is due to complications like failure of brain to re-expand, recurrence of hematoma and tension pneumocephalus. We present a case report with multiple intraparenchymal hemorrhages in various locations like brainstem, cerebral and cerebellar peduncles, right cerebellar hemisphere, right thalamus, right capsulo-ganglionic region, right corona radiata and cerebral hemispheres after CSDH evacuation. Awareness of this potential problem and the immediate use of imaging if the patient does not awake from anesthesia or if he develops new onset focal neurological deficits, are the most important concerns to the early diagnosis of this rare complication. PMID:28484546

  3. Exploring DeepMedic for the purpose of segmenting white matter hyperintensity lesions

    NASA Astrophysics Data System (ADS)

    Lippert, Fiona; Cheng, Bastian; Golsari, Amir; Weiler, Florian; Gregori, Johannes; Thomalla, Götz; Klein, Jan

    2018-02-01

    DeepMedic, an open source software library based on a multi-channel multi-resolution 3D convolutional neural network, has recently been made publicly available for brain lesion segmentations. It has already been shown that segmentation tasks on MRI data of patients having traumatic brain injuries, brain tumors, and ischemic stroke lesions can be performed very well. In this paper we describe how it can efficiently be used for the purpose of detecting and segmenting white matter hyperintensity lesions. We examined if it can be applied to single-channel routine 2D FLAIR data. For evaluation, we annotated 197 datasets with different numbers and sizes of white matter hyperintensity lesions. Our experiments have shown that substantial results with respect to the segmentation quality can be achieved. Compared to the original parametrization of the DeepMedic neural network, the timings for training can be drastically reduced if adjusting corresponding training parameters, while at the same time the Dice coefficients remain nearly unchanged. This enables for performing a whole training process within a single day utilizing a NVIDIA GeForce GTX 580 graphics board which makes this library also very interesting for research purposes on low-end GPU hardware.

  4. Is moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion superior to deep hypothermic circulatory arrest in elective aortic arch surgery?

    PubMed

    Poon, Shi Sum; Estrera, Anthony; Oo, Aung; Field, Mark

    2016-09-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was whether moderate hypothermia circulatory arrest with selective antegrade cerebral perfusion (SACP) is more beneficial than deep hypothermic circulatory arrest in elective aortic arch surgery. Altogether, 1028 papers were found using the reported search, of which 6 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. There were four retrospective observational studies, one prospective randomized controlled trial and one meta-analysis study. There were no local or neuromuscular complications related to axillary arterial cannulation reported. In the elective setting, four studies showed that the in-hospital mortality for moderate hypothermia is consistently low, ranging from 1.0 to 4.3%. In a large series of hemiarch replacement comparing 682 cases of deep hypothermia with 94 cases of moderate hypothermia with SACP, 20 cases (2.8%) of permanent neurological deficit were reported, compared to 3 cases (3.2%) in moderate hypothermia. Three observational studies and a meta-analysis study did not identify an increased risk of postoperative renal failure and dialysis following either deep or moderate hypothermia although a higher incidence of stroke was reported in the meta-analysis study with deep hypothermia (12.7 vs 7.3%). Longer cardiopulmonary bypass time and circulatory arrest time were reported in four studies for deep hypothermia, suggesting an increased time required for systemic cooling and rewarming in that group. Overall, these findings suggested that in elective aortic arch surgery, moderate hypothermia with selective antegrade cerebral perfusion adapted to the duration of circulatory arrest can be performed safely with acceptable mortality and morbidity outcomes. The risk of spinal cord

  5. Racial, Ethnic, and Socioeconomic Disparities in the Prevalence of Cerebral Palsy

    PubMed Central

    Xing, Guibo; Fuentes-Afflick, Elena; Danielson, Beate; Smith, Lloyd H.; Gilbert, William M.

    2011-01-01

    OBJECTIVE: Racial and ethnic disparities in cerebral palsy have been documented, but the underlying mechanism is poorly understood. We determined whether low birth weight accounts for ethnic disparities in the prevalence of cerebral palsy and whether socioeconomic factors impact cerebral palsy within racial and ethnic groups. METHODS: In a retrospective cohort of 6.2 million births in California between 1991 and 2001, we compared maternal and infant characteristics among 8397 infants with cerebral palsy who qualified for services from the California Department of Health Services and unaffected infants. RESULTS: Overall, black infants were 29% more likely to have cerebral palsy than white infants (relative risk: 1.29 [95% confidence interval: 1.19–1.39]). However, black infants who were very low or moderately low birth weight were 21% to 29% less likely to have cerebral palsy than white infants of comparable birth weight. After we adjusted for birth weight, there was no difference in the risk of cerebral palsy between black and white infants. In multivariate analyses, women of all ethnicities who did not receive any prenatal care were twice as likely to have infants with cerebral palsy relative to women with an early onset of prenatal care. Maternal education was associated with cerebral palsy in a dose-response fashion among white and Hispanic women. Hispanic adolescent mothers (aged <18 years) had increased risk of having a child with cerebral palsy. CONCLUSIONS: The increased risk of cerebral palsy among black infants is primarily related to their higher risk of low birth weight. Understanding how educational attainment and use of prenatal care impact the risk of cerebral palsy may inform new prevention strategies. PMID:21339278

  6. [Usefulness of Edoxaban for Deep Cerebral Venous Sinus Thrombosis with Hemorrhagic Infarction:A Case Report].

    PubMed

    Amemiya, Takeo; Uesaka, Toshio; Kameda, Katsuharu; Uno, Junji; Nagaoka, Shintaro; Ikai, Yoshiaki; Gi, Hidefuku

    2017-07-01

    We describe a case of deep cerebral venous sinus thrombosis(DCVST)that was successfully treated by oral administration of the Xa inhibitor edoxaban. A 53-year-old man was admitted to our hospital because of a headache and undifferentiated dizziness. Computed tomography(CT)demonstrated a low-density area in the bilateral thalamus and high-density lesions in the internal cerebral veins(ICVs)and vein of Galen. Magnetic resonance imaging with diffusion-weighted images detected areas of hyperintensity in the bilateral thalamus. Additionally, the inferior sagittal sinus, ICV, and vein of Galen were not detected by CT venography or cerebral angiography. We therefore diagnosed DCVST and started anticoagulation therapy with heparin(IV)and warfarin. A week after admission, lesions that showed hypointensity on T2* images and high density on CT scans were detected in the bilateral thalamus. We thought that hemorrhagic infarction had occurred in association with DCVST, and changed the anticoagulation therapy to oral administration of edoxaban on day 9. The patient's symptoms gradually diminished, and CT venography indicated partial recanalization of the DCV from the ICV to the vein of Galen on day 72. We report our experience, and discuss the safety and usefulness of the Xa inhibitor for treating DCVST with hemorrhagic infarction.

  7. Optimization of MRI-based scoring scales of brain injury severity in children with unilateral cerebral palsy.

    PubMed

    Pagnozzi, Alex M; Fiori, Simona; Boyd, Roslyn N; Guzzetta, Andrea; Doecke, James; Gal, Yaniv; Rose, Stephen; Dowson, Nicholas

    2016-02-01

    Several scoring systems for measuring brain injury severity have been developed to standardize the classification of MRI results, which allows for the prediction of functional outcomes to help plan effective interventions for children with cerebral palsy. The aim of this study is to use statistical techniques to optimize the clinical utility of a recently proposed template-based scoring method by weighting individual anatomical scores of injury, while maintaining its simplicity by retaining only a subset of scored anatomical regions. Seventy-six children with unilateral cerebral palsy were evaluated in terms of upper limb motor function using the Assisting Hand Assessment measure and injuries visible on MRI using a semiquantitative approach. This cohort included 52 children with periventricular white matter injury and 24 with cortical and deep gray matter injuries. A subset of the template-derived cerebral regions was selected using a data-driven region selection algorithm. Linear regression was performed using this subset, with interaction effects excluded. Linear regression improved multiple correlations between MRI-based and Assisting Hand Assessment scores for both periventricular white matter (R squared increased to 0.45 from 0, P < 0.0001) and cortical and deep gray matter (0.84 from 0.44, P < 0.0001) cohorts. In both cohorts, the data-driven approach retained fewer than 8 of the 40 template-derived anatomical regions. The equal or better prediction of the clinically meaningful Assisting Hand Assessment measure using fewer anatomical regions highlights the potential of these developments to enable enhanced quantification of injury and prediction of patient motor outcome, while maintaining the clinical expediency of the scoring approach.

  8. Decreased and Increased Anisotropy along Major Cerebral White Matter Tracts in Preterm Children and Adolescents

    PubMed Central

    Ben-Shachar, Michal; Feldman, Heidi M.

    2015-01-01

    Premature birth is highly prevalent and associated with neurodevelopmental delays and disorders. Adverse outcomes, particularly in children born before 32 weeks of gestation, have been attributed in large part to white matter injuries, often found in periventricular regions using conventional imaging. To date, tractography studies of white matter pathways in children and adolescents born preterm have evaluated only a limited number of tracts simultaneously. The current study compares diffusion properties along 18 major cerebral white matter pathways in children and adolescents born preterm (n = 27) and full term (n = 19), using diffusion magnetic resonance imaging and tractography. We found that compared to the full term group, the preterm group had significantly decreased FA in segments of the bilateral uncinate fasciculus and anterior segments of the right inferior fronto-occipital fasciculus. Additionally, the preterm group had significantly increased FA in segments of the right and left anterior thalamic radiations, posterior segments of the right inferior fronto-occipital fasciculus, and the right and left inferior longitudinal fasciculus. Increased FA in the preterm group was generally associated with decreased radial diffusivity. These findings indicate that prematurity-related white matter differences in later childhood and adolescence do not affect all tracts in the periventricular zone and can involve both decreased and increased FA. Differences in the patterns of radial diffusivity and axial diffusivity suggest that the tissue properties underlying group FA differences may vary within and across white matter tracts. Distinctive diffusion properties may relate to variations in the timing of injury in the neonatal period, extent of white matter dysmaturity and/or compensatory processes in childhood. PMID:26560745

  9. Deep Hypothermic Circulatory Arrest vs. Antegrade Cerebral Perfusion in Cerebral Protection during the Surgical Treatment of Chronic Dissection of the Ascending and Arch Aorta

    PubMed Central

    Kamenskaya, Oksana Vasilyevna; Klinkova, Asya Stanislavovna; Chernyavsky, Alexander Mikhailovich; Lomivorotov, Vladimir Vladimirovich; Meshkov, Ivan Olegovich; Karaskov, Alexander Mikhailovich

    2017-01-01

    Abstract: Circulatory arrest during aortic surgery presents a risk of neurological complications. The present study aimed to investigate the effectiveness of deep hypothermic circulatory arrest (DHCA) vs. antegrade cerebral perfusion (ACP) in cerebral protection during the surgical treatment of chronic dissection of the ascending and arch aorta and to assess the quality-of-life (QoL) in the long-term postoperative period with respect to the used cerebral protection method. In a prospective, randomized study, 58 patients with chronic type I aortic dissection who underwent ascending aorta and aortic arch replacement surgery were included. Patients were allocated in two groups: 29 patients who underwent surgery under moderate hypothermia (24°C) combined with ACP and 29 patients who underwent surgery under DHCA (18°C) with craniocerebral hypothermia. The regional hemoglobin oxygen saturation (rSO2, %) were compared during surgery, neurological complications were analyzed during the early postoperative period, QoL was compared in the long-term postoperative period (1-year follow-up). During the early postoperative period, 37.9% of patients in the DHCA group exhibited neurological complications, compared with 13.8% of those in the ACP group (p < .05). The risk of neurological complications in the early postoperative period was dependent on the extent of rSO2 decrease during circulatory arrest. In the ACP group, rSO2 decreased by ≤17% from baseline during circulatory arrest. In the DHCA group, a more profound decrease in rSO2 (>30%) was recorded (p < .05). QoL in the long-term period after surgery improved, but it was not dependent on the cerebral protection method used during surgery. ACP during aortic replacement demonstrated the most advanced properties of cerebral protection that can be evidenced by a lesser degree of neurological complications, compared with patients who underwent surgery under conditions of DHCA. QoL after surgery was not dependent on the

  10. Cool White Dwarfs Found in the UKIRT Infrared Deep Sky Survey

    NASA Astrophysics Data System (ADS)

    Leggett, S. K.; Lodieu, N.; Tremblay, P.-E.; Bergeron, P.; Nitta, A.

    2011-07-01

    We present the results of a search for cool white dwarfs in the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The UKIDSS LAS photometry was paired with the Sloan Digital Sky Survey to identify cool hydrogen-rich white dwarf candidates by their neutral optical colors and blue near-infrared colors, as well as faint reduced proper motion magnitudes. Optical spectroscopy was obtained at Gemini Observatory and showed the majority of the candidates to be newly identified cool degenerates, with a small number of G- to K-type (sub)dwarf contaminants. Our initial search of 280 deg2 of sky resulted in seven new white dwarfs with effective temperature T eff ≈ 6000 K. The current follow-up of 1400 deg2 of sky has produced 13 new white dwarfs. Model fits to the photometry show that seven of the newly identified white dwarfs have 4120 K <=T eff <= 4480 K, and cooling ages between 7.3 Gyr and 8.7 Gyr; they have 40 km s-1 <= v tan <= 85 km s-1 and are likely to be thick disk 10-11 Gyr-old objects. The other half of the sample has 4610 K <=T eff <= 5260 K, cooling ages between 4.3 Gyr and 6.9 Gyr, and 60 km s-1 <= v tan <= 100 km s-1. These are either thin disk remnants with unusually high velocities, or lower-mass remnants of thick disk or halo late-F or G stars.

  11. Automatical and accurate segmentation of cerebral tissues in fMRI dataset with combination of image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.

  12. White blood cells identification system based on convolutional deep neural learning networks.

    PubMed

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2017-11-16

    White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.

  13. Microvasculature of the cerebral cortex: a vascular corrosion cast and immunocytochemical study.

    PubMed

    Scala, Gaetano

    2014-04-01

    In mammals, the cerebral cortex microvasculature (CCM) of the neopallium plays important roles in the physiological and pathological processes of the brain. The aim of the present work is to analyze the CCM by use of the SEM-vascular corrosion cast technique, and to examine the immunocytochemical characteristics of the CCM in adult domestic ruminants (cattle, buffalo, and sheep) by using the SEM-immunogold technique. The CCM originated from the very small, finger-like terminal branches of the macrovasculature of the brain. The superficial cortical arterioles were more numerous than the deep straight arterioles which proceeded toward the white matter. The surface casts of the arterioles and capillaries of the cerebral cortex showed ring-shaped formations in the arterioles and at the origin of the capillaries. All capillaries down-stream from these ring-shaped formations were flaccid. Casts of the capillaries showed wrinkles due to the presence of endothelial folds, which is characteristic of varying blood pressure. Formations having intense anti-GIFAP immunoreactivity were frequently evident along the course of the blood capillaries in the cerebral cortex. These formations were probably astrocytes that might regulate the cerebral microcirculation based on physiological and pathological stimuli, such as neuronal activation. Copyright © 2014 Wiley Periodicals, Inc.

  14. Unilateral Postoperative Deep Cerebral Venous Thrombosis with Complete Recovery: A Report of 2 Cases.

    PubMed

    Benifla, Mony; Laughlin, Suzzanne; Tovar-Spinoza, Zulma S; Rutka, James T; Dirks, Peter B

    2017-01-01

    Postsurgical deep brain venous thrombosis has not been well described in children before. When approaching thalamic or intraventricular lesions, extra care should be taken to prevent injury to the internal cerebral veins (ICVs) and the vein of Galen. However, even when they are well preserved during surgery, postoperative hemodynamic changes, mainly in the first 24 h, or surgical manipulation can cause thrombosis of these veins. We report 2 children with unilateral postoperative ICV thrombosis; in 1 of the patients the vein of Galen was also thrombosed. Although both patients had altered sensorium initially, no anticoagulation therapy was given, and they both recovered well. When approaching thalamic or intraventricular lesions, extra care should be taken to prevent injury to the ICV and the vein of Galen. The surgeon should respect the deep brain venous system when approaching midline structures. Both the neurosurgeon and the neuroradiologist should be aware of this possible complication in order to make a prompt diagnosis and to offer proper treatment if needed. © 2017 S. Karger AG, Basel.

  15. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink

    PubMed Central

    Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung

    2016-01-01

    We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm). PMID:26806215

  16. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink.

    PubMed

    Hwang, Hyun-Jun; Oh, Kyung-Hwan; Kim, Hak-Sung

    2016-01-25

    We developed an ultra-high speed photonic sintering method involving flash white light (FWL) combined with near infrared (NIR) and deep UV light irradiation to produce highly conductive copper nano-ink film. Flash white light irradiation energy and the power of NIR/deep UV were optimized to obtain high conductivity Cu films. Several microscopic and spectroscopic characterization techniques such as scanning electron microscopy (SEM), a x-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the Cu nano-films. Optimally sintered Cu nano-ink films produced using a deep UV-assisted flash white light sintering technique had the lowest resistivity (7.62 μΩ·cm), which was only 4.5-fold higher than that of bulk Cu film (1.68 μΩ•cm).

  17. White matter integrity in dyskinetic cerebral palsy: Relationship with intelligence quotient and executive function.

    PubMed

    Laporta-Hoyos, Olga; Pannek, Kerstin; Ballester-Plané, Júlia; Reid, Lee B; Vázquez, Élida; Delgado, Ignacio; Zubiaurre-Elorza, Leire; Macaya, Alfons; Póo, Pilar; Meléndez-Plumed, Mar; Junqué, Carme; Boyd, Roslyn; Pueyo, Roser

    2017-01-01

    Dyskinetic cerebral palsy (CP) is one of the most disabling motor types of CP and has been classically associated with injury to the basal ganglia and thalamus. Although cognitive dysfunction is common in CP, there is a paucity of published quantitative analyses investigating the relationship between white matter (WM) microstructure and cognition in this CP type. This study aims (1) to compare brain WM microstructure between people with dyskinetic CP and healthy controls, (2) to identify brain regions where WM microstructure is related to intelligence and (3) to identify brain regions where WM microstructure is related to executive function in people with dyskinetic CP and (4) to identify brain regions where the correlations are different between controls and people with CP in IQ and executive functions. Thirty-three participants with dyskinetic CP (mean ± SD age: 24.42 ± 12.61, 15 female) were age and sex matched with 33 controls. Participants underwent a comprehensive neuropsychological battery to assess intelligence quotient (IQ) and four executive function domains (attentional control, cognitive flexibility, goal setting and information processing). Diffusion weighted MRI scans were acquired at 3T. Voxel-based whole brain groupwise analyses were used to compare fractional anisotropy (FA) and of the CP group to the matched controls using a general lineal model. Further general linear models were used to identify regions where white matter FA correlated with IQ and each of the executive function domains. White matter FA was significantly reduced in the CP group in all cerebral lobes, predominantly in regions connected with the parietal and to a lesser extent the temporal lobes. There was no significant correlation between IQ or any of the four executive function domains and WM microstructure in the control group. In participants with CP, lower IQ was associated with lower FA in all cerebral lobes, predominantly in locations that also showed reduced FA

  18. Immediate remote ischemic postconditioning after hypoxia ischemia in piglets protects cerebral white matter but not grey matter.

    PubMed

    Ezzati, Mojgan; Bainbridge, Alan; Broad, Kevin D; Kawano, Go; Oliver-Taylor, Aaron; Rocha-Ferreira, Eridan; Alonso-Alconada, Daniel; Fierens, Igor; Rostami, Jamshid; Jane Hassell, K; Tachtsidis, Ilias; Gressens, Pierre; Hristova, Mariya; Bennett, Kate; Lebon, Sophie; Fleiss, Bobbi; Yellon, Derek; Hausenloy, Derek J; Golay, Xavier; Robertson, Nicola J

    2016-08-01

    Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention whereby brief episodes of ischemia/reperfusion of one organ (limb) mitigate damage in another organ (brain) that has experienced severe hypoxia-ischemia. Our aim was to assess whether RIPostC is protective following cerebral hypoxia-ischemia in a piglet model of neonatal encephalopathy (NE) using magnetic resonance spectroscopy (MRS) biomarkers and immunohistochemistry. After hypoxia-ischemia (HI), 16 Large White female newborn piglets were randomized to: (i) no intervention (n = 8); (ii) RIPostC - with four, 10-min cycles of bilateral lower limb ischemia/reperfusion immediately after HI (n = 8). RIPostC reduced the hypoxic-ischemic-induced increase in white matter proton MRS lactate/N acetyl aspartate (p = 0.005) and increased whole brain phosphorus-31 MRS ATP (p = 0.039) over the 48 h after HI. Cell death was reduced with RIPostC in the periventricular white matter (p = 0.03), internal capsule (p = 0.002) and corpus callosum (p = 0.021); there was reduced microglial activation in corpus callosum (p = 0.001) and more surviving oligodendrocytes in corpus callosum (p = 0.029) and periventricular white matter (p = 0.001). Changes in gene expression were detected in the white matter at 48 h, including KATP channel and endothelin A receptor. Immediate RIPostC is a potentially safe and promising brain protective therapy for babies with NE with protection in white but not grey matter. © The Author(s) 2015.

  19. Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia.

    PubMed

    Chua, Siew E; Cheung, Charlton; Cheung, Vinci; Tsang, Jack T K; Chen, Eric Y H; Wong, Jason C H; Cheung, Jason P Y; Yip, Lawrance; Tai, Kin-Shing; Suckling, John; McAlonan, Gráinne M

    2007-01-01

    We report the first voxel-based morphometric (VBM) study to examine cerebral grey and white matter and cerebrospinal fluid (CSF) using computational morphometry in never-medicated, first-episode psychosis (FEP). Region-of-interest (ROI) analysis was also performed blind to group membership. 26 never-medicated individuals with FEP (23 with DSM-IV schizophrenia) and 38 healthy controls had MRI brain scans. Groups were balanced for age, sex, handedness, ethnicity, paternal socio-economic status, and height. Healthy controls were recruited from the local community by advertisement. Grey matter, white matter, and CSF: global brain volume ratios were significantly smaller in patients. Patients had significantly less grey matter volume in L and R caudate nuclei, cingulate gyri, parahippocampal gyri, superior temporal gyri, cerebellum and R thalamus, prefrontal cortex. They also had significantly less white matter volume in the R anterior limb of the internal capsule fronto-occipital fasciculus and L and R fornices, and significantly greater CSF volume especially in the R lateral ventricle. Excluding the 3 subjects with brief psychotic disorder did not alter our results. Our data suggest that fronto-temporal and subcortical-limbic circuits are morphologically abnormal in never-medicated, schizophrenia. ROI analysis comparing the schizophrenia group (n=23) with the healthy controls (n=38) confirmed caudate volumes were significantly smaller bilaterally by 11%, and lateral ventricular volume was significantly larger on the right by 26% in the patients. Caudate nuclei and lateral ventricular volume measurements were uncorrelated (Pearson correlation coefficient 0.30, p=0.10), ruling out the possibility of segmentation artefact. Ratio of lateral ventricle to caudate volume was bilaterally significantly increased (p<0.005, 2-tailed), which could represent an early biomarker in first-episode, never-medicated schizophrenia.

  20. The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding

    PubMed Central

    Ribeiro, Pedro F. M.; Ventura-Antunes, Lissa; Gabi, Mariana; Mota, Bruno; Grinberg, Lea T.; Farfel, José M.; Ferretti-Rebustini, Renata E. L.; Leite, Renata E. P.; Filho, Wilson J.; Herculano-Houzel, Suzana

    2013-01-01

    The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex) the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital) that differ in how neurons are distributed across their gray matter volume and in three zones (prefrontal, occipital, and non-occipital) that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non-occipital areas. PMID

  1. Similar cerebral protective effectiveness of antegrade and retrograde cerebral perfusion during deep hypothermic circulatory arrest in aortic surgery: a meta-analysis of 7023 patients.

    PubMed

    Guo, Shasha; Sun, Yanhua; Ji, Bingyang; Liu, Jinping; Wang, Guyan; Zheng, Zhe

    2015-04-01

    In aortic arch surgery, deep hypothermic circulatory arrest (DHCA) combined with cerebral perfusion is employed worldwide as a routine practice. Even though antegrade cerebral perfusion (ACP) is more widely used than retrograde cerebral perfusion (RCP), the difference in benefit and risk between ACP and RCP during DHCA is uncertain. The purpose of this meta-analysis is to compare neurologic outcomes and early mortality between ACP and RCP in patients who underwent aortic surgery during DHCA. PubMed, EMBASE, and the Cochrane Library were searched using the key words "antegrade," "retrograde," "cerebral perfusion," "cardiopulmonary bypass," "extracorporeal circulation," and "cardiac surgery" for studies reporting on clinical endpoints including early mortality, stroke, temporary neurologic dysfunction (TND), and permanent neurologic dysfunction (PND) in aortic surgery requiring DHCA with ACP or RCP. Heterogeneity was analyzed with the Cochrane Q statistic and I(2) statistic. Publication bias was tested with Begg's funnel plot and Egger's test. Thirty-four studies were included in this meta-analysis, with 4262 patients undergoing DHCA + ACP and 2761 undergoing DHCA + RCP. The overall pooled relative risk for TND was 0.722 (95% CI = [0.579, 0.900]), and the z-score for overall effect was 2.9 (P = 0.004). There was low heterogeneity (I(2) = 18.7%). The analysis showed that patients undergoing DHCA + ACP had better outcomes than those undergoing DHCA + RCP in terms of TND, while there were no significant differences between groups in terms of PND, stroke, and early mortality. This meta-analysis indicates that DHCA + ACP has an advantage over DHCA + RCP in terms of TND, while the two methods show similar results in terms of PND, early mortality, and stroke. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Is there a need for adjunct cerebral protection in conjunction with deep hypothermic circulatory arrest during noncomplex hemiarch surgery?

    PubMed

    Kaneko, Tsuyoshi; Aranki, Sary F; Neely, Robert C; Yazdchi, Farhang; McGurk, Siobhan; Leacche, Marzia; Shekar, Prem S

    2014-12-01

    Different cerebral protection strategies are currently being practiced during noncomplex hemiarch surgery without randomized control studies to show their relative efficacy. We hypothesized that deep hypothermic circulatory arrest (DHCA) alone was adequate for cerebral protection in noncomplex hemiarch surgery. Four hundred sixty-seven patients underwent noncomplex hemiarch surgery between January 2002 and December 2012. Calcified aortas and total arch surgeries were excluded. DHCA alone was used for 276 patients, DHCA with antegrade cerebral perfusion (ACP) was used for 114 patients, and DHCA with retrograde cerebral perfusion (RCP) was used for 77 patients. Preoperative characteristics were similar between groups (12.3% in the DHCA group, 12.3% in the ACP group, and 10.3% in RCP group were reoperations). Patients in the DHCA group had shorter cardiopulmonary bypass times (193 minutes vs 217 minutes; P ≤ .005) and total lower body ischemic times (21 minutes vs 30 minutes; P ≤ .001) than ACP, but not RCP. Rates of reoperations for bleeding, postoperative stroke, and new renal failure did not differ between groups. New onset of cerebrovascular events were seen in 5.4% of patients in the DHCA group versus 6.2% of patients in the ACP group and 6.4% of patients in the RCP group (all P values > .7). Operative mortality in the DHCA group was 4.7% versus 2.6% in the ACP group and 2.6% in the RCP group (all P values > .4). Cox proportional hazard modeling showed no survival differences between groups. Outcomes and survival using DHCA alone were comparable to adjunct cerebral protection methods in patients undergoing noncomplex hemiarch surgery. DHCA alone is as safe as other adjunct complex cerebral protection techniques and simplifies operation without additional risk. Copyright © 2014. Published by Elsevier Inc.

  3. Hypoxia during pregnancy in rats leads to the changes of the cerebral white matter in adult offspring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingxing; Cai, Ruowei; Lv, Guorong, E-mail: lxingwan502@gmail.com

    The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternalmore » hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.« less

  4. Acute and chronic changes in brain activity with deep brain stimulation for refractory depression.

    PubMed

    Conen, Silke; Matthews, Julian C; Patel, Nikunj K; Anton-Rodriguez, José; Talbot, Peter S

    2018-04-01

    Deep brain stimulation is a potential option for patients with treatment-refractory depression. Deep brain stimulation benefits have been reported when targeting either the subgenual cingulate or ventral anterior capsule/nucleus accumbens. However, not all patients respond and optimum stimulation-site is uncertain. We compared deep brain stimulation of the subgenual cingulate and ventral anterior capsule/nucleus accumbens separately and combined in the same seven treatment-refractory depression patients, and investigated regional cerebral blood flow changes associated with acute and chronic deep brain stimulation. Deep brain stimulation-response was defined as reduction in Montgomery-Asberg Depression Rating Scale score from baseline of ≥50%, and remission as a Montgomery-Asberg Depression Rating Scale score ≤8. Changes in regional cerebral blood flow were assessed using [ 15 O]water positron emission tomography. Remitters had higher relative regional cerebral blood flow in the prefrontal cortex at baseline and all subsequent time-points compared to non-remitters and non-responders, with prefrontal cortex regional cerebral blood flow generally increasing with chronic deep brain stimulation. These effects were consistent regardless of stimulation-site. Overall, no significant regional cerebral blood flow changes were apparent when deep brain stimulation was acutely interrupted. Deep brain stimulation improved treatment-refractory depression severity in the majority of patients, with consistent changes in local and distant brain regions regardless of target stimulation. Remission of depression was reached in patients with higher baseline prefrontal regional cerebral blood flow. Because of the small sample size these results are preliminary and further evaluation is necessary to determine whether prefrontal cortex regional cerebral blood flow could be a predictive biomarker of treatment response.

  5. Predictive value of early amplitude-integrated electroencephalography for later diagnosed cerebral white matter damage in preterm infants.

    PubMed

    Song, Juan; Zhu, Changlian; Xu, Falin; Guo, Jiajia; Zhang, Yanhua

    2014-10-01

     The aim of the article is to assess the predictive value of amplitude-integrated electroencephalogram (aEEG) for cerebral white matter damage (WMD) in preterm infants. Patients and  Preterms ≤ 32 weeks' gestational age (GA) born between March 2012 and December 2012 were enrolled. The aEEG patterns within 72 hours were classified and recorded to predict their neurodevelopmental prognosis and the predictive results were used to compare with the results by cerebral ultrasound examination. Neurobehavioral disorder (neonatal behavioral neurological assessment score < 35, dyskinesia or dysgnosia) or death was thought as poor neurodevelopmental prognosis. Psychomotor development index (PDI) or mental development index (MDI) ≤ 79 was regarded as dyskinesia or dysgnosia, respectively.  Of the 63 preterms, 3.2% were born < 27 weeks' gestation and 96.8% at 27 to 32 weeks' gestation. The median GA was 29.3 weeks and the median birth weight was 1,030 g. On the basis of the aEEG results, normal, mildly abnormal, and severely abnormal cases were 10, 24, and 29; whereas determined by cerebral ultrasound, normal, mild, and severe cases were 17, 20, and 26, respectively. The aEEG degree showed significantly positive correlations with both WMD and poor neurodevelopmental prognosis (p < 0.01).  Abnormal aEEG of preterm infants within 72 hours after birth may imply WMD occurrence and poor neurodevelopmental prognosis. Georg Thieme Verlag KG Stuttgart · New York.

  6. Aortic arch reconstruction: deep and moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion.

    PubMed

    Wu, YanWen; Xiao, LiQiong; Yang, Ting; Wang, Lei; Chen, Xin

    2017-07-01

    To compare the effects of moderate and deep hypothermic circulatory arrest (DHCA) with selective antegrade cerebral perfusion (SACP) during aortic arch surgery in adult patients and to offer the evidence for the detection of the temperature which provides best brain protection in the subjects who accept aortic arch reconstruction surgery. A total of 109 patients undergoing surgery of the aortic arch were divided into the moderate hypothermic circulatory arrest group (Group I) and the deep hypothermic circulatory arrest group (Group II). We recorded the data of the patients and their cardiopulmonary bypass (CPB) time, aortic clamping time, SACP time and postoperative anesthetized recovery time, tracheal intubation time, time in the intensive care unit (ICU) and postoperative neurologic dysfunction. Patient characteristics were similar in the two groups. There were four patients who died in Group II and 1 patient in Group I. There were no significant differences in aortic clamping time of each group (111.4±58.4 vs. 115.9±16.2) min; SACP time (27.4±5.9 vs. 23.5±6.1) min of the moderate hypothermic circulatory arrest group and the deep hypothermic circulatory arrest group; there were significant differences in cardiopulmonary bypass time (207.4±20.9 vs. 263.8±22.6) min, postoperative anesthetized recovery time (19.0±11.1 vs. 36.8±25.3) hours, extubation time (46.4±15.1 vs. 64.4±6.0) hours; length of stay in the intensive care unit (ICU) (4.7±1.7 vs. 8±2.3) days and postoperative neurologic dysfunction in the two groups. Compared to deep hypothermic circulatory arrest, moderate hypothermic circulatory arrest can provide better brain protection and achieve good clinical results.

  7. Concussion classification via deep learning using whole-brain white matter fiber strains

    PubMed Central

    Cai, Yunliang; Wu, Shaoju; Zhao, Wei; Li, Zhigang; Wu, Zheyang

    2018-01-01

    Developing an accurate and reliable injury predictor is central to the biomechanical studies of traumatic brain injury. State-of-the-art efforts continue to rely on empirical, scalar metrics based on kinematics or model-estimated tissue responses explicitly pre-defined in a specific brain region of interest. They could suffer from loss of information. A single training dataset has also been used to evaluate performance but without cross-validation. In this study, we developed a deep learning approach for concussion classification using implicit features of the entire voxel-wise white matter fiber strains. Using reconstructed American National Football League (NFL) injury cases, leave-one-out cross-validation was employed to objectively compare injury prediction performances against two baseline machine learning classifiers (support vector machine (SVM) and random forest (RF)) and four scalar metrics via univariate logistic regression (Brain Injury Criterion (BrIC), cumulative strain damage measure of the whole brain (CSDM-WB) and the corpus callosum (CSDM-CC), and peak fiber strain in the CC). Feature-based machine learning classifiers including deep learning, SVM, and RF consistently outperformed all scalar injury metrics across all performance categories (e.g., leave-one-out accuracy of 0.828–0.862 vs. 0.690–0.776, and .632+ error of 0.148–0.176 vs. 0.207–0.292). Further, deep learning achieved the best cross-validation accuracy, sensitivity, AUC, and .632+ error. These findings demonstrate the superior performances of deep learning in concussion prediction and suggest its promise for future applications in biomechanical investigations of traumatic brain injury. PMID:29795640

  8. Concussion classification via deep learning using whole-brain white matter fiber strains.

    PubMed

    Cai, Yunliang; Wu, Shaoju; Zhao, Wei; Li, Zhigang; Wu, Zheyang; Ji, Songbai

    2018-01-01

    Developing an accurate and reliable injury predictor is central to the biomechanical studies of traumatic brain injury. State-of-the-art efforts continue to rely on empirical, scalar metrics based on kinematics or model-estimated tissue responses explicitly pre-defined in a specific brain region of interest. They could suffer from loss of information. A single training dataset has also been used to evaluate performance but without cross-validation. In this study, we developed a deep learning approach for concussion classification using implicit features of the entire voxel-wise white matter fiber strains. Using reconstructed American National Football League (NFL) injury cases, leave-one-out cross-validation was employed to objectively compare injury prediction performances against two baseline machine learning classifiers (support vector machine (SVM) and random forest (RF)) and four scalar metrics via univariate logistic regression (Brain Injury Criterion (BrIC), cumulative strain damage measure of the whole brain (CSDM-WB) and the corpus callosum (CSDM-CC), and peak fiber strain in the CC). Feature-based machine learning classifiers including deep learning, SVM, and RF consistently outperformed all scalar injury metrics across all performance categories (e.g., leave-one-out accuracy of 0.828-0.862 vs. 0.690-0.776, and .632+ error of 0.148-0.176 vs. 0.207-0.292). Further, deep learning achieved the best cross-validation accuracy, sensitivity, AUC, and .632+ error. These findings demonstrate the superior performances of deep learning in concussion prediction and suggest its promise for future applications in biomechanical investigations of traumatic brain injury.

  9. Neonatal White Matter Abnormalities an Important Predictor of Neurocognitive Outcome for Very Preterm Children

    PubMed Central

    Woodward, Lianne J.; Clark, Caron A. C.; Bora, Samudragupta; Inder, Terrie E.

    2012-01-01

    Background Cerebral white matter abnormalities on term MRI are a strong predictor of motor disability in children born very preterm. However, their contribution to cognitive impairment is less certain. Objective Examine relationships between the presence and severity of cerebral white matter abnormalities on neonatal MRI and a range of neurocognitive outcomes assessed at ages 4 and 6 years. Design/Methods The study sample consisted of a regionally representative cohort of 104 very preterm (≤32 weeks gestation) infants born from 1998–2000 and a comparison group of 107 full-term infants. At term equivalent, all preterm infants underwent a structural MRI scan that was analyzed qualitatively for the presence and severity of cerebral white matter abnormalities, including cysts, signal abnormalities, loss of white matter volume, ventriculomegaly, and corpus callosal thinning/myelination. At corrected ages 4 and 6 years, all children underwent a comprehensive neurodevelopmental assessment that included measures of general intellectual ability, language development, and executive functioning. Results At 4 and 6 years, very preterm children without cerebral white matter abnormalities showed no apparent neurocognitive impairments relative to their full-term peers on any of the domain specific measures of intelligence, language, and executive functioning. In contrast, children born very preterm with mild and moderate-to-severe white matter abnormalities were characterized by performance impairments across all measures and time points, with more severe cerebral abnormalities being associated with increased risks of cognitive impairment. These associations persisted after adjustment for gender, neonatal medical risk factors, and family social risk. Conclusions Findings highlight the importance of cerebral white matter connectivity for later intact cognitive functioning amongst children born very preterm. Preterm born children without cerebral white matter abnormalities on

  10. White Dwarfs in the UKIRT Infrared Deep Sky Survey Data Release 9

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Leggett, S. K.; Lodieu, N.; Freytag, B.; Bergeron, P.; Kalirai, J. S.; Ludwig, H.-G.

    2014-06-01

    We have identified 8 to 10 new cool white dwarfs from the Large Area Survey (LAS) Data Release 9 of the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS). The data set was paired with the Sloan Digital Sky Survey to obtain proper motions and a broad ugrizYJHK wavelength coverage. Optical spectroscopic observations were secured at Gemini Observatory and confirm the degenerate status for eight of our targets. The final sample includes two additional white dwarf candidates with no spectroscopic observations. We rely on improved one-dimensional model atmospheres and new multi-dimensional simulations with CO5BOLD to review the stellar parameters of the published LAS white dwarf sample along with our additional discoveries. Most of the new objects possess very cool atmospheres with effective temperatures below 5000 K, including two pure-hydrogen remnants with a cooling age between 8.5 and 9.0 Gyr, and tangential velocities in the range 40 km s-1 <=v tan <= 60 km s-1. They are likely thick disk 10-11 Gyr old objects. In addition, we find a resolved double degenerate system with v tan ~ 155 km s-1 and a cooling age between 3.0 and 5.0 Gyr. These white dwarfs could be disk remnants with a very high velocity or former halo G stars. We also compare the LAS sample with earlier studies of very cool degenerates and observe a similar deficit of helium-dominated atmospheres in the range 5000 < T eff (K) < 6000. We review the possible explanations for the spectral evolution from helium-dominated toward hydrogen-rich atmospheres at low temperatures.

  11. White matter lesions characterise brain involvement in moderate to severe chronic obstructive pulmonary disease, but cerebral atrophy does not.

    PubMed

    Spilling, Catherine A; Jones, Paul W; Dodd, James W; Barrick, Thomas R

    2017-06-19

    Brain pathology is relatively unexplored in chronic obstructive pulmonary disease (COPD). This study is a comprehensive investigation of grey matter (GM) and white matter (WM) changes and how these relate to disease severity and cognitive function. T1-weighted and fluid-attenuated inversion recovery images were acquired for 31 stable COPD patients (FEV 1 52.1% pred., PaO 2 10.1 kPa) and 24 age, gender-matched controls. T1-weighted images were segmented into GM, WM and cerebrospinal fluid (CSF) tissue classes using a semi-automated procedure optimised for use with this cohort. This procedure allows, cohort-specific anatomical features to be captured, white matter lesions (WMLs) to be identified and includes a tissue repair step to correct for misclassification caused by WMLs. Tissue volumes and cortical thickness were calculated from the resulting segmentations. Additionally, a fully-automated pipeline was used to calculate localised cortical surface and gyrification. WM and GM tissue volumes, the tissue volume ratio (indicator of atrophy), average cortical thickness, and the number, size, and volume of white matter lesions (WMLs) were analysed across the whole-brain and regionally - for each anatomical lobe and the deep-GM. The hippocampus was investigated as a region-of-interest. Localised (voxel-wise and vertex-wise) variations in cortical gyrification, GM density and cortical thickness, were also investigated. Statistical models controlling for age and gender were used to test for between-group differences and within-group correlations. Robust statistical approaches ensured the family-wise error rate was controlled in regional and local analyses. There were no significant differences in global, regional, or local measures of GM between patients and controls, however, patients had an increased volume (p = 0.02) and size (p = 0.04) of WMLs. In patients, greater normalised hippocampal volume positively correlated with exacerbation frequency (p = 0

  12. Automatic tissue image segmentation based on image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  13. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajimoto, Masaki; Ledee, Dolena R.; Olson, Aaron K.

    Rationale: Deep hypothermic circulatory arrest (DHCA) is often required for the repair of complex congenital cardiac defects in infants. However, DHCA induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion (SCP) theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. Objectives: We tested the hypothesis that SCP modulates glucose entry into the citric acid cycle, and ameliorates abnormalities in glutamate flux which occur in association neuroapoptosis during DHCA. Methods and Results: Eighteen male Yorkshire piglets (age 34-44 days) were assigned randomly to 2 groups of 7 (DHCA or DHCAmore » with SCP for 60 minutes at 18 °C) and 4 control pigs without cardiopulmonary bypass support. After the completion of rewarming from DHCA, 13-Carbon-labeled (13C) glucose as a metabolic tracer was infused. We used gas chromatography-mass spectrometry (GCMS) and nuclear magnetic resonance for metabolic analysis in the frontal cortex. Following 2.5 hours of cerebral reperfusion, we observed similar cerebral ATP levels, absolute levels of lactate and citric acid cycle intermediates, and 13C-enrichment. However, DHCA induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid (GABA)/glutamate along with neuroapoptosis (TUNEL), which were all prevented by SCP. Conclusions: DHCA alone induces abnormalities in cycling of the major neurotransmitters in association with neuroapoptosis, but does not alter cerebral glucose utilization during reperfusion. The data suggest that SCP prevents these modifications in glutamate/glutamine/GABA cycling and protects the cerebral cortex from neuroapoptosis.« less

  14. A pilot study on the correlation of tongue manifestation with the site of cerebral infarction in patients with stroke.

    PubMed

    Liu, Ping; Gao, Li; Song, Jue-Xian; Zhao, Hai-Ping; Wu, Xiao-Guang; Xu, Chang-Min; Huang, Li-Yuan; Wang, Ping-Ping; Luo, Yu-Min

    2014-11-01

    To discuss the correlation of tongue manifestation with the site of cerebral infarction in patients with acute cerebral infarction. From March 2008 to February 2009, 200 cases of hospitalized patients with first unilateral cerebral infarction were chosen in the Department of Neurology, Xuanwu Hospital. The correlation of different tongue color, fur texture, fur color with the site of cerebral infarction was analyzed. The site of cerebral infarction in patients were compared between different tongue color by Chisquare test (P=0.314), and further correspondence analysis demonstrated that there was correlation between red tongue and cortical-subcortical infarction group. The site of cerebral infarction in patients were compared between thick fur group and thin fur group, cortical-subcortical infarction occurred more frequently in the former (P=0.0008). The site of cerebral infarction in patients were compared between dry fur group, moist fur group and smooth fur group, correspondence analysis demonstrated there was correlation between dry fur and cortical-subcortical group. The site of cerebral infarction in the patients were compared between white fur group, white-yellow fur group and yellow fur group (P=0.010), and correspondence analysis demonstrated there was correlation between white fur and brainstem infarction; white-yellow fur has relationship with cortical infarction; subcortical infarction was weakly related with white-yellow fur; there was closer relationship between yellow fur and cortical-subcortical infarction. The change of tongue manifestation was associated with the site of cerebral infarction in patients, providing a new combining site for diagnosing cerebrovascular diseases by integrative medicine.

  15. Thalamic diffusion differences related to cognitive function in white matter lesions.

    PubMed

    Fernández-Andújar, Marina; Soriano-Raya, Juan José; Miralbell, Júlia; López-Cancio, Elena; Cáceres, Cynthia; Bargalló, Núria; Barrios, Maite; Arenillas, Juan Francisco; Toran, Pere; Alzamora, Maite; Clemente, Imma; Dávalos, Antoni; Mataró, Maria

    2014-05-01

    Cerebral white matter lesions (WMLs) are related to cognitive deficits, probably due to a disruption of frontal-subcortical circuits. We explored thalamic diffusion differences related to white matter lesions (WMLs) and their association with cognitive function in middle-aged individuals. Ninety-six participants from the Barcelona-AsIA Neuropsychology Study were included. Participants were classified into groups based on low grade and high grade of periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs). Tract-Based Spatial Statistics was used to study thalamic diffusion differences between groups. Mean fractional anisotropy (FA) values in significant areas were calculated for each subject and correlated with cognitive performance. Participants with high-grade PVHs and DWMHs showed lower FA thalamic values compared to those with low-grade PVHs and DWMHs, respectively. Decreased FA thalamic values in high-grade DWMHs, but not high-grade PVH, were related to lower levels of performance in psychomotor speed, verbal fluency, and visuospatial skills. Thalamic diffusion differences are related to lower cognitive function only in participants with high-grade DWMHs. These results support the hypothesis that fronto-subcortical disruption is associated with cognitive function only in DWMHs. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Relationship between white matter lesions and regional cerebral blood flow changes during longitudinal follow up in Alzheimer's disease.

    PubMed

    Hanaoka, Takuya; Kimura, Noriyuki; Aso, Yasuhiro; Takemaru, Makoto; Kimura, Yuki; Ishibashi, Masato; Matsubara, Etsuro

    2016-07-01

    The aim of the present study was to evaluate the relationship between baseline white matter lesions (WML) and changes in regional cerebral blood flow during longitudinal follow up of patients with Alzheimer's disease (AD). A total of 38 patients with AD were included in the study (16 men, 22 women; mean age 77.8 years). All patients were evaluated using the Mini-Mental State Examination and brain perfusion single-photon emission computed tomography at baseline with an approximately 2-year follow up. The patients were divided into two subgroups according to the presence of WML on magnetic resonance imaging. Single-photon emission computed tomography data were analyzed using a voxel-by-voxel group analysis with Statistical Parametric Mapping 8 and region of interest analysis using FineSRT. Changes in Mini-Mental State Examination scores and regional cerebral blood flow were analyzed using the Wilcoxon signed-rank test. Mean Mini-Mental State Examination scores in AD patients with WML significantly decreased from 19.4 ± 4.8 to 15.5 ± 6.5 (P = 0.003). Statistical Parametric Mapping 8 and FineSRT analysis showed more severe and widespread regional cerebral blood flow reduction, mainly in the frontal and mesial temporal regions in AD patients with WML compared with those without WML. Baseline WML could predict a rapid progression of cognitive and brain functional impairment during longitudinal follow up in AD. Geriatr Gerontol Int 2016; 16: 836-842. © 2015 Japan Geriatrics Society.

  17. Cerebral white matter blood flow and energy metabolism in multiple sclerosis.

    PubMed

    Steen, Christel; D'haeseleer, Miguel; Hoogduin, Johannes M; Fierens, Yves; Cambron, Melissa; Mostert, Jop P; Heersema, Dorothea J; Koch, Marcus W; De Keyser, Jacques

    2013-09-01

    Cerebral blood flow (CBF) is reduced in normal-appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but the underlying mechanism is unknown. The objective of this article is to assess the relationship between reduced NAWM CBF and both axonal mitochondrial metabolism and astrocytic phosphocreatine (PCr) metabolism. Ten healthy controls and 25 MS subjects were studied with 3 Tesla magnetic resonance imaging. CBF was measured using pseudo-continuous arterial spin labeling. N-acetylaspartate/creatine (NAA/Cr) ratios (axonal mitochondrial metabolism) were obtained using (1)H-MR spectroscopy and PCr/β-ATP ratios using (31)P-MR spectroscopy. In centrum semiovale NAWM, we assessed correlations between CBF and both NAA/Cr and PCr/β-ATP ratios. Subjects with MS had a widespread reduction in CBF of NAWM (centrum semiovale, periventricular, frontal and occipital), and gray matter (frontoparietal cortex and thalamus). Compared to controls, NAA/Cr in NAWM of the centrum semiovale of MS subjects was decreased, whereas PCr/β-ATP was increased. We found no correlations between CBF and PCr/β-ATP. CBF and NAA/Cr correlated in controls (p = 0.02), but not in MS subjects (p = 0.68). Our results suggest that in MS patients there is no relationship between reduced CBF in NAWM and impaired axonal mitochondrial metabolism or astrocytic PCr metabolism.

  18. White Matter Tract Injury is Associated with Deep Gray Matter Iron Deposition in Multiple Sclerosis.

    PubMed

    Bergsland, Niels; Tavazzi, Eleonora; Laganà, Maria Marcella; Baglio, Francesca; Cecconi, Pietro; Viotti, Stefano; Zivadinov, Robert; Baselli, Giuseppe; Rovaris, Marco

    2017-01-01

    With respect to healthy controls (HCs), increased iron concentrations in the deep gray matter (GM) and decreased white matter (WM) integrity are common findings in multiple sclerosis (MS) patients. The association between these features of the disease remains poorly understood. We investigated the relationship between deep iron deposition in the deep GM and WM injury in associated fiber tracts in MS patients. Sixty-six MS patients (mean age 50.0 years, median Expanded Disability Status Scale 5.25, mean disease duration 19.1 years) and 29 HCs, group matched for age and sex were imaged on a 1.5T scanner. Susceptibility-weighted imaging and diffusion tensor imaging (DTI) were used for assessing high-pass filtered phase values in the deep GM and normal appearing WM (NAWM) integrity in associated fiber tracts, respectively. Correlation analyses investigated the associations between filtered phase values (suggestive of iron content) and WM damage. Areas indicative of increased iron levels were found in the left and right caudates as well as in the left thalamus. MS patients presented with decreased DTI-derived measures of tissue integrity in the associated WM tracts. Greater mean, axial and radial diffusivities were associated with increased iron levels in all three GM areas (r values .393 to .514 with corresponding P values .003 to <.0001). Global NAWM diffusivity measures were not related to mean filtered phase values within the deep GM. Increased iron concentration in the deep GM is associated with decreased tissue integrity of the connected WM in MS patients. Copyright © 2016 by the American Society of Neuroimaging.

  19. Higher prevalence of cerebral white matter hyperintensities in homozygous APOE-ɛ4 allele carriers aged 45-75: Results from the ALFA study.

    PubMed

    Rojas, Santiago; Brugulat-Serrat, Anna; Bargalló, Nuria; Minguillón, Carolina; Tucholka, Alan; Falcon, Carles; Carvalho, Andreia; Morán, Sebastian; Esteller, Manel; Gramunt, Nina; Fauria, Karine; Camí, Jordi; Molinuevo, José L; Gispert, Juan D

    2018-02-01

    Cerebral white matter hyperintensities are believed the consequence of small vessel disease and are associated with risk and progression of Alzheimer's disease. The ɛ4 allele of the APOE gene is the major factor accountable for Alzheimer's disease heritability. However, the relationship between white matter hyperintensities and APOE genotype in healthy subjects remains controversial. We investigated the association between APOE-ɛ4 and vascular risk factors with white matter hyperintensities, and explored their interactions, in a cohort of cognitively healthy adults (45-75 years). White matter hyperintensities were assessed with the Fazekas Scale from magnetic resonance images (575 participants: 74 APOE-ɛ4 homozygotes, 220 heterozygotes and 281 noncarriers) and classified into normal (Fazekas < 2) and pathological (≥2). Stepwise logistic regression was used to study the association between pathological Fazekas and APOE genotype after correcting for cardiovascular and sociodemographic factors. APOE-ɛ4 homozygotes, but not heterozygotes, bear a significantly higher risk (OR 3.432; 95% CI [1.297-9.082]; p = 0.013) of displaying pathological white matter hyperintensities. As expected, aging, hypertension and cardiovascular and dementia risk scales were also positively associated to pathological white matter hyperintensities, but these did not modulate the effect of APOE-ɛ4/ɛ4. In subjects at genetic risk of developing Alzheimer's disease, the control of modifiable risk factors of white matter hyperintensities is of particular relevance to reduce or delay dementia's onset.

  20. SU-E-J-143: Short- and Near-Term Effects of Proton Therapy On Cerebral White Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uh, J; Merchant, T; Ogg, R

    2014-06-01

    Purpose: To assess early effects of proton therapy on the structural integrity of cerebral white matter in relation to the subsequent near-term development of such effects. Methods: Sixteen children (aged 2–19 years) with craniopharyngioma underwent proton therapy of 54 Cobalt Gray Equivalent (CGE) in a prospective therapeutic trial. Diffusion tensor imaging (DTI) was performed at baseline before proton therapy and every 3 months thereafter. Tract-based spatial statics analysis of DTI data was performed to derive the fractional anisotropy (FA) and radial diffusivity (RD) in 26 volumes of interest (VOIs). The dose distributions were spatially normalized to identify VOIs prone tomore » high doses. The longitudinal percentage changes of the FA and RD in these VOIs at 3 and 12 months from the baseline were calculated, and their relationships were evaluated. Results: The average dose was highest to the cerebral peduncle (CP), corticospinal tract (CST) in the pons, pontine crossing tract (PCT), anterior/posterior limbs of the internal capsule (ALIC/PLIC), and genu of the corpus callosum (GCC). It ranged from 33.3 GCE (GCC) to 49.7 GCE (CP). A mild but statistically significant (P<0.05) decline of FA was observed 3 months after proton therapy in all VOIs except the PLIC and ranged from −1.7% (ALIC) to −2.8% (PCT). A significant increase of RD was found in the CP (3.5%) and ALIC (2.1%). The average longitudinal change from the baseline was reduced at 12 months for most VOIs. However, the standard deviation increased, indicating that the temporal pattern varied individually. The follow-up measurements at 3 and 12 months correlated for the CP, CST, PCT, and GCC (P < 0.04). Conclusion: DTI data suggest early (3 months) effects of proton therapy on microstructures in the white matter. The subsequent follow-up indicated individual variation of the changes, which was partly implied by the early effects.« less

  1. Increased resting cerebral blood flow in adult Fabry disease: MRI arterial spin labeling study.

    PubMed

    Phyu, Po; Merwick, Aine; Davagnanam, Indran; Bolsover, Fay; Jichi, Fatima; Wheeler-Kingshott, Claudia; Golay, Xavier; Hughes, Deralynn; Cipolotti, Lisa; Murphy, Elaine; Lachmann, Robin H; Werring, David John

    2018-04-17

    To assess resting cerebral blood flow (CBF) in the whole-brain and cerebral white matter (WM) and gray matter (GM) of adults with Fabry disease (FD), using arterial spin labeling (ASL) MRI, and to investigate CBF correlations with WM hyperintensity (WMH) volume and the circulating biomarker lyso-Gb3. This cross-sectional, case-control study included 25 patients with genetically confirmed FD and 18 age-matched healthy controls. We quantified resting CBF using Quantitative Signal Targeting With Alternating Radiofrequency Labeling of Arterial Regions (QUASAR) ASL MRI. We measured WMH volume using semiautomated software. We measured CBF in regions of interest in whole-brain, WM, and deep GM, and assessed correlations with WMH volume and plasma lyso-Gb3. The mean age (% male) for FD and healthy controls was 42.2 years (44%) and 37.1 years (50%). Mean whole-brain CBF was 27.56 mL/100 mL/min (95% confidence interval [CI] 23.78-31.34) for FD vs 22.39 mL/100 mL/min (95% CI 20.08-24.70) for healthy controls, p = 0.03. In WM, CBF was higher in FD (22.42 mL/100 mL/min [95% CI 17.72-27.12] vs 16.25 mL/100 mL/min [95% CI 14.03-18.48], p = 0.05). In deep GM, CBF was similar between groups (40.41 mL/100 mL/min [95% CI 36.85-43.97] for FD vs 37.46 mL/100 mL/min [95% CI 32.57-42.35], p = 0.38). In patients with FD with WMH (n = 20), whole-brain CBF correlated with WMH volume ( r = 0.59, p = 0.006), not with plasma lyso-Gb3. In FD, resting CBF is increased in WM but not deep GM. In FD, CBF correlates with WMH, suggesting that cerebral perfusion changes might contribute to, or result from, WM injury. © 2018 American Academy of Neurology.

  2. White Matter Damage Relates to Oxygen Saturation in Children With Sickle Cell Anemia Without Silent Cerebral Infarcts.

    PubMed

    Kawadler, Jamie M; Kirkham, Fenella J; Clayden, Jonathan D; Hollocks, Matthew J; Seymour, Emma L; Edey, Rosanna; Telfer, Paul; Robins, Andrew; Wilkey, Olu; Barker, Simon; Cox, Tim C S; Clark, Chris A

    2015-07-01

    Sickle cell anemia is associated with compromised oxygen-carrying capability of hemoglobin and a high incidence of overt and silent stroke. However, in children with no evidence of cerebral infarction, there are changes in brain morphometry relative to healthy controls, which may be related to chronic anemia and oxygen desaturation. A whole-brain tract-based spatial statistics analysis was carried out in 25 children with sickle cell anemia with no evidence of abnormality on T2-weighted magnetic resonance imaging (13 male, age range: 8-18 years) and 14 age- and race-matched controls (7 male, age range: 10-19 years) to determine the extent of white matter injury. The hypotheses that white matter damage is related to daytime peripheral oxygen saturation and steady-state hemoglobin were tested. Fractional anisotropy was found to be significantly lower in patients in the subcortical white matter (corticospinal tract and cerebellum), whereas mean diffusivity and radial diffusivity were higher in patients in widespread areas. There was a significant negative relationship between radial diffusivity and oxygen saturation (P<0.05) in the anterior corpus callosum and a trend-level negative relationship between radial diffusivity and hemoglobin (P<0.1) in the midbody of the corpus callosum. These data show widespread white matter abnormalities in a sample of asymptomatic children with sickle cell anemia, and provides for the first time direct evidence of a relationship between brain microstructure and markers of disease severity (eg, peripheral oxygen saturation and steady-state hemoglobin). This study suggests that diffusion tensor imaging metrics may serve as a biomarker for future trials of reducing hypoxic exposure. © 2015 American Heart Association, Inc.

  3. Differential distribution of neurons in the gyral white matter of the human cerebral cortex.

    PubMed

    García-Marín, V; Blazquez-Llorca, L; Rodriguez, J R; Gonzalez-Soriano, J; DeFelipe, J

    2010-12-01

    The neurons in the cortical white matter (WM neurons) originate from the first set of postmitotic neurons that migrates from the ventricular zone. In particular, they arise in the subplate that contains the earliest cells generated in the telencephalon, prior to the appearance of neurons in gray matter cortical layers. These cortical WM neurons are very numerous during development, when they are thought to participate in transient synaptic networks, although many of these cells later die, and relatively few cells survive as WM neurons in the adult. We used light and electron microscopy to analyze the distribution and density of WM neurons in various areas of the adult human cerebral cortex. Furthermore, we examined the perisomatic innervation of these neurons and estimated the density of synapses in the white matter. Finally, we examined the distribution and neurochemical nature of interneurons that putatively innervate the somata of WM neurons. From the data obtained, we can draw three main conclusions: first, the density of WM neurons varies depending on the cortical areas; second, calretinin-immunoreactive neurons represent the major subpopulation of GABAergic WM neurons; and, third, the somata of WM neurons are surrounded by both glutamatergic and GABAergic axon terminals, although only symmetric axosomatic synapses were found. By contrast, both symmetric and asymmetric axodendritic synapses were observed in the neuropil. We discuss the possible functional implications of these findings in terms of cortical circuits. © 2010 Wiley-Liss, Inc.

  4. Magnetic resonance features of cerebral malaria.

    PubMed

    Yadav, P; Sharma, R; Kumar, S; Kumar, U

    2008-06-01

    Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm(2), and apparent diffusion coefficient (ADC) maps were obtained. Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients.

  5. Tissue signature characterisation of diffusion tensor abnormalities in cerebral gliomas.

    PubMed

    Price, Stephen J; Peña, Alonso; Burnet, Neil G; Jena, Raj; Green, Hadrian A L; Carpenter, T Adrian; Pickard, John D; Gillard, Jonathan H

    2004-10-01

    The inherent invasiveness of malignant cells is a major determinant of the poor prognosis of cerebral gliomas. Diffusion tensor MRI (DTI) can identify white matter abnormalities in gliomas that are not seen on conventional imaging. By breaking down DTI into its isotropic (p) and anisotropic (q) components, we can determine tissue diffusion "signatures". In this study we have characterised these abnormalities in peritumoural white matter tracts. Thirty-five patients with cerebral gliomas and seven normal volunteers were imaged with DTI and T2-weighted sequences at 3 T. Displaced, infiltrated and disrupted white matter tracts were identified using fractional anisotropy (FA) maps and directionally encoded colour maps and characterised using tissue signatures. The diffusion tissue signatures were normal in ROIs where the white matter was displaced. Infiltrated white matter was characterised by an increase in the isotropic component of the tensor (p) and a less marked reduction of the anisotropic component (q). In disrupted white matter tracts, there was a marked reduction in q and increase in p. The direction of water diffusion was grossly abnormal in these cases. Diffusion tissue signatures may be a useful method of assessing occult white matter infiltration. Copyright 2004 Springer-Verlag

  6. Small white matter lesion detection in cerebral small vessel disease

    NASA Astrophysics Data System (ADS)

    Ghafoorian, Mohsen; Karssemeijer, Nico; van Uden, Inge; de Leeuw, Frank E.; Heskes, Tom; Marchiori, Elena; Platel, Bram

    2015-03-01

    Cerebral small vessel disease (SVD) is a common finding on magnetic resonance images of elderly people. White matter lesions (WML) are important markers for not only the small vessel disease, but also neuro-degenerative diseases including multiple sclerosis, Alzheimer's disease and vascular dementia. Volumetric measurements such as the "total lesion load", have been studied and related to these diseases. With respect to SVD we conjecture that small lesions are important, as they have been observed to grow over time and they form the majority of lesions in number. To study these small lesions they need to be annotated, which is a complex and time-consuming task. Existing (semi) automatic methods have been aimed at volumetric measurements and large lesions, and are not suitable for the detection of small lesions. In this research we established a supervised voxel classification CAD system, optimized and trained to exclusively detect small WMLs. To achieve this, several preprocessing steps were taken, which included a robust standardization of subject intensities to reduce inter-subject intensity variability as much as possible. A number of features that were found to be well identifying small lesions were calculated including multimodal intensities, tissue probabilities, several features for accurate location description, a number of second order derivative features as well as multi-scale annular filter for blobness detection. Only small lesions were used to learn the target concept via Adaboost using random forests as its basic classifiers. Finally the results were evaluated using Free-response receiver operating characteristic.

  7. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.

    PubMed

    Nakao, Takahiro; Hanaoka, Shouhei; Nomura, Yukihiro; Sato, Issei; Nemoto, Mitsutaka; Miki, Soichiro; Maeda, Eriko; Yoshikawa, Takeharu; Hayashi, Naoto; Abe, Osamu

    2018-04-01

    The usefulness of computer-assisted detection (CAD) for detecting cerebral aneurysms has been reported; therefore, the improved performance of CAD will help to detect cerebral aneurysms. To develop a CAD system for intracranial aneurysms on unenhanced magnetic resonance angiography (MRA) images based on a deep convolutional neural network (CNN) and a maximum intensity projection (MIP) algorithm, and to demonstrate the usefulness of the system by training and evaluating it using a large dataset. Retrospective study. There were 450 cases with intracranial aneurysms. The diagnoses of brain aneurysms were made on the basis of MRA, which was performed as part of a brain screening program. Noncontrast-enhanced 3D time-of-flight (TOF) MRA on 3T MR scanners. In our CAD, we used a CNN classifier that predicts whether each voxel is inside or outside aneurysms by inputting MIP images generated from a volume of interest (VOI) around the voxel. The CNN was trained in advance using manually inputted labels. We evaluated our method using 450 cases with intracranial aneurysms, 300 of which were used for training, 50 for parameter tuning, and 100 for the final evaluation. Free-response receiver operating characteristic (FROC) analysis. Our CAD system detected 94.2% (98/104) of aneurysms with 2.9 false positives per case (FPs/case). At a sensitivity of 70%, the number of FPs/case was 0.26. We showed that the combination of a CNN and an MIP algorithm is useful for the detection of intracranial aneurysms. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:948-953. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Analyses of Disruption of Cerebral White Matter Integrity in Schizophrenia with MR Diffusion Tensor Fiber Tracking Method

    NASA Astrophysics Data System (ADS)

    Yamamoto, Utako; Kobayashi, Tetsuo; Kito, Shinsuke; Koga, Yoshihiko

    We have analyzed cerebral white matter using magnetic resonance diffusion tensor imaging (MR-DTI) to measure the diffusion anisotropy of water molecules. The goal of this study is the quantitative evaluation of schizophrenia. Diffusion tensor images are acquired for patients with schizophrenia and healthy comparison subjects, group-matched for age, sex, and handedness. Fiber tracking is performed on the superior longitudinal fasciculus for the comparison between the patient and comparison groups. We have analysed and compared the cross-sectional area on the starting coronal plane and the mean and standard deviation of the fractional anisotropy and the apparent diffusion coefficient along fibers in the right and left hemispheres. In the right hemisphere, the cross-sectional areas in patient group are significantly smaller than those in the comparison group. Furthermore, in the comparison group, the cross-sectional areas in the right hemisphere are significantly larger than those in the left hemisphere, whereas there is no significant difference in the patient group. These results suggest that we may evaluate the disruption in white matter integrity in schizophrenic patients quantitatively by comparing the cross-sectional area of the superior longitudinal fasciculus in the right and left hemispheres.

  9. Cerebral monitoring during cardiopulmonary bypass in children.

    PubMed

    Kern, F H; Schell, R M; Greeley, W J

    1993-07-01

    Although cerebral monitoring during CPB remains primarily investigational, recent data support its clinical utility. In particular, it is cerebral metabolic monitoring that provides meaningful information in terms of preparing the brain for dhCPB and dhCA. Cerebral blood flow or cerebral blood flow velocity monitoring is less beneficial due to the presence of luxuriant cerebral blood flow at deep hypothermic temperatures. Conventional temperature monitoring can be improved upon by adding jugular venous oxygen saturation monitoring to satisfy the primary goal of cerebral protection--uniform cerebral cooling and metabolic suppression. Although online measures of cerebral cellular metabolism are not widely available, early experience with near infrared technology suggests that it is a feasible and reliable monitor of cerebral metabolic activity and is likely to represent an important noninvasive continuous monitor in the near future. CMRO2 recovery data have suggested that cerebral metabolic suppression is more severe the longer the period of dhCA. Cerebral protection strategies, such as intermittent cerebral perfusion have demonstrated less metabolic suppression of dhCA in animal models and are currently undergoing clinical evaluation in our institution. Finally, the postoperative period remains a high-risk period for neurologic injury because temperatures are normothermic, cardiac output is reduced, cerebral autoregulation is impaired, and management strategies, such as hyperventilation, are commonly used to increase pulmonary blood flow with little knowledge on its effects on cerebral perfusion.

  10. Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass.

    PubMed

    Aharon, Alon S; Mulloy, Matthew R; Drinkwater, Davis C; Lao, Oliver B; Johnson, Mahlon D; Thunder, Megan; Yu, Chang; Chang, Paul

    2004-11-01

    Mitogen-activated protein kinases (MAPK) are important intermediates in the signal transduction pathways involved in neuronal dysfunction following cerebral ischemia-reperfusion injury. One subfamily, extracellular regulated kinase 1/2, has been heavily implicated in the pathogenesis of post-ischemic neuronal damage. However, the contribution of extracellular regulated kinase 1/2 to neuronal damage following deep hypothermic circulatory arrest and low flow cardiopulmonary bypass is unknown. We attempted to correlate the extent of neuronal damage present following deep hypothermic circulatory arrest and low flow cardiopulmonary bypass with phosphorylated extracellular regulated kinase 1/2 expression in the cerebral vascular endothelium. Piglets underwent normal flow cardiopulmonary bypass (n=4) deep hypothermic circulatory arrest (n=6) and low flow cardiopulmonary bypass (n=5). Brains were harvested following 24 h of post-cardiopulmonary bypass recovery. Cerebral cortical watershed zones, hippocampus, basal ganglia, thalamus, cerebellum, mesencephalon, pons and medulla were evaluated using hematoxylin and eosin staining. A section of ischemic cortex was evaluated by immunohistochemistry with rabbit polyclonal antibodies against phosphorylated extracellular regulated kinase 1/2. Compared to cardiopulmonary bypass controls, the deep hypothermic circulatory arrest and low flow cardiopulmonary bypass piglets exhibited diffuse ischemic changes with overlapping severity and distribution. Significant neuronal damage occurred in the frontal watershed zones and basal ganglia of the deep hypothermic circulatory arrest group (P<0.05). No detectable phosphorylated extracellular regulated kinase 1/2 immunoreactivity was found in the cardiopulmonary bypass controls; however, ERK 1/2 immunoreactivity was present in the cerebral vascular endothelium of the deep hypothermic circulatory arrest and low flow cardiopulmonary bypass groups. Our results indicate that phosphorylated

  11. A randomised crossover trial of the acute effects of a deep-fried Mars bar or porridge on the cerebral vasculature.

    PubMed

    Dunn, William G; Walters, Matthew R

    2014-11-01

    The deep-fried Mars bar has been cited as 'all that is wrong with the high-fat, high-sugar Scottish diet'. We investigated the effect of ingestion of a deep-fried Mars bar or porridge on cerebrovascular reactivity. We hypothesised that deep-fried Mars bar ingestion would impair cerebrovascular reactivity, which is associated with increased risk of ischaemic stroke. Twenty-four fasted volunteers were randomised to receive a deep-fried Mars bar and then porridge (control), or vice-versa. We used transcranial Doppler ultrasound to calculate Breath Holding Index as a surrogate measure of cerebrovascular reactivity. Change in Breath Holding Index post-ingestion was the primary outcome measure. Twenty-four healthy adults (mean (SD) age 21.5 (1.7) years, 14 males) completed the protocol. Deep-fried Mars bar ingestion caused a non-significant reduction in cerebrovascular reactivity relative to control (mean difference in absolute Breath Holding Index after deep-fried Mars bar versus porridge -0.11, p = 0.40). Comparison of the difference between the absolute change in Breath Holding Index between genders demonstrated a significant impairment of cerebrovascular reactivity in males (mean difference women minus men of 0.65, 95% CI 0.30 to 1.00, p = 0.0003). Ingestion of a bolus of sugar and fat caused no overall difference in cerebrovascular reactivity, but there was a modest decrease in males. Impaired cerebrovascular reactivity is associated with increased stroke risk, and therefore deep-fried Mars bar ingestion may acutely contribute to cerebral hypoperfusion in men. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  12. Cerebral white matter hyperintensity in African Americans and European Americans with type 2 diabetes.

    PubMed

    Divers, Jasmin; Hugenschmidt, Christina; Sink, Kaycee M; Williamson, Jeffrey D; Ge, Yaorong; Smith, S Carrie; Bowden, Donald W; Whitlow, Christopher T; Lyders, Eric; Maldjian, Joseph A; Freedman, Barry I

    2013-10-01

    Previous studies involving inner city populations detected higher cerebral white matter hyperintensity (WMH) scores in African Americans (AAs) compared with European Americans (EAs). This finding might be attributable to the higher prevalence of cardiovascular disease (CVD) risk factors and poorer access to healthcare in AAs. Despite racial differences in CVD risk factor profiles, AAs have paradoxically lower levels of subclinical CVD. We hypothesized that AAs with diabetes and good access to healthcare would have comparable or lower levels of WMH as EAs. Racial differences in the distribution of WMH were analyzed in 46 AAs and 156 EAs with type 2 diabetes enrolled in the Diabetes Heart Study (DHS)-Mind, and replicated in a sample of 113 AAs and 61 EAs patients who had clinically indicated cerebral magnetic resonance imaging. Wilcoxon 2-sample tests and linear models were used to compare the distribution of WMH in AAs and EAs and to test for association between WMH and race. The unadjusted mean WMH score from the Diabetes Heart Study-Mind was 1.9 in AAs and 2.3 in EAs (P = .3244). Among those with clinically indicated magnetic resonance imaging, the mean WMH score was 2.9 in AAs and 3.9 in EAs (P = .0503). Adjustment for age and sex produced no statistically significant differences in WMH score between AAs and EAs. These independent datasets reveal comparable WMH scores in AAs and EAs, suggesting that disparities in access to healthcare and environmental exposures likely underlie the previously reported excess burden of WMH in AAs. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. T2 Relaxometry MRI Predicts Cerebral Palsy in Preterm Infants.

    PubMed

    Chen, L-W; Wang, S-T; Huang, C-C; Tu, Y-F; Tsai, Y-S

    2018-01-18

    T2-relaxometry brain MR imaging enables objective measurement of brain maturation based on the water-macromolecule ratio in white matter, but the outcome correlation is not established in preterm infants. Our study aimed to predict neurodevelopment with T2-relaxation values of brain MR imaging among preterm infants. From January 1, 2012, to May 31, 2015, preterm infants who underwent both T2-relaxometry brain MR imaging and neurodevelopmental follow-up were retrospectively reviewed. T2-relaxation values were measured over the periventricular white matter, including sections through the frontal horns, midbody of the lateral ventricles, and centrum semiovale. Periventricular T2 relaxometry in relation to corrected age was analyzed with restricted cubic spline regression. Prediction of cerebral palsy was examined with the receiver operating characteristic curve. Thirty-eight preterm infants were enrolled for analysis. Twenty patients (52.6%) had neurodevelopmental abnormalities, including 8 (21%) with developmental delay without cerebral palsy and 12 (31.6%) with cerebral palsy. The periventricular T2-relaxation values in relation to age were curvilinear in preterm infants with normal development, linear in those with developmental delay without cerebral palsy, and flat in those with cerebral palsy. When MR imaging was performed at >1 month corrected age, cerebral palsy could be predicted with T2 relaxometry of the periventricular white matter on sections through the midbody of the lateral ventricles (area under the receiver operating characteristic curve = 0.738; cutoff value of >217.4 with 63.6% sensitivity and 100.0% specificity). T2-relaxometry brain MR imaging could provide prognostic prediction of neurodevelopmental outcomes in premature infants. Age-dependent and area-selective interpretation in preterm brains should be emphasized. © 2018 by American Journal of Neuroradiology.

  14. Brainstem Involvement as a Cause of Central Sleep Apnea: Pattern of Microstructural Cerebral Damage in Patients with Cerebral Microangiopathy

    PubMed Central

    Duning, Thomas; Deppe, Michael; Brand, Eva; Stypmann, Jörg; Becht, Charlotte; Heidbreder, Anna; Young, Peter

    2013-01-01

    Background The exact underlying pathomechanism of central sleep apnea with Cheyne-Stokes respiration (CSA-CSR) is still unclear. Recent studies have demonstrated an association between cerebral white matter changes and CSA. A dysfunction of central respiratory control centers in the brainstem was suggested by some authors. Novel MR-imaging analysis tools now allow far more subtle assessment of microstructural cerebral changes. The aim of this study was to investigate whether and what severity of subtle structural cerebral changes could lead to CSA-CSR, and whether there is a specific pattern of neurodegenerative changes that cause CSR. Therefore, we examined patients with Fabry disease (FD), an inherited, lysosomal storage disease. White matter lesions are early and frequent findings in FD. Thus, FD can serve as a "model disease" of cerebral microangiopathy to study in more detail the impact of cerebral lesions on central sleep apnea. Patients and Methods Genetically proven FD patients (n = 23) and age-matched healthy controls (n = 44) underwent a cardio-respiratory polysomnography and brain MRI at 3.0 Tesla. We applied different MR-imaging techniques, ranging from semiquantitative measurement of white matter lesion (WML) volumes and automated calculation of brain tissue volumes to VBM of gray matter and voxel-based diffusion tensor imaging (DTI) analysis. Results In 5 of 23 Fabry patients (22%) CSA-CSR was detected. Voxel-based DTI analysis revealed widespread structural changes in FD patients when compared to the healthy controls. When calculated as a separate group, DTI changes of CSA-CSR patients were most prominent in the brainstem. Voxel-based regression analysis revealed a significant association between CSR severity and microstructural DTI changes within the brainstem. Conclusion Subtle microstructural changes in the brainstem might be a neuroanatomical correlate of CSA-CSR in patients at risk of WML. DTI is more sensitive and specific than

  15. Cerebral hemodynamics and metabolism in patients with symptomatic occlusion of the internal carotid artery.

    PubMed

    Rutgers, D R; van Osch, M J P; Kappelle, L J; Mali, W P T M; van der Grond, J

    2003-03-01

    The goals of this study were to investigate (1) whether the concentrations of choline, creatine, and N-acetyl aspartate (NAA) in cerebral white matter are changed in patients with symptomatic occlusion of the internal carotid artery (ICA) and (2) whether possible changes in metabolite concentration are related to regional cerebral perfusion or cerebral vasoreactivity. In 19 patients (mean+/-SD age, 60+/-9 years), white matter metabolite concentrations were measured with proton MR spectroscopic imaging on average 4+/-2 months after symptoms occurred. In selected voxels, corresponding cerebral blood flow and volume, mean transit time, and time-to-bolus peak were determined with dynamic susceptibility contrast MRI. Cerebral CO2 reactivity was determined with transcranial Doppler sonography. No significant changes in choline and creatine concentrations were observed. NAA concentration was significantly reduced in the hemisphere on the side of the symptomatic ICA (9.1+/-1.7 mmol/L) compared with the contralateral hemisphere (10.5+/-1.7 mmol/L, P<0.005) and control subjects (10.5+/-0.9 mmol/L, P<0.01). Although no significant interhemispheric difference in NAA concentration was found in patients who presented with retinal ischemia, patients with cerebral ischemia had a significantly lower NAA concentration in the symptomatic hemisphere (9.0+/-1.7 mmol/L) compared with the asymptomatic hemisphere (10.4+/-1.6 mmol/L, P<0.05). In all patients, NAA concentration was not significantly correlated with quantitative cerebral perfusion parameters or CO2 reactivity. Patients with symptomatic ICA occlusion may show chronic neuronal damage in cerebral white matter as evidenced by reduced NAA concentration. This seems to be related to previous symptomatology rather than to the cerebral hemodynamic status in a chronic stage.

  16. White Matter Disruptions in Schizophrenia Are Spatially Widespread and Topologically Converge on Brain Network Hubs

    PubMed Central

    Baker, Simon T.; Cropley, Vanessa L.; Bousman, Chad; Fornito, Alex; Cocchi, Luca; Fullerton, Janice M.; Rasser, Paul; Schall, Ulrich; Henskens, Frans; Michie, Patricia T.; Loughland, Carmel; Catts, Stanley V.; Mowry, Bryan; Weickert, Thomas W.; Shannon Weickert, Cynthia; Carr, Vaughan; Lenroot, Rhoshel; Pantelis, Christos; Zalesky, Andrew

    2017-01-01

    Abstract White matter abnormalities associated with schizophrenia have been widely reported, although the consistency of findings across studies is moderate. In this study, neuroimaging was used to investigate white matter pathology and its impact on whole-brain white matter connectivity in one of the largest samples of patients with schizophrenia. Fractional anisotropy (FA) and mean diffusivity (MD) were compared between patients with schizophrenia or schizoaffective disorder (n = 326) and age-matched healthy controls (n = 197). Between-group differences in FA and MD were assessed using voxel-based analysis and permutation testing. Automated whole-brain white matter fiber tracking and the network-based statistic were used to characterize the impact of white matter pathology on the connectome and its rich club. Significant reductions in FA associated with schizophrenia were widespread, encompassing more than 40% (234ml) of cerebral white matter by volume and involving all cerebral lobes. Significant increases in MD were also widespread and distributed similarly. The corpus callosum, cingulum, and thalamic radiations exhibited the most extensive pathology according to effect size. More than 50% of cortico-cortical and cortico-subcortical white matter fiber bundles comprising the connectome were disrupted in schizophrenia. Connections between hub regions comprising the rich club were disproportionately affected. Pathology did not differ between patients with schizophrenia and schizoaffective disorder and was not mediated by medication. In conclusion, although connectivity between cerebral hubs is most extensively disturbed in schizophrenia, white matter pathology is widespread, affecting all cerebral lobes and the cerebellum, leading to disruptions in the majority of the brain’s fiber bundles. PMID:27535082

  17. Vanishing White Matter Disease: A Review with Focus on Its Genetics

    ERIC Educational Resources Information Center

    Pronk, Jan C.; van Kollenburg, Barbara; Scheper, Gert C.; van der Knaap, Marjo S.

    2006-01-01

    Leukoencephalopathy with vanishing white matter (VWM) is an autosomal recessive brain disorder, most often with a childhood onset. Magnetic resonance imaging and spectroscopy indicate that, with time, increasing amounts of cerebral white matter vanish and are replaced by fluid. Autopsy confirms white matter rarefaction and cystic degeneration. The…

  18. Age-related cerebral white matter changes and pulse-wave encephalopathy: observations with three-dimensional MRI.

    PubMed

    Henry Feugeas, Marie Cécile; De Marco, Giovanni; Peretti, Ilana Idy; Godon-Hardy, Sylvie; Fredy, Daniel; Claeys, Elisabeth Schouman

    2005-11-01

    Our purpose was to investigate leukoaraïosis (LA) using three-dimensional MR imaging combined with advanced image-processing technology to attempt to group signal abnormalities according to their etiology. Coronal T2-weighted fast fluid-attenuated inversion-recovery (FLAIR) sequences and three-dimensional T1-weighted fast spoiled gradient recalled echo sequences were used to examine cerebral white matter changes in 75 elderly people with memory complaint but no dementia. They were otherwise healthy, community-dwelling subjects. Three subtypes of LA were defined on the basis of their shape, geography and extent: the so-called subependymal/subpial LA, perivascular LA and "bands" along long white matter tracts. Subependymal changes were directly contiguous with ventricular spaces. They showed features of "water hammer" lesions with ventricular systematisation and a more frequent location around the frontal horns than around the bodies (P=.0008). The use of cerebrospinal fluid (CSF) contiguity criterion allowed a classification of splenial changes in the subpial group. Conversely, posterior periventricular lesions in the centrum ovale as well as irregular and extensive periventricular lesions were not directly contiguous with CSF spaces. The so-called perivascular changes showed features of small-vessel-associated disease; they surrounded linear CSF-like signals that followed the direction of perforating vessels. Distribution of these perivascular changes appeared heterogeneous (P ranging from .04 to 5.10(-16)). These findings suggest that subependymal/subpial LA and subcortical LA may be separate manifestations of a single underlying pulse-wave encephalopathy.

  19. Brain Lesions in Children with Unilateral Spastic Cerebral Palsy.

    PubMed

    Hadzagic-Catibusic, Feriha; Avdagic, Edin; Zubcevic, Smail; Uzicanin, Sajra

    2017-02-01

    Unilateral spastic cerebral palsy (US CP) is the second most common subtype of cerebral palsy. The aim of the study was to analyze neuroimaging findings in children with unilateral spastic cerebral palsy. The study was hospital based, which has included 106 patients with US CP (boys 72/girls 34, term 82/preterm 24). Neuroimaging findings were classified into 5 groups: Brain maldevelopment, predominant white matter injury, predominant gray matter injury, non specific findings and normal neuroimaging findings. Predominant white matter lesions where the most frequent (48/106,45.28%; term 35/preterm 13), without statistically significant difference between term and preterm born children (x2=0.4357; p=0.490517). Predominant gray matter lesions had 32/106 children, 30.19%; (term 25/preterm 7, without statistically significant difference between term and preterm born children (x2=0.902; p=0.9862). Brain malformations had 10/106 children, 9.43%, and all of them were term born. Other finding had 2/106 children, 1.89%, both of them were term born. Normal neuroimaging findings were present in14/106 patients (13.21%). Neuroimaging may help to understand morphological background of motor impairment in children with US CP. Periventricular white matter lesions were the most frequent, then gray matter lesions.

  20. Cerebral Arterial Occlusion Did Not Promote the Prevalence of Cerebral Amyloid Angiopathy.

    PubMed

    Honda, Kazuhiro

    2016-08-01

    An impairment of amyloid-β (Aβ) clearance has been suggested in Alzheimer's disease. Perivascular drainage along cerebrovascular vessels is considered an important amyloid clearance pathway. This study examined the effect of reduced arterial pulsation that could cause an impairment in cerebral amyloid drainage on the prevalence of cortical microbleeds (CMBs), a surrogate marker for cerebral amyloid angiopathy (CAA). Patients who lost depiction of either side of the carotid artery or the middle cerebral artery on magnetic resonance angiography were studied. Those who showed acute cerebral infarction or a previous cortical cerebral infarction were excluded. The number of CMBs was counted on the occluded and non-occluded sides of the brain in each subject. The number of subjects who showed more CMBs on the occluded side of the brain was compared with the number of subjects who showed more CMBs on the non-occluded side of the brain. Twenty-eight patients were studied. The extent of lacunar infarction and white matter lesions was not different, irrespective of the occluded vessels or the distribution of CMBs. The prevalence of CMBs was not different between the occluded and non-occluded sides of the brain. In this cross-sectional study, reduction of arterial pulsation was not associated with a higher prevalence of CAA. Therefore, reduced arterial pulsation alone may not be enough to promote CAA.

  1. Virtual Cerebral Ventricular System: An MR-Based Three-Dimensional Computer Model

    ERIC Educational Resources Information Center

    Adams, Christina M.; Wilson, Timothy D.

    2011-01-01

    The inherent spatial complexity of the human cerebral ventricular system, coupled with its deep position within the brain, poses a problem for conceptualizing its anatomy. Cadaveric dissection, while considered the gold standard of anatomical learning, may be inadequate for learning the anatomy of the cerebral ventricular system; even with…

  2. Extreme deep white matter hyperintensity volumes are associated with African American race.

    PubMed

    Nyquist, Paul A; Bilgel, Murat S; Gottesman, Rebecca; Yanek, Lisa R; Moy, Taryn F; Becker, Lewis C; Cuzzocreo, Jennifer; Prince, Jerry; Yousem, David M; Becker, Diane M; Kral, Brian G; Vaidya, Dhananjay

    2014-01-01

    African Americans (AAs) have a higher prevalence of extreme ischemic white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) than do European Americans (EAs) based on the Cardiovascular Health Study (CHS) score. Ischemic white matter disease, limited to the deep white matter, may be biologically distinct from disease in other regions and may reflect a previously observed trend toward an increased risk of subcortical lacunar infarcts in AAs. We hypothesized that extreme deep WMH volume (DWMV) or periventricular volume (PV) may also have a higher prevalence in AAs. Thus, we studied extreme CHS scores and extreme DWMV and PV in a healthy population enriched for cardiovascular disease risk factors. We imaged the brains of 593 subjects who were first-degree relatives of probands with early onset coronary disease prior to 60 years of age. WMHs were manually delineated on 3-tesla cranial MRI by a trained radiology reader; the location and volume of lesions were characterized using automated software. DWMV and PV were measured directly with automated software, and the CHS score was determined by a neuroradiologist. Volumes were characterized as being in the upper 25% versus lower 75% of total lesion volume. Volumes in the upper versus the remaining quartiles were examined for AA versus EA race using multiple logistic regression (generalized estimating equations adjusted for family relatedness) and adjusted for major vascular disease risk factors including age ≥55 years versus <55, sex, current smoking, obesity, hypertension, diabetes and low-density lipoprotein >160 mg/dl. Participants were 58% women and 37% AAs, with a mean age of 51.5 ± 11.0 years (range, 29-74 years). AAs had significantly higher odds of having extreme DWMVs (odds ratio, OR, 1.8; 95% confidence interval, CI, 1.2-2.9; p = 0.0076) independently of age, sex, hypertension and all other risk factors. AAs also had significantly higher odds of having extreme CHS scores ≥3 (OR, 1.3; 95% CI

  3. White matter hyperintensities and the mediating role of cerebral amyloid angiopathy in dominantly-inherited Alzheimer's disease.

    PubMed

    Lee, Seonjoo; Zimmerman, Molly E; Narkhede, Atul; Nasrabady, Sara E; Tosto, Giuseppe; Meier, Irene B; Benzinger, Tammie L S; Marcus, Daniel S; Fagan, Anne M; Fox, Nick C; Cairns, Nigel J; Holtzman, David M; Buckles, Virginia; Ghetti, Bernardino; McDade, Eric; Martins, Ralph N; Saykin, Andrew J; Masters, Colin L; Ringman, John M; Fӧrster, Stefan; Schofield, Peter R; Sperling, Reisa A; Johnson, Keith A; Chhatwal, Jasmeer P; Salloway, Stephen; Correia, Stephen; Jack, Clifford R; Weiner, Michael; Bateman, Randall J; Morris, John C; Mayeux, Richard; Brickman, Adam M

    2018-01-01

    White matter hyperintensity (WMH) volume on MRI is increased among presymptomatic individuals with autosomal dominant mutations for Alzheimer's disease (AD). One potential explanation is that WMH, conventionally considered a marker of cerebrovascular disease, are a reflection of cerebral amyloid angiopathy (CAA) and that increased WMH in this population is a manifestation of this vascular form of primary AD pathology. We examined whether the presence of cerebral microbleeds, a marker of CAA, mediates the relationship between WMH and estimated symptom onset in individuals with and without autosomal dominant mutations for AD. Participants (n = 175, mean age = 41.1 years) included 112 with an AD mutation and 63 first-degree non-carrier controls. We calculated the estimated years from expected symptom onset (EYO) and analyzed baseline MRI data for WMH volume and presence of cerebral microbleeds. Mixed effects regression and tests of mediation were used to examine microbleed and WMH differences between carriers and non-carriers and to test the whether the association between WMH and mutation status is dependent on the presence of microbleeds. Mutation carriers were more likely to have microbleeds than non-carriers (p<0.05) and individuals with microbleeds had higher WMH volume than those without (p<0.05). Total WMH volume was increased in mutation carriers compared with non-carriers, up to 20 years prior to EYO, after controlling for microbleed status, as we demonstrated previously. Formal testing of mediation demonstrated that 21% of the association between mutation status and WMH was mediated by presence of microbleeds (p = 0.03) but a significant direct effect of WMH remained (p = 0.02) after controlling for presence of microbleeds. Although there is some co-dependency between WMH and microbleeds, the observed increases in WMH among mutation carriers does not appear to be fully mediated by this marker of CAA. The findings highlight the possibility that WMH represent

  4. Age-related decline in oligodendrogenesis retards white matter repair in mice.

    PubMed

    Miyamoto, Nobukazu; Pham, Loc-Duyen D; Hayakawa, Kazuhide; Matsuzaki, Toshinori; Seo, Ji Hae; Magnain, Caroline; Ayata, Cenk; Kim, Kyu-Won; Boas, David; Lo, Eng H; Arai, Ken

    2013-09-01

    Aging is one of the major risk factors for white matter injury in cerebrovascular disease. However, the effects of age on the mechanisms of injury/repair in white matter remain to be fully elucidated. Here, we ask whether, compared with young brains, white matter regions in older brains may be more vulnerable in part because of decreased rates of compensatory oligodendrogenesis after injury. A mouse model of prolonged cerebral hypoperfusion was prepared by bilateral common carotid artery stenosis in 2-month and 8-month-old mice. Matching in vitro studies were performed by subjecting oligodendrocyte precursor cells to sublethal 7-day CoCl2 treatment to induce chemical hypoxic stress. Baseline myelin density in the corpus callosum was similar in 2-month and 8-month-old mice. But after induction of prolonged cerebral hypoperfusion, older mice showed more severe white matter injury together with worse deficits in working memory. The numbers of newborn oligodendrocytes and their precursors were increased by cerebral hypoperfusion in young mice, whereas these endogenous responses were significantly dampened in older mice. Defects in cyclic AMP response element-binding protein signaling may be involved because activating cyclic AMP response element-binding protein with the type-III phosphodiesterase inhibitor cilostazol in older mice restored the differentiation of oligodendrocyte precursor cells, alleviated myelin loss, and improved cognitive dysfunction during cerebral hypoperfusion. Cell culture systems confirmed that cilostazol promoted the differentiation of oligodendrocyte precursor cells. An age-related decline in cyclic AMP response element-binding protein-mediated oligodendrogenesis may compromise endogenous white matter repair mechanisms, and therefore, drugs that activate cyclic AMP response element-binding protein signaling provide a potential therapeutic approach for treating white matter injury in aging brains.

  5. Effects of white matter lesions on brain perfusion in patients with mild cognitive impairment.

    PubMed

    Ishibashi, Masato; Kimura, Noriyuki; Aso, Yasuhiro; Matsubara, Etsuro

    2018-05-01

    To evaluate the effects of white matter lesions on regional cerebral blood flow in subjects with amnestic mild cognitive impairment. Seventy-five subjects with mild cognitive impairment (36 men and 39 women; mean age, 78.1 years) were included in the study. We used the Mini-Mental State Examination to assess cognitive function. All subjects underwent brain magnetic resonance imaging and 99m Tc ethylcysteinate dimer single photon emission computed tomography. Subjects were stratified based on the presence or absence of white matter lesions on magnetic resonance imaging. Statistical parametric mapping of differences in regional cerebral blood flow between the two groups were assessed by voxel-by-voxel group analysis using SPM8. Of all 75 subjects with mild cognitive impairment, 46 (61.3%) had mild to moderate white matter lesions. The prevalence of hypertension tended to be higher in subjects with white matter lesions than in those without white matter lesions. Mini-Mental State Examination scores were significantly lower in subjects with white matter lesions than in those without white matter lesions. Subjects with white matter lesions had decreased regional cerebral blood flow mainly in the frontal, parietal, and medial temporal lobes, as well as the putamen, compared to those without white matter lesions. In subjects with mild cognitive impairment, white matter lesions were associated with cognitive impairment and mainly frontal lobe brain function. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Somatosensory discrimination deficits following pediatric cerebral malaria.

    PubMed

    Dugbartey, A T; Spellacy, F J; Dugbartey, M T

    1998-09-01

    Pathologic studies of central nervous system damage in human falciparum malaria indicate primary localization in the cerebral white matter. We report a sensory-perceptual investigation of 20 Ghanaian children with a recent history of cerebral malaria who were age-, gender-, and education-matched with 20 healthy control subjects. Somatosensory examinations failed to show any evidence of hemianesthesia, pseudohemianesthesia, or extinction to double simultaneous tactile stimulation. While unilateral upper limb testing revealed intact unimanual tactile roughness discrimination, bimanual tactile discrimination, however, was significantly impaired in the cerebral malaria group. A strong negative correlation (r = -0.72) between coma duration and the bimanual tactile roughness discrimination test was also found. An inefficiency in the integrity of callosal fibers appear to account for our findings, although alternative subcortical mechanisms known to be involved in information transfer across the cerebral hemispheres may be compromised as well.

  7. ASPREE-NEURO study protocol: A randomized controlled trial to determine the effect of low-dose aspirin on cerebral microbleeds, white matter hyperintensities, cognition, and stroke in the healthy elderly.

    PubMed

    Ward, Stephanie A; Raniga, Parnesh; Ferris, Nicholas J; Woods, Robyn L; Storey, Elsdon; Bailey, Michael J; Brodtmann, Amy; Yates, Paul A; Donnan, Geoffrey A; Trevaks, Ruth E; Wolfe, Rory; Egan, Gary F; McNeil, John J

    2017-01-01

    Rationale Cerebral microbleeds seen on brain magnetic resonance imaging are markers of small vessel disease, linked to cognitive dysfunction and increased ischemic and hemorrhagic stroke risk. Observational studies suggest that aspirin use may induce cerebral microbleeds, and associated overt intracranial hemorrhage, but this has not been definitively resolved. Aims ASPREE-NEURO will determine the effect of aspirin on cerebral microbleed development over three years in healthy adults aged 70 years and over, participating in the larger 'ASPirin in Reducing Events in the Elderly (ASPREE)' primary prevention study of aspirin. Sample size Five hundred and fifty-nine participants provide 75% power (two-sided p value of 0.05) to determine an average difference of 0.5 cerebral microbleed per person after three years. Methods and design A multi-center, randomized placebo-controlled trial of 100 mg daily aspirin in participants who have brain magnetic resonance imaging at study entry, one and three years after randomization and who undergo cognitive testing at the same time points. Study outcomes The primary outcome is the number of new cerebral microbleeds on magnetic resonance imaging after three years. Secondary outcomes are the number of new cerebral microbleeds after one year, change in volume of white matter hyperintensity, cognitive function, and stroke. Discussion ASPREE-NEURO will resolve whether aspirin affects the presence and number of cerebral microbleeds, their relationship with cognitive performance, and indicate whether consideration of cerebral microbleeds alters the risk-benefit profile of aspirin in primary prevention for older people. Trial registration Australian New Zealand Clinical Trials Registry ACTRN12613001313729.

  8. Novel approach for independent control of brain hypothermia and systemic normothermia: cerebral selective deep hypothermia for refractory cardiac arrest.

    PubMed

    Wang, Chih-Hsien; Lin, Yu-Ting; Chou, Heng-Wen; Wang, Yi-Chih; Hwang, Joey-Jen; Gilbert, John R; Chen, Yih-Sharng

    2017-08-01

    A 38-year-old man was found unconscious, alone in the driver's seat of his car. The emergency medical team identified his condition as pulseless ventricular tachycardia. Defibrillation was attempted but failed. Extracorporeal membrane oxygenation (ECMO) was started in the emergency room 52 min after the estimated arrest following the extracorporeal cardiopulmonary resuscitation (ECPR) protocol in our center. The initial prognosis under the standard protocol was <25% chance of survival. A novel adjunctive to our ECPR protocol, cerebral selective deep (<30°C) hypothermia (CSDH), was applied. CSDH adds a second independent femoral access extracorporeal circuit, perfusing cold blood into the patient's common carotid artery. The ECMO and CSDH circuits demonstrated independent control of cerebral and core temperatures. Nasal temperature was lowered to below 30°C for 12 hours while core was maintained at normothermia. The patient was discharged without significant neurological deficit 32 days after the initial arrest. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Language Development and Brain Magnetic Resonance Imaging Characteristics in Preschool Children With Cerebral Palsy.

    PubMed

    Choi, Ja Young; Choi, Yoon Seong; Park, Eun Sook

    2017-05-24

    The purpose of this study was to investigate characteristics of language development in relation to brain magnetic resonance imaging (MRI) characteristics and the other contributing factors to language development in children with cerebral palsy (CP). The study included 172 children with CP who underwent brain MRI and language assessments between 3 and 7 years of age. The MRI characteristics were categorized as normal, malformation, periventricular white matter lesion (PVWL), deep gray matter lesion, focal infarct, cortical/subcortical lesion, and others. Neurodevelopmental outcomes such as ambulatory status, manual ability, cognitive function, and accompanying impairments were assessed. Both receptive and expressive language development quotients (DQs) were significantly related to PVWL or deep gray matter lesion severity. In multivariable analysis, only cognitive function was significantly related to receptive language development, whereas ambulatory status and cognitive function were significantly associated with expressive language development. More than one third of the children had a language developmental discrepancy between receptive and expressive DQs. Children with cortical/subcortical lesions were at high risk for this discrepancy. Cognitive function is a key factor for both receptive and expressive language development. In children with PVWL or deep gray matter lesion, lesion severity seems to be useful to predict language development.

  10. Red and NIR light dosimetry in the human deep brain

    NASA Astrophysics Data System (ADS)

    Pitzschke, A.; Lovisa, B.; Seydoux, O.; Zellweger, M.; Pfleiderer, M.; Tardy, Y.; Wagnières, G.

    2015-04-01

    Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson’s Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated μeff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy.

  11. Cerebral involvement in axonal Charcot-Marie-Tooth neuropathy caused by mitofusin2 mutations.

    PubMed

    Brockmann, Knut; Dreha-Kulaczewski, Steffi; Dechent, Peter; Bönnemann, Carsten; Helms, Gunther; Kyllerman, Marten; Brück, Wolfgang; Frahm, Jens; Huehne, Kathrin; Gärtner, Jutta; Rautenstrauss, Bernd

    2008-07-01

    Mutations in the mitofusin 2 (MFN2) gene are a major cause of primary axonal Charcot- Marie-Tooth (CMT) neuropathy. This study aims at further characterization of cerebral white matter alterations observed in patients with MFN2 mutations. Molecular genetic, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI) investigations were performed in four unrelated patients aged 7 to 38 years with early onset axonal CMT neuropathy. Three distinct and so far undescribed MFN2 mutations were detected. Two patients had secondary macrocephaly and mild diffuse predominantly periventricular white matter alterations on MRI. In addition, one boy had symmetrical T2-hyperintensities in both thalami. Two patients had optic atrophy, one of them with normal MRI. In three patients proton MRS revealed elevated concentrations of total N-acetyl compounds (neuronal marker), total creatine (found in all cells) and myo-inositol (astrocytic marker) in cerebral white and gray matter though with regional variation. These alterations were most pronounced in the two patients with abnormal MRI. DTI of these patients revealed mild reductions of fractional anisotropy and mild increase of mean diffusivity in white matter. The present findings indicate an enhanced cellular density in cerebral white matter of MFN2 neuropathy which is primarily due to a reactive gliosis without axonal damage and possibly accompanied by mild demyelination.

  12. Non-Linear Association between Cerebral Amyloid Deposition and White Matter Microstructure in Cognitively Healthy Older Adults.

    PubMed

    Wolf, Dominik; Fischer, Florian U; Scheurich, Armin; Fellgiebel, Andreas

    2015-01-01

    Cerebral amyloid-β accumulation and changes in white matter (WM) microstructure are imaging characteristics in clinical Alzheimer's disease and have also been reported in cognitively healthy older adults. However, the relationship between amyloid deposition and WM microstructure is not well understood. Here, we investigated the impact of quantitative cerebral amyloid load on WM microstructure in a group of cognitively healthy older adults. AV45-positron emission tomography and diffusion tensor imaging (DTI) scans of forty-four participants (age-range: 60 to 89 years) from the Alzheimer's Disease Neuroimaging Initiative were analyzed. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (DR), and axial diffusivity (DA) were calculated to characterize WM microstructure. Regression analyses demonstrated non-linear (quadratic) relationships between amyloid deposition and FA, MD, as well as RD in widespread WM regions. At low amyloid burden, higher deposition was associated with increased FA as well as decreased MD and DR. At higher amyloid burden, higher deposition was associated with decreased FA as well as increased MD and DR. Additional regression analyses demonstrated an interaction effect between amyloid load and global WM FA, MD, DR, and DA on cognition, suggesting that cognition is only affected when amyloid is increasing and WM integrity is decreasing. Thus, increases in FA and decreases in MD and RD with increasing amyloid load at low levels of amyloid burden may indicate compensatory processes that preserve cognitive functioning. Potential mechanisms underlying the observed non-linear association between amyloid deposition and DTI metrics of WM microstructure are discussed.

  13. Relationship between characteristics on magnetic resonance imaging and motor outcomes in children with cerebral palsy and white matter injury.

    PubMed

    Reid, Susan M; Ditchfield, Michael R; Bracken, Jenny; Reddihough, Dinah S

    2015-01-01

    In a population cohort of children with white matter injury (WMI) and cerebral palsy (CP), we aimed to describe the magnetic resonance imaging (MRI) characteristics, identify key structure-function relationships, and classify the severity of WMI in a clinically relevant way. Stratified on MRI laterality/symmetry, variables indicating the extent and location of cerebral abnormalities for 272 children with CP and WMI on chronic-phase MRI were related to gross motor function and motor topography using univariable and multivariable approaches. We found that symmetrical involvement, severe WM loss in the hemispheres and corpus callosum, and cerebellar involvement were the strongest predictors of poor gross motor function, but the final model explained only a small proportion of the variability. Bilateral, extensive WM loss was more likely to result in quadriplegia, whereas volume loss in the posterior-mid WM more frequently resulted in diplegia. The extent and location of MRI abnormalities differed according to laterality/symmetry; asymmetry was associated with less extensive hemispheric involvement than symmetrical WMI, and unilateral lesions were more focal and located more anteriorly. In summary, laterality/symmetry of WMI, possibly reflecting different pathogenic mechanisms, together with extent of WM loss and cerebellar abnormality predicted gross motor function in CP, but to a limited extent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Posttraumatic cerebral infarction due to progressive occlusion of the internal carotid artery after minor head injury in childhood: a case report.

    PubMed

    Matsumoto, Hiroaki; Kohno, Kanehisa

    2011-07-01

    Although minor head injury in childhood is a common occurrence and usually no complications, posttraumatic cerebral infarction has rarely been reported. Such infarction is characterized by occlusion of the lateral lenticulostriate artery. The authors report an atypical case of posttraumatic occlusion of the internal carotid artery (ICA) after minor head injury in childhood. A healthy 16-year-old boy was hit on the head by a pitch while playing baseball. He developed a transient ischemic attack involving the left extremities 15 min after the accident. Initial magnetic resonance imaging revealed neither hemorrhage nor infarction, and MR angiography demonstrated mild stenosis of the right carotid fork. Conservative therapy was started. However, 24 h after the accident, he suddenly developed left hemiparesis. Emergent neuroimaging demonstrated progressive occlusion of the supraclinoid portion of the right ICA and cerebral infarction of the deep white matter in the right frontal lobe. The hemiparesis deteriorated and the infarction area continued to expand on a daily. The patient underwent emergent superficial temporally artery-middle cerebral artery (STA-MCA) bypass. Intraoperative observation demonstrated that the supraclinoid portion of the right ICA was not thrombosed but pale with low tension and did not appear dissected. He fully recovered by 2 weeks after the operation. Postoperative investigations showed gradual improvement of the ICA occlusion. Minor head injury can cause cerebral infarction in childhood, although this is rare. If conservative therapy cannot prevent progressive cerebral infarction, STA-MCA bypass should be considered in case of the ICA occlusion.

  15. Cerebral oxygen delivery is reduced in newborns with congenital heart disease.

    PubMed

    Lim, Jessie Mei; Kingdom, Theodore; Saini, Brahmdeep; Chau, Vann; Post, Martin; Blaser, Susan; Macgowan, Christopher; Miller, Steven P; Seed, Mike

    2016-10-01

    To investigate preoperative cerebral hemodynamics in newborns with congenital heart disease. We hypothesized that cerebral blood flow and oxygen delivery would be decreased in newborns with congenital heart disease compared with controls. Using a "feed-and-sleep" approach to performing neonatal magnetic resonance imaging, we measured cerebral blood flow by using a slice prescription perpendicular to the right and left internal carotid arteries and basilar artery at the level of the clivus. We calculated brain volume by segmenting a 3-dimensional steady-state free procession acquisition of the whole brain, allowing quantification of cerebral blood flow indexed to brain volume. Cerebral oxygen delivery was calculated as the product of cerebral blood flow and preductal systemic arterial oxygen content obtained via a combination of conventional pulse oximetry and laboratory analysis of venous blood samples for hemoglobin concentration. A complete set of measurements were obtained in 32 newborns with heart disease and 31 controls. There was no difference in gestational age between the heart disease and control groups. There was no difference in cerebral blood flow compared with controls (103.5 ± 34.0 vs 119.7 ± 40.4 mL/min), whereas cerebral oxygen delivery was significantly lower in the congenital heart disease subjects (1881 ± 625.7 vs 2712 ± 915.7 mLO2/min). Ten newborns with congenital heart disease had diffuse excessive high signal intensity in their white matter and 2 had white matter injury whereas another 5 had both. Newborns with unrepaired cyanotic congenital heart disease have decreased cerebral oxygen delivery due to arterial desaturation. If brain growth and development are adversely affected through oxygen conformance, our findings could have clinical implications in terms of timing of surgical repair. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  16. White Matter Disruptions in Schizophrenia Are Spatially Widespread and Topologically Converge on Brain Network Hubs.

    PubMed

    Klauser, Paul; Baker, Simon T; Cropley, Vanessa L; Bousman, Chad; Fornito, Alex; Cocchi, Luca; Fullerton, Janice M; Rasser, Paul; Schall, Ulrich; Henskens, Frans; Michie, Patricia T; Loughland, Carmel; Catts, Stanley V; Mowry, Bryan; Weickert, Thomas W; Shannon Weickert, Cynthia; Carr, Vaughan; Lenroot, Rhoshel; Pantelis, Christos; Zalesky, Andrew

    2017-03-01

    White matter abnormalities associated with schizophrenia have been widely reported, although the consistency of findings across studies is moderate. In this study, neuroimaging was used to investigate white matter pathology and its impact on whole-brain white matter connectivity in one of the largest samples of patients with schizophrenia. Fractional anisotropy (FA) and mean diffusivity (MD) were compared between patients with schizophrenia or schizoaffective disorder (n = 326) and age-matched healthy controls (n = 197). Between-group differences in FA and MD were assessed using voxel-based analysis and permutation testing. Automated whole-brain white matter fiber tracking and the network-based statistic were used to characterize the impact of white matter pathology on the connectome and its rich club. Significant reductions in FA associated with schizophrenia were widespread, encompassing more than 40% (234ml) of cerebral white matter by volume and involving all cerebral lobes. Significant increases in MD were also widespread and distributed similarly. The corpus callosum, cingulum, and thalamic radiations exhibited the most extensive pathology according to effect size. More than 50% of cortico-cortical and cortico-subcortical white matter fiber bundles comprising the connectome were disrupted in schizophrenia. Connections between hub regions comprising the rich club were disproportionately affected. Pathology did not differ between patients with schizophrenia and schizoaffective disorder and was not mediated by medication. In conclusion, although connectivity between cerebral hubs is most extensively disturbed in schizophrenia, white matter pathology is widespread, affecting all cerebral lobes and the cerebellum, leading to disruptions in the majority of the brain's fiber bundles. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. White matter hyperintensities and the mediating role of cerebral amyloid angiopathy in dominantly-inherited Alzheimer’s disease

    PubMed Central

    Lee, Seonjoo; Zimmerman, Molly E.; Narkhede, Atul; Nasrabady, Sara E.; Tosto, Giuseppe; Meier, Irene B.; Benzinger, Tammie L. S.; Marcus, Daniel S.; Fagan, Anne M.; Fox, Nick C.; Cairns, Nigel J.; Holtzman, David M.; Buckles, Virginia; Ghetti, Bernardino; McDade, Eric; Martins, Ralph N.; Saykin, Andrew J.; Masters, Colin L.; Ringman, John M.; Fӧrster, Stefan; Schofield, Peter R.; Sperling, Reisa A.; Johnson, Keith A.; Chhatwal, Jasmeer P.; Salloway, Stephen; Correia, Stephen; Jack, Clifford R.; Weiner, Michael; Bateman, Randall J.; Morris, John C.; Mayeux, Richard

    2018-01-01

    Introduction White matter hyperintensity (WMH) volume on MRI is increased among presymptomatic individuals with autosomal dominant mutations for Alzheimer’s disease (AD). One potential explanation is that WMH, conventionally considered a marker of cerebrovascular disease, are a reflection of cerebral amyloid angiopathy (CAA) and that increased WMH in this population is a manifestation of this vascular form of primary AD pathology. We examined whether the presence of cerebral microbleeds, a marker of CAA, mediates the relationship between WMH and estimated symptom onset in individuals with and without autosomal dominant mutations for AD. Participants and methods Participants (n = 175, mean age = 41.1 years) included 112 with an AD mutation and 63 first-degree non-carrier controls. We calculated the estimated years from expected symptom onset (EYO) and analyzed baseline MRI data for WMH volume and presence of cerebral microbleeds. Mixed effects regression and tests of mediation were used to examine microbleed and WMH differences between carriers and non-carriers and to test the whether the association between WMH and mutation status is dependent on the presence of microbleeds. Results Mutation carriers were more likely to have microbleeds than non-carriers (p<0.05) and individuals with microbleeds had higher WMH volume than those without (p<0.05). Total WMH volume was increased in mutation carriers compared with non-carriers, up to 20 years prior to EYO, after controlling for microbleed status, as we demonstrated previously. Formal testing of mediation demonstrated that 21% of the association between mutation status and WMH was mediated by presence of microbleeds (p = 0.03) but a significant direct effect of WMH remained (p = 0.02) after controlling for presence of microbleeds. Discussion Although there is some co-dependency between WMH and microbleeds, the observed increases in WMH among mutation carriers does not appear to be fully mediated by this marker of CAA

  18. Localization of Basal Ganglia and Thalamic Damage in Dyskinetic Cerebral Palsy.

    PubMed

    Aravamuthan, Bhooma R; Waugh, Jeff L

    2016-01-01

    Dyskinetic cerebral palsy affects 15%-20% of patients with cerebral palsy. Basal ganglia injury is associated with dyskinetic cerebral palsy, but the patterns of injury within the basal ganglia predisposing to dyskinetic cerebral palsy are unknown, making treatment difficult. For example, deep brain stimulation of the globus pallidus interna improves dystonia in only 40% of patients with dyskinetic cerebral palsy. Basal ganglia injury heterogeneity may explain this variability. To investigate this, we conducted a qualitative systematic review of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Reviews and articles primarily addressing genetic or toxic causes of cerebral palsy were excluded yielding 22 studies (304 subjects). Thirteen studies specified the involved basal ganglia nuclei (subthalamic nucleus, caudate, putamen, globus pallidus, or lentiform nuclei, comprised by the putamen and globus pallidus). Studies investigating the lentiform nuclei (without distinguishing between the putamen and globus pallidus) showed that all subjects (19 of 19) had lentiform nuclei damage. Studies simultaneously but independently investigating the putamen and globus pallidus also showed that all subjects (35 of 35) had lentiform nuclei damage (i.e., putamen or globus pallidus damage); this was followed in frequency by damage to the putamen alone (70 of 101, 69%), the subthalamic nucleus (17 of 25, 68%), the thalamus (88 of 142, 62%), the globus pallidus (7/35, 20%), and the caudate (6 of 47, 13%). Globus pallidus damage was almost always coincident with putaminal damage. Noting consistent involvement of the lentiform nuclei in dyskinetic cerebral palsy, these results could suggest two groups of patients with dyskinetic cerebral palsy: those with putamen-predominant damage and those with panlenticular damage involving both the putamen and the globus pallidus. Differentiating between these groups could help predict response to therapies such as deep brain

  19. Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression

    PubMed Central

    Kochunov, P.; Glahn, D.C.; Rowland, L.M.; Olvera, R.L.; Winkler, A; Yang, Y.H.; Sampath, H.; Carpenter, W.T.; Dugarrila, R.; Curran, J.; Blangero, J.; Hong, L.E.

    2012-01-01

    Introduction Elevated rate of aging-related biological and functional decline, termed accelerated aging, is reported in patients with schizophrenia (SCZ) and major depressive disorder (MDD). We used diffusion tensor imaging (DTI) derived fractional anisotropy (FA) as biomarkers of aging-related decline in white matter (WM) integrity to test the hypotheses of accelerated aging in SCZ and MDD. Methods The SCZ cohort was composed of 58/60 SCZ patients/controls (age=20–60years). MDD cohort was composed of 136/351 MDD patients/controls (age=20–79years). Main outcome measures were the diagnosis-by-age interaction on whole-brain-averaged WM FA values and FA values from twelve major WM tracts. Results Diagnosis-by-age interaction for the whole-brain average FA was significant for the SCZ (p=0.04) but not in MDD cohort (p=0.80). Diagnosis-by-age interaction was nominally significant (p<0.05) for five WM tracts for SCZ and for none of the tracts in the MDD cohort. Tract-specific heterochronicity of the onset of age-related decline in SCZ demonstrated strong negative correlations with the age-of- peak myelination and the rates of age-related decline obtained from normative sample (r=−0.61 and −0.80, p<0.05, respectively). No such trends existed for MDD cohort. Conclusion Cerebral WM showed accelerated aging in SCZ but not in MDD, suggesting some difference in the pathophysiology underlying their WM aging changes. Tract-specific heterochronicity of WM development modulated presentation of accelerated aging in SCZ: white matter tracts that matured later in life appeared more sensitive to the pathophysiology of SCZ and demonstrated more susceptibility to disorder-related accelerated decline in FA values with age. This trend was not observed in MDD cohort. PMID:23200529

  20. [Management of cerebral small vessel disease for the diagnosis and treatment of dementia].

    PubMed

    Ihara, Masafumi

    2013-07-01

    With the demographic shift in life expectancy inexorably increasing in developed countries, dementia is set to become one of the most important health problems worldwide. In recent years, cerebral small vessel disease (SVD) has received much attention as an important cause of dementia. The reason for this is twofold: firstly, arteriosclerosis (type 1 SVD) is the leading cause of vascular cognitive impairment, and secondly, cerebral amyloid angiopathy (CAA; type 2 SVD) is an almost invariable accompaniment of Alzheimer's disease. SVD is known to induce a variety of pathological changes; for example, type 1 SVD results in lacunar infarction, deep microbleeds, and white matter damage, while type 2 SVD leads to cortical microinfarcts, lobar microbleeds, and white matter damage. SVD is considered a spectrum of abnormalities, with the majority of patients experiencing symptoms from both type 1 and type 2 SVD as the disease progresses. The discouraging results of immunotherapy clinical trials for Alzheimer's disease have shifted the scientific attention from the classical neuron-centric approach towards a novel neurovascular approach. As arteries stiffen with age or with other co-morbid factors such as life-related diseases, amyloid β (Aβ) synthesis becomes upregulated, resulting in the deposition of insoluble Aβ not only in the parenchyma as senile plaques but also in the perivascular drainage pathways as CAA. Therefore, therapeutic strategies such as vasoactive drugs that enhance the patency of this Aβ drainage pathway may facilitate Aβ removal and help prevent cognitive decline in the elderly. Based on this emerging paradigm, clinical trials are warranted to investigate whether a neurovascular therapeutic approach can effectively halt cognitive decline and act as a preemptive medicine for patients at risk of dementia.

  1. Only White Matter Hyperintensities Predicts Post-Stroke Cognitive Performances Among Cerebral Small Vessel Disease Markers: Results from the TABASCO Study.

    PubMed

    Molad, Jeremy; Kliper, Efrat; Korczyn, Amos D; Ben Assayag, Einor; Ben Bashat, Dafna; Shenhar-Tsarfaty, Shani; Aizenstein, Orna; Shopin, Ludmila; Bornstein, Natan M; Auriel, Eitan

    2017-01-01

    White matter hyperintensities (WMH) were shown to predict cognitive decline following stroke or transient ischemic attack (TIA). However, WMH are only one among other radiological markers of cerebral small vessel disease (SVD). The aim of this study was to determine whether adding other SVD markers to WMH improves prediction of post-stroke cognitive performances. Consecutive first-ever stroke or TIA patients (n = 266) from the Tel Aviv Acute Brain Stroke Cohort (TABASCO) study were enrolled. MRI scans were performed within seven days of stroke onset. We evaluated the relationship between cognitive performances one year following stroke, and previously suggested total SVD burden score including WMH, lacunes, cerebral microbleeds (CMB), and perivascular spaces (PVS). Significant negative associations were found between WMH and cognition (p < 0.05). Adding other SVD markers (lacunes, CMB, PVS) to WMH did not improve predication of post-stroke cognitive performances. Negative correlations between SVD burden score and cognitive scores were observed for global cognitive, memory, and visual spatial scores (all p < 0.05). However, following an adjustment for confounders, no associations remained significant. WMH score was associated with poor post-stroke cognitive performance. Adding other SVD markers or SVD burden score, however, did not improve prediction.

  2. Multi-Ethnic Genome-Wide Association Study of Cerebral White Matter Hyperintensities on MRI

    PubMed Central

    Verhaaren, Benjamin F.J.; Debette, Stéphanie; Bis, Joshua C.; Smith, Jennifer A.; Ikram, M. Kamran; Adams, Hieab H.; Beecham, Ashley H.; Rajan, Kumar B.; Lopez, Lorna M.; Barral, Sandra; van Buchem, Mark A.; van der Grond, Jeroen; Smith, Albert V.; Hegenscheid, Katrin; Aggarwal, Neelum T.; de Andrade, Mariza; Atkinson, Elizabeth J.; Beekman, Marian; Beiser, Alexa S.; Blanton, Susan H.; Boerwinkle, Eric; Brickman, Adam M.; Bryan, R. Nick; Chauhan, Ganesh; Chen, Christopher P.L.H.; Chouraki, Vincent; de Craen, Anton J.M.; Crivello, Fabrice; Deary, Ian J.; Deelen, Joris; De Jager, Philip L.; Dufouil, Carole; Elkind, Mitchell S.V.; Evans, Denis A.; Freudenberger, Paul; Gottesman, Rebecca F.; Guðnason, Vilmundur; Habes, Mohamad; Heckbert, Susan R.; Heiss, Gerardo; Hilal, Saima; Hofer, Edith; Hofman, Albert; Ibrahim-Verbaas, Carla A.; Knopman, David S.; Lewis, Cora E.; Liao, Jiemin; Liewald, David C.M.; Luciano, Michelle; van der Lugt, Aad; Martinez, Oliver O.; Mayeux, Richard; Mazoyer, Bernard; Nalls, Mike; Nauck, Matthias; Niessen, Wiro J.; Oostra, Ben A.; Psaty, Bruce M.; Rice, Kenneth M.; Rotter, Jerome I.; von Sarnowski, Bettina; Schmidt, Helena; Schreiner, Pamela J.; Schuur, Maaike; Sidney, Stephen S.; Sigurdsson, Sigurdur; Slagboom, P. Eline; Stott, David J.M.; van Swieten, John C.; Teumer, Alexander; Töglhofer, Anna Maria; Traylor, Matthew; Trompet, Stella; Turner, Stephen T.; Tzourio, Christophe; Uh, Hae-Won; Uitterlinden, André G.; Vernooij, Meike W.; Wang, Jing J.; Wong, Tien Y.; Wardlaw, Joanna M.; Windham, B. Gwen; Wittfeld, Katharina; Wolf, Christiane; Wright, Clinton B.; Yang, Qiong; Zhao, Wei; Zijdenbos, Alex; Jukema, J. Wouter; Sacco, Ralph L.; Kardia, Sharon L.R.; Amouyel, Philippe; Mosley, Thomas H.; Longstreth, W. T.; DeCarli, Charles C.; van Duijn, Cornelia M.; Schmidt, Reinhold; Launer, Lenore J.; Grabe, Hans J.; Seshadri, Sudha S.; Ikram, M. Arfan; Fornage, Myriam

    2015-01-01

    Background The burden of cerebral white matter hyperintensities (WMH) is associated with an increased risk of stroke, dementia, and death. WMH are highly heritable, but their genetic underpinnings are incompletely characterized. To identify novel genetic variants influencing WMH burden, we conducted a meta-analysis of multi-ethnic genome-wide association studies. Methods and Results We included 21,079 middle-aged to elderly individuals from 29 population-based cohorts, who were free of dementia and stroke and were of European (N=17,936), African (N=1,943), Hispanic (N=795), and Asian (N=405) descent. WMH burden was quantified on MRI either by a validated automated segmentation method or a validated visual grading scale. Genotype data in each study were imputed to the 1000 Genomes reference. Within each ethnic group, we investigated the relationship between each SNP and WMH burden using a linear regression model adjusted for age, sex, intracranial volume, and principal components of ancestry. A meta-analysis was conducted for each ethnicity separately and for the combined sample. In the European descent samples, we confirmed a previously known locus on chr17q25 (p=2.7×10−19) and identified novel loci on chr10q24 (p=1.6×10−9) and chr2p21 (p=4.4×10−8). In the multi-ethnic meta-analysis, we identified two additional loci, on chr1q22 (p=2.0×10−8) and chr2p16 (p=1.5×10−8). The novel loci contained genes that have been implicated in Alzheimer’s disease (chr2p21, chr10q24), intracerebral hemorrhage (chr1q22), neuroinflammatory diseases (chr2p21), and glioma (chr10q24, chr2p16). Conclusions We identified four novel genetic loci that implicate inflammatory and glial proliferative pathways in the development of white matter hyperintensities in addition to previously-proposed ischemic mechanisms. PMID:25663218

  3. Cerebral magnetic resonance imaging of compressed air divers in diving accidents.

    PubMed

    Gao, G K; Wu, D; Yang, Y; Yu, T; Xue, J; Wang, X; Jiang, Y P

    2009-01-01

    To investigate the characteristics of the cerebral magnetic resonance imaging (MRI) of compressed air divers in diving accidents, we conducted an observational case series study. MRI of brain were examined and analysed on seven cases compressed air divers complicated with cerebral arterial gas embolism CAGE. There were some characteristics of cerebral injury: (1) Multiple lesions; (2) larger size; (3) Susceptible to parietal and frontal lobe; (4) Both cortical grey matter and subcortical white matter can be affected; (5) Cerebellum is also the target of air embolism. The MRI of brain is an sensitive method for detecting cerebral lesions in compressed air divers in diving accidents. The MRI should be finished on divers in diving accidents within 5 days.

  4. Deep white matter hyperintensities, microstructural integrity and dual task walking in older people.

    PubMed

    Ghanavati, Tabassom; Smitt, Myriam Sillevis; Lord, Stephen R; Sachdev, Perminder; Wen, Wei; Kochan, Nicole A; Brodaty, Henry; Delbaere, Kim

    2018-01-03

    To examine neural, physiological and cognitive influences on gait speed under single and dual-task conditions. Sixty-two community-dwelling older people (aged 80.0 ± 4.2 years) participated in our study. Gait speed was assessed with a timed 20-meter walk under single and dual-task (reciting alternate letters of the alphabet) conditions. Participants also underwent tests to estimate physiological fall risk based on five measures of sensorimotor function, cognitive function across five domains, brain white matter (WM) hyperintensities and WM microstructural integrity by measuring fractional anisotropy (FA). Univariate linear regression analyses showed that global physiological and cognitive measures were associated with single (β = 0.594 and β=-0.297, respectively) and dual-task gait speed (β = 0.306 and β=-0.362, respectively). Deep WMHs were associated with dual-task gait speed only (β = 0.257). Multivariate mediational analyses showed that global and executive cognition reduced the strength of the association between deep WMHs and dual-task gait speed by 27% (β = 0.188) and 44% (β = 0.145) respectively. There was a significant linear association between single-task gait speed and mean FA values of the genu (β=-0.295) and splenium (β=-0.326) of the corpus callosum, and between dual-task gait speed and mean FA values of Superior Cerebellar Peduncle (β=-0.284), splenium of the Corpus Callosum (β=-0.286) and Cingulum (β=-0.351). Greater deep WMH volumes are associated with slower walking speed under dual-task conditions, and this relationship is mediated in part by global cognition and executive abilities specifically. Furthermore, both cerebellum and cingulum are related to dual-task walking due to their role in motor skill performance and attention, respectively.

  5. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL): assessment of the involved white matter tracts by MRI.

    PubMed

    Kassem, Hassan; Wafaie, Ahmed; Abdelfattah, Sherif; Farid, Tarek

    2014-01-01

    Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) is a recently identified autosomal recessive disorder with early onset of symptoms and slowly progressive pyramidal, cerebellar and dorsal column dysfunction. LBSL is characterized by distinct white matter abnormalities and selective involvement of brainstem and spinal cord tracts. The purpose of this study is to assess the imaging features of the involved white matter tracts in cases of LBSL by MRI. We retrospectively reviewed the imaging features of the selectively involved white matter tracts in sixteen genetically proven cases of leukoencephalopathy with brainstem and spinal cord involvement and elevated brain lactate (LBSL). All patients presented with slowly progressive cerebellar sensory ataxia with spasticity and dorsal column dysfunction. MRI of the brain and spine using 1.5 T machine and proton magnetic resonance spectroscopy (1H MRS) on the abnormal white matter were done to all patients. The MRI and MRS data sets were analyzed according to lesion location, extent, distribution and signal pattern as well as metabolite values and ratios in MRS. Laboratory examinations ruled out classic leukodystrophies. In all cases, MRI showed high signal intensity in T2-weighted and FLAIR images within the cerebral subcortical, periventricular and deep white matter, posterior limbs of internal capsules, centrum semiovale, medulla oblongata, intraparenchymal trajectory of trigeminal nerves and deep cerebellar white matter. In the spine, the signal intensity of the dorsal column and lateral cortico-spinal tracts were altered in all patients. The subcortical U fibers, globi pallidi, thalami, midbrain and transverse pontine fibers were spared in all cases. In 11 cases (68.8%), the signal changes were inhomogeneous and confluent whereas in 5 patients (31.2%), the signal abnormalities were spotty. MRI also showed variable signal abnormalities in the sensory and pyramidal tracts in

  6. Cerebral Small Vessel Disease and Chronic Kidney Disease

    PubMed Central

    2015-01-01

    Chronic kidney disease, defined by a decreased glomerular filtration rate or albuminuria, is recognized as a major global health burden, mainly because it is an established risk factor for cardiovascular and cerebrovascular diseases. The magnitude of the effect of chronic kidney disease on incident stroke seems to be higher in persons of Asian ethnicity. Since the kidney and brain share unique susceptibilities to vascular injury due to similar anatomical and functional features of small artery diseases, kidney impairment can be predictive of the presence and severity of cerebral small vessel diseases. Chronic kidney disease has been reported to be associated with silent brain infarcts, cerebral white matter lesions, and cerebral microbleeds, independently of vascular risk factors. In addition, chronic kidney disease affects cognitive function, partly via the high prevalence of cerebral small vessel diseases. Retinal artery disease also has an independent relationship with chronic kidney disease and cognitive impairment. Stroke experts are no longer allowed to be ignorant of chronic kidney disease. Close liaison between neurologists and nephrologists can improve the management of cerebral small vessel diseases in kidney patients. PMID:25692105

  7. Increased Arterial Diameters in the Posterior Cerebral Circulation in Men with Fabry Disease

    PubMed Central

    Üçeyler, Nurcan; Homola, György A.; Guerrero González, Hans; Kramer, Daniela; Wanner, Christoph; Weidemann, Frank; Solymosi, László; Sommer, Claudia

    2014-01-01

    A high load of white matter lesions and enlarged basilar arteries have been shown in selected patients with Fabry disease, a disorder associated with an increased stroke risk. We studied a large cohort of patients with Fabry disease to differentially investigate white matter lesion load and cerebral artery diameters. We retrospectively analyzed cranial magnetic resonance imaging scans of 87 consecutive Fabry patients, 20 patients with ischemic stroke, and 36 controls. We determined the white matter lesion load applying the Fazekas score on fluid-attenuated inversion recovery sequences and measured the diameters of cerebral arteries on 3D-reconstructions of the time-of-flight-MR-angiography scans. Data of different Fabry patient subgroups (males – females; normal – impaired renal function) were compared with data of patients with stroke and controls. A history of stroke or transient ischemic attacks was present in 4/30 males (13%) and 5/57 (9%) females with Fabry disease, all in the anterior circulation. Only one man with Fabry disease showed confluent cerebral white matter lesions in the Fazekas score assessment (1%). Male Fabry patients had a larger basilar artery (p<0.01) and posterior cerebral artery diameter (p<0.05) compared to male controls. This was independent of disease severity as measured by renal function and did not lead to changes in arterial blood flow properties. A basilar artery diameter of >3.2 mm distinguished between men with Fabry disease and controls (sensitivity: 87%, specificity: 86%, p<0.001), but not from stroke patients. Enlarged arterial diameters of the posterior circulation are present only in men with Fabry disease independent of disease severity. PMID:24475221

  8. NEONATAL CEREBRAL MORPHOMETRY AND LATER RISK OF PERSISTENT INATTENTION/HYPERACTIVITY IN CHILDREN BORN VERY PRETERM

    PubMed Central

    Bora, Samudragupta; Pritchard, Verena E.; Chen, Zhe; Inder, Terrie E.; Woodward, Lianne J.

    2014-01-01

    Background Attention problems are among the most prevalent neurobehavioral morbidities affecting very preterm (VPT) born children. The first study aim was to document rates of persistent attention/hyperactivity problems from ages 4 to 9 years in a regional cohort of VPT born children. The second aim was to examine the extent to which persistent problems were related to cerebral white matter abnormality and structural development on neonatal MRI. Methods Data were drawn from a prospective longitudinal study of 110 VPT (≤32 weeks’ gestation) and 113 full-term (FT) children born from 1998 to 2000. At term equivalent, all VPT and 10 FT children underwent cerebral structural MRI, with scans analyzed qualitatively for white matter abnormalities and quantitatively for cortical and subcortical gray matter, myelinated and unmyelinated white matter, and cerebrospinal fluid volumes. At ages 4, 6, and 9 years, each child’s parent and teacher completed the Inattention/Hyperactivity subscale of the Strengths and Difficulties Questionnaire. Results VPT born children had a 5-fold increased risk of persistent attention/hyperactivity problems compared to FT children (13.1% vs. 2.8%; p=.002). No association was found between neonatal white matter abnormalities and later persistent inattention/hyperactivity risk (p≥.24). In contrast, measures of cerebral structural development including volumetric estimates of total cerebral tissue and cerebrospinal fluid relative to intracranial volume were associated with an increased risk of persistent attention/hyperactivity problems in VPT born children (p=.001). The dorsal prefrontal region showed the largest volumetric reduction (↓3.2–8.2ml). These brain-behavior associations persisted and in some cases, strengthened after covariate adjustment for postmenstrual age at MRI, sex, and family socioeconomic status. Conclusions Just over one in 10 VPT born children are subject to early onset and persistent attention/hyperactivity problems

  9. Age exacerbates HIV-associated white matter abnormalities.

    PubMed

    Seider, Talia R; Gongvatana, Assawin; Woods, Adam J; Chen, Huaihou; Porges, Eric C; Cummings, Tiffany; Correia, Stephen; Tashima, Karen; Cohen, Ronald A

    2016-04-01

    Both HIV disease and advanced age have been associated with alterations to cerebral white matter, as measured with white matter hyperintensities (WMH) on fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI), and more recently with diffusion tensor imaging (DTI). This study investigates the combined effects of age and HIV serostatus on WMH and DTI measures, as well as the relationships between these white matter measures, in 88 HIV seropositive (HIV+) and 49 seronegative (HIV-) individuals aged 23-79 years. A whole-brain volumetric measure of WMH was quantified from FLAIR images using a semi-automated process, while fractional anisotropy (FA) was calculated for 15 regions of a whole-brain white matter skeleton generated using tract-based spatial statistics (TBSS). An age by HIV interaction was found indicating a significant association between WMH and older age in HIV+ participants only. Similarly, significant age by HIV interactions were found indicating stronger associations between older age and decreased FA in the posterior limbs of the internal capsules, cerebral peduncles, and anterior corona radiata in HIV+ vs. HIV- participants. The interactive effects of HIV and age were stronger with respect to whole-brain WMH than for any of the FA measures. Among HIV+ participants, greater WMH and lower anterior corona radiata FA were associated with active hepatitis C virus infection, a history of AIDS, and higher current CD4 cell count. Results indicate that age exacerbates HIV-associated abnormalities of whole-brain WMH and fronto-subcortical white matter integrity.

  10. Cerebral edema, mass effects, and regional blood volume in man.

    PubMed

    Penn, R D; Kurtz, D

    1977-03-01

    The authors conducted quantitative analysis of computerized tomography (CT) scans to measure tumor size, cerebral edema, and regional blood volume in man. Mass lesions without edema caused a local reduction in blood volume. Cerebral edema also reduced blood volume in proportion to its severity. Consideration of the electrolyte changes and water shifts in white-matter edema suggested that the decrease in absorption coefficient seen in CT scans was due to the increase in water content. Thus, in cerebral edema separation of blood vessels as well as increased interstitial pressure decrease blood volume, and the regional differences in turn reflect pressure gradients within the brain.

  11. Correlations between Stroop task performance and white matter lesion measures in late-onset major depression.

    PubMed

    Dalby, Rikke B; Frandsen, Jesper; Chakravarty, M Mallar; Ahdidan, Jamila; Sørensen, Leif; Rosenberg, Raben; Østergaard, Leif; Videbech, Poul

    2012-05-31

    Cerebral white matter lesions (WMLs) are believed to play an important role in a subset of patients with late-onset depression by affecting the white matter connectivity in circuitries essential for mood and cognition. In this study we used diffusion tensor imaging-based (DTI-based) tractography to assess white matter fiber tracts affected by deep WMLs (DWMLs) in patients with late-onset major depression and age- and gender-matched controls. Tractography outcome, illustrated as pathways affected by DWMLs, was analyzed for associations with cognitive performance on the Stroop Test (ST). The patients (n=17) performed significantly worse on the ST than the controls (n=22). Poor performance on the ST correlated with higher lesion load. Regression analysis showed a significant correlation between poor performance on the ST and tracts affected by DWMLs in multiple brain areas in the control group, but very sparse correlation in the patient group. Our results suggest that DWMLs play an important role in the cognitive performance of controls,whereas their influence in depressed patients is overruled by additional, state-dependent factors. Future focus on the tract-specific localization of WMLs using DTI tractography may reveal important associations between neuroconnectivity and clinical measures. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. [Evolution of superolateral surface of the cerebral hemisphere on 16-21 weeks fetus].

    PubMed

    Varlam, H; St Antohe, D

    2002-01-01

    Edification of neocortex is accompanied by the development and growth of the cerebral hemisphere, both processes being part of the more complex one, known under the name of telencephalization. The expression of this process is more acute on the superolateral surface of the cerebral hemisphere that expands laterally by growth of the frontal, temporal and parietal lobes. We describe the modifications of shape and deepness of the lateral cerebral fossa including the stages of its closure. We consider this event as the beginning of the appearance of gyri and sulci on the superolateral surface of the cerebral hemisphere.

  13. Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy?

    PubMed Central

    De Silva, T. Michael; Miller, Alyson A.

    2016-01-01

    Cerebral small vessel disease (SVD) is a major contributor to stroke, and a leading cause of cognitive impairment and dementia. Despite the devastating effects of cerebral SVD, the pathogenesis of cerebral SVD is still not completely understood. Moreover, there are no specific pharmacological strategies for its prevention or treatment. Cerebral SVD is characterized by marked functional and structural abnormalities of the cerebral microcirculation. The clinical manifestations of these pathological changes include lacunar infarcts, white matter hyperintensities, and cerebral microbleeds. The main purpose of this review is to discuss evidence implicating oxidative stress in the arteriopathy of both non-amyloid and amyloid (cerebral amyloid angiopathy) forms of cerebral SVD and its most important risk factors (hypertension and aging), as well as its contribution to cerebral SVD-related brain injury and cognitive impairment. We also highlight current evidence of the involvement of the NADPH oxidases in the development of oxidative stress, enzymes that are a major source of reactive oxygen species in the cerebral vasculature. Lastly, we discuss potential pharmacological strategies for oxidative stress in cerebral SVD, including some of the historical and emerging NADPH oxidase inhibitors. PMID:27014073

  14. White matter disease independently predicts progression from mild cognitive impairment to Alzheimer's disease in a clinic cohort.

    PubMed

    Prasad, Kalpana; Wiryasaputra, Lynn; Ng, Amanda; Kandiah, Nagaendran

    2011-01-01

    The contribution of vascular pathology to the rate of progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD) remains unclear. To ascertain the relative roles of cerebral white matter disease and medial temporal atrophy (MTA) in predicting progression from MCI to AD. MCI patients with baseline MRI and ≥18 months of longitudinal follow-up were evaluated. DSM-IV-TR criteria were used to diagnose conversion to dementia. MTA and white matter hyperintensity (WMH) were quantified using the Scheltens scale and modified Fazekas scale. Of a total of 171 MCI patients, 79 patients with baseline MRI and longitudinal follow-up were studied. Twenty-three MCI patients who progressed to dementia (MCI-P) were identified corresponding to a 19.4% annual risk of conversion. In MCI-P patients, the mean Mini-Mental State Examination and Montreal Cognitive Assessment decline was 1.3 and 2.9 points, respectively. MTA, periventricular WMH and deep subcortical WMH were significantly greater in the MCI-P cohort. WMH was found to predict MCI-P with an odds ratio of 7.69 (p = 0.03). MTA and deep subcortical WMH independently predict conversion from MCI to AD. Optimization of vascular risk factors among patients with MCI can potentially reduce the conversion from MCI to AD. Copyright © 2011 S. Karger AG, Basel.

  15. Diffusion imaging of cerebral white matter in persons who stutter: evidence for network-level anomalies

    PubMed Central

    Cai, Shanqing; Tourville, Jason A.; Beal, Deryk S.; Perkell, Joseph S.; Guenther, Frank H.; Ghosh, Satrajit S.

    2013-01-01

    Deficits in brain white matter have been a main focus of recent neuroimaging studies on stuttering. However, no prior study has examined brain connectivity on the global level of the cerebral cortex in persons who stutter (PWS). In the current study, we analyzed the results from probabilistic tractography between regions comprising the cortical speech network. An anatomical parcellation scheme was used to define 28 speech production-related ROIs in each hemisphere. We used network-based statistic (NBS) and graph theory to analyze the connectivity patterns obtained from tractography. At the network-level, the probabilistic corticocortical connectivity from the PWS group were significantly weaker than that from persons with fluent speech (PFS). NBS analysis revealed significant components in the bilateral speech networks with negative correlations with stuttering severity. To facilitate comparison with previous studies, we also performed tract-based spatial statistics (TBSS) and regional fractional anisotropy (FA) averaging. Results from tractography, TBSS and regional FA averaging jointly highlight the importance of several regions in the left peri-Rolandic sensorimotor and premotor areas, most notably the left ventral premotor cortex (vPMC) and middle primary motor cortex, in the neuroanatomical basis of stuttering. PMID:24611042

  16. Diffusion imaging of cerebral white matter in persons who stutter: evidence for network-level anomalies.

    PubMed

    Cai, Shanqing; Tourville, Jason A; Beal, Deryk S; Perkell, Joseph S; Guenther, Frank H; Ghosh, Satrajit S

    2014-01-01

    Deficits in brain white matter have been a main focus of recent neuroimaging studies on stuttering. However, no prior study has examined brain connectivity on the global level of the cerebral cortex in persons who stutter (PWS). In the current study, we analyzed the results from probabilistic tractography between regions comprising the cortical speech network. An anatomical parcellation scheme was used to define 28 speech production-related ROIs in each hemisphere. We used network-based statistic (NBS) and graph theory to analyze the connectivity patterns obtained from tractography. At the network-level, the probabilistic corticocortical connectivity from the PWS group were significantly weaker than that from persons with fluent speech (PFS). NBS analysis revealed significant components in the bilateral speech networks with negative correlations with stuttering severity. To facilitate comparison with previous studies, we also performed tract-based spatial statistics (TBSS) and regional fractional anisotropy (FA) averaging. Results from tractography, TBSS and regional FA averaging jointly highlight the importance of several regions in the left peri-Rolandic sensorimotor and premotor areas, most notably the left ventral premotor cortex (vPMC) and middle primary motor cortex, in the neuroanatomical basis of stuttering.

  17. [Cerebral actinomycosis pseudotumor: a case report].

    PubMed

    Battikh, R; M'Sadek, F; Bougrine, F; Madhi, W; Ben Abdelhafidh, N; Bouziani, A; Yedeas, M; Othmani, S

    2011-03-01

    Cerebral actinomycosis is rare and difficult to diagnose. We report a case of a 45-year-old man hospitalized for seizures associated with fever and left hemiparesis. The white cell count and C-reactive protein were elevated. HIV serology was negative. Blood cultures remained sterile. The CT scan revealed hyperdense nodular lesions in the occipital area, with annular contrast uptake and peripheral edema causing a mass effect, suggestive of brain metastasis. The pathology examination of a surgical specimen disclosed cerebral actinomycosis. A dental origin of the infection was suspected. Hemiparesis remained after a 12-month antibiotic regimen associated with dental care and short-term corticosteroid therapy. Actinomycosis should be discussed as a possible diagnosis for all cerebral lesions, particularly in patients with a potential dental infection. Histology is required for positive diagnosis. Antibiotic therapy alone is generally sufficient; surgery is often performed for diagnostic purposes. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  18. White-matter functional networks changes in patients with schizophrenia.

    PubMed

    Jiang, Yuchao; Luo, Cheng; Li, Xuan; Li, Yingjia; Yang, Hang; Li, Jianfu; Chang, Xin; Li, Hechun; Yang, Huanghao; Wang, Jijun; Duan, Mingjun; Yao, Dezhong

    2018-04-13

    Resting-state functional MRI (rsfMRI) is a useful technique for investigating the functional organization of human gray-matter in neuroscience and neuropsychiatry. Nevertheless, most studies have demonstrated the functional connectivity and/or task-related functional activity in the gray-matter. White-matter functional networks have been investigated in healthy subjects. Schizophrenia has been hypothesized to be a brain disorder involving insufficient or ineffective communication associated with white-matter abnormalities. However, previous studies have mainly examined the structural architecture of white-matter using MRI or diffusion tensor imaging and failed to uncover any dysfunctional connectivity within the white-matter on rsfMRI. The current study used rsfMRI to evaluate white-matter functional connectivity in a large cohort of ninety-seven schizophrenia patients and 126 healthy controls. Ten large-scale white-matter networks were identified by a cluster analysis of voxel-based white-matter functional connectivity and classified into superficial, middle and deep layers of networks. Evaluation of the spontaneous oscillation of white-matter networks and the functional connectivity between them showed that patients with schizophrenia had decreased amplitudes of low-frequency oscillation and increased functional connectivity in the superficial perception-motor networks. Additionally, we examined the interactions between white-matter and gray-matter networks. The superficial perception-motor white-matter network had decreased functional connectivity with the cortical perception-motor gray-matter networks. In contrast, the middle and deep white-matter networks had increased functional connectivity with the superficial perception-motor white-matter network and the cortical perception-motor gray-matter network. Thus, we presumed that the disrupted association between the gray-matter and white-matter networks in the perception-motor system may be compensated for

  19. MRI markers of small vessel disease in lobar and deep hemispheric intracerebral hemorrhage

    PubMed Central

    Smith, Eric E.; Nandigam, Kaveer R.N.; Chen, Yu-Wei; Jeng, Jed; Salat, David; Halpin, Amy; Frosch, Matthew; Wendell, Lauren; Fazen, Louis; Rosand, Jonathan; Viswanathan, Anand; Greenberg, Steven M.

    2014-01-01

    Background MRI evidence of small vessel disease is common in intracerebral hemorrhage (ICH). We hypothesized that ICH caused by cerebral amyloid angiopathy (CAA) or hypertensive vasculopathy would have different distributions of MRI T2 white matter hyperintensity (WMH) and microbleeds (MB). Methods Data were analyzed from 133 consecutive patients with primary supratentorial ICH and adequate MRI sequences. CAA was diagnosed using the Boston criteria. WMH segmentation was performed using a validated semi-automated method. WMH and MB were compared according to site of symptomatic hematoma origin (lobar vs. deep) or by pattern of hemorrhages, including both hematomas and MB, on MRI GRE sequence (grouped as lobar only--probable CAA, lobar only--possible CAA, deep hemispheric only, or mixed lobar and deep hemorrhages). Results Lobar and deep hemispheric hematoma patients had similar median nWMH volumes (19.5 cm vs. 19.9 cm3, p=0.74) and prevalence of ≥1 MB (54% vs. 52%, p=0.99). The supratentorial WMH distribution was similar according to hemorrhage location category, however the prevalence of brainstem T2 hyperintensity was lower in lobar hematoma vs. deep hematoma (54% vs. 70%, p=0.004). Mixed ICH was common (23%). Mixed ICH patients had large nWMH volumes and a posterior distribution of cortical hemorrhages similar to that seen in CAA. Conclusions WMH distribution is largely similar between CAA-related and non-CAA-related ICH. Mixed lobar and deep hemorrhages are seen on MRI GRE in up to one quarter of patients; in these patients both hypertension and CAA may be contributing to the burden of WMH. PMID:20689084

  20. MRI markers of small vessel disease in lobar and deep hemispheric intracerebral hemorrhage.

    PubMed

    Smith, Eric E; Nandigam, Kaveer R N; Chen, Yu-Wei; Jeng, Jed; Salat, David; Halpin, Amy; Frosch, Matthew; Wendell, Lauren; Fazen, Louis; Rosand, Jonathan; Viswanathan, Anand; Greenberg, Steven M

    2010-09-01

    MRI evidence of small vessel disease is common in intracerebral hemorrhage (ICH). We hypothesized that ICH caused by cerebral amyloid angiopathy (CAA) or hypertensive vasculopathy would have different distributions of MRI T2 white matter hyperintensity (WMH) and microbleeds. Data were analyzed from 133 consecutive patients with primary supratentorial ICH and adequate MRI sequences. CAA was diagnosed using the Boston criteria. WMH segmentation was performed using a validated semiautomated method. WMH and microbleeds were compared according to site of symptomatic hematoma origin (lobar versus deep) or by pattern of hemorrhages, including both hematomas and microbleeds, on MRI gradient recalled echo sequence (grouped as lobar only-probable CAA, lobar only-possible CAA, deep hemispheric only, or mixed lobar and deep hemorrhages). Patients with lobar and deep hemispheric hematoma had similar median normalized WMH volumes (19.5 cm versus 19.9 cm(3), P=0.74) and prevalence of >or=1 microbleed (54% versus 52%, P=0.99). The supratentorial WMH distribution was similar according to hemorrhage location category; however, the prevalence of brain stem T2 hyperintensity was lower in lobar hematoma versus deep hematoma (54% versus 70%, P=0.004). Mixed ICH was common (23%). Patients with mixed ICH had large normalized WMH volumes and a posterior distribution of cortical hemorrhages similar to that seen in CAA. WMH distribution is largely similar between CAA-related and non-CAA-related ICH. Mixed lobar and deep hemorrhages are seen on MRI gradient recalled echo sequence in up to one fourth of patients; in these patients, both hypertension and CAA may be contributing to the burden of WMH.

  1. Association between Carotid Plaque Characteristics and Cerebral White Matter Lesions: One-Year Follow-Up Study by MRI

    PubMed Central

    Kwee, Robert M.; Hofman, Paul A. M.; Gronenschild, Ed H. B. M.; van Oostenbrugge, Robert J.; Mess, Werner H.; Berg, Johannes W. M. ter.; Franke, Cees L.; Korten, Arthur G. G. C.; Meems, Bé J.; van Engelshoven, Jos M. A.; Wildberger, Joachim E.; Kooi, M. Eline

    2011-01-01

    Objective To prospectively assess the relation between carotid plaque characteristics and the development of new cerebral white matter lesions (WMLs) at MRI. Methods Fifty TIA/stroke patients with ipsilateral 30–69% carotid stenosis underwent MRI of the plaque at baseline. Total plaque volume and markers of vulnerability to thromboembolism (lipid-rich necrotic core [LRNC] volume, fibrous cap [FC] status, and presence of intraplaque hemorrhage [IPH]) were assessed. All patients also underwent brain MRI at baseline and after one year. Ipsilateral cerebral WMLs were quantified with a semiautomatic method. Results Mean WML volume significantly increased over a one-year period (6.52 vs. 6.97 mm3, P = 0.005). WML volume at baseline and WML progression did not significantly differ (P>0.05) between patients with 30–49% and patients with 50–69% stenosis. There was a significant correlation between total plaque volume and baseline ipsilateral WML volume (Spearman ρ = 0.393, P = 0.005). There was no significant correlation between total plaque volume and ipsilateral WML progression. There were no significant associations between LRNC volume and WML volume at baseline and WML progression. WML volume at baseline and WML progression did not significantly differ between patients with a thick and intact FC and patients with a thin and/or ruptured FC. WML volume at baseline and WML progression also did not significantly differ between patients with and without IPH. Conclusion The results of this study indicate that carotid plaque burden is significantly associated with WML severity, but that there is no causal relationship between carotid plaque vulnerability and the occurrence of WMLs. PMID:21347225

  2. Cortical Superficial Siderosis in Different Types of Cerebral Small Vessel Disease.

    PubMed

    Wollenweber, Frank Arne; Baykara, Ebru; Zedde, Marialuisa; Gesierich, Benno; Achmüller, Melanie; Jouvent, Eric; Viswanathan, Anand; Ropele, Stefan; Chabriat, Hugues; Schmidt, Reinhold; Opherk, Christian; Dichgans, Martin; Linn, Jennifer; Duering, Marco

    2017-05-01

    Cortical superficial siderosis (cSS) has emerged as a clinically relevant imaging feature of cerebral amyloid angiopathy (CAA). However, it remains unknown whether cSS is also present in nonamyloid-associated small vessel disease and whether patients with cSS differ in terms of other small vessel disease imaging features. Three hundred sixty-four CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) patients, 372 population-based controls, and 100 CAA patients with cSS (fulfilling the modified Boston criteria for possible/probable CAA) were included. cSS and cerebral microbleeds were visually rated on T2*-weighted magnetic resonance imaging. White matter hyperintensities were segmented on fluid-attenauted inversion recovery images, and their spatial distribution was compared between groups using colocalization analysis. Cerebral microbleeds location was determined in an observer-independent way using an atlas in standard space. cSS was absent in CADASIL and present in only 2 population-based controls (0.5%). Cerebral microbleeds were present in 64% of CAA patients with cSS, 34% of patients with CADASIL, and 12% of population-based controls. Among patients with cerebral microbleeds, lobar location was found in 95% of CAA patients with cSS, 48% of CADASIL patients, and 69% of population-based controls. The spatial distribution of white matter hyperintensities was comparable between CAA with cSS and CADASIL as indicated by high colocalization coefficients. cSS was absent in CADASIL, whereas other small vessel disease imaging features were similar to CAA patients with cSS. Our findings suggest that cSS in combination with other small vessel disease imaging markers is highly indicative of CAA. © 2017 American Heart Association, Inc.

  3. Using DTI to assess white matter microstructure in cerebral small vessel disease (SVD) in multicentre studies

    PubMed Central

    Croall, Iain D.; Lohner, Valerie; Moynihan, Barry; Khan, Usman; Hassan, Ahamad; O’Brien, John T.; Morris, Robin G.; Tozer, Daniel J.; Cambridge, Victoria C.; Harkness, Kirsty; Werring, David J.; Blamire, Andrew M.; Ford, Gary A.; Barrick, Thomas R.

    2017-01-01

    Diffusion tensor imaging (DTI) metrics such as fractional anisotropy (FA) and mean diffusivity (MD) have been proposed as clinical trial markers of cerebral small vessel disease (SVD) due to their associations with outcomes such as cognition. However, studies investigating this have been predominantly single-centre. As clinical trials are likely to be multisite, further studies are required to determine whether associations with cognition of similar strengths can be detected in a multicentre setting. One hundred and nine patients (mean age =68 years) with symptomatic lacunar infarction and confluent white matter hyperintensities (WMH) on MRI was recruited across six sites as part of the PRESERVE DTI substudy. After handling missing data, 3T-MRI scanning was available from five sites on five scanner models (Siemens and Philips), alongside neuropsychological and quality of life (QoL) assessments. FA median and MD peak height were extracted from DTI histogram analysis. Multiple linear regressions were performed, including normalized brain volume, WMH lesion load, and n° lacunes as covariates, to investigate the association of FA and MD with cognition and QoL. DTI metrics from all white matter were significantly associated with global cognition (standardized β =0.268), mental flexibility (β =0.306), verbal fluency (β =0.376), and Montreal Cognitive Assessment (MoCA) (β =0.273). The magnitudes of these associations were comparable with those previously reported from single-centre studies found in a systematic literature review. In this multicentre study, we confirmed associations between DTI parameters and cognition, which were similar in strength to those found in previous single-centre studies. The present study supports the use of DTI metrics as biomarkers of disease progression in multicentre studies. PMID:28487471

  4. Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities.

    PubMed

    Ghafoorian, Mohsen; Karssemeijer, Nico; Heskes, Tom; van Uden, Inge W M; Sanchez, Clara I; Litjens, Geert; de Leeuw, Frank-Erik; van Ginneken, Bram; Marchiori, Elena; Platel, Bram

    2017-07-11

    The anatomical location of imaging features is of crucial importance for accurate diagnosis in many medical tasks. Convolutional neural networks (CNN) have had huge successes in computer vision, but they lack the natural ability to incorporate the anatomical location in their decision making process, hindering success in some medical image analysis tasks. In this paper, to integrate the anatomical location information into the network, we propose several deep CNN architectures that consider multi-scale patches or take explicit location features while training. We apply and compare the proposed architectures for segmentation of white matter hyperintensities in brain MR images on a large dataset. As a result, we observe that the CNNs that incorporate location information substantially outperform a conventional segmentation method with handcrafted features as well as CNNs that do not integrate location information. On a test set of 50 scans, the best configuration of our networks obtained a Dice score of 0.792, compared to 0.805 for an independent human observer. Performance levels of the machine and the independent human observer were not statistically significantly different (p-value = 0.06).

  5. Transcranial Doppler of the middle cerebral artery indicates regional gray matter cerebral perfusion.

    PubMed

    Pasha, Evan P; Tarumi, Takashi; Haley, Andreana P; Tanaka, Hirofumi

    2017-11-30

    We determined if transcranial color-coded Doppler derived hemodynamics are associated with MRI-based cerebral blood flow (CBF) in regions clinically important to dementia in healthy middle-aged adults. In 30 subjects (18m/12f; age  =  52  ±  1 years), blood flow velocity (BFV) and cerebrovascular conductance (CVC) were measured with transcranial color-coded Doppler (TCCD) at the middle cerebral artery (MCA) and cerebral blood flow (CBF) was assessed with arterial spin labeled perfusion MRI. BFV and CVC were associated with hippocampus (r  =  0.58 and r  =  0.61, both p  <  0.01) and occipitoparietal (r  =  0.50 and r  =  0.58, both p  <  0.01) CBF. CVC was further associated with posterior cingulate CBF (r  =  0.58 p  <  0.01). Independent of age and sex, BFV and CVC were associated with hippocampus (r  =  0.59 and r  =  0.55, both p  <  0.003) and occipitoparietal (r  =  0.50 and r  =  0.57, both p  <  0.01) CBF. CVC was independently associated with posterior cingulate CBF (r  =  0.38, p  =  0.049). TCCD-measured BFV and CVC of the MCA are indicators of cerebral perfusion to clinically valuable brain regions in healthy middle-aged adults. TCCD may not be a good indicator of blood flow to cerebral white matter.

  6. The association of cognitive impairment with gray matter atrophy and cortical lesion load in clinically isolated syndrome.

    PubMed

    Diker, Sevda; Has, Arzu Ceylan; Kurne, Aslı; Göçmen, Rahşan; Oğuz, Kader Karlı; Karabudak, Rana

    2016-11-01

    Multiple sclerosis can impair cognition from the early stages and has been shown to be associated with gray matter damage in addition to white matter pathology. To investigate the profile of cognitive impairment in clinically isolated syndrome (CIS), and the contribution of cortical inflammation, cortical and deep gray matter atrophy, and white matter lesions to cognitive decline. Thirty patients with clinically isolated syndrome and twenty demographically- matched healthy controls underwent neuropsychologic assessment through the Rao Brief Repeatable Battery, and brain magnetic resonance imaging with double inversion recovery using a 3T scanner. Patients with clinically isolated syndrome performed significantly worse than healthy controls on tests that evaluated verbal memory, visuospatial learning and memory, and verbal fluency. Significant deep gray matter atrophy was found in the patients but cortical volume was not lower than the controls. Visual memory tests correlated with the volume of the hippocampus, cerebral white matter and deep gray matter structures and with cerebellar cortical atrophy. Cortical or white matter lesion load did not affect cognitive test results. In our patients with CIS, it was shown that cognitive impairment was mainly related to cerebral white matter, cerebellar cortical and deep gray matter atrophy, but not with cortical inflammation, at least in the early stage of disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Plasma homocysteine and cerebral small vessel disease as possible mediators between kidney and cognitive functions in patients with diabetes mellitus.

    PubMed

    Sonoda, Mika; Shoji, Tetsuo; Kuwamura, Yukinobu; Okute, Yujiro; Naganuma, Toshihide; Shima, Hideaki; Motoyama, Koka; Morioka, Tomoaki; Mori, Katsuhito; Fukumoto, Shinya; Shioi, Atsushi; Shimono, Taro; Fujii, Hisako; Kabata, Daijiro; Shintani, Ayumi; Emoto, Masanori; Inaba, Masaaki

    2017-06-29

    Cognitive impairment is more prevalent in those with decreased kidney function. We tested a hypothesis that an increased homocysteine and/or cerebral small vessel diseases (SVDs) mediate the link between kidney and cognitive functions in a cross-sectional study in 143 type 2 diabetes patients without diagnosis of dementia or prior stroke. The exposure and outcome variables were estimated glomerular filtration rate (eGFR) and cognitive performance evaluated with Modified Mini-Mental State (3 MS) examination, respectively. The candidate mediators were plasma homocysteine concentration, and SVDs including silent cerebral infarction, cerebral microbleed, periventricular hyperintensity, and deep and subcortical white matter hyperintensity by magnetic resonance imaging. In multiple regression models adjusted for 12 potential confounders, eGFR was positively associated with 3 MS score, inversely with homocysteine, but not significantly with the presence of any type of SVD. The association of eGFR with 3 MS remained significant when each of the SVDs was added to the model, whereas it disappeared when homocysteine was included in place of SVD. Mediation analysis indicated nearly significant mediation of homocysteine (P = 0.062) but no meaningful mediations of SVDs (P = 0.842-0.930). Thus, homocysteine, not SVDs, was shown to be the possible mediator between kidney and cognitive functions in patients with type 2 diabetes mellitus.

  8. Direct visualization of minimal cerebral capillary flow during retrograde cerebral perfusion: an intravital fluorescence microscopy study in pigs.

    PubMed

    Duebener, Lennart F; Hagino, Ikuo; Schmitt, Katharina; Sakamoto, Takahiko; Stamm, Christof; Zurakowski, David; Schäfers, Hans-Joachim; Jonas, Richard A

    2003-04-01

    Retrograde cerebral perfusion (RCP) is used in some centers during aortic arch surgery for brain protection during hypothermic circulatory arrest. It is still unclear however whether RCP provides adequate microcirculatory blood flow at a capillary level. We used intravital microscopy to directly visualize the cerebral capillary blood flow in a piglet model of RCP. Twelve pigs (weight 9.7 +/- 0.9 kg) were divided into two groups (n = 6 each): deep hypothermic circulatory arrest (DHCA) and RCP. After the creation of a window over the parietal cerebral cortex, pigs underwent 10 minutes of normothermic bypass and 40 minutes of cooling to 15 degrees C on cardiopulmonary bypass ([CPB] pH-stat, hemocrit 30%, pump flow 100 mL x kg(-1) x min(-1)). This was followed by 45 minutes of DHCA and rewarming on CPB to 37 degrees C. In the RCP group the brain was retrogradely perfused (pump flow 30 mL x kg(-1) x min(-1)) during DHCA through the superior vena cava after inferior vena cava occlusion. Plasma was labeled with fluorescein-isothiocyanate-dextran for assessing microvascular diameter and functional capillary density (FCD), defined as total length of erythrocyte-perfused capillaries per observation area. Cerebral tissue oxygenation was determined by nicotinamide adenine dinucleotide hydrogen (NADH) autofluorescence, which increases during tissue ischemia. During normothermic and hypothermic antegrade cerebral perfusion the FCD did not significantly change from base line (97% +/- 14% and 96% +/- 12%, respectively). During retrograde cerebral perfusion the FCD decreased highly significantly to 2% +/- 2% of base line values (p < 0.001). Thus there was no evidence of significant capillary blood flow during retrograde cerebral perfusion. The microvascular diameter of cerebral arterioles that were slowly perfused significantly decreased to 27% +/- 6% of base line levels during RCP. NADH fluorescence progressively and significantly increased during RCP, indicating poorer tissue

  9. White matter hyperintensities of presumed vascular origin: a population-based study in rural Ecuador (The Atahualpa Project).

    PubMed

    Del Brutto, Oscar H; Mera, Robertino M; Del Brutto, Victor J; Zambrano, Mauricio; Lama, Julio

    2015-04-01

    Cerebral small vessel disease is probably one of the most common pathogenetic mechanisms underlying stroke in Latin America. However, the importance of silent markers of small vessel disease, including white matter hyperintensities of presumed vascular origin, has not been assessed so far. The study aims to evaluate prevalence and correlates of white matter hyperintensities in community-dwelling elders living in Atahualpa (rural Ecuador). Atahualpa residents aged ≥ 60 years were identified during a door-to-door survey and invited to undergo brain magnetic resonance imaging for identification and grading white matter hyperintensities and other markers of small vessel disease. Using multivariate logistic regression models, we evaluated whether white matter hyperintensities is associated with demographics, cardiovascular health status, stroke, cerebral microbleeds, and cortical atrophy, after adjusting for the other variables. Out of 258 enrolled persons (mean age, 70 ± 8 years; 59% women), 172 (67%) had white matter hyperintensities, which were moderate to severe in 63. Analyses showed significant associations of white matter hyperintensities presence and severity with age and cardiovascular health status, as well as with overt and silent strokes, and a trend for association with cerebral microbleeds and cortical atrophy. Prevalence and correlates of white matter hyperintensities in elders living in rural Ecuador is almost comparable with that reported from industrialized nations, reinforcing the concept that the burden of small vessel disease is on the rise in underserved Latin American populations. © 2014 World Stroke Organization.

  10. Pathophysiology of Glia in Perinatal White Matter Injury

    PubMed Central

    Back, Stephen A.; Rosenberg, Paul A.

    2014-01-01

    Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (preOLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible preOLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors responds to WMI with a rapid robust proliferative response that results in a several fold regeneration of preOLs that fail to terminally differentiate along their normal developmental time course. PreOL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field MRI data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants. PMID:24687630

  11. Catatonia After Cerebral Hypoxia: Do the Usual Treatments Apply?

    PubMed Central

    Quinn, Davin K.; Abbott, Christopher C.

    2014-01-01

    Introduction Neurologic deterioration occurring days to weeks after a cerebral hypoxic event accompanied by diffuse white matter demyelination is called delayed post-hypoxic leukoencephalopathy (DPHL). Manifestations of DPHL are diverse, and include dementia, gait disturbance, incontinence, pyramidal tract signs, parkinsonism, chorea, mood and thought disorders, akinetic mutism, and rarely catatonia. Methods The authors report a case of malignant catatonia in a patient diagnosed with DPHL that was refractory to electroconvulsive therapy (ECT), and review the literature on catatonia in DHPL. Results The patient was a 56 year-old female with schizoaffective disorder who was admitted with catatonia two weeks after hospitalization for drug overdose and respiratory failure. Her catatonic symptoms did not respond to lorazepam, amantadine, methylphenidate, or ten sessions of bilateral ECT at maximum energy. Repeat magnetic resonance imaging revealed extensive periventricular white matter lesions not present on admission scans, and she was diagnosed with DPHL. Discussion No treatment for DPHL has been proven to be widely effective. Hyperbaric oxygen treatments may reduce the rate of development, and symptom improvement has been reported with stimulants and other psychotropic agents. Review of the literature reveals rare success with GABAergic agents for catatonia after cerebral hypoxia, and no cases successfully treated with ECT. There are seven case reports of neurologic decompensation during ECT treatment after a cerebral hypoxic event. Conclusion Caution is advised when considering ECT for catatonia when delayed sequelae of cerebral hypoxia are on the differential diagnosis, as there is a dearth of evidence to support this treatment approach. PMID:25262046

  12. A 55-year-old female with leukoencephalopathy with cerebral calcifications and cysts: Case report and radiopathologic description.

    PubMed

    Novo, Jorge; Lin, Diana; Shanks, Megan; Kocak, Mehmet; Arvanitis, Leonidas

    2017-11-01

    Adult-onset leukoencephalopathies with increased cerebral volume can present a potentially challenging diagnosis for the pathologist. We present the case of a patient with a rare adult-onset disease called Leukoencephalopathy with cerebral Calcifications and Cysts (LCC). A 55-year-old woman with a history of morning headaches, mild memory loss, diabetes, and hypertension presented to the emergency department with acute onset altered mental status. CT scan revealed multiple small hypodense lesions in the white matter with calcifications in the bilateral cerebral hemispheres, basal ganglia, pons, and cerebellar hemispheres. MRI showed multiple complex/hemorrhagic cystic lesions with partial enhancement in addition to calcifications bilaterally in the frontotemporal white matter, pons, and cerebellar hemispheres, and diffuse white matter signal abnormality. The differential diagnosis included chronic infection, chronic thromboembolic disease, and neoplasm. The biopsy revealed extensive geode-like mineralization as well as smaller calcifications (calcospherites) with associated sclerosis, Rosenthal fibers, angiomatous proliferation of blood vessels with thrombosis and microbleeds. We discuss the differential diagnosis, radiologic and detailed histologic features of LCC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Using ventricular modeling to robustly probe significant deep gray matter pathologies: Application to cerebral palsy.

    PubMed

    Pagnozzi, Alex M; Shen, Kaikai; Doecke, James D; Boyd, Roslyn N; Bradley, Andrew P; Rose, Stephen; Dowson, Nicholas

    2016-11-01

    Understanding the relationships between the structure and function of the brain largely relies on the qualitative assessment of Magnetic Resonance Images (MRIs) by expert clinicians. Automated analysis systems can support these assessments by providing quantitative measures of brain injury. However, the assessment of deep gray matter structures, which are critical to motor and executive function, remains difficult as a result of large anatomical injuries commonly observed in children with Cerebral Palsy (CP). Hence, this article proposes a robust surrogate marker of the extent of deep gray matter injury based on impingement due to local ventricular enlargement on surrounding anatomy. Local enlargement was computed using a statistical shape model of the lateral ventricles constructed from 44 healthy subjects. Measures of injury on 95 age-matched CP patients were used to train a regression model to predict six clinical measures of function. The robustness of identifying ventricular enlargement was demonstrated by an area under the curve of 0.91 when tested against a dichotomised expert clinical assessment. The measures also showed strong and significant relationships for multiple clinical scores, including: motor function (r 2  = 0.62, P < 0.005), executive function (r 2  = 0.55, P < 0.005), and communication (r 2  = 0.50, P < 0.005), especially compared to using volumes obtained from standard anatomical segmentation approaches. The lack of reliance on accurate anatomical segmentations and its resulting robustness to large anatomical variations is a key feature of the proposed automated approach. This coupled with its strong correlation with clinically meaningful scores, signifies the potential utility to repeatedly assess MRIs for clinicians diagnosing children with CP. Hum Brain Mapp 37:3795-3809, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Automatic white blood cell classification using pre-trained deep learning models: ResNet and Inception

    NASA Astrophysics Data System (ADS)

    Habibzadeh, Mehdi; Jannesari, Mahboobeh; Rezaei, Zahra; Baharvand, Hossein; Totonchi, Mehdi

    2018-04-01

    This works gives an account of evaluation of white blood cell differential counts via computer aided diagnosis (CAD) system and hematology rules. Leukocytes, also called white blood cells (WBCs) play main role of the immune system. Leukocyte is responsible for phagocytosis and immunity and therefore in defense against infection involving the fatal diseases incidence and mortality related issues. Admittedly, microscopic examination of blood samples is a time consuming, expensive and error-prone task. A manual diagnosis would search for specific Leukocytes and number abnormalities in the blood slides while complete blood count (CBC) examination is performed. Complications may arise from the large number of varying samples including different types of Leukocytes, related sub-types and concentration in blood, which makes the analysis prone to human error. This process can be automated by computerized techniques which are more reliable and economical. In essence, we seek to determine a fast, accurate mechanism for classification and gather information about distribution of white blood evidences which may help to diagnose the degree of any abnormalities during CBC test. In this work, we consider the problem of pre-processing and supervised classification of white blood cells into their four primary types including Neutrophils, Eosinophils, Lymphocytes, and Monocytes using a consecutive proposed deep learning framework. For first step, this research proposes three consecutive pre-processing calculations namely are color distortion; bounding box distortion (crop) and image flipping mirroring. In second phase, white blood cell recognition performed with hierarchy topological feature extraction using Inception and ResNet architectures. Finally, the results obtained from the preliminary analysis of cell classification with (11200) training samples and 1244 white blood cells evaluation data set are presented in confusion matrices and interpreted using accuracy rate, and false

  15. Biofidelic white matter heterogeneity decreases computational model predictions of white matter strains during rapid head rotations.

    PubMed

    Maltese, Matthew R; Margulies, Susan S

    2016-11-01

    The finite element (FE) brain model is used increasingly as a design tool for developing technology to mitigate traumatic brain injury. We developed an ultra high-definition FE brain model (>4 million elements) from CT and MRI scans of a 2-month-old pre-adolescent piglet brain, and simulated rapid head rotations. Strain distributions in the thalamus, coronal radiata, corpus callosum, cerebral cortex gray matter, brainstem and cerebellum were evaluated to determine the influence of employing homogeneous brain moduli, or distinct experimentally derived gray and white matter property representations, where some white matter regions are stiffer and others less stiff than gray matter. We find that constitutive heterogeneity significantly lowers white matter deformations in all regions compared with homogeneous properties, and should be incorporated in FE model injury prediction.

  16. Asymmetry of cerebral gray and white matter and structural volumes in relation to sex hormones and chromosomes.

    PubMed

    Savic, Ivanka

    2014-01-01

    Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY). Regional asymmetry in gray and white matter volumes (GMV and WMV) was calculated using voxel based moprhometry (SPM5), by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis. All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward GMV asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected. The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner.

  17. Asymmetry of cerebral gray and white matter and structural volumes in relation to sex hormones and chromosomes

    PubMed Central

    Savic, Ivanka

    2014-01-01

    Whilst many studies show sex differences in cerebral asymmetry, their mechanisms are still unknown. This report describes the potential impact of sex hormones and sex chromosomes by comparing MR data from 39 male and 47 female controls and 33 men with an extra X-chromosome (47,XXY). Methods: Regional asymmetry in gray and white matter volumes (GMV and WMV) was calculated using voxel based moprhometry (SPM5), by contrasting the unflipped and flipped individual GMV and WMV images. In addition, structural volumes were calculated for the thalamus, caudate, putamen, amygdala, and hippocampus, using the FreeSurfer software. Effects of plasma testosterone and estrogen on the GMV and WMV, as well on the right/left ratios of the subcortical volumes were tested by multi-regression analysis. Results: All three groups showed a leftward asymmetry in the motor cortex and the planum temporale, and a rightward asymmetry of the middle occipital cortex. Both asymmetries were more pronounced in 46,XY males than 46,XX females and 47,XXY males, and were positively correlated with testosterone levels. There was also a rightward asymmetry of the vermis and leftward GMV asymmetry in the cerebellar hemispheres in all groups. Notably, cerebellar asymmetries were larger in 46,XX females and 47,XXY males, but were not related to sex hormone levels. No asymmetry differences between 46,XX females and 47,XXY males, and no overall effects of brain size were detected. Conclusion: The asymmetry in the planum temporale area and the occipital cortex seem related to processes associated with testosterone, whereas the observed cerebellar asymmetries suggest a link with X-chromosome escapee genes. Sex differences in cerebral asymmetry are moderated by sex hormones and X-chromosome genes, in a regionally differentiated manner. PMID:25505869

  18. White versus gray matter: fMRI hemodynamic responses show similar characteristics, but differ in peak amplitude

    PubMed Central

    2012-01-01

    Background There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. Results Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. Conclusions Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T. PMID:22852798

  19. Aging of Cerebral White Matter

    PubMed Central

    Liu, Huan; Yang, Yuanyuan; Xia, Yuguo; Zhu, Wen; Leak, Rehana K.; Wei, Zhishuo; Wang, Jianyi; Hu, Xiaoming

    2016-01-01

    White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer’s disease, and Parkinson’s disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions. PMID:27865980

  20. Patterns of magnetic resonance imaging abnormalities in symptomatic patients with Krabbe disease correspond to phenotype.

    PubMed

    Abdelhalim, Ahmed N; Alberico, Ronald A; Barczykowski, Amy L; Duffner, Patricia K

    2014-02-01

    Initial magnetic resonance imaging studies of individuals with Krabbe disease were analyzed to determine whether the pattern of abnormalities corresponded to the phenotype. This was a retrospective, nonblinded study. Families/patients diagnosed with Krabbe disease submitted medical records and magnetic resonance imaging discs for central review. Institutional review board approval/informed consents were obtained. Sixty-four magnetic resonance imaging scans were reviewed by two neuroradiologists and a child neurologist according to phenotype: early infantile (onset 0-6 months) = 39 patients; late infantile (onset 7-12 months) = 10 patients; later onset (onset 13 months-10 years) = 11 patients; adolescent (onset 11-20 years) = one patient; and adult (21 years or greater) = three patients. Local interpretations were compared with central review. Magnetic resonance imaging abnormalities differed among phenotypes. Early infantile patients had a predominance of increased intensity in the dentate/cerebellar white matter as well as changes in the deep cerebral white matter. Later onset patients did not demonstrate involvement in the dentate/cerebellar white matter but had extensive involvement of the deep cerebral white matter, parieto-occipital region, and posterior corpus callosum. Late infantile patients exhibited a mixed pattern; 40% had dentate/cerebellar white matter involvement while all had involvement of the deep cerebral white matter. Adolescent/adult patients demonstrated isolated corticospinal tract involvement. Local and central reviews primarily differed in interpretation of the early infantile phenotype. Analysis of magnetic resonance imaging in a large cohort of symptomatic patients with Krabbe disease demonstrated imaging abnormalities correspond to specific phenotypes. Knowledge of these patterns along with typical clinical signs/symptoms should promote earlier diagnosis and facilitate treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Ischemic brain injury in cerebral amyloid angiopathy

    PubMed Central

    van Veluw, Susanne J; Greenberg, Steven M

    2016-01-01

    Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA. PMID:25944592

  2. Effect of ischemic cerebral volume changes on behavior.

    PubMed

    Lyden, P D; Lonzo, L M; Nunez, S Y; Dockstader, T; Mathieu-Costello, O; Zivin, J A

    1997-08-01

    Ischemia causes long-term effects on brain volume and neurologic function but the relationship between the two is poorly characterized. We studied the relationships between brain volume and three measures of rodent behavior after cerebral ischemia was induced by injecting several thousand microspheres into the internal carotid arteries of rats. Forty eight hours later, each subject was rated using a global neurologic rating scale. Several weeks later, the subjects were tested for open field activity and visual spatial learning. Post-mortem we measured the volume of the cerebral hemispheres and estimated the volume densities of cortex, white matter, hippocampus, basal ganglia, thalamus, ventricle, and visible infarction. Ischemia caused significant impairment, as measured by the global rating scale; the probability of an abnormal rating was correlated with the number of microspheres trapped in the brains. Visual spatial learning was significantly impaired by ischemia, but this deficit was independent of the count of microspheres, whether the subject was abnormal at 48 h, and whether the left or right hemisphere was embolized. Cerebral hemisphere volume was reduced from 430 mm3 to 376 mm3 (P < 0.05). The cortex was reduced from 22 to 19% of cerebrum (P < 0.05) and the white matter compartment was reduced to similar degree. The lesion volume was 6% of cerebrum, comparable to that seen with other ischemia methods. The global outcome rating was significantly related to total cerebral volume, but not to volume changes in any single compartment. On the other hand, visual spatial learning was significantly influenced by volume changes in the cortex and white matter, but not by the topography of the visible infarctions. Open field activity was not altered by infarction. Our data suggests that the total volume of brain tissue lost to infarction may partially determine global neurological rating independently of the topography of the volume loss. Integrative functions such as

  3. Deep brain stimulation for the treatment of childhood dystonic cerebral palsy.

    PubMed

    Keen, Joseph R; Przekop, Allison; Olaya, Joffre E; Zouros, Alexander; Hsu, Frank P K

    2014-12-01

    Deep brain stimulation (DBS) for dystonic cerebral palsy (CP) has rarely been reported, and its efficacy, though modest when compared with that for primary dystonia, remains unclear, especially in the pediatric population. The authors present a small series of children with dystonic CP who underwent bilateral pallidal DBS, to evaluate the treatment's efficacy and safety in the pediatric dystonic CP population. The authors conducted a retrospective review of patients (under the age of 18 years) with dystonic CP who had undergone DBS of the bilateral globus pallidus internus between 2010 and 2012. Two of the authors independently assessed outcomes using the Barry-Albright Dystonia Scale (BADS) and the Burke-Fahn-Marsden Dystonia Rating Scale-movement (BFMDRS-M). Five children were diagnosed with dystonic CP due to insults occurring before the age of 1 year. Mean age at surgery was 11 years (range 8-17 years), and the mean follow-up was 26.6 months (range 2-42 months). The mean target position was 20.6 mm lateral to the midcommissural point. The mean preoperative and postoperative BADS scores were 23.8 ± 4.9 (range 18.5-29.0) and 20.0 ± 5.5 (range 14.5-28.0), respectively, with a mean overall percent improvement of 16.0% (p = 0.14). The mean preoperative and postoperative BFMDRS-M scores were 73.3 ± 26.6 (range 38.5-102.0) and 52.4 ± 21.5 (range 34.0-80.0), respectively, with a mean overall percent improvement of 28.5% (p = 0.10). Those stimulated at least 23 months (4 patients) improved 18.3% (p = 0.14) on the BADS and 30.5% (p = 0.07) on the BFMDRS-M. The percentage improvement per body region yielded conflicting results between rating scales; however, BFMDRS-M scores for speech showed some of the greatest improvements. Two patients required hardware removal (1 complete system, 1 unilateral electrode) within 4 months after implantation because of infections that resolved with antibiotics. All postoperative dystonia rating scale scores improved with pallidal

  4. Size Matters: Cerebral Volume Influences Sex Differences in Neuroanatomy

    PubMed Central

    Towler, Stephen; Welcome, Suzanne; Halderman, Laura K.; Otto, Ron; Eckert, Mark A.; Chiarello, Christine

    2008-01-01

    Biological and behavioral differences between the sexes range from obvious to subtle or nonexistent. Neuroanatomical differences are particularly controversial, perhaps due to the implication that they might account for behavioral differences. In this sample of 200 men and women, large effect sizes (Cohen's d > 0.8) were found for sex differences in total cerebral gray and white matter, cerebellum, and gray matter proportion (women had a higher proportion of gray matter). The only one of these sex differences that survived adjustment for the effect of cerebral volume was gray matter proportion. Individual differences in cerebral volume accounted for 21% of the difference in gray matter proportion, while sex accounted for an additional 4%. The relative size of the corpus callosum was 5% larger in women, but this difference was completely explained by a negative relationship between relative callosal size and cerebral volume. In agreement with Jancke et al., individuals with higher cerebral volume tended to have smaller corpora callosa. There were few sex differences in the size of structures in Broca's and Wernicke's area. We conclude that individual differences in brain volume, in both men and women, account for apparent sex differences in relative size. PMID:18440950

  5. Cerebral venous circulatory system evaluation by ultrasonography.

    PubMed

    Zavoreo, Iris; Basić-Kes, Vanja; Zadro-Matovina, Lucija; Lisak, Marijana; Corić, Lejla; Cvjeticanin, Timon; Ciliga, Dubravka; Bobić, Tatjana Trost

    2013-06-01

    Venous system can be classified as pulmonary veins, systemic veins and venous sinuses that are present only within the skull. Cerebral venous system is divided into two main parts, the superficial and the deep system. The main assignment of veins is to carry away deoxygenated blood and other maleficient materials from the tissues towards the heart. Veins have thinner walls and larger lumina than arteries. Between 60% and 70% of the total blood volume is found in veins. The major factors that influence venous function are the respiratory cycle, venous tone, the function of the right heart, gravity, and the muscle pump. Venous system, in general, can be presented by selective venography, Doppler sonography, computed tomography (CT) venography and magnetic resonance (MR) venography, and cerebral venous system can be displayed by selective venography, cerebral CT venography, cerebral MR venography, and specialized extracranial and transcranial Doppler sonography. The aim of this paper is to show the possibilities of intracranial and extracranial ultrasound evaluation of the head and neck venous circulation and chronic cerebrospinal venous insufficiency as one of the most common pathologies evaluated as part of neurodegenerative processes in the central nervous system.

  6. Prospective comparative study of brain protection in total aortic arch replacement: deep hypothermic circulatory arrest with retrograde cerebral perfusion or selective antegrade cerebral perfusion.

    PubMed

    Okita, Y; Minatoya, K; Tagusari, O; Ando, M; Nagatsuka, K; Kitamura, S

    2001-07-01

    The purpose of this study was to compare the results of total aortic arch replacement using two different methods of brain protection, particularly with respect to neurologic outcome. From June 1997, 60 consecutive patients who underwent total arch replacement through a midsternotomy were alternately allocated to one of two methods of brain protection: deep hypothermic circulatory arrest with retrograde cerebral perfusion (RCP: 30 patients) or with selective antegrade cerebral perfusion (SCP: 30 patients). Preoperative and postoperative (3 weeks) brain CT scan, neurological examination, and cognitive function tests were performed. Serum 100b protein was assayed before and after the cardiopulmonary bypass, as well as 24 hours and 48 hours after the operation. Hospital mortality occurred in 2 patients in the RCP group (6.6%) and 2 in the SCP group (6.6%). New strokes occurred in 1 (3.3%) of the RCP group and in 2 (6.6%) of the SCP group (p = 0.6). The incidence of transient brain dysfunction was significantly higher in the RCP group than in the SCP group (10, 33.3% vs 4, 13.3%, p = 0.05). Except in patients with strokes, S-100b values showed no significant differences in the two groups (RCP: SCP, prebypass 0.01+/-0.04: 0.05+/-0.16, postbypass 2.17+/-0.94: 1.97+/-1.00, 24 hours 0.61+/-0.36: 0.60+/-0.37, 48 hours 0.36+/-0.45: 0.46+/-0.40 microg/L, p = 0.7). There were no intergroup differences in the scores of memory decline (RCP 0.74+/-0.99; SCP 0.55+/-1.19, p = 0.6), orientation (RCP 1.11+/-1.29; SCP 0.50+/-0.76, p = 0.08), or intellectual function (RCP 1.21+/-1.27; SCP 1.05+/-1.15, p = 0.7). Both methods of brain protection for patients undergoing total arch replacement resulted in acceptable levels of mortality and morbidity. However, the prevalence of transient brain dysfunction was significantly higher in patients with the RCP.

  7. Cerebral ischaemia: A neuroradiological study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bories, J.

    1985-01-01

    After a brief clinical and pathophysiological approach, the papers presented in this book are devoted to CT and angiography. Concerning CT, a particular study has been made of cerebral arterial territories on cuts parallel to the orbito-meatal line: these are very important in making the differential diagnosis from some tumors. Also concerning CT, a paper has been devoted to cerebral ''lacunae.'' The term ''lacuna'' as far as CT imaging is concerned, should be reserved only for those hypodense areas corresponding to small cavities containing fluid, which are sequelae of infarcts in the territory of penetrating arteries. Before this sequellar statemore » come all the evolutive states of a small deep infarct. The angiographic study specifies the indications of angiography in the study of cerebral ischemia, and the techniques to be used. It shows the main etiologic aspects. Because of the important place of vascular surgery today, it seemed necessary to show also the main post operative angiographic aspects. After CT and angiography, some pages are reserved to more modern techniques. Finally, some pages are devoted to certain particular associations and etiologies: childhood, cardiopathies, migraine, oral contraception and end with venous infarction.« less

  8. [CADASIL with cysteine-sparing NOTCH3 mutation manifesting as dissociated progression between cognitive impairment and brain image findings in 3 years: A case report].

    PubMed

    Tachiyama, Keisuke; Shiga, Yuji; Shimoe, Yutaka; Mizuta, Ikuko; Mizuno, Toshiki; Kuriyama, Masaru

    2018-04-25

    A 55-year-old man with no history of stroke or migraine presented to the clinic with cognitive impairment and depression that had been experiencing for two years. Neurological examination showed bilateral pyramidal signs, and impairments in cognition and attention. Brain MRI revealed multiple lacunar lesions and microbleeds in the deep cerebral white matter, subcortical regions, and brainstem, as well as diffuse white matter hyperintensities without anterior temporal pole involvement. Cerebral single-photon emission computed tomography (SPECT) revealed bilateral hypoperfusion in the basal ganglia. Gene analysis revealed an arginine-to-proline missense mutation in the NOTCH3 gene at codon 75. The patient was administered lomerizine (10 mg/day), but the patient's cognitive impairment and cerebral atrophy continued to worsen. Follow-up testing with MRI three years after his initial diagnosis revealed similar lacunar infarctions, cerebral microbleeds, and diffuse white matter hyperintensities to those observed three years earlier. However, MRI scans revealed signs of increased cerebral blood flow. Together, these findings suggest that the patient's cognitive impairments may have been caused by pathogenesis in the cerebral cortex.

  9. Decreased cerebral perfusion in Duchenne muscular dystrophy patients.

    PubMed

    Doorenweerd, Nathalie; Dumas, Eve M; Ghariq, Eidrees; Schmid, Sophie; Straathof, Chiara S M; Roest, Arno A W; Wokke, Beatrijs H; van Zwet, Erik W; Webb, Andrew G; Hendriksen, Jos G M; van Buchem, Mark A; Verschuuren, Jan J G M; Asllani, Iris; Niks, Erik H; van Osch, Matthias J P; Kan, Hermien E

    2017-01-01

    Duchenne muscular dystrophy is caused by dystrophin gene mutations which lead to the absence of the protein dystrophin. A significant proportion of patients suffer from learning and behavioural disabilities, in addition to muscle weakness. We have previously shown that these patients have a smaller total brain and grey matter volume, and altered white matter microstructure compared to healthy controls. Patients with more distal gene mutations, predicted to affect dystrophin isoforms Dp140 and Dp427, showed greater grey matter reduction. Now, we studied if cerebral blood flow in Duchenne muscular dystrophy patients is altered, since cerebral expression of dystrophin also occurs in vascular endothelial cells and astrocytes associated with cerebral vasculature. T1-weighted anatomical and pseudo-continuous arterial spin labeling cerebral blood flow images were obtained from 26 patients and 19 age-matched controls (ages 8-18 years) on a 3 tesla MRI scanner. Group comparisons of cerebral blood flow were made with and without correcting for grey matter volume using partial volume correction. Results showed that patients had a lower cerebral blood flow than controls (40.0 ± 6.4 and 47.8 ± 6.3 mL/100 g/min respectively, p = 0.0002). This reduction was independent of grey matter volume, suggesting that they are two different aspects of the pathophysiology. Cerebral blood flow was lowest in patients lacking Dp140. There was no difference in CBF between ambulant and non-ambulant patients. Only three patients showed a reduced left ventricular ejection fraction. No correlation between cerebral blood flow and age was found. Our results indicate that cerebral perfusion is reduced in Duchenne muscular dystrophy patients independent of the reduced grey matter volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Aging of cerebral white matter.

    PubMed

    Liu, Huan; Yang, Yuanyuan; Xia, Yuguo; Zhu, Wen; Leak, Rehana K; Wei, Zhishuo; Wang, Jianyi; Hu, Xiaoming

    2017-03-01

    White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Tract-specific fractional anisotropy predicts cognitive outcome in a community sample of middle-aged participants with white matter lesions

    PubMed Central

    Soriano-Raya, Juan José; Miralbell, Júlia; López-Cancio, Elena; Bargalló, Núria; Arenillas, Juan Francisco; Barrios, Maite; Cáceres, Cynthia; Toran, Pere; Alzamora, Maite; Dávalos, Antoni; Mataró, Maria

    2014-01-01

    Cerebral white matter lesions (WMLs) have been consistently related to cognitive dysfunction but the role of white matter (WM) damage in cognitive impairment is not fully determined. Diffusion tensor imaging is a promising tool to explain impaired cognition related to WMLs. We investigated the separate association of high-grade periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs) with fractional anisotropy (FA) in middle-aged individuals. We also assessed the predictive value to cognition of FA within specific WM tracts associated with high-grade WMLs. One hundred participants from the Barcelona-AsIA Neuropsychology Study were divided into groups based on low- and high-grade WMLs. Voxel-by-voxel FA were compared between groups, with separate analyses for high-grade PVHs and DWMHs. The mean FA within areas showing differences between groups was extracted in each tract for linear regression analyses. Participants with high-grade PVHs and participants with high-grade DWMHs showed lower FA in different areas of specific tracts. Areas showing decreased FA in high-grade DWMHs predicted lower cognition, whereas areas with decreased FA in high-grade PVHs did not. The predictive value to cognition of specific WM tracts supports the involvement of cortico-subcortical circuits in cognitive deficits only in DWMHs. PMID:24549185

  12. Tract-specific fractional anisotropy predicts cognitive outcome in a community sample of middle-aged participants with white matter lesions.

    PubMed

    Soriano-Raya, Juan José; Miralbell, Júlia; López-Cancio, Elena; Bargalló, Núria; Arenillas, Juan Francisco; Barrios, Maite; Cáceres, Cynthia; Toran, Pere; Alzamora, Maite; Dávalos, Antoni; Mataró, Maria

    2014-05-01

    Cerebral white matter lesions (WMLs) have been consistently related to cognitive dysfunction but the role of white matter (WM) damage in cognitive impairment is not fully determined. Diffusion tensor imaging is a promising tool to explain impaired cognition related to WMLs. We investigated the separate association of high-grade periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs) with fractional anisotropy (FA) in middle-aged individuals. We also assessed the predictive value to cognition of FA within specific WM tracts associated with high-grade WMLs. One hundred participants from the Barcelona-AsIA Neuropsychology Study were divided into groups based on low- and high-grade WMLs. Voxel-by-voxel FA were compared between groups, with separate analyses for high-grade PVHs and DWMHs. The mean FA within areas showing differences between groups was extracted in each tract for linear regression analyses. Participants with high-grade PVHs and participants with high-grade DWMHs showed lower FA in different areas of specific tracts. Areas showing decreased FA in high-grade DWMHs predicted lower cognition, whereas areas with decreased FA in high-grade PVHs did not. The predictive value to cognition of specific WM tracts supports the involvement of cortico-subcortical circuits in cognitive deficits only in DWMHs.

  13. Delayed coma in head injury: consider cerebral fat embolism.

    PubMed

    Metting, Zwany; Rödiger, Lars A; Regtien, Joost G; van der Naalt, Joukje

    2009-09-01

    To describe a case of a young man with delayed coma after mild head injury, suggestive of cerebral fat embolism (CFE). To underline the value of MR imaging in the differential diagnosis of secondary deterioration in mild head injury. A 21-year-old man admitted with mild head injury after a fall with facial fractures and long bone fractures. He was admitted to the intensive care unit and was mechanically ventilated. Weaning was not possible because of desaturations and pulmonary congestion. Low platelet count and anaemia developed. On several time points during his admission cerebral imaging data were obtained. Non-contrast CT on admission was normal while follow-up MRI showed extensive white matter abnormalities. These imaging abnormalities combined with the clinical presentation suggests cerebral fat embolism (CFE) as the most likely cause of secondary deterioration in our patient. In head injured patients with long bone fractures one should consider cerebral fat embolism. When the classical clinical syndrome is not present, MR imaging is warranted for diagnosis and to exclude other causes of secondary deterioration.

  14. Cerebrovascular reactivity and white matter integrity.

    PubMed

    Sam, Kevin; Peltenburg, Boris; Conklin, John; Sobczyk, Olivia; Poublanc, Julien; Crawley, Adrian P; Mandell, Daniel M; Venkatraghavan, Lakshmikumar; Duffin, James; Fisher, Joseph A; Black, Sandra E; Mikulis, David J

    2016-11-29

    To compare the diffusion and perfusion MRI metrics of normal-appearing white matter (NAWM) with and without impaired cerebrovascular reactivity (CVR). Seventy-five participants with moderate to severe leukoaraiosis underwent blood oxygen level-dependent CVR mapping using a 3T MRI system with precise carbon dioxide stimulus manipulation. Several MRI metrics were statistically compared between areas of NAWM with positive and negative CVR using one-way analysis of variance with Bonferroni correction for multiple comparisons. Areas of NAWM with negative CVR showed a significant reduction in fractional anisotropy by a mean (SD) of 3.7% (2.4), cerebral blood flow by 22.1% (8.2), regional cerebral blood volume by 22.2% (7.0), and a significant increase in mean diffusivity by 3.9% (3.1) and time to maximum by 10.9% (13.2) (p < 0.01), compared to areas with positive CVR. Impaired CVR is associated with subtle changes in the tissue integrity of NAWM, as evaluated using several quantitative diffusion and perfusion MRI metrics. These findings suggest that impaired CVR may contribute to the progression of white matter disease. © 2016 American Academy of Neurology.

  15. Rodent Hypoxia–Ischemia Models for Cerebral Palsy Research: A Systematic Review

    PubMed Central

    Rumajogee, Prakasham; Bregman, Tatiana; Miller, Steven P.; Yager, Jerome Y.; Fehlings, Michael G.

    2016-01-01

    Cerebral palsy (CP) is a complex multifactorial disorder, affecting approximately 2.5–3/1000 live term births, and up to 22/1000 prematurely born babies. CP results from injury to the developing brain incurred before, during, or after birth. The most common form of this condition, spastic CP, is primarily associated with injury to the cerebral cortex and subcortical white matter as well as the deep gray matter. The major etiological factors of spastic CP are hypoxia/ischemia (HI), occurring during the last third of pregnancy and around birth age. In addition, inflammation has been found to be an important factor contributing to brain injury, especially in term infants. Other factors, including genetics, are gaining importance. The classic Rice–Vannucci HI model (in which 7-day-old rat pups undergo unilateral ligation of the common carotid artery followed by exposure to 8% oxygen hypoxic air) is a model of neonatal stroke that has greatly contributed to CP research. In this model, brain damage resembles that observed in severe CP cases. This model, and its numerous adaptations, allows one to finely tune the injury parameters to mimic, and therefore study, many of the pathophysiological processes and conditions observed in human patients. Investigators can recreate the HI and inflammation, which cause brain damage and subsequent motor and cognitive deficits. This model further enables the examination of potential approaches to achieve neural repair and regeneration. In the present review, we compare and discuss the advantages, limitations, and the translational value for CP research of HI models of perinatal brain injury. PMID:27199883

  16. Esophageal eosinophilia in pediatric patients with cerebral palsy

    PubMed Central

    de Nápolis, Ana Carolina Ramos; Alves, Flavia Araujo; Rezende, Erica Rodrigues Mariano de Almeida; Segundo, Gesmar Rodrigues Silva

    2015-01-01

    ABSTRACT Objective: To describe the clinical picture, test results, and clinical evolution of patients with cerebral palsy associated with diagnosis of eosinophilic esophagitis, monitored at tertiary centre. Methods: Cross-sectional, retrospective and descriptive study that evaluated the medical records data of pediatric patients with diagnosis of cerebral palsy and eosinophilic esophagitis in a tertiary center of pediatric gastroenterology between August 2005 and August 2013. Results: Seven out of 131 patients with cerebral palsy had the diagnosis of eosinophilic esophagitis. The mean age at diagnosis of eosinophilic esophagitis was 52.3 months and the mean number of eosinophils in esophagus was 35 per high-power field. Symptoms more frequent were recurrent vomiting and disphagia. Endoscopic alterations found were mucosal thickening, vertical lines, mucosal opacificacion and white plaques. Conclusion: The frequency of eosinophilic esophagitis found was higher than in general pediatric population. The investigation of eosinophilic esophagitis should be done regularly in those patients, once this entity could overlap other gastrointestinal diseases. PMID:26154544

  17. Potential predictors for the amount of intra-operative brain shift during deep brain stimulation surgery

    NASA Astrophysics Data System (ADS)

    Datteri, Ryan; Pallavaram, Srivatsan; Konrad, Peter E.; Neimat, Joseph S.; D'Haese, Pierre-François; Dawant, Benoit M.

    2011-03-01

    A number of groups have reported on the occurrence of intra-operative brain shift during deep brain stimulation (DBS) surgery. This has a number of implications for the procedure including an increased chance of intra-cranial bleeding and complications due to the need for more exploratory electrodes to account for the brain shift. It has been reported that the amount of pneumocephalus or air invasion into the cranial cavity due to the opening of the dura correlates with intraoperative brain shift. Therefore, pre-operatively predicting the amount of pneumocephalus expected during surgery is of interest toward accounting for brain shift. In this study, we used 64 DBS patients who received bilateral electrode implantations and had a post-operative CT scan acquired immediately after surgery (CT-PI). For each patient, the volumes of the pneumocephalus, left ventricle, right ventricle, third ventricle, white matter, grey matter, and cerebral spinal fluid were calculated. The pneumocephalus was calculated from the CT-PI utilizing a region growing technique that was initialized with an atlas-based image registration method. A multi-atlas-based image segmentation method was used to segment out the ventricles of each patient. The Statistical Parametric Mapping (SPM) software package was utilized to calculate the volumes of the cerebral spinal fluid (CSF), white matter and grey matter. The volume of individual structures had a moderate correlation with pneumocephalus. Utilizing a multi-linear regression between the volume of the pneumocephalus and the statistically relevant individual structures a Pearson's coefficient of r = 0.4123 (p = 0.0103) was found. This study shows preliminary results that could be used to develop a method to predict the amount of pneumocephalus ahead of the surgery.

  18. Pallidal stimulation in children: comparison between cerebral palsy and DYT1 dystonia.

    PubMed

    Marks, Warren; Bailey, Laurie; Reed, Maryann; Pomykal, Angela; Mercer, Mary; Macomber, David; Acosta, Fernando; Honeycutt, John

    2013-07-01

    The authors compared the outcomes of 17 children aged 7 to 15 years with DYT1 dystonia or cerebral palsy following deep brain stimulation. While patients with cerebral palsy presented with significantly greater motor disability than the DYT1 cohort at baseline, both groups demonstrated improvement at 1 year (cerebral palsy = 24%; DYT1 = 6%). The group as a whole demonstrated significant improvement on the Barry-Albright Dystonia Scale across time. Gains in motor function were apparent in both axial and appendicular distributions involving both upper and lower extremities. Gains achieved by 6 months were sustained in the cerebral palsy group, whereas the DYT1 group demonstrated continued improvement with ongoing pallidal stimulation beyond 18 months. Young patients with dystonia due to cerebral palsy responded comparably to patients with DYT1 dystonia. The severity of motor impairment in patients with cerebral palsy at baseline and follow-up raises the issue of even earlier intervention with neuromodulation in this population to limit long-term motor impairments due to dystonia.

  19. The clinical outcomes of deep gray matter injury in children with cerebral palsy in relation with brain magnetic resonance imaging.

    PubMed

    Choi, Ja Young; Choi, Yoon Seong; Rha, Dong-Wook; Park, Eun Sook

    2016-08-01

    In the present study we investigated the nature and extent of clinical outcomes using various classifications and analyzed the relationship between brain magnetic resonance imaging (MRI) findings and the extent of clinical outcomes in children with cerebral palsy (CP) with deep gray matter injury. The deep gray matter injuries of 69 children were classified into hypoxic ischemic encephalopathy (HIE) and kernicterus patterns. HIE patterns were divided into four groups (I-IV) based on severity. Functional classification was investigated using the gross motor function classification system-expanded and revised, manual ability classification system, communication function classification system, and tests of cognitive function, and other associated problems. The severity of HIE pattern on brain MRI was strongly correlated with the severity of clinical outcomes in these various domains. Children with a kernicterus pattern showed a wide range of clinical outcomes in these areas. Children with severe HIE are at high risk of intellectual disability (ID) or epilepsy and children with a kernicterus pattern are at risk of hearing impairment and/or ID. Grading severity of HIE pattern on brain MRI is useful for predicting overall outcomes. The clinical outcomes of children with a kernicterus pattern range widely from mild to severe. Delineation of the clinical outcomes of children with deep gray matter injury, which are a common abnormal brain MRI finding in children with CP, is necessary. The present study provides clinical outcomes for various domains in children with deep gray matter injury on brain MRI. The deep gray matter injuries were divided into two major groups; HIE and kernicterus patterns. Our study showed that severity of HIE pattern on brain MRI was strongly associated with the severity of impairments in gross motor function, manual ability, communication function, and cognition. These findings suggest that severity of HIE pattern can be useful for predicting the

  20. Perinatal White Matter Injury: The Changing Spectrum of Pathology and Emerging Insights into Pathogenetic Mechanisms

    ERIC Educational Resources Information Center

    Back, Stephen A.

    2006-01-01

    Perinatal brain injury in survivors of premature birth has a unique and unexplained predilection for periventricular cerebral white matter. Periventricular white-matter injury (PWMI) is now the most common cause of brain injury in preterm infants and the leading cause of chronic neurological morbidity. The spectrum of chronic PWMI includes focal…

  1. Effect of deep cryogenic treatment on the microstructure and wear performance of Cr-Mn-Cu white cast iron grinding media

    NASA Astrophysics Data System (ADS)

    Vidyarthi, M. K.; Ghose, A. K.; Chakrabarty, I.

    2013-12-01

    The phase transformation and grinding wear behavior of Cr-Mn-Cu white cast irons subjected to destabilization treatment followed by air cooling or deep cryogenic treatment were studied as a part of the development program of substitute alloys for existing costly wear resistant alloys. The microstructural evolution during heat treatment and the consequent improvement in grinding wear performance were evaluated with optical and scanning electron microscopy, X-ray diffraction analysis, bulk hardness, impact toughness and corrosion rate measurements, laboratory ball mill grinding wear test etc. The deep cryogenic treatment has a significant effect in minimizing the retained austenite content and converts it to martensite embedded with fine M7C3 alloy carbides. The cumulative wear losses in cryotreated alloys are lesser than those with conventionally destabilized alloys followed by air cooling both in wet and dry grinding conditions. The cryotreated Cr-Mn-Cu irons exhibit comparable wear performance to high chromium irons.

  2. White matter and cognition: making the connection

    PubMed Central

    Fields, R. Douglas

    2016-01-01

    Whereas the cerebral cortex has long been regarded by neuroscientists as the major locus of cognitive function, the white matter of the brain is increasingly recognized as equally critical for cognition. White matter comprises half of the brain, has expanded more than gray matter in evolution, and forms an indispensable component of distributed neural networks that subserve neurobehavioral operations. White matter tracts mediate the essential connectivity by which human behavior is organized, working in concert with gray matter to enable the extraordinary repertoire of human cognitive capacities. In this review, we present evidence from behavioral neurology that white matter lesions regularly disturb cognition, consider the role of white matter in the physiology of distributed neural networks, develop the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, including Alzheimer's disease and the newly described entity chronic traumatic encephalopathy, and discuss emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders. Investigation of the role of white matter in cognition has yielded many valuable insights and promises to expand understanding of normal brain structure and function, improve the treatment of many neurobehavioral disorders, and disclose new opportunities for research on many challenging problems facing medicine and society. PMID:27512019

  3. The ameliorative effects of exercise on cognitive impairment and white matter injury from blood-brain barrier disruption induced by chronic cerebral hypoperfusion in adolescent rats.

    PubMed

    Lee, Jae-Min; Park, Jong-Min; Song, Min Kyung; Oh, Yoo Joung; Kim, Chang-Ju; Kim, Youn-Jung

    2017-01-18

    Vascular dementia is the progressive change in blood vessels that leads to neuronal injuries in vulnerable areas induced by chronic cerebral hypoperfusion (CCH). CCH induces disruption of blood-brain barrier (BBB), and this BBB disruption can initiate the cognitive impairment and white matter injury. In the present study, we evaluated the effect of treadmill exercise on the cognitive impairment, white matter injury, and BBB disruption induced by CCH. Vascular dementia was induced by permanent bilateral common carotid arteries occlusion (BCCAO) in rats. The rats in the exercise group were made to run on a treadmill for 30min once a day for 14 weeks, starting 4 weeks after birth. Our results revealed that treadmill exercise group was alleviated the cognitive impairment and myelin degradation induced by CCH. The disruption of BBB after CCH indicates degradation of occludin, zonula occluden-1 (ZO-1), and up-regulation of matrix metalloproteinases (MMPs). Treadmill exercise may provide protective effects on BBB disruption from degradation of occludin, ZO-1, and overexpression of MMP-9 after CCH. These findings suggest that treadmill exercise ameliorates cognitive impairment and white matter injury from BBB disruption induced by CCH in rats. The present study will be valuable for means of prophylactic and therapeutic intervention for patients with CCH. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Blood pressure and cerebral white matter share common genetic factors in Mexican Americans.

    PubMed

    Kochunov, Peter; Glahn, David C; Lancaster, Jack; Winkler, Anderson; Karlsgodt, Kathrin; Olvera, Rene L; Curran, Joanna E; Carless, Melanie A; Dyer, Thomas D; Almasy, Laura; Duggirala, Ravi; Fox, Peter T; Blangero, John

    2011-02-01

    Elevated arterial pulse pressure and blood pressure (BP) can lead to atrophy of cerebral white matter (WM), potentially attributable to shared genetic factors. We calculated the magnitude of shared genetic variance between BP and fractional anisotropy of water diffusion, a sensitive measurement of WM integrity in a well-characterized population of Mexican Americans. The patterns of whole-brain and regional genetic overlap between BP and fractional anisotropy were interpreted in the context the pulse-wave encephalopathy theory. We also tested whether regional pattern in genetic pleiotropy is modulated by the phylogeny of WM development. BP and high-resolution (1.7 × 1.7 × 3 mm; 55 directions) diffusion tensor imaging data were analyzed for 332 (202 females; mean age 47.9 ± 13.3 years) members of the San Antonio Family Heart Study. Bivariate genetic correlation analysis was used to calculate the genetic overlap between several BP measurements (pulse pressure, systolic BP, and diastolic BP) and fractional anisotropy (whole-brain and regional values). Intersubject variance in pulse pressure and systolic BP exhibited a significant genetic overlap with variance in whole-brain fractional anisotropy values, sharing 36% and 22% of genetic variance, respectively. Regionally, shared genetic variance was significantly influenced by rates of WM development (r=-0.75; P=0.01). The pattern of genetic overlap between BP and WM integrity was generally in agreement with the pulse-wave encephalopathy theory. Our study provides evidence that a set of pleiotropically acting genetic factors jointly influence phenotypic variation in BP and WM integrity. The magnitude of this overlap appears to be influenced by phylogeny of WM development, suggesting a possible role for genotype-by-age interactions.

  5. Blood Pressure and Cerebral White Matter Share Common Genetic Factors in Mexican-Americans

    PubMed Central

    Kochunov, Peter; Glahn, David C; Lancaster, Jack; Winkler, Anderson; Karlsgodt, Kathrin; Olvera, Rene L; Curran, Joanna E; Carless, Melanie A; Dyer, Thomas D; Almasy, Laura; Duggirala, Ravi; Fox, Peter T; Blangero, John

    2010-01-01

    Elevated arterial pulse pressure (PP) and blood pressure (BP) can lead to atrophy of cerebral white matter (WM), potentially due to shared genetic factors. We calculated the magnitude of shared genetic variance between BP and fractional anisotropy (FA) of water diffusion, a sensitive measurement of WM integrity in a well-characterized population of Mexican-Americans. The patterns of whole-brain and regional genetic overlap between BP and FA were interpreted in the context the pulse-wave encephalopathy (PWE) theory. We also tested whether regional pattern in genetic pleiotropy is modulated by the phylogeny of WM development. BP and high-resolution (1.7×1.7×3mm, 55 directions) diffusion tensor imaging (DTI) data were analyzed for 332 (202 females; mean age=47.9±13.3years) members of the San Antonio Family Heart Study. Bivariate genetic correlation analysis was used to calculate the genetic overlap between several BP measurements [PP, systolic (SBP) and diastolic (DBP)] and FA (whole-brain and regional values). Intersubject variance in PP and SBP exhibited a significant genetic overlap with variance in whole-brain FA values, sharing 36% and 22% of genetic variance, respectively. Regionally, shared genetic variance was significantly influenced by rates of WM development (r=−.75, p=0.01). The pattern of genetic overlap between BP and WM integrity was generally in-agreement with the PWE theory. Our study provides evidence that a set of pleiotropically acting genetic factors jointly influence phenotypic variation in BP and WM integrity. The magnitude of this overlap appears to be influenced by phylogeny of WM development suggesting a possible role for genotype-by-age interactions. PMID:21135356

  6. Chronic kidney disease, cerebral blood flow, and white matter volume in hypertensive adults.

    PubMed

    Tamura, Manjula Kurella; Pajewski, Nicholas M; Bryan, R Nick; Weiner, Daniel E; Diamond, Matthew; Van Buren, Peter; Taylor, Addison; Beddhu, Srinivasan; Rosendorff, Clive; Jahanian, Hesamoddin; Zaharchuk, Greg

    2016-03-29

    To determine the relation between markers of kidney disease-estimated glomerular filtration rate (eGFR) and urine albumin to creatinine ratio (UACR)-with cerebral blood flow (CBF) and white matter volume (WMV) in hypertensive adults. We used baseline data collected from 665 nondiabetic hypertensive adults aged ≥50 years participating in the Systolic Blood Pressure Intervention Trial (SPRINT). We used arterial spin labeling to measure CBF and structural 3T images to segment tissue into normal and abnormal WMV. We used quantile regression to estimate the association between eGFR and UACR with CBF and abnormal WMV, adjusting for sociodemographic and clinical characteristics. There were 218 participants (33%) with eGFR <60 mL/min/1.73 m(2) and 146 participants (22%) with UACR ≥30 mg/g. Reduced eGFR was independently associated with higher adjusted median CBF, but not with abnormal WMV. Conversely, in adjusted analyses, there was a linear independent association between UACR and larger abnormal WMV, but not with CBF. Compared to participants with neither marker of CKD (eGFR ≥60 mL/min/1.73 m(2) and UACR <30 mg/g), median CBF was 5.03 mL/100 g/min higher (95% confidence interval [CI] 0.78, 9.29) and abnormal WMV was 0.63 cm(3) larger (95% CI 0.08, 1.17) among participants with both markers of CKD (eGFR <60 mL/min/1.73 m(2) and UACR ≥30 mg/g). Among nondiabetic hypertensive adults, reduced eGFR was associated with higher CBF and higher UACR was associated with larger abnormal WMV. © 2016 American Academy of Neurology.

  7. A radical scavenger edaravone inhibits matrix metalloproteinase-9 upregulation and blood-brain barrier breakdown in a mouse model of prolonged cerebral hypoperfusion

    PubMed Central

    Maki, Takakuni; Liang, Anna C.; Arai, Ken

    2014-01-01

    Matrix metalloproteinase-9 (MMP-9) plays key roles in the brain pathophysiology, especially in blood-brain barrier (BBB) breakdown. Therefore, inhibiting MMP-9 activity may be a promising therapy for protecting brains in cerebrovascular diseases. Here we show that in a mouse prolonged cerebral hypoperfusion model, a clinically proven radical scavenger edaravone suppressed MMP-9 and reduced BBB damage in cerebral white matter. Prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in male adult C57BL/6J mice (10 weeks old). After 7 days of cerebral hypoperfusion, white matter region (e.g. corpus callosum) exhibited significant BBB leakage, assessed by IgG staining. Correspondingly, immunostaining and western blotting showed that MMP-9 was upregulated in the white matter. Edaravone treatment (3 mg/kg, i.p. at day 0 and 3) inhibited both BBB leakage and MMP-9 increase. Under the early phase of cerebral hypoperfusion conditions, oligodendrocyte precursor cells (OPCs) mainly contribute to the MMP-9 increase, but our immunostaining data showed that very little OPCs expressed MMP-9 in the edaravone-treated animals at day 7. Therefore, in vitro studies with primary rat OPCs were conducted to examine whether edaravone would directly suppressed MMP-9 expressions in OPCs. OPC cultures were exposed to sub-lethal CoCl2 for 7 days to induce prolonged chemical hypoxic stress. Prolonged chemical hypoxic stress increased MMP-9 expression in OPCs, and radical scavenging with edaravone (10 μM for 7 days) ameliorated the increase. Taken together, our proof-of-concept study demonstrates that radical scavengers may provide a potential therapeutic approach for white matter injury by suppressing BBB damage. PMID:24820542

  8. Cerebral cortical neurons with activity linked to central neurogenic spontaneous and evoked elevations in cerebral blood flow

    NASA Technical Reports Server (NTRS)

    Golanov, E. V.; Reis, D. J.

    1996-01-01

    We recorded neurons in rat cerebral cortex with activity relating to the neurogenic elevations in regional cerebral blood flow (rCBF) coupled to stereotyped bursts of EEG activity, burst-cerebrovascular wave complexes, appearing spontaneously or evoked by electrical stimulation of rostral ventrolateral medulla (RVL) or fastigial nucleus (FN). Of 333 spontaneously active neurons only 15 (5%), in layers 5-6, consistently (P < 0.05, chi-square) increased their activity during the earliest potential of the complex, approximately 1.3 s before the rise of rCBF, and during the minutes-long elevation of rCBF elicited by 10 s of stimulation of RVL or FN. The results indicate the presence of a small population of neurons in deep cortical laminae whose activity correlates with neurogenic elevations of rCBF. These neurons may function to transduce afferent neuronal signals into vasodilation.

  9. How to Perfuse: Concepts of Cerebral Protection during Arch Replacement

    PubMed Central

    Habertheuer, Andreas; Wiedemann, Dominik; Kocher, Alfred; Laufer, Guenther; Vallabhajosyula, Prashanth

    2015-01-01

    Arch surgery remains undoubtedly among the most technically and strategically challenging endeavors in cardiovascular surgery. Surgical interventions of thoracic aneurysms involving the aortic arch require complete circulatory arrest in deep hypothermia (DHCA) or elaborate cerebral perfusion strategies with varying degrees of hypothermia to achieve satisfactory protection of the brain from ischemic insults, that is, unilateral/bilateral antegrade cerebral perfusion (ACP) and retrograde cerebral perfusion (RCP). Despite sophisticated and increasingly individualized surgical approaches for complex aortic pathologies, there remains a lack of consensus regarding the optimal method of cerebral protection and circulatory management during the time of arch exclusion. Many recent studies argue in favor of ACP with various degrees of hypothermic arrest during arch reconstruction and its advantages have been widely demonstrated. In fact ACP with more moderate degrees of hypothermia represents a paradigm shift in the cardiac surgery community and is widely adopted as an emergent strategy; however, many centers continue to report good results using other perfusion strategies. Amidst this important discussion we review currently available surgical strategies of cerebral protection management and compare the results of recent European multicenter and single-center data. PMID:26713319

  10. Is Vasomotion in Cerebral Arteries Impaired in Alzheimer's Disease?

    PubMed

    Di Marco, Luigi Yuri; Farkas, Eszter; Martin, Chris; Venneri, Annalena; Frangi, Alejandro F

    2015-01-01

    A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer's disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion- the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain- is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation.

  11. Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes: A possible link between cerebral and retinal microvascular abnormalities.

    PubMed

    Umemura, Toshitaka; Kawamura, Takahiko; Hotta, Nigishi

    2017-03-01

    Diabetes patients have more than double the risk of ischemic stroke compared with non-diabetic individuals, and its neuroimaging characteristics have important clinical implications. To understand the pathophysiology of ischemic stroke in diabetes, it is important to focus not only on the stroke subtype, but also on the size and location of the occlusive vessels. Specifically, ischemic stroke in diabetes patients might be attributed to both large and small vessels, and intracranial internal carotid artery disease and small infarcts of the posterior circulation often occur. An additional feature is that asymptomatic lacunar infarctions are often seen in the basal ganglia and brain stem on brain magnetic resonance imaging. In particular, cerebral small vessel disease (SVD), including lacunar infarctions, white matter lesions and cerebral microbleeds, has been shown to be associated not only with stroke incidence, but also with the development and progression of dementia and diabetic microangiopathy. However, the pathogenesis of cerebral SVD is not fully understood. In addition, data on the association between neuroimaging findings of the cerebral SVD and diabetes are limited. Recently, the clinical importance of the link between cerebral SVD and retinal microvascular abnormalities has been a topic of considerable interest. Several clinical studies have shown that retinal microvascular abnormalities are closely related to cerebral SVD, suggesting that retinal microvascular abnormalities might be pathophysiologically linked to ischemic cerebral SVD. We review the literature relating to the pathophysiology and neuroimaging of cerebrovascular disease in diabetes, and discuss the problems based on the concept of cerebral large and small vessel disease. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  12. Relationship between brain lesion characteristics and communication in preschool children with cerebral palsy.

    PubMed

    Coleman, Andrea; Fiori, Simona; Weir, Kelly A; Ware, Robert S; Boyd, Roslyn N

    2016-11-01

    MRI shows promise as a prognostic tool for clinical findings such as gross motor function in children with cerebral palsy(CP), however the relationship with communication skills requires exploration. To examine the relationship between the type and severity of brain lesion on MRI and communication skills in children with CP. 131 children with CP (73 males(56%)), mean corrected age(SD) 28(5) months, Gross Motor Functional Classification System distribution: I=57(44%), II=14(11%), III=19(14%), IV=17(13%), V=24(18%). Children were assessed on the Communication and Symbolic Behavioral Scales Developmental Profile (CSBS-DP) Infant-Toddler Checklist. Structural MRI was analysed with reference to type and semi-quantitative assessment of the severity of brain lesion. Children were classified for motor type, distribution and GMFCS. The relationships between type/severity of brain lesion and communication ability were analysed using multivariable tobit regression. Children with periventricular white matter lesions had better speech than children with cortical/deep grey matter lesions (β=-2.6, 95%CI=-5.0, -0.2, p=0.04). Brain lesion severity on the semi-quantitative scale was related to overall communication skills (β=-0.9, 95%CI=-1.4, -0.5, p<0.001). Motor impairment better accounted for impairment in overall communication skills than brain lesion severity. Structural MRI has potential prognostic value for communication impairment in children with CP. WHAT THIS PAPER ADDS?: This is the first paper to explore important aspects of communication in relation to the type and severity of brain lesion on MRI in a representative cohort of preschool-aged children with CP. We found a relationship between the type of brain lesion and communication skills, children who had cortical and deep grey matter lesions had overall communication skills>1 SD below children with periventricular white matter lesions. Children with more severe brain lesions on MRI had poorer overall communication

  13. Tissue microstructural changes are independently associated with cognitive impairment in cerebral amyloid angiopathy.

    PubMed

    Viswanathan, Anand; Patel, Pratik; Rahman, Rosanna; Nandigam, R N Kaveer; Kinnecom, Catherine; Bracoud, Luc; Rosand, Jonathan; Chabriat, Hugues; Greenberg, Steven M; Smith, Eric E

    2008-07-01

    Cerebral amyloid angiopathy (CAA) is a major cause of lobar intracerebral hemorrhage and cognitive impairment and is associated with white matter hyperintensities and cerebral microbleeds. MRI diffusion tensor imaging detects microstructural tissue damage in advanced CAA even in areas that appear normal on conventional MRI. We hypothesized that higher global mean apparent diffusion coefficient (mean ADC), reflecting a higher amount of chronic tissue disruption caused by CAA, would be independently associated with CAA-related cognitive impairment. Preintracerebral hemorrhage cognitive impairment was systematically assessed using a standardized questionnaire (IQCODE) in 49 patients. Volume of white matter hyperintensities, number of microbleeds, and mean ADC were determined from MRIs obtained within 14.0+/-22.5 days of intracerebral hemorrhage cognitive impairment. White matter hyperintensities and mean ADC were measured in the hemisphere uninvolved by intracerebral hemorrhage to avoid confounding. Preintracerebral hemorrhage cognitive impairment was identified in 10 of 49 subjects. Mean ADC was the only variable associated with preintracerebral hemorrhage cognitive impairment and was elevated in those with preintracerebral hemorrhage cognitive impairment compared with those without (12.4x10(-4) versus 11.7x10(-4) mm(2)/s; P=0.03). Mean ADC positively correlated with age but not white matter hyperintensities or number of microbleeds. In logistic regression controlling for age and visible cerebral atrophy, mean ADC was independently associated with preintracerebral hemorrhage cognitive impairment (OR per 1x10(-4) mm(2)/s increase=2.45, 95% CI 1.11 to 5.40, P=0.04). Mean ADC is independently associated with preintracerebral hemorrhage cognitive impairment in CAA. The lack of correlation with other MRI markers of CAA suggests that mean ADC may be sensitive to distinct aspects of CAA pathology and its tissue consequences. These results suggest that global MRI diffusion

  14. Collateral Flow and White Matter Disease in Patients with Internal Carotid Artery Occlusion.

    PubMed

    Ishikawa, Mami; Sugawara, Hitoshi; Nagai, Mutsumi; Kusaka, Gen; Tanaka, Yuichi; Naritaka, Heiji

    2017-01-01

    When an internal carotid artery (ICA) occludes, a patient may develop cerebral infarction (CI). We investigated whether CI caused by ICA occlusion (ICAO) is associated with collateral flow through the anterior and posterior communicating arteries (ACoA and PCoA). In 100 patients with ICAO, we investigated CI and white matter disease by performing an MRI and the anatomy of the ACoA and PCoA were investigated by performing magnetic resonance angiography. All patients were divided into the symptomatic CI group or the no-CI group. The collateral flow pathway was estimated by the anterior cerebral artery (ACA)-PCoA score and the collateral flow volume after ICAO was estimated by the middle cerebral artery (MCA) flow score, based on how well the MCA was visualized. Of 100 patients with ICAO, the symptomatic CI group included 36 patients. ACA-PCoA score and white matter disease grades were significantly higher in the CI group (indicating poor collateral flow). More than 80% of patients with an ACA-PCoA score of 4 (poor collateral) experienced symptomatic CI. Thirty-one symptomatic CI patients (86%) had an MCA flow score of 1 or 2 (decreased MCA flow). The ACA-PCoA score and white matter disease grade may suggest an increased risk of CI following ICAO. © 2016 S. Karger AG, Basel.

  15. Creutzfeldt-Jakob disease with severe involvement of cerebral white matter and cerebellum.

    PubMed

    Berciano, J; Berciano, M T; Polo, J M; Figols, J; Ciudad, J; Lafarga, M

    1990-01-01

    We describe a patient with Creutzfeldt-Jakob disease (CJD) of the ataxic and panencephalopathic type. Postmortem examination revealed the characteristic lesions of CJD in the grey matter and profound white matter involvement was seen with immunocytochemical techniques. Ultrastructural white matter lesions were identical to those described in experimentally transmitted CJD. There was marked loss of cerebellar granule cells with virtual disappearance of parallel fibres, but Purkinje cells were only slightly reduced. Electron microscopic studies revealed extensive degenerative changes including cytoplasmic vacuoles in both cell types. Silver methods disclosed massive impregnation of white matter and striking abnormalities of Purkinje cells consisting of hypertrophy and flattening of thick dendritic branches, reduction in the number of terminal branchlets, segmentary loss of spines and polymorphic spines. These findings show the extensive involvement of all three cerebellar cortical layers and the reactive plasticity of Purkinje cells to deafferentiation. They favour the hypothesis that demyelination represents a primary lesion of the white matter.

  16. Arterial blood gas management in retrograde cerebral perfusion: the importance of carbon dioxide.

    PubMed

    Ueno, K; Takamoto, S; Miyairi, T; Morota, T; Shibata, K; Murakami, A; Kotsuka, Y

    2001-11-01

    Many interventional physiological assessments for retrograde cerebral perfusion (RCP) have been explored. However, the appropriate arterial gas management of carbon dioxide (CO2) remains controversial. The aim of this study is to determine whether alpha-stat or pH-stat could be used for effective brain protection under RCP in terms of cortical cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), and distribution of regional cerebral blood flow. Fifteen anesthetized dogs (25.1+/-1.1 kg) on cardiopulmonary bypass (CPB) were cooled to 18 degrees C under alpha-stat management and had RCP for 90 min under: (1), alpha-stat; (2), pH-stat; or (3), deep hypothermic (18 degrees C) antegrade CPB (antegrade). RCP flow was regulated for a sagittal sinus pressure of around 25 mmHg. CBF was monitored by a laser tissue flowmeter. Serial analyses of blood gas were made. The regional cerebral blood flow was measured with colored microspheres before discontinuation of RCP. CBF and CMRO2 were evaluated as the percentage of the baseline level (%CBF, %CMRO2). The oxygen content of arterial inflow and oxygen extraction was not significantly different between the RCP groups. The %CBF and %CMRO2 were significantly higher for pH-stat RCP than for alpha-stat RCP. The regional cerebral blood flow, measured with colored microspheres, tended to be higher for pH-stat RCP than for alpha-stat RCP, at every site in the brain. Irrespective of CO2 management, regional differences were not significant among any site in the brain. CO2 management is crucial for brain protection under deep hypothermic RCP. This study revealed that pH-stat was considered to be better than alpha-stat in terms of CBF and oxygen metabolism in the brain. The regional blood flow distribution was considered to be unchanged irrespective of CO2 management.

  17. Common NOTCH3 Variants and Cerebral Small-Vessel Disease.

    PubMed

    Rutten-Jacobs, Loes C A; Traylor, Matthew; Adib-Samii, Poneh; Thijs, Vincent; Sudlow, Cathie; Rothwell, Peter M; Boncoraglio, Giorgio; Dichgans, Martin; Bevan, Steve; Meschia, James; Levi, Christopher; Rost, Natalia S; Rosand, Jonathan; Hassan, Ahamad; Markus, Hugh S

    2015-06-01

    The most common monogenic cause of cerebral small-vessel disease is cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, caused by NOTCH3 gene mutations. It has been hypothesized that more common variants in NOTCH3 may also contribute to the risk of sporadic small-vessel disease. Previously, 4 common variants (rs10404382, rs1043994, rs10423702, and rs1043997) were found to be associated with the presence of white matter hyperintensity in hypertensive community-dwelling elderly. We investigated the association of common single nucleotide polymorphisms (SNPs) in NOTCH3 in 1350 patients with MRI-confirmed lacunar stroke and 7397 controls, by meta-analysis of genome-wide association study data sets. In addition, we investigated the association of common SNPs in NOTCH3 with MRI white matter hyperintensity volumes in 3670 white patients with ischemic stroke. In each analysis, we considered all SNPs within the NOTCH3 gene, and within 50-kb upstream and downstream of the coding region. A total of 381 SNPs from the 1000 genome population with a mean allele frequency>0.01 were included in the analysis. A significance level of P<0.0015 was used, adjusted for the effective number of independent SNPs in the region using the Galwey method. We found no association of any common variants in NOTCH3 (including rs10404382, rs1043994, rs10423702, and rs1043997) with lacunar stroke or white matter hyperintensity volume. We repeated our analysis stratified for hypertension but again found no association. Our study does not support a role for common NOTCH3 variation in the risk of sporadic small-vessel disease. © 2015 The Authors.

  18. Frontotemporal white matter changes in amyotrophic lateral sclerosis.

    PubMed

    Abrahams, Sharon; Goldstein, Laura H; Suckling, John; Ng, Virginia; Simmons, Andy; Chitnis, Xavier; Atkins, Louise; Williams, Steve C R; Leigh, P N

    2005-03-01

    Cognitive dysfunction can occur in some patients with amyotrophic lateral sclerosis (ALS) who are not suffering from dementia. The most striking and consistent cognitive deficit has been found using tests of verbal fluency. ALS patients with verbal fluency deficits have shown functional imaging abnormalities predominantly in frontotemporal regions using positron emission tomography (PET). This study used automated volumetric voxel-based analysis of grey and white matter densities of structural magnetic resonance imaging (MRI) scans to explore the underlying pattern of structural cerebral change in nondemented ALS patients with verbal fluency deficits. Two groups of ALS patients, defined by the presence or absence of cognitive impairment on the basis of the Written Verbal Fluency Test (ALSi, cognitively impaired, n=11; ALSu, cognitively unimpaired n=12) were compared with healthy age matched controls (n=12). A comparison of the ALSi group with controls revealed significantly (p<0.002) reduced white matter volume in extensive motor and non-motor regions, including regions corresponding to frontotemporal association fibres. These patients demonstrated a corresponding cognitive profile of executive and memory dysfunction. Less extensive white matter reductions were revealed in the comparison of the ALSu and control groups in regions corresponding to frontal association fibres. White matter volumes were also found to correlate with performance on memory tests. There were no significant reductions in grey matter volume in the comparison of either patient group with controls. The structural white matter abnormalities in frontal and temporal regions revealed here may underlie the cognitive and functional imaging abnormalities previously reported in non-demented ALS patients. The results also suggest that extra-motor structural abnormalities may be present in ALS patients with no evidence of cognitive change. The findings support the hypothesis of a continuum of extra

  19. Cerebral ketone body metabolism.

    PubMed

    Morris, A A M

    2005-01-01

    Ketone bodies (KBs) are an important source of energy for the brain. During the neonatal period, they are also precursors for the synthesis of lipids (especially cholesterol) and amino acids. The rate of cerebral KB metabolism depends primarily on the concentration in blood; high concentrations occur during fasting and on a high-fat diet. Cerebral KB metabolism is also regulated by the permeability of the blood-brain barrier (BBB), which depends on the abundance of monocarboxylic acid transporters (MCT1). The BBB's permeability to KBs increases with fasting in humans. In rats, permeability increases during the suckling period, but human neonates have not been studied. Monocarboxylic acid transporters are also present in the plasma membranes of neurons and glia but their role in regulating KB metabolism is uncertain. Finally, the rate of cerebral KB metabolism depends on the activities of the relevant enzymes in brain. The activities vary with age in rats, but reliable results are not available for humans. Cerebral KB metabolism in humans differs from that in the rat in several respects. During fasting, for example, KBs supply more of the brain's energy in humans than in the rat. Conversely, KBs are probably used more extensively in the brain of suckling rats than in human neonates. These differences complicate the interpretation of rodent studies. Most patients with inborn errors of ketogenesis develop normally, suggesting that the only essential role for KBs is as an alternative fuel during illness or prolonged fasting. On the other hand, in HMG-CoA lyase deficiency, imaging generally shows asymptomatic white-matter abnormalities. The ability of KBs to act as an alternative fuel explains the effectiveness of the ketogenic diet in GLUT1 deficiency, but its effectiveness in epilepsy remains unexplained.

  20. Cerebral Microbleeds in the Elderly: A Pathological Analysis

    PubMed Central

    Fisher, Mark; French, Samuel; Ji, Ping; Kim, Ronald C.

    2011-01-01

    Background and Purpose Cerebral microbleeds in the elderly are routinely identified by brain MRI. The purpose of this study was to better characterize the pathological basis of microbleeds. Methods We studied post-mortem brain specimens of 33 individuals with no clinical history of stroke, age range 71–105 years. Cerebral microbleeds were identified by presence of hemosiderin (iron), identified by routine histochemistry and Prussian blue stain. Cellular localization of iron (in macrophages and pericytes) was studied by immunohistochemistry for smooth muscle actin, CD68, and, in selected cases, electron microscopy. Presence of beta-amyloid was analyzed using immunohistochemistry for epitope 6E10. Results Cerebral microbleeds were present in 22 cases, and occurred at capillary, small artery, and arteriolar levels. Presence of microbleeds occurred independent of amyloid deposition at site of microbleeds. While most subjects had hypertension, microbleeds were present with and without hypertension. Putamen was site of microbleeds in all but one case; one microbleed was in subcortical white matter of occipital lobe. Most capillary microbleeds involved macrophages, but the two microbleeds studied by electron microscopy demonstrated pericyte involvement. Conclusions These findings indicate that cerebral microbleeds are common in elderly brain and can occur at the capillary level. PMID:21030702

  1. Role of cerebral ultrasound and magnetic resonance imaging in newborns with congenital cytomegalovirus infection.

    PubMed

    Capretti, Maria Grazia; Lanari, Marcello; Tani, Giovanni; Ancora, Gina; Sciutti, Rita; Marsico, Concetta; Lazzarotto, Tiziana; Gabrielli, Liliana; Guerra, Brunella; Corvaglia, Luigi; Faldella, Giacomo

    2014-03-01

    To assess the diagnostic and prognostic value of cerebral magnetic resonance imaging (cMRI) in comparison with that of cerebral ultrasound (cUS) in predicting neurodevelopmental outcome in newborns with congenital cytomegalovirus (CMV) infection. Forty CMV-congenitally infected newborns underwent cUS and cMRI within the first month of life. Clinical course, laboratory findings, visual/hearing function and neurodevelopmental outcome were documented. Thirty newborns showed normal cMRI, cUS and hearing/visual function in the first month of life; none showed CMV-related abnormalities at follow-up. Six newborns showed pathological cMRI and cUS findings (pseudocystis, ventriculomegaly, calcifications, cerebellar hypoplasia) but cMRI provided additional information (white matter abnormalities in three cases, lissencephaly/polymicrogyria in one and a cyst of the temporal lobe in another one); cerebral calcifications were detected in 3/6 infants by cUS but only in 2/6 by cMRI. Four of these 6 infants showed severe neurodevelopmental impairment and five showed deafness during follow-up. Three newborns had a normal cUS, but cMRI documented white matter abnormalities and in one case also cerebellar hypoplasia; all showed neurodevelopmental impairment and two were deaf at follow-up. One more newborn showed normal cUS and cMRI, but brainstem auditory evoked responses were abnormal; psychomotor development was normal at follow-up. Compared with cUS, cMRI disclosed additional pathological findings in CMV-congenitally infected newborns. cUS is a readily available screening tool useful in the identification of infected newborns with major cerebral involvement. Further studies with a larger sample size are needed to determine the prognostic role of MRI, particularly regarding isolated white matter lesions. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. An evaluation of bilateral monitoring of cerebral oxygen saturation during pediatric cardiac surgery.

    PubMed

    Kussman, Barry D; Wypij, David; DiNardo, James A; Newburger, Jane; Jonas, Richard A; Bartlett, Jodi; McGrath, Ellen; Laussen, Peter C

    2005-11-01

    Cerebral oximetry is a technique that enables monitoring of regional cerebral oxygenation during cardiac surgery. In this study, we evaluated differences in bi-hemispheric measurement of cerebral oxygen saturation using near-infrared spectroscopy in 62 infants undergoing biventricular repair without aortic arch reconstruction. Left and right regional cerebral oxygen saturation index (rSO2i) were recorded continuously after the induction of anesthesia, and data were analyzed at 12 time points. Baseline rSO2i measurements were left 65 +/- 13 and right 66 +/- 13 (P = 0.17). Mean left and right rSO2i measurements were similar (< or =2 percentage points/absolute scale units) before, during, and after cardiopulmonary bypass, irrespective of the use of deep hypothermic circulatory arrest. Further longitudinal neurological outcome studies are required to determine whether uni- or bi-hemispheric monitoring is required in this patient population.

  3. A radical scavenger edaravone inhibits matrix metalloproteinase-9 upregulation and blood-brain barrier breakdown in a mouse model of prolonged cerebral hypoperfusion.

    PubMed

    Miyamoto, Nobukazu; Pham, Loc-Duyen D; Maki, Takakuni; Liang, Anna C; Arai, Ken

    2014-06-24

    Matrix metalloproteinase-9 (MMP-9) plays key roles in the brain pathophysiology, especially in blood-brain barrier (BBB) breakdown. Therefore, inhibiting MMP-9 activity may be a promising therapy for protecting brains in cerebrovascular diseases. Here we show that in a mouse prolonged cerebral hypoperfusion model, a clinically proven radical scavenger edaravone suppressed MMP-9 and reduced BBB damage in cerebral white matter. Prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in male adult C57BL/6J mice (10 weeks old). After 7 days of cerebral hypoperfusion, white matter region (e.g. corpus callosum) exhibited significant BBB leakage, assessed by IgG staining. Correspondingly, immunostaining and western blotting showed that MMP-9 was upregulated in the white matter. Edaravone treatment (3mg/kg, i.p. at days 0 and 3) inhibited both BBB leakage and MMP-9 increase. Under the early phase of cerebral hypoperfusion conditions, oligodendrocyte precursor cells (OPCs) mainly contribute to the MMP-9 increase, but our immunostaining data showed that very little OPCs expressed MMP-9 in the edaravone-treated animals at day 7. Therefore, in vitro studies with primary rat OPCs were conducted to examine whether edaravone would directly suppressed MMP-9 expressions in OPCs. OPC cultures were exposed to sub-lethal CoCl2 for 7 days to induce prolonged chemical hypoxic stress. Prolonged chemical hypoxic stress increased MMP-9 expression in OPCs, and radical scavenging with edaravone (10μM for 7 days) ameliorated the increase. Taken together, our proof-of-concept study demonstrates that radical scavengers may provide a potential therapeutic approach for white matter injury by suppressing BBB damage. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Volumetric cerebral characteristics of children exposed to opiates and other substances in utero

    PubMed Central

    Walhovd, K. B.; Moe, V.; Slinning, K.; Due-Tønnessen, P.; Bjørnerud, A.; Dale, A. M.; van der Kouwe, A.; Quinn, B. T.; Kosofsky, B.; Greve, D.; Fischl, B.

    2007-01-01

    Morphometric cerebral characteristics were studied in children with prenatal poly-substance exposure (n =14) compared to controls (n = 14) without such exposure. Ten of the substance exposed children were born to mothers who used opiates (heroin) throughout the pregnancy. Groups were compared across 16 brain measures: cortical gray matter, cerebral white matter, hippocampus, amygdala, thalamus, accumbens area, caudate, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, lateral ventricles, inferior lateral ventricles, and the 3rd and 4th ventricles. In addition, continuous measurement of thickness across the entire cortical mantle was performed. Volumetric characteristics were correlated with ability and questionnaire assessments 2 years prior to scan. Compared to controls, the substance-exposed children had smaller intracranial and brain volumes, including smaller cerebral cortex, amygdala, accumbens area, putamen, pallidum, brainstem, cerebellar cortex, cerebellar white matter, and inferior lateral ventricles, and thinner cortex of the right anterior cingulate and lateral orbitofrontal cortex. Pallidum and putamen appeared especially reduced in the subgroup exposed to opiates. Only volumes of the right anterior cingulate, the right lateral orbitofrontal cortex and the accumbens area, showed some association with ability and questionnaire measures. The sample studied is rare, and hence small, so conclusions cannot be drawn with certainty. Morphometric group differences were observed, but associations with previous behavioral assessment were generally weak. Some of the volumetric differences, particularly thinner cortex in part of the right lateral orbitofrontal cortex, may be moderately involved in cognitive and behavioral difficulties more frequently experienced by opiate and poly-substance exposed children. PMID:17513131

  5. Is Vasomotion in Cerebral Arteries Impaired in Alzheimer’s Disease?

    PubMed Central

    Di Marco, Luigi Yuri; Farkas, Eszter; Martin, Chris; Venneri, Annalena; Frangi, Alejandro F.

    2015-01-01

    Abstract A substantial body of evidence supports the hypothesis of a vascular component in the pathogenesis of Alzheimer’s disease (AD). Cerebral hypoperfusion and blood-brain barrier dysfunction have been indicated as key elements of this pathway. Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder, frequent in AD, characterized by the accumulation of amyloid-β (Aβ) peptide in cerebral blood vessel walls. CAA is associated with loss of vascular integrity, resulting in impaired regulation of cerebral circulation, and increased susceptibility to cerebral ischemia, microhemorrhages, and white matter damage. Vasomotion— the spontaneous rhythmic modulation of arterial diameter, typically observed in arteries/arterioles in various vascular beds including the brain— is thought to participate in tissue perfusion and oxygen delivery regulation. Vasomotion is impaired in adverse conditions such as hypoperfusion and hypoxia. The perivascular and glymphatic pathways of Aβ clearance are thought to be driven by the systolic pulse. Vasomotion produces diameter changes of comparable amplitude, however at lower rates, and could contribute to these mechanisms of Aβ clearance. In spite of potential clinical interest, studies addressing cerebral vasomotion in the context of AD/CAA are limited. This study reviews the current literature on vasomotion, and hypothesizes potential paths implicating impaired cerebral vasomotion in AD/CAA. Aβ and oxidative stress cause vascular tone dysregulation through direct effects on vascular cells, and indirect effects mediated by impaired neurovascular coupling. Vascular tone dysregulation is further aggravated by cholinergic deficit and results in depressed cerebrovascular reactivity and (possibly) impaired vasomotion, aggravating regional hypoperfusion and promoting further Aβ and oxidative stress accumulation. PMID:25720414

  6. White Matter Volume Predicts Language Development in Congenital Heart Disease

    PubMed Central

    Rollins, Caitlin K.; Asaro, Lisa A.; Akhondi-Asl, Alireza; Kussman, Barry D.; Rivkin, Michael J.; Bellinger, David C.; Warfield, Simon K.; Wypij, David; Newburger, Jane W.; Soul, Janet S.

    2016-01-01

    Objective To determine whether brain volume is reduced at one year and whether these volumes are associated with neurodevelopment in biventricular congenital heart disease (CHD) repaired in infancy. Study design Infants with biventricular CHD (n = 48) underwent brain magnetic resonance imaging (MRI) and neurodevelopmental testing with the Bayley Scales of Infant Development-II (BSID-II) and the MacArthur-Bates Communicative Development Inventories (CDI) at one year. A multi-template based probabilistic segmentation algorithm was applied to volumetric MRI data. We compared volumes with those of 13 healthy control infants of comparable ages. In the CHD group, we measured Spearman correlations between neurodevelopmental outcomes and the residuals from linear regression of the volumes on corrected chronological age at MRI and sex. Results Compared with controls, CHD infant had reductions of 54 mL in total brain (P = 0.009), 40 mL in cerebral white matter (P < 0.001), and 1.2 mL in brainstem (P = 0.003) volumes. Within the CHD group, brain volumes were not correlated with BSID-II scores but did correlate positively with CDI language development. Conclusion Infants with biventricular CHD show total brain volume reductions at one year of age, driven by differences in cerebral white matter. White matter volume correlates with language development, but not broader developmental indices. These findings suggest that abnormalities in white matter development detected months after corrective heart surgery may contribute to language impairment. Trial registration ClinicalTrials.gov: NCT00006183 PMID:27837950

  7. Sex, Aging, and Preexisting Cerebral Ischemic Disease in Patients With Aortic Stenosis

    PubMed Central

    Wang, Ping; Acker, Michael A.; Bilello, Michel; Melhem, Elias R.; Stambrook, Elizabeth; Ratcliffe, Sarah J.; Floyd, Thomas F.

    2011-01-01

    Background Patients undergoing cardiac surgery have a high frequency of preexisting cerebral ischemic lesions, the presence of which appears to predict cognitive sequelae. Patients undergoing aortic valve replacement for aortic stenosis (AS) incur an exceptionally high risk for perioperative cerebral ischemia. The extreme risk in this subgroup may arise from the preexisting burden of cerebral ischemic disease. We tested the hypotheses that increasing age, female sex, coronary artery disease, and the severity of AS are predictive of the severity of preexisting cerebral ischemic lesions. Methods A total of 95 subjects were included in this study. Subjects were imaged on 1.5 Tesla magnetic resonance imaging scanners to obtain multimodal image sets which were used for the automatic segmentation of cerebral lesion volume. The dependence of lesion volume upon age, sex, coronary artery disease, and the severity of AS were tested. Results The results demonstrate a strong correlation between aging, female sex, and white matter and ischemia-like lesion volume in patients with aortic stenosis. Conclusions Women and those of advanced age presenting for aortic valve replacement for AS may incur a particularly high risk for postoperative neurologic sequelae due to an exceptional preexisting burden of cerebral ischemic disease. PMID:20868818

  8. White matter changes after stroke in type 2 diabetic rats measured by diffusion magnetic resonance imaging.

    PubMed

    Ding, Guangliang; Chen, Jieli; Chopp, Michael; Li, Lian; Yan, Tao; Davoodi-Bojd, Esmaeil; Li, Qingjiang; Davarani, Siamak Pn; Jiang, Quan

    2017-01-01

    Diffusion-related magnetic resonance imaging parametric maps may be employed to characterize white matter of brain. We hypothesize that entropy of diffusion anisotropy may be most effective for detecting therapeutic effects of bone marrow stromal cell treatment of ischemia in type 2 diabetes mellitus rats. Type 2 diabetes mellitus was induced in adult male Wistar rats. These rats were then subjected to 2 h of middle cerebral artery occlusion, and received bone marrow stromal cell (5 × 10 6 , n = 8) or an equal volume of saline (n = 8) via tail vein injection at three days after middle cerebral artery occlusion. Magnetic resonance imaging was performed on day one and then weekly for five weeks post middle cerebral artery occlusion. The diffusion metrics complementarily permitted characterization of axons and axonal myelination. All six magnetic resonance imaging diffusion metrics, confirmed by histological measures, demonstrated that bone marrow stromal cell treatment significantly (p < 0.05) improved magnetic resonance imaging diffusion indices of white matter in type 2 diabetes mellitus rats after middle cerebral artery occlusion compared with the saline-treated rats. Superior to the fractional anisotropy metric that provided measures related to organization of neuronal fiber bundles, the entropy metric can also identify microstructures and low-density axonal fibers of cerebral tissue after stroke in type 2 diabetes mellitus rats. © The Author(s) 2015.

  9. White matter changes after stroke in type 2 diabetic rats measured by diffusion magnetic resonance imaging

    PubMed Central

    Ding, Guangliang; Chen, Jieli; Chopp, Michael; Li, Lian; Yan, Tao; Davoodi-Bojd, Esmaeil; Li, Qingjiang; Davarani, Siamak PN

    2015-01-01

    Diffusion-related magnetic resonance imaging parametric maps may be employed to characterize white matter of brain. We hypothesize that entropy of diffusion anisotropy may be most effective for detecting therapeutic effects of bone marrow stromal cell treatment of ischemia in type 2 diabetes mellitus rats. Type 2 diabetes mellitus was induced in adult male Wistar rats. These rats were then subjected to 2 h of middle cerebral artery occlusion, and received bone marrow stromal cell (5 × 106, n = 8) or an equal volume of saline (n = 8) via tail vein injection at three days after middle cerebral artery occlusion. Magnetic resonance imaging was performed on day one and then weekly for five weeks post middle cerebral artery occlusion. The diffusion metrics complementarily permitted characterization of axons and axonal myelination. All six magnetic resonance imaging diffusion metrics, confirmed by histological measures, demonstrated that bone marrow stromal cell treatment significantly (p < 0.05) improved magnetic resonance imaging diffusion indices of white matter in type 2 diabetes mellitus rats after middle cerebral artery occlusion compared with the saline-treated rats. Superior to the fractional anisotropy metric that provided measures related to organization of neuronal fiber bundles, the entropy metric can also identify microstructures and low-density axonal fibers of cerebral tissue after stroke in type 2 diabetes mellitus rats. PMID:26685128

  10. A Deep Proper Motion Catalog Within the Sloan Digital Sky Survey Footprint. II. The White Dwarf Luminosity Function

    NASA Astrophysics Data System (ADS)

    Munn, Jeffrey A.; Harris, Hugh C.; von Hippel, Ted; Kilic, Mukremin; Liebert, James W.; Williams, Kurtis A.; DeGennaro, Steven; Jeffery, Elizabeth; Dame, Kyra; Gianninas, A.; Brown, Warren R.

    2017-01-01

    A catalog of 8472 white dwarf (WD) candidates is presented, selected using reduced proper motions from the deep proper motion catalog of Munn et al. Candidates are selected in the magnitude range 16< r< 21.5 over 980 square degrees, and 16< r< 21.3 over an additional 1276 square degrees, within the Sloan Digital Sky Survey (SDSS) imaging footprint. Distances, bolometric luminosities, and atmospheric compositions are derived by fitting SDSS ugriz photometry to pure hydrogen and helium model atmospheres (assuming surface gravities {log} {\\text{}}g=8). The disk white dwarf luminosity function (WDLF) is constructed using a sample of 2839 stars with 5.5< {M}{bol}< 17, with statistically significant numbers of stars cooler than the turnover in the luminosity function. The WDLF for the halo is also constructed, using a sample of 135 halo WDs with 5< {M}{bol}< 16. We find space densities of disk and halo WDs in the solar neighborhood of 5.5+/- 0.1× {10}-3 {{pc}}-3 and 3.5+/- 0.7× {10}-5 {{pc}}-3, respectively. We resolve the bump in the disk WDLF due to the onset of fully convective envelopes in WDs, and see indications of it in the halo WDLF as well.

  11. Inter-Parietal White Matter Development Predicts Numerical Performance in Young Children

    ERIC Educational Resources Information Center

    Cantlon, Jessica F.; Davis, Simon W.; Libertus, Melissa E.; Kahane, Jill; Brannon, Elizabeth M.; Pelphrey, Kevin A.

    2011-01-01

    In an effort to understand the role of interhemispheric transfer in numerical development, we investigated the relationship between children's developing knowledge of numbers and the integrity of their white matter connections between the cerebral hemispheres (the corpus callosum). We used diffusion tensor imaging (DTI) tractography analyses to…

  12. Cerebral Microbleeds and White Matter Hyperintensities in Cognitively Healthy Elderly: A Cross-Sectional Cohort Study Evaluating the Effect of Arterial Stiffness.

    PubMed

    Gustavsson, Anna-Märta; Stomrud, Erik; Abul-Kasim, Kasim; Minthon, Lennart; Nilsson, Peter M; Hansson, Oskar; Nägga, Katarina

    2015-01-01

    Arterial stiffness reflects the ageing processes in the vascular system, and studies have shown an association between reduced cognitive function and cerebral small vessel disease. Small vessel disease can be visualized as white matter hyperintensities (WMH) and lacunar infarcts but also as cerebral microbleeds on brain magnetic resonance imaging (MRI). We aimed to investigate if arterial stiffness influences the presence of microbleeds, WMH and cognitive function in a population of cognitively healthy elderly. The study population is part of the Swedish BioFinder study and consisted of 208 individuals without any symptoms of cognitive impairment, who scored >27 points on the Mini-Mental State Examination. The participants (mean age, 72 years; 59% women) underwent MRI of the brain with visual rating of microbleeds and WMH. Arterial stiffness was measured with carotid-femoral pulse wave velocity (cfPWV). Eight cognitive tests covering different cognitive domains were performed. Microbleeds were detected in 12% and WMH in 31% of the participants. Mean (±standard deviation, SD) cfPWV was 10.0 (±2.0) m/s. There was no association between the presence of microbleeds and arterial stiffness. There was a positive association between arterial stiffness and WMH independent of age or sex (odds ratio, 1.58; 95% confidence interval, 1.04-2.40, p < 0.05), but the effect was attenuated when further adjustments for several cardiovascular risk factors were performed (p > 0.05). Cognitive performance was not associated with microbleeds, but individuals with WMH performed slightly worse than those without WMH on the Symbol Digit Modalities Test (mean ± SD, 35 ± 7.8 vs. 39 ± 8.1, p < 0.05). Linear regression revealed no direct associations between arterial stiffness and the results of the cognitive tests. Arterial stiffness was not associated with the presence of cerebral microbleeds or cognitive function in cognitively healthy elderly. However, arterial stiffness was related to

  13. Longitudinal relaxographic imaging of white matter hyperintensities in the elderly

    PubMed Central

    2014-01-01

    Background Incidental white matter hyperintensities (WMHs) are common findings on T2-weighted magnetic resonance images of the aged brain and have been associated with cognitive decline. While a variety of pathogenic mechanisms have been proposed, the origin of WMHs and the extent to which lesions in the deep and periventricular white matter reflect distinct etiologies remains unclear. Our aim was to quantify the fractional blood volume (vb) of small WMHs in vivo using a novel magnetic resonance imaging (MRI) approach and examine the contribution of blood–brain barrier disturbances to WMH formation in the deep and periventricular white matter. Methods Twenty-three elderly volunteers (aged 59–82 years) underwent 7 Tesla relaxographic imaging and fluid-attenuated inversion recovery (FLAIR) MRI. Maps of longitudinal relaxation rate constant (R1) were prepared before contrast reagent (CR) injection and throughout CR washout. Voxelwise estimates of vb were determined by fitting temporal changes in R1 values to a two-site model that incorporates the effects of transendothelial water exchange. Average vb values in deep and periventricular WMHs were determined after semi-automated segmentation of FLAIR images. Ventricular permeability was estimated from the change in CSF R1 values during CR washout. Results In the absence of CR, the total water fraction in both deep and periventricular WMHs was increased compared to normal appearing white matter (NAWM). The vb of deep WMHs was 1.8 ± 0.6 mL/100 g and was significantly reduced compared to NAWM (2.4 ± 0.8 mL/100 g). In contrast, the vb of periventricular WMHs was unchanged compared to NAWM, decreased with ventricular volume and showed a positive association with ventricular permeability. Conclusions Hyperintensities in the deep WM appear to be driven by vascular compromise, while those in the periventricular WM are most likely the result of a compromised ependyma in which the small vessels remain relatively

  14. Longitudinal brain white matter alterations in minimal hepatic encephalopathy before and after liver transplantation.

    PubMed

    Lin, Wei-Che; Chou, Kun-Hsien; Chen, Chao-Long; Chen, Hsiu-Ling; Lu, Cheng-Hsien; Li, Shau-Hsuan; Huang, Chu-Chung; Lin, Ching-Po; Cheng, Yu-Fan

    2014-01-01

    Cerebral edema is the common pathogenic mechanism for cognitive impairment in minimal hepatic encephalopathy. Whether complete reversibility of brain edema, cognitive deficits, and their associated imaging can be achieved after liver transplantation remains an open question. To characterize white matter integrity before and after liver transplantation in patients with minimal hepatic encephalopathy, multiple diffusivity indices acquired via diffusion tensor imaging was applied. Twenty-eight patients and thirty age- and sex-matched healthy volunteers were included. Multiple diffusivity indices were obtained from diffusion tensor images, including mean diffusivity, fractional anisotropy, axial diffusivity and radial diffusivity. The assessment was repeated 6-12 month after transplantation. Differences in white matter integrity between groups, as well as longitudinal changes, were evaluated using tract-based spatial statistical analysis. Correlation analyses were performed to identify first scan before transplantation and interval changes among the neuropsychiatric tests, clinical laboratory tests, and diffusion tensor imaging indices. After transplantation, decreased water diffusivity without fractional anisotropy change indicating reversible cerebral edema was found in the left anterior cingulate, claustrum, postcentral gyrus, and right corpus callosum. However, a progressive decrease in fractional anisotropy and an increase in radial diffusivity suggesting demyelination were noted in temporal lobe. Improved pre-transplantation albumin levels and interval changes were associated with better recoveries of diffusion tensor imaging indices. Improvements in interval diffusion tensor imaging indices in the right postcentral gyrus were correlated with visuospatial function score correction. In conclusion, longitudinal voxel-wise analysis of multiple diffusion tensor imaging indices demonstrated different white matter changes in minimal hepatic encephalopathy patients

  15. Defective motion processing in children with cerebral visual impairment due to periventricular white matter damage.

    PubMed

    Weinstein, Joel M; Gilmore, Rick O; Shaikh, Sumera M; Kunselman, Allen R; Trescher, William V; Tashima, Lauren M; Boltz, Marianne E; McAuliffe, Matthew B; Cheung, Albert; Fesi, Jeremy D

    2012-07-01

    We sought to characterize visual motion processing in children with cerebral visual impairment (CVI) due to periventricular white matter damage caused by either hydrocephalus (eight individuals) or periventricular leukomalacia (PVL) associated with prematurity (11 individuals). Using steady-state visually evoked potentials (ssVEP), we measured cortical activity related to motion processing for two distinct types of visual stimuli: 'local' motion patterns thought to activate mainly primary visual cortex (V1), and 'global' or coherent patterns thought to activate higher cortical visual association areas (V3, V5, etc.). We studied three groups of children: (1) 19 children with CVI (mean age 9y 6mo [SD 3y 8mo]; 9 male; 10 female); (2) 40 neurologically and visually normal comparison children (mean age 9y 6mo [SD 3y 1mo]; 18 male; 22 female); and (3) because strabismus and amblyopia are common in children with CVI, a group of 41 children without neurological problems who had visual deficits due to amblyopia and/or strabismus (mean age 7y 8mo [SD 2y 8mo]; 28 male; 13 female). We found that the processing of global as opposed to local motion was preferentially impaired in individuals with CVI, especially for slower target velocities (p=0.028). Motion processing is impaired in children with CVI. ssVEP may provide useful and objective information about the development of higher visual function in children at risk for CVI. © The Authors. Journal compilation © Mac Keith Press 2011.

  16. Non-invasive Assessment of Cerebral Blood Flow and Oxygen Metabolism in Neonates during Hypothermic Cardiopulmonary Bypass: Feasibility and Clinical Implications

    PubMed Central

    Ferradal, Silvina L.; Yuki, Koichi; Vyas, Rutvi; Ha, Christopher G.; Yi, Francesca; Stopp, Christian; Wypij, David; Cheng, Henry H.; Newburger, Jane W.; Kaza, Aditya K.; Franceschini, Maria A.; Kussman, Barry D.; Grant, P. Ellen

    2017-01-01

    The neonatal brain is extremely vulnerable to injury during periods of hypoxia and/or ischemia. Risk of brain injury is increased during neonatal cardiac surgery, where pre-existing hemodynamic instability and metabolic abnormalities are combined with long periods of low cerebral blood flow and/or circulatory arrest. Our understanding of events associated with cerebral hypoxia-ischemia during cardiopulmonary bypass (CPB) remains limited, largely due to inadequate tools to quantify cerebral oxygen delivery and consumption non-invasively and in real-time. This pilot study aims to evaluate cerebral blood flow (CBF) and oxygen metabolism (CMRO2) intraoperatively in neonates by combining two novel non-invasive optical techniques: frequency-domain near-infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS). CBF and CMRO2 were quantified before, during and after deep hypothermic cardiopulmonary bypass (CPB) in nine neonates. Our results show significantly decreased CBF and CMRO2 during hypothermic CPB. More interestingly, a change of coupling between both variables is observed during deep hypothermic CPB in all subjects. Our results are consistent with previous studies using invasive techniques, supporting the concept of FD-NIRS/DCS as a promising technology to monitor cerebral physiology in neonates providing the potential for individual optimization of surgical management. PMID:28276534

  17. Non-invasive Assessment of Cerebral Blood Flow and Oxygen Metabolism in Neonates during Hypothermic Cardiopulmonary Bypass: Feasibility and Clinical Implications.

    PubMed

    Ferradal, Silvina L; Yuki, Koichi; Vyas, Rutvi; Ha, Christopher G; Yi, Francesca; Stopp, Christian; Wypij, David; Cheng, Henry H; Newburger, Jane W; Kaza, Aditya K; Franceschini, Maria A; Kussman, Barry D; Grant, P Ellen

    2017-03-09

    The neonatal brain is extremely vulnerable to injury during periods of hypoxia and/or ischemia. Risk of brain injury is increased during neonatal cardiac surgery, where pre-existing hemodynamic instability and metabolic abnormalities are combined with long periods of low cerebral blood flow and/or circulatory arrest. Our understanding of events associated with cerebral hypoxia-ischemia during cardiopulmonary bypass (CPB) remains limited, largely due to inadequate tools to quantify cerebral oxygen delivery and consumption non-invasively and in real-time. This pilot study aims to evaluate cerebral blood flow (CBF) and oxygen metabolism (CMRO 2 ) intraoperatively in neonates by combining two novel non-invasive optical techniques: frequency-domain near-infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS). CBF and CMRO 2 were quantified before, during and after deep hypothermic cardiopulmonary bypass (CPB) in nine neonates. Our results show significantly decreased CBF and CMRO 2 during hypothermic CPB. More interestingly, a change of coupling between both variables is observed during deep hypothermic CPB in all subjects. Our results are consistent with previous studies using invasive techniques, supporting the concept of FD-NIRS/DCS as a promising technology to monitor cerebral physiology in neonates providing the potential for individual optimization of surgical management.

  18. Loss of Cation-Chloride Cotransporter Expression in Preterm Infants With White Matter Lesions: Implications for the Pathogenesis of Epilepsy

    PubMed Central

    Robinson, Shenandoah; Mikolaenko, Irina; Thompson, Ian; Cohen, Mark L.; Goyal, Monisha

    2011-01-01

    Epilepsy associated with preterm birth is often refractory to anticonvulsants. Children who are born preterm are also prone to cognitive delay and behavioral problems. Brains from these children often show diffuse abnormalities in cerebral circuitry that is likely caused by disrupted development during critical stages of cortical formation. To test the hypothesis that prenatal injury impairs the developmental switch of γ-amino butyric acid (GABA)ergic synapses from excitatory to inhibitory, thereby disrupting cortical circuit formation and predisposing to epilepsy, we used immunohistochemistry to compare the expression of cation-chloride transporters that developmentally regulate postsynaptic GABAergic discharges in postmortem cerebral samples from infants born preterm with known white matter injury (n = 11) with that of controls with minimal white matter gliosis (n = 7). Controls showed the expected developmental expression of cation-chloride transporters NKCC1 and KCC2 and of calretinin, a marker of a GABAergic neuronal subpopulation. Samples from infants with white matter damage showed a significant loss of expression of both NKCC1 and KCC2 in subplate and white matter. By contrast, there were no significant differences in total cell number or glutamate transporter VGLUT1 expression. Together, these novel findings suggest a molecular mechanism involved in the disruption of a critical stage of cerebral circuit development after brain injury from preterm birth that may predispose to epilepsy. PMID:20467335

  19. Minimally invasive trans-portal resection of deep intracranial lesions.

    PubMed

    Raza, S M; Recinos, P F; Avendano, J; Adams, H; Jallo, G I; Quinones-Hinojosa, A

    2011-02-01

    The surgical management of deep intra-axial lesions still requires microsurgical approaches that utilize retraction of deep white matter to obtain adequate visualization. We report our experience with a new tubular retractor system, designed specifically for intracranial applications, linked with frameless neuronavigation for a cohort of intraventricular and deep intra-axial tumors. The ViewSite Brain Access System (Vycor, Inc) was used in a series of 9 adult and pediatric patients with a variety of pathologies. Histological diagnoses either resected or biopsied with the system included: colloid cyst, DNET, papillary pineal tumor, anaplastic astrocytoma, toxoplasmosis and lymphoma. The locations of the lesions approached include: lateral ventricle, basal ganglia, pulvinar/posterior thalamus and insular cortex. Post-operative imaging was assessed to determine extent of resection and extent of white matter damage along the surgical trajectory (based on T (2)/FLAIR and diffusion restriction/ADC signal). Satisfactory resection or biopsy was obtained in all patients. Radiographic analysis demonstrated evidence of white matter damage along the surgical trajectory in one patient. None of the patients experienced neurological deficits as a result of white matter retraction/manipulation. Based on a retrospective review of our experience, we feel that this access system, when used in conjunction with frameless neuronavigational systems, provides adequate visualization for tumor resection while permitting the use of standard microsurgical techniques through minimally invasive craniotomies. Our initial data indicate that this system may minimize white matter injury, but further studies are necessary. © Georg Thieme Verlag KG Stuttgart · New York.

  20. [Association of estrogen receptor gene polymorphism with cerebral infarction, a case-control study].

    PubMed

    Zhang, Yan; Xie, Ruping; Wang, Yinhua; Chen, Dafang; Wang, Guoying; Xu, Xiping

    2002-11-10

    To explore the association between estrogen receptor (ER) gene PvuII and XbaI polymorphisms and cerebral infarction among Chinese Han people. Samples of peripheral blood white cell were extracted among 234 patients with cerebral infarction, aged 63.9 +/- 10.3, and 259 controls without cerebrovascular disease, aged 59.2 +/- 9.2, all of Chinese Han nationality. PCR-RFLP and genotyping of ER PvuII and XbaI polymorphisms were performed. Multiple Logistic regression analysis was made to explore the risk factors for cerebral infarction. After adjustment for major confounders including age, gender, smoking, alcohol drinking, education, history of hypertension, diabetes mellitus, coronary artery disease and hyperlipoidemia, multiple Logistic regression analysis showed that: (1) The Pp genotype of ER PvuII polymorphism increased the risk of cerebral infarction significantly (OR = 1.97, 95% CI: 1.21 - 3.21); (2) The ER XbaI polymorphism was not in association with cerebral infarction significantly; (3) The PPXx/Ppxx genotypes increased the risk of cerebral infarction significantly (OR = 1.67, 2.52 and 2.18 respectively, P < 0.05) before or after all subjects were stratified by the history of hypertension or hyperlipoidemia; and (4) The positive interaction between the ER PvuII polymorphism and the presence of hypertension or diabetes or hyperlipoidemia could increase the risk of cerebral infarction significantly. ER gene may be one of the genetic candidate genes for cerebral infarction among Chinese Han population.

  1. Tissue Microstructural Changes Are Independently Associated With Cognitive Impairment in Cerebral Amyloid Angiopathy

    PubMed Central

    Viswanathan, Anand; Patel, Pratik; Rahman, Rosanna; Nandigam, R.N. Kaveer; Kinnecom, Catherine; Bracoud, Luc; Rosand, Jonathan; Chabriat, Hugues; Greenberg, Steven M.; Smith, Eric E.

    2009-01-01

    Background and Purpose Cerebral amyloid angiopathy (CAA) is a major cause of lobar intracerebral hemorrhage and cognitive impairment and is associated with white matter hyperintensities and cerebral microbleeds. MRI diffusion tensor imaging detects microstructural tissue damage in advanced CAA even in areas that appear normal on conventional MRI. We hypothesized that higher global mean apparent diffusion coefficient (mean ADC), reflecting a higher amount of chronic tissue disruption caused by CAA, would be independently associated with CAA-related cognitive impairment. Methods Preintracerebral hemorrhage cognitive impairment was systematically assessed using a standardized questionnaire (IQCODE) in 49 patients. Volume of white matter hyperintensities, number of microbleeds, and mean ADC were determined from MRIs obtained within 14.0±22.5 days of intracerebral hemorrhage cognitive impairment. White matter hyperintensities and mean ADC were measured in the hemisphere uninvolved by intracerebral hemorrhage to avoid confounding. Results Preintracerebral hemorrhage cognitive impairment was identified in 10 of 49 subjects. Mean ADC was the only variable associated with preintracerebral hemorrhage cognitive impairment and was elevated in those with preintracerebral hemorrhage cognitive impairment compared with those without (12.4×10-4 versus 11.7×10-4 mm2/s; P=0.03). Mean ADC positively correlated with age but not white matter hyperintensities or number of microbleeds. In logistic regression controlling for age and visible cerebral atrophy, mean ADC was independently associated with preintracerebral hemorrhage cognitive impairment (OR per 1×10-4 mm2/s increase=2.45, 95% CI 1.11 to 5.40, P=0.04). Conclusions Mean ADC is independently associated with preintracerebral hemorrhage cognitive impairment in CAA. The lack of correlation with other MRI markers of CAA suggests that mean ADC may be sensitive to distinct aspects of CAA pathology and its tissue consequences. These

  2. White Matter Volume Predicts Language Development in Congenital Heart Disease.

    PubMed

    Rollins, Caitlin K; Asaro, Lisa A; Akhondi-Asl, Alireza; Kussman, Barry D; Rivkin, Michael J; Bellinger, David C; Warfield, Simon K; Wypij, David; Newburger, Jane W; Soul, Janet S

    2017-02-01

    To determine whether brain volume is reduced at 1 year of age and whether these volumes are associated with neurodevelopment in biventricular congenital heart disease (CHD) repaired in infancy. Infants with biventricular CHD (n = 48) underwent brain magnetic resonance imaging (MRI) and neurodevelopmental testing with the Bayley Scales of Infant Development-II and the MacArthur-Bates Communicative Development Inventories at 1 year of age. A multitemplate based probabilistic segmentation algorithm was applied to volumetric MRI data. We compared volumes with those of 13 healthy control infants of comparable ages. In the group with CHD, we measured Spearman correlations between neurodevelopmental outcomes and the residuals from linear regression of the volumes on corrected chronological age at MRI and sex. Compared with controls, infants with CHD had reductions of 54 mL in total brain (P = .009), 40 mL in cerebral white matter (P <.001), and 1.2 mL in brainstem (P = .003) volumes. Within the group with CHD, brain volumes were not correlated with Bayley Scales of Infant Development-II scores but did correlate positively with MacArthur-Bates Communicative Development Inventory language development. Infants with biventricular CHD show total brain volume reductions at 1 year of age, driven by differences in cerebral white matter. White matter volume correlates with language development, but not broader developmental indices. These findings suggest that abnormalities in white matter development detected months after corrective heart surgery may contribute to language impairment. ClinicalTrials.gov: NCT00006183. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease

    PubMed Central

    Weber, Bernd; Schoene-Bake, Jan-Christoph; Roeske, Sandra; Mirbach, Sandra; Anspach, Christian; Schneider-Gold, Christiane; Betz, Regina C.; Helmstaedter, Christoph; Tittgemeyer, Marc; Klockgether, Thomas; Kornblum, Cornelia

    2011-01-01

    Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T1/T2/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (Pcorrected < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were

  4. Cerebral sex dimorphism and sexual orientation.

    PubMed

    Manzouri, Amirhossein; Savic, Ivanka

    2018-03-01

    The neurobiology of sexual orientation is frequently discussed in terms of cerebral sex dimorphism (defining both functional and structural sex differences). Yet, the information about possible cerebral differences between sex-matched homo and heterosexual persons is limited, particularly among women. In this multimodal MRI study, we addressed these issues by investigating possible cerebral differences between homo and heterosexual persons, and by asking whether there is any sex difference in this aspect. Measurements of cortical thickness (Cth), subcortical volumes, and functional and structural resting-state connections among 40 heterosexual males (HeM) and 40 heterosexual females (HeF) were compared with those of 30 homosexual males (HoM) and 30 homosexual females (HoF). Congruent with previous reports, sex differences were detected in heterosexual controls with regard to fractional anisotropy (FA), Cth, and several subcortical volumes. Homosexual groups did not display any sex differences in FA values. Furthermore, their functional connectivity was significantly less pronounced in the mesial prefrontal and precuneus regions. In these two particular regions, HoM also displayed thicker cerebral cortex than other groups, whereas HoF did not differ from HeF. In addition, in HoM the parietal Cth showed "sex-reversed" values, not observed in HoF. Homosexual orientation seems associated with a less pronounced sexual differentiation of white matter tracts and a less pronounced functional connectivity of the self-referential networks compared to heterosexual orientation. Analyses of Cth suggest that male and female homosexuality are not simple analogues of each other and that differences from heterosexual controls are more pronounced in HoM. © 2017 Wiley Periodicals, Inc.

  5. The Challenge of Understanding Cerebral White Matter Injury in the Premature Infant

    PubMed Central

    Elitt, Christopher M.; Rosenberg, Paul A.

    2014-01-01

    White matter injury in the premature infant leads to motor and more commonly behavioral and cognitive problems that are a tremendous burden to society. While there has been much progress in understanding unique vulnerabilities of developing oligodendrocytes over the past 30 years, there remain no proven therapies for the premature infant beyond supportive care. The lack of translational progress may be partially explained by the challenge of developing relevant animal models when the etiology remains unclear, as is the case in this disorder. There has been an emphasis on hypoxia-ischemia and infection/inflammation as upstream etiologies, but less consideration of other contributory factors. This review highlights the evolution of white matter pathology in the premature infant, discusses the prevailing proposed etiologies, critically analyzes a sampling of common animal models and provides detailed support for our hypothesis that nutritional and hormonal deprivation may be additional factors playing critical and overlooked roles in white matter pathology in the premature infant. PMID:24838063

  6. Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression.

    PubMed

    Kochunov, Peter; Glahn, David C; Rowland, Laura M; Olvera, Rene L; Winkler, Anderson; Yang, Yi-Hong; Sampath, Hemalatha; Carpenter, Will T; Duggirala, Ravindranath; Curran, Joanne; Blangero, John; Hong, L Elliot

    2013-03-01

    Elevated rate of aging-related biological and functional decline, termed "accelerated aging," is reported in patients with schizophrenia (SCZ) and major depressive disorder (MDD). We used diffusion tensor imaging derived fractional anisotropy (FA) as a biomarker of aging-related decline in white matter (WM) integrity to test the hypotheses of accelerated aging in SCZ and MDD. The SCZ cohort comprised 58 SCZ patients and 60 controls (aged 20-60 years). The MDD cohort comprised 136 MDD patients and 351 controls (aged 20-79 years). The main outcome measures were the diagnosis-by-age interaction on whole-brain-averaged WM FA values and FA values from 12 major WM tracts. Diagnosis-by-age interaction for the whole-brain average FA was significant for the SCZ (p = .04) but not the MDD (p = .80) cohort. Diagnosis-by-age interaction was nominally significant (p<.05) for five WM tracts for SCZ and for none of the tracts in the MDD cohort. Tract-specific heterochronicity of the onset of age-related decline in SCZ demonstrated strong negative correlations with the age-of-peak myelination and the rates of age-related decline obtained from normative sample (r =-.61 and-.80, p<.05, respectively). No such trends existed for MDD cohort. Cerebral WM showed accelerated aging in SCZ but not in MDD, suggesting some difference in the pathophysiology underlying their WM aging changes. Tract-specific heterochronicity of WM development modulated presentation of accelerated aging in SCZ: WM tracts that matured later in life appeared more sensitive to the pathophysiology of SCZ and demonstrated more susceptibility to disorder-related accelerated decline in FA values with age. This trend was not observed in MDD cohort. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Blood-brain barrier dysfunction and cerebral small vessel disease (arteriolosclerosis) in brains of older people.

    PubMed

    Bridges, Leslie R; Andoh, Joycelyn; Lawrence, Andrew J; Khoong, Cheryl H L; Poon, Wayne; Esiri, Margaret M; Markus, Hugh S; Hainsworth, Atticus H

    2014-11-01

    The blood-brain barrier protects brain tissue from potentially harmful plasma components. Small vessel disease (SVD; also termed arteriolosclerosis) is common in the brains of older people and is associated with lacunar infarcts, leukoaraiosis, and vascular dementia. To determine whether plasma extravasation is associated with SVD, we immunolabeled the plasma proteins fibrinogen and immunoglobulin G, which are assumed to reflect blood-brain barrier dysfunction, in deep gray matter (DGM; anterior caudate-putamen) and deep subcortical white matter (DWM) in the brains of a well-characterized cohort of donated brains with minimal Alzheimer disease pathology (Braak Stages 0-II) (n = 84; aged 65 years or older). Morphometric measures of fibrinogen labeling were compared between people with neuropathologically defined SVD and aged control subjects. Parenchymal cellular labeling with fibrinogen and immunoglobulin G was detectable in DGM and DWM in many subjects (>70%). Quantitative measures of fibrinogen were not associated with SVD in DGM or DWM; SVD severity was correlated between DGM and DWM (p < 0.0001). Fibrinogen in DGM showed a modest association with a history of hypertension; DWM fibrinogen was associated with dementia and cerebral amyloid angiopathy (all p < 0.05). In DWM, SVD was associated with leukoaraiosis identified in life (p < 0.05), but fibrinogen was not. Our data suggest that, in aged brains, plasma extravasation and hence local blood-brain barrier dysfunction are common but do not support an association with SVD.

  8. Simultaneous and sequential hemorrhage of multiple cerebral cavernous malformations: a case report.

    PubMed

    Louis, Nundia; Marsh, Robert

    2016-02-09

    The etiology of cerebral cavernous malformation hemorrhage is not well understood. Causative physiologic parameters preceding hemorrhagic cavernous malformation events are often not reported. We present a case of an individual with sequential simultaneous hemorrhages in multiple cerebral cavernous malformations with a new onset diagnosis of hypertension. A 42-year-old white man was admitted to our facility with worsening headache, left facial and tongue numbness, dizziness, diplopia, and elevated blood pressure. His past medical history was significant for new onset diagnosis of hypertension and chronic seasonal allergies. Serial imaging over the ensuing 8 days revealed sequential hemorrhagic lesions. He underwent suboccipital craniotomy for resection of the lesions located in the fourth ventricle and right cerebellum. One month after surgery, he had near complete resolution of his symptoms with mild residual vertigo but symptomatic chronic hypertension. Many studies have focused on genetic and inflammatory mechanisms contributing to cerebral cavernous malformation rupture, but few have reported on the potential of hemodynamic changes contributing to cerebral cavernous malformation rupture. Systemic blood pressure changes clearly have an effect on angioma pressures. When considering the histopathological features of cerebral cavernous malformation architecture, changes in arterial pressure could cause meaningful alterations in hemorrhage propensity and patterns.

  9. Antegrade versus retrograde cerebral perfusion for hemiarch replacement with deep hypothermic circulatory arrest: Does it matter? A propensity-matched analysis

    PubMed Central

    Ganapathi, Asvin M.; Hanna, Jennifer M.; Schechter, Matthew A.; Englum, Brian R.; Castleberry, Anthony W.; Gaca, Jeffrey G.; Hughes, G. Chad

    2015-01-01

    Objective The choice of cerebral perfusion strategy for aortic arch surgery has been debated, and the superiority of antegrade (ACP) or retrograde (RCP) cerebral perfusion has not been shown. We examined the early and late outcomes for ACP versus RCP in proximal (hemi-) arch replacement using deep hypothermic circulatory arrest (DHCA). Methods A retrospective analysis of a prospectively maintained database was performed for all patients undergoing elective and nonelective hemiarch replacement at a single referral institution from June 2005 to February 2013. Total arch cases were excluded to limit the analysis to shorter DHCA times and a more uniform patient population for whom clinical equipoise regarding ACP versus RCP exists. A total of 440 procedures were identified, with 360 (82%) using ACP and 80 (18%) using RCP. The endpoints included 30-day/in-hospital and late outcomes. A propensity score with 1:1 matching of 40 pre- and intraoperative variables was used to adjust for differences between the 2 groups. Results All 80 RCP patients were propensity matched to a cohort of 80 similar ACP patients. The pre- and intra-operative characteristics were not significantly different between the 2 groups after matching. No differences were found in 30-day/in-hospital mortality or morbidity outcomes. The only significant difference between the 2 groups was a shorter mean operative time in the RCP cohort (P = .01). No significant differences were noted in late survival (P = .90). Conclusions In proximal arch operations using DHCA, equivalent early and late outcomes can be achieved with RCP and ACP, although the mean operative time is significantly less with RCP, likely owing to avoidance of axillary cannulation. Questions remain regarding comparative outcomes with straight DHCA and lesser degrees of hypothermia. PMID:24908350

  10. Antegrade versus retrograde cerebral perfusion for hemiarch replacement with deep hypothermic circulatory arrest: does it matter? A propensity-matched analysis.

    PubMed

    Ganapathi, Asvin M; Hanna, Jennifer M; Schechter, Matthew A; Englum, Brian R; Castleberry, Anthony W; Gaca, Jeffrey G; Hughes, G Chad

    2014-12-01

    The choice of cerebral perfusion strategy for aortic arch surgery has been debated, and the superiority of antegrade (ACP) or retrograde (RCP) cerebral perfusion has not been shown. We examined the early and late outcomes for ACP versus RCP in proximal (hemi-) arch replacement using deep hypothermic circulatory arrest (DHCA). A retrospective analysis of a prospectively maintained database was performed for all patients undergoing elective and nonelective hemiarch replacement at a single referral institution from June 2005 to February 2013. Total arch cases were excluded to limit the analysis to shorter DHCA times and a more uniform patient population for whom clinical equipoise regarding ACP versus RCP exists. A total of 440 procedures were identified, with 360 (82%) using ACP and 80 (18%) using RCP. The endpoints included 30-day/in-hospital and late outcomes. A propensity score with 1:1 matching of 40 pre- and intraoperative variables was used to adjust for differences between the 2 groups. All 80 RCP patients were propensity matched to a cohort of 80 similar ACP patients. The pre- and intraoperative characteristics were not significantly different between the 2 groups after matching. No differences were found in 30-day/in-hospital mortality or morbidity outcomes. The only significant difference between the 2 groups was a shorter mean operative time in the RCP cohort (P = .01). No significant differences were noted in late survival (P = .90). In proximal arch operations using DHCA, equivalent early and late outcomes can be achieved with RCP and ACP, although the mean operative time is significantly less with RCP, likely owing to avoidance of axillary cannulation. Questions remain regarding comparative outcomes with straight DHCA and lesser degrees of hypothermia. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  11. Racial Difference in Cerebral Microbleed Burden among Ischemic Stroke Patients.

    PubMed

    Shahjouei, Shima; Tsivgoulis, Georgios; Singh, Mantinderpreet; McCormack, Michael; Noorbakhsh-Sabet, Nariman; Goyal, Nitin; Alexandrov, Anne W; Alexandrov, Andrei V; Zand, Ramin

    2017-11-01

    Data on the epidemiology of cerebral microbleeds (CMBs) among patients with ischemic stroke are limited. This study compared the number, associated factors, and topography of CMBs between African American and Caucasian ischemic stroke patients in the Mid-South United States. We evaluated consecutive ischemic stroke patients admitted to our tertiary stroke center, University of Tennessee Health Science Center, Memphis, Tennessee, in a two-year period. We analyzed T2*-weighted magnetic resonance images for the number, location, and topography of CMBs, as well as patients' demographic and clinical information. Among 760 ischemic stroke patients who were included (mean age was 62.1 ± 13.9 years, 51.4% men), 450 (59.2%) were African American. In comparison with Caucasians, African Americans were about five years younger (P = .000) and had a higher rate of hypertension (80.9% vs. 74.5%, P = .036). Similarly, African Americans had a higher prevalence of diabetes mellitus (P = .001). There was no significant difference between African-Americans and Caucasians in terms of CMBs presence and location. African Americans had a higher number of CMBs in comparison with Caucasians, but the difference was not significant. African Americans were more likely to have CMBs ≥5 (P = .047). Although African American stroke patients had a higher rate of large confluent white matter lesions, there was no significant racial difference regarding the rate and severity of deep white matter lesions. We did not observe any differences between African American and Caucasian patients with ischemic stroke patients regarding the presence, number, and location of CMBs. However, our results suggested that the prevalence of multiple CMBs (CMBs ≥5) might be higher among African American stroke patients. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Cerebral schistosomiasis: diffusion-weighted imaging helps to differentiate from brain glioma and metastasis.

    PubMed

    Huang, Jinbai; Luo, Jing; Peng, Jie; Yang, Tao; Zheng, Huanghua; Mao, Chunping

    2017-11-01

    Background Diffusion-weighted imaging (DWI) was introduced into clinical use some years ago. However, its use in the diagnosis of cerebral schistosomiasis has not been reported. Purpose To investigate the ability of the apparent diffusion coefficient (ADC) value of DWI in the diagnosis of cerebral schistosomiasis, and to differentiate it from brain high-grade gliomas and metastasis. Material and Methods Conventional brain MRI with pre-contrast, post-contrast, and DWI was performed on 50 cases of cerebral schistosomiasis, high-grade glioma, and brain metastasis. The ADC values of the three lesions, the proximal and the distal perifocal edema were measured. In order to remove the individual difference effect of ADC values, relative ADC (rADC) values were calculated through dividing the ADC value of the lesion area by that of the contralateral normal white matter. rADC values were used to evaluate the differences among cerebral schistosomiasis, brain high-grade gliomas, and metastasis. Results rADC of cerebral schistosomiasis was significantly lower than rADC of brain metastasis ( P < 0.05), without any significant differences when compared with high-grade gliomas. rADC of proximal perifocal edema in cerebral schistosomiasis was significantly higher than in high-grade gliomas ( P < 0.010), but not different compared with brain metastasis. Conclusion DWI examination with ADC values of lesions and proximal perifocal edema might be helpful in the exact diagnosis of cerebral schistosomiasis.

  13. Effect of Inhaled Xenon on Cerebral White Matter Damage in Comatose Survivors of Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.

    PubMed

    Laitio, Ruut; Hynninen, Marja; Arola, Olli; Virtanen, Sami; Parkkola, Riitta; Saunavaara, Jani; Roine, Risto O; Grönlund, Juha; Ylikoski, Emmi; Wennervirta, Johanna; Bäcklund, Minna; Silvasti, Päivi; Nukarinen, Eija; Tiainen, Marjaana; Saraste, Antti; Pietilä, Mikko; Airaksinen, Juhani; Valanne, Leena; Martola, Juha; Silvennoinen, Heli; Scheinin, Harry; Harjola, Veli-Pekka; Niiranen, Jussi; Korpi, Kirsi; Varpula, Marjut; Inkinen, Outi; Olkkola, Klaus T; Maze, Mervyn; Vahlberg, Tero; Laitio, Timo

    2016-03-15

    Evidence from preclinical models indicates that xenon gas can prevent the development of cerebral damage after acute global hypoxic-ischemic brain injury but, thus far, these putative neuroprotective properties have not been reported in human studies. To determine the effect of inhaled xenon on ischemic white matter damage assessed with magnetic resonance imaging (MRI). A randomized single-blind phase 2 clinical drug trial conducted between August 2009 and March 2015 at 2 multipurpose intensive care units in Finland. One hundred ten comatose patients (aged 24-76 years) who had experienced out-of-hospital cardiac arrest were randomized. Patients were randomly assigned to receive either inhaled xenon combined with hypothermia (33°C) for 24 hours (n = 55 in the xenon group) or hypothermia treatment alone (n = 55 in the control group). The primary end point was cerebral white matter damage as evaluated by fractional anisotropy from diffusion tensor MRI scheduled to be performed between 36 and 52 hours after cardiac arrest. Secondary end points included neurological outcome assessed using the modified Rankin Scale (score 0 [no symptoms] through 6 [death]) and mortality at 6 months. Among the 110 randomized patients (mean age, 61.5 years; 80 men [72.7%]), all completed the study. There were MRI data from 97 patients (88.2%) a median of 53 hours (interquartile range [IQR], 47-64 hours) after cardiac arrest. The mean global fractional anisotropy values were 0.433 (SD, 0.028) in the xenon group and 0.419 (SD, 0.033) in the control group. The age-, sex-, and site-adjusted mean global fractional anisotropy value was 3.8% higher (95% CI, 1.1%-6.4%) in the xenon group (adjusted mean difference, 0.016 [95% CI, 0.005-0.027], P = .006). At 6 months, 75 patients (68.2%) were alive. Secondary end points at 6 months did not reveal statistically significant differences between the groups. In ordinal analysis of the modified Rankin Scale, the median (IQR) value was 1 (1

  14. Cerebral fat embolism and the "starfield" pattern: a case report.

    PubMed

    Aravapalli, Amit; Fox, James; Lazaridis, Christos

    2009-11-19

    Nearly all long-bone fractures are accompanied by some form of fat embolism. The rare complication of clinically significant fat embolism syndrome, however, occurs in only 0.9-2.2% of cases. The clinical triad of fat embolism syndrome consists of respiratory distress, altered mental status, and petechial rash. Cerebral fat embolism causes the neurologic involvement seen in fat embolism syndrome. A 19-year-old African-American male was admitted with gunshot wounds to his right hand and right knee. He had diffuse hyperactive deep tendon reflexes, bilateral ankle clonus and decerebrate posturing with a Glasgow Coma Scale (GCS) score of 4T. Subsequent MRI of the brain showed innumerable punctate areas of restricted diffusion consistent with "starfield" pattern. On a 10-week follow up he has a normal neurological examination and he is discharged home. Despite the severity of the neurologic insult upon initial presentation, the majority of case reports on cerebral fat embolism illustrate that cerebral dysfunction associated with cerebral fat embolism is reversible. When neurologic deterioration occurs in the non-head trauma patient, then a systemic cause such as fat emboli should be considered. We describe a patient with non-head trauma who demonstrated the classic "starfield" pattern on diffusion-weighted MRI imaging.

  15. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. © The Author(s) 2015.

  16. Neuropathologic Characterization of Pontocerebellar Hypoplasia Type 6 Associated With Cardiomyopathy and Hydrops Fetalis and Severe Multisystem Respiratory Chain Deficiency due to Novel RARS2 Mutations.

    PubMed

    Lax, Nichola Z; Alston, Charlotte L; Schon, Katherine; Park, Soo-Mi; Krishnakumar, Deepa; He, Langping; Falkous, Gavin; Ogilvy-Stuart, Amanda; Lees, Christoph; King, Rosalind H; Hargreaves, Iain P; Brown, Garry K; McFarland, Robert; Dean, Andrew F; Taylor, Robert W

    2015-07-01

    Autosomal recessive mutations in the RARS2 gene encoding the mitochondrial arginyl-transfer RNA synthetase cause infantile-onset myoencephalopathy pontocerebellar hypoplasia type 6 (PCH6). We describe 2 sisters with novel compound heterozygous RARS2 mutations who presented perinatally with neurologic features typical of PCH6 but with additional features including cardiomyopathy, hydrops, and pulmonary hypoplasia and who died at 1 day and 14 days of age. Magnetic resonance imaging findings included marked cerebellar hypoplasia, gyral immaturity, punctate lesions in cerebral white matter, and unfused deep cerebral grey matter. Enzyme histochemistry of postmortem tissues revealed a near-global cytochrome c oxidase-deficiency; assessment of respiratory chain enzyme activities confirmed severe deficiencies involving complexes I, III, and IV. Molecular genetic studies revealed 2 RARS2 gene mutations: a c.1A>G, p.? variant predicted to abolish the initiator methionine, and a deep intronic c.613-3927C>T variant causing skipping of exons 6-8 in the mature RARS2 transcript. Neuropathologic investigation included low brain weights, small brainstem and cerebellum, deep cerebral white matter pathology, pontine nucleus neuron loss (in 1 sibling), and peripheral nerve pathology. Mitochondrial respiratory chain immunohistochemistry in brain tissues confirmed an absence of complexes I and IV immunoreactivity with sparing of mitochondrial numbers. These cases expand the clinical spectrum of RARS2 mutations, including antenatal features and widespread mitochondrial respiratory chain deficiencies in postmortem brain tissues.

  17. Retrograde and antegrade cerebral perfusion: results in short elective arch reconstructive times.

    PubMed

    Milewski, Rita Karianna; Pacini, Davide; Moser, G William; Moeller, Patrick; Cowie, Doreen; Szeto, Wilson Y; Woo, Y Joseph; Desai, Nimesh; Di Marco, Luca; Pochettino, Alberto; Di Bartolomeo, Roberto; Bavaria, Joseph E

    2010-05-01

    Debate remains regarding optimal cerebral circulatory management during relatively noncomplex, short arch reconstructive times. Both retrograde cerebral perfusion with deep hypothermic circulatory arrest (RCP/DHCA) and antegrade cerebral perfusion with moderate hypothermic circulatory arrest (ACP/MHCA) have emerged as established techniques. The aim of the study was to evaluate perioperative outcomes between antegrade and retrograde cerebral perfusion techniques for elective arch reconstruction times less than 45 minutes. Between 1997 and September 2008, 776 cases from two institutions were reviewed to compare RCP/DHCA and ACP/MHCA perfusion techniques. At the University of Pennsylvania, 682 were treated utilizing RCP/DHCA cerebral protection. At the University of Bologna, 94 were treated with ACP/MHCA and bilateral cerebral perfusion. Mean cerebral ischemic time and visceral ischemic time differed between RCP/DHCA and ACP/MHCA (p < 0.001). Multivariate analysis showed age more than 65 years, atherosclerotic aneurysm, and cross-clamp time as predictors of the composite endpoint of mortality, neurologic event, and acute myocardial infarction. There was no significant difference in permanent neurologic deficit, temporary neurologic dysfunction, or renal failure, between RCP/DHCA and ACP/MHCA. Mortality was comparable across both techniques. Both RCP/DHCA and ACP/MHCA have emerged as effective techniques for selected aortic arch operations with low morbidity and mortality. Univariate analysis revealed no statistically significant differences in primary or secondary outcomes between techniques for aortic reconstruction times less than 45 minutes. Data from this study demonstrate that selective use of either RCP/DHCA or ACP/MHCA provides excellent cerebral and visceral outcomes for elective open aortic surgery with short arch reconstructive times. Copyright (c) 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Automated, quantitative measures of grey and white matter lesion burden correlates with motor and cognitive function in children with unilateral cerebral palsy.

    PubMed

    Pagnozzi, Alex M; Dowson, Nicholas; Doecke, James; Fiori, Simona; Bradley, Andrew P; Boyd, Roslyn N; Rose, Stephen

    2016-01-01

    White and grey matter lesions are the most prevalent type of injury observable in the Magnetic Resonance Images (MRIs) of children with cerebral palsy (CP). Previous studies investigating the impact of lesions in children with CP have been qualitative, limited by the lack of automated segmentation approaches in this setting. As a result, the quantitative relationship between lesion burden has yet to be established. In this study, we perform automatic lesion segmentation on a large cohort of data (107 children with unilateral CP and 18 healthy children) with a new, validated method for segmenting both white matter (WM) and grey matter (GM) lesions. The method has better accuracy (94%) than the best current methods (73%), and only requires standard structural MRI sequences. Anatomical lesion burdens most predictive of clinical scores of motor, cognitive, visual and communicative function were identified using the Least Absolute Shrinkage and Selection operator (LASSO). The improved segmentations enabled identification of significant correlations between regional lesion burden and clinical performance, which conform to known structure-function relationships. Model performance was validated in an independent test set, with significant correlations observed for both WM and GM regional lesion burden with motor function (p < 0.008), and between WM and GM lesions alone with cognitive and visual function respectively (p < 0.008). The significant correlation of GM lesions with functional outcome highlights the serious implications GM lesions, in addition to WM lesions, have for prognosis, and the utility of structural MRI alone for quantifying lesion burden and planning therapy interventions.

  19. Cerebral Small Vessel Disease and Motoric Cognitive Risk Syndrome: Results from the Kerala-Einstein Study.

    PubMed

    Wang, Nan; Allali, Gilles; Kesavadas, Chandrasekharan; Noone, Mohan L; Pradeep, Vayyattu G; Blumen, Helena M; Verghese, Joe

    2016-01-01

    The contribution of cerebral small vessel disease to cognitive decline, especially in non-Caucasian populations, is not well established. We examined the relationship between cerebral small vessel disease and motoric cognitive risk syndrome (MCR), a recently described pre-dementia syndrome, in Indian seniors. 139 participants (mean age 66.6 ± 5.4 y, 33.1% female) participating in the Kerala-Einstein study in Southern India were examined in a cross-sectional study. The presence of cerebral small vessel disease (lacunar infarcts and cerebral microbleeds (CMB)) and white matter hyperintensities on MRI was ascertained by raters blinded to clinical information. MCR was defined by the presence of cognitive complaints and slow gait in older adults without dementia or mobility disability. Thirty-eight (27.3%) participants met MCR criteria. The overall prevalence of lacunar infarcts and CMB was 49.6% and 9.4% , respectively. Lacunar infarcts in the frontal lobe, but no other brain regions, were associated with MCR even after adjusting for vascular risk factors and presence of white matter hyperintensities (adjusted Odds Ratio (aOR): 4.67, 95% CI: 1.69-12.94). Frontal lacunar infarcts were associated with slow gait (aOR: 3.98, 95% CI: 1.46-10.79) and poor performance on memory test (β: -1.24, 95% CI: -2.42 to -0.05), but not with cognitive complaints or non-memory tests. No association of CMB was found with MCR, individual MCR criterion or cognitive tests. Frontal lacunar infarcts are associated with MCR in Indian seniors, perhaps, by contributing to slow gait and poor memory function.

  20. Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.

    PubMed

    Gilmore, John H; Lin, Weili; Prastawa, Marcel W; Looney, Christopher B; Vetsa, Y Sampath K; Knickmeyer, Rebecca C; Evans, Dianne D; Smith, J Keith; Hamer, Robert M; Lieberman, Jeffrey A; Gerig, Guido

    2007-02-07

    Although there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth.

  1. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kern, F.H.; Ungerleider, R.M.; Quill, T.J.

    1991-04-01

    We examined the relationship of changes in partial pressure of carbon dioxide on cerebral blood flow responsiveness in 20 pediatric patients undergoing hypothermic cardiopulmonary bypass. Cerebral blood flow was measured during steady-state hypothermic cardiopulmonary bypass with the use of xenon 133 clearance methodology at two different arterial carbon dioxide tensions. During these measurements there was no significant change in mean arterial pressure, nasopharyngeal temperature, pump flow rate, or hematocrit value. Cerebral blood flow was found to be significantly greater at higher arterial carbon dioxide tensions (p less than 0.01), so that for every millimeter of mercury rise in arterial carbonmore » dioxide tension there was a 1.2 ml.100 gm-1.min-1 increase in cerebral blood flow. Two factors, deep hypothermia (18 degrees to 22 degrees C) and reduced age (less than 1 year), diminished the effect carbon dioxide had on cerebral blood flow responsiveness but did not eliminate it. We conclude that cerebral blood flow remains responsive to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in infants and children; that is, increasing arterial carbon dioxide tension will independently increase cerebral blood flow.« less

  2. Relationship Between Successful Extracranial-Intracranial Bypass Surgeries and Ischemic White Matter Hyperintensities.

    PubMed

    Nagm, Alhusain; Horiuchi, Tetsuyoshi; Ito, Kiyoshi; Hongo, Kazuhiro

    2016-07-01

    Few studies have described regression of white matter hyperintensities (WMHs); however, no studies have described their recurrence or fluctuation. Thus, we aimed to study the course of WMHs on fluid-attenuated inversion recovery (FLAIR) magnetic resonance image (MRI) after extracranial-intracranial (EC-IC) bypass surgery and its correlation with the clinical outcome. We enrolled perioperative FLAIR MRIs of 12 patients with WMHs who underwent EC-IC bypass surgeries because of ischemic-vascular stenosis with postoperative improvement of the cerebral blood flow confirmed by (123)I-iodoamphetamine single-photon emission computed tomography. Correlation between WMHs and cerebral blood flow was confirmed by perioperative single-photon emission computed tomography and diffusion-weighted imaging MRI. The WMHs were assessed visually with meticulous volumetric grading. Depending on postoperative changes among different grades, the WMHs course was determined to be improved, fluctuating, worsened, or unchanged. A statistical analysis was performed on the course of WMHs over time. Imaging analysis was done with FLAIR MRI in 12 patients. The course of WMHs over time was 41.7% improvement, 33.3% fluctuation, 16.7% unchanged, and 8.3% worsening of the deep WMHs. After unilateral bypass surgery, 80% of the improved WMHs occurred bilaterally. Among patients with improved clinical outcomes, 16.7% showed improvement and 33.3% showed fluctuation, whereas in patients with unchanged clinical outcomes, 25% showed improvement of their WMHs on follow-up FLAIR MRIs. This study might be considered the first step to find a relationship between successful EC-IC bypass surgeries and the course of ischemic WMHs. It could also open the door for further studies to make more solid conclusions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. ROSAT Pointed Observations of Cool Magnetic White Dwarfs

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Porter, J. G.; Davis, J. M.

    1995-01-01

    Observational evidence for the existence of a chromosphere on the cool magnetic white dwarf GD 356 has been reported. In addition, there has been theoretical speculations that cool magnetic white dwarfs may be sources of coronal X-ray emission. This emission, if it exists, would be distinct from the two types of X-ray emission (deep photospheric and shocked wind) that have already been observed from hot white dwarfs. We have used the PSPC instrument on ROSAT to observe three of the most prominent DA white dwarf candidates for coronal X-ray emission: GD 356, KUV 2316+123, and GD 90. The data show no significant emission for these stars. The derived upper limits for the X-ray luminosities provide constraints for a revision of current theories of the generation of nonradiative energy in white dwarfs.

  4. AIDS with acute cerebral infarct: a case report.

    PubMed

    Wu, Lin-Hui; Chen, Wei-Hung; Lien, Li-Ming; Huang, Chien-Hsien; Chiu, Hou-Chang

    2005-06-01

    A 38 year-old male presented with an acute onset of left hemiplegia. Brain magnetic resonance imaging (MRI) revealed a bright lesion by diffusion-weighted imaging with low apparent diffusion coefficient value in the right subcortical region, a finding compatible with an acute cerebral infarct. An old infarct was also noted in the same imaging. Both enzyme-linked immunosorbent assay and Western blot method were positive for human immunodeficiency virus infection. The white blood cell count was 2930 cells / mm3, and the subpopulation study for lymphocyte revealed a decreased cluster of differentiation 4+ count of 149 cells/mm3. Studies for prothrombotic states showed decreased protein S and increased anticardiolipin antibodies. We concluded that this was a case of acquired immunodeficiency syndrome (AIDS) with acute and old cerebral infarcts. This patient might be the first reported case in Taiwan. AIDS might be related with stroke in young patients, a condition probably under-recognized in Taiwan.

  5. White Matter Hyperintensities Improve Ischemic Stroke Recurrence Prediction.

    PubMed

    Andersen, Søren Due; Larsen, Torben Bjerregaard; Gorst-Rasmussen, Anders; Yavarian, Yousef; Lip, Gregory Y H; Bach, Flemming W

    2017-01-01

    Nearly one in 5 patients with ischemic stroke will invariably experience a second stroke within 5 years. Stroke risk stratification schemes based solely on clinical variables perform only modestly in non-atrial fibrillation (AF) patients and improvement of these schemes will enhance their clinical utility. Cerebral white matter hyperintensities are associated with an increased risk of incident ischemic stroke in the general population, whereas their association with the risk of ischemic stroke recurrence is more ambiguous. In a non-AF stroke cohort, we investigated the association between cerebral white matter hyperintensities and the risk of recurrent ischemic stroke, and we evaluated the predictive performance of the CHA2DS2VASc score and the Essen Stroke Risk Score (clinical scores) when augmented with information on white matter hyperintensities. In a registry-based, observational cohort study, we included 832 patients (mean age 59.6 (SD 13.9); 42.0% females) with incident ischemic stroke and no AF. We assessed the severity of white matter hyperintensities using MRI. Hazard ratios stratified by the white matter hyperintensities score and adjusted for the components of the CHA2DS2VASc score were calculated based on the Cox proportional hazards analysis. Recalibrated clinical scores were calculated by adding one point to the score for the presence of moderate to severe white matter hyperintensities. The discriminatory performance of the scores was assessed with the C-statistic. White matter hyperintensities were significantly associated with the risk of recurrent ischemic stroke after adjusting for clinical risk factors. The hazard ratios ranged from 1.65 (95% CI 0.70-3.86) for mild changes to 5.28 (95% CI 1.98-14.07) for the most severe changes. C-statistics for the prediction of recurrent ischemic stroke were 0.59 (95% CI 0.51-0.65) for the CHA2DS2VASc score and 0.60 (95% CI 0.53-0.68) for the Essen Stroke Risk Score. The recalibrated clinical scores showed

  6. Cerebral venous thrombosis with nonhemorrhagic lesions: clinical correlates and prognosis.

    PubMed

    Ferro, José M; Canhão, Patrícia; Bousser, Marie-Germaine; Stam, Jan; Barinagarrementeria, Fernando; Stolz, Erwin

    2010-01-01

    Brain imaging of patients with acute cerebral venous thrombosis often shows parenchymal hemorrhagic and nonhemorrhagic lesions. The clinical relevance of nonhemorrhagic lesions is poorly known. In the International Study on Cerebral Vein and Dural Sinus Thrombosis cohort, demographic, clinical, risk factor, prognosis and imaging findings were compared between patients with parenchymal nonhemorrhagic lesions and no hemorrhagic lesions (NHL) and (1) patients with parenchymal hemorrhagic lesions (HL) and (2) patients without brain lesions. Predictors of prognosis at the end of follow-up in the NHL group were analyzed by bivariate and Cox regression methods. We identified 147 patients (23.6%) with NHL. When compared to patients without brain lesions (n = 309), those with NHL more often presented mental status disturbances, aphasia, decreased alertness, motor deficits, seizures, occlusions of the straight sinus, deep venous system and cortical veins. Patients with NHL had a better prognosis in the acute phase and at the end of follow-up than those with HL, but a worse one than patients without brain lesions, as more NHL patients were dead or dependent (modified Rankin Scale score = 3-6) at discharge (19.7 vs. 6.5%, p < 0.001) and final follow-up (14.3 vs. 7.4%, p = 0.03). In Cox regression analysis, coma (HR = 13.7; 95% CI = 4.3-43.7) and thrombosis of the deep venous system (HR = 3.5; 95% CI = 1.4-8.7) were associated with death or dependency at the end of follow-up. Cerebral venous thrombosis patients with NHL are intermediate between patients without brain lesions and those with HL, both in initial clinical picture and prognosis. Copyright 2010 S. Karger AG, Basel.

  7. Role of white matter lesions, cerebral atrophy, and APOE on cognition in older persons with and without dementia: the Cache County, Utah, study of memory and aging.

    PubMed

    Bigler, Erin D; Lowry, Christopher M; Kerr, Burton; Tate, David F; Hessel, Cory D; Earl, Heath D; Miller, Michael J; Rice, Sara A; Smith, Kay H; Tschanz, JoAnn T; Welsh-Bohmer, Kathleen; Plassman, Brenda; Victoroff, Jeff

    2003-07-01

    Neuropsychological, qualitative, and quantitative magnetic resonance imaging findings were examined in subjects with Alzheimer's disease (AD), non-AD dementia or mixed neuropsychiatric disorder, subjects characterized as mild/ambiguous, and controls, all with known apolipoprotein E (APOE) genotype. Neuropsychological tasks included an expanded Consortium to Establish a Registery for Alzheimer's Disease (J. T. Tschanz et al., 2000; K. A. Welsh, J. M. Hoffman, N. L. Earl, & M. W. Hanson 1994) battery and the Mini-Mental Status Examination (M. F. Folstein, S. E. Folstein, & P. R. McHugh, 1975). Periventricular white matter lesions were the most clinically salient, and generalized measures of cerebral atrophy were the most significant quantitative indicators. APOE genotype was unrelated to imaging or neuropsychological performance. Neuropsychological relationships with neuroimaging findings depend on the qualitative or quantitative method used.

  8. Tractography patterns of subthalamic nucleus deep brain stimulation.

    PubMed

    Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin

    2016-04-01

    Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical

  9. Nonhuman primate models of focal cerebral ischemia

    PubMed Central

    Fan, Jingjing; Li, Yi; Fu, Xinyu; Li, Lijuan; Hao, Xiaoting; Li, Shasha

    2017-01-01

    Rodents have been widely used in the production of cerebral ischemia models. However, successful therapies have been proven on experimental rodent stroke model, and they have often failed to be effective when tested clinically. Therefore, nonhuman primates were recommended as the ideal alternatives, owing to their similarities with the human cerebrovascular system, brain metabolism, grey to white matter ratio and even their rich behavioral repertoire. The present review is a thorough summary of ten methods that establish nonhuman primate models of focal cerebral ischemia; electrocoagulation, endothelin-1-induced occlusion, microvascular clip occlusion, autologous blood clot embolization, balloon inflation, microcatheter embolization, coil embolization, surgical suture embolization, suture, and photochemical induction methods. This review addresses the advantages and disadvantages of each method, as well as precautions for each model, compared nonhuman primates with rodents, different species of nonhuman primates and different modeling methods. Finally it discusses various factors that need to be considered when modelling and the method of evaluation after modelling. These are critical for understanding their respective strengths and weaknesses and underlie the selection of the optimum model. PMID:28400817

  10. Variable interpretation of ultrasonograms may contribute to variation in the reported incidence of white matter damage between newborn intensive care units in New Zealand

    PubMed Central

    Harris, D L; Bloomfield, F H; Teele, R L; Harding, J E

    2006-01-01

    Background The incidence of cerebral white matter damage reported to the Australian and New Zealand Neonatal Network (ANZNN) varies between neonatal intensive care units (NICUs). Hypothesis Differences in the capture, storage, and interpretation of the cerebral ultrasound scans could account for some of this variation. Methods A total of 255 infants of birth weight <1500 g and gestation <32 weeks born between 1997 and 2002 and drawn equally from each of the six NICUs in New Zealand were randomly selected from the ANZNN database. Half had early cerebral ultrasound scans previously reported to ANZNN as normal, and half had scans reported as abnormal. The original scans were copied, anonymised, and independently read by a panel of three experts using a standardised method of reviewing and reporting. Results There was considerable variation between NICUs in methods of image capture, quality, and completeness of the scans. There was only moderate agreement between the reviewers' reports and the original reports to the ANZNN (κ 0.45–0.51) and between the reviewers (κ 0.54–0.64). The reviewers reported three to six times more white matter damage than had been reported to the ANZNN. Conclusion Some of the reported variation in white matter damage between NICUs may be due to differences in capture and interpretation of cerebral ultrasound scans. PMID:16159954

  11. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy.

    PubMed

    Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok

    2015-01-01

    Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with

  12. Relationship between intracranial internal carotid artery calcification and enlarged cerebral perivascular space.

    PubMed

    Tao, Xiao-Xiao; Li, Ge-Fei; Wu, Yi-Lan; Liu, Yi-Sheng; Zhao, Ying; Shi, Yan-Hui; Zhuang, Mei-Ting; Hou, Tian-Yu; Zhao, Rong; Liu, Feng-Di; Wang, Xue-Mei; Shen, Ying; Cui, Guo-Hong; Su, Jing-Jing; Chen, Wei; Tang, Xue-Mei; Sun, Ji; Liu, Jian-Ren

    2017-06-01

    The association between intracranial internal carotid artery (IICA) calcification and lacunes, white matter hyperintensity (WMH), and cerebral microbleeds (CMBs) has been well researched. However, enlarged cerebral perivascular space (PVS) has not yet been reported to correlate with intracranial internal carotid artery calcification. Therefore, the primary aim of this study was to investigate the relationship between IICA calcification and enlarged PVS. A total of 189 patients with ischemic stroke in the middle cerebral artery territory who presented within 7 days of ictus from 2012 to 2015 were enrolled respectively. All patients were required to have undergone head computed tomography, magnetic resonance imaging, susceptibility-weighted magnetic resonance imaging, magnetic resonance angiography, or computed tomography angiography. Clinical characteristics were recorded. IICA calcification and enlarged PVS were semi-quantitatively evaluated, and the presence of lacunes, WMH, and CMBs was recorded. Of the 189 patients, 63.5% were male. Mean age of the patients was 68.6 ± 12.2 years. There were 104 patients with IICA calcification. Age, diabetes mellitus, lacunes, and white matter hyperintensity were significantly associated with IICA calcification (P < 0.05). Multivariate logistic regression analysis showed that age, diabetes mellitus, and lacunes were independent predictors of IICA calcification (P < 0.05). A lower risk of IICA calcification was found in patients with a higher enlarged PVS score (P = 0.004). Higher enlarged PVS scores were associated with a lesser degree of IICA calcification. There appears to be a relationship between reduced risk of IICA calcification and enlarged PVS.

  13. Tri-linear interpolation-based cerebral white matter fiber imaging

    PubMed Central

    Jiang, Shan; Zhang, Pengfei; Han, Tong; Liu, Weihua; Liu, Meixia

    2013-01-01

    Diffusion tensor imaging is a unique method to visualize white matter fibers three-dimensionally, non-invasively and in vivo, and therefore it is an important tool for observing and researching neural regeneration. Different diffusion tensor imaging-based fiber tracking methods have been already investigated, but making the computing faster, fiber tracking longer and smoother and the details shown clearer are needed to be improved for clinical applications. This study proposed a new fiber tracking strategy based on tri-linear interpolation. We selected a patient with acute infarction of the right basal ganglia and designed experiments based on either the tri-linear interpolation algorithm or tensorline algorithm. Fiber tracking in the same regions of interest (genu of the corpus callosum) was performed separately. The validity of the tri-linear interpolation algorithm was verified by quantitative analysis, and its feasibility in clinical diagnosis was confirmed by the contrast between tracking results and the disease condition of the patient as well as the actual brain anatomy. Statistical results showed that the maximum length and average length of the white matter fibers tracked by the tri-linear interpolation algorithm were significantly longer. The tracking images of the fibers indicated that this method can obtain smoother tracked fibers, more obvious orientation and clearer details. Tracking fiber abnormalities are in good agreement with the actual condition of patients, and tracking displayed fibers that passed though the corpus callosum, which was consistent with the anatomical structures of the brain. Therefore, the tri-linear interpolation algorithm can achieve a clear, anatomically correct and reliable tracking result. PMID:25206524

  14. Cranial Ultrasound Lesions in the NICU Predict Cerebral Palsy at Age 2 Years in Children Born at Extremely Low Gestational Age

    PubMed Central

    Kuban, Karl C. K.; Allred, Elizabeth N.; O’Shea, T. Michael; Paneth, Nigel; Pagano, Marcello; Dammann, Olaf; Leviton, Alan; Du Plessis, Adré; Westra, Sjirk J.; Miller, Cindy R.; Bassan, Haim; Krishnamoorthy, Kalpathy; Junewick, Joseph; Olomu, Nicholas; Romano, Elaine; Seibert, Joanna; Engelke, Steve; Karna, Padmani; Batton, Daniel; O’Connor, Sunila E.; Keller, Cecelia E.

    2009-01-01

    Our prospective cohort study of extremely low gestational age newborns evaluated the association of neonatal head ultrasound abnormalities with cerebral palsy at age 2 years. Cranial ultrasounds in 1053 infants were read with respect to intraventricular hemorrhage, ventriculomegaly, and echolucency, by multiple sonologists. Standardized neurological examinations classified cerebral palsy, and functional impairment was assessed. Forty-four percent with ventriculomegaly and 52% with echolucency developed cerebral palsy. Compared with no ultrasound abnormalities, children with echolucency were 24 times more likely to have quadriparesis and 29 times more likely to have hemiparesis. Children with ventriculomegaly were 17 times more likely to have quadriparesis or hemiparesis. Forty-three percent of children with cerebral palsy had normal head ultrasound. Focal white matter damage (echolucency) and diffuse damage (late ventriculomegaly) are associated with a high probability of cerebral palsy, especially quadriparesis. Nearly half the cerebral palsy identified at 2 years is not preceded by a neonatal brain ultrasound abnormality. PMID:19168819

  15. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions.

    PubMed

    Pannek, Kerstin; Boyd, Roslyn N; Fiori, Simona; Guzzetta, Andrea; Rose, Stephen E

    2014-01-01

    Cerebral palsy (CP) is a term to describe the spectrum of disorders of impaired motor and sensory function caused by a brain lesion occurring early during development. Diffusion MRI and tractography have been shown to be useful in the study of white matter (WM) microstructure in tracts likely to be impacted by the static brain lesion. The purpose of this study was to identify WM pathways with altered connectivity in children with unilateral CP caused by periventricular white matter lesions using a whole-brain connectivity approach. Data of 50 children with unilateral CP caused by periventricular white matter lesions (5-17 years; manual ability classification system [MACS] I = 25/II = 25) and 17 children with typical development (CTD; 7-16 years) were analysed. Structural and High Angular Resolution Diffusion weighted Images (HARDI; 64 directions, b = 3000 s/mm(2)) were acquired at 3 T. Connectomes were calculated using whole-brain probabilistic tractography in combination with structural parcellation of the cortex and subcortical structures. Connections with altered fractional anisotropy (FA) in children with unilateral CP compared to CTD were identified using network-based statistics (NBS). The relationship between FA and performance of the impaired hand in bimanual tasks (Assisting Hand Assessment-AHA) was assessed in connections that showed significant differences in FA compared to CTD. FA was reduced in children with unilateral CP compared to CTD. Seven pathways, including the corticospinal, thalamocortical, and fronto-parietal association pathways were identified simultaneously in children with left and right unilateral CP. There was a positive relationship between performance of the impaired hand in bimanual tasks and FA within the cortico-spinal and thalamo-cortical pathways (r(2) = 0.16-0.44; p < 0.05). This study shows that network-based analysis of structural connectivity can identify alterations in FA in unilateral CP, and that these

  16. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions

    PubMed Central

    Pannek, Kerstin; Boyd, Roslyn N.; Fiori, Simona; Guzzetta, Andrea; Rose, Stephen E.

    2014-01-01

    Background Cerebral palsy (CP) is a term to describe the spectrum of disorders of impaired motor and sensory function caused by a brain lesion occurring early during development. Diffusion MRI and tractography have been shown to be useful in the study of white matter (WM) microstructure in tracts likely to be impacted by the static brain lesion. Aim The purpose of this study was to identify WM pathways with altered connectivity in children with unilateral CP caused by periventricular white matter lesions using a whole-brain connectivity approach. Methods Data of 50 children with unilateral CP caused by periventricular white matter lesions (5–17 years; manual ability classification system [MACS] I = 25/II = 25) and 17 children with typical development (CTD; 7–16 years) were analysed. Structural and High Angular Resolution Diffusion weighted Images (HARDI; 64 directions, b = 3000 s/mm2) were acquired at 3 T. Connectomes were calculated using whole-brain probabilistic tractography in combination with structural parcellation of the cortex and subcortical structures. Connections with altered fractional anisotropy (FA) in children with unilateral CP compared to CTD were identified using network-based statistics (NBS). The relationship between FA and performance of the impaired hand in bimanual tasks (Assisting Hand Assessment—AHA) was assessed in connections that showed significant differences in FA compared to CTD. Results FA was reduced in children with unilateral CP compared to CTD. Seven pathways, including the corticospinal, thalamocortical, and fronto-parietal association pathways were identified simultaneously in children with left and right unilateral CP. There was a positive relationship between performance of the impaired hand in bimanual tasks and FA within the cortico-spinal and thalamo-cortical pathways (r2 = 0.16–0.44; p < 0.05). Conclusion This study shows that network-based analysis of structural connectivity can identify alterations

  17. Age-related white matter integrity differences in oldest-old without dementia.

    PubMed

    Bennett, Ilana J; Greenia, Dana E; Maillard, Pauline; Sajjadi, S Ahmad; DeCarli, Charles; Corrada, Maria M; Kawas, Claudia H

    2017-08-01

    Aging is known to have deleterious effects on cerebral white matter, yet little is known about these white matter alterations in advanced age. In this study, 94 oldest-old adults without dementia (90-103 years) underwent diffusion tensor imaging to assess relationships between chronological age and multiple measures of integrity in 18 white matter regions across the brain. Results revealed significant age-related declines in integrity in regions previously identified as being sensitive to aging in younger-old adults (corpus callosum, fornix, cingulum, external capsule). For the corpus callosum, the effect of age on genu fractional anisotropy was significantly weaker than the relationship between age and splenium fractional anisotropy. Importantly, age-related declines in white matter integrity did not differ in cognitively normal and cognitively impaired not demented oldest-old, suggesting that they were not solely driven by cognitive dysfunction or preclinical dementia in this advanced age group. Instead, white matter in these regions appears to remain vulnerable to normal aging processes through the 10th decade of life. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Early gray-matter and white-matter concentration in infancy predict later language skills: a whole brain voxel-based morphometry study.

    PubMed

    Deniz Can, Dilara; Richards, Todd; Kuhl, Patricia K

    2013-01-01

    Magnetic resonance imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months. Early gray-matter concentration in the right cerebellum, early white-matter concentration in the right cerebellum, and early white-matter concentration in the left posterior limb of the internal capsule (PLIC)/cerebral peduncle were positively and strongly associated with infants' receptive language ability at 12 months. Early gray-matter concentration in the right hippocampus was positively and strongly correlated with infants' expressive language ability at 12 months. Our results suggest that the cerebellum, PLIC/cerebral peduncle, and the hippocampus may be associated with early language development. Potential links between these structural predictors and infants' linguistic functions are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The habenula and iron metabolism in cerebral mouse models of multiple sclerosis

    PubMed Central

    Sands, Scott A.; Tsau, Sheila; LeVine, Steven M.

    2015-01-01

    Iron accumulates in the CNS of patients with multiple sclerosis, but our understanding of the mechanism accounting for this accumulation is unclear. Mouse models of cerebral experimental autoimmune encephalomyelitis (EAE) in C57BL/6 and SJL mice were used together with a histochemical stain for iron and immunohistochemical stains for transferrin receptor, synaptophysin, iron regulatory protein 1 (IRP1) and/or IRP2 to investigate the role of disease activity on CNS iron metabolism. The expression of transferrin receptor, but not IRP1 or IRP2, increased in the medial habenula, which is adjacent to the third ventricle, in response to both types of cerebral EAE. In the habenula, the elevated expression of transferrin receptor in C57BL/6 mice with cerebral EAE was generally restricted to the medial habenula while the expression in SJL mice with cerebral EAE was more diffusely expressed. Iron levels were increased in all regions of the habenula in C57BL/6 mice with cerebral EAE, and in the medial and medial lateral but not the lateral habenula in SJL mice with cerebral EAE. Synaptophysin, which has been observed previously in endocytic vesicles together with the transferrin receptor, was concentrated at the medial habenula, but its levels did not increase with disease in C57BL/6 mice with cerebral EAE. Our results support the model that the medial habenula responds to disease activity by upregulating transferrin receptor to facilitate the movement of iron into the brain from the third ventricle, raising the possibility that a similar mechanism accounts for iron accumulation in deep gray matter structures in patients with multiple sclerosis. PMID:26362814

  20. Axon-glia Synapses Are Highly Vulnerable to White Matter Injury in the Developing Brain

    PubMed Central

    Shen, Yan; Liu, Xiao-Bo; Pleasure, David E.; Deng, Wenbin

    2011-01-01

    The biology of cerebral white matter injury is woefully understudied, in part due to the difficulty to reliably model this type of injury in rodents. Periventricular leukomalacia (PVL) is the predominant form of brain injury and the most common cause of cerebral palsy in premature infants. PVL is characterized by predominant white matter injury. No specific therapy for PVL is presently available because the pathogenesis is not well understood. Here we report that two types of mouse PVL models have been created by hypoxia-ischemia with or without systemic co-administration of lipopolysaccharide (LPS). LPS co-administration exacerbated hypoxic-ischemic white matter injury and led to enhanced microglial activation and astrogliosis. Drug trials with the anti-inflammatory agent minocycline, the anti-excitotoxic agent NBQX and the antioxidant agent edaravone showed various degrees of protection in the two models, indicating that excitotoxic, oxidative and inflammatory forms of injury are involved in the pathogenesis of injury to immature white matter. We then applied immune-electron microscopy to reveal fine structural changes in the injured white matter, and found that synapses between axons and oligodendroglial precursor cells (OPCs) are quickly and profoundly damaged. Hypoxia-ischemia caused a drastic decrease in the number of postsynaptic densities associated with the glutamatergic axon-OPC synapses defined by the expression of vesicular glutamate transporters, vGluT1 and vGluT2, on axon terminals that formed contacts with OPCs in the periventricular white matter, resulted in selective shrinkage of the postsynaptic OPCs contacted by vGluT2 labeled synapses, and led to excitotoxicity mediated by GluR2-lacking, Ca2+-permeable AMPA receptors. Taken together, the present study provides novel mechanistic insights into the pathogenesis of PVL, and reveals that axon-glia synapses are highly vulnerable to white matter injury in the developing brain. More broadly, the study

  1. Cerebral aneurysm

    MedlinePlus Videos and Cool Tools

    The tissue of the brain is supplied by a network of cerebral arteries. If the wall of a cerebral artery becomes weakened, a portion of the wall may balloon out forming an aneurysm. A cerebral aneurysm may enlarge until it bursts, sending blood ...

  2. [Two cases of cerebral infarction caused by fat embolism during orthopedic bone surgeries].

    PubMed

    Takinami, Yoshikazu

    2009-08-01

    I report on two cases of cerebral infarction caused by fat embolism during the orthopedic surgeries. The first patient was a 77-year-old woman with a femur neck fracture, who developed coma after orthopedic operation. The other was a 70-year-old woman with open fractures in the femur and the fibula, who developed hemiplegia after operation. By echogram, no embolus was demonstrated in the heart, in the carotid arteries or in deep veins, also paradoxical cerebral infarction was denied in the both cases. Diffusion-weighted MR image and FLAIR MR image showing multiple hyperintense signals in the hemispheres were very useful as a diagnosing modality in acute stage. The patients gradually recovered with the intensive treatment.

  3. Cognitive impairment and associated loss in brain white microstructure in aircrew members exposed to engine oil fumes.

    PubMed

    Reneman, Liesbeth; Schagen, Sanne B; Mulder, Michel; Mutsaerts, Henri J; Hageman, Gerard; de Ruiter, Michiel B

    2016-06-01

    Cabin air in airplanes can be contaminated with engine oil contaminants. These contaminations may contain organophosphates (OPs) which are known neurotoxins to brain white matter. However, it is currently unknown if brain white matter in aircrew is affected. We investigated whether we could objectify cognitive complaints in aircrew and whether we could find a neurobiological substrate for their complaints. After medical ethical approval from the local institutional review board, informed consent was obtained from 12 aircrew (2 females, on average aged 44.4 years, 8,130 flying hours) with cognitive complaints and 11 well matched control subjects (2 females, 43.4 years, 233 flying hours). Depressive symptoms and self-reported cognitive symptoms were assessed, in addition to a neuropsychological test battery. State of the art Magnetic Resonance Imaging (MRI) techniques were administered that assess structural and functional changes, with a focus on white matter integrity. In aircrew we found significantly more self-reported cognitive complaints and depressive symptoms, and a higher number of tests scored in the impaired range compared to the control group. We observed small clusters in the brain in which white matter microstructure was affected. Also, we observed higher cerebral perfusion values in the left occipital cortex, and reduced brain activation on a functional MRI executive function task. The extent of cognitive impairment was strongly associated with white matter integrity, but extent of estimated number of flight hours was not associated with cognitive impairment nor with reductions in white matter microstructure. Defects in brain white matter microstructure and cerebral perfusion are potential neurobiological substrates for cognitive impairments and mood deficits reported in aircrew.

  4. TRPM2 Channel Aggravates CNS Inflammation and Cognitive Impairment via Activation of Microglia in Chronic Cerebral Hypoperfusion.

    PubMed

    Miyanohara, Jun; Kakae, Masashi; Nagayasu, Kazuki; Nakagawa, Takayuki; Mori, Yasuo; Arai, Ken; Shirakawa, Hisashi; Kaneko, Shuji

    2018-04-04

    Chronic cerebral hypoperfusion is a characteristic seen in widespread CNS diseases, including neurodegenerative and mental disorders, and is commonly accompanied by cognitive impairment. Recently, several studies demonstrated that chronic cerebral hypoperfusion can induce the excessive inflammatory responses that precede neuronal dysfunction; however, the precise mechanism of cognitive impairment due to chronic cerebral hypoperfusion remains unknown. Transient receptor potential melastatin 2 (TRPM2) is a Ca 2+ -permeable channel that is abundantly expressed in immune cells and is involved in aggravation of inflammatory responses. Therefore, we investigated the pathophysiological role of TRPM2 in a mouse chronic cerebral hypoperfusion model with bilateral common carotid artery stenosis (BCAS). When male mice were subjected to BCAS, cognitive dysfunction and white matter injury at day 28 were significantly improved in TRPM2 knock-out (TRPM2-KO) mice compared with wild-type (WT) mice, whereas hippocampal damage was not observed. There were no differences in blood-brain barrier breakdown and H 2 O 2 production between the two genotypes at 14 and 28 d after BCAS. Cytokine production was significantly suppressed in BCAS-operated TRPM2-KO mice compared with WT mice at day 28. In addition, the number of Iba1-positive cells gradually decreased from day 14. Moreover, daily treatment with minocycline significantly improved cognitive perturbation. Surgical techniques using bone marrow chimeric mice revealed that activated Iba1-positive cells in white matter could be brain-resident microglia, not peripheral macrophages. Together, these findings suggest that microglia contribute to the aggravation of cognitive impairment by chronic cerebral hypoperfusion, and that TRPM2 may be a potential target for chronic cerebral hypoperfusion-related disorders. SIGNIFICANCE STATEMENT Chronic cerebral hypoperfusion is manifested in a wide variety of CNS diseases, including neurodegenerative

  5. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain.

    PubMed

    Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro

    2013-02-22

    Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement.

  6. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain

    PubMed Central

    Sakai, Tomoko; Matsui, Mie; Mikami, Akichika; Malkova, Ludise; Hamada, Yuzuru; Tomonaga, Masaki; Suzuki, Juri; Tanaka, Masayuki; Miyabe-Nishiwaki, Takako; Makishima, Haruyuki; Nakatsukasa, Masato; Matsuzawa, Tetsuro

    2013-01-01

    Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement. PMID:23256194

  7. Whole-Brain DTI Assessment of White Matter Damage in Children with Bilateral Cerebral Palsy: Evidence of Involvement beyond the Primary Target of the Anoxic Insult.

    PubMed

    Arrigoni, F; Peruzzo, D; Gagliardi, C; Maghini, C; Colombo, P; Iammarrone, F Servodio; Pierpaoli, C; Triulzi, F; Turconi, A C

    2016-07-01

    Cerebral palsy is frequently associated with both motor and nonmotor symptoms. DTI can characterize the damage at the level of motor tracts but provides less consistent results in nonmotor areas. We used a standardized pipeline of analysis to describe and quantify the pattern of DTI white matter abnormalities of the whole brain in a group of children with chronic bilateral cerebral palsy and periventricular leukomalacia. We also explored potential correlations between DTI and clinical scale metrics. Twenty-five patients (mean age, 11.8 years) and 25 healthy children (mean age, 11.8 years) were studied at 3T with a 2-mm isotropic DTI sequence. Differences between patients and controls were assessed both voxelwise and in ROIs obtained from an existing DTI atlas. Clinical metrics included the Gross Motor Function Classification System, the Manual Ability Classification System, and intelligence quotient. The voxel-level and ROI-level analyses demonstrated highly significant (P < .001) modifications of DTI measurements in patients at several levels: cerebellar peduncles, corticospinal tracts and posterior thalamic radiations, posterior corpus callosum, external capsule, anterior thalamic radiation, superior longitudinal fasciculi and corona radiata, optic nerves, and chiasm. The reduction of fractional anisotropy values in significant tracts was between 8% and 30%. Statistically significant correlations were found between motor impairment and fractional anisotropy in corticospinal tracts and commissural and associative tracts of the supratentorial brain. We demonstrated the involvement of several motor and nonmotor areas in the chronic damage associated with periventricular leukomalacia and showed new correlations between motor skills and DTI metrics. © 2016 by American Journal of Neuroradiology.

  8. Infantile cobalamin deficiency with cerebral lactate accumulation and sustained choline depletion.

    PubMed

    Horstmann, M; Neumaier-Probst, E; Lukacs, Z; Steinfeld, R; Ullrich, K; Kohlschütter, A

    2003-06-01

    A remarkable, intermittent sudden-onset vigilance and movement disorder in an exclusively breast-fed infant is reported, which was caused by cobalamin depletion due to maternal vitamin B12 malabsorption. The lack of cobalamin caused a severe encephalopathy in the infant, whose brain displayed a striking loss of volume and a delay of myelination. Proton magnetic resonance spectroscopy revealed an accumulation of lactate in the gray and white matter of the brain and a sustained depletion of choline-containing compounds in the white matter, reflecting a reversible disturbance of oxidative energy metabolism in brain cells and a long-lasting hypomyelination disorder. The clinical picture in conjunction with MRI and spectroscopic data of this case study yields more insight into the functions of cobalamin in the cerebral metabolism.

  9. Review: Cerebral microvascular pathology in aging and neurodegeneration

    PubMed Central

    Brown, William R.; Thore, Clara R.

    2010-01-01

    This review of age-related brain microvascular pathologies focuses on topics studied by this laboratory, including anatomy of the blood supply, tortuous vessels, venous collagenosis, capillary remnants, vascular density, and microembolic brain injury. Our studies feature thick sections, large blocks embedded in celloidin, and vascular staining by alkaline phosphatase (AP). This permits study of the vascular network in three dimensions, and the differentiation of afferent from efferent vessels. Current evidence suggests that there is decreased vascular density in aging, Alzheimer’s disease (AD), and leukoaraiosis (LA), and cerebrovascular dysfunction precedes and accompanies cognitive dysfunction and neurodegeneration. A decline in cerebrovascular angiogenesis may inhibit recovery from hypoxia-induced capillary loss. Cerebral blood flow (CBF) is inhibited by tortuous arterioles and deposition of excessive collagen in veins and venules. Misery perfusion due to capillary loss appears to occur before cell loss in LA, and CBF is also reduced in the normal-appearing white matter. Hypoperfusion occurs early in AD, inducing white matter lesions and correlating with dementia. In vascular dementia, cholinergic reductions are correlated with cognitive impairment, and cholinesterase inhibitors have some benefit. Most lipid microemboli from cardiac surgery pass through the brain in a few days, but some remain for weeks. They can cause what appears to be a type of vascular dementia years after surgery. Donepezil has shown some benefit. Emboli, such as clots, cholesterol crystals, and microspheres can be extruded through the walls of cerebral vessels, but there is no evidence yet that lipid emboli undergo such extravasation. PMID:20946471

  10. Intravascular perfusion of carbon black ink allows reliable visualization of cerebral vessels.

    PubMed

    Hasan, Mohammad R; Herz, Josephine; Hermann, Dirk M; Doeppner, Thorsten R

    2013-01-04

    The anatomical structure of cerebral vessels is a key determinant for brain hemodynamics as well as the severity of injury following ischemic insults. The cerebral vasculature dynamically responds to various pathophysiological states and it exhibits considerable differences between strains and under conditions of genetic manipulations. Essentially, a reliable technique for intracranial vessel staining is essential in order to study the pathogenesis of ischemic stroke. Until recently, a set of different techniques has been employed to visualize the cerebral vasculature including injection of low viscosity resin, araldite F, gelatin mixed with various dyes (i.e. carmine red, India ink) or latex with or without carbon black. Perfusion of white latex compound through the ascending aorta has been first reported by Coyle and Jokelainen. Maeda et al. have modified the protocol by adding carbon black ink to the latex compound for improved contrast visualization of the vessels after saline perfusion of the brain. However, inefficient perfusion and inadequate filling of the vessels are frequently experienced due to high viscosity of the latex compound. Therefore, we have described a simple and cost-effective technique using a mixture of two commercially available carbon black inks (CB1 and CB2) to visualize the cerebral vasculature in a reproducible manner. We have shown that perfusion with CB1+CB2 in mice results in staining of significantly smaller cerebral vessels at a higher density in comparison to latex perfusion. Here, we describe our protocol to identify the anastomotic points between the anterior (ACA) and middle cerebral arteries (MCA) to study vessel variations in mice with different genetic backgrounds. Finally, we demonstrate the feasibility of our technique in a transient focal cerebral ischemia model in mice by combining CB1+CB2-mediated vessel staining with TTC staining in various degrees of ischemic injuries.

  11. Sex differences in associations between blood lipids and cerebral small vessel disease.

    PubMed

    Yin, Z-G; Wang, Q-S; Yu, K; Wang, W-W; Lin, H; Yang, Z-H

    2018-01-01

    Dyslipidemia predicts higher risk of coronary events and stroke and might be associated with cerebral small vessel disease (SVD). Previous studies linking blood lipids and SVD have yielded inconsistent results, which may be attributable to sex differences in lipids metabolism. The aim of this study was to investigate the relationships between blood lipids and SVD in neurologically healthy men and women. Consecutive 817 people aged 50 years or more were enrolled and underwent magnetic resonance imaging scans to evaluate the periventricular white matter lesions (PVWMLs), deep white matter lesions (DWMLs) and silent brain infarction (SBI). Fasting total cholesterol, triglyceride, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol, apolipoprotein A-1 (apoA-1) and apolipoprotein B were assessed. Multivariable logistic regression analyses were performed to determine the associations of blood lipids with PVWMLs, DWMLs and SBI. HDL-C (for PVWMLs: OR 0.36, 95% CI 0.19-0.71; for DWMLs: OR 0.35, 95% CI 0.20-0.63) and apoA-1 (for PVWMLs: OR 0.27, 95% CI 0.11-0.66; for DWMLs: OR 0.22, 95% CI 0.10-0.48) were inversely associated with the severity of PVWMLs and DWMLs in women but not in men after adjustment for age, hypertension, diabetes, current smoking, daily drinking, body mass index and uric acid. Additionally, no blood lipids were significantly associated with SBI. Our findings demonstrate that sex differences may exist in the associations between lipids and SVD. HDL-C and apoA-1 levels were inversely associated with the severity of PVWMLs and DWMLs in women. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  12. Color Image of Snow White Trenches and Scraping

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 31st Martian day of the mission, or Sol 31 (June 26, 2008), after the May 25, 2008 landing. This image shows the trenches informally called 'Snow White 1' (left), 'Snow White 2' (right), and within the Snow White 2 trench, the smaller scraping area called 'Snow White 3.' The Snow White 3 scraped area is about 5 centimeters (2 inches) deep. The dug and scraped areas are within the diggiing site called 'Wonderland.'

    The Snow White trenches and scraping prove that scientists can take surface soil samples, subsurface soil samples, and icy samples all from one unit. Scientists want to test samples to determine if some ice in the soil may have been liquid in the past during warmer climate cycles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver

  13. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

    PubMed Central

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan

    2015-01-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  14. The effects of dimethylaminoethanol (deanol) on cerebral cortical neurons.

    PubMed

    Kostopoulos, G K; Phillis, J W

    1975-01-01

    2-Dimethylaminoethanol and acetylcholine were iontophoretically tested on deep, spontaneously firing, neurons of the rat cerebral cortex. All identified corticospinal cells and 71% of the unidentified ones were excited by Deanol. Eight percent of the latter group were inhibited. All but one neuron responded similarly to ACh and Deanol, when both substances were tested on the same neuron. Atropine reversibly blocked these responses. The implications of these observations are discussed with regard to cholinergic synapses in the brain and the rationalization of the therapeutic use of Deanol.

  15. Hypertension-Induced Cerebral Small Vessel Disease Leading to Cognitive Impairment.

    PubMed

    Liu, Yang; Dong, Yan-Hong; Lyu, Pei-Yuan; Chen, Wei-Hong; Li, Rui

    2018-03-05

    Alzheimer's disease and vascular dementia are responsible for more than 80% of dementia cases. These two conditions share common risk factors including hypertension. Cerebral small vessel disease (CSVD) is strongly associated with both hypertension and cognitive impairment. In this review, we identify the pathophysiological changes in CSVD that are caused by hypertension and further explore the relationship between CSVD and cognitive impairment. We searched and scanned the PubMed database for recently published literatures up to December 2017. We used the keywords of "hypertension", "cerebral small vessel disease", "white matter lesions", "enlarged perivascular spaces", "lacunar infarcts", "cerebral microbleeds", and "cognitive impairment" in the database of PubMed. Articles were obtained and reviewed to analyze the hypertension-induced pathophysiological changes that occur in CSVD and the correlation between CSVD and cognitive impairment. In recent years, studies have demonstrated that hypertension-related changes (e.g., small vascular lesions, inflammatory reactions, hypoperfusion, oxidative stress, damage to autoregulatory processes and the blood-brain barrier, and cerebral amyloid angiopathy) can occur over time in cerebral small vessels, potentially leading to lower cognitive function when blood pressure (BP) control is poor or lacking. Both isolated and co-occurrent CSVD can lead to cognitive deterioration, and this effect may be attributable to a dysfunction in either the cholinergic system or the functionality of cortical and subcortical tracts. We explore the currently available evidence about the hypertensive vasculopathy and inflammatory changes that occur in CSVD. Both are vital prognostic indicators of the development of cognitive impairment. Future studies should be performed to validate the relationship between BP levels and CSVD progression and between the numbers, volumes, and anatomical locations of CSVD and cognitive impairment.

  16. Neuropathologic Characterization of Pontocerebellar Hypoplasia Type 6 Associated With Cardiomyopathy and Hydrops Fetalis and Severe Multisystem Respiratory Chain Deficiency due to Novel RARS2 Mutations

    PubMed Central

    Lax, Nichola Z.; Alston, Charlotte L.; Schon, Katherine; Park, Soo-Mi; Krishnakumar, Deepa; He, Langping; Falkous, Gavin; Ogilvy-Stuart, Amanda; Lees, Christoph; King, Rosalind H.; Hargreaves, Iain P.; Brown, Garry K.; McFarland, Robert; Dean, Andrew F.; Taylor, Robert W.

    2015-01-01

    Abstract Autosomal recessive mutations in the RARS2 gene encoding the mitochondrial arginyl-transfer RNA synthetase cause infantile-onset myoencephalopathy pontocerebellar hypoplasia type 6 (PCH6). We describe 2 sisters with novel compound heterozygous RARS2 mutations who presented perinatally with neurologic features typical of PCH6 but with additional features including cardiomyopathy, hydrops, and pulmonary hypoplasia and who died at 1 day and 14 days of age. Magnetic resonance imaging findings included marked cerebellar hypoplasia, gyral immaturity, punctate lesions in cerebral white matter, and unfused deep cerebral grey matter. Enzyme histochemistry of postmortem tissues revealed a near-global cytochrome c oxidase-deficiency; assessment of respiratory chain enzyme activities confirmed severe deficiencies involving complexes I, III, and IV. Molecular genetic studies revealed 2 RARS2 gene mutations: a c.1A>G, p.? variant predicted to abolish the initiator methionine, and a deep intronic c.613-3927C>T variant causing skipping of exons 6–8 in the mature RARS2 transcript. Neuropathologic investigation included low brain weights, small brainstem and cerebellum, deep cerebral white matter pathology, pontine nucleus neuron loss (in 1 sibling), and peripheral nerve pathology. Mitochondrial respiratory chain immunohistochemistry in brain tissues confirmed an absence of complexes I and IV immunoreactivity with sparing of mitochondrial numbers. These cases expand the clinical spectrum of RARS2 mutations, including antenatal features and widespread mitochondrial respiratory chain deficiencies in postmortem brain tissues. PMID:26083569

  17. Markers of endothelial and hemostatic activation and progression of cerebral white matter hyperintensities: longitudinal results of the Austrian Stroke Prevention Study.

    PubMed

    Markus, Hugh S; Hunt, Beverley; Palmer, Kiran; Enzinger, Christian; Schmidt, Helena; Schmidt, Reinhold

    2005-07-01

    The pathogenesis of cerebral small vessel disease (SVD) is poorly understood, but endothelial activation and dysfunction may play a causal role. Cross-sectional studies have found increased circulating markers of endothelial activation, but this study design cannot exclude causality from secondary elevations. Confluent white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) appear to represent asymptomatic cerebral SVD. In a prospective study, we determined whether circulating markers of endothelial activation predicted progression of WMH. In the community-based Austrian Stroke Prevention Study, MRI was performed at baseline in 296 subjects and repeated at 3 and 6 years. The following were measured on baseline plasma samples: intercellular adhesion molecule (ICAM), thrombomodulin, tissue factor plasma inhibitor, prothrombin fragments 1 and 2, and D-dimers. ICAM was associated with age- and gender-adjusted WMH lesion progression at both 3 and 6 years, respectively; (odds ratio [OR], 1.007; 95% confidence interval [CI], 1.002 to 1.012; P=0.004; and OR, 1.004; 95% CI, 1.000 to 1.009 per ng/mL; P=0.057). After multivariate analysis controlling for other cardiovascular risk factors and C-reactive protein, 3-year OR was 1.010 (95% CI, 1.004 to 1.017; P=0.001) and 6-year OR was 1.008 (1.002 to 1.014 per ng/mL; P=0.006). Baseline log lesion volume was a strong independent predictor of progression but associations remained after controlling for this (3-year OR, 1.011; 95% CI, 1.002 to 1.020; P=0.013; and 6-year OR, 1.009; 95% CI, 1.000 to 1.017; P=0.039 per ng/mL). There was no association between WMH progression and other markers. ICAM levels are related to progression of WMH on MRI. The prospective study design increases the likelihood that this association is causal and supports a role of endothelial cell activation in disease pathogenesis. In contrast, we found no evidence for coagulation activation being important.

  18. Diffusion tensor imaging of white matter after cranial radiation in children for medulloblastoma: correlation with IQ.

    PubMed

    Mabbott, Donald J; Noseworthy, Michael D; Bouffet, Eric; Rockel, Conrad; Laughlin, Suzanne

    2006-07-01

    Treatment of children with cranial-spinal radiation (CSR) for brain tumors is associated with adverse intellectual outcome and white matter damage. However, the correlation between IQ and measures of white matter integrity has received little attention. We examined apparent diffusion coefficient (ADC), fractional anisotropy (FA), and intelligence in pediatric patients treated with CSR for medulloblastoma relative to control subjects. ADC and FA measures were obtained for eight patients and eight control children and evaluated in multiple regions of interest in the cerebral hemispheres. Mean ADC and mean FA for each region were calculated, group differences were evaluated, and the relationship between these measures and intelligence were examined. In our study group, decreased IQ was associated with increased ADC and decreased FA (P < 0.01). Mean IQ for the CSR group was lower than that for the control group, but the difference was not significant when controlling for overall mean FA or ADC (P > 0.10). Overall mean FA was lower and ADC was higher in the CSR group relative to controls (P < 0.01). Specifically, FA was lower in the genu of the corpus callosum, the anterior and posterior limbs of the internal capsule, inferior frontal white matter, and high frontal white matter, and ADC was higher in all regions in patients relative to controls (P < 0.01). Compromised white matter integrity was observed for multiple regions within the cerebral hemispheres following CSR. A novel finding was that microscopic damage in normal-appearing white matter, as indexed by higher ADC and lower FA, was related to poor intellectual outcome relative to age-matched controls.

  19. Spatial coherence of oriented white matter microstructure: Applications to white matter regions associated with genetic similarity.

    PubMed

    Hallgrímsson, Haraldur T; Cieslak, Matthew; Foschini, Luca; Grafton, Scott T; Singh, Ambuj K

    2018-05-15

    We present a method to discover differences between populations with respect to the spatial coherence of their oriented white matter microstructure in arbitrarily shaped white matter regions. This method is applied to diffusion MRI scans of a subset of the Human Connectome Project dataset: 57 pairs of monozygotic and 52 pairs of dizygotic twins. After controlling for morphological similarity between twins, we identify 3.7% of all white matter as being associated with genetic similarity (35.1 k voxels, p<10 -4 , false discovery rate 1.5%), 75% of which spatially clusters into twenty-two contiguous white matter regions. Furthermore, we show that the orientation similarity within these regions generalizes to a subset of 47 pairs of non-twin siblings, and show that these siblings are on average as similar as dizygotic twins. The regions are located in deep white matter including the superior longitudinal fasciculus, the optic radiations, the middle cerebellar peduncle, the corticospinal tract, and within the anterior temporal lobe, as well as the cerebellum, brain stem, and amygdalae. These results extend previous work using undirected fractional anisotrophy for measuring putative heritable influences in white matter. Our multidirectional extension better accounts for crossing fiber connections within voxels. This bottom up approach has at its basis a novel measurement of coherence within neighboring voxel dyads between subjects, and avoids some of the fundamental ambiguities encountered with tractographic approaches to white matter analysis that estimate global connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    PubMed

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. High-throughput sequencing of the entire genomic regions of CCM1/KRIT1, CCM2 and CCM3/PDCD10 to search for pathogenic deep-intronic splice mutations in cerebral cavernous malformations.

    PubMed

    Rath, Matthias; Jenssen, Sönke E; Schwefel, Konrad; Spiegler, Stefanie; Kleimeier, Dana; Sperling, Christian; Kaderali, Lars; Felbor, Ute

    2017-09-01

    Cerebral cavernous malformations (CCM) are vascular lesions of the central nervous system that can cause headaches, seizures and hemorrhagic stroke. Disease-associated mutations have been identified in three genes: CCM1/KRIT1, CCM2 and CCM3/PDCD10. The precise proportion of deep-intronic variants in these genes and their clinical relevance is yet unknown. Here, a long-range PCR (LR-PCR) approach for target enrichment of the entire genomic regions of the three genes was combined with next generation sequencing (NGS) to screen for coding and non-coding variants. NGS detected all six CCM1/KRIT1, two CCM2 and four CCM3/PDCD10 mutations that had previously been identified by Sanger sequencing. Two of the pathogenic variants presented here are novel. Additionally, 20 stringently selected CCM index cases that had remained mutation-negative after conventional sequencing and exclusion of copy number variations were screened for deep-intronic mutations. The combination of bioinformatics filtering and transcript analyses did not reveal any deep-intronic splice mutations in these cases. Our results demonstrate that target enrichment by LR-PCR combined with NGS can be used for a comprehensive analysis of the entire genomic regions of the CCM genes in a research context. However, its clinical utility is limited as deep-intronic splice mutations in CCM1/KRIT1, CCM2 and CCM3/PDCD10 seem to be rather rare. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. [Multiple cerebral infarctions in a patient with hypereosinophilic syndrome with Löffler endocarditis: a case report].

    PubMed

    Ishii, Junko; Yamamoto, Shiro; Yoshimura, Hajime; Todo, Kenichi; Kawamoto, Michi; Kohara, Nobuo

    2015-01-01

    An 82-year-old woman with a history of asthma was admitted to our hospital because of dyspnea. On admission, laboratory testing showed a white blood cell count of 17,700/μl with hypereosinophilia of 9,204/μl (52% of all white blood cells). Various examinations, including a bone marrow biopsy for the cause of eosinophilia, were unremarkable. The patient was diagnosed with hypereosinophilic syndrome (HES). Treatment with intravenous methylprednisolone was initiated. The patient's eosinophil count normalized within 1 day. On the 6th day, she developed left-sided hemiparesis. Magnetic resonance imaging (MRI) of the brain showed acute multiple infarcts in arterial border zones of bilateral cerebral and cerebellar hemispheres, and in bilateral basal ganglia and the thalamus. Magnetic resonance angiography was normal. Coagulation factors were normal, except for an elevated D-dimer level (12.9 μg/ml). A transthoracic echocardiogram showed thickening of the left ventricular endocardium with immobile thrombus, compatible with Löffler endocarditis. Treatment with oral prednisolone was started at 30 mg/day and then tapered to a maintenance dose of 5 mg/day. Anticoagulation was concurrently started for prevention of stroke. Ten months later, an echocardiogram showed that the thrombus had decreased in size, and MRI revealed no new cerebral infarctions. The cause of cerebral infarction in patients with hypereosinophilia is thought to be thromboembolism or cerebrovascular endothelial toxicity of eosinophils. In this patient, the cerebral infarcts may have been the result of embolism from the left ventricular thrombus. Because HES with Löffler endocarditis is frequently associated with a poor prognosis, cardiovascular problems should be evaluated and treatment started as soon as possible.

  3. Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis—the Karolinska Imaging Dementia Study.

    PubMed

    Shams, S; Martola, J; Granberg, T; Li, X; Shams, M; Fereshtehnejad, S M; Cavallin, L; Aspelin, P; Kristoffersen-Wiberg, M; Wahlund, L O

    2015-04-01

    Cerebral microbleeds are thought to represent cerebral amyloid angiopathy when in lobar regions of the brain and hypertensive arteriopathy when in deep and infratentorial locations. By studying cerebral microbleeds, their topography, and risk factors, we aimed to gain an insight into the vascular and amyloid pathology of dementia diagnoses and increase the understanding of cerebral microbleeds in dementia. We analyzed 1504 patients (53% women; mean age, 63 ± 10 years; 10 different dementia diagnoses) in this study. All patients underwent MR imaging as part of the dementia investigation, and all their clinical parameters were recorded. Among the 1504 patients with dementia, 22% had cerebral microbleeds. Cerebral microbleed topography was predominantly lobar (P = .01) and occipital (P = .007) in Alzheimer disease. Patients with cerebral microbleeds were significantly older (P < .001), were more frequently male (P < .001), had lower cognitive scores (P = .006), and more often had hypertension (P < .001). Risk factors for cerebral microbleeds varied depending on the dementia diagnosis. Odds ratios for having cerebral microbleeds increased with the number of risk factors (hypertension, hyperlipidemia, diabetes, male sex, and age 65 and older) in the whole patient group and increased differently in the separate dementia diagnoses. Prevalence, topography, and risk factors of cerebral microbleeds vary depending on the dementia diagnosis and reflect the inherent pathology of different dementia diagnoses. Because cerebral microbleeds are seen as possible predictors of intracerebral hemorrhage, their increasing prevalence with an increasing number of risk factors, as shown in our study, may require taking the number of risk factors into account when deciding on anticoagulant therapy in dementia. © 2015 by American Journal of Neuroradiology.

  4. Effects of Aerobic Capacity on Thrombin-Induced Hydrocephalus and White Matter Injury.

    PubMed

    Ni, Wei; Gao, Feng; Zheng, Mingzhe; Koch, Lauren G; Britton, Steven L; Keep, Richard F; Xi, Guohua; Hua, Ya

    2016-01-01

    We have previously shown that intracerebral hemorrhage-induced brain injury is less in rats bred for high aerobic capacity (high capacity runners; HCR) compared with those bred for low aerobic capacity (low capacity runners; LCRs). Thrombin, an essential component in the coagulation cascade, is produced after cerebral hemorrhage. Intraventricular injection of thrombin causes significant hydrocephalus and white matter damage. In the present study, we examined the effect of exercise capacity on thrombin-induced hydrocephalus and white matter damage. Mid-aged (13-month-old) female LCRs (n = 13) and HCRs (n = 12) rats were used in this study. Rats received an intraventricular injection of thrombin (3 U, 50 μl). All rats underwent magnetic resonance imaging (MRI) at 24 h and were then euthanized for brain histology and Western blot. The mortalities were 20 % in LCRs and 33 % in HCRs after thrombin injection (p > 0.05). No rats died after saline injection. Intraventricular thrombin injection resulted in hydrocephalus and periventricular white matter damage as determined on MRI. In LCR rats, thrombin induced significant ventricle enlargement (23.0 ± 2.3 vs12.8 ± 1.9 mm(3) in LCR saline group; p < 0.01) and white matter lesion (9.3 ± 7.6 vs 0.6 ± 0.5 mm(3) in LCR saline group, p < 0.05). In comparison, in HCR rats thrombin induced less ventricular enlargement (17.3 ± 3.9 vs 23.0 ± 2.3 mm(3) in LCRs, p < 0.01) and smaller white matter lesions (2.6 ± 1.2 mm(3) vs 9.3 ± 7.6 mm(3) in LCRs, p < 0.05). In LCR rats, there was also upregulation of heat shock protein-32, a stress marker, and microglial activation in the periventricular white matter. These changes were significantly reduced in HCR rats. Intraventricular injection of thrombin caused more white matter damage and hydrocephalus in rats with low aerobic capacity. A differential effect of thrombin may contribute to differences in the effects of cerebral

  5. Cerebral Palsy (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Cerebral Palsy KidsHealth / For Parents / Cerebral Palsy What's in this ... Ahead Print en español Parálisis cerebral What Is Cerebral Palsy? Cerebral palsy (CP) is a disorder that affects ...

  6. Increased white matter metabolic rates in autism spectrum disorder and schizophrenia.

    PubMed

    Mitelman, Serge A; Buchsbaum, Monte S; Young, Derek S; Haznedar, M Mehmet; Hollander, Eric; Shihabuddin, Lina; Hazlett, Erin A; Bralet, Marie-Cecile

    2017-11-22

    Both autism spectrum disorder (ASD) and schizophrenia are often characterized as disorders of white matter integrity. Multimodal investigations have reported elevated metabolic rates, cerebral perfusion and basal activity in various white matter regions in schizophrenia, but none of these functions has previously been studied in ASD. We used 18 fluorodeoxyglucose positron emission tomography to compare white matter metabolic rates in subjects with ASD (n = 25) to those with schizophrenia (n = 41) and healthy controls (n = 55) across a wide range of stereotaxically placed regions-of-interest. Both subjects with ASD and schizophrenia showed increased metabolic rates across the white matter regions assessed, including internal capsule, corpus callosum, and white matter in the frontal and temporal lobes. These increases were more pronounced, more widespread and more asymmetrical in subjects with ASD than in those with schizophrenia. The highest metabolic increases in both disorders were seen in the prefrontal white matter and anterior limb of the internal capsule. Compared to normal controls, differences in gray matter metabolism were less prominent and differences in adjacent white matter metabolism were more prominent in subjects with ASD than in those with schizophrenia. Autism spectrum disorder and schizophrenia are associated with heightened metabolic activity throughout the white matter. Unlike in the gray matter, the vector of white matter metabolic abnormalities appears to be similar in ASD and schizophrenia, may reflect inefficient functional connectivity with compensatory hypermetabolism, and may be a common feature of neurodevelopmental disorders.

  7. Greater contribution of cerebral than extracerebral hemodynamics to near-infrared spectroscopy signals for functional activation and resting-state connectivity in infants.

    PubMed

    Funane, Tsukasa; Homae, Fumitaka; Watanabe, Hama; Kiguchi, Masashi; Taga, Gentaro

    2014-10-01

    While near-infrared spectroscopy (NIRS) has been increasingly applied to neuroimaging and functional connectivity studies in infants, it has not been quantitatively examined as to what extent the deep tissue (such as cerebral tissue) as opposed to shallow tissue (such as scalp), contributes to NIRS signals measured in infants. A method for separating the effects of deep- and shallow-tissue layers was applied to data of nine sleeping three-month-old infants who had been exposed to 3-s speech sounds or silence (i.e., resting state) and whose hemodynamic changes over their bilateral temporal cortices had been measured by using an NIRS system with multiple source-detector (S-D) distances. The deep-layer contribution was found to be large during resting [67% at S-D 20 mm, 78% at S-D 30 mm for oxygenated hemoglobin (oxy-Hb)] as well as during the speech condition (72% at S-D 20 mm, 82% at S-D 30 mm for oxy-Hb). A left-right connectivity analysis showed that correlation coefficients between left and right channels did not differ between original- and deep-layer signals under no-stimulus conditions and that of original- and deep-layer signals were larger than those of the shallow layer. These results suggest that NIRS signals obtained in infants with appropriate S-D distances largely reflected cerebral hemodynamic changes.

  8. Greater contribution of cerebral than extracerebral hemodynamics to near-infrared spectroscopy signals for functional activation and resting-state connectivity in infants

    PubMed Central

    Funane, Tsukasa; Homae, Fumitaka; Watanabe, Hama; Kiguchi, Masashi; Taga, Gentaro

    2014-01-01

    Abstract. While near-infrared spectroscopy (NIRS) has been increasingly applied to neuroimaging and functional connectivity studies in infants, it has not been quantitatively examined as to what extent the deep tissue (such as cerebral tissue) as opposed to shallow tissue (such as scalp), contributes to NIRS signals measured in infants. A method for separating the effects of deep- and shallow-tissue layers was applied to data of nine sleeping three-month-old infants who had been exposed to 3-s speech sounds or silence (i.e., resting state) and whose hemodynamic changes over their bilateral temporal cortices had been measured by using an NIRS system with multiple source-detector (S-D) distances. The deep-layer contribution was found to be large during resting [67% at S-D 20 mm, 78% at S-D 30 mm for oxygenated hemoglobin (oxy-Hb)] as well as during the speech condition (72% at S-D 20 mm, 82% at S-D 30 mm for oxy-Hb). A left-right connectivity analysis showed that correlation coefficients between left and right channels did not differ between original- and deep-layer signals under no-stimulus conditions and that of original- and deep-layer signals were larger than those of the shallow layer. These results suggest that NIRS signals obtained in infants with appropriate S-D distances largely reflected cerebral hemodynamic changes. PMID:26157977

  9. Cerebral metabolic abnormalities in congestive heart failure detected by proton magnetic resonance spectroscopy.

    PubMed

    Lee, C W; Lee, J H; Kim, J J; Park, S W; Hong, M K; Kim, S T; Lim, T H; Park, S J

    1999-04-01

    Using proton magnetic resonance spectroscopy, we investigated cerebral metabolism and its determinants in congestive heart failure (CHF), and the effects of cardiac transplantation on these measurements. Few data are available about cerebral metabolism in CHF. Fifty patients with CHF (ejection fraction < or = 35%) and 20 healthy volunteers were included for this study. Of the patients, 10 patients underwent heart transplantation. All subjects performed symptom-limited bicycle exercise test. Proton magnetic resonance spectroscopy (1H MRS) was obtained from localized regions (8 to 10 ml) of occipital gray matter (OGM) and parietal white matter (PWM). Absolute levels of the metabolites (N-acetylaspartate, creatine, choline, myo-inositol) were calculated. In PWM only creatine level was significantly lower in CHF than in control subjects, but in OGM all four metabolite levels were decreased in CHF. The creatine level was independently correlated with half-recovery time and duration of heart failure symptoms in PWM (r = -0.56, p < 0.05), and with peak oxygen consumption and serum sodium concentration in OGM (r = 0.58, p < 0.05). Cerebral metabolic abnormalities were improved after successful cardiac transplantation. This study shows that cerebral metabolism is abnormally deranged in advanced CHF and it may serve as a potential marker of the disease severity.

  10. Fully automatic detection of deep white matter T1 hypointense lesions in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Spies, Lothar; Tewes, Anja; Suppa, Per; Opfer, Roland; Buchert, Ralph; Winkler, Gerhard; Raji, Alaleh

    2013-12-01

    A novel method is presented for fully automatic detection of candidate white matter (WM) T1 hypointense lesions in three-dimensional high-resolution T1-weighted magnetic resonance (MR) images. By definition, T1 hypointense lesions have similar intensity as gray matter (GM) and thus appear darker than surrounding normal WM in T1-weighted images. The novel method uses a standard classification algorithm to partition T1-weighted images into GM, WM and cerebrospinal fluid (CSF). As a consequence, T1 hypointense lesions are assigned an increased GM probability by the standard classification algorithm. The GM component image of a patient is then tested voxel-by-voxel against GM component images of a normative database of healthy individuals. Clusters (≥0.1 ml) of significantly increased GM density within a predefined mask of deep WM are defined as lesions. The performance of the algorithm was assessed on voxel level by a simulation study. A maximum dice similarity coefficient of 60% was found for a typical T1 lesion pattern with contrasts ranging from WM to cortical GM, indicating substantial agreement between ground truth and automatic detection. Retrospective application to 10 patients with multiple sclerosis demonstrated that 93 out of 96 T1 hypointense lesions were detected. On average 3.6 false positive T1 hypointense lesions per patient were found. The novel method is promising to support the detection of hypointense lesions in T1-weighted images which warrants further evaluation in larger patient samples.

  11. Abnormal white matter tractography of visual pathways detected by high-angular-resolution diffusion imaging (HARDI) corresponds to visual dysfunction in cortical/cerebral visual impairment

    PubMed Central

    Bauer, Corinna M.; Heidary, Gena; Koo, Bang-Bon; Killiany, Ronald J.; Bex, Peter; Merabet, Lotfi B.

    2014-01-01

    Cortical (cerebral) visual impairment (CVI) is characterized by visual dysfunction associated with damage to the optic radiations and/or visual cortex. Typically it results from pre- or perinatal hypoxic damage to postchiasmal visual structures and pathways. The neuroanatomical basis of this condition remains poorly understood, particularly with regard to how the resulting maldevelopment of visual processing pathways relates to observations in the clinical setting. We report our investigation of 2 young adults diagnosed with CVI and visual dysfunction characterized by difficulties related to visually guided attention and visuospatial processing. Using high-angular-resolution diffusion imaging (HARDI), we characterized and compared their individual white matter projections of the extrageniculo-striate visual system with a normal-sighted control. Compared to a sighted control, both CVI cases revealed a striking reduction in association fibers, including the inferior frontal-occipital fasciculus as well as superior and inferior longitudinal fasciculi. This reduction in fibers associated with the major pathways implicated in visual processing may provide a neuroanatomical basis for the visual dysfunctions observed in these patients. PMID:25087644

  12. The hidden-Markov brain: comparison and inference of white matter hyperintensities on magnetic resonance imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Pham, Tuan D.; Salvetti, Federica; Wang, Bing; Diani, Marco; Heindel, Walter; Knecht, Stefan; Wersching, Heike; Baune, Bernhard T.; Berger, Klaus

    2011-02-01

    Rating and quantification of cerebral white matter hyperintensities on magnetic resonance imaging (MRI) are important tasks in various clinical and scientific settings. As manual evaluation is time consuming and imprecise, much effort has been made to automate the quantification of white matter hyperintensities. There is rarely any report that attempts to study the similarity/dissimilarity of white matter hyperintensity patterns that have different sizes, shapes and spatial localizations on the MRI. This paper proposes an original computational neuroscience framework for such a conceptual study with a standpoint that the prior knowledge about white matter hyperintensities can be accumulated and utilized to enable a reliable inference of the rating of a new white matter hyperintensity observation. This computational approach for rating inference of white matter hyperintensities, which appears to be the first study, can be utilized as a computerized rating-assisting tool and can be very economical for diagnostic evaluation of brain tissue lesions.

  13. Changes of migraine-related white matter hyperintensities after 3 years: a longitudinal MRI study.

    PubMed

    Erdélyi-Bótor, Szilvia; Aradi, Mihály; Kamson, David Olayinka; Kovács, Norbert; Perlaki, Gábor; Orsi, Gergely; Nagy, Szilvia Anett; Schwarcz, Attila; Dóczi, Tamás; Komoly, Sámuel; Deli, Gabriella; Trauninger, Anita; Pfund, Zoltán

    2015-01-01

    The aim of this longitudinal study was to investigate changes of migraine-related brain white matter hyperintensities 3 years after an initial study. Baseline quantitative magnetic resonance imaging (MRI) studies of migraine patients with hemispheric white matter hyperintensities performed in 2009 demonstrated signs of tissue damage within the hyperintensities. The hyperintensities appeared most frequently in the deep white matter of the frontal lobe with a similar average hyperintensity size in all hemispheric lobes. Since in this patient group the repeated migraine attacks were the only known risk factors for the development of white matter hyperintensities, the remeasurements of migraineurs after a 3-year long follow-up may show changes in the status of these structural abnormalities as the effects of the repeated headaches. The same patient group was reinvestigated in 2012 using the same MRI scanner and acquisition protocol. MR measurements were performed on a 3.0-Tesla clinical MRI scanner. Beyond the routine T1-, T2-weighted, and fluid-attenuated inversion recovery imaging, diffusion and perfusion-weighted imaging, proton magnetic resonance spectroscopy, and T1 and T2 relaxation time measurements were also performed. Findings of the baseline and follow-up studies were compared with each other. The follow-up proton magnetic resonance spectroscopy studies of white matter hyperintensities showed significantly decreased N-acetyl-aspartate (median values 8.133 vs 7.153 mmol/L, P=.009) and creatine/phosphocreatine (median values 4.970 vs 4.641 mmol/L, P=.015) concentrations compared to the baseline, indicating a more severe axonal loss and glial hypocellularity with decreased intracellular energy production. The diffusion values, the T1 and T2 relaxation times, and the cerebral blood flow and volume measurements presented only mild changes between the studies. The number (median values 21 vs 25, P<.001) and volume (median values 0.896 vs 1.140 mL, P<.001) of

  14. Damage to white matter bottlenecks contributes to language impairments after left hemispheric stroke.

    PubMed

    Griffis, Joseph C; Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2017-01-01

    Damage to the white matter underlying the left posterior temporal lobe leads to deficits in multiple language functions. The posterior temporal white matter may correspond to a bottleneck where both dorsal and ventral language pathways are vulnerable to simultaneous damage. Damage to a second putative white matter bottleneck in the left deep prefrontal white matter involving projections associated with ventral language pathways and thalamo-cortical projections has recently been proposed as a source of semantic deficits after stroke. Here, we first used white matter atlases to identify the previously described white matter bottlenecks in the posterior temporal and deep prefrontal white matter. We then assessed the effects of damage to each region on measures of verbal fluency, picture naming, and auditory semantic decision-making in 43 chronic left hemispheric stroke patients. Damage to the posterior temporal bottleneck predicted deficits on all tasks, while damage to the anterior bottleneck only significantly predicted deficits in verbal fluency. Importantly, the effects of damage to the bottleneck regions were not attributable to lesion volume, lesion loads on the tracts traversing the bottlenecks, or damage to nearby cortical language areas. Multivariate lesion-symptom mapping revealed additional lesion predictors of deficits. Post-hoc fiber tracking of the peak white matter lesion predictors using a publicly available tractography atlas revealed evidence consistent with the results of the bottleneck analyses. Together, our results provide support for the proposal that spatially specific white matter damage affecting bottleneck regions, particularly in the posterior temporal lobe, contributes to chronic language deficits after left hemispheric stroke. This may reflect the simultaneous disruption of signaling in dorsal and ventral language processing streams.

  15. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy

    PubMed Central

    Reijmer, Yael D.; Fotiadis, Panagiotis; Martinez-Ramirez, Sergi; Salat, David H.; Schultz, Aaron; Shoamanesh, Ashkan; Ayres, Alison M.; Vashkevich, Anastasia; Rosas, Diana; Schwab, Kristin; Leemans, Alexander; Biessels, Geert-Jan; Rosand, Jonathan; Johnson, Keith A.; Viswanathan, Anand; Gurol, M. Edip

    2015-01-01

    Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small spatially distributed lesions affect cognition through disruption of brain connectivity. We therefore compared the structural brain network in patients with cerebral amyloid angiopathy to healthy control subjects and examined the relationship between markers of cerebral amyloid angiopathy-related brain injury, network efficiency, and potential clinical consequences. Structural brain networks were reconstructed from diffusion-weighted magnetic resonance imaging in 38 non-demented patients with probable cerebral amyloid angiopathy (69 ± 10 years) and 29 similar aged control participants. The efficiency of the brain network was characterized using graph theory and brain amyloid deposition was quantified by Pittsburgh compound B retention on positron emission tomography imaging. Global efficiency of the brain network was reduced in patients compared to controls (0.187 ± 0.018 and 0.201 ± 0.015, respectively, P < 0.001). Network disturbances were most pronounced in the occipital, parietal, and posterior temporal lobes. Among patients, lower global network efficiency was related to higher cortical amyloid load (r = −0.52; P = 0.004), and to magnetic resonance imaging markers of small-vessel disease including increased white matter hyperintensity volume (P < 0.001), lower total brain volume (P = 0.02), and number of microbleeds (trend P = 0.06). Lower global network efficiency was also related to worse performance on tests of processing speed (r = 0.58, P < 0.001), executive functioning (r = 0.54, P = 0.001), gait velocity (r = 0.41, P = 0.02), but not memory. Correlations with cognition were independent of age, sex, education level, and other magnetic resonance imaging

  16. Muscle enzyme activities in a deep-sea squaloid shark, Centroscyllium fabricii, compared with its shallow-living relative, Squalus acanthias.

    PubMed

    Treberg, Jason R; Martin, R Aidan; Driedzic, William R

    2003-12-01

    The activities of several enzymes of energy metabolism were measured in the heart, red muscle, and white muscle of a deep and a shallow living squaloid shark, Centroscyllium fabricii and Squalus acanthias, respectively. The phylogenetic closeness of these species, combined with their active predatory nature, similar body form, and size makes them well matched for comparison. This is the first time such a comparison has been made involving a deep-sea elasmobranch. Enzyme activities were similar in the heart, but generally lower in the red muscle of C. fabricii. Paralleling the trend seen in deep-sea teleosts, the white muscle of C. fabricii had substantially lower activities of key glycolytic enzymes, pyruvate kinase and lactate dehydrogenase, relative to S. acanthias or other shallow living elasmobranchs. Unexpectedly, between the squaloid sharks examined, creatine phosphokinase activity was higher in all tissues of the deep living C. fabricii. Low white muscle glycolytic enzyme activities in the deep-sea species coupled with high creatine phosphokinase activity suggests that the capacity for short burst swimming is likely limited once creatine phosphate supplies have been exhausted. Copyright 2003 Wiley-Liss, Inc.

  17. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization.

    PubMed

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P; Johnson, G Allan

    2015-08-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved three-dimensional (3D) reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. © 2015 Wiley Periodicals, Inc.

  18. Altering cortical connectivity: Remediation-induced changes in the white matter of poor readers

    PubMed Central

    Keller, Timothy A.; Just, Marcel Adam

    2009-01-01

    SUMMARY Neuroimaging studies using diffusion tensor imaging (DTI) have revealed regions of cerebral white matter with decreased microstructural organization (lower fractional anisotropy or FA) among poor readers. We examined whether 100 hours of intensive remedial instruction affected the white matter of 8–10-year-old poor readers. Prior to instruction, poor readers had significantly lower FA than good readers in a region of the left anterior centrum semiovale. The instruction resulted in a change in white matter (significantly increased FA), and in the very same region. The FA increase was correlated with a decrease in radial diffusivity (but not with a change in axial diffusivity), suggesting that myelination had increased. Furthermore, the FA increase was correlated with improvement in phonological decoding ability, clarifying the cognitive locus of the effect. The results demonstrate for the first time the capability of a behavioral intervention to bring about a positive change in cortico-cortical white matter tracts. PMID:20005820

  19. Cerebral Palsy (For Teens)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Cerebral Palsy KidsHealth / For Teens / Cerebral Palsy What's in this ... do just what everyone else does. What Is Cerebral Palsy? Cerebral palsy (CP) is a disorder of the ...

  20. Neonatal Infection in Children With Cerebral Palsy: A Registry-Based Cohort Study.

    PubMed

    Smilga, Anne-Sophie; Garfinkle, Jarred; Ng, Pamela; Andersen, John; Buckley, David; Fehlings, Darcy; Kirton, Adam; Wood, Ellen; van Rensburg, Esias; Shevell, Michael; Oskoui, Maryam

    2018-03-01

    The goal of this study was to explore the association between neonatal infection and outcomes in children with cerebral palsy. We conducted a retrospective cohort study using the Canadian CP Registry. Neonatal infection was defined as meeting one of the following criteria: (1) septicemia, (2) septic shock, or (3) administration of antibiotics for ≥10 days. Phenotypic profiles of children with cerebral palsy with and without an antecedent neonatal infection were compared. Subgroup analysis was performed, stratified by gestational age (term versus preterm). Of the 1229 registry participants, 505 (41.1%) were preterm, and 192 (15.6%) met the criteria for neonatal infection with 29% of preterm children having a neonatal infection compared with 6.5% in term-born children. Children with prior neonatal infection were more likely to have a white matter injury (odds ratio 2.2, 95% confidence interval 1.5 to 3.2), spastic diplegic neurological subtype (odds ratio 1.6, 95% confidence interval 1.1 to 2.3), and sensorineural auditory impairment (odds ratio 2.1, 95% confidence interval 1.4 to 3.3). Among preterm children, neonatal infection was not associated with a difference in phenotypic profile. Term-born children with neonatal infection were more likely to have spastic triplegia or quadriplegia (odds ratio 2.4, 95% confidence interval 1.3 to 4.3), concomitant white matter and cortical injury (odds ratio 4.1, 95% confidence interval 1.6 to 10.3), and more severe gross motor ability (Gross Motor Function Classification System IV to V) (odds ratio 2.6, 95% confidence interval 1.4 to 4.8) compared with preterm children. Findings suggest a role of systemic infection on the developing brain in term-born infants, and the possibility to develop targeted therapeutic and preventive strategies to reduce cerebral palsy morbidity. Copyright © 2017. Published by Elsevier Inc.

  1. Risk of Neurological Insult in Competitive Deep Breath-Hold Diving.

    PubMed

    Tetzlaff, Kay; Schöppenthau, Holger; Schipke, Jochen D

    2017-02-01

    It has been widely believed that tissue nitrogen uptake from the lungs during breath-hold diving would be insufficient to cause decompression stress in humans. With competitive free diving, however, diving depths have been ever increasing over the past decades. A case is presented of a competitive free-diving athlete who suffered stroke-like symptoms after surfacing from his last dive of a series of 3 deep breath-hold dives. A literature and Web search was performed to screen for similar cases of subjects with serious neurological symptoms after deep breath-hold dives. A previously healthy 31-y-old athlete experienced right-sided motor weakness and difficulty speaking immediately after surfacing from a breathhold dive to a depth of 100 m. He had performed 2 preceding breath-hold dives to that depth with surface intervals of only 15 min. The presentation of symptoms and neuroimaging findings supported a clinical diagnosis of stroke. Three more cases of neurological insults were retrieved by literature and Web search; in all cases the athletes presented with stroke-like symptoms after single breath-hold dives of depths exceeding 100 m. Two of these cases only had a short delay to recompression treatment and completely recovered from the insult. This report highlights the possibility of neurological insult, eg, stroke, due to cerebral arterial gas embolism as a consequence of decompression stress after deep breath-hold dives. Thus, stroke as a clinical presentation of cerebral arterial gas embolism should be considered another risk of extreme breath-hold diving.

  2. Fluconazole penetration in cerebral parenchyma in humans at steady state.

    PubMed Central

    Thaler, F; Bernard, B; Tod, M; Jedynak, C P; Petitjean, O; Derome, P; Loirat, P

    1995-01-01

    We studied fluconazole penetration in the brain in five patients who had a deep cerebral tumor whose removal required the excision of healthy brain tissue. Plasma and brain samples were simultaneously obtained after oral ingestion of 400 mg of fluconazole daily for 4 days (90% of steady state). Fluconazole penetration in healthy cerebral parenchyma was determined. Plasma and brain samples were assayed by high-pressure liquid chromatography. Concentrations in plasma and brain tissue were 13.5 +/- 5.5 micrograms/ml and 17.6 +/- 6.6 micrograms/g, respectively. The average ratio of concentrations in the brain and plasma (four patients) was 1.33 (range, 0.70 to 2.39). Despite the lack of data concerning the penetration of fluconazole in brain abscesses, these results should permit the use of a daily dose of 400 mg of fluconazole in prospective clinical studies that evaluate the effectiveness of this drug in the treatment of brain abscesses due to susceptible species of fungi. PMID:7625804

  3. Deep brain stimulation in cerebral palsy: Challenges and opportunities.

    PubMed

    Koy, Anne; Timmermann, Lars

    2017-01-01

    Cerebral palsy (CP) is the most common cause for acquired dystonia in childhood. Pharmacological treatment is often unsatisfactory and side effects are frequently dose-limiting. Data on outcome of DBS in paediatric patients with dyskinetic CP is very limited and heterogeneous. Reasons for the variability in responses are not entirely known yet. Interestingly, some CP-patients seem to improve subjectively on pallidal stimulation but without measurable changes in impairment scales. Besides dystonia scales, the use of sensitive age-dependent assessments tools is therefore reasonable to capture the full effect. As the course of disease duration as well as the age at operation seem to correlate with DBS outcome in patients with dystonia, DBS at an early stage of development might be beneficial for some of these patients. For the future, well-conducted trials as well as data collection in the international registry is of major importance to increase knowledge about DBS in CP patients, especially those implanted at a young age. Furthermore, selection criteria and guidelines or treatment standards are needed to improve the service for children with dyskinetic CP - especially in light of unsatisfactory medical treatment options. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice.

    PubMed

    Cahill, Lindsay S; Gazdzinski, Lisa M; Tsui, Albert Ky; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory Mt; Kassner, Andrea; Sled, John G

    2017-03-01

    Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO 2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia.

  5. Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice

    PubMed Central

    Gazdzinski, Lisa M; Tsui, Albert KY; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory MT; Kassner, Andrea; Sled, John G

    2016-01-01

    Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia. PMID:27165012

  6. Usefulness of the apparent diffusion coefficient for the evaluation of the white matter to differentiate between glioblastoma and brain metastases.

    PubMed

    Miquelini, L A; Pérez Akly, M S; Funes, J A; Besada, C H

    2016-01-01

    To determine whether there are significant differences in the apparent diffusion coefficient (ADC) between the apparently normal peritumor white matter surrounding glioblastomas and that surrounding brain metastases. We retrospectively reviewed 42 patients with histologically confirmed glioblastomas and 42 patients with a single cerebral metastasis. We measured the signal intensity in the apparently normal peritumor white matter and in the abnormal peritumor white matter on the ADC maps. We used mean ADC values in the contralateral occipital white matter as a reference from which to design normalized ADC indices. We compared mean values between the two tumor types. We calculated the area under the receiver operator characteristic curve and estimated the sensitivity and specificity of the measurements taken. Supratentorial lesions and compromise of the corpus callosum were more common in patients with glioblastoma than in patients with brain metastases. The maximum diameter of the enhanced area after injection of a contrast agent was greater in the glioblastomas (p<0.001). The minimum ADC value measured in the apparently normal peritumor white matter was higher for the glioblastomas than for the metastases (p=0.002). Significant differences in the ADC index were found only for the minimum ADC value in apparently normal peritumor white matter. The sensitivity and specificity were less than 70% for all variables analyzed. There are differences in the ADC values of apparently normal peritumor white matter between glioblastomas and cerebral metastases, but the magnitude of these differences is slight and the application of these differences in clinical practice is still limited. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  7. Lacunar infarction and small vessel disease: pathology and pathophysiology.

    PubMed

    Caplan, Louis R

    2015-01-01

    Two major vascular pathologies underlie brain damage in patients with disease of small size penetrating brain arteries and arterioles; 1) thickening of the arterial media and 2) obstruction of the origins of penetrating arteries by parent artery intimal plaques. The media of these small vessels may be thickened by fibrinoid deposition and hypertrophy of smooth muscle and other connective tissue elements that accompanies degenerative changes in patients with hypertension and or diabetes or can contain foreign deposits as in amyloid angiopathy and genetically mediated conditions such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. These pathological changes lead to 2 different pathophysiologies: 1) brain ischemia in regions supplied by the affected arteries. The resultant lesions are deep small infarcts, most often involving the basal ganglia, pons, thalami and cerebral white matter. And 2) leakage of fluid causing edema and later gliosis in white matter tracts. The changes in the media and adventitia effect metalloproteinases and other substances within the matrix of the vessels and lead to abnormal blood/brain barriers in these small vessels. and chronic gliosis and atrophy of cerebral white matter.

  8. Structural characterization of the human cerebral myelin sheath by small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    DeFelici, M.; Felici, R.; Ferrero, C.; Tartari, A.; Gambaccini, M.; Finet, S.

    2008-10-01

    Myelin is a multi-lamellar membrane surrounding neuronal axons and increasing their conduction velocity. When investigated by small-angle x-ray scattering (SAXS), the lamellar quasi-periodical arrangement of the myelin sheath gives rise to distinct peaks, which allow the determination of its molecular organization and the dimensions of its substructures. In this study we report on the myelin sheath structural determination carried out on a set of human brain tissue samples coming from surgical biopsies of two patients: a man around 60 and a woman nearly 90 years old. The samples were extracted either from white or grey cerebral matter and did not undergo any manipulation or chemical-physical treatment, which could possibly have altered their structure, except dipping them into a formalin solution for their conservation. Analysis of the scattered intensity from white matter of intact human cerebral tissue allowed the evaluation not only of the myelin sheath periodicity but also of its electronic charge density profile. In particular, the thicknesses of the cytoplasm and extracellular regions were established, as well as those of the hydrophilic polar heads and hydrophobic tails of the lipid bilayer. SAXS patterns were measured at several locations on each sample in order to establish the statistical variations of the structural parameters within a single sample and among different samples. This work demonstrates that a detailed structural analysis of the myelin sheath can also be carried out in randomly oriented samples of intact human white matter, which is of importance for studying the aetiology and evolution of the central nervous system pathologies inducing myelin degeneration.

  9. Cerebral ischemia and neuroregeneration

    PubMed Central

    Lee, Reggie H. C.; Lee, Michelle H. H.; Wu, Celeste Y. C.; Couto e Silva, Alexandre; Possoit, Harlee E.; Hsieh, Tsung-Han; Minagar, Alireza; Lin, Hung Wen

    2018-01-01

    Cerebral ischemia is one of the leading causes of morbidity and mortality worldwide. Although stroke (a form of cerebral ischemia)-related costs are expected to reach 240.67 billion dollars by 2030, options for treatment against cerebral ischemia/stroke are limited. All therapies except anti-thrombolytics (i.e., tissue plasminogen activator) and hypothermia have failed to reduce neuronal injury, neurological deficits, and mortality rates following cerebral ischemia, which suggests that development of novel therapies against stroke/cerebral ischemia are urgently needed. Here, we discuss the possible mechanism(s) underlying cerebral ischemia-induced brain injury, as well as current and future novel therapies (i.e., growth factors, nicotinamide adenine dinucleotide, melatonin, resveratrol, protein kinase C isozymes, pifithrin, hypothermia, fatty acids, sympathoplegic drugs, and stem cells) as it relates to cerebral ischemia. PMID:29623912

  10. White matter damage is related to ataxia severity in SCA3.

    PubMed

    Kang, J-S; Klein, J C; Baudrexel, S; Deichmann, R; Nolte, D; Hilker, R

    2014-02-01

    Spinocerebellar ataxia type 3 (SCA3) is the most frequent inherited cerebellar ataxia in Europe, the US and Japan, leading to disability and death through motor complications. Although the affected protein ataxin-3 is found ubiquitously in the brain, grey matter atrophy is predominant in the cerebellum and the brainstem. White matter pathology is generally less severe and thought to occur in the brainstem, spinal cord, and cerebellar white matter. Here, we investigated both grey and white matter pathology in a group of 12 SCA3 patients and matched controls. We used voxel-based morphometry for analysis of tissue loss, and tract-based spatial statistics (TBSS) on diffusion magnetic resonance imaging to investigate microstructural pathology. We analysed correlations between microstructural properties of the brain and ataxia severity, as measured by the Scale for the Assessment and Rating of Ataxia (SARA) score. SCA3 patients exhibited significant loss of both grey and white matter in the cerebellar hemispheres, brainstem including pons and in lateral thalamus. On between-group analysis, TBSS detected widespread microstructural white matter pathology in the cerebellum, brainstem, and bilaterally in thalamus and the cerebral hemispheres. Furthermore, fractional anisotropy in a white matter network comprising frontal, thalamic, brainstem and left cerebellar white matter strongly and negatively correlated with SARA ataxia scores. Tractography identified the thalamic white matter thus implicated as belonging to ventrolateral thalamus. Disruption of white matter integrity in patients suffering from SCA3 is more widespread than previously thought. Moreover, our data provide evidence that microstructural white matter changes in SCA3 are strongly related to the clinical severity of ataxia symptoms.

  11. Genetic Study of White Matter Integrity in UK Biobank (N=8448) and the Overlap With Stroke, Depression, and Dementia.

    PubMed

    Rutten-Jacobs, Loes C A; Tozer, Daniel J; Duering, Marco; Malik, Rainer; Dichgans, Martin; Markus, Hugh S; Traylor, Matthew

    2018-06-01

    Structural integrity of the white matter is a marker of cerebral small vessel disease, which is the major cause of vascular dementia and a quarter of all strokes. Genetic studies provide a way to obtain novel insights in the disease mechanism underlying cerebral small vessel disease. The aim was to identify common variants associated with microstructural integrity of the white matter and to elucidate the relationships of white matter structural integrity with stroke, major depressive disorder, and Alzheimer disease. This genome-wide association analysis included 8448 individuals from UK Biobank-a population-based cohort study that recruited individuals from across the United Kingdom between 2006 and 2010, aged 40 to 69 years. Microstructural integrity was measured as fractional anisotropy- (FA) and mean diffusivity (MD)-derived parameters on diffusion tensor images. White matter hyperintensity volumes (WMHV) were assessed on T2-weighted fluid-attenuated inversion recovery images. We identified 1 novel locus at genome-wide significance ( VCAN [versican]: rs13164785; P =3.7×10 -18 for MD and rs67827860; P =1.3×10 -14 for FA). LD score regression showed a significant genome-wide correlation between FA, MD, and WMHV (FA-WMHV rG 0.39 [SE, 0.15]; MD-WMHV rG 0.56 [SE, 0.19]). In polygenic risk score analysis, FA, MD, and WMHV were significantly associated with lacunar stroke, MD with major depressive disorder, and WMHV with Alzheimer disease. Genetic variants within the VCAN gene may play a role in the mechanisms underlying microstructural integrity of the white matter in the brain measured as FA and MD. Mechanisms underlying white matter alterations are shared with cerebrovascular disease, and inherited differences in white matter microstructure impact on Alzheimer disease and major depressive disorder. © 2018 The Authors.

  12. Whole brain analysis of postmortem density changes of grey and white matter on computed tomography by statistical parametric mapping.

    PubMed

    Nishiyama, Yuichi; Kanayama, Hidekazu; Mori, Hiroshi; Tada, Keiji; Yamamoto, Yasushi; Katsube, Takashi; Takeshita, Haruo; Kawakami, Kazunori; Kitagaki, Hajime

    2017-06-01

    This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. • The original brain CT template achieved successful normalization of brain morphology. • Postmortem changes in the brain were independent of sex. • Cortical GM density decreased rapidly after death. • WM and deep GM densities increased following cortical GM density change. • SPM could be useful for assessment of whole brain postmortem changes.

  13. Edge Density Imaging: Mapping the Anatomic Embedding of the Structural Connectome Within the White Matter of the Human Brain

    PubMed Central

    Owen, Julia P.; Chang, Yi-Shin; Mukherjee, Pratik

    2015-01-01

    The structural connectome has emerged as a powerful tool to characterize the network architecture of the human brain and shows great potential for generating important new biomarkers for neurologic and psychiatric disorders. The edges of the cerebral graph traverse white matter to interconnect cortical and subcortical nodes, although the anatomic embedding of these edges is generally overlooked in the literature. Mapping the paths of the connectome edges could elucidate the relative importance of individual white matter tracts to the overall network topology of the brain and also lead to a better understanding of the effect of regionally-specific white matter pathology on cognition and behavior. In this work, we introduce edge density imaging (EDI), which maps the number of network edges that pass through every white matter voxel. Test-retest analysis shows good to excellent reliability for edge density (ED) measurements, with consistent results using different cortical and subcortical parcellation schemes and different diffusion MR imaging acquisition parameters. We also demonstrate that ED yields complementary information to both traditional and emerging voxel-wise metrics of white matter microstructure and connectivity, including fractional anisotropy, track density, fiber orientation dispersion and neurite density. Our results demonstrate spatially ordered variations of ED throughout the white matter, notably including greater ED in posterior than anterior cerebral white matter. The EDI framework is employed to map the white matter regions that are enriched with pathways connecting rich club nodes and also those with high densities of intra-modular and inter-modular edges. We show that periventricular white matter has particularly high ED and high densities of rich club edges, which is significant for diseases in which these areas are selectively affected, ranging from white matter injury of prematurity in infants to leukoaraiosis in the elderly. Using edge

  14. [Advantages and Application Prospects of Deep Learning in Image Recognition and Bone Age Assessment].

    PubMed

    Hu, T H; Wan, L; Liu, T A; Wang, M W; Chen, T; Wang, Y H

    2017-12-01

    Deep learning and neural network models have been new research directions and hot issues in the fields of machine learning and artificial intelligence in recent years. Deep learning has made a breakthrough in the applications of image and speech recognitions, and also has been extensively used in the fields of face recognition and information retrieval because of its special superiority. Bone X-ray images express different variations in black-white-gray gradations, which have image features of black and white contrasts and level differences. Based on these advantages of deep learning in image recognition, we combine it with the research of bone age assessment to provide basic datum for constructing a forensic automatic system of bone age assessment. This paper reviews the basic concept and network architectures of deep learning, and describes its recent research progress on image recognition in different research fields at home and abroad, and explores its advantages and application prospects in bone age assessment. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  15. Structural connectivity of the anterior cingulate in children with unilateral cerebral palsy due to white matter lesions

    PubMed Central

    Scheck, Simon M.; Pannek, Kerstin; Raffelt, David A.; Fiori, Simona; Boyd, Roslyn N.; Rose, Stephen E.

    2015-01-01

    In this work we investigate the structural connectivity of the anterior cingulate cortex (ACC) and its link with impaired executive function in children with unilateral cerebral palsy (UCP) due to periventricular white matter lesions. Fifty two children with UCP and 17 children with typical development participated in the study, and underwent diffusion and structural MRI. Five brain regions were identified for their high connectivity with the ACC using diffusion MRI fibre tractography: the superior frontal gyrus, medial orbitofrontal cortex, rostral middle frontal gyrus, precuneus and isthmus cingulate. Structural connectivity was assessed in pathways connecting these regions to the ACC using three diffusion MRI derived measures: fractional anisotropy (FA), mean diffusivity (MD) and apparent fibre density (AFD), and compared between participant groups. Furthermore we investigated correlations of these measures with executive function as assessed by the Flanker task. The ACC–precuneus tract had significantly different MD (p < 0.0001) and AFD (p = 0.0072) between groups, with post-hoc analysis showing significantly increased MD in the right hemisphere of children with left hemiparesis compared with controls. The ACC–superior frontal gyrus tract had significantly different FA (p = 0.0049) and MD (p = 0.0031) between groups. AFD in this tract (contralateral to side of hemiparesis; right hemisphere in controls) showed a significant relationship with Flanker task performance (p = 0.0045, β = −0.5856), suggesting that reduced connectivity correlates with executive dysfunction. Reduced structural integrity of ACC tracts appears to be important in UCP, in particular the connection to the superior frontal gyrus. Although damage to this area is heterogeneous it may be important in early identification of children with impaired executive function. PMID:26640762

  16. Pattern and predictors of neurological morbidities among childhood cerebral malaria survivors in central Sudan.

    PubMed

    Mergani, Adil; Khamis, Ammar H; Fatih Hashim, E L; Gumma, Mohamed; Awadelseed, Bella; Elwali, Nasr Eldin M A; Haboor, Ali Babikir

    2015-09-01

    Cerebral malaria is considered a leading cause of neuro-disability in sub-Saharan Africa among children and about 25% of survivors have long-term neurological and cognitive deficits or epilepsy. Their development was reported to be associated with protracted seizures, deep and prolonged coma. The study was aimed to determine the discharge pattern and to identify potential and informative predictors of neurological sequelae at discharge, complicating childhood cerebral malaria in central Sudan. A cross-sectional prospective study was carried out during malaria transmission seasons from 2000 to 2004 in Wad Medani, Sinnar and Singa hospitals, central Sudan. Children suspected of having cerebral malaria were examined and diagnosed by a Pediatrician for clinical, laboratory findings and any neurological complications. Univariate and multiple regression model analysis were performed to evaluate the association of clinical and laboratory findings with occurrence of neurological complications using the SPSS. Out of 940 examined children, only 409 were diagnosed with cerebral malaria with a mean age of 6.1 ± 3.3 yr. The mortality rate associated with the study was 14.2% (58) and 18.2% (64) of survivors (351) had neurological sequelae. Abnormal posture, either decerebration or decortication, focal convulsion and coma duration of >48 h were significant predictors for surviving from cerebral malaria with a neurological sequelae in children from central Sudan by Univariate analysis. Multiple logistic regression model fitting these variables, revealed 39.6% sensitivity for prediction of childhood cerebral malaria survivors with neurological sequelae (R² = 0.396; p=0.001). Neurological sequelae are common due to childhood cerebral malaria in central Sudan. Their prediction at admission, clinical presentation and laboratory findings may guide clinical intervention and proper management that may decrease morbidity and improve CM consequences.

  17. Brain Perfusion Is Increased at Term in the White Matter of Very Preterm Newborns and Newborns with Congenital Heart Disease: Does this Reflect Activated Angiogenesis?

    PubMed

    Wintermark, Pia; Lechpammer, Mirna; Kosaras, Bela; Jensen, Frances E; Warfield, Simon K

    2015-10-01

    This study aims to evaluate brain perfusion at term in very preterm newborns and newborns with congenital heart disease before their corrective surgery, and to search for histopathological indicators of whether the brain perfusion abnormalities of these newborns may be related to an activated angiogenesis. Using magnetic resonance imaging and arterial spin labeling, regional cerebral blood flow was measured at a term-equivalent age for three very preterm newborns (born at < 32 weeks), one newborn with congenital heart disease before his corrective surgery and three healthy newborns. In addition, a histopathological analysis was performed on a newborn with congenital heart disease. The very preterm newborns and the newborn with congenital heart disease included in this study all displayed an increased signal in their white matter on T2-weighted imaging. The cerebral blood flow of these newborns was increased in their white matter, compared with the healthy term newborns. The vascular endothelial growth factor was overexpressed in the injured white matter of the newborn with congenital heart disease. Brain perfusion may be increased at term in the white matter, in very preterm newborns, and newborns with congenital heart disease, and it correlates with white matter abnormalities on conventional imaging. Georg Thieme Verlag KG Stuttgart · New York.

  18. White Matter Injury and General Movements in High-Risk Preterm Infants.

    PubMed

    Peyton, C; Yang, E; Msall, M E; Adde, L; Støen, R; Fjørtoft, T; Bos, A F; Einspieler, C; Zhou, Y; Schreiber, M D; Marks, J D; Drobyshevsky, A

    2017-01-01

    Very preterm infants (birth weight, <1500 g) are at increased risk of cognitive and motor impairment, including cerebral palsy. These adverse neurodevelopmental outcomes are associated with white matter abnormalities on MR imaging at term-equivalent age. Cerebral palsy has been predicted by analysis of spontaneous movements in the infant termed "General Movement Assessment." The goal of this study was to determine the utility of General Movement Assessment in predicting adverse cognitive, language, and motor outcomes in very preterm infants and to identify brain imaging markers associated with both adverse outcomes and aberrant general movements. In this prospective study of 47 preterm infants of 24-30 weeks' gestation, brain MR imaging was performed at term-equivalent age. Infants underwent T1- and T2-weighted imaging for volumetric analysis and DTI. General movements were assessed at 10-15 weeks' postterm age, and neurodevelopmental outcomes were evaluated at 2 years by using the Bayley Scales of Infant and Toddler Development III. Nine infants had aberrant general movements and were more likely to have adverse neurodevelopmental outcomes, compared with infants with normal movements. In infants with aberrant movements, Tract-Based Spatial Statistics analysis identified significantly lower fractional anisotropy in widespread white matter tracts, including the corpus callosum, inferior longitudinal and fronto-occipital fasciculi, internal capsule, and optic radiation. The subset of infants having both aberrant movements and abnormal neurodevelopmental outcomes in cognitive, language, and motor skills had significantly lower fractional anisotropy in specific brain regions. Aberrant general movements at 10-15 weeks' postterm are associated with adverse neurodevelopmental outcomes and specific white matter microstructure abnormalities for cognitive, language, and motor delays. © 2017 by American Journal of Neuroradiology.

  19. Heat shock protein expression in cerebral X-linked adrenoleukodystrophy reveals astrocyte stress prior to myelin loss.

    PubMed

    Görtz, A L; Peferoen, L A N; Gerritsen, W H; van Noort, J M; Bugiani, M; Amor, S

    2018-06-01

    X-linked adrenoleukodystrophy (X-ALD) is a genetic white matter disorder in which demyelination occurs due to accumulation of very long-chain fatty acids. Inflammation in the brain white matter is a hallmark of the pathology of cerebral X-ALD, but the underlying pathogenic mechanisms are still largely unknown. In other inflammatory demyelinating disorders, such as multiple sclerosis, the expression of heat shock proteins (HSPs) in combination with interferon-γ (IFN-γ) has been suggested to play a prominent role in the initiation of demyelination and inflammation. We therefore investigated these pathways in X-ALD lesions. By immunohistochemistry, we examined the expression of small HSPs (HSPB1, HSPB5, HSPB6, HSPB8) and higher molecular weight HSPs (HSPA, HSPD1), and the expression of elements of the IFN-γ pathway on autopsy material of five patients with X-ALD. The expression of the larger HSPs, HSPA and HSPD1, as well as small HSPs is increased in X-ALD lesions compared with normal-appearing white matter. Such upregulation can already be detected before demyelination and inflammation occur, and it is predominant in astrocytes. The IFN-γ pathway does not seem to play a leading role in the observed inflammation. The finding that astrocytes show signs of cellular stress before demyelination suggests that they play a major role early in the pathogenesis of cerebral X-ALD, and may therefore be involved in the initiation of inflammation and demyelination. © 2017 British Neuropathological Society.

  20. Cerebral Palsy

    MedlinePlus

    Cerebral palsy is a group of disorders that affect a person's ability to move and to maintain balance ... do not get worse over time. People with cerebral palsy may have difficulty walking. They may also have ...

  1. [Etiology of cerebral palsy].

    PubMed

    Jaisle, F

    1996-01-01

    The "perinatal asphyxia" is regarded to be one of the causes of cerebral palsy, though in the very most of the children with cerebral palsy there is found no hypoxia during labour. It should be mentioned, that the definition of "perinatal" and "asphyxia" neither are unic nor concret. And also there is no correlation between nonreassuring fetal heart rate patterns and acidosis in fetal blood with the incidence of cerebral palsy. Numerous studies in pregnant animals failed in proving an acute intrapartal hypoxia to be the origin of the cerebral palsy. Myers (1975) describes four patterns of anatomic brain damage after different injuries. Only his so called oligo-acidotic hypoxia, which is protracted and lasts over a longer time is leading to brain injury, which can be regarded in analogy to the injury of children with cerebral palsy. Summarising the update publications about the causes of cerebral palsy and the studies in pregnant animals there is no evidence that hypoxia during labour may be the cause of cerebral palsy. There is a great probability of a pre(and post-)natal origin of brain injury (for instance a periventricular leucomalacia found after birth) which leads to cerebral palsy. Short after labour signs of a so called "asphyxia" may occur in addition to this preexisting injury and misrepresent the cause of cerebral palsy. Finally the prepartal injury may cause both: Cerebral palsy and hypoxia.

  2. Exercise-induced changes in local cerebral glucose utilization in the rat.

    PubMed

    Vissing, J; Andersen, M; Diemer, N H

    1996-07-01

    In exercise, little is known about local cerebral glucose utilization (LCGU), which is an index of functional neurogenic activity. We measured LCGU in resting and running (approximately 85% of maximum O2 uptake) rats (n = 7 in both groups) previously equipped with a tail artery catheter. LCGU was measured quantitatively from 2-deoxy-D-[1-14C]glucose autoradiographs. During exercise, total cerebral glucose utilization (TCGU) increased by 38% (p < 0.005). LCGU increased (p < 0.05) in areas involved in motor function (motor cortex 39%, cerebellum approximately 110%, basal ganglia approximately 30%, substantia nigra approximately 37%, and in the following nuclei: subthalamic 47%, posterior hypothalamic 74%, red 61%, ambiguous 43%, pontine 61%), areas involved in sensory function (somatosensory 27%, auditory 32%, and visual cortex 42%, thalamus approximately 75%, and in the following nuclei: Darkschewitsch 22%, cochlear 51%, vestibular 30%, superior olive 23%, cuneate 115%), areas involved in autonomic function (dorsal raphe nucleus 30%, and areas in the hypothalamus approximately 35%, amygdala approximately 35%, and hippocampus 29%), and in white matter of the corpus callosum (36%) and cerebellum (52%). LCGU did not change with exercise in prefrontal and frontal cortex, cingulum, inferior olive, nucleus of solitary tract and median raphe, lateral septal and interpenduncular nuclei, or in areas of the hippocampus, amygdala, and hypothalamus. Glucose utilization did not decrease during exercise in any of the studied cerebral regions. In summary, heavy dynamic exercise increases TCGU and evokes marked differential changes in LCGU. The findings provide clues to the cerebral areas that participate in the large motor, sensory, and autonomic adaptation occurring in exercise.

  3. Disrupted white matter structural connectivity in heroin abusers.

    PubMed

    Sun, Yan; Wang, Gui-Bin; Lin, Qi-Xiang; Lu, Lin; Shu, Ni; Meng, Shi-Qiu; Wang, Jun; Han, Hong-Bin; He, Yong; Shi, Jie

    2017-01-01

    Neurocognitive impairment is one of the factors that put heroin abusers at greater risk for relapse, and deficits in related functional brain connections have been found. However, the alterations in structural brain connections that may underlie these functional and neurocognitive impairments remain largely unknown. In the present study, we investigated topological organization alterations in the structural network of white matter in heroin abusers and examined the relationships between the network changes and clinical measures. We acquired diffusion tensor imaging datasets from 76 heroin abusers and 78 healthy controls. Network-based statistic was applied to identify alterations in interregional white matter connectivity, and graph theory methods were used to analyze the properties of global networks. The participants also completed a battery of neurocognitive measures. One increased subnetwork characterizing widespread abnormalities in structural connectivity was present in heroin users, which mainly composed of default-mode, attentional and visual systems. The connection strength was positively correlated with increases in fractional anisotropy in heroin abusers. Intriguingly, the changes in within-frontal and within-temporal connections in heroin abusers were significantly correlated with daily heroin dosage and impulsivity scores, respectively. These findings suggest that heroin abusers have extensive abnormal white matter connectivity, which may mediate the relationship between heroin dependence and clinical measures. The increase in white matter connectivity may be attributable to the inefficient microstructure integrity of white matter. The present findings extend our understanding of cerebral structural disruptions that underlie neurocognitive and functional deficits in heroin addiction and provide circuit-level markers for this chronic disorder. © 2015 Society for the Study of Addiction.

  4. Investigation of prefrontal cerebral hemodynamics during quantitative autonomic testing using NIRS (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Phillips, Zephaniah; Paik, Seung-Ho; Kim, Yoohwan; Kim, Byung-Jo; Choi, Youngwoon; Kim, Beop-Min

    2017-02-01

    In this work, we analyzed the clinical applicability of NIRS for use during Quantitative Autonomic Testing (QAT). QAT is a protocol consisting of deep breathing, Valsalva maneuver, and tilt table examination. It is used to diagnose a patient with disorders of the autonomic nervous system (ANS). Disorders of ANS includes orthostatic hyper/hypotension, vasovagal syncope, and postural orthostatic tachycardia syndrome. The results of QAT are typically analyzed with the use of blood pressure and heart rate data, however these metrics may be influenced by factors such as arrhythmia, making the data interpretation and diagnosis difficult for clinicians. We tested our custom built 108-channel NIRS probe on 26 elderly patients during the QAT protocol with various ANS disorders. We found that prefrontal cerebral oxygenation correlated well with blood pressure and heart rate changes for all three tasks, making it a clinically feasible tool for observing ANS functionality. During the Valsalva maneuver, we observed a longer delayed and lower amplitude response of cerebral oxygenation to the prefrontal area in orthostatic intolerant patients. During the tilt table examination, we saw a larger response in cerebral oxygenation and less equal transient cerebral oxygenation during tilt up and tilt down in tilt table examinations that were positive (unhealthy), compared to tilt table examinations that were negative (healthy). Overall, our study showcases NIRS as an enhanced tool for understanding ANS disorders.

  5. A probabilistic atlas of the cerebellar white matter.

    PubMed

    van Baarsen, K M; Kleinnijenhuis, M; Jbabdi, S; Sotiropoulos, S N; Grotenhuis, J A; van Cappellen van Walsum, A M

    2016-01-01

    Imaging of the cerebellar cortex, deep cerebellar nuclei and their connectivity are gaining attraction, due to the important role the cerebellum plays in cognition and motor control. Atlases of the cerebellar cortex and nuclei are used to locate regions of interest in clinical and neuroscience studies. However, the white matter that connects these relay stations is of at least similar functional importance. Damage to these cerebellar white matter tracts may lead to serious language, cognitive and emotional disturbances, although the pathophysiological mechanism behind it is still debated. Differences in white matter integrity between patients and controls might shed light on structure-function correlations. A probabilistic parcellation atlas of the cerebellar white matter would help these studies by facilitating automatic segmentation of the cerebellar peduncles, the localization of lesions and the comparison of white matter integrity between patients and controls. In this work a digital three-dimensional probabilistic atlas of the cerebellar white matter is presented, based on high quality 3T, 1.25mm resolution diffusion MRI data from 90 subjects participating in the Human Connectome Project. The white matter tracts were estimated using probabilistic tractography. Results over 90 subjects were symmetrical and trajectories of superior, middle and inferior cerebellar peduncles resembled the anatomy as known from anatomical studies. This atlas will contribute to a better understanding of cerebellar white matter architecture. It may eventually aid in defining structure-function correlations in patients with cerebellar disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Genetic modification of cerebral arterial wall: implications for prevention and treatment of cerebral vasospasm.

    PubMed

    Vijay, Anantha; Santhanam, R; Katusic, Zvonimir S

    2006-10-01

    Genetic modification of cerebral vessels represents a promising and novel approach for prevention and/or treatment of various cerebral vascular disorders, including cerebral vasospasm. In this review, we focus on the current understanding of the use of gene transfer to the cerebral arteries for prevention and/or treatment of cerebral vasospasm following subarachnoid hemorrhage (SAH). We also discuss the recent developments in vascular therapeutics, involving the autologous use of progenitor cells for repair of damaged vessels, as well as a cell-based gene delivery approach for the prevention and treatment of cerebral vasospasm.

  7. Abnormal white matter properties in adolescent girls with anorexia nervosa

    PubMed Central

    Travis, Katherine E.; Golden, Neville H.; Feldman, Heidi M.; Solomon, Murray; Nguyen, Jenny; Mezer, Aviv; Yeatman, Jason D.; Dougherty, Robert F.

    2015-01-01

    Anorexia nervosa (AN) is a serious eating disorder that typically emerges during adolescence and occurs most frequently in females. To date, very few studies have investigated the possible impact of AN on white matter tissue properties during adolescence, when white matter is still developing. The present study evaluated white matter tissue properties in adolescent girls with AN using diffusion MRI with tractography and T1 relaxometry to measure R1 (1/T1), an index of myelin content. Fifteen adolescent girls with AN (mean age = 16.6 years ± 1.4) were compared to fifteen age-matched girls with normal weight and eating behaviors (mean age = 17.1 years ± 1.3). We identified and segmented 9 bilateral cerebral tracts (18) and 8 callosal fiber tracts in each participant's brain (26 total). Tract profiles were generated by computing measures for fractional anisotropy (FA) and R1 along the trajectory of each tract. Compared to controls, FA in the AN group was significantly decreased in 4 of 26 white matter tracts and significantly increased in 2 of 26 white matter tracts. R1 was significantly decreased in the AN group compared to controls in 11 of 26 white matter tracts. Reduced FA in combination with reduced R1 suggests that the observed white matter differences in AN are likely due to reductions in myelin content. For the majority of tracts, group differences in FA and R1 did not occur within the same tract. The present findings have important implications for understanding the neurobiological factors underlying white matter changes associated with AN and invite further investigations examining associations between white matter properties and specific physiological, cognitive, social, or emotional functions affected in AN. PMID:26740918

  8. Relation between brain temperature and white matter damage in subacute carbon monoxide poisoning

    PubMed Central

    Fujiwara, Shunrou; Yoshioka, Yoshichika; Matsuda, Tsuyoshi; Nishimoto, Hideaki; Ogawa, Akira; Ogasawara, Kuniaki; Beppu, Takaaki

    2016-01-01

    In the previous studies, carbon monoxide (CO) poisoning showed an imbalance between cerebral perfusion and metabolism in the acute phase and the brain temperature (BT) in these patients remained abnormally high from the acute to the subacute phase. As observed in chronic ischemic patients, BT can continuously remain high depending on impairments of cerebral blood flow and metabolism; this is because heat removal and production system in the brain may mainly be maintained by the balance of these two factors; thus, cerebral white matter damage (WMD) affecting normal metabolism may affect the BT in patients with CO poisoning. Here, we investigated whether the BT correlates with the degree of WMD in patients with subacute CO-poisoning. In 16 patients with subacute CO-poisoning, the BT and degree of WMD were quantitatively measured by using magnetic resonance spectroscopy and the fractional anisotropy (FA) value from diffusion tensor imaging dataset. Consequently, the BT significantly correlated with the degree of WMD. In particular, BT observed in patients with delayed neuropsychiatric sequelae, a crucial symptom with sudden-onset in the chronic phase after CO exposure, might indicate cerebral hypo-metabolism and abnormal hemodynamics like “matched perfusion,” in which the reduced perfusion matches the reduced metabolism. PMID:27819312

  9. Representation of cerebral bridging veins in infants by postmortem computed tomography.

    PubMed

    Stein, Kirsten Marion; Ruf, Katharina; Ganten, Maria Katharina; Mattern, Rainer

    2006-11-10

    The postmortem diagnosis of shaken baby syndrome, a severe form of child abuse, may be difficult, especially when no other visible signs of significant trauma are obvious. An important finding in shaken baby syndrome is subdural haemorrhage, typically originating from ruptured cerebral bridging veins. Since these are difficult to detect at autopsy, we have developed a special postmortem computed tomographic (PMCT) method to demonstrate the intracranial vein system in infants. This method is minimally invasive and can be carried out conveniently and quickly on clinical computed tomography (CT) systems. Firstly, a precontrast CT is made of the infant's head, to document the original state. Secondly, contrast fluid is injected manually via fontanel puncture into the superior sagittal sinus, followed by a repeat CT scan. This allows the depiction of even very small vessels of the deep and superficial cerebral veins, especially the bridging veins, without damaging them. Ruptures appear as extravasation of contrast medium, which helps to locate them at autopsy and examine them histologically, whenever necessary.

  10. Cerebral Atrophy

    MedlinePlus

    ... Alzheimer’s disease, Pick’s disease, and fronto-temporal dementia cerebral palsy , in which lesions (damaged areas) may impair motor ... Alzheimer’s disease, Pick’s disease, and fronto-temporal dementia cerebral palsy , in which lesions (damaged areas) may impair motor ...

  11. Cerebral and non-cerebral coenurosis: on the genotypic and phenotypic diversity of Taenia multiceps.

    PubMed

    Christodoulopoulos, Georgios; Dinkel, Anke; Romig, Thomas; Ebi, Dennis; Mackenstedt, Ute; Loos-Frank, Brigitte

    2016-12-01

    We characterised the causative agents of cerebral and non-cerebral coenurosis in livestock by determining the mitochondrial genotypes and morphological phenotypes of 52 Taenia multiceps isolates from a wide geographical range in Europe, Africa, and western Asia. Three studies were conducted: (1) a morphological comparison of the rostellar hooks of cerebral and non-cerebral cysts of sheep and goats, (2) a morphological comparison of adult worms experimentally produced in dogs, and (3) a molecular analysis of three partial mitochondrial genes (nad1, cox1, and 12S rRNA) of the same isolates. No significant morphological or genetic differences were associated with the species of the intermediate host. Adult parasites originating from cerebral and non-cerebral cysts differed morphologically, e.g. the shape of the small hooks and the distribution of the testes in the mature proglottids. The phylogenetic analysis of the mitochondrial haplotypes produced three distinct clusters: one cluster including both cerebral isolates from Greece and non-cerebral isolates from tropical and subtropical countries, and two clusters including cerebral isolates from Greece. The majority of the non-cerebral specimens clustered together but did not form a monophyletic group. No monophyletic groups were observed based on geography, although specimens from the same region tended to cluster. The clustering indicates high intraspecific diversity. The phylogenetic analysis suggests that all variants of T. multiceps can cause cerebral coenurosis in sheep (which may be the ancestral phenotype), and some variants, predominantly from one genetic cluster, acquired the additional capacity to produce non-cerebral forms in goats and more rarely in sheep.

  12. Quantitative nuclear magnetic resonance imaging: characterisation of experimental cerebral oedema.

    PubMed Central

    Barnes, D; McDonald, W I; Johnson, G; Tofts, P S; Landon, D N

    1987-01-01

    Magnetic resonance imaging (MRI) has been used quantitatively to define the characteristics of two different models of experimental cerebral oedema in cats: vasogenic oedema produced by cortical freezing and cytotoxic oedema induced by triethyl tin. The MRI results have been correlated with the ultrastructural changes. The images accurately delineated the anatomical extent of the oedema in the two lesions, but did not otherwise discriminate between them. The patterns of measured increase in T1' and T2' were, however, characteristic for each type of oedema, and reflected the protein content. The magnetisation decay characteristics of both normal and oedematous white matter were monoexponential for T1 but biexponential for T2 decay. The relative sizes of the two component exponentials of the latter corresponded with the physical sizes of the major tissue water compartments. Quantitative MRI data can provide reliable information about the physico-chemical environment of tissue water in normal and oedematous cerebral tissue, and are useful for distinguishing between acute and chronic lesions in multiple sclerosis. Images PMID:3572428

  13. Cerebral Palsy. Fact Sheet = La Paralisis Cerebral. Hojas Informativas Sobre Discapacidades.

    ERIC Educational Resources Information Center

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet on cerebral palsy is written in both English and Spanish. First, it provides a definition of cerebral palsy and considers various causes (e.g., an insufficient amount of oxygen reaching the fetal or newborn brain). The fact sheet then offers incidence figures and explains characteristics of the three main types of cerebral palsy:…

  14. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia

    PubMed Central

    Chen, Aiqing; Akinyemi, Rufus O.; Hase, Yoshiki; Firbank, Michael J.; Ndung’u, Michael N.; Foster, Vincent; Craggs, Lucy J. L.; Washida, Kazuo; Okamoto, Yoko; Thomas, Alan J.; Polvikoski, Tuomo M.; Allan, Louise M.; Oakley, Arthur E.; O’Brien, John T.; Horsburgh, Karen; Ihara, Masafumi

    2016-01-01

    Abstract White matter hyperintensities as seen on brain T 2 -weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP+ astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP+ cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by >2-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects ( P = 0.026) and by 11-fold in older controls versus young controls ( P < 0.023) in the frontal white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP

  15. Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia.

    PubMed

    Chen, Aiqing; Akinyemi, Rufus O; Hase, Yoshiki; Firbank, Michael J; Ndung'u, Michael N; Foster, Vincent; Craggs, Lucy J L; Washida, Kazuo; Okamoto, Yoko; Thomas, Alan J; Polvikoski, Tuomo M; Allan, Louise M; Oakley, Arthur E; O'Brien, John T; Horsburgh, Karen; Ihara, Masafumi; Kalaria, Raj N

    2016-01-01

    White matter hyperintensities as seen on brain T2-weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP+ astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP+ cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by >2-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects (P = 0.026) and by 11-fold in older controls versus young controls (P < 0.023) in the frontal white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP+ astrocytes with

  16. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron

    PubMed Central

    Haider, Lukas; Simeonidou, Constantina; Steinberger, Günther; Hametner, Simon; Grigoriadis, Nikolaos; Deretzi, Georgia; Kovacs, Gabor G; Kutzelnigg, Alexandra; Lassmann, Hans; Frischer, Josa M

    2014-01-01

    In multiple sclerosis (MS), diffuse degenerative processes in the deep grey matter have been associated with clinical disabilities. We performed a systematic study in MS deep grey matter with a focus on the incidence and topographical distribution of lesions in relation to white matter and cortex in a total sample of 75 MS autopsy patients and 12 controls. In addition, detailed analyses of inflammation, acute axonal injury, iron deposition and oxidative stress were performed. MS deep grey matter was affected by two different processes: the formation of focal demyelinating lesions and diffuse neurodegeneration. Deep grey matter demyelination was most prominent in the caudate nucleus and hypothalamus and could already be seen in early MS stages. Lesions developed on the background of inflammation. Deep grey matter inflammation was intermediate between low inflammatory cortical lesions and active white matter lesions. Demyelination and neurodegeneration were associated with oxidative injury. Iron was stored primarily within oligodendrocytes and myelin fibres and released upon demyelination. In addition to focal demyelinated plaques, the MS deep grey matter also showed diffuse and global neurodegeneration. This was reflected by a global reduction of neuronal density, the presence of acutely injured axons, and the accumulation of oxidised phospholipids and DNA in neurons, oligodendrocytes and axons. Neurodegeneration was associated with T cell infiltration, expression of inducible nitric oxide synthase in microglia and profound accumulation of iron. Thus, both focal lesions as well as diffuse neurodegeneration in the deep grey matter appeared to contribute to the neurological disabilities of MS patients. PMID:24899728

  17. High efficiency blue and white phosphorescent organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Eom, Sang-Hyun

    Organic light-emitting devices (OLEDs) have important applications in full-color flat-panel displays and as solid-state lighting sources. Achieving high efficiency deep-blue phosphorescent OLEDs (PHOLEDs) is necessary for high performance full-color displays and white light sources with a high color rendering index (CRI); however it is more challenging compared to the longer wavelength light emissions such as green and red due to the higher energy excitations for the deep-blue emitter as well as the weak photopic response of deep-blue emission. This thesis details several effective strategies to enhancing efficiencies of deep-blue PHOLEDs based on iridium(III) bis(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6), which are further employed to demonstrate high efficiency white OLEDs by combining the deep-blue emitter with green and red emitters. First, we have employed 1,1-bis-(di-4-tolylaminophenyl) cyclohexane (TAPC) as the hole transporting material to enhance electron and triplet exciton confinement in Fir6-based PHOLEDs, which increased external quantum efficiency up to 18 %. Second, dual-emissive-layer (D-EML) structures consisting of an N,N -dicarbazolyl-3,5-benzene (mCP) layer doped with 4 wt % FIr6 and a p-bis (triphenylsilyly)benzene (UGH2) layer doped with 25 wt % FIr6 was employed to maximize exciton generation in the emissive layer. Combined with the p-i-n device structure, high power efficiencies of (25 +/- 2) lm/W at 100 cd/m2 and (20 +/- 2) lm/W at 1000 cd/m 2 were achieved. Moreover, the peak external quantum efficiency of (20 +/- 1) % was achieved by employing tris[3-(3-pyridyl)mesityl]borane (3TPYMB) as the electron transporting material, which further improves the exciton confinement in the emissive layer. With Cs2CO3 doping in the 3TPYMB layer to greatly increase its electrical conductivity, a peak power efficiency up to (36 +/- 2) lm/W from the deep-blue PHOLED was achieved, which also maintains Commission Internationale de L

  18. Increased Burden of Cerebral Small Vessel Disease in Patients With Type 2 Diabetes and Retinopathy.

    PubMed

    Sanahuja, Jordi; Alonso, Núria; Diez, Javier; Ortega, Emilio; Rubinat, Esther; Traveset, Alícia; Alcubierre, Núria; Betriu, Àngels; Castelblanco, Esmeralda; Hernández, Marta; Purroy, Francisco; Arcidiacono, Maria Vittoria; Jurjo, Carmen; Fernández, Elvira; Puig-Domingo, Manuel; Groop, Per-Henrik; Mauricio, Dídac

    2016-09-01

    We sought to examine the presence and severity of brain small vessel disease (SVD) in patients with type 2 diabetes and diabetic retinopathy (DR) compared with those without DR. We evaluated 312 patients with type 2 diabetes without previous cardiovascular disease (men 51%; mean age 57 years; age range 40-75 years); 153 patients (49%) had DR. MRI was performed to evaluate the presence and severity (age-related white matter changes scale) of white matter lesions (WMLs) and lacunes, and transcranial Doppler ultrasound was used to measure the Gosling pulsatility index (PI) of the middle cerebral artery (MCA). The prevalence of lesions of cerebral SVD (WML and/or lacunes) was higher in patients with DR (40.2% vs. 30.1% without DR, P = 0.04). Age (P < 0.01) and systolic blood pressure (P = 0.02) were associated with the presence of SVD. The severity of SVD was associated with age and the presence of DR (P < 0.01 and P = 0.01, respectively). Patients with DR showed a higher MCA PI compared with those without DR (P < 0.01). Age, systolic and diastolic blood pressure, and retinopathy and its severity were associated with an increased MCA PI (P < 0.01 for all variables). A positive correlation was found between MCA PI values and the presence and severity of SVD (P < 0.01 for both variables). Patients with type 2 diabetes who have DR have an increased burden of cerebral SVD compared with those without DR. Our findings suggest that the brain is a target organ for microangiopathy, similar to other classic target organs, like the retina. © 2016 by the American Diabetes Association.

  19. Location, number and factors associated with cerebral microbleeds in an Italian-British cohort of CADASIL patients.

    PubMed

    Nannucci, Serena; Rinnoci, Valentina; Pracucci, Giovanni; MacKinnon, Andrew D; Pescini, Francesca; Adib-Samii, Poneh; Bianchi, Silvia; Dotti, Maria Teresa; Federico, Antonio; Inzitari, Domenico; Markus, Hugh S; Pantoni, Leonardo

    2018-01-01

    The frequency, clinical correlates, and risk factors of cerebral microbleeds (CMB) in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) are still poorly known. We aimed at determining the location and number of CMB and their relationship with clinical manifestations, vascular risk factors, drugs, and other neuroimaging features in CADASIL patients. We collected clinical data by means of a structured proforma and centrally evaluated CMB on magnetic resonance gradient echo sequences applying the Microbleed Anatomical Rating Scale in CADASIL patients seen in 2 referral centers in Italy and United Kingdom. We evaluated 125 patients. CMB were present in 34% of patients and their presence was strongly influenced by the age. Twenty-nine percent of the patients had CMB in deep subcortical location, 22% in a lobar location, and 18% in infratentorial regions. After adjustment for age, factors significantly associated with a higher total number of CMB were hemorrhagic stroke, dementia, urge incontinence, and statins use (this latter not confirmed by multivariate analysis). Infratentorial and deep CMB were associated with dementia and urge incontinence, lobar CMB with hemorrhagic stroke, dementia, and statins use. Unexpectedly, patients with migraine, with or without aura, had a lower total, deep, and lobar number of CMB than patients without migraine. CMB formation in CADASIL seems to increase with age. History of hemorrhagic stroke, dementia, urge incontinence, and statins use are associated with a higher number of CMB. However, these findings need to be confirmed by longitudinal studies.

  20. Cerebral morphology and functional sparing after prenatal frontal cortex lesions in rats.

    PubMed

    Kolb, B; Cioe, J; Muirhead, D

    1998-03-01

    Rats were given suction lesions of the presumptive frontal cortex on embryonic day 18 (E18) and subsequently tested, as adults, on tests of spatial navigation (Morris water task, radial arm maze), motor tasks (Whishaw reaching task, beam walking), and locomotor activity. Frontal cortical lesions at E18 affected cerebral morphogenesis, producing unusual morphological structures including abnormal patches of neurons in the cortex and white matter as well as neuronal bridges between the hemispheres. A small sample of E18 operates also had hydrocephaly. The animals with E18 lesions without hydrocephalus were behaviorally indistinguishable from littermate controls. The results demonstrate that animals with focal lesions of the presumptive frontal cortex have gross abnormalities in cerebral morphology but the lesions leave the functions normally subserved by the frontal cortex in adult rats unaffected. The results are discussed in the context of a hypothesis regarding the optimal times for functional recovery from cortical injury.

  1. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy

    PubMed Central

    Boulouis, Gregoire; Pasi, Marco; Auriel, Eitan; van Etten, Ellis S.; Haley, Kellen; Ayres, Alison; Schwab, Kristin M.; Martinez-Ramirez, Sergi; Goldstein, Joshua N.; Rosand, Jonathan; Viswanathan, Anand; Greenberg, Steven M.; Gurol, M. Edip

    2017-01-01

    Objective: To assess MRI-visible enlarged perivascular spaces (EPVS) burden and different topographical patterns (in the centrum semiovale [CSO] and basal ganglia [BG]) in 2 common microangiopathies: cerebral amyloid angiopathy (CAA) and hypertensive arteriopathy (HA). Methods: Consecutive patients with spontaneous intracerebral hemorrhage (ICH) from a prospective MRI cohort were included. Small vessel disease MRI markers, including cerebral microbleeds (CMBs), cortical superficial siderosis (cSS), and white matter hyperintensities (WMH), were rated. CSO-EPVS/BG-EPVS were assessed on a validated 4-point visual rating scale (0 = no EPVS, 1 = <10, 2 = 11–20, 3 = 21–40, and 4 = >40 EPVS). We tested associations of predefined high-degree (score >2) CSO-EPVS and BG-EPVS with other MRI markers in multivariable logistic regression. We subsequently evaluated associations with CSO-EPVS predominance (i.e., CSO-EPVS > BG-EPVS) and BG-EPVS predominance pattern (i.e., BG-EPVS > CSO-EPVS) in adjusted multinomial logistic regression (reference group, BG-EPVS = CSO-EPVS). Results: We included 315 patients with CAA-ICH and 137 with HA-ICH. High-degree CSO-EPVS prevalence was greater in CAA-related ICH vs HA-related ICH (43.8% vs 17.5%, p < 0.001). In multivariable logistic regression, high-degree CSO-EPVS was associated with lobar CMB (odds ratio [OR] 1.33, 95% confidence interval [CI] 1.10–1.61, p = 0.003) and cSS (OR 2.08, 95% CI 1.30–3.32, p = 0.002). Deep CMBs (OR 2.85, 95% CI 1.75–4.64, p < 0.0001) and higher WMH volume (OR 1.02, 95% CI 1.01–1.04, p = 0.010) were predictors of high-degree BG-EPVS. A CSO-EPVS–predominant pattern was more common in CAA-ICH than in HA-ICH (75.9% vs 39.4%, respectively, p < 0.0001). CSO-PVS predominance was associated with lobar CMB burden and cSS, while BG-EPVS predominance was associated with HA-ICH and WMH volumes. Conclusions: Different patterns of MRI-visible EPVS provide insights into the dominant underlying microangiopathy

  2. Characterising the grey matter correlates of leukoaraiosis in cerebral small vessel disease.

    PubMed

    Lambert, Christian; Sam Narean, Janakan; Benjamin, Philip; Zeestraten, Eva; Barrick, Thomas R; Markus, Hugh S

    2015-01-01

    Cerebral small vessel disease (SVD) is a heterogeneous group of pathological disorders that affect the small vessels of the brain and are an important cause of cognitive impairment. The ischaemic consequences of this disease can be detected using MRI, and include white matter hyperintensities (WMH), lacunar infarcts and microhaemorrhages. The relationship between SVD disease severity, as defined by WMH volume, in sporadic age-related SVD and cortical thickness has not been well defined. However, regional cortical thickness change would be expected due to associated phenomena such as underlying ischaemic white matter damage, and the observation that widespread cortical thinning is observed in the related genetic condition CADASIL (Righart et al., 2013). Using MRI data, we have developed a semi-automated processing pipeline for the anatomical analysis of individuals with cerebral small vessel disease and applied it cross-sectionally to 121 subjects diagnosed with this condition. Using a novel combined automated white matter lesion segmentation algorithm and lesion repair step, highly accurate warping to a group average template was achieved. The volume of white matter affected by WMH was calculated, and used as a covariate of interest in a voxel-based morphometry and voxel-based cortical thickness analysis. Additionally, Gaussian Process Regression (GPR) was used to assess if the severity of SVD, measured by WMH volume, could be predicted from the morphometry and cortical thickness measures. We found significant (Family Wise Error corrected p < 0.05) volumetric decline with increasing lesion load predominately in the parietal lobes, anterior insula and caudate nuclei bilaterally. Widespread significant cortical thinning was found bilaterally in the dorsolateral prefrontal, parietal and posterio-superior temporal cortices. These represent distinctive patterns of cortical thinning and volumetric reduction compared to ageing effects in the same cohort, which exhibited

  3. Hyperventilation, cerebral perfusion, and syncope.

    PubMed

    Immink, R V; Pott, F C; Secher, N H; van Lieshout, J J

    2014-04-01

    This review summarizes evidence in humans for an association between hyperventilation (HV)-induced hypocapnia and a reduction in cerebral perfusion leading to syncope defined as transient loss of consciousness (TLOC). The cerebral vasculature is sensitive to changes in both the arterial carbon dioxide (PaCO2) and oxygen (PaO2) partial pressures so that hypercapnia/hypoxia increases and hypocapnia/hyperoxia reduces global cerebral blood flow. Cerebral hypoperfusion and TLOC have been associated with hypocapnia related to HV. Notwithstanding pronounced cerebrovascular effects of PaCO2 the contribution of a low PaCO2 to the early postural reduction in middle cerebral artery blood velocity is transient. HV together with postural stress does not reduce cerebral perfusion to such an extent that TLOC develops. However when HV is combined with cardiovascular stressors like cold immersion or reduced cardiac output brain perfusion becomes jeopardized. Whether, in patients with cardiovascular disease and/or defect, cerebral blood flow cerebral control HV-induced hypocapnia elicits cerebral hypoperfusion, leading to TLOC, remains to be established.

  4. [Assessment of motor and sensory pathways of the brain using diffusion-tensor tractography in children with cerebral palsy].

    PubMed

    Memedyarov, A M; Namazova-Baranova, L S; Ermolina, Y V; Anikin, A V; Maslova, O I; Karkashadze, M Z; Klochkova, O A

    2014-01-01

    Diffusion tensor tractography--a new method of magnetic resonance imaging, that allows to visualize the pathways of the brain and to study their structural-functional state. The authors investigated the changes in motor and sensory pathways of brain in children with cerebral palsy using routine magnetic resonance imaging and diffusion-tensor tractography. The main group consisted of 26 patients with various forms of cerebral palsy and the comparison group was 25 people with normal psychomotor development (aged 2 to 6 years) and MR-picture of the brain. Magnetic resonance imaging was performed on the scanner with the induction of a magnetic field of 1,5 Tesla. Coefficients of fractional anisotropy and average diffusion coefficient estimated in regions of the brain containing the motor and sensory pathways: precentral gyrus, posterior limb of the internal capsule, thalamus, posterior thalamic radiation and corpus callosum. Statistically significant differences (p < 0.05) values of fractional anisotropy and average diffusion coefficient in patients with cerebral palsy in relation to the comparison group. All investigated regions, the coefficients of fractional anisotropy in children with cerebral palsy were significantly lower, and the average diffusion coefficient, respectively, higher. These changes indicate a lower degree of ordering of the white matter tracts associated with damage and subsequent development of gliosis of varying severity in children with cerebral palsy. It is shown that microstructural damage localized in both motor and sensory tracts that plays a leading role in the development of the clinical picture of cerebral palsy.

  5. Deep shadow occulter

    NASA Technical Reports Server (NTRS)

    Cash, Webster (Inventor)

    2010-01-01

    Methods and apparatus are disclosed for occulting light. The occulter shape suppresses diffraction at any given size or angle and is practical to build because it can be made binary to avoid scatter. Binary structures may be fully opaque or fully transmitting at specific points. The diffraction suppression is spectrally broad so that it may be used with incoherent white light. An occulter may also include substantially opaque inner portion and an at least partially transparent outer portion. Such occulters may be used on the ground to create a deep shadow in a short distance, or may be used in space to suppress starlight and reveal exoplanets.

  6. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia.

    PubMed

    Duncombe, Jessica; Kitamura, Akihiro; Hase, Yoshiki; Ihara, Masafumi; Kalaria, Raj N; Horsburgh, Karen

    2017-10-01

    Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, cognitive impairment and dementia. While there is considerable overlap between features of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD), it appears that cerebral hypoperfusion is the common underlying pathophysiological mechanism which is a major contributor to cognitive decline and degenerative processes leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white matter attenuation, a key feature common to both AD and dementia associated with cerebral small vessel disease (SVD). White matter changes increase the risk for stroke, dementia and disability. A major gap has been the lack of mechanistic insights into the evolution and progress of VCID. However, this gap is closing with the recent refinement of rodent models which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and advantages of these models in elucidating the pathogenesis of VCID and explore the interplay between hypoperfusion and the deposition of amyloid β (Aβ) protein, as it relates to AD. We use examples of our recent investigations to illustrate the utility of the model in preclinical testing of candidate drugs and lifestyle factors. We propose that the use of such models is necessary for tackling the urgently needed translational gap from preclinical models to clinical treatments. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Effects of hyperglycemia and effects of ketosis on cerebral perfusion, cerebral water distribution, and cerebral metabolism.

    PubMed

    Glaser, Nicole; Ngo, Catherine; Anderson, Steven; Yuen, Natalie; Trifu, Alexandra; O'Donnell, Martha

    2012-07-01

    Diabetic ketoacidosis (DKA) may cause brain injuries in children. The mechanisms responsible are difficult to elucidate because DKA involves multiple metabolic derangements. We aimed to determine the independent effects of hyperglycemia and ketosis on cerebral metabolism, blood flow, and water distribution. We used magnetic resonance spectroscopy to measure ratios of cerebral metabolites (ATP to inorganic phosphate [Pi], phosphocreatine [PCr] to Pi, N-acetyl aspartate [NAA] to creatine [Cr], and lactate to Cr) and diffusion-weighted imaging and perfusion-weighted imaging to assess cerebral water distribution (apparent diffusion coefficient [ADC] values) and cerebral blood flow (CBF) in three groups of juvenile rats (hyperglycemic, ketotic, and normal control). ATP-to-Pi ratio was reduced in both hyperglycemic and ketotic rats in comparison with controls. PCr-to-Pi ratio was reduced in the ketotic group, and there was a trend toward reduction in the hyperglycemic group. No significant differences were observed in NAA-to-Cr or lactate-to-Cr ratio. Cortical ADC was reduced in both groups (indicating brain cell swelling). Cortical CBF was also reduced in both groups. We conclude that both hyperglycemia and ketosis independently cause reductions in cerebral high-energy phosphates, CBF, and cortical ADC values. These effects may play a role in the pathophysiology of DKA-related brain injury.

  8. Deep anterior cerebellar stimulation reduces symptoms of secondary dystonia in patients with cerebral palsy treated due to spasticity.

    PubMed

    Sokal, Paweł; Rudaś, Marcin; Harat, Marek; Szylberg, Łukasz; Zieliński, Piotr

    2015-08-01

    Deep anterior cerebellar stimulation (DACS) is a neuromodulation therapy of spasticity. Bilateral DACS is applied in young patients with cerebral palsy (CP). In these patients symptoms of spasticity coexist with symptoms of focal or segmental dystonia, which can cause chronic pain. We performed the study to investigate the therapeutic effects of DACS in spasticity, secondary dystonia and pain. We examined 10 from 13 patients with CP treated with DACS due to spasticity in years 2006-2012. We compared Ashworth scores of spasticity, VAS scale of pain and UDRS (Unified Dystonia Rating Scale) score before DACS and after it in follow-up lasting from 2 to 11 years it in these patients basing on clinical examination and evaluating forms given by the patients or parents. We received statistically significant reduction of spasticity in upper extremities (median: from 3 to 1,5 in Ashworth scale) in 8 patients (p = 0,01), in lower extremities in 7 patients (median: from 3 to 1,75) (p = 0,02). Symptoms of focal dystonia were reduced. Total score for the UDRS (median = 18,0 before surgery) after DACS decreased significantly (median = 10,3) (p = 0,043). Change in consecutive parts of UDRS before (median = 1,6) and after (median = 1,0) surgery in 7 patients had statistical significance (p = 0,0179). There were not significant changes in intensity of pain before and after surgery (p = 0,108). Chronic bilateral DACS aimed for spasticity treatment not only decreases muscular tone in quadriplegic or paraplegic patients with CP but also is associated with reduction of symptoms of focal or segmental, secondary dystonia. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Detection of white matter lesions in cerebral small vessel disease

    NASA Astrophysics Data System (ADS)

    Riad, Medhat M.; Platel, Bram; de Leeuw, Frank-Erik; Karssemeijer, Nico

    2013-02-01

    White matter lesions (WML) are diffuse white matter abnormalities commonly found in older subjects and are important indicators of stroke, multiple sclerosis, dementia and other disorders. We present an automated WML detection method and evaluate it on a dataset of small vessel disease (SVD) patients. In early SVD, small WMLs are expected to be of importance for the prediction of disease progression. Commonly used WML segmentation methods tend to ignore small WMLs and are mostly validated on the basis of total lesion load or a Dice coefficient for all detected WMLs. Therefore, in this paper, we present a method that is designed to detect individual lesions, large or small, and we validate the detection performance of our system with FROC (free-response ROC) analysis. For the automated detection, we use supervised classification making use of multimodal voxel based features from different magnetic resonance imaging (MRI) sequences, including intensities, tissue probabilities, voxel locations and distances, neighborhood textures and others. After preprocessing, including co-registration, brain extraction, bias correction, intensity normalization, and nonlinear registration, ventricle segmentation is performed and features are calculated for each brain voxel. A gentle-boost classifier is trained using these features from 50 manually annotated subjects to give each voxel a probability of being a lesion voxel. We perform ROC analysis to illustrate the benefits of using additional features to the commonly used voxel intensities; significantly increasing the area under the curve (Az) from 0.81 to 0.96 (p<0.05). We perform the FROC analysis by testing our classifier on 50 previously unseen subjects and compare the results with manual annotations performed by two experts. Using the first annotator results as our reference, the second annotator performs at a sensitivity of 0.90 with an average of 41 false positives per subject while our automated method reached the same

  10. Slow pupillary light responses in infants at high risk of cerebral palsy were associated with periventricular leukomalacia and neurological outcome.

    PubMed

    Hamer, Elisa G; Vermeulen, R Jeroen; Dijkstra, Linze J; Hielkema, Tjitske; Kos, Claire; Bos, Arend F; Hadders-Algra, Mijna

    2016-12-01

    Having observed slow pupillary light responses (PLRs) in infants at high risk of cerebral palsy, we retrospectively evaluated whether these were associated with specific brain lesions or unfavourable outcomes. We carried out neurological examinations on 30 infants at very high risk of cerebral palsy five times until the corrected age of 21 months, classifying each PLR assessment as normal or slow. The predominant reaction during development was determined for each infant. Neonatal brain scans were classified based on the type of brain lesion. Developmental outcome was evaluated at 21 months of corrected age with a neurological examination, the Bayley Scales of Infant Development Second Edition and the Infant Motor Profile. Of the 30 infants, 16 developed cerebral palsy. Predominantly slow PLRs were observed in eight infants and were associated with periventricular leukomalacia (p = 0.007), cerebral palsy (p = 0.039), bilateral cerebral palsy (p = 0.001), poorer quality of motor behaviour (p < 0.0005) and poorer cognitive outcome (p = 0.045). This explorative study suggested that predominantly slow PLR in infants at high risk of cerebral palsy were associated with periventricular leukomalacia and poorer developmental outcome. Slow PLR might be an expression of white matter damage, resulting in dysfunction of the complex cortico-subcortical circuitries. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  11. A Search for a Surviving White Dwarf Companion in SN 1006

    NASA Astrophysics Data System (ADS)

    Kerzendorf, W. E.; Strampelli, G.; Shen, K. J.; Schwab, J.; Pakmor, R.; Do, T.; Buchner, J.; Rest, A.

    2018-05-01

    Multiple channels have been proposed to produce Type Ia supernovae, with many scenarios suggesting that the exploding white dwarf accretes from a binary companion pre-explosion. In almost all cases, theory suggests that this companion will survive. However, no such companion has been unambiguously identified in ancient supernova remnants - possibly falsifying the accretion scenario. Existing surveys, however, have only looked for stars as faint as ≈0.1L⊙ and thus might have missed a surviving white dwarf companion. In this work, we present very deep DECAM imaging (u, g, r, z) of the Type Ia supernova remnant SN 1006 specifically to search for a potential surviving white dwarf companion. We find no object that is consistent with a relatively young cooling white dwarf within the inner half of the SN 1006 remnant. We find that if there is a companion white dwarf, it must be redder than the standard white dwarf cooling track, or it must have formed long ago and cooled undisturbed for >108 yr. We conclude that our findings are consistent with the complete destruction of the secondary (such as in a merger) or an anomalously red or very dim surviving companion white dwarf.

  12. Cortical superficial siderosis and first-ever cerebral hemorrhage in cerebral amyloid angiopathy

    PubMed Central

    Boulouis, Gregoire; Xiong, Li; Jessel, Michel J.; Roongpiboonsopit, Duangnapa; Ayres, Alison; Schwab, Kristin M.; Rosand, Jonathan; Gurol, M. Edip; Greenberg, Steven M.; Viswanathan, Anand

    2017-01-01

    Objective: To investigate whether cortical superficial siderosis (cSS) is associated with increased risk of future first-ever symptomatic lobar intracerebral hemorrhage (ICH) in patients with cerebral amyloid angiopathy (CAA) presenting with neurologic symptoms and without ICH. Methods: Consecutive patients meeting modified Boston criteria for probable CAA in the absence of ICH from a single-center cohort were analyzed. cSS and other small vessel disease MRI markers were assessed according to recent consensus recommendations. Patients were followed prospectively for future incident symptomatic lobar ICH. Prespecified Cox proportional hazard models were used to investigate cSS and first-ever lobar ICH risk adjusting for potential confounders. Results: The cohort included 236 patients with probable CAA without lobar ICH at baseline. cSS prevalence was 34%. During a median follow-up of 3.26 years (interquartile range 1.42–5.50 years), 27 of 236 patients (11.4%) experienced a first-ever symptomatic lobar ICH. cSS was a predictor of time until first ICH (p = 0.0007, log-rank test). The risk of symptomatic ICH at 5 years of follow-up was 19% (95% confidence interval [CI] 11%–32%) for patients with cSS at baseline vs 6% (95% CI 3%–12%) for patients without cSS. In multivariable Cox regression models, cSS presence was the only independent predictor of increased symptomatic ICH risk during follow-up (HR 4.04; 95% CI 1.73–9.44, p = 0.001), after adjusting for age, lobar cerebral microbleeds burden, and white matter hyperintensities. Conclusions: cSS is consistently associated with an increased risk of future lobar ICH in CAA with potentially important clinical implications for patient care decisions such as antithrombotic use. PMID:28356458

  13. Intrathecal baclofen treatment in dystonic cerebral palsy: a randomized clinical trial: the IDYS trial

    PubMed Central

    2013-01-01

    Background Dystonic cerebral palsy is primarily caused by damage to the basal ganglia and central cortex. The daily care of these patients can be difficult due to dystonic movements. Intrathecal baclofen treatment is a potential treatment option for dystonia and has become common practice. Despite this widespread adoption, high quality evidence on the effects of intrathecal baclofen treatment on daily activities is lacking and prospective data are needed to judge the usefulness and indications for dystonic cerebral palsy. The primary aim of this study is to provide level one clinical evidence for the effects of intrathecal baclofen treatment on the level of activities and participation in dystonic cerebral palsy patients. Furthermore, we hope to identify clinical characteristics that will predict a beneficial effect of intrathecal baclofen in an individual patient. Methods/Design A double blind placebo-controlled multi-center randomized clinical trial will be performed in 30 children with dystonic cerebral palsy. Patients aged between 4 and 25 years old with a confirmed diagnosis of dystonic cerebral palsy, Gross Motor Functioning Classification System level IV or V, with lesions in the cerebral white matter, basal ganglia or central cortex and who are eligible for intrathecal baclofen treatment will be included. Group A will receive three months of continuous intrathecal baclofen treatment and group B will receive three months of placebo treatment, both via an implanted pump. After this three month period, all patients will receive intrathecal baclofen treatment, with a follow-up after nine months. The primary outcome measurement will be the effect on activities of and participation in daily life measured by Goal Attainment Scaling. Secondary outcome measurements on the level of body functions include dystonia, spasticity, pain, comfort and sleep-related breathing disorders. Side effects will be monitored and we will study whether patient characteristics

  14. Perioperative Near-Infrared Spectroscopy Monitoring in Neonates With Congenital Heart Disease: Relationship of Cerebral Tissue Oxygenation Index Variability With Neurodevelopmental Outcome.

    PubMed

    Spaeder, Michael C; Klugman, Darren; Skurow-Todd, Kami; Glass, Penny; Jonas, Richard A; Donofrio, Mary T

    2017-03-01

    To evaluate the value of perioperative cerebral near-infrared spectroscopy monitoring using variability analysis in the prediction of neurodevelopmental outcomes in neonates undergoing surgery for congenital heart disease. Retrospective cohort study. Urban, academic, tertiary-care children's hospital. Neonates undergoing surgery with cardiopulmonary bypass for congenital heart disease. Perioperative monitoring of continuous cerebral tissue oxygenation index by near-infrared spectroscopy and subsequent neurodevelopmental testing at 6, 15, and 21 months of age. We developed a new measure, cerebral tissue oxygenation index variability, using the root mean of successive squared differences of averaged 1-minute cerebral tissue oxygenation index values for both the intraoperative and first 24-hours postoperative phases of monitoring. There were 62 neonates who underwent cerebral tissue oxygenation index monitoring during surgery for congenital heart disease and 44 underwent subsequent neurodevelopmental testing (12 did not survive until testing and six were lost to follow-up). Among the 44 monitored patients who underwent neurodevelopmental testing, 20 (45%) had abnormal neurodevelopmental indices. Patients with abnormal neurodevelopmental indices had lower postoperative cerebral tissue oxygenation index variability when compared with patients with normal indices (p = 0.01). Adjusting for class of congenital heart disease and duration of deep hypothermic circulatory arrest, lower postoperative cerebral tissue oxygenation index variability was associated with poor neurodevelopmental outcome (p = 0.02). We found reduced postoperative cerebral tissue oxygenation index variability in neonatal survivors of congenital heart disease surgery with poor neurodevelopmental outcomes. We hypothesize that reduced cerebral tissue oxygenation index variability may be a surrogate for impaired cerebral metabolic autoregulation in the immediate postoperative period. Further research is

  15. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron.

    PubMed

    Haider, Lukas; Simeonidou, Constantina; Steinberger, Günther; Hametner, Simon; Grigoriadis, Nikolaos; Deretzi, Georgia; Kovacs, Gabor G; Kutzelnigg, Alexandra; Lassmann, Hans; Frischer, Josa M

    2014-12-01

    In multiple sclerosis (MS), diffuse degenerative processes in the deep grey matter have been associated with clinical disabilities. We performed a systematic study in MS deep grey matter with a focus on the incidence and topographical distribution of lesions in relation to white matter and cortex in a total sample of 75 MS autopsy patients and 12 controls. In addition, detailed analyses of inflammation, acute axonal injury, iron deposition and oxidative stress were performed. MS deep grey matter was affected by two different processes: the formation of focal demyelinating lesions and diffuse neurodegeneration. Deep grey matter demyelination was most prominent in the caudate nucleus and hypothalamus and could already be seen in early MS stages. Lesions developed on the background of inflammation. Deep grey matter inflammation was intermediate between low inflammatory cortical lesions and active white matter lesions. Demyelination and neurodegeneration were associated with oxidative injury. Iron was stored primarily within oligodendrocytes and myelin fibres and released upon demyelination. In addition to focal demyelinated plaques, the MS deep grey matter also showed diffuse and global neurodegeneration. This was reflected by a global reduction of neuronal density, the presence of acutely injured axons, and the accumulation of oxidised phospholipids and DNA in neurons, oligodendrocytes and axons. Neurodegeneration was associated with T cell infiltration, expression of inducible nitric oxide synthase in microglia and profound accumulation of iron. Thus, both focal lesions as well as diffuse neurodegeneration in the deep grey matter appeared to contribute to the neurological disabilities of MS patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. High Presence of Extracellular Hemoglobin in the Periventricular White Matter Following Preterm Intraventricular Hemorrhage

    PubMed Central

    Ley, David; Romantsik, Olga; Vallius, Suvi; Sveinsdóttir, Kristbjörg; Sveinsdóttir, Snjolaug; Agyemang, Alex A.; Baumgarten, Maria; Mörgelin, Matthias; Lutay, Nataliya; Bruschettini, Matteo; Holmqvist, Bo; Gram, Magnus

    2016-01-01

    Severe cerebral intraventricular hemorrhage (IVH) in preterm infants continues to be a major clinical problem, occurring in about 15–20% of very preterm infants. In contrast to other brain lesions the incidence of IVH has not been reduced over the last decade, but actually slightly increased. Currently over 50% of surviving infants develop post-hemorrhagic ventricular dilatation and about 35% develop severe neurological impairment, mainly cerebral palsy and intellectual disability. To date there is no therapy available to prevent infants from developing either hydrocephalus or serious neurological disability. It is known that blood rapidly accumulates within the ventricles following IVH and this leads to disruption of normal anatomy and increased local pressure. However, the molecular mechanisms causing brain injury following IVH are incompletely understood. We propose that extracellular hemoglobin is central in the pathophysiology of periventricular white matter damage following IVH. Using a preterm rabbit pup model of IVH the distribution of extracellular hemoglobin was characterized at 72 h following hemorrhage. Evaluation of histology, histochemistry, hemoglobin immunolabeling and scanning electron microscopy revealed presence of extensive amounts of extracellular hemoglobin, i.e., not retained within erythrocytes, in the periventricular white matter, widely distributed throughout the brain. Furthermore, double immunolabeling together with the migration and differentiation markers polysialic acid neural cell adhesion molecule (PSA-NCAM) demonstrates that a significant proportion of the extracellular hemoglobin is distributed in areas of the periventricular white matter with high extracellular plasticity. In conclusion, these findings support that extracellular hemoglobin may contribute to the pathophysiological processes that cause irreversible damage to the immature brain following IVH. PMID:27536248

  17. Cerebral palsy - resources

    MedlinePlus

    Resources - cerebral palsy ... The following organizations are good resources for information on cerebral palsy : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Hope- ...

  18. Measuring intellectual ability in cerebral palsy: The comparison of three tests and their neuroimaging correlates.

    PubMed

    Ballester-Plané, Júlia; Laporta-Hoyos, Olga; Macaya, Alfons; Póo, Pilar; Meléndez-Plumed, Mar; Vázquez, Élida; Delgado, Ignacio; Zubiaurre-Elorza, Leire; Narberhaus, Ana; Toro-Tamargo, Esther; Russi, Maria Eugenia; Tenorio, Violeta; Segarra, Dolors; Pueyo, Roser

    2016-09-01

    Standard intelligence scales require both verbal and manipulative responses, making it difficult to use in cerebral palsy and leading to underestimate their actual performance. This study aims to compare three intelligence tests suitable for the heterogeneity of cerebral palsy in order to identify which one(s) could be more appropriate to use. Forty-four subjects with bilateral dyskinetic cerebral palsy (26 male, mean age 23 years) conducted the Raven's Coloured Progressive Matrices (RCPM), the Peabody Picture Vocabulary Test-3rd (PPVT-III) and the Wechsler Nonverbal Scale of Ability (WNV). Furthermore, a comprehensive neuropsychological battery and magnetic resonance imaging were assessed. The results show that PPVT-III gives limited information on cognitive performance and brain correlates, getting lower intelligence quotient scores. The WNV provides similar outcomes as RCPM, but cases with severe motor impairment were unable to perform it. Finally, the RCPM gives more comprehensive information on cognitive performance, comprising not only visual but also verbal functions. It is also sensitive to the structural state of the brain, being related to basal ganglia, thalamus and white matter areas such as superior longitudinal fasciculus. So, the RCPM may be considered a standardized easy-to-administer tool with great potential in both clinical and research fields of bilateral cerebral palsy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cerebral Mitochondrial Microangiopathy Leads to Leukoencephalopathy in Mitochondrial Neurogastrointestinal Encephalopathy.

    PubMed

    Gramegna, L L; Pisano, A; Testa, C; Manners, D N; D'Angelo, R; Boschetti, E; Giancola, F; Pironi, L; Caporali, L; Capristo, M; Valentino, M L; Plazzi, G; Casali, C; Dotti, M T; Cenacchi, G; Hirano, M; Giordano, C; Parchi, P; Rinaldi, R; De Giorgio, R; Lodi, R; Carelli, V; Tonon, C

    2018-01-18

    Mitochondrial neurogastrointestinal encephalopathy is a rare disorder due to recessive mutations in the thymidine phosphorylase gene, encoding thymidine phosphorylase protein required for mitochondrial DNA replication. Clinical manifestations include gastrointestinal dysmotility and diffuse asymptomatic leukoencephalopathy. This study aimed to elucidate the mechanisms underlying brain leukoencephalopathy in patients with mitochondrial neurogastrointestinal encephalopathy by correlating multimodal neuroradiologic features to postmortem pathology. Seven patients underwent brain MR imaging, including single-voxel proton MR spectroscopy and diffusion imaging. Absolute concentrations of metabolites calculated by acquiring unsuppressed water spectra at multiple TEs, along with diffusion metrics based on the tensor model, were compared with those of healthy controls using unpaired t tests in multiple white matters regions. Brain postmortem histologic, immunohistochemical, and molecular analyses were performed in 1 patient. All patients showed bilateral and nearly symmetric cerebral white matter hyperintensities on T2-weighted images, extending to the cerebellar white matter and brain stem in 4. White matter, N -acetylaspartate, creatine, and choline concentrations were significantly reduced compared with those in controls, with a prominent increase in the radial water diffusivity component. At postmortem examination, severe fibrosis of brain vessel smooth muscle was evident, along with mitochondrial DNA replication depletion in brain and vascular smooth-muscle and endothelial cells, without neuronal loss, myelin damage, or gliosis. Prominent periependymal cytochrome C oxidase deficiency was also observed. Vascular functional and histologic alterations account for leukoencephalopathy in mitochondrial neurogastrointestinal encephalopathy. Thymidine toxicity and mitochondrial DNA replication depletion may induce microangiopathy and blood-brain-barrier dysfunction, leading to

  20. Is there any evidence that cerebral protection is beneficial? Experimental data.

    PubMed

    Macdonald, S

    2006-04-01

    This article presents the available experimental data from the world literature on the use of cerebral protection devices during carotid artery stenting (CAS). Clinical studies relying on surrogate markers of cerebral embolisation in place of neurological event rate as primary outcome measures are evaluated alongside bench-top and animal studies. These surrogate markers include evaluations of outcomes using procedural transcranial Doppler (TCD) and diffusion-weighted magnetic resonance imaging of brain (DWI). Pathological analyses of debris retrieved from in-vivo analyses of protection devices are also included in this review because although the focus of these studies was primarily clinical, the laboratory data will be preferentially presented and it provides interesting insights. It can be shown that each of the three philosophies of cerebral protection, namely flow arrest (proximal or distal), flow reversal and distal filtration is capable of the entrapment of sizeable debris that would logically threaten devastating stroke if it embolized to the brain. Whilst balloon occlusion significantly reduces the procedural microembolic load (particles less than 60 mm) and flow reversal may be the first means to entirely eliminate it, filters may be associated with increased microembolization. This has been described by some workers as controlled embolization. Certainly, particles smaller than the pore size of currently available filters (60-140 mm) will readily evade capture due to filter periflow and through-flow. There is evidence to suggest that tens of thousands of particles of this size may be released during CAS and there is some evidence that this may be associated with more new white lesions on DWI of brain. The clinical consequences of this controlled embolization however, remain unclear and sophisticated neuropsychometric test batteries may need to be applied at later time points to detect subtle injury that may be compounded by a late inflammatory response

  1. Cerebral arteriovenous malformation

    MedlinePlus

    AVM - cerebral; Arteriovenous hemangioma; Stroke - AVM; Hemorrhagic stroke - AVM ... The cause of cerebral AVM is unknown. An AVM occurs when arteries in the brain connect directly to nearby veins without having the ...

  2. Groth Deep Locations Image

    NASA Image and Video Library

    2003-07-25

    NASA's Galaxy Evolution Explorer photographed this ultraviolet color blowup of the Groth Deep Image on June 22 and June 23, 2003. Hundreds of galaxies are detected in this portion of the image, and the faint red galaxies are believed to be 6 billion light years away. The white boxes show the location of these distant galaxies, of which more than a 100 can be detected in this image. NASA astronomers expect to detect 10,000 such galaxies after extrapolating to the full image at a deeper exposure level. http://photojournal.jpl.nasa.gov/catalog/PIA04626

  3. Aging and Cerebral Palsy.

    ERIC Educational Resources Information Center

    Networker, 1993

    1993-01-01

    This special edition of "The Networker" contains several articles focusing on aging and cerebral palsy (CP). "Aging and Cerebral Palsy: Pathways to Successful Aging" (Jenny C. Overeynder) reports on the National Invitational Colloquium on Aging and Cerebral Palsy held in April 1993. "Observations from an Observer" (Kathleen K. Barrett) describes…

  4. Bypass of the maxillary artery to proximal middle cerebral artery.

    PubMed

    Ma, Lin; Ren, He-cheng; Huang, Ying

    2015-03-01

    The objective of this work was to explore the feasibility of bypass between the maxillary artery (MA) and proximity of middle cerebral artery (MCA). Ten fixed and perfused adult cadaver heads were dissected bilaterally, 20 sides in total. The superficial temporal artery and its 2 branches were dissected, and outer diameters were measured. The MA and its branch were exposed as well as deep temporal artery; outer diameter of MA was measured. The lengths between the external carotid artery, internal carotid artery, maxillary artery, and proximal middle cerebral artery were measured. Ten healthy adults as targets (20 sides), inner diameter and blood flow dynamic parameters of the common carotid artery, external carotid artery, internal carotid artery, maxillary artery, superficial temporal artery, and its 2 branches were done with ultrasound examination. The mean outer diameter of MA (2.60 ± 0.20 mm) was larger than that of the temporal artery trunk (1.70 ± 0.30 mm). The mean lengths of graft vessels between the internal carotid artery, external carotid artery, and the bifurcation section of MCA (171.00 ± 2.70 and 162.40 ± 2.60 mm) were longer than the mean lengths of graft vessels between MA and MCA bifurcation section (61.70 ± 1.50 mm). In adults, the mean blood flow of the second part of MA (62.70 ± 13.30 mL/min) was more than that of the 2 branches of the superficial temporal artery (15.90 ± 3.70 mL/min and 17.70 ± 4.10 ml/min). Bypass between the maxillary artery and proximity of middle cerebral artery is feasible. It is a kind of effective high flow bypass with which the graft vessel is shorter and straighter than the bypass between internal carotid artery or external carotid artery and proximity of middle cerebral artery.

  5. Cerebral basis of posttraumatic stress disorder following the Chernobyl disaster.

    PubMed

    Loganovsky, Konstantin N; Zdanevich, Nataliya A

    2013-04-01

    Whether posttraumatic stress disorder (PTSD) following radiation emergency has psychopathological, neurocognitive, and neurophysiological peculiarities is at issue. The goal was to explore the features and cerebral basis of "radiation" PTSD in the survivors of the Chernobyl accident. Subjects and Methods The cross-sectional study included 241 people, 219 of whom have been diagnosed with PTSD according to the Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) criteria, among them 115 clean-up workers of the Chernobyl accident (34 with acute radiation sickness), 76 evacuees from the Chernobyl exclusion zone, 28 veterans of the war in Afghanistan, and 22 healthy unexposed individuals. Psychometric examinations, neurocognitive assessments, computerized electroencephalography, and cerebral vascular Doppler were used. "Radiation" PTSD includes "flashforward" phenomena and anticipating stress (projection of fear and danger to the future); somatoform disorders (depression, trait and state anxiety); and neurocognitive deficit (impaired memory and attention, auditory-verbal memory and learning, proactive and retroactive interference, cerebellar and stem symptoms, intellectual changes). The intima-media component, thickness of common carotid arteries, and common and left internal carotid arteries stenosis rates are increased in the liquidators. Changes of bioelectrical brain activity as a decrease of beta- and theta-power, together with an increase of alpha-power, were found in the Chernobyl accident survivors with PTSD. PTSD following radiation emergency is characterized by comorbidity of psychopathology, neurocognitive deficit, and cerebrovascular pathology with increased risk of cerebral atherosclerosis and stroke. The cerebral basis of this PTSD is proposed to be an abnormal communication between the pyramidal cells of the neocortex and the hippocampus, and deep brain structures. It is recommended that a system of emergency and long-term psychological

  6. Strategic Role of Frontal White Matter Tracts in Vascular Cognitive Impairment: A Voxel-Based Lesion-Symptom Mapping Study in CADASIL

    ERIC Educational Resources Information Center

    Duering, Marco; Zieren, Nikola; Herve, Dominique; Jouvent, Eric; Reyes, Sonia; Peters, Nils; Pachai, Chahin; Opherk, Christian; Chabriat, Hugues; Dichgans, Martin

    2011-01-01

    Cerebral small vessel disease is the most common cause of vascular cognitive impairment. It typically manifests with lacunar infarcts and ischaemic white matter lesions. However, little is known about how these lesions relate to the cognitive symptoms. Previous studies have found a poor correlation between the burden of ischaemic lesions and…

  7. Cerebral Hemodynamics in the Elderly: A Transcranial Doppler Study in the Einstein Aging Study Cohort.

    PubMed

    Yang, Dixon; Cabral, Digna; Gaspard, Emmanuel N; Lipton, Richard B; Rundek, Tatjana; Derby, Carol A

    2016-09-01

    We sought to describe the relationship between age, sex, and race/ethnicity with transcranial Doppler hemodynamic characteristics from major intracerebral arterial segments in a large elderly population with varying demographics. We analyzed 369 stroke-free participants aged 70 years and older from the Einstein Aging Study. Single-gate, nonimaging transcranial Doppler sonography, a noninvasive sonographic technique that assesses real-time cerebrovascular hemodynamics, was used to interrogate 9 cerebral arterial segments. Individual Doppler spectra and cerebral blood flow velocities were acquired, and the pulsatility index and resistive index were calculated by the device's automated waveform-tracking function. Multiple linear regression models were used to examine the independent associations of age, sex, and race/ethnicity with transcranial Doppler measures, adjusting for hypertension, history of myocardial infarction or revascularization, and history of diabetes. Among enrolled participants, 303 individuals had at least 1 vessel insonated (mean age [SD], 80 [6] years; 63% women; 58% white; and 32% black). With age, transcranial Doppler measures of mean blood flow velocity were significantly decreased in the basilar artery (P = .001) and posterior cerebral artery (right, P = .003; left, P = .02). Pulsatility indices increased in the left middle cerebral artery (P = .01) and left anterior cerebral artery (P = .03), and the resistive index was increased in the left middle cerebral artery (P = .007) with age. Women had higher pulsatility and resistive indices compared to men in several vessels. We report a decreased mean blood flow velocity and weakly increased arterial pulsatility and resistance with aging in a large elderly stroke-free population. These referential trends in cerebrovascular hemodynamics may carry important implications in vascular diseases associated with advanced age, increased risk of cerebrovascular disease, cognitive decline, and dementia.

  8. Antecedents and neuroimaging patterns in cerebral palsy with epilepsy and cognitive impairment: a population-based study in children born at term.

    PubMed

    Ahlin, Kristina; Jacobsson, Bo; Nilsson, Staffan; Himmelmann, Kate

    2017-07-01

    Antecedents of accompanying impairments in cerebral palsy and their relation to neuroimaging patterns need to be explored. A population-based study of 309 children with cerebral palsy born at term between 1983 and 1994. Prepartum, intrapartum, and postpartum variables previously studied as antecedents of cerebral palsy type and motor severity were analyzed in children with cerebral palsy and cognitive impairment and/or epilepsy, and in children with cerebral palsy without these accompanying impairments. Neuroimaging patterns and their relation to identified antecedents were analyzed. Data were retrieved from the cerebral palsy register of western Sweden, and from obstetric and neonatal records. Children with cerebral palsy and accompanying impairments more often had low birthweight (kg) (odds ratio 0.5, 95% confidence interval 0.3-0.8), brain maldevelopment known at birth (p = 0.007, odds ratio ∞) and neonatal infection (odds ratio 5.4, 95% confidence interval 1.04-28.4). Moreover, neuroimaging patterns of maldevelopment (odds ratio 7.2, 95% confidence interval 2.9-17.2), cortical/subcortical lesions (odds ratio 5.3, 95% confidence interval 2.3-12.2) and basal ganglia lesions (odds ratio 7.6, 95% confidence interval 1.4-41.3) were more common, wheras white matter injury was found significantly less often (odds ratio 0.2, 95% confidence interval 0.1-0.5). In most children with maldevelopment, the intrapartum and postpartum periods were uneventful (p < 0.05). Cerebral maldevelopment was associated with prepartum antecedents, whereas subcortical/cortical and basal ganglia lesions were associated with intrapartum and postpartum antecedents. No additional factor other than those related to motor impairment was associated with epilepsy and cognitive impairment in cerebral palsy. Timing of antecedents deemed important for the development of cerebral palsy with accompanying impairments were supported by neuroimaging patterns. © 2017 Nordic Federation of Societies of

  9. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test.

    PubMed

    Blaser, Rachel E; Rosemberg, Denis B

    2012-01-01

    The effects of wall color stimuli on diving, and the effects of depth stimuli on scototaxis, were assessed in zebrafish. Three groups of fish were confined to a black, a white, or a transparent tank, and tested for depth preference. Two groups of fish were confined to a deep or a shallow tank, and tested for black-white preference. As predicted, fish preferred the deep half of a split-tank over the shallow half, and preferred the black half of a black/white tank over the white half. Results indicated that the tank wall color significantly affected depth preference, with the transparent tank producing the strongest depth preference and the black tank producing the weakest preference. Tank depth, however, did not significantly affect color preference. Additionally, wall color significantly affected shuttling and immobility, while depth significantly affected shuttling and thigmotaxis. These results are consistent with previous indications that the diving response and scototaxis may reflect dissociable mechanisms of behavior. We conclude that the two tests are complementary rather than interchangeable, and that further research on the motivational systems underlying behavior in each of the two tests is needed.

  10. [Cerebral protection].

    PubMed

    Cattaneo, A D

    1993-09-01

    Cerebral protection means prevention of cerebral neuronal damage. Severe brain damage extinguishes the very "human" functions such as speech, consciousness, intellectual capacity, and emotional integrity. Many pathologic conditions may inflict injuries to the brain, therefore the protection and salvage of cerebral neuronal function must be the top priorities in the care of critically ill patients. Brain tissue has unusually high energy requirements, its stores of energy metabolites are small and, as a result, the brain is totally dependent on a continuous supply of substrates and oxygen, via the circulation. In complete global ischemia (cardiac arrest) reperfusion is characterized by an immediate reactive hyperemia followed within 20-30 min by a delayed hypoperfusion state. It has been postulated that the latter contributes to the ultimate neurologic outcome. In focal ischemia (stroke) the primary focus of necrosis is encircled by an area (ischemic penumbra) that is underperfused and contains neurotoxic substances such as free radicals, prostaglandins, calcium, and excitatory neurotransmitters. The variety of therapeutic effort that have addressed the question of protecting the brain reflects their limited success. 1) Barbiturates. After an initial enthusiastic endorsement by many clinicians and years of vigorous controversy, it can now be unequivocally stated that there is no place for barbiturate therapy following resuscitation from cardiac arrest. One presumed explanation for this negative statement is that cerebral metabolic suppression by barbiturates (and other anesthetics) is impossible in the absence of an active EEG. Conversely, in the event of incomplete ischemia EEG activity in usually present (albeit altered) and metabolic suppression and hence possibly protection can be induced with barbiturates. Indeed, most of the animal studies led to a number of recommendations for barbiturate therapy in man for incomplete ischemia. 2) Isoflurane. From a cerebral

  11. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions

    PubMed Central

    Gawryluk, Jodie R.; Mazerolle, Erin L.; D'Arcy, Ryan C. N.

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI. PMID:25152709

  12. Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy.

    PubMed

    Switzer, Aaron R; McCreary, Cheryl; Batool, Saima; Stafford, Randall B; Frayne, Richard; Goodyear, Bradley G; Smith, Eric E

    2016-01-01

    Lower blood oxygenation level dependent (BOLD) signal changes in response to a visual stimulus in functional magnetic resonance imaging (fMRI) have been observed in cross-sectional studies of cerebral amyloid angiopathy (CAA), and are presumed to reflect impaired vascular reactivity. We used fMRI to detect a longitudinal change in BOLD responses to a visual stimulus in CAA, and to determine any correlations between these changes and other established biomarkers of CAA progression. Data were acquired from 22 patients diagnosed with probable CAA (using the Boston Criteria) and 16 healthy controls at baseline and one year. BOLD data were generated from the 200 most active voxels of the primary visual cortex during the fMRI visual stimulus (passively viewing an alternating checkerboard pattern). In general, BOLD amplitudes were lower at one year compared to baseline in patients with CAA (p = 0.01) but were unchanged in controls (p = 0.18). The longitudinal difference in BOLD amplitudes was significantly lower in CAA compared to controls (p < 0.001). White matter hyperintensity (WMH) volumes and number of cerebral microbleeds, both presumed to reflect CAA-mediated vascular injury, increased over time in CAA (p = 0.007 and p = 0.001, respectively). Longitudinal increases in WMH (rs = 0.04, p = 0.86) or cerebral microbleeds (rs = -0.18, p = 0.45) were not associated with the longitudinal decrease in BOLD amplitudes.

  13. Development of the Cell Population in the Brain White Matter of Young Children.

    PubMed

    Sigaard, Rasmus Krarup; Kjær, Majken; Pakkenberg, Bente

    2016-01-01

    While brain gray matter is primarily associated with sensorimotor processing and cognition, white matter modulates the distribution of action potentials, coordinates communication between different brain regions, and acts as a relay for input/output signals. Previous studies have described morphological changes in gray and white matter during childhood and adolescence, which are consistent with cellular genesis and maturation, but corresponding events in infants are poorly documented. In the present study, we estimated the total number of cells (neurons, oligodendrocytes, astrocytes, and microglia) in the cerebral white matter of 9 infants aged 0-33 months, using design-based stereological methods to obtain quantitative data about brain development. There were linear increases with age in the numbers of oligodendrocytes (7-28 billion) and astrocytes (1.5-6.7 billion) during the first 3 years of life, thus attaining two-thirds of the corresponding numbers in adults. The numbers of neurons (0.7 billion) and microglia (0.2 billion) in the white matter did not increase during the first 3 years of life, but showed large biological variation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Optically measured NADH concentrations are unaffected by propofol induced EEG silence during transient cerebral hypoperfusion in anesthetized rabbits☆

    PubMed Central

    Wang, Mei; Agarwal, Sachin; Mayevsky, Avraham; Joshi, Shailendra

    2014-01-01

    The neuroprotective benefit of intra-operative anesthetics is widely described and routinely aimed to invoke electroencephalographic (EEG) silence in anticipation of transient cerebral ischemia. Previous rat survival studies have questioned an additional benefit from achieving EEG silence during transient global cerebral hypoperfusion. Surgical preparation on twelve New Zealand white rabbits under ketamine–propofol anesthesia, included placement of skull screws for bilateral EEG monitoring, skull shaving for laser Doppler probes, and a 5 mm diameter right temporal craniotomy for the NADH probe. Transient global cerebral hypoperfusion was achieved with bilateral internal carotid artery occlusion and pharmacologically induced systemic hypotension. All animals acted as controls, and had cerebral hypoperfusion under baseline propofol anesthesia with an active EEG. Thereafter, animals were randomized to receive bolus injection of intracarotid (3–5 mg) or intravenous (10–20 mg) 1% propofol to create EEG silence for 1–2 min. The data collected at baseline, peak hypoperfusion, and 5 and 10 min post hypoperfusion was analyzed by repeated measures ANOVA with post hoc Bonferroni–Dunn test. Eleven of the twelve rabbits completed the protocol. Hemodynamics and cerebral blood flow changes were comparable in all the animals. Compared to controls, the increase in NADH during ischemia was unaffected by EEG silence with either intravenous or intraarterial propofol. We failed to observe any significant additional attenuation of the elevation in NADH levels with propofol induced EEG silence during transient global cerebral hypoperfusion. This is consistent with previous rat survival studies showing that EEG silence was not required for full neuroprotective effects of pentothal anesthesia. PMID:21570061

  15. White matter hyperintensities in migraine: Clinical significance and central pulsatile hemodynamic correlates.

    PubMed

    Cheng, Chun-Yu; Cheng, Hao-Min; Chen, Shih-Pin; Chung, Chih-Ping; Lin, Yung-Yang; Hu, Han-Hwa; Chen, Chen-Huan; Wang, Shuu-Jiun

    2018-06-01

    Background The role of central pulsatile hemodynamics in the pathogenesis of white matter hyperintensities in migraine patients has not been clarified. Methods Sixty patients with migraine (20-50 years old; women, 68%) without overt vascular risk factors and 30 demographically-matched healthy controls were recruited prospectively. Cerebral white matter hyperintensities volume was determined by T1-weighted magnetic resonance imaging with CUBE-fluid-attenuated-inversion-recovery sequences. Central systolic blood pressure, carotid-femoral pulse wave velocity, and carotid augmentation index were measured by applanation tonometry. Carotid pulsatility index was derived from Doppler ultrasound carotid artery flow analysis. Results Compared to the controls, the migraine patients had higher white matter hyperintensities frequency (odds ratio, 2.75; p = 0.04) and greater mean white matter hyperintensities volume (0.174 vs. 0.049, cm 3 , p = 0.04). Multivariable regression analysis showed that white matter hyperintensities volume in migraine patients was positively associated with central systolic blood pressure ( p = 0.04) and carotid-femoral pulse wave velocity ( p < 0.001), but negatively associated with carotid pulsatility index ( p = 0.04) after controlling for potential confounding factors. The interaction effects observed indicated that the influence of carotid-femoral pulse wave velocity ( p = 0.004) and central systolic blood pressure ( p = 0.03) on white matter hyperintensities formation was greater for the lower-carotid pulsatility index subgroup of migraine patients. White matter hyperintensities volume in migraine patients increased with decreasing carotid pulsatility index and with increasing central systolic blood pressure or carotid-femoral pulse wave velocity. Conclusions White matter hyperintensities are more common in patients with migraine than in healthy controls. Increased aortic stiffness or central systolic blood pressure in

  16. Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Yu, Guoqiang; Furuya, Daisuke; Greenberg, Joel; Yodh, Arjun; Durduran, Turgut

    2006-02-01

    Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.

  17. Altered cerebral hemodyamics and cortical thinning in asymptomatic carotid artery stenosis.

    PubMed

    Marshall, Randolph S; Asllani, Iris; Pavol, Marykay A; Cheung, Ying-Kuen; Lazar, Ronald M

    2017-01-01

    Cortical thinning is a potentially important biomarker, but the pathophysiology in cerebrovascular disease is unknown. We investigated the association between regional cortical blood flow and regional cortical thickness in patients with asymptomatic unilateral high-grade internal carotid artery disease without stroke. Twenty-nine patients underwent high resolution anatomical and single-delay, pseudocontinuous arterial spin labeling magnetic resonance imaging with partial volume correction to assess gray matter baseline flow. Cortical thickness was estimated using Freesurfer software, followed by co-registration onto each patient's cerebral blood flow image space. Paired t-tests assessed regional cerebral blood flow in motor cortex (supplied by the carotid artery) and visual cortex (indirectly supplied by the carotid) on the occluded and unoccluded side. Pearson correlations were calculated between cortical thickness and regional cerebral blood flow, along with age, hypertension, diabetes and white matter hyperintensity volume. Multiple regression and generalized estimating equation were used to predict cortical thickness bilaterally and in each hemisphere separately. Cortical blood flow correlated with thickness in motor cortex bilaterally (p = 0.0002), and in the occluded and unoccluded sides individually; age (p = 0.002) was also a predictor of cortical thickness in the motor cortex. None of the variables predicted cortical thickness in visual cortex. Blood flow was significantly lower on the occluded versus unoccluded side in the motor cortex (p<0.0001) and in the visual cortex (p = 0.018). On average, cortex was thinner on the side of occlusion in motor but not in visual cortex. The association between cortical blood flow and cortical thickness in carotid arterial territory with greater thinning on the side of the carotid occlusion suggests that altered cerebral hemodynamics is a factor in cortical thinning.

  18. Cerebral hemodynamics at altitude: effects of hyperventilation and acclimatization on cerebral blood flow and oxygenation.

    PubMed

    Sanborn, Matthew R; Edsell, Mark E; Kim, Meeri N; Mesquita, Rickson; Putt, Mary E; Imray, Chris; Yow, Heng; Wilson, Mark H; Yodh, Arjun G; Grocott, Mike; Martin, Daniel S

    2015-06-01

    Alterations in cerebral blood flow (CBF) and cerebral oxygenation are implicated in altitude-associated diseases. We assessed the dynamic changes in CBF and peripheral and cerebral oxygenation engendered by ascent to altitude with partial acclimatization and hyperventilation using a combination of near-infrared spectroscopy, transcranial Doppler ultrasound, and diffuse correlation spectroscopy. Peripheral (Spo2) and cerebral (Scto2) oxygenation, end-tidal carbon dioxide (ETCO2), and cerebral hemodynamics were studied in 12 subjects using transcranial Doppler and diffuse correlation spectroscopy (DCS) at 75 m and then 2 days and 7 days after ascending to 4559 m above sea level. After obtaining baseline measurements, subjects hyperventilated to reduce baseline ETCO2 by 50%, and a further set of measurements were obtained. Cerebral oxygenation and peripheral oxygenation showed a divergent response, with cerebral oxygenation decreasing at day 2 and decreasing further at day 7 at altitude, whereas peripheral oxygenation decreased on day 2 before partially rebounding on day 7. Cerebral oxygenation decreased after hyperventilation at sea level (Scto2 from 68.8% to 63.5%; P<.001), increased after hyperventilation after 2 days at altitude (Scto2 from 65.6% to 69.9%; P=.001), and did not change after hyperventilation after 7 days at altitude (Scto2 from 62.2% to 63.3%; P=.35). An intensification of the normal cerebral hypocapnic vasoconstrictive response occurred after partial acclimatization in the setting of divergent peripheral and cerebral oxygenation. This may help explain why hyperventilation fails to improve cerebral oxygenation after partial acclimatization as it does after initial ascent. The use of DCS is feasible at altitude and provides a direct measure of CBF indices with high temporal resolution. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  19. Mnemonic function in small vessel disease and associations with white matter tract microstructure.

    PubMed

    Metoki, Athanasia; Brookes, Rebecca L; Zeestraten, Eva; Lawrence, Andrew J; Morris, Robin G; Barrick, Thomas R; Markus, Hugh S; Charlton, Rebecca A

    2017-09-01

    Cerebral small vessel disease (SVD) is associated with deficits in working memory, with a relative sparing of long-term memory; function may be influenced by white matter microstructure. Working and long-term memory were examined in 106 patients with SVD and 35 healthy controls. Microstructure was measured in the uncinate fasciculi and cingula. Working memory was more impaired than long-term memory in SVD, but both abilities were reduced compared to controls. Regression analyses found that having SVD explained the variance in memory functions, with additional variance explained by the cingula (working memory) and uncinate (long-term memory). Performance can be explained in terms of integrity loss in specific white matter tract associated with mnemonic functions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Superficial white matter damage in anti-NMDA receptor encephalitis.

    PubMed

    Phillips, Owen Robert; Joshi, Shantanu H; Narr, Katherine L; Shattuck, David W; Singh, Manpreet; Di Paola, Margherita; Ploner, Christoph J; Prüss, Harald; Paul, Friedemann; Finke, Carsten

    2018-05-01

    Clinical brain MRI is normal in the majority of patients with anti- N -methyl-D-aspartate receptor (NMDAR) encephalitis. However, extensive deep white matter damage wasrecently identifiedin these patients using diffusion weighted imaging. Here, our aim was to study a particularly vulnerable brain compartment, the late myelinating superficial white matter. Forty-six patients with anti-NMDAR encephalitis were included. Ten out of these were considered neurologically recovered (modified Rankin scale of zero), while 36 patients were non-recovered. In addition, 30 healthy controls were studied. MRI data were collected from all subjects and superficial white matter mean diffusivity derived from diffusion tensor imaging was compared between groups in whole brain, lobar and vertex-based analyses. Patients underwent comprehensive cognitive testing, and correlation analyses were performed between cognitive performance and superficial white matter integrity. Non-recovered patients showed widespread superficial white matter damage in comparison to recovered patients and healthy controls. Vertex-based analyses revealed that damage predominated in frontal and temporal lobes. In contrast, the superficial white matter was intact in recovered patients. Importantly, persistent cognitive impairments in working memory, verbal memory, visuospatial memory and attention significantly correlated with damage of the superficial white matter in patients. Anti-NMDAR encephalitis is associated with extensive superficial white matter damage in patients with incomplete recovery. The strong association with impairment in several cognitive domains highlights the clinical relevance of white matter damage in this disorder and warrants investigations of the underlying pathophysiological mechanisms. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Early postoperative changes in cerebral oxygen metabolism following neonatal cardiac surgery: Effects of surgical duration

    PubMed Central

    Buckley, Erin M.; Lynch, Jennifer M.; Goff, Donna A.; Schwab, Peter J.; Baker, Wesley B.; Durduran, Turgut; Busch, David R.; Nicolson, Susan C.; Montenegro, Lisa M.; Naim, Maryam Y.; Xiao, Rui; Spray, Thomas L.; Yodh, A. G.; Gaynor, J. William; Licht, Daniel J.

    2013-01-01

    Objective The early postoperative period following neonatal cardiac surgery is a time of increased risk for brain injury, yet the mechanisms underlying this risk are unknown. To understand these risks more completely, we quantified changes in postoperative cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction (OEF), and cerebral blood flow (CBF) compared with preoperative levels by using noninvasive optical modalities. Methods Diffuse optical spectroscopy and diffuse correlation spectroscopy were used concurrently to derive cerebral blood flow and oxygen utilization postoperatively for 12 hours. Relative changes in CMRO2, OEF, and CBF were quantified with reference to preoperative data. A mixed-effect model was used to investigate the influence of total support time and deep hypothermic circulatory arrest duration on relative changes in CMRO2, OEF, and CBF. Results Relative changes in CMRO2, OEF, and CBF were assessed in 36 patients, 21 with single-ventricle defects and 15 with 2-ventricle defects. Among patients with single-ventricle lesions, deep hypothermic circulatory arrest duration did not affect relative changes in CMRO2, CBF, or OEF (P > .05). Among 2-ventricle patients, total support time was not a significant predictor of relative changes in CMRO2 or CBF (P > .05), although longer total support time was associated significantly with greater increases in relative change of postoperative OEF (P = .008). Conclusions Noninvasive diffuse optical techniques were used to quantify postoperative relative changes in CMRO2, CBF, and OEF for the first time in this observational pilot study. Pilot data suggest that surgical duration does not account for observed variability in the relative change in CMRO2, and that more comprehensive clinical studies using the new technology are feasible and warranted to elucidate these issues further. PMID:23111021

  2. Atlas-derived perfusion correlates of white matter hyperintensities in patients with reduced cardiac output.

    PubMed

    Jefferson, Angela L; Holland, Christopher M; Tate, David F; Csapo, Istvan; Poppas, Athena; Cohen, Ronald A; Guttmann, Charles R G

    2011-01-01

    Reduced cardiac output is associated with increased white matter hyperintensities (WMH) and executive dysfunction in older adults, which may be secondary to relations between systemic and cerebral perfusion. This study preliminarily describes the regional distribution of cerebral WMH in the context of a normal cerebral perfusion atlas and aims to determine if these variables are associated with reduced cardiac output. Thirty-two participants (72 ± 8 years old, 38% female) with cardiovascular risk factors or disease underwent structural MRI acquisition at 1.5T using a standard imaging protocol that included FLAIR sequences. WMH distribution was examined in common anatomical space using voxel-based morphometry and as a function of normal cerebral perfusion patterns by overlaying a single photon emission computed tomography (SPECT) atlas. Doppler echocardiogram data was used to dichotomize the participants on the basis of low (n=9) and normal (n=23) cardiac output. Global WMH count and volume did not differ between the low and normal cardiac output groups; however, atlas-derived SPECT perfusion values in regions of hyperintensities were reduced in the low versus normal cardiac output group (p<0.001). Our preliminary data suggest that participants with low cardiac output have WMH in regions of relatively reduced perfusion, while normal cardiac output participants have WMH in regions with relatively higher regional perfusion. This spatial perfusion distribution difference for areas of WMH may occur in the context of reduced systemic perfusion, which subsequently impacts cerebral perfusion and contributes to subclinical or clinical microvascular damage. Copyright © 2009 Elsevier Inc. All rights reserved.

  3. Blood-Spinal Cord Barrier Alterations in Subacute and Chronic Stages of a Rat Model of Focal Cerebral Ischemia

    PubMed Central

    Haller, Edward; Tajiri, Naoki; Thomson, Avery; Barretta, Jennifer; Williams, Stephanie N.; Haim, Eithan D.; Qin, Hua; Frisina-Deyo, Aric; Abraham, Jerry V.; Sanberg, Paul R.; Van Loveren, Harry; Borlongan, Cesario V.

    2016-01-01

    We previously demonstrated blood-brain barrier impairment in remote contralateral brain areas in rats at 7 and 30 days after transient middle cerebral artery occlusion (tMCAO), indicating ischemic diaschisis. Here, we focused on effects of subacute and chronic focal cerebral ischemia on the blood-spinal cord barrier (BSCB). We observed BSCB damage on both sides of the cervical spinal cord in rats at 7 and 30 days post-tMCAO. Major BSCB ultrastructural changes in spinal cord gray and white matter included vacuolated endothelial cells containing autophagosomes, pericyte degeneration with enlarged mitochondria, astrocyte end-feet degeneration and perivascular edema; damaged motor neurons, swollen axons with unraveled myelin in ascending and descending tracts and astrogliosis were also observed. Evans Blue dye extravasation was maximal at 7 days. There was immunofluorescence evidence of reduction of microvascular expression of tight junction occludin, upregulation of Beclin-1 and LC3B immunoreactivities at 7 days and a reduction of the latter at 30 days post-ischemia. These novel pathological alterations on the cervical spinal cord microvasculature in rats after tMCAO suggest pervasive and long-lasting BSCB damage after focal cerebral ischemia, and that spinal cord ischemic diaschisis should be considered in the pathophysiology and therapeutic approaches in patients with ischemic cerebral infarction. PMID:27283328

  4. Bistatic Soundings with the HF GPR TAPIR in the Egyptian White Desert

    NASA Astrophysics Data System (ADS)

    Ciarletti, V.; Le Gall, A.; Berthelier, J. J.; Corbel, C.; Dolon, F.; Ney, R.

    2006-03-01

    The TAPIR HF GPR has been initially developed to perform deep soundings on Mars in the frame of the NETLANDER mission. In November 2006, an updated version of the instrument working either in monostatic or in bistatic mode was tested in the Egytian White Desert. Preliminary results are presented.

  5. Deep Sequencing Reveals Uncharted Isoform Heterogeneity of the Protein-Coding Transcriptome in Cerebral Ischemia.

    PubMed

    Bhattarai, Sunil; Aly, Ahmed; Garcia, Kristy; Ruiz, Diandra; Pontarelli, Fabrizio; Dharap, Ashutosh

    2018-06-03

    Gene expression in cerebral ischemia has been a subject of intense investigations for several years. Studies utilizing probe-based high-throughput methodologies such as microarrays have contributed significantly to our existing knowledge but lacked the capacity to dissect the transcriptome in detail. Genome-wide RNA-sequencing (RNA-seq) enables comprehensive examinations of transcriptomes for attributes such as strandedness, alternative splicing, alternative transcription start/stop sites, and sequence composition, thus providing a very detailed account of gene expression. Leveraging this capability, we conducted an in-depth, genome-wide evaluation of the protein-coding transcriptome of the adult mouse cortex after transient focal ischemia at 6, 12, or 24 h of reperfusion using RNA-seq. We identified a total of 1007 transcripts at 6 h, 1878 transcripts at 12 h, and 1618 transcripts at 24 h of reperfusion that were significantly altered as compared to sham controls. With isoform-level resolution, we identified 23 splice variants arising from 23 genes that were novel mRNA isoforms. For a subset of genes, we detected reperfusion time-point-dependent splice isoform switching, indicating an expression and/or functional switch for these genes. Finally, for 286 genes across all three reperfusion time-points, we discovered multiple, distinct, simultaneously expressed and differentially altered isoforms per gene that were generated via alternative transcription start/stop sites. Of these, 165 isoforms derived from 109 genes were novel mRNAs. Together, our data unravel the protein-coding transcriptome of the cerebral cortex at an unprecedented depth to provide several new insights into the flexibility and complexity of stroke-related gene transcription and transcript organization.

  6. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: Relationship with hand sensorimotor function and structural connectivity.

    PubMed

    Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N

    2015-01-01

    To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen-Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure-function relationships but requires further validation in other populations of CP.

  7. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: Relationship with hand sensorimotor function and structural connectivity

    PubMed Central

    Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S.; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N.

    2015-01-01

    Aim To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Methods Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen–Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Results Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. Conclusion The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure–function relationships but requires further validation in other populations of CP. PMID:26106533

  8. Microglial activation in white matter lesions and nonlesional white matter of ageing brains.

    PubMed

    Simpson, J E; Ince, P G; Higham, C E; Gelsthorpe, C H; Fernando, M S; Matthews, F; Forster, G; O'Brien, J T; Barber, R; Kalaria, R N; Brayne, C; Shaw, P J; Stoeber, K; Williams, G H; Lewis, C E; Wharton, S B

    2007-12-01

    White matter lesions (WML), a common feature in brain ageing, are classified as periventricular (PVL) or deep subcortical (DSCL), depending on their anatomical location. Microglial activation is implicated in a number of neurodegenerative diseases, but the microglial response in WML is poorly characterized and its role in pathogenesis unknown. We have characterized the microglial response in WML and control white matter using immunohistochemistry to markers of microglial activation and of proliferation. WML of brains from an unbiased population-based autopsy cohort (Medical Research Council's Cognitive Function and Ageing Study) were identified by post mortem magnetic resonance imaging and sampled for histology. PVL contain significantly more activated microglia, expressing major histocompatibility complex (MHC) class II and the costimulatory molecules B7-2 and CD40, than either control white matter (WM) or DSCL. Furthermore, we show that significantly more microglia express the replication licensing protein minichromosome maintenance protein 2 within PVL, suggesting this is a more proliferation-permissive environment than DSCL. Although microglial activation occurs in both PVL and DSCL, our findings suggest a difference in pathogenesis between these lesion-types: the ramified, activated microglia associated with PVL may reflect immune activation resulting from disruption of the blood brain barrier, while the microglia within DSCL may reflect an innate, amoeboid phagocytic phenotype. We also show that microglia in control WM from lesional cases express significantly more MHC II than control WM from nonlesional ageing brain, suggesting that WML occur in a 'field-effect' of abnormal WM.

  9. On a thermonuclear origin for the 1980-81 deep light minimum of the symbiotic nova PU Vul

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.

    1993-01-01

    The puzzling 1980-81 deep light minimum of the symbiotic nova PU Vul is discussed in terms of a sequence of quasi-static evolutionary models of a hot, 0.5 solar mass white dwarf accreting H-rich matter at a rate 1 x 10 exp -8 solar mass/yr. On the basis of the morphological behavior of the models, it is suggested that the deep light minimum of PU Vul could have been the result of two successive, closely spaced, hydrogen shell flashes on an accreting white dwarf whose core thermal structure and accreted H-rich envelope was not in a long-term thermal 'cycle-averaged' steady state with the rate of accretion.

  10. The growing clinical spectrum of cerebral amyloid angiopathy.

    PubMed

    Wermer, Marieke J H; Greenberg, Steven M

    2018-02-01

    Cerebral amyloid angiopathy (CAA) is diagnosed primarily as a cause of lobar intracerebral hemorrhages (ICH) in elderly patients. With improving MRI techniques, however, the role of CAA in causing other symptoms has become clear. Recognizing the full clinical spectrum of CAA is important for diagnosis and treatment. In this review we summarize recent insights in clinical CAA features, MRI biomarkers, and management. The rate of ICH recurrence in CAA is among the highest of all stroke subtypes. Cortical superficial siderosis (cSS) and cortical subarachnoid hemorrhage (cSAH) are important imaging predictors for recurrent ICH. CAA also causes cognitive problems in multiple domains. In patients with nondemented CAA, the risk of developing dementia is high especially after ICH. CAA pathology probably starts years before the first clinical manifestations. The first signs in hereditary CAA are white matter lesions, cortical microinfarcts, and impaired occipital cerebral vasoreactivity. Visible centrum semiovale perivascular spaces, lobar located lacunes, and cortical atrophy are new nonhemorrhagic MRI markers. CAA should be in the differential diagnosis of elderly patients with lobar ICH but also in those with cognitive decline and episodic transient neurological symptoms. Physicians should be aware of the cognitive effects of CAA. In patients with a previous ICH, cSS, or cSAH, anticoagulation should be considered risky. The increasing number of MRI markers may help to discriminate CAA from other small vessel diseases and dementia subtypes.

  11. Neurological signs and morphological cerebral changes in schizophrenia: An analysis of NSS subscales in patients with first episode psychosis.

    PubMed

    Heuser, Mark; Thomann, Philipp A; Essig, Marco; Bachmann, Silke; Schröder, Johannes

    2011-05-31

    Neurological soft signs (NSS) comprise a broad range of minor motor and sensory deficits which are frequently found in schizophrenia. However, the cerebral changes underlying NSS are only partly understood. We therefore investigated the cerebral correlates of NSS by using magnetic resonance imaging (MRI) in 102 patients with first episode schizophrenia. NSS were assessed after remission of acute psychotic symptoms using the Heidelberg scale (HS), which consists of five NSS subscales ("motor coordination", "complex motor tasks", "orientation", "integrative functions", and "hard signs"). Correlations between NSS scores and cerebral changes were established by optimized voxel-based morphometry. NSS total scores were significantly associated with reduced gray matter densities in the precentral and postcentral gyri, the inferior parietal lobule and the inferior occipital gyrus. Both of the NSS subscales "motor coordination" and "complex motor tasks", referred to motor strip changes but showed differential correlations with parietal, insular, cerebellar or frontal sites, respectively. The NSS subscales "orientation" and "integrative functions" were associated with left frontal, parietal, and occipital changes or bihemispheric frontal changes, respectively. The NSS subscale "hard signs" was associated with deficits in the right cerebellum and right parastriate cortex. Repeated analyses for white matter changes revealed similar results. These findings confirm the associations between NSS and cerebral changes in areas important for motor and sensory functioning. This variety of cerebral sites corresponds to the heterogeneity of NSS and are consistent with the hypothesis that NSS reflect both a rather generalized cerebral dysfunction and localized deficits specific for particular signs. 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Risk factors for computed tomography angiography spot sign in deep and lobar intracerebral hemorrhage are shared.

    PubMed

    Radmanesh, Farid; Falcone, Guido J; Anderson, Christopher D; Battey, Thomas W K; Ayres, Alison M; Vashkevich, Anastasia; McNamara, Kristen A; Schwab, Kristin; Romero, Javier M; Viswanathan, Anand; Greenberg, Steven M; Goldstein, Joshua N; Rosand, Jonathan; Brouwers, H Bart

    2014-06-01

    Patients with intracerebral hemorrhage (ICH) who present with a spot sign on computed tomography angiography are at increased risk of hematoma expansion and poor outcome. Because primary ICH is the acute manifestation of chronic cerebral small vessel disease, we investigated whether different clinical or imaging characteristics predict spot sign presence, using ICH location as a surrogate for arteriolosclerosis- and cerebral amyloid angiopathy-related ICH. Patients with primary ICH and available computed tomography angiography at presentation were included. Predictors of spot sign were assessed using uni- and multivariable regression, stratified by ICH location. Seven hundred forty-one patients were eligible, 335 (45%) deep and 406 (55%) lobar ICH. At least one spot sign was present in 76 (23%) deep and 102 (25%) lobar ICH patients. In multivariable regression, warfarin (odds ratio [OR], 2.42; 95% confidence interval [CI], 1.01-5.71; P=0.04), baseline ICH volume (OR, 1.20; 95% CI, 1.09-1.33, per 10 mL increase; P<0.001), and time from symptom onset to computed tomography angiography (OR, 0.89; 95% CI, 0.80-0.96, per hour; P=0.009) were associated with the spot sign in deep ICH. Predictors of spot sign in lobar ICH were warfarin (OR, 3.95; 95% CI, 1.87-8.51; P<0.001) and baseline ICH volume (OR, 1.20; 95% CI, 1.10-1.31, per 10 mL increase; P<0.001). The most potent associations with spot sign are shared between deep and lobar ICH, suggesting that the acute bleeding process that arises in the setting of different chronic small vessel diseases shares commonalities. © 2014 American Heart Association, Inc.

  13. White Matter Integrity Linked To Functional Impairments in Aging and Early Alzheimer’s Disease

    PubMed Central

    Kavcic, Voyko; Ni, Hongyan; Zhu, Tong; Zhong, Jianhui; Duffy, Charles J.

    2008-01-01

    Background Alzheimer’s disease (AD) is associated with changes in cerebral white matter (WM) but the functional significance of such findings is not yet established. We hypothesized that diffusion tensor imaging (DTI) might reveal links between regional WM changes and specific neuropsychologically and psychophysically defined impairments in early AD. Methods Older adult control subjects (OA, n=18) and mildly impaired AD patients (n=14) underwent neuropsychological and visual perceptual testing along with DTI of cerebral WM. DTI yielded factional anisotropy (FA) and mean diffusivity () maps for nine ROIs in three brain regions that were then compared to the performance measures. Results AD patients showed non-significant trends toward lower FAs in the posterior region’s callosal and sub-cortical ROIs. However, posterior callosal FA was significantly correlated with verbal fluency and figural memory impairments, whereas posterior subcortical FA was correlated with delayed verbal memory, figural memory, and optic flow perceptual impairments. Conclusions WM changes in early AD are concentrated in posterior cerebral areas with distributions that correspond to specific functional impairments. DTI can be used to assess regional pathology related to individual’s deficits in early AD. PMID:19012862

  14. Cerebral Blood Flow and Cerebral Edema in Rats With Diabetic Ketoacidosis

    PubMed Central

    Yuen, Natalie; Anderson, Steven E.; Glaser, Nicole; Tancredi, Daniel J.; O'Donnell, Martha E.

    2008-01-01

    OBJECTIVE— Cerebral edema (CE) is a potentially life-threatening complication of diabetic ketoacidosis (DKA) in children. Osmotic fluctuations during DKA treatment have been considered responsible, but recent data instead suggest that cerebral hypoperfusion may be involved and that activation of cerebral ion transporters may occur. Diminished cerebral blood flow (CBF) during DKA, however, has not been previously demonstrated. We investigated CBF and edema formation in a rat model of DKA and determined the effects of bumetanide, an inhibitor of Na-K-Cl cotransport. RESEARCH DESIGN AND METHODS— Juvenile rats with streptozotocin-induced DKA were treated with intravenous saline and insulin, similar to human treatment protocols. CBF was determined by magnetic resonance (MR) perfusion–weighted imaging before and during treatment, and CE was assessed by determining apparent diffusion coefficients (ADCs) using MR diffusion–weighted imaging. RESULTS— CBF was significantly reduced in DKA and was responsive to alterations in pCO2. ADC values were reduced, consistent with cell swelling. The reduction in ADCs correlated with dehydration, as reflected in blood urea nitrogen concentrations. Bumetanide caused a rapid rise in ADCs of DKA rats without significantly changing CBF, while saline/insulin caused a rapid rise in CBF and a gradual rise in ADCs. DKA rats treated with bumetanide plus saline/insulin showed a trend toward more rapid rise in cortical ADCs and a larger rise in striatal CBF than those observed with saline/insulin alone. CONCLUSIONS— These data demonstrate that CE in DKA is accompanied by cerebral hypoperfusion before treatment and suggest that blocking Na-K-Cl cotransport may reduce cerebral cell swelling. PMID:18633109

  15. Revisiting cerebral thromboangiitis obliterans.

    PubMed

    Hurelbrink, Carrie B; Barnett, Yael; Buckland, Michael E; Wilkinson, Mark; Leicester, Jon; Anderson, Craig; Brennan, Jeffrey; Barnett, Michael

    2012-06-15

    We describe a 56-year-old patient with progressive cognitive decline in the context of heavy tobacco use and migraine, and imaging evidence of an occlusive terminal cerebral vasculopathy. The results of brain biopsy recapitulated the pathological features described by Lindenberg and Spatz in their classic 1939 treatise on cerebral thromboangiitis obliterans, or cerebral Buerger's disease. Although the condition is associated with heavy smoking, the identification of a hypercoagulable state in our patient suggests a multifactorial pathogenesis. The diagnosis of cerebral thromboangiitis obliterans in life is facilitated by modern neuroimaging and should prompt immediate cessation of smoking and a search for an underlying prothrombotic tendency. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Structural white matter changes in adolescents and young adults with maple syrup urine disease.

    PubMed

    Klee, D; Thimm, E; Wittsack, H J; Schubert, D; Primke, R; Pentang, G; Schaper, J; Mödder, U; Antoch, A; Wendel, U; Cohnen, M

    2013-11-01

    To get insight into the nature of magnetic resonance (MR) white matter abnormalities of patients with classic maple syrup urine disease (MSUD) under diet control. Ten patients with classic MSUD and one with a severe MSUD variant (mean age 21.5 ± 5.1 years) on diet and 11 age and sex-matched healthy subjects were enrolled. Apart from standard MR sequences, diffusion weighted images (DWI), diffusion tensor images (DTI), and magnetization transfer images (MT) were obtained and comparatively analyzed for apparent diffusion coefficient (ADC), tensor fractional anisotropy (FA) and MT maps in 11 regions of interest (ROI) within the white matter. In MSUD patients DWI, DTI and FA showed distinct signal changes in the cerebral hemispheres, the dorsal limb of internal capsule, the brain stem and the central cerebellum. Signal intensity was increased in DWI with a reduced ADC and decreased values for FA. MT did not reveal differences between patients and control subjects. Signal abnormalities in the white matter of adolescents and young adults under diet control may be interpreted as consequence of structural alterations like dysmyelination. The reduced ADC and FA in the white matter with preserved MT indicate a reduction in fiber tracks.

  17. White/blue-emitting, water-dispersible CdSe quantum dots prepared by counter ion-induced polymer collapse

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.

    2015-09-01

    The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.

  18. The active metabolite of prasugrel, R-138727, improves cerebral blood flow and reduces cerebral infarction and neurologic deficits in a non-human primate model of acute ischaemic stroke.

    PubMed

    Sugidachi, Atsuhiro; Mizuno, Makoto; Ohno, Kousaku; Jakubowski, Joseph A; Tomizawa, Atsuyuki

    2016-10-05

    Previously, we showed preventive effects of prasugrel, a P2Y12 antagonist, in a non-human primate model of thrombotic middle cerebral artery occlusion (MCAO); however, it remains unclear if P2Y12 inhibition after MCAO reduces cerebral injury and dysfunction. Here we investigated the effects of R-138727, the major active metabolite of prasugrel, on ex vivo platelet aggregation at 5min, 15min, 60min, and 24h after administration to non-human primates (n=3). A single intravenous dose of R-138727 (0.03-0.3mg/kg) resulted in significant and sustained dose-related effects on platelets for up to 24h. R-138727 was administered 1h after MCAO induction, and its effects on thrombosis, cerebral infarction, and neurological deficits were determined (n=8-10). R-138727 (0.3mg/kg) significantly increased total patency rate of the MCA (P=0.0211). Although there was no effect on the patency rate before R-138727 dosing (P=0.3975), it increased 1h after dosing (P=0.0114). R-138727 significantly reduced total ischaemic infarction volumes (P=0.0147), including those of basal ganglia (P=0.0028), white matter (P=0.0393), and haemorrhagic infarction (P=0.0235). Additionally, treatment with R-138727 reduced overall neurological deficits (P=0.0019), including the subcategories of consciousness (P=0.0042), sensory system (P=0.0045), motor system (P=0.0079) and musculoskeletal coordination (P=0.0082). These findings support the possible utility of P2Y12 inhibition during early-onset MCAO to limit the progression and degree of cerebral ischaemia and infarction and also associated neurological deficits. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Leukoencephalopathy with brain stem and spinal cord involvement and high lactate: a genetically proven case without elevated white matter lactate.

    PubMed

    Sharma, Suvasini; Sankhyan, Naveen; Kumar, Atin; Scheper, Gert C; van der Knaap, Marjo S; Gulati, Sheffali

    2011-06-01

    A 17-year-old Indian boy with gradually progressive ataxia with onset at 12 years of age is described. Magnetic resonance imaging (MRI) of the brain revealed extensive, inhomogeneous signal abnormalities in the cerebral white matter, with involvement of selected tracts in the brain stem and spinal cord. The imaging findings were characteristic of leukoencephalopathy with brain stem and spinal cord involvement and high lactate, a recently described leukodystrophy. Interestingly, magnetic resonance spectroscopy of the abnormal white matter did not reveal elevated lactate. The patient was compound heterozygous for 2 new mutations in DARS2, genetically confirming the diagnosis.

  20. Visceral adiposity predicts subclinical white matter hyperintensities in middle-aged adults.

    PubMed

    Pasha, Evan P; Birdsill, Alex; Parker, Paige; Elmenshawy, Ahmed; Tanaka, Hirofumi; Haley, Andreana P

    Growing prevalence of neuropathology and cognitive impairment are emerging consequences of the obesity epidemic. Adiposity indices used in examining the relationships between obesity, neuropathology, and cognition vary substantially in the literature leading to incongruent findings. Our aim was to determine the anthropometric measures most strongly associated with early white matter disease and cognitive function at midlife. Multiple adiposity indices were measured in 126 adults aged 40-62 who also completed a magnetic resonance imaging (MRI) scan to quantify white matter disease and a cognitive test battery. Anthropometric indices of obesity were compared to image-based estimates of visceral adipose tissue with dual-energy X-ray absorptiometry (DEXA) as predictors of current white matter disease and cognitive function. We also explored sex as a potential moderator of these relationships. Waist circumference (WC) was most strongly correlated with DEXA estimates of visceral adipose tissue (r=0.871, p<0.001). Increasing WC (β=0.231, p=0.034), percent body fat (β=0.230, p=0.045), and VAT (β=0.247, p=0.027) significantly predicted subclinical white matter hyperintensities in the absence of cognitive impairment after accounting for age, sex, years of education, and cardiovascular risk factors. Sex was not a significant moderator of any of the observed relationships. Of the anthropometric indices used in this study, WC, BF, and VAT successfully predicted subclinical white matter disease in cognitively normal adults at midlife. Increasing VAT may independently insidiously affect cerebral white matter prior to detectable cognitive changes, necessitating early intervention. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  1. Fine-grained leukocyte classification with deep residual learning for microscopic images.

    PubMed

    Qin, Feiwei; Gao, Nannan; Peng, Yong; Wu, Zizhao; Shen, Shuying; Grudtsin, Artur

    2018-08-01

    Leukocyte classification and cytometry have wide applications in medical domain, previous researches usually exploit machine learning techniques to classify leukocytes automatically. However, constrained by the past development of machine learning techniques, for example, extracting distinctive features from raw microscopic images are difficult, the widely used SVM classifier only has relative few parameters to tune, these methods cannot efficiently handle fine-grained classification cases when the white blood cells have up to 40 categories. Based on deep learning theory, a systematic study is conducted on finer leukocyte classification in this paper. A deep residual neural network based leukocyte classifier is constructed at first, which can imitate the domain expert's cell recognition process, and extract salient features robustly and automatically. Then the deep neural network classifier's topology is adjusted according to the prior knowledge of white blood cell test. After that the microscopic image dataset with almost one hundred thousand labeled leukocytes belonging to 40 categories is built, and combined training strategies are adopted to make the designed classifier has good generalization ability. The proposed deep residual neural network based classifier was tested on microscopic image dataset with 40 leukocyte categories. It achieves top-1 accuracy of 77.80%, top-5 accuracy of 98.75% during the training procedure. The average accuracy on the test set is nearly 76.84%. This paper presents a fine-grained leukocyte classification method for microscopic images, based on deep residual learning theory and medical domain knowledge. Experimental results validate the feasibility and effectiveness of our approach. Extended experiments support that the fine-grained leukocyte classifier could be used in real medical applications, assist doctors in diagnosing diseases, reduce human power significantly. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effects of intermittent theta burst stimulation on cerebral blood flow and cerebral vasomotor reactivity.

    PubMed

    Pichiorri, Floriana; Vicenzini, Edoardo; Gilio, Francesca; Giacomelli, Elena; Frasca, Vittorio; Cambieri, Chiara; Ceccanti, Marco; Di Piero, Vittorio; Inghilleri, Maurizio

    2012-08-01

    To determine whether intermittent theta burst stimulation influences cerebral hemodynamics, we investigated changes induced by intermittent theta burst stimulation on the middle cerebral artery cerebral blood flow velocity and vasomotor reactivity to carbon dioxide (CO(2)) in healthy participants. The middle cerebral artery flow velocity and vasomotor reactivity were monitored by continuous transcranial Doppler sonography. Changes in cortical excitability were tested by transcranial magnetic stimulation. In 11 healthy participants, before and immediately after delivering intermittent theta burst stimulation, we tested cortical excitability measured by the resting motor threshold and motor evoked potential amplitude over the stimulated hemisphere and vasomotor reactivity to CO(2) bilaterally. The blood flow velocity was monitored in both middle cerebral arteries throughout the experimental session. In a separate session, we tested the effects of sham stimulation under the same experimental conditions. Whereas the resting motor threshold remained unchanged before and after stimulation, motor evoked potential amplitudes increased significantly (P = .04). During and after stimulation, middle cerebral artery blood flow velocities also remained bilaterally unchanged, whereas vasomotor reactivity to CO(2) increased bilaterally (P = .04). The sham stimulation left all variables unchanged. The expected intermittent theta burst stimulation-induced changes in cortical excitability were not accompanied by changes in cerebral blood flow velocities; however, the bilateral increased vasomotor reactivity suggests that intermittent theta burst stimulation influences the cerebral microcirculation, possibly involving subcortical structures. These findings provide useful information on hemodynamic phenomena accompanying intermittent theta burst stimulation, which should be considered in research aimed at developing this noninvasive, low-intensity stimulation technique for safe

  3. Enhancement of external quantum efficiency and quality of heterojunction white LEDs by varying the size of ZnO nanorods.

    PubMed

    Bano, N; Hussain, I; Sawaf, S; Alshammari, Abeer; Saleemi, F

    2017-06-16

    The size of ZnO nanorods (NRs) plays an important role in tuning the external quantum efficiency (EQE) and quality of light generated by white light emitting diodes (LEDs). In this work, we report on the enhancement of EQE and the quality of ZnO NR-based hetrojunction white LEDs fabricated on a p-GaN substrate using a low temperature solution method. Cathodoluminescence spectra demonstrate that ultraviolet (UV) emission decreases and visible deep band emission increases with an increase in the length of the ZnO NRs. The UV emission could be internally reabsorbed by the ZnO NR excitation, thus enhancing the emission intensity of the visible deep band. Photocurrent measurements validated the fact that the EQE depends on the size of ZnO NRs, increasing by 87% with an increase in the length of the ZnO NRs. Furthermore, the quality of white light was measured and clearly indicated an increase in the color rendering indices of the LEDs with an increase in the length of the ZnO NRs, confirming that the quality of light generated by LEDs can be tuned by varying the length of the ZnO NRs. These results suggest that the EQE and visible deep band emission from n-ZnONRs/p-GaN heterojunction LEDs can be effectively controlled by adjusting the length of the ZnO NRs, which can be useful for realizing tunable white LEDs.

  4. Enhancement of external quantum efficiency and quality of heterojunction white LEDs by varying the size of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Bano, N.; Hussain, I.; Sawaf, S.; Alshammari, Abeer; Saleemi, F.

    2017-06-01

    The size of ZnO nanorods (NRs) plays an important role in tuning the external quantum efficiency (EQE) and quality of light generated by white light emitting diodes (LEDs). In this work, we report on the enhancement of EQE and the quality of ZnO NR-based hetrojunction white LEDs fabricated on a p-GaN substrate using a low temperature solution method. Cathodoluminescence spectra demonstrate that ultraviolet (UV) emission decreases and visible deep band emission increases with an increase in the length of the ZnO NRs. The UV emission could be internally reabsorbed by the ZnO NR excitation, thus enhancing the emission intensity of the visible deep band. Photocurrent measurements validated the fact that the EQE depends on the size of ZnO NRs, increasing by 87% with an increase in the length of the ZnO NRs. Furthermore, the quality of white light was measured and clearly indicated an increase in the color rendering indices of the LEDs with an increase in the length of the ZnO NRs, confirming that the quality of light generated by LEDs can be tuned by varying the length of the ZnO NRs. These results suggest that the EQE and visible deep band emission from n-ZnONRs/p-GaN heterojunction LEDs can be effectively controlled by adjusting the length of the ZnO NRs, which can be useful for realizing tunable white LEDs.

  5. Comparison between antegrade and retrograde cerebral perfusion or profound hypothermia as brain protection strategies during repair of type A aortic dissection.

    PubMed

    Stamou, Sotiris C; Rausch, Laura A; Kouchoukos, Nicholas T; Lobdell, Kevin W; Khabbaz, Kamal; Murphy, Edward; Hagberg, Robert C

    2016-07-01

    The goal of this study was to compare early postoperative outcomes and actuarial-free survival between patients who underwent repair of acute type A aortic dissection by the method of cerebral perfusion used. A total of 324 patients from five academic medical centers underwent repair of acute type A aortic dissection between January 2000 and December 2010. Of those, antegrade cerebral perfusion (ACP) was used for 84 patients, retrograde cerebral perfusion (RCP) was used for 55 patients, and deep hypothermic circulatory arrest (DHCA) was used for 184 patients during repair. Major morbidity, operative mortality, and 5-year actuarial survival were compared between groups. Multivariate logistic regression was used to determine predictors of operative mortality and Cox Regression hazard ratios were calculated to determine the predictors of long term mortality. Operative mortality was not influenced by the type of cerebral protection (19% for ACP, 14.5% for RCP and 19.1% for DHCA, P=0.729). In multivariable logistic regression analysis, hemodynamic instability [odds ratio (OR) =19.6, 95% confidence intervals (CI), 0.102-0.414, P<0.001] and CPB time >200 min(OR =4.7, 95% CI, 1.962-1.072, P=0.029) emerged as independent predictors of operative mortality. Actuarial 5-year survival was unchanged by cerebral protection modality (48.8% for ACP, 61.8% for RCP and 66.8% for no cerebral protection, log-rank P=0.844). During surgical repair of type A aortic dissection, ACP, RCP or DHCA are safe strategies for cerebral protection in selected patients with type A aortic dissection.

  6. Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study.

    PubMed

    Inder, Terrie E; Wells, Scott J; Mogridge, Nina B; Spencer, Carole; Volpe, Joseph J

    2003-08-01

    The aim of this study was to define qualitatively the nature and extent of white and gray matter abnormalities in a longitudinal population-based study of infants with very low birth weight. Perinatal factors were then related to the presence and severity of magnetic resonance imaging (MRI) abnormalities. From November 1998 to December 2000, 100 consecutive premature infants admitted to the neonatal intensive care unit at Christchurch Women's Hospital were recruited (98% eligible) after informed parental consent to undergo an MRI scan at term equivalent. The scans were analyzed by a single neuroradiologist experienced in pediatric MRI, with a second independent scoring of the MRI using a combination of criteria for white matter (cysts, signal abnormality, loss of volume, ventriculomegaly, corpus callosal thinning, myelination) and gray matter (gray matter signal abnormality, gyration, subarachnoid space). Results were analyzed against individual item scores as well as the presence of moderate-severe white matter score, total gray matter score, and total brain score. The mean gestational age was 27.9+/-2.4 weeks (range, 23-32 weeks), and mean birth weight was 1063+/-292 g. The greatest univariate predictors for moderate-severe white matter abnormality were lower gestational age (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.1-1.7; P<.01), maternal fever (OR, 2.2; 95% CI, 1.1-4.6; P<.04), proven sepsis in the infant at delivery (OR, 1.8; 95% CI, 1.1-3.6; P=0.03), inotropic support (OR, 2.7; 95% CI, 1.5-4.5; P<.001), patent ductus arteriosus (OR, 2.2; 95% CI, 1.2-3.8; P=.01), grade III/IV intraventricular hemorrhage (P=.015), and the occurrence of a pneumothorax (P=.05). There was a significant protective effect of intrauterine growth restriction (OR, 0.51; 95% CI, 0.23-0.99; P=.04). Gray matter abnormality was highly related to the presence and severity of white matter abnormality. A unique pattern of cerebral abnormality consisting of significant diffuse

  7. White matter pathways in persistent developmental stuttering: Lessons from tractography.

    PubMed

    Kronfeld-Duenias, Vered; Civier, Oren; Amir, Ofer; Ezrati-Vinacour, Ruth; Ben-Shachar, Michal

    2018-03-01

    Fluent speech production relies on the coordinated processing of multiple brain regions. This highlights the role of neural pathways that connect distinct brain regions in producing fluent speech. Here, we aim to investigate the role of the white matter pathways in persistent developmental stuttering (PDS), where speech fluency is disrupted. We use diffusion weighted imaging and tractography to compare the white matter properties between adults who do and do not stutter. We compare the diffusion properties along 18 major cerebral white matter pathways. We complement the analysis with an overview of the methodology and a roadmap of the pathways implicated in PDS according to the existing literature. We report differences in the microstructural properties of the anterior callosum, the right inferior longitudinal fasciculus and the right cingulum in people who stutter compared with fluent controls. Persistent developmental stuttering is consistently associated with differences in bilateral distributed networks. We review evidence showing that PDS involves differences in bilateral dorsal fronto-temporal and fronto-parietal pathways, in callosal pathways, in several motor pathways and in basal ganglia connections. This entails an important role for long range white matter pathways in this disorder. Using a wide-lens analysis, we demonstrate differences in additional, right hemispheric pathways, which go beyond the replicable findings in the literature. This suggests that the affected circuits may extend beyond the known language and motor pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Cognitive correlates of white matter lesion load and brain atrophy

    PubMed Central

    Dong, Chuanhui; Nabizadeh, Nooshin; Caunca, Michelle; Cheung, Ying Kuen; Rundek, Tatjana; Elkind, Mitchell S.V.; DeCarli, Charles; Sacco, Ralph L.; Stern, Yaakov

    2015-01-01

    Objective: We investigated white matter lesion load and global and regional brain volumes in relation to domain-specific cognitive performance in the stroke-free Northern Manhattan Study (NOMAS) population. Methods: We quantified white matter hyperintensity volume (WMHV), total cerebral volume (TCV), and total lateral ventricular (TLV) volume, as well as hippocampal and cortical gray matter (GM) lobar volumes in a subgroup. We used general linear models to examine MRI markers in relation to domain-specific cognitive performance, adjusting for key covariates. Results: MRI and cognitive data were available for 1,163 participants (mean age 70 ± 9 years; 60% women; 66% Hispanic, 17% black, 15% white). Across the entire sample, those with greater WMHV had worse processing speed. Those with larger TLV volume did worse on episodic memory, processing speed, and semantic memory tasks, and TCV did not explain domain-specific variability in cognitive performance independent of other measures. Age was an effect modifier, and stratified analysis showed that TCV and WMHV explained variability in some domains above age 70. Smaller hippocampal volume was associated with worse performance across domains, even after adjusting for APOE ε4 and vascular risk factors, whereas smaller frontal lobe volumes were only associated with worse executive function. Conclusions: In this racially/ethnically diverse, community-based sample, white matter lesion load was inversely associated with cognitive performance, independent of brain atrophy. Lateral ventricular, hippocampal, and lobar GM volumes explained domain-specific variability in cognitive performance. PMID:26156514

  9. Cyanide Suicide After Deep Web Shopping: A Case Report.

    PubMed

    Le Garff, Erwan; Delannoy, Yann; Mesli, Vadim; Allorge, Delphine; Hédouin, Valéry; Tournel, Gilles

    2016-09-01

    Cyanide is a product that is known for its use in industrial or laboratory processes, as well as for intentional intoxication. The toxicity of cyanide is well described in humans with rapid inhibition of cellular aerobic metabolism after ingestion or inhalation, leading to severe clinical effects that are frequently lethal. We report the case of a young white man found dead in a hotel room after self-poisoning with cyanide ordered in the deep Web. This case shows a probable complex suicide kit use including cyanide, as a lethal tool, and dextromethorphan, as a sedative and anxiolytic substance. This case is an original example of the emerging deep Web shopping in illegal drug procurement.

  10. Heat Flow, Thermal Conductivity, and the Plausibility of the White Mars Hypothesis

    NASA Technical Reports Server (NTRS)

    Urquhart, M. L.; Gulick, V. C.

    2002-01-01

    Due to the low thermal conductivity of CO2 ice and clathrate vs. water ice, we find that liquid water reservoirs would not be confined to the deep subsurface as predicted by the controversial White Mars model, even assuming low global heat flow. Additional information is contained in the original extended abstract.

  11. Sodium transport through the cerebral sodium-glucose transporter exacerbates neuron damage during cerebral ischaemia.

    PubMed

    Yamazaki, Yui; Harada, Shinichi; Wada, Tetsuyuki; Yoshida, Shigeru; Tokuyama, Shogo

    2016-07-01

    We recently demonstrated that the cerebral sodium-glucose transporter (SGLT) is involved in postischaemic hyperglycaemia-induced exacerbation of cerebral ischaemia. However, the associated SGLT-mediated mechanisms remain unclear. Thus, we examined the involvement of cerebral SGLT-induced excessive sodium ion influx in the development of cerebral ischaemic neuronal damage. [Na+]i was estimated according to sodium-binding benzofuran isophthalate fluorescence. In the in vitro study, primary cortical neurons were prepared from fetuses of ddY mice. Primary cortical neurons were cultured for 5 days before each treatment with reagents, and these survival rates were assessed using biochemical assays. In in vivo study, a mouse model of focal ischaemia was generated using middle cerebral artery occlusion (MCAO). In these experiments, treatment with high concentrations of glucose induced increment in [Na+]i, and this phenomenon was suppressed by the SGLT-specific inhibitor phlorizin. SGLT-specific sodium ion influx was induced using a-methyl-D-glucopyranoside (a-MG) treatments, which led to significant concentration-dependent declines in neuronal survival rates and exacerbated hydrogen peroxide-induced neuronal cell death. Moreover, phlorizin ameliorated these effects. Finally, intracerebroventricular administration of a-MG exacerbated the development of neuronal damage induced by MCAO, and these effects were ameliorated by the administration of phlorizin. Hence, excessive influx of sodium ions into neuronal cells through cerebral SGLT may exacerbate the development of cerebral ischaemic neuronal damage. © 2016 Royal Pharmaceutical Society.

  12. Radial Coherence of Diffusion Tractography in the Cerebral White Matter of the Human Fetus: Neuroanatomic Insights

    PubMed Central

    Xu, Gang; Takahashi, Emi; Folkerth, Rebecca D.; Haynes, Robin L.; Volpe, Joseph J.; Grant, P. Ellen; Kinney, Hannah C.

    2014-01-01

    High angular resolution diffusion imaging (HARDI) demonstrates transient radial coherence of telencephalic white matter in the human fetus. Our objective was to define the neuroanatomic basis of this radial coherence through correlative HARDI- and postmortem tissue analyses. Applying immunomarkers to radial glial fibers (RGFs), axons, and blood vessels in 18 cases (19 gestational weeks to 3 postnatal years), we compared their developmental profiles to HARDI tractography in brains of comparable ages (n = 11). At midgestation, radial coherence corresponded with the presence of RGFs. At 30–31 weeks, the transition from HARDI-defined radial coherence to corticocortical coherence began simultaneously with the transformation of RGFs to astrocytes. By term, both radial coherence and RGFs had disappeared. White matter axons were radial, tangential, and oblique over the second half of gestation, whereas penetrating blood vessels were consistently radial. Thus, radial coherence in the fetal white matter likely reflects a composite of RGFs, penetrating blood vessels, and radial axons of which its transient expression most closely matches that of RGFs. This study provides baseline information for interpreting radial coherence in tractography studies of the preterm brain in the assessment of the encephalopathy of prematurity. PMID:23131806

  13. Cerebral Oximetry During Infant Cardiac Surgery: Evaluation of and Relationship to Early Postoperative Outcome

    PubMed Central

    Kussman, Barry D.; Wypij, David; DiNardo, James A.; Newburger, Jane W.; Mayer, John E.; del Nido, Pedro J.; Bacha, Emile A.; Pigula, Frank; McGrath, Ellen; Laussen, Peter C.

    2009-01-01

    Background We examined changes in cerebral oxygen saturation during infant heart surgery and its relationship to anatomic diagnosis and early outcome Methods Regional cerebral oxygen saturation (rSO2) was measured by near-infrared spectroscopy in 104 infants undergoing biventricular repair without aortic arch obstruction as part of a randomized trial of hemodilution to a hematocrit of 25% versus 35%. Results Prior to cardiopulmonary bypass (CPB), infants with tetralogy of Fallot had higher rSO2 values compared to those with D-transposition of the great arteries (D-TGA) or ventricular septal defect (P < 0.001). During CPB cooling, low flow and at the termination of CPB, D-TGA subjects had the highest rSO2 values (P < 0.001). There were no significant associations between intraoperative rSO2 and early postoperative outcomes after adjustment for diagnosis. In 39 D-TGA subjects with ≥5 minutes of deep hypothermic circulatory arrest, there was no correlation between the rSO2 (91 ± 6%) or hematocrit (29.2 ± 5.5%) at the onset of arrest and the rate of decline in rSO2 during arrest. Conclusions Intraoperative rSO2 varies according to anatomic diagnosis but accounts for very little of the variance in early outcome. As measured by frontal near-infrared spectroscopy, higher levels of hematocrit and current perfusion techniques appear to provide an adequate oxygen reservoir prior to relatively short periods of deep hypothermic circulatory arrest. PMID:19299774

  14. Cerebral Microbleeds are an Independent Predictor of Hemorrhagic Transformation Following Intravenous Alteplase Administration in Acute Ischemic Stroke.

    PubMed

    Nagaraja, Nandakumar; Tasneem, Nudrat; Shaban, Amir; Dandapat, Sudeepta; Ahmed, Uzair; Policeni, Bruno; Olalde, Heena; Shim, Hyungsub; Samaniego, Edgar A; Pieper, Connie; Ortega-Gutierrez, Santiago; Leira, Enrique C; Adams, Harold P

    2018-05-01

    Intravenous alteplase (rt-PA) increases the risk of hemorrhagic transformation of acute ischemic stroke. The objective of our study was to evaluate clinical, laboratory, and imaging predictors on forecasting the risk of hemorrhagic transformation following treatment with rt-PA. We also evaluated the factors associated with cerebral microbleeds that increase the risk of hemorrhagic transformation. Consecutive patients with acute ischemic stroke admitted between January 1, 2009 and December 31, 2013 were included in the study if they received IV rt-PA, had magnetic resonance imaging (MRI) of the brain on admission, and computed tomography or MRI of the brain at 24 (18-36) hours later to evaluate for the presence of hemorrhagic transformation. The clinical data, lipid levels, platelet count, MRI, and computed tomography images were retrospectively reviewed. The study included 366 patients, with mean age 67 ± 15 years; 46% were women and 88% were white. The median National Institutes of Health Stroke Scale (NIHSS) score was 6 (interquartile range 3-15). Hemorrhagic transformation was observed in 87 (23.8%) patients and cerebral microbleeds were noted in 95 (25.9%). Patients with hemorrhagic transformation tended to be older, nonwhite, have atrial fibrillation, higher baseline NIHSS score, lower cholesterol and triglyceride levels, and cerebral microbleeds and nonlacunar infarcts. Patients with cerebral microbleeds were more likely to be older, have hypertension, hyperlipidemia, previous history of stroke, and prior use of antithrombotics. On multivariate analysis race, NIHSS score, nonlacunar infarct, and presence of cerebral microbleeds were independently associated with hemorrhagic transformation following treatment with rt-PA. Presence of cerebral microbleeds is an independent predictor of hemorrhagic transformation of acute ischemic stroke following treatment with rt-PA. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights

  15. Using self-organizing maps to identify potential halo white dwarfs.

    PubMed

    García-Berro, Enrique; Torres, Santiago; Isern, Jordi

    2003-01-01

    We present the results of an unsupervised classification of the disk and halo white dwarf populations in the solar neighborhood. The classification is done by merging the results of detailed Monte Carlo (MC) simulations, which reproduce very well the characteristics of the white dwarf populations in the solar neighborhood, with a catalogue of real stars. The resulting composite catalogue is analyzed using a competitive learning algorithm. In particular we have used the so-called self-organized map. The MC simulated stars are used as tracers and help in identifying the resulting clusters. The results of such an strategy turn out to be quite satisfactory, suggesting that this approach can provide an useful framework for analyzing large databases of white dwarfs with well determined kinematical, spatial and photometric properties once they become available in the next decade. Moreover, the results are of astrophysical interest as well, since a straightforward interpretation of several recent astronomical observations, like the detected microlensing events in the direction of the Magellanic Clouds, the possible detection of high proper motion white dwarfs in the Hubble Deep Field and the discovery of high velocity white dwarfs in the solar neighborhood, suggests that a fraction of the baryonic dark matter component of our galaxy could be in the form of old and dim halo white dwarfs.

  16. Redefining cerebral malaria by including malaria retinopathy.

    PubMed

    Beare, Nicholas A V; Lewallen, Susan; Taylor, Terrie E; Molyneux, Malcolm E

    2011-03-01

    Accurate diagnosis of cerebral malaria (CM) is important for patient management, epidemiological and end point surveillance, and enrolling patients with CM in studies of pathogenesis or therapeutic trials. In malaria-endemic areas, where asymptomatic Plasmodium falciparum parasitemia is common, a positive blood film in a comatose individual does not prove that the coma is due to malaria. A retinopathy consisting of two unique features - patchy retinal whitening and focal changes of vessel color - is highly specific for encephalopathy of malarial etiology. White-centered retinal hemorrhages are a common but less specific feature. Either indirect or direct ophthalmoscopy can be used to identify the changes, and both procedures can be learned and practiced by nonspecialist clinicians. In view of its important contributions to both clinical care and research, examination of the retina should become a routine component of the assessment of a comatose child or adult when CM is a possible diagnosis.

  17. Apixaban Inhibits Cerebral Microembolic Signals Derived from Carotid Arterial Thrombosis in Rabbits.

    PubMed

    Zhou, Xueping; Wu, Weizhen; Chu, Lin; Gutstein, David E; Seiffert, Dietmar; Wang, Xinkang

    2016-09-01

    Cerebral microembolic signal (MES) is an independent predictor of stroke risk and prognosis. The objective of this study is to assess the effects of apixaban, as a representative of the novel oral anticoagulant class, on a rabbit model of cerebral MES. A clinical transcranial Doppler ultrasound instrument was used to assess MESs in the middle cerebral artery in a 30% FeCl3-induced carotid arterial thrombosis model in male New Zealand White rabbits. Ascending doses of apixaban were evaluated as monotherapy and in combination with aspirin on both arterial thrombosis and MES. Pharmacokinetic and pharmacodynamic responses were also evaluated. The effective dose for 50% inhibition (ED50) of thrombus formation for monotherapy was 0.04 mg/kg per hour apixaban, i.v. (0.03 μM plasma exposure) for the integrated blood flow, 0.13 mg/kg per hour apixaban (0.10 μM plasma exposure) for thrombus weight, and 0.03 mg/kg per hour apixaban (0.02 μM plasma exposure) for MES. Dual treatment with aspirin (5 mg/kg, PO) and apixaban (0.015 mg/kg per hour, i.v.) resulted in a significant reduction in cerebral MES (P < 0.05) compared with monotherapy with either agent. Pharmacokinetic analysis of apixaban and pharmacodynamic assays using activated partial thromboplastin time (aPTT) and prothrombin time (PT) for apixaban- and arachidonic acid-induced platelet aggregation for aspirin were used to confirm the exposure-response relationships. In summary, our study demonstrates that apixaban in a concentration-dependent manner inhibits both arterial thrombosis and MES, suggesting a potential association between factor Xa (FXa) blockade and the reduction in MES in patients at risk of ischemic stroke. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Relations of Blood Pressure and Head Injury to Regional Cerebral Blood Flow

    PubMed Central

    Allen, Allyssa J.; Katzel, Leslie I.; Wendell, Carrington R.; Siegel, Eliot L.; Lefkowitz, David; Waldstein, Shari R.

    2016-01-01

    Hypertension confers increased risk for cognitive decline, dementia, and cerebrovascular disease. These associations have been attributed, in part, to cerebral hypoperfusion. Here we posit that relations of higher blood pressure to lower levels of cerebral perfusion may be potentiated by a prior head injury. Participants were 87 community-dwelling older adults -69% men, 90% white, mean age= 66.9 years, 27.6% with a history of mild traumatic brain injury (mTBI) defined as a loss of consciousness cerebral blood flow in men only. Specifically, among men with a history of head injury, higher systolic blood pressure was associated with lower levels of perfusion in the left orbital (β=-3.21, p=.024) and left dorsolateral (β=-2.61, p=.042) prefrontal cortex, and left temporal cortex (β=-3.36, p=.014); higher diastolic blood pressure was marginally associated with lower levels of perfusion in the left dorsolateral prefrontal cortex (β=-2.79, p=.051). Results indicate that men with a history of head injury may be particularly vulnerable to the impact of higher blood pressure on cerebral perfusion in left anterior cortical regions, thus potentially enhancing risk for adverse brain and neurocognitive outcomes. PMID:27206865

  19. Initial experience of a novel sheath guide for transbrachial coil embolization of cerebral aneurysms in the anterior cerebral circulation.

    PubMed

    Iwata, Tomonori; Mori, Takahisa; Tajiri, Hiroyuki; Miyazaki, Yuichi; Nakazaki, Masahito; Mizokami, Koji

    2013-03-01

    The transfemoral approach is a common technique for coil embolization of cerebral aneurysms in the anterior cerebral circulation. However, it is difficult to advance a guiding catheter into the carotid artery via the femoral route in patients with a tortuous aortic arch, an unfavorable supra-aortic takeoff, aortic diseases, or occlusion of the femoral artery. To report our initial experiences of coil embolization of cerebral aneurysms in the anterior cerebral circulation with a novel sheath guide for transbrachial carotid cannulation. A sheath guide designed specifically for transbrachial carotid cannulation was developed; transbrachial coil embolization for cerebral aneurysms began in May 2011. Included for analysis were patients who underwent transbrachial coil embolization for cerebral aneurysms in the anterior cerebral circulation from May 2011 to January 2012. Adjuvant techniques, angiographic results, procedural success, and periprocedural complications were investigated. Ten patients underwent transbrachial coil embolization of cerebral aneurysms in the anterior cerebral circulation. All procedures were successful using the brachial route. No periprocedural complications occurred. Patients were permitted to get seated immediately after coil embolization even during hemostasis. The sheath guide specifically designed for transbrachial carotid cannulation was useful for coil embolization of cerebral aneurysms in the anterior cerebral circulation.

  20. Peculiarities of vascular tunic microstructure of the white rat eyeball under the effect of opioid.

    PubMed

    Mateshuk-Vatseba, Lesya; Pidvalna, Uliana; Kost, Andriy

    2015-01-01

    This article deals with determination of changes in the structural organization of vascular tunic of the eyeball under the effect of opioid. The study was carried out on 24 mature white male rats aged 3.0-4.5 months and 170-280 g weight. The research material included histological specimen and semi-thin sections of white rats' eyeball vascular tunic. For the histological study, microscopic sections of the eyeball were stained with Hematoxylin and Eosin, Heidenhain's Azan trichrome. Specimens were studied and photographed with microscope magnification: ×600, ×1000. The first signs of microstructure disorder in all parts of vascular tunic of the eyeball are noticeable after two weeks of nalbuphine injection to the white rats. During the next four weeks of the experiment, the pathological changes increase and are manifested by the swelling and polymorphonuclear infiltration of the iris, ciliary body, choroid and by deep destructive changes of eyeball hemomicrocirculatory bloodstream. Histological and ultramicroscopic studies of the white rats' eyeball vascular tunic after six weeks of nalbuphine injections showed deep destructive changes in the structure of all parts of vascular tunic. Our study demonstrated a negative effect of the prolonged injection of opioid in the experiment on the state of microstructural organization of the eyeball vascular tunic. Development of angiopathy is the triggering for occurrence of destructive changes in the eyeball under the effect of opioid.

  1. Radon in the fluvial aquifers of the White River Basin, Indiana, 1995

    USGS Publications Warehouse

    Fenelon, Joseph M.; Moore, Rhett C.

    1996-01-01

    Water samples collected in 1995 from 57 monitoring wells (48 shallow and 9 deep) in the fluvial aquifers of the White River Basin were analyzed for radon. Radon concentrations in the shallow wells ranged from 140 to 1,600 pCi/L (picocuries per liter); the median concentration was 420 pCi/L. In comparison, analyses of the samples from the nine deep wells indicate that radon concentrations decrease with depth within the fluvial aquifers; the median concentration was 210 pCi/L. No areal trends in radon concentrations are evident in the water of the shallow fluvial aquifers of the basin

  2. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction.

    PubMed

    Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta

    2018-01-01

    The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.

  3. Microarray RNA expression analysis of cerebral white matter lesions reveals changes in multiple functional pathways.

    PubMed

    Simpson, Julie E; Hosny, Ola; Wharton, Stephen B; Heath, Paul R; Holden, Hazel; Fernando, Malee S; Matthews, Fiona; Forster, Gill; O'Brien, John T; Barber, Robert; Kalaria, Raj N; Brayne, Carol; Shaw, Pamela J; Lewis, Claire E; Ince, Paul G

    2009-02-01

    White matter lesions (WML) in brain aging are linked to dementia and depression. Ischemia contributes to their pathogenesis but other mechanisms may contribute. We used RNA microarray analysis with functional pathway grouping as an unbiased approach to investigate evidence for additional pathogenetic mechanisms. WML were identified by MRI and pathology in brains donated to the Medical Research Council Cognitive Function and Ageing Study Cognitive Function and Aging Study. RNA was extracted to compare WML with nonlesional white matter samples from cases with lesions (WM[L]), and from cases with no lesions (WM[C]) using RNA microarray and pathway analysis. Functional pathways were validated for selected genes by quantitative real-time polymerase chain reaction and immunocytochemistry. We identified 8 major pathways in which multiple genes showed altered RNA transcription (immune regulation, cell cycle, apoptosis, proteolysis, ion transport, cell structure, electron transport, metabolism) among 502 genes that were differentially expressed in WML compared to WM[C]. In WM[L], 409 genes were altered involving the same pathways. Genes selected to validate this microarray data all showed the expected changes in RNA levels and immunohistochemical expression of protein. WML represent areas with a complex molecular phenotype. From this and previous evidence, WML may arise through tissue ischemia but may also reflect the contribution of additional factors like blood-brain barrier dysfunction. Differential expression of genes in WM[L] compared to WM[C] indicate a "field effect" in the seemingly normal surrounding white matter.

  4. Comparison of cerebral microcirculation of alloxan diabetes and healthy mice using laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Timoshina, Polina A.; Shi, Rui; Zhang, Yang; Zhu, Dan; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.; Luo, Qingming

    2015-03-01

    The study of blood microcirculation is one of the most important problems of the medicine. This paper presents results of experimental study of cerebral blood flow microcirculation in mice with alloxan-induced diabetes using Temporal Laser Speckle Imaging (TLSI). Additionally, a direct effect of glucose water solution (concentration 20% and 45%) on blood flow microcirculation was studied. In the research, 20 white laboratory mice weighing 20-30 g were used. The TLSI method allows one to investigate time dependent scattering from the objects with complex dynamics, since it possesses greater temporal resolution. Results show that in brain of animal diabetic group diameter of sagittal vein is increased and the speed of blood flow reduced relative to the control group. Topical application of 20%- or 45%-glucose solutions also causes increase of diameter of blood vessels and slows down blood circulation. The results obtained show that diabetes development causes changes in the cerebral microcirculatory system and TLSI techniques can be effectively used to quantify these alterations.

  5. Therapeutic interventions in cerebral palsy.

    PubMed

    Patel, Dilip R

    2005-11-01

    Various therapeutic interventions have been used in the management of children with cerebral palsy. Traditional physiotherapy and occupational therapy are widely used interventions and have been shown to be of benefit in the treatment of cerebral palsy. Evidence in support of the effectiveness of the neurodevelopmental treatment is equivocal at best. There is evidence to support the use and effectiveness of neuromuscular electrical stimulation in children with cerebral palsy. The effectiveness of many other interventions used in the treatment of cerebral palsy has not been clearly established based on well-controlled trials. These include: sensory integration, body-weight support treadmill training, conductive education, constraint-induced therapy, hyperbaric oxygen therapy, and the Vojta method. This article provides an overview of salient aspects of popular interventions used in the management of children with cerebral palsy.

  6. Free water determines diffusion alterations and clinical status in cerebral small vessel disease.

    PubMed

    Duering, Marco; Finsterwalder, Sofia; Baykara, Ebru; Tuladhar, Anil Man; Gesierich, Benno; Konieczny, Marek J; Malik, Rainer; Franzmeier, Nicolai; Ewers, Michael; Jouvent, Eric; Biessels, Geert Jan; Schmidt, Reinhold; de Leeuw, Frank-Erik; Pasternak, Ofer; Dichgans, Martin

    2018-06-01

    Diffusion tensor imaging detects early tissue alterations in Alzheimer's disease and cerebral small vessel disease (SVD). However, the origin of diffusion alterations in SVD is largely unknown. To gain further insight, we applied free water (FW) imaging to patients with genetically defined SVD (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy [CADASIL], n = 57), sporadic SVD (n = 444), and healthy controls (n = 28). We modeled freely diffusing water in the extracellular space (FW) and measures reflecting fiber structure (tissue compartment). We tested associations between these measures and clinical status (processing speed and disability). Diffusion alterations in SVD were mostly driven by increased FW and less by tissue compartment alterations. Among imaging markers, FW showed the strongest association with clinical status (R 2 up to 34%, P < .0001). Findings were consistent across patients with CADASIL and sporadic SVD. Diffusion alterations and clinical status in SVD are largely determined by extracellular fluid increase rather than alterations of white matter fiber organization. Copyright © 2018 the Alzheimer's Association. All rights reserved.

  7. White and gray pumice in pyroclastic deposits. (Invited)

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Cashman, K. V.

    2013-12-01

    Many primary pyroclastic deposits contain at least two different colors of pumice, including volumetrically dominant white and subordinate gray. White pumice is vesicular, microlite-free, and in most cases represents direct samples of the principal magma reservoir. In contrast, subordinate gray pumice with lower vesicularity and/or more abundant microlites may sample either deep recharge OR shallow vanguard magma, where both may record information on eruption triggers. Pumice may appear gray for several reasons: 1. Gray pumice has a less-evolved bulk composition than white pumice. Presence of less-evolved (generally deep-derived) magma provides information about possible recharge magma and/or pre-eruptive compositional variation in the magma storage region. A well-known example of this difference is the 1912 eruption of Novarupta [Hildreth & Fierstein, 2012], which includes white (rhyolite) and gray (andesite and dacite) pumice. 2. Gray pumice contains elevated microlite number densities and/or microlite crystallinities and is compositionally similar to white pumice. a. Gray pumice contains abundant broken crystal fragments and lithic fragments. Broken crystals and incorporated white pumice indicate passage through the primary magma reservoir. Incorporated lithic fragments indicate breakage of wall rock and creation of new transport pathways. Microlites and breadcrusted surfaces indicate slow and/or episodic ascent at shallow levels. This textural association indicates that proto-gray pumice magma played an active role in creating a conduit to the surface. In some cases, small differences in chemistry may further indicate differences in magma batches (recharge pulses). This textural variation is found in the products of high-crystallinity large-volume (Plinian or boil-over style) eruptions, as in the Cerro Galan Ignimbrite, Argentina [Wright et al., 2011]. b. Gray pumice contains abundant microlites due to differences in decompression and/or cooling history. In

  8. Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol.

    PubMed

    van Norden, Anouk Gw; de Laat, Karlijn F; Gons, Rob Ar; van Uden, Inge Wm; van Dijk, Ewoud J; van Oudheusden, Lucas Jb; Esselink, Rianne Aj; Bloem, Bastiaan R; van Engelen, Baziel Gm; Zwarts, Machiel J; Tendolkar, Indira; Olde-Rikkert, Marcel G; van der Vlugt, Maureen J; Zwiers, Marcel P; Norris, David G; de Leeuw, Frank-Erik

    2011-02-28

    Cerebral small vessel disease (SVD) is a frequent finding on CT and MRI scans of elderly people and is related to vascular risk factors and cognitive and motor impairment, ultimately leading to dementia or parkinsonism in some. In general, the relations are weak, and not all subjects with SVD become demented or get parkinsonism. This might be explained by the diversity of underlying pathology of both white matter lesions (WML) and the normal appearing white matter (NAWM). Both cannot be properly appreciated with conventional MRI. Diffusion tensor imaging (DTI) provides alternative information on microstructural white matter integrity. The association between SVD, its microstructural integrity, and incident dementia and parkinsonism has never been investigated. The RUN DMC study is a prospective cohort study on the risk factors and cognitive and motor consequences of brain changes among 503 non-demented elderly, aged between 50-85 years, with cerebral SVD. First follow up is being prepared for July 2011. Participants alive will be included and invited to the research centre to undergo a structured questionnaire on demographics and vascular risk factors, and a cognitive, and motor, assessment, followed by a MRI protocol including conventional MRI, DTI and resting state fMRI. The follow up of the RUN DMC study has the potential to further unravel the causes and possibly better predict the consequences of changes in white matter integrity in elderly with SVD by using relatively new imaging techniques. When proven, these changes might function as a surrogate endpoint for cognitive and motor function in future therapeutic trials. Our data could furthermore provide a better understanding of the pathophysiology of cognitive and motor disturbances in elderly with SVD. The execution and completion of the follow up of our study might ultimately unravel the role of SVD on the microstructural integrity of the white matter in the transition from "normal" aging to cognitive and

  9. Cerebral Palsy Litigation

    PubMed Central

    Sartwelle, Thomas P.

    2015-01-01

    The cardinal driver of cerebral palsy litigation is electronic fetal monitoring, which has continued unabated for 40 years. Electronic fetal monitoring, however, is based on 19th-century childbirth myths, a virtually nonexistent scientific foundation, and has a false positive rate exceeding 99%. It has not affected the incidence of cerebral palsy. Electronic fetal monitoring has, however, increased the cesarian section rate, with the expected increase in mortality and morbidity risks to mothers and babies alike. This article explains why electronic fetal monitoring remains endorsed as efficacious in the worlds’ labor rooms and courtrooms despite being such a feeble medical modality. It also reviews the reasons professional organizations have failed to condemn the use of electronic fetal monitoring in courtrooms. The failures of tort reform, special cerebral palsy courts, and damage limits to stem the escalating litigation are discussed. Finally, the authors propose using a currently available evidence rule—the Daubert doctrine that excludes “junk science” from the courtroom—as the beginning of the end to cerebral palsy litigation and electronic fetal monitoring’s 40-year masquerade as science. PMID:25183322

  10. Structural cerebral abnormalities and neurodevelopmental status in single ventricle congenital heart disease before Fontan procedure.

    PubMed

    Knirsch, Walter; Mayer, Kristina Nadine; Scheer, Ianina; Tuura, Ruth; Schranz, Dietmar; Hahn, Andreas; Wetterling, Kristina; Beck, Ingrid; Latal, Beatrice; Reich, Bettina

    2017-04-01

    Neonates with single ventricle congenital heart disease are at risk for structural cerebral abnormalities. Little is known about the further evolution of cerebral abnormalities until Fontan procedure. Between August 2012 and July 2015, we conducted a prospective cross-sectional two centre study using cerebral magnetic resonance imaging (MRI) and neuro-developmental outcome assessed by the Bayley-III. Forty-seven children (31 male) were evaluated at a mean age of 25.9 ± 3.4 months with hypoplastic left heart syndrome (25) or other single ventricle (22). Cerebral MRI was abnormal in 17 patients (36.2%) including liquor space enlargements (10), small grey (9) and minimal white (5) matter injuries. Eight of 17 individuals had combined lesions. Median (range) cognitive composite score (CCS) (100, 65-120) and motor composite score (MCS) (97, 55-124) were comparable to the reference data, while language composite score (LCS) (97, 68-124) was significantly lower ( P  = 0.040). Liquor space enlargement was associated with poorer performance on all Bayley-III subscores (CCS: P  = 0.02; LCS: P  = 0.002; MCS: P  = 0.013). The number of re-operations [odds ratio (OR) 2.2, 95% confidence interval (CI) 1.1-4.3] ( P  = 0.03) and re-interventions (OR 2.1, 95% CI 1.1-3.8) ( P  = 0.03) was associated with a higher rate of overall MRI abnormalities. Cerebral MRI abnormalities occur in more than one third of children with single ventricle, while the neuro-developmental status is less severely affected before Fontan procedure. Liquor space enlargement is the predominant MRI finding associated with poorer neuro-developmental status, warranting further studies to determine aetiology and further evolution until school-age. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  11. Cerebral amyloid angiopathy increases susceptibility to infarction after focal cerebral ischemia in Tg2576 mice.

    PubMed

    Milner, Eric; Zhou, Meng-Liang; Johnson, Andrew W; Vellimana, Ananth K; Greenberg, Jacob K; Holtzman, David M; Han, Byung Hee; Zipfel, Gregory J

    2014-10-01

    We and others have shown that soluble amyloid β-peptide (Aβ) and cerebral amyloid angiopathy (CAA) cause significant cerebrovascular dysfunction in mutant amyloid precursor protein (APP) mice, and that these deficits are greater in aged APP mice having CAA compared with young APP mice lacking CAA. Amyloid β-peptide in young APP mice also increases infarction after focal cerebral ischemia, but the impact of CAA on ischemic brain injury is unknown. To determine this, we assessed cerebrovascular reactivity, cerebral blood flow (CBF), and extent of infarction and neurological deficits after transient middle cerebral artery occlusion in aged APP mice having extensive CAA versus young APP mice lacking CAA (and aged-matched littermate controls). We found that aged APP mice have more severe cerebrovascular dysfunction that is CAA dependent, have greater CBF compromise during and immediately after middle cerebral artery occlusion, and develop larger infarctions after middle cerebral artery occlusion. These data indicate CAA induces a more severe form of cerebrovascular dysfunction than amyloid β-peptide alone, leading to intra- and postischemic CBF deficits that ultimately exacerbate cerebral infarction. Our results shed mechanistic light on human studies identifying CAA as an independent risk factor for ischemic brain injury. © 2014 American Heart Association, Inc.

  12. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation

    PubMed Central

    Hougaard, Anders; Jensen, Bettina Hagström; Amin, Faisal Mohammad; Rostrup, Egill; Hoffmann, Michael B.; Ashina, Messoud

    2015-01-01

    Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented) attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks. PMID:25985078

  13. Single-Fraction Proton Beam Stereotactic Radiosurgery for Cerebral Arteriovenous Malformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattangadi-Gluth, Jona A.; Chapman, Paul H.; Kim, Daniel

    2014-06-01

    Purpose/Objective(s): To evaluate the obliteration rate and potential adverse effects of single-fraction proton beam stereotactic radiosurgery (PSRS) in patients with cerebral arteriovenous malformations (AVMs). Methods and Materials: From 1991 to 2010, 248 consecutive patients with 254 cerebral AVMs received single-fraction PSRS at our institution. The median AVM nidus volume was 3.5 cc (range, 0.1-28.1 cc), 23% of AVMs were in critical/deep locations (basal ganglia, thalamus, or brainstem), and the most common prescription dose was 15 Gy(relative biological effectiveness [RBE]). Univariable and multivariable analyses were performed to assess factors associated with obliteration and hemorrhage. Results: At a median follow-up time of 35 months (range, 6-198 months),more » 64.6% of AVMs were obliterated. The median time to total obliteration was 31 months (range, 6-127 months), and the 5-year and 10-year cumulative incidence of total obliteration was 70% and 91%, respectively. On univariable analysis, smaller target volume (hazard ratio [HR] 0.78, 95% confidence interval [CI] 0.86-0.93, P<.0001), smaller treatment volume (HR 0.93, 95% CI 0.90-0.96, P<.0001), higher prescription dose (HR 1.16, 95% CI 1.07-1.26, P=.001), and higher maximum dose (HR 1.14, 95% CI 1.05-1.23, P=.002) were associated with total obliteration. Deep/critical location was also associated with decreased likelihood of obliteration (HR 0.68, 95% CI 0.47-0.98, P=.04). On multivariable analysis, critical location (adjusted HR [AHR] 0.42, 95% CI 0.27-0.65, P<.001) and smaller target volume (AHR 0.81, 95% CI 0.68-0.97, P=.02) remained associated with total obliteration. Posttreatment hemorrhage occurred in 13 cases (5-year cumulative incidence of 7%), all among patients with less than total obliteration, and 3 of these events were fatal. The most common complication was seizure, controlled with medications, both acutely (8%) and in the long term (9.1%). Conclusions: The current series is the

  14. Effects of hyperbaric oxygen on intracranial pressure and cerebral blood flow in experimental cerebral oedema1

    PubMed Central

    Miller, J. D.; Ledingham, I. McA.; Jennett, W. B.

    1970-01-01

    Increased intracranial pressure was induced in anaesthetized dogs by application of liquid nitrogen to the dura mater. Intracranial pressure and cerebral blood flow were measured, together with arterial blood pressure and arterial and cerebral venous blood gases. Carbon dioxide was administered intermittently to test the responsiveness of the cerebral circulation, and hyperbaric oxygen was delivered at intervals in a walk-in hyperbaric chamber, pressurized to two atmospheres absolute. Hyperbaric oxygen caused a 30% reduction of intracranial pressure and a 19% reduction of cerebral blood flow in the absence of changes in arterial PCO2 or blood pressure, but only as long as administration of carbon dioxide caused an increase in both intracranial pressure and cerebral blood flow. When carbon dioxide failed to influence intracranial pressure or cerebral blood flow then hyperbaric oxygen had no effect. This unresponsive state was reached at high levels of intracranial pressure. Images PMID:5497875

  15. [A case of severe asthma exacerbation complicated with cerebral edema and diffuse multiple cerebral micro-bleeds].

    PubMed

    Ohkura, Noriyuki; Fujimura, Masaki; Sakai, Asao; Fujita, Kentaro; Katayama, Nobuyuki

    2009-08-01

    A 36-year-old woman was admitted to the Intensive Care Unit for the treatment of severe asthma exacerbation. Her condition of asthma improved with systemic glucocorticosteroids, inhaled beta2-agonist, intravenous theophylline and inhaled anesthesia (isoflurane) under mechanical ventilation. Her consciousness was disturbed even after terminating isoflurane. Brain CT and MRI scan showed cerebral edema and diffuse multiple cerebral micro-bleeds. Glyceol, a hyperosmotic diuretic solution consisting of 10% glycerol and 5% fructose in saline, was administered to decrease cerebral edema. Her consciousness disturbance gradually recovered. Cerebral edema and hemorrhage improved. On the 69th hospital day, she was discharged from hospital without sequelae. This case is a rare one in which severe asthma exacerbation was complicated with cerebral edema and diffuse multiple cerebral hemorrhage. Inhaled anesthesia for asthma exacerbation should be used carefully to avoid delay of diagnosis of central nervous system complications.

  16. Neurological Injury and Cerebral Blood Flow in Single Ventricles Throughout Staged Surgical Reconstruction.

    PubMed

    Fogel, Mark A; Li, Christine; Elci, Okan U; Pawlowski, Tom; Schwab, Peter J; Wilson, Felice; Nicolson, Susan C; Montenegro, Lisa M; Diaz, Laura; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Mascio, Christopher; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J

    2017-02-14

    Patients with a single ventricle experience a high rate of brain injury and adverse neurodevelopmental outcome; however, the incidence of brain abnormalities throughout surgical reconstruction and their relationship with cerebral blood flow, oxygen delivery, and carbon dioxide reactivity remain unknown. Patients with a single ventricle were studied with magnetic resonance imaging scans immediately prior to bidirectional Glenn (pre-BDG), before Fontan (BDG), and then 3 to 9 months after Fontan reconstruction. One hundred sixty-eight consecutive subjects recruited into the project underwent 235 scans: 63 pre-BDG (mean age, 4.8±1.7 months), 118 BDG (2.9±1.4 years), and 54 after Fontan (2.4±1.0 years). Nonacute ischemic white matter changes on T2-weighted imaging, focal tissue loss, and ventriculomegaly were all more commonly detected in BDG and Fontan compared with pre-BDG patients ( P <0.05). BDG patients had significantly higher cerebral blood flow than did Fontan patients. The odds of discovering brain injury with adjustment for surgical stage as well as ≥2 coexisting lesions within a patient decreased (63%-75% and 44%, respectively) with increasing amount of cerebral blood flow ( P <0.05). In general, there was no association of oxygen delivery (except for ventriculomegaly in the BDG group) or carbon dioxide reactivity with neurological injury. Significant brain abnormalities are commonly present in patients with a single ventricle, and detection of these lesions increases as children progress through staged surgical reconstruction, with multiple coexisting lesions more common earlier than later. In addition, this study demonstrated that BDG patients had greater cerebral blood flow than did Fontan patients and that an inverse association exists of various indexes of cerebral blood flow with these brain lesions. However, CO 2 reactivity and oxygen delivery (with 1 exception) were not associated with brain lesion development. URL: http

  17. White matter pathology and disconnection in the frontal lobe in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL).

    PubMed

    Craggs, Lucinda J L; Yamamoto, Yumi; Ihara, Masafumi; Fenwick, Richard; Burke, Matthew; Oakley, Arthur E; Roeber, Sigrun; Duering, Marco; Kretzschmar, Hans; Kalaria, Raj N

    2014-08-01

    Magnetic resonance imaging indicates diffuse white matter (WM) changes are associated with cognitive impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We examined whether the distribution of axonal abnormalities is related to microvascular pathology in the underlying WM. We used post-mortem brains from CADASIL subjects and similar age cognitively normal controls to examine WM axonal changes, microvascular pathology, and glial reaction in up to 16 different regions extending rostro-caudally through the cerebrum. Using unbiased stereological methods, we estimated length densities of affected axons immunostained with neurofilament antibody SMI32. Standard immunohistochemistry was used to assess amyloid precursor protein immunoreactivity per WM area. To relate WM changes to microvascular pathology, we also determined the sclerotic index (SI) in WM arterioles. The degree of WM pathology consistently scored higher across all brain regions in CADASIL subjects (P<0.01) with the WM underlying the primary motor cortex exhibiting the most severe change. SMI32 immunoreactive axons in CADASIL were invariably increased compared with controls (P<0.01), with most prominent axonal abnormalities observed in the frontal WM (P<0.05). The SIs of arterioles in CADASIL were increased by 25-45% throughout the regions assessed, with the highest change in the mid-frontal region (P=0.000). Our results suggest disruption of either cortico-cortical or subcortical-cortical networks in the WM of the frontal lobe that may explain motor deficits and executive dysfunction in CADASIL. Widespread WM axonal changes arise from differential stenosis and sclerosis of arterioles in the WM of CADASIL subjects, possibly affecting some axons of projection neurones connecting to targets in the subcortical structures. © 2013 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British

  18. Alcohol intake and the risk of intracerebral hemorrhage in the elderly: The MUCH-Italy.

    PubMed

    Costa, Paolo; Grassi, Mario; Iacoviello, Licia; Zedde, Marialuisa; Marcheselli, Simona; Silvestrelli, Giorgio; DeLodovici, Maria Luisa; Sessa, Maria; Zini, Andrea; Paciaroni, Maurizio; Azzini, Cristiano; Gamba, Massimo; Del Sette, Massimo; Toriello, Antonella; Gandolfo, Carlo; Bonifati, Domenico Marco; Tassi, Rossana; Cavallini, Anna; Chiti, Alberto; Calabrò, Rocco Salvatore; Grillo, Francesco; Bovi, Paolo; Tomelleri, Giampaolo; Di Castelnuovo, Augusto; Ritelli, Marco; Agnelli, Giancarlo; De Vito, Alessandro; Pugliese, Nicola; Martini, Giuseppe; Lodigiani, Corrado; Morotti, Andrea; Poli, Loris; De Giuli, Valeria; Caria, Filomena; Cornali, Claudio; de Gaetano, Giovanni; Colombi, Marina; Padovani, Alessandro; Pezzini, Alessandro

    2018-06-13

    To investigate the role of alcohol as a causal factor for intracerebral hemorrhage (ICH) and whether its effects might vary according to the pathogenic mechanisms underlying cerebral bleeding. We performed a case-control analysis, comparing a cohort of consecutive white patients with ICH aged 55 years and older with a group of age- and sex-matched stroke-free controls, enrolled in the setting of the Multicenter Study on Cerebral Haemorrhage in Italy (MUCH-Italy) between 2002 and 2014. Participants were dichotomized into excessive drinkers (>45 g of alcohol) and light to moderate drinkers or nondrinkers. To isolate the unconfounded effect of alcohol on ICH, we used causal directed acyclic graphs and the back-door criterion to select a minimal sufficient adjustment set(s) of variables for multivariable analyses. Analyses were performed on the whole group as well as separately for lobar and deep ICH. We analyzed 3,173 patients (1,471 lobar ICH and 1,702 deep ICH) and 3,155 controls. After adjusting for the preselected variables in the minimal sufficient adjustments, heavy alcohol intake was associated with deep ICH risk (odds ratio [OR], 1.68; 95% confidence interval [CI], 1.36-2.09) as well as with the overall risk of ICH (OR, 1.38; 95% CI, 1.17-1.63), whereas no effect was found for lobar ICH (OR, 1.01; 95% CI, 0.77-1.32). In white people aged 55 years and older, high alcohol intake might exert a causal effect on ICH, with a prominent role in the vascular pathologies underlying deep ICH. © 2018 American Academy of Neurology.

  19. Cerebral Palsy (For Kids)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Cerebral Palsy KidsHealth / For Kids / Cerebral Palsy What's in this ... the things that kids do every day. What's CP? Some kids with CP use wheelchairs and others ...

  20. Mechanism of metabolic stroke and spontaneous cerebral hemorrhage in glutaric aciduria type I

    PubMed Central

    2014-01-01

    Background Metabolic stroke is the rapid onset of lasting central neurological deficit associated with decompensation of an underlying metabolic disorder. Glutaric aciduria type I (GA1) is an inherited disorder of lysine and tryptophan metabolism presenting with metabolic stroke in infancy. The clinical presentation includes bilateral striatal necrosis and spontaneous subdural and retinal hemorrhages, which has been frequently misdiagnosed as non-accidental head trauma. The mechanisms underlying metabolic stroke and spontaneous hemorrhage are poorly understood. Results Using a mouse model of GA1, we show that metabolic stroke progresses in the opposite sequence of ischemic stroke, with initial neuronal swelling and vacuole formation leading to cerebral capillary occlusion. Focal regions of cortical followed by striatal capillaries are occluded with shunting to larger non-exchange vessels leading to early filling and dilation of deep cerebral veins. Blood–brain barrier breakdown was associated with displacement of tight-junction protein Occludin. Conclusion Together the current findings illuminate the pathophysiology of metabolic stroke and vascular compromise in GA1, which may translate to other neurometabolic disorders presenting with stroke. PMID:24468193

  1. Mechanism of metabolic stroke and spontaneous cerebral hemorrhage in glutaric aciduria type I.

    PubMed

    Zinnanti, William J; Lazovic, Jelena; Housman, Cathy; Antonetti, David A; Koeller, David M; Connor, James R; Steinman, Lawrence

    2014-01-27

    Metabolic stroke is the rapid onset of lasting central neurological deficit associated with decompensation of an underlying metabolic disorder. Glutaric aciduria type I (GA1) is an inherited disorder of lysine and tryptophan metabolism presenting with metabolic stroke in infancy. The clinical presentation includes bilateral striatal necrosis and spontaneous subdural and retinal hemorrhages, which has been frequently misdiagnosed as non-accidental head trauma. The mechanisms underlying metabolic stroke and spontaneous hemorrhage are poorly understood. Using a mouse model of GA1, we show that metabolic stroke progresses in the opposite sequence of ischemic stroke, with initial neuronal swelling and vacuole formation leading to cerebral capillary occlusion. Focal regions of cortical followed by striatal capillaries are occluded with shunting to larger non-exchange vessels leading to early filling and dilation of deep cerebral veins. Blood-brain barrier breakdown was associated with displacement of tight-junction protein Occludin. Together the current findings illuminate the pathophysiology of metabolic stroke and vascular compromise in GA1, which may translate to other neurometabolic disorders presenting with stroke.

  2. Body and brain temperature coupling: the critical role of cerebral blood flow

    PubMed Central

    Ackerman, Joseph J. H.; Yablonskiy, Dmitriy A.

    2010-01-01

    Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; α-chloralose, αCS; and isoflurane, IF) with αCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO2 in 40% O2 and 55% N2). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under αCS anesthesia (ca. 2°C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials—αCS anesthesia resulted in the largest brain temperature increase (0.32 ± 0.08°C), while CH and IF anesthesia lead to smaller increases (0.12 ± 0.03 and 0.16 ± 0.05°C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2–3 min under CH and IF anesthesia and ~4 min under αCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures. PMID:19277681

  3. Body and brain temperature coupling: the critical role of cerebral blood flow.

    PubMed

    Zhu, Mingming; Ackerman, Joseph J H; Yablonskiy, Dmitriy A

    2009-08-01

    Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; alpha-chloralose, alphaCS; and isoflurane, IF) with alphaCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO(2) in 40% O(2) and 55% N(2)). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under alphaCS anesthesia (ca. 2 degrees C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials--alphaCS anesthesia resulted in the largest brain temperature increase (0.32 +/- 0.08 degrees C), while CH and IF anesthesia lead to smaller increases (0.12 +/- 0.03 and 0.16 +/- 0.05 degrees C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2-3 min under CH and IF anesthesia and approximately 4 min under alphaCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures.

  4. Comparison between antegrade and retrograde cerebral perfusion or profound hypothermia as brain protection strategies during repair of type A aortic dissection

    PubMed Central

    Rausch, Laura A.; Kouchoukos, Nicholas T.; Lobdell, Kevin W.; Khabbaz, Kamal; Murphy, Edward; Hagberg, Robert C.

    2016-01-01

    Background The goal of this study was to compare early postoperative outcomes and actuarial-free survival between patients who underwent repair of acute type A aortic dissection by the method of cerebral perfusion used. Methods A total of 324 patients from five academic medical centers underwent repair of acute type A aortic dissection between January 2000 and December 2010. Of those, antegrade cerebral perfusion (ACP) was used for 84 patients, retrograde cerebral perfusion (RCP) was used for 55 patients, and deep hypothermic circulatory arrest (DHCA) was used for 184 patients during repair. Major morbidity, operative mortality, and 5-year actuarial survival were compared between groups. Multivariate logistic regression was used to determine predictors of operative mortality and Cox Regression hazard ratios were calculated to determine the predictors of long term mortality. Results Operative mortality was not influenced by the type of cerebral protection (19% for ACP, 14.5% for RCP and 19.1% for DHCA, P=0.729). In multivariable logistic regression analysis, hemodynamic instability [odds ratio (OR) =19.6, 95% confidence intervals (CI), 0.102–0.414, P<0.001] and CPB time >200 min(OR =4.7, 95% CI, 1.962–1.072, P=0.029) emerged as independent predictors of operative mortality. Actuarial 5-year survival was unchanged by cerebral protection modality (48.8% for ACP, 61.8% for RCP and 66.8% for no cerebral protection, log-rank P=0.844). Conclusions During surgical repair of type A aortic dissection, ACP, RCP or DHCA are safe strategies for cerebral protection in selected patients with type A aortic dissection. PMID:27563545

  5. Frequency of Inverted Electrocardiographic T Waves (Cerebral T Waves) in Patients With Acute Strokes and Their Relation to Left Ventricular Wall Motion Abnormalities.

    PubMed

    Stone, Jeremy; Mor-Avi, Victor; Ardelt, Agnieszka; Lang, Roberto M

    2018-01-01

    Transient, symmetric, and deep inverted electrocardiogram (ECG) T waves in the setting of stroke, commonly referred to as cerebral T waves, are rare, and the underlying mechanism is unclear. Our study aimed to test the hypothesis that cerebral T waves are associated with transient cardiac dysfunction. This retrospective study included 800 patients admitted with the primary diagnosis of hemorrhagic or ischemic stroke. ECGs were examined for cerebral T waves, defined as T-wave inversion of ≥5 mm depth in ≥4 contiguous precordial leads. Echocardiograms of those meeting these criteria were examined for the presence of left ventricular (LV) wall motion abnormalities. Follow-up evaluation included both ECG and echocardiogram. Of the 800 patients, 17 had cerebral T waves on ECG (2.1%). All 17 patients had ischemic strokes, of which 11 were in the middle cerebral artery distribution (65%), and 2 were cerebellar (12%), whereas the remaining 4 involved other locations. Follow-up ECG showed resolution of the T-wave changes in all 17 patients. Of these patients, 14 (82%) had normal wall motion, and 3 had transient wall motion abnormalities (18%). Two of these patients had Takotsubo-like cardiomyopathy with apical ballooning, and the third had globally reduced LV function. Coronary angiography showed no significant disease to explain the LV dysfunction. In summary, in our cohort of patients with acute stroke, cerebral T waves were rare and occurred only in ischemic stroke. Eighteen percent of patients with cerebral T waves had significant transient wall motion abnormalities. Patients with stroke with cerebral T waves, especially in those with ischemic strokes, should be assessed for cardiac dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. [The cerebral hemodynamics in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy].

    PubMed

    Jin, De-xin; Chen, Xiu-yun; Huang, He; Zhang, Xu

    2006-12-01

    To investigate the cerebral hemodynamics in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). The blood flow velocity of cerebral arteries was measured by using transcranial Doppler ultrasound (TCD) in 6 cases with CADASIL and a quite number of age and sex matched control subjects. All patients (4 were symptomatic and 2 asymptomatic), being an established CADASIL family with the diagnosis confirmed by clinical characteristics, neuroimaging, pathology and molecular genetics, had abnormal mark signals on MR imagining and no history of hypertension, diabetes, heart disease and migraine. A routinely TCD detection, including peak-systolic velocity (Vp), end-diastolic velocity (Vd), mean velocity (Vm) and pulsatility index (PI), was carried out on the bilateral middle cerebral arteries (MCA), anterior cerebral arteries (ACA), posterior cerebral arteries (PCA) and vertebral arteries (VA) as well as the basilar artery (BA). A comparison between the cases and controls was made. Then, the changes of flow velocity in middle cerebral arteries (MCA) of the patients with CADASIL were observed before and after breathholding tests. In addition, brain CT perfusion imaging (CTP) was carried out in all the cases by using 16-slice spiral CT. The appearances of frequency spectrum were nearly normal in all the cases and there was no abnormality between the two sides on velocity (P > 0.05). As compared with the controls, the bilateral Vp, Vd and Vm in ACA and PCA were decreased obviously (P < 0.05). The velocity parameters of MCA with the exception of left Vm and right PI showed changes (P < 0.05) and there were no changes of PI in the bilateral ACA, PCA and Left MCA (P > 0.05). Moreover, there were marked changes in MCA (including Vm, Vd and PI) of all the cases as compared with the controls after breathholding (P < 0.01). Brain perfusion imaging showing the regional cerebral blood flow and regional cerebral blood volume in frontal

  7. Molecular pathophysiology of cerebral edema

    PubMed Central

    Gerzanich, Volodymyr; Simard, J Marc

    2015-01-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. PMID:26661240

  8. Symptomatic Cerebral Vasospasm and Delayed Cerebral Ischemia Following Transsphenoidal Resection of a Craniopharyngioma.

    PubMed

    Ricarte, Irapuá Ferreira; Funchal, Bruno F; Miranda Alves, Maramélia A; Gomes, Daniela L; Valiente, Raul A; Carvalho, Flávio A; Silva, Gisele S

    2015-09-01

    Vasospasm has been rarely described as a complication associated with craniopharyngioma surgery. Herein we describe a patient who developed symptomatic vasospasm and delayed cerebral ischemia after transsphenoidal surgery for a craniopharyngioma. A 67-year-old woman became drowsy 2 weeks after a transsphenoidal resection of a craniopharyngioma. A head computed tomography (CT) was unremarkable except for postoperative findings. Electroencephalogram and laboratory studies were within the normal limits. A repeated CT scan 48 hours after the initial symptoms showed bilateral infarcts in the territory of the anterior cerebral arteries (ACA). Transcranial Doppler (TCD) showed increased blood flow velocities in both anterior cerebral arteries (169 cm/second in the left ACA and 145 cm/second in the right ACA) and right middle cerebral artery (164 cm/second) compatible with vasospasm. A CT angiography confirmed the findings. She was treated with induced hypertension and her level of consciousness improved. TCD velocities normalized after 2 weeks. Cerebral vasospasm should be considered in the differential diagnosis of patients with altered neurologic status in the postoperative period following a craniopharyngioma resection. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. The brightest pure-H ultracool white dwarf

    NASA Astrophysics Data System (ADS)

    Catalán, S.; Tremblay, P.-E.; Pinfield, D. J.; Smith, L. C.; Zhang, Z. H.; Napiwotzki, R.; Marocco, F.; Day-Jones, A. C.; Gomes, J.; Forde, K. P.; Lucas, P. W.; Jones, H. R. A.

    2012-10-01

    We report the identification of LSR J0745+2627 in the United Kingdom InfraRed Telescope Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) as a cool white dwarf with kinematics and age compatible with the thick-disk/halo population. LSR J0745+2627 has a high proper motion (890 mas/yr) and a high reduced proper motion value in the J band (HJ = 21.87). We show how the infrared-reduced proper motion diagram is useful for selecting a sample of cool white dwarfs with low contamination. LSR J0745+2627 is also detected in the Sloan Digital Sky Survey (SDSS) and the Wide-field Infrared Survey Explorer (WISE). We have spectroscopically confirmed this object as a cool white dwarf using X-Shooter on the Very Large Telescope. A detailed analysis of its spectral energy distribution reveals that its atmosphere is compatible with a pure-H composition model with an effective temperature of 3880 ± 90 K. This object is the brightest pure-H ultracool white dwarf (Teff < 4000 K) ever identified. We have constrained the distance (24-45 pc), space velocities and age considering different surface gravities. The results obtained suggest that LSR J0745+2627 belongs to the thick-disk/halo population and is also one of the closest ultracool white dwarfs. Based on observations made with ESO telescopes at the Paranal Observatory under programme ID 088.C-0048(B).FITS version of the reduced spectrum is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/L3

  10. Impaired empathic abilities and reduced white matter integrity in schizophrenia.

    PubMed

    Fujino, Junya; Takahashi, Hidehiko; Miyata, Jun; Sugihara, Genichi; Kubota, Manabu; Sasamoto, Akihiko; Fujiwara, Hironobu; Aso, Toshihiko; Fukuyama, Hidenao; Murai, Toshiya

    2014-01-03

    Empathic abilities are impaired in schizophrenia. Although the pathology of schizophrenia is thought to involve disrupted white matter integrity, the relationship between empathic disabilities and altered white matter in the disorder remains unclear. The present study tested associations between empathic disabilities and white matter integrity in order to investigate the neural basis of impaired empathy in schizophrenia. Sixty-nine patients with schizophrenia and 69 age-, gender-, handedness-, education- and IQ level-matched healthy controls underwent diffusion-weighted imaging. Empathic abilities were assessed using the Interpersonal Reactivity Index (IRI). Using tract-based spatial statistics (TBSS), the associations between empathic abilities and white matter fractional anisotropy (FA), a measure of white matter integrity, were examined in the patient group within brain areas that showed a significant FA reduction compared with the controls. The patients with schizophrenia reported lower perspective taking and higher personal distress according to the IRI. The patients showed a significant FA reduction in bilateral deep white matter in the frontal, temporal, parietal and occipital lobes, a large portion of the corpus callosum, and the corona radiata. In schizophrenia patients, fantasy subscales positively correlated with FA in the left inferior fronto-occipital fasciculi and anterior thalamic radiation, and personal distress subscales negatively correlated with FA in the splenium of the corpus callosum. These results suggest that disrupted white matter integrity in these regions constitutes a pathology underpinning specific components of empathic disabilities in schizophrenia, highlighting that different aspects of empathic impairments in the disorder would have, at least partially, distinct neuropathological bases. © 2013.

  11. Hereditary cardiac amyloidosis associated with the transthyretin Ile122 mutation in a white man.

    PubMed

    Gillmore, J D; Booth, D R; Pepys, M B; Hawkins, P N

    1999-09-01

    An 83 year old white man with atrial fibrillation was admitted to hospital after a cerebral infarct. Echocardiography was characteristic of cardiac amyloid deposition and subsequent tests confirmed amyloidosis of transthyretin (TTR) type, in association with the Ile122 mutation of the TTR gene; this has only been reported previously in African Americans in whom it occurs with an allele frequency of 2%. Haplotype analysis did not suggest a different founder than for the African Ile122 mutation. Cardiac amyloidosis should be considered among elderly patients presenting with cardiac failure and/or arrhythmia, particularly if they are resistant to conventional treatment; if confirmed, it should be followed by precise characterisation of amyloid fibril type. The prevalence of autosomal dominant cardiac TTR amyloidosis in elderly white people is unknown but early diagnosis and supportive treatment may prevent complications among affected family members.

  12. Interest of HYPR flow dynamic MRA for characterization of cerebral arteriovenous malformations: comparison with TRICKS MRA and catheter DSA.

    PubMed

    Dautry, Raphaël; Edjlali, Myriam; Roca, Pauline; Rabrait, Cécile; Wu, Yijing; Johnson, Kevin; Wieben, Olivier; Trystram, Denis; Rodriguez-Régent, Christine; Alshareef, Fawaz; Turski, Patrick; Meder, Jean-François; Naggara, Olivier; Oppenheim, Catherine

    2015-11-01

    HYPR flow is a 3D dynamic contrast-enhanced MRA technique providing isotropic sub-millimetre resolution with half-second temporal resolution. We compared HYPR flow and time-resolved imaging of contrast kinetics (TRICKS) MRA for the characterization of cerebral arteriovenous malformations (cAVMs), using catheter DSA as reference. Twenty-two patients underwent HYPR flow and TRICKS MRA within 15 days of DSA. HYPR flow and TRICKS datasets were reviewed separately by two readers for image quality, Spetzler-Martin grade, venous ectasia, and deep venous drainage. Image quality was better for HYPR flow than for TRICKS (narrower full width at half maximum; larger arterial diagnostic window; greater number of arterial frames, P ≤ 0.05). Using HYPR flow, inter-reader agreement was excellent for all cAVM characteristics. The agreement with DSA for the overall Spetzler-Martin grade was excellent for HYPR flow (ICC = 0.96 and 0.98, depending on the reader) and TRICKS (ICC = 0.82 and 0.95). In comparison to TRICKS, HYPR flow showed higher concordance with DSA for the identification of venous ectasia and deep venous drainage. Owing to an excellent agreement with DSA with respect to depiction of the vascular architecture of cAVMs, HYPR flow could be useful for the non-invasive characterization of cAVMs. • Dynamic MRA is used for cerebral AVM depiction and follow-up • HYPR flow is a new, highly-resolved dynamic MRA sequence • HYPR flow provides whole brain coverage • HYPR flow provides excellent agreement with the Spetzler-Martin grade • Compared to TRICKS MRA, HYPR flow improves cerebral AVM characterization.

  13. Enhanced contractility of intraparenchymal arterioles after global cerebral ischaemia in rat - new insights into the development of delayed cerebral hypoperfusion.

    PubMed

    Spray, S; Johansson, S E; Radziwon-Balicka, A; Haanes, K A; Warfvinge, K; Povlsen, G K; Kelly, P A T; Edvinsson, L

    2017-08-01

    Delayed cerebral hypoperfusion is a secondary complication found in the days after transient global cerebral ischaemia that worsens the ischaemic damage inflicted by the initial transient episode of global cerebral ischaemia. A recent study demonstrated increased cerebral vasoconstriction in the large arteries on the brain surface (pial arteries) after global cerebral ischaemia. However, smaller arterioles inside the brain (parenchymal arterioles) are equally important in the regulation of cerebral blood flow and yet their pathophysiology after global cerebral ischaemia is largely unknown. Therefore, we investigated whether increased contractility occurs in the intraparenchymal arterioles. Global cerebral ischaemia was induced in male Wistar rats by bilateral common carotid occlusion for 15 min combined with hypovolaemia. Regional cerebral blood flow was determined by quantitative autoradiography. Intraparenchymal arterioles were isolated and pressurized, and concentration-response curves to endothelin-1 with and without the endothelin B receptor-selective antagonist BQ788 was generated. Endothelin B receptor expression was investigated by quantitative flow cytometry and immunohistochemistry. We observed increased endothelin-1-mediated contractility of parenchymal arterioles correlating with reduced cerebral blood flow of the cortex, hippocampus and caudate nucleus 48 h after global cerebral ischaemia. The increased endothelin-1-mediated contractility was abolished by BQ788, and the vascular smooth muscle cell-specific expression of endothelin B receptors was significantly increased after global cerebral ischaemia. Increased endothelin-1-mediated contractility and expression of endothelin B receptors in the intraparenchymal vasculature contributes to the development of delayed cerebral hypoperfusion after global cerebral ischaemia in combination with vascular changes of the pial vasculature. © 2016 Scandinavian Physiological Society. Published by John Wiley

  14. Redefining cerebral malaria by including malaria retinopathy

    PubMed Central

    Beare, Nicholas AV; Lewallen, Susan; Taylor, Terrie E; Molyneux, Malcolm E

    2011-01-01

    Accurate diagnosis of cerebral malaria (CM) is important for patient management, epidemiological and end point surveillance, and enrolling patients with CM in studies of pathogenesis or therapeutic trials. In malaria-endemic areas, where asymptomatic Plasmodium falciparum parasitemia is common, a positive blood film in a comatose individual does not prove that the coma is due to malaria. A retinopathy consisting of two unique features – patchy retinal whitening and focal changes of vessel color – is highly specific for encephalopathy of malarial etiology. White-centered retinal hemorrhages are a common but less specific feature. Either indirect or direct ophthalmoscopy can be used to identify the changes, and both procedures can be learned and practiced by nonspecialist clinicians. In view of its important contributions to both clinical care and research, examination of the retina should become a routine component of the assessment of a comatose child or adult when CM is a possible diagnosis. PMID:21449844

  15. Premyelinated central axons express neurotoxic NMDA receptors: relevance to early developing white-matter injury

    PubMed Central

    Huria, Tahani; Beeraka, Narasimha Murthy; Al-Ghamdi, Badrah; Fern, Robert

    2015-01-01

    Ischemic-type injury to developing white matter is associated with the significant clinical condition cerebral palsy and with the cognitive deficits associated with premature birth. Premyelinated axons are the major cellular component of fetal white matter and loss of axon function underlies the disability, but the cellular mechanisms producing ischemic injury to premyelinated axons have not previously been described. Injury was found to require longer periods of modelled ischemia than at latter developmental points. Ischemia produced initial hyperexcitability in axons followed by loss of function after Na+ and Ca2+ influx. N-methyl-D-aspartate- (NMDA) type glutamate receptor (GluR) agonists potentiated axon injury while antagonists were protective. The NMDA GluR obligatory Nr1 subunit colocalized with markers of small premyelinated axons and expression was found at focal regions of axon injury. Ischemic injury of glial cells present in early developing white matter was NMDA GluR independent. Axons in human postconception week 18 to 23 white matter had a uniform prediameter expansion phenotype and postembedded immuno-gold labelling showed Nr1 subunit expression on the membrane of these axons, demonstrating a shared key neuropathologic feature with the rodent model. Premyelinated central axons therefore express high levels of functional NMDA GluRs that confer sensitivity to ischemic injury. PMID:25515212

  16. Lifetime methamphetamine dependence is associated with cerebral microgliosis in HIV-1-infected adults.

    PubMed

    Soontornniyomkij, Virawudh; Umlauf, Anya; Soontornniyomkij, Benchawanna; Batki, Isabella B; Moore, David J; Masliah, Eliezer; Achim, Cristian L

    2016-10-01

    Methamphetamine (Meth) use is common among HIV-infected persons. It remains unclear whether Meth dependence is associated with long-lasting degenerative changes in the brain parenchyma and microvasculature of HIV-infected individuals. We examined the postmortem brains of 78 HIV-infected adults, twenty of whom were diagnosed with lifetime Meth dependence (18 past and two current at the final follow-up visit). Using logistic regression models, we analyzed associations of Meth with cerebral gliosis (immunohistochemistry for ionized calcium-binding adapter molecule-1 (Iba1) and glial fibrillary acidic protein (GFAP) in frontal, temporo-parietal, and putamen-internal capsule regions), synaptodendritic loss (confocal microscopy for synaptophysin (SYP) and microtubule-associated protein-2 (MAP2) in frontal cortex), β-amyloid plaque deposition (immunohistochemistry in frontal and temporo-parietal cortex and putamen), and arteriolosclerosis (histopathology in forebrain white matter). We found that Meth was associated with marked Iba1 gliosis in the temporo-parietal region (odds ratio, 4.42 (95 % confidence interval, 1.36, 14.39), p = 0.014, n = 62), which remained statistically significant after adjusting for HIV encephalitis, white matter lesions, and opportunistic diseases (n = 61); hepatitis C virus seropositivity (n = 54); and lifetime dependence on alcohol, opiates, and cannabis (n = 62). There was no significant association of Meth with GFAP gliosis, SYP or MAP2 loss, β-amyloid plaque deposition, or arteriolosclerosis. In conclusion, we found lifetime Meth dependence to be associated with focal cerebral microgliosis among HIV-infected adults, but not with other brain degenerative changes examined. Some of the changes in select brain regions might be reversible following extended Meth abstinence or, alternatively, might have not been induced by Meth initially.

  17. Impaired language abilities and white matter abnormalities in children born very preterm and/or very low birth weight

    PubMed Central

    Reidy, Natalie; Morgan, Angela; Thompson, Deanne K; Inder, Terrie E.; Doyle, Lex W; Anderson, Peter J

    2012-01-01

    Objectives To investigate language abilities in children born very preterm (VPT; <32 weeks’ gestational age (GA)) or very low birth weight (VLBW; <1500 g) at 7 years of age and compare their performances with children born at term, and to determine whether group differences could be explained by cerebral white matter abnormality on neonatal MRI. Study design A cohort of 198 children born <30 weeks’ GA and/or <1250 g, and 70 term controls were examined. White matter abnormalities were rated quantitatively on brain MRI at term-equivalent age. Language was assessed at age 7 years using standardized language tests. Differences between groups were tested in the five language sub-domains of phonological awareness, semantics, grammar, discourse, and pragmatics. A mediation effect was tested between birth group, white matter abnormality, and language sub-domains. Results The VPT/VLBW group performed significantly worse than controls on all language sub-domains (all p <.001). White matter abnormality mediated the effect of group differences on phonological awareness, and partly mediated this effect for semantics, grammar and discourse. White matter abnormality was not significantly associated with pragmatics (p = .13). Conclusions Language is an important area of concern in children born VPT/VLBW. Neonatal white matter abnormality is an important predictor of outcome; however, different language abilities are differentially associated with neonatal white matter abnormality. PMID:23158026

  18. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes.

    PubMed

    García-Berro, Enrique; Torres, Santiago; Althaus, Leandro G; Renedo, Isabel; Lorén-Aguilar, Pablo; Córsico, Alejandro H; Rohrmann, René D; Salaris, Maurizio; Isern, Jordi

    2010-05-13

    NGC 6791 is a well studied open cluster that it is so close to us that can be imaged down to very faint luminosities. The main-sequence turn-off age ( approximately 8 Gyr) and the age derived from the termination of the white dwarf cooling sequence ( approximately 6 Gyr) are very different. One possible explanation is that as white dwarfs cool, one of the ashes of helium burning, (22)Ne, sinks in the deep interior of these stars. At lower temperatures, white dwarfs are expected to crystallize and phase separation of the main constituents of the core of a typical white dwarf ((12)C and (16)O) is expected to occur. This sequence of events is expected to introduce long delays in the cooling times, but has not hitherto been proven. Here we report that, as theoretically anticipated, physical separation processes occur in the cores of white dwarfs, resolving the age discrepancy for NGC 6791.

  19. Caffeine induced changes in cerebral circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, R.J.; Wilson, W.H.

    1985-09-01

    While the caffeine induced cerebral vasoconstriction is well documented, the effects of oral ingestion of the drug in a dose range comparable to the quantities in which it is usually consumed and the intensity and duration of the associated reduction in cerebral circulation are unknown. Cerebral blood flow was measured via the TTXenon inhalation technique before and thirty and ninety minutes after the oral administration of 250 mg of caffeine or a placebo, under double-blind conditions. Caffeine ingestion was found to be associated with significant reductions in cerebral perfusion thirty and ninety minutes later. The placebo group showed no differencesmore » between the three sets of cerebral blood flow values.« less

  20. White matter tract signatures of impaired social cognition in frontotemporal lobar degeneration

    PubMed Central

    Downey, Laura E.; Mahoney, Colin J.; Buckley, Aisling H.; Golden, Hannah L.; Henley, Susie M.; Schmitz, Nicole; Schott, Jonathan M.; Simpson, Ivor J.; Ourselin, Sebastien; Fox, Nick C.; Crutch, Sebastian J.; Warren, Jason D.

    2015-01-01

    Impairments of social cognition are often leading features in frontotemporal lobar degeneration (FTLD) and likely to reflect large-scale brain network disintegration. However, the neuroanatomical basis of impaired social cognition in FTLD and the role of white matter connections have not been defined. Here we assessed social cognition in a cohort of patients representing two core syndromes of FTLD, behavioural variant frontotemporal dementia (bvFTD; n = 29) and semantic variant primary progressive aphasia (svPPA; n = 15), relative to healthy older individuals (n = 37) using two components of the Awareness of Social Inference Test, canonical emotion identification and sarcasm identification. Diffusion tensor imaging (DTI) was used to derive white matter tract correlates of social cognition performance and compared with the distribution of grey matter atrophy on voxel-based morphometry. The bvFTD and svPPA groups showed comparably severe deficits for identification of canonical emotions and sarcasm, and these deficits were correlated with distributed and overlapping white matter tract alterations particularly affecting frontotemporal connections in the right cerebral hemisphere. The most robust DTI associations were identified in white matter tracts linking cognitive and evaluative processing with emotional responses: anterior thalamic radiation, fornix (emotion identification) and uncinate fasciculus (sarcasm identification). DTI associations of impaired social cognition were more consistent than corresponding grey matter associations. These findings delineate a brain network substrate for the social impairment that characterises FTLD syndromes. The findings further suggest that DTI can generate sensitive and functionally relevant indexes of white matter damage in FTLD, with potential to transcend conventional syndrome boundaries. PMID:26236629