Science.gov

Sample records for deep eutectic solvents

  1. Functionalization of graphene using deep eutectic solvents

    NASA Astrophysics Data System (ADS)

    Hayyan, Maan; Abo-Hamad, Ali; AlSaadi, Mohammed AbdulHakim; Hashim, Mohd Ali

    2015-08-01

    Deep eutectic solvents (DESs) have received attention in various applications because of their distinctive properties. In this work, DESs were used as functionalizing agents for graphene due to their potential to introduce new functional groups and cause other surface modifications. Eighteen different types of ammonium- and phosphonium-salt-based DESs were prepared and characterized by FTIR. The graphene was characterized by FTIR, STA, Raman spectroscopy, XRD, SEM, and TEM. Additional experiments were performed to study the dispersion behavior of the functionalized graphene in different solvents. The DESs exhibited both reduction and functionalization effects on DES-treated graphene. Dispersion stability was investigated and then characterized by UV-vis spectroscopy and zeta potential. DES-modified graphene can be used in many applications, such as drug delivery, wastewater treatment, catalysts, composite materials, nanofluids, and biosensors. To the best of our knowledge, this is the first investigation on the use of DESs for graphene functionalization.

  2. Functionalization of graphene using deep eutectic solvents.

    PubMed

    Hayyan, Maan; Abo-Hamad, Ali; AlSaadi, Mohammed AbdulHakim; Hashim, Mohd Ali

    2015-12-01

    Deep eutectic solvents (DESs) have received attention in various applications because of their distinctive properties. In this work, DESs were used as functionalizing agents for graphene due to their potential to introduce new functional groups and cause other surface modifications. Eighteen different types of ammonium- and phosphonium-salt-based DESs were prepared and characterized by FTIR. The graphene was characterized by FTIR, STA, Raman spectroscopy, XRD, SEM, and TEM. Additional experiments were performed to study the dispersion behavior of the functionalized graphene in different solvents. The DESs exhibited both reduction and functionalization effects on DES-treated graphene. Dispersion stability was investigated and then characterized by UV-vis spectroscopy and zeta potential. DES-modified graphene can be used in many applications, such as drug delivery, wastewater treatment, catalysts, composite materials, nanofluids, and biosensors. To the best of our knowledge, this is the first investigation on the use of DESs for graphene functionalization. PMID:26264683

  3. Improving agar electrospinnability with choline-based deep eutectic solvents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One percent agar (% wt) was dissolved in the deep eutectic solvent (DES), (2-hydroxyethyl) trimethylammonium chloride/urea at a 1:2 molar ratio, and successfully electrospun into nanofibers. An existing electrospinning set-up, operated at 50 deg C, was adapted for use with an ethanol bath to collect...

  4. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    DOE PAGESBeta

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are moremore »spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).« less

  5. Improving agar electrospinnability with choline-based deep eutectic solvents.

    PubMed

    Sousa, Ana M M; Souza, Hiléia K S; Uknalis, Joseph; Liu, Shih-Chuan; Gonçalves, Maria P; Liu, LinShu

    2015-09-01

    Very recently our group has produced novel agar-based fibers by an electrospinning technique using water as solvent and polyvinyl alcohol (PVA) as co-blending polymer. Here, we tested the deep eutectic solvent (DES), (2-hydroxyethyl)trimethylammonium chloride/urea prepared at 1:2 molar ratio, as an alternative solvent medium for agar electrospinning. The electrospun materials were collected with an ethanol bath adapted to a previous electrospinning set-up. One weight percent agar-in-DES showed improved viscoelasticity and hence, spinnability, when compared to 1 wt% agar-in-water and pure agar nanofibers were successfully electrospun if working above the temperature of sol-gel transition (?80 °C). By changing the solvent medium we decreased the PVA concentration (5 wt% starting solution) and successfully produced composite fibers with high agar contents (50/50 agar/PVA). Best composite fibers were formed with the 50/50 and 30/70 agar/PVA solutions. These fibers were mechanically resistant, showed tailorable surface roughness and diverse size distributions, with most of the diameters falling in the sub-micron range. Both nano and micro forms of agar fibers (used separately or combined) may have potential for the design of new and highly functional agar-based materials. PMID:26116384

  6. Assessing the toxicity and biodegradability of deep eutectic solvents.

    PubMed

    Wen, Qing; Chen, Jing-Xin; Tang, Yu-Lin; Wang, Juan; Yang, Zhen

    2015-08-01

    Deep eutectic solvents (DESs) have emerged as a new type of promising ionic solvents with a broad range of potential applications. Although their ecotoxicological profile is still poorly known, DESs are generally regarded as "green" because they are composed of ammonium salts and H-bond donors (HBDs) which are considered to be eco-friendly. In this work, cholinium-based DESs comprised of choline chloride (ChCl) and choline acetate (ChAc) as the salt and urea (U), acetamide (A), glycerol (G) and ethylene glycol (EG) as the HBD were evaluated for their toxic effects on different living organisms such as Escherichia coli (a bacterium), Allium sativum (garlic, a plant) and hydra (an invertebrate), and their biodegradabilities were assessed by means of closed bottle tests. These DESs possessed an anti-bacterial property and exhibited inhibitory effects on the test organisms adopted, depending on the composition and concentration of the DES. The mechanism for the impact of DESs and their components on different living organisms can be associated to their interactions with the cellular membranes. Not all DESs can be considered readily biodegradable. By extending the limited knowledge about the toxicity and biodegradation of this particular solvent family, this investigation on DESs provides insight into our structure-based understanding of their ecotoxicological behavior. PMID:25800513

  7. Deep eutectic solvents: sustainable media for nanoscale and functional materials.

    PubMed

    Wagle, Durgesh V; Zhao, Hua; Baker, Gary A

    2014-08-19

    Deep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable. In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal-organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same). The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the genesis of nanostructure. Furthermore, DES components may modulate nucleation and growth mechanisms by charge neutralization, modification of reduction potentials (or chemical activities), and passivation of particular crystal faces, dictating growth along preferred crystallographic directions. Broad operational windows for electrochemical reactions coupled with their inherent ionic nature facilitate the electrodeposition of alloys and semiconductors inaccessible to classical means and the use of cosolvents or applied potential control provide under-explored strategies for mediating interfacial interactions leading to control over film characteristics. The biocompatibility of DESs suggests intriguing potential for the construction of biomolecular architectures in these novel media. It has been demonstrated that nucleic acid structures can be manipulated in the ionic, crowded, dehydrating (low water activity) DES environment-including the adoption of duplex helical structures divergent from the canonical B form and parallel G-quadruplex DNA persisting near water's boiling point-challenging the misconception that water is a necessity for maintenance of nucleic acid structure/functionality and suggesting an enticing trajectory toward DNA/RNA-based nanocatalysis within a strictly anhydrous medium. DESs offer tremendous opportunities and open intriguing perspectives for generating sophisticated nanostructures within an anhydrous or low-water medium. We conclude this Account by offering our thoughts on the evolution of the field, pointing to areas of clear and compelling utility which will surely see fruition in the coming years. Finally, we highlight a few hurdles (e.g., need for a universal nomenclature, absence of water-immiscible, oriented-phase, and low-viscosity DESs) which, once navigated, will hasten progress in this area. PMID:24892971

  8. A novel green approach for the chemical modification of silica particles based on deep eutectic solvents.

    PubMed

    Gu, Tongnian; Zhang, Mingliang; Chen, Jia; Qiu, Hongdeng

    2015-06-18

    Deep eutectic solvents (DESs), as a novel class of green solvents, were successfully applied as eco-friendly and sustainable reaction media for fast surface modification of spherical porous silica, resulting in stationary phases for high-performance liquid chromatography. The new reaction media were advantageous over organic solvents in many aspects, such as the high dispersibility of silica spheres and their non-volatility. PMID:25985926

  9. Deep eutectic solvents as efficient solvent system for the extraction of ?-carrageenan from Kappaphycus alvarezii.

    PubMed

    Das, Arun Kumar; Sharma, Mukesh; Mondal, Dibyendu; Prasad, Kamalesh

    2016-01-20

    Three different deep eutectic solvents (DESs) prepared by the complexation of choline chloride with urea, ethylene glycol and glycerol along with their hydrated counterparts were used for the selective extraction of ?-carrageenan from Kappaphycus alvarezii. Upon comparison of the quality of the polysaccharide with the one obtained using water as extraction media as well as the one extracted using widely practiced conventional method, it was found that, the physicochemical as well as rheological properties of ?-carrageenan obtained using DESs as solvents was at par to the one obtained using conventional method and was superior in quality when compared to ?-carrageenan obtained using water as solvent. Considering the tedious nature of the extraction method employed in conventional extraction process, the DESs can be considered as suitable alternative solvents for the facile extraction of the polysaccharide directly from the seaweed. However, among the hydrated and non-hydrated DESs, the hydrated ones were found to be more effective in comparison to their non-hydrated counterparts. PMID:26572431

  10. Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles.

    PubMed

    Morrison, Henry G; Sun, Changquan C; Neervannan, Sesha

    2009-08-13

    Deep eutectic solvent (DES) is a new class of solvents typically formed by mixing choline chloride with hydrogen bond donors such as amines, acids, and alcohols. Most DES's are non-reactive with water, biodegradable, and have acceptable toxicity profiles. Urea-choline chloride and malonic acid-choline chloride eutectic systems were characterized using differential scanning calorimetry (DSC) and thermal microscopy. A potential new 2:1 urea-choline chloride cocrystal with a melting point of 25 degrees C was characterized at the eutectic composition. The formation of this cocrystal suggests that DES should not be universally explained by simple eutectic melting, and may be useful in guiding the search for new DES systems. The lack of nucleation of the malonic acid-choline chloride system prohibited the construction of a phase diagram for this system using DSC. We also investigated possible uses of DES in solubilizing poorly soluble compounds for enhanced bioavailability in early drug development such as toxicology studies. For five poorly soluble model compounds, solubility in DES is 5 to 22,000 folds more than that in water. Thus, DES can be a promising vehicle for increasing exposure of poorly soluble compounds in preclinical studies. PMID:19477257

  11. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius).

    PubMed

    Dai, Yuntao; Verpoorte, Robert; Choi, Young Hae

    2014-09-15

    A certain combination of natural products in the solid state becomes liquid, so called natural deep eutectic solvents (NADES). Recently, they have been considered promising new green solvents for foods, cosmetics and pharmaceuticals due to their unique solvent power which can dissolve many non-water-soluble compounds and their low toxicity. However, in addition to the features as solvents, the stabilisation ability of NADES for compounds is important for their further applications. In the study, the stability analysis demonstrates that natural pigments from safflower are more stable in sugar-based NADES than in water or 40% ethanol solution. Notably, the stabilisation capacity of NADES can be adjusted by reducing water content with increasing viscosity. The strong stabilisation ability is due to the formation of strong hydrogen bonding interactions between solutes and NADES molecules. The stabilising ability of NADES for phenolic compounds shows great promise for their applications in food, cosmetic and pharmaceutical industries. PMID:24767033

  12. Alcohol based-deep eutectic solvent (DES) as an alternative green additive to increase rotenone yield

    NASA Astrophysics Data System (ADS)

    Othman, Zetty Shafiqa; Hassan, Nur Hasyareeda; Zubairi, Saiful Irwan

    2015-09-01

    Deep eutectic solvents (DESs) are basically molten salts that interact by forming hydrogen bonds between two added components at a ratio where eutectic point reaches a melting point lower than that of each individual component. Their remarkable physicochemical properties (similar to ionic liquids) with remarkable green properties, low cost and easy handling make them a growing interest in many fields of research. Therefore, the objective of pursuing this study is to analyze the potential of alcohol-based DES as an extraction medium for rotenone extraction from Derris elliptica roots. DES was prepared by a combination of choline chloride, ChCl and 1, 4-butanediol at a ratio of 1/5. The structure of elucidation of DES was analyzed using FTIR, 1H-NMR and 13C-NMR. Normal soaking extraction (NSE) method was carried out for 14 hours using seven different types of solvent systems of (1) acetone; (2) methanol; (3) acetonitrile; (4) DES; (5) DES + methanol; (6) DES + acetonitrile; and (7) [BMIM] OTf + acetone. Next, the yield of rotenone, % (w/w), and its concentration (mg/ml) in dried roots were quantitatively determined by means of RP-HPLC. The results showed that a binary solvent system of [BMIM] OTf + acetone and DES + acetonitrile was the best solvent system combination as compared to other solvent systems. It contributed to the highest rotenone content of 0.84 ± 0.05% (w/w) (1.09 ± 0.06 mg/ml) and 0.84 ± 0.02% (w/w) (1.03 ± 0.01 mg/ml) after 14 hours of exhaustive extraction time. In conclusion, a combination of the DES with a selective organic solvent has been proven to have a similar potential and efficiency as of ILs in extracting bioactive constituents in the phytochemical extraction process.

  13. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications.

    PubMed

    Dai, Yuntao; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2015-11-15

    Previously it was demonstrated that natural deep eutectic solvents (NADES) are promising green solvents for the extraction of natural products. However, despite their potential, an obvious disadvantage of NADES is the high viscosity. Here we explored the dilution effect on the structures and physicochemical properties of NADES and their improvements of applications using quercetin and carthamin. The results of FT-IR and (1)H NMR experiments demonstrated that there are intensive H-bonding interactions between the two components of NADES and dilution with water caused the interactions weaken gradually and even disappeared completely at around 50% (v/v) water addition. A small amount of water could reduce the viscosity of NADES to the range of water and increase the conductivity by up to 100 times for some NADES. This study provides the basis for modulating NADES in a controllable way for their applications in food processing, enzyme reactions, pharmaceuticals and cosmetics. PMID:25976992

  14. Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.

    PubMed

    Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J

    2015-12-01

    Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration. PMID:26540438

  15. Applicability evaluation of Deep Eutectic Solvents-Cellulase system for lignocellulose hydrolysis.

    PubMed

    Gunny, Ahmad Anas Nagoor; Arbain, Dachyar; Nashef, Enas Muen; Jamal, Parveen

    2015-04-01

    Deep Eutectic Solvents (DESs) have recently emerged as a new generation of ionic liquids for lignocellulose pretreatment. However, DESs contain salt components which tend to inactivate cellulase in the subsequent saccharification process. To alleviate this problem, it is necessary to evaluate the applicability of the DESs-Cellulase system. This was accomplished in the present study by first studying the stability of cellulase in the presence of selected DESs followed by applicability evaluation based on glucose production, energy consumption and kinetic performance. Results showed that the cellulase was able to retain more than 90% of its original activity in the presence of 10% (v/v) for glycerol based DES (GLY) and ethylene glycol based DES (EG). Furthermore, both DESs system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system. Among the two DESs studied, EG showed comparatively better kinetic performance. PMID:25661309

  16. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents--a review.

    PubMed

    Kud?ak, B?a?ej; Owczarek, Katarzyna; Namie?nik, Jacek

    2015-08-01

    Green Chemistry plays a more and more important role in implementing rules of sustainable development to prevent environmental pollution caused by technological processes, while simultaneously increasing the production yield. Ionic liquids (ILs) and deep eutectic solvents (DESs) constitute a very broad group of substances. Apart from many imperfections, ILs and DESs have been the most promising discoveries in the world of Green Chemistry in recent years. The main advantage of ILs is their unique physicochemical properties-they are very desirable from the technological point of view, but apart from these benefits, ILs appear to be highly toxic towards organisms from different trophic levels. DES areas of usage are very spread, because they cover organic synthesis, extraction processes, electrochemistry, enzymatic reactions and many others. Moreover, DESs seem to be a less toxic alternative to ionic liquids. New possibilities of applications and future development trends are sought and presented, including such important solutions of life branches as pharmaceuticals' production and medicine. PMID:26040266

  17. Characterization and antimicrobial phototoxicity of curcumin dissolved in natural deep eutectic solvents.

    PubMed

    Wikene, Kristine Opsvik; Bruzell, Ellen; Tønnesen, Hanne Hjorth

    2015-12-01

    Natural deep eutectic solvents (NADES) are a novel class of eutectics which show a unique potential as solubilizer of water insoluble compounds. The purpose of the current study was to evaluate the potential of NADES as a solvent for the hydrophobic photosensitizer curcumin for use in antimicrobial photodynamic therapy (aPDT). Two of the seventeen NADES initially prepared (i.e., NADES GS and MC3) solubilized >0.05mg/ml curcumin and were further characterized. The hydrolytic stability (i.e., t1/2) of curcumin in NADES was comparable to or up to 2-10 times higher than previously reported results in cyclodextrins and up to >1300 times higher than results reported in buffer at pH8. The photolytic stability increased by a factor 5.6-10 in GS compared to the most photostable cyclodextrin and surfactant preparations reported previously. This NADES seemed to lock curcumin in its colorless diketo conformer, resulting in higher photostability than in ethanol and in the NADES MC3. The curcumin-NADES preparations dissolved rapidly in aqueous media and formed supersaturated solutions of curcumin. Precipitation of curcumin was observed after ?1h depending on the dilution factor (pH<8). The NADES MC3 containing curcumin photoinactivated Escherichia coli at a lower curcumin concentration (1.25?M) than in any previously investigated preparations of curcumin. The ability of NADES to lock curcumin within one specific molecular conformation and also to potentiate the phototoxic effect of this photosensitizer emphasizes the unique properties of the NADES as a solvent. PMID:26410725

  18. Enzymatic selective synthesis of 1,3-DAG based on deep eutectic solvent acting as substrate and solvent.

    PubMed

    Zeng, Chao-Xi; Qi, Sui-Jian; Xin, Rui-Pu; Yang, Bo; Wang, Yong-Hua

    2015-11-01

    In this study, enzymatic selective esterification of oleic acid with glycerol based on deep eutectic solvent acting as substrate and solvent was studied. As choline chloride (ChCl) or betaine can effectively change the chemical reaction characteristics of glycerol when they are mixed with a certain molar ratio of glycerol, several factors crucial to the lipase catalytic esterification of glycerol with oleic acid was investigated. Results showed that, betaine had more moderate effects than ChCl on the lipase, and water content had an important influence of the esterification and the enzyme selectivity. Significant changes of the glyceride compositions and enzyme selectivity were found in ChCl adding system compared with pure glycerol system; optimum accumulation of DAG especially 1,3-DAG because of the eutectic effect of ChCl was found in this system. Furthermore, in a model 1,3-DAG esterification synthesis system catalyzed by Novozym 435, high content (42.9 mol%) of the 1,3-DAG could be obtained in ChCl adding system within 1 h. PMID:26210852

  19. Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media.

    PubMed

    Jeong, Kyung Min; Lee, Min Sang; Nam, Min Woo; Zhao, Jing; Jin, Yan; Lee, Dong-Kyu; Kwon, Sung Won; Jeong, Ji Hoon; Lee, Jeongmi

    2015-12-11

    The present study demonstrates that deep eutectic solvents (DESs) with the highest extractability can be designed by combining effective DES components from screening diverse DESs. The extraction of polar ginseng saponins from white ginseng was used as a way to demonstrate the tuneability as well as recyclability of DESs. A newly designed ternary DES (GPS-5) composed of glycerol, l-proline, and sucrose at 9:4:1 was used as a sustainable and efficient extraction medium. Based on the anti-tumor activity on HCT-116 cancer cells, it was confirmed that GPS-5 was merely an extraction solvent with no influence of the bioactivity of the ginsenosides extracted. Excellent recovery of the extracted saponins was easily achieved through solid-phase extraction (SPE). Recycling of the DES was accomplished by simple freeze-drying of the washed solutions from the SPE. The extraction efficiencies of the DESs recycled once, twice, and thrice were 92%, 85%, and 83% of that of the freshly synthesized solvent. PMID:26585205

  20. Hydrothermal liquefaction of de-oiled Jatropha curcas cake using Deep Eutectic Solvents (DESs) as catalysts and co-solvents.

    PubMed

    Alhassan, Yahaya; Kumar, Naveen; Bugaje, Idris M

    2016-01-01

    Biomass liquefaction using ionic liquids (ILs) as catalysts has received appreciable attention, in renewable fuels and chemicals production, recently. However, issues associated with the production cost, long reaction time and use of volatile solvents are undeniably challenging. Thus, Deep Eutectic Solvents (DESs) emerged as promising and potential ILs substitutes. The hydrothermal liquefaction of de-oiled Jatropha curcas cake was catalyzed by four synthesized DESs as catalysts and co-solvents for selective extraction. Proximate and ultimate analyses including ash, moisture and carbon contents of bio-crude produced varied slightly. The higher heating values found ranges from 21.15±0.82MJ/kg to 24.30±0.98MJ/kg. The bio-crude yields obtained using ChCl-KOH DES was 43.53wt% and ChCl-p-TsOH DES was 38.31wt%. Bio-crude yield using ChCl-FeCl3 DES was 30.80wt%. It is suggested that, the selectivity of bio-crude could be improved, by using DESs as catalyst and co-solvent in HTL of biomass such as de-oiled J. curcas cake. PMID:26276400

  1. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs).

    PubMed

    García, Aránzazu; Rodríguez-Juan, Elisa; Rodríguez-Gutiérrez, Guillermo; Rios, José Julian; Fernández-Bolaños, Juan

    2016-04-15

    Deep eutectic solvents (DESs) are "green" solvents, applied in this study for the extraction of phenolic compounds from virgin olive oil (VOO). Different combinations of DES consisting of choline chloride (ChCl) in various mixing ratios with sugars, alcohols, organic acids, and urea, as well as a mixture of three sugars were used. The yields of the DES extractions were compared with those from conventional 80% (v/v) methanol/water. DES showed a good solubility of phenolic compounds with different polarities. The two most abundant secoiridoid derivatives in olive oil, oleacein and oleocanthal, extracted with ChCl/xylitol and ChCl/1,2-propanediol showed an increase of 20-33% and 67.9-68.3% with respect to conventional extraction, respectively. To our knowledge, this is the first time that phenolic compounds have been extracted from VOO oil using DES. Our results suggest that DES offers an efficient, safe, sustainable, and cost effective alternative to methanol for extraction of bioactive compounds from VOO. PMID:26616988

  2. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents.

    PubMed

    Radoševi?, Kristina; Bubalo, Marina Cvjetko; Sr?ek, Višnje Gaurina; Grgas, Dijana; Dragi?evi?, Tibela Landeka; Redovnikovi?, Ivana Radoj?i?

    2015-02-01

    Deep eutectic solvents (DESs) have been dramatically expanding in popularity as a new generation of environmentally friendly solvents with possible applications in various industrial fields, but their ecological footprint has not yet been thoroughly investigated. In the present study, three choline chloride-based DESs with glucose, glycerol and oxalic acid as hydrogen bond donors were evaluated for in vitro toxicity using fish and human cell line, phytotoxicity using wheat and biodegradability using wastewater microorganisms through closed bottle test. Obtained in vitro toxicity data on cell lines indicate that choline chloride: glucose and choline chloride:glycerol possess low cytotoxicity (EC50>10 mM for both cell lines) while choline chloride:oxalic acid possess moderate cytotoxicity (EC50 value 1.64 mM and 4.19 mM for fish and human cell line, respectively). Results on phytotoxicity imply that tested DESs are non-toxic with seed germination EC50 values higher than 5000 mg L(-1). All tested DESs were classified as'readily biodegradable' based on their high levels of mineralization (68-96%). These findings indicate that DESs have a green profile and a good prospect for a wider use in the field of green technologies. PMID:25463852

  3. Solvatochromic probe behavior within choline chloride-based deep eutectic solvents: effect of temperature and water.

    PubMed

    Pandey, Ashish; Pandey, Siddharth

    2014-12-18

    Deep eutectic solvents (DESs) have shown potential as promising environmentally friendly alternatives to conventional solvents. Many common and popular DESs are obtained by simply mixing a salt and a H-bond donor. Properties of such a DES depend on its constituents. Change in temperature and addition of water, a benign cosolvent, can change the physicochemical properties of DESs. The effect of changing temperature and addition of water on solvatochromic probe behavior within three DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, and urea, respectively, in 1:2 mol ratios termed ethaline, glyceline, and reline is presented. Increase in temperature results in reduced H-bond donating acidity of the DESs. Dipolarity/polarizability and H-bond accepting basicity do not change with changing temperature of the DESs. The response of the fluorescence probe pyrene also indicates a decrease in the polarity of the DESs as temperature is increased. Addition of water to DES results in increased dipolarity/polarizability and a decrease in H-bond accepting basicity. Except for pyrene, solvatochromic probes exhibit responses close to those predicted from ideal-additive behavior with slight preferential solvation by DES within the aqueous mixtures. Pyrene response reveals significant preferential solvation by DES and/or the presence of solvent-solvent interactions, especially within aqueous mixtures of ethaline and glyceline, the DESs constituted of H-bond donors with hydroxyl functionalities. FTIR absorbance and Raman spectroscopic measurements of aqueous DES mixtures support the outcomes from solvatochromic probe responses. Aqueous mixtures of ethaline and glyceline possess relatively more interspecies H-bonds as compared to aqueous mixtures of reline, where interstitial accommodation of water within the reline molecular network appears to dominate. PMID:25418894

  4. Simultaneous extraction of flavonoids from Chamaecyparis obtusa using deep eutectic solvents as additives of conventional extractions solvents.

    PubMed

    Tang, Baokun; Park, Ha Eun; Row, Kyung Ho

    2015-01-01

    Three flavones (quercetin, myricetin and amentoflavone) were extracted from Chamaecyparis obtusa leaves using deep eutectic solvents (DESs) as additives to conventional extractions solvents. Sixteen DESs were synthesized from different salts and hydrogen bond donors. In addition, C. obtusa was extracted under optimal conditions of methanol as the solvent in the heating process (60°C) for 120 min at a solid/liquid ratio of 80%. Under these optimal conditions, a good linear relationship was observed at analyte concentrations ranging from 5.0 to 200.0 ?g/mL (R(2) > 0.999). The extraction recovery ranged from 96.7 to 103.3% with the inter- and intraday relative standard deviations of <4.97%. Under the optimal conditions, from C. obtusa, the quantities of quercetin, myricetin and amentoflavone extracted were 325.90, 8.66 and 50.34 µg/mL, respectively. Overall, DESs are expected to have a wide range of applications. PMID:25228687

  5. Magnetic solid-phase extraction of protein with deep eutectic solvent immobilized magnetic graphene oxide nanoparticles.

    PubMed

    Xu, Kaijia; Wang, Yuzhi; Ding, Xueqin; Huang, Yanhua; Li, Na; Wen, Qian

    2016-02-01

    As a new type of green solvent, four kinds of choline chloride (ChCl)-based deep eutectic solvents (DESs) have been synthesized, and then a core-shell structure magnetic graphene oxide (Fe3O4-NH2@GO) nanoparticles have been prepared and coated with the ChCl-based DESs. Magnetic solid-phase extraction (MSPE) based Fe3O4-NH2@GO@DES was studied for the first time for the extraction of proteins. The characteristic results of vibrating sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and field emission scanning electron microscopy (FESEM) indicated the successful preparation of Fe3O4-NH2@GO@DES. The concentrations of proteins in studies were determined by a UV-vis spectrophotometer. The advantages of Fe3O4-NH2@GO@DES in protein extraction were compared with Fe3O4-NH2@GO and Fe3O4-NH2, and Fe3O4-NH2@GO@ChCl-glycerol was selected as the suitable extraction solvent. The influence factors of the extraction process such as the pH value, the temperature, the extraction time, the concentration of protein and the amount of Fe3O4-NH2@GO@ChCl-glycerol were evaluated. Desorption experimental result showed 98.73% of BSA could be eluted from the solid extractant with 0.1mol/L Na2HPO4 solution contained 1mol/L NaCl. Besides, the conformation of BSA was not changed during the elution by the investigation of circular dichromism (CD) spectra. Furthermore, the analysis of real sample demonstrated that the prepared magnetic nanoparticles did have extraction ability on proteins in bovine whole blood. PMID:26653436

  6. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.

    PubMed

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. PMID:25732422

  7. Imidazole tailored deep eutectic solvents for CO2 capture enhanced by hydrogen bonds.

    PubMed

    Cao, Lingdi; Huang, Junhua; Zhang, Xiangping; Zhang, Suojiang; Gao, Jubao; Zeng, Shaojuan

    2015-10-14

    Deep eutectic solvents (DESs) have emerged as promising alternative candidates for CO2 capture in recent years. In this work, several novel DESs were firstly prepared to enhance CO2 absorption. Structural and physical properties of DESs were investigated, as well as their absorption performance of CO2. A distinct depression in the melting point up to 80 K of DESs was observed compared with that of BMIMCl. The observed red shifts of the C2H group in an imidazolium ring and its chemical shifts downfield in NMR spectra are indicative of a hydrogen bond interaction between BMIMCl and MEA. In particular, CO2 uptake in MEA?:?ILs (4?:?1) at room temperature and atmospheric pressure is up to 21.4 wt%, which is higher than that of 30 wt% MEA (13%). A hydrogen bond related mechanism was proposed in which ILs act as a medium to improve CO2 uptake through hydrogen bonds. Finally, the firstly reported overall heat of CO2 absorption is slightly higher than that of 30 wt% MEA, implying that the hydrogen bonds of DESs contribute to the overall heat of CO2 absorption. This study reveals that the heat of CO2 absorption can be tailored by the proper molar ratio of MEA and ILs. PMID:26435384

  8. G-quadruplexes form ultrastable parallel structures in deep eutectic solvent.

    PubMed

    Zhao, Chuanqi; Ren, Jinsong; Qu, Xiaogang

    2013-01-29

    G-quadruplex DNA is highly polymorphic. Its conformation transition is involved in a series of important life events. These controllable diverse structures also make G-quadruplex DNA a promising candidate as catalyst, biosensor, and DNA-based architecture. So far, G-quadruplex DNA-based applications are restricted done in aqueous media. Since many chemical reactions and devices are required to be performed under strictly anhydrous conditions, even at high temperature, it is challenging and meaningful to conduct G-quadruplex DNA in water-free medium. In this report, we systemically studied 10 representative G-quadruplexes in anhydrous room-temperature deep eutectic solvents (DESs). The results indicate that intramolecular, intermolecular, and even higher-order G-quadruplex structures can be formed in DES. Intriguingly, in DES, parallel structure becomes the G-quadruplex DNA preferred conformation. More importantly, compared to aqueous media, G-quadruplex has ultrastability in DES and, surprisingly, some G-quadruplex DNA can survive even beyond 110 °C. Our work would shed light on the applications of G-quadruplex DNA to chemical reactions and DNA-based devices performed in an anhydrous environment, even at high temperature. PMID:23282194

  9. In Vitro and In Vivo Toxicity Profiling of Ammonium-Based Deep Eutectic Solvents

    PubMed Central

    Hayyan, Maan; Looi, Chung Yeng; Hayyan, Adeeb; Wong, Won Fen; Hashim, Mohd Ali

    2015-01-01

    The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes. PMID:25679975

  10. Electrodeposition, Morphology, Composition, and Corrosion Performance of Zn-Mn Coatings from a Deep Eutectic Solvent

    NASA Astrophysics Data System (ADS)

    Fashu, S.; Gu, C. D.; Zhang, J. L.; Zheng, H.; Wang, X. L.; Tu, J. P.

    2015-01-01

    Different Zn-Mn coatings were successfully electrodeposited on copper substrates from deep eutectic solvent-based electrolytes containing boric acid as an additive. The main objective of this work was to optimize the Zn/Mn ratios and morphologies of the as-electrodeposited Zn-Mn films in order to obtain better corrosion protection performance coatings. The electrodeposition behaviors of Zn-Mn alloys as studied by cyclic voltammetry showed that with increase in electrolyte Mn(II) concentration, Zn(II) ion reduction occurs at higher overpotentials while Mn reduction occurs at lower overpotentials, and this in turn enhances Mn incorporation into the deposit. Characterization results showed that the electrodeposition potential and electrolyte Mn(II) concentration significantly affects the Mn content, crystal structure, surface morphology, and corrosion performance of the deposits. With increase in electrodeposition potential and electrolyte Mn(II) concentration, the alloy Mn increased and the grain morphology was refined. The crystal structure of Zn-Mn deposits consists of Zn and hexagonal close packed ?-phase Zn-Mn at low electrodeposition potentials and low electrolyte Mn(II) content. However, at high electrodeposition potentials and electrolyte Mn(II) contents, the crystal structure was only composed of hexagonal close packed ?-phase Zn-Mn. Corrosion measurements show that all the Zn-Mn samples have a passivating behavior and exhibits higher corrosion resistances when compared to those from aqueous solutions. Thus, optimum electrodeposition potential and electrolyte Mn(II) concentration were determined producing compact Zn-Mn films with the best corrosion resistance.

  11. Evidence of self-aggregation of cationic surfactants in a choline chloride+glycerol deep eutectic solvent.

    PubMed

    Pal, Mahi; Singh, Ranjan K; Pandey, Siddharth

    2015-08-24

    Based on fluorescence probe, electrical conductivity, surface tension, small-angle X-ray/dynamic light scattering, and transmission electron microscopy experiments, we present the first clear lines of evidence for self-aggregation of cationic surfactants of the n-alkyltrimethylammonium family within an archetypical deep eutectic solvent comprised of a 1:2 molar mixture of choline chloride and glycerol. Estimated thermodynamic parameters suggest this self-aggregation process to be less entropically driven than that in water. These novel water-free self-assemblies might serve as dynamic soft templates to direct the growth of size- or shape-tailored nanoparticles within water-restricted media. PMID:26080073

  12. RETRACTED: Neoteric FT-IR investigation on the functional groups of phosphonium-based deep eutectic solvents.

    PubMed

    Aissaoui, Tayeb; AlNashef, Inas M; Hayyan, Maan; Hashim, Mohd Ali

    2015-10-01

    Deep eutectic solvents (DESs) are novel solvent media that are currently under investigation as an alternative to ionic liquids and conventional solvents. The physical properties of DESs as well as their mild environmental footprint and potentially critical industrial application necessitate understanding the interaction of functional groups on both the salt and hydrogen bond donor (HBD). In this study, four DESs were prepared by mixing triethylenglycol, diethylenglycol, ethylenglycol, and glycerol as HBDs with methyltriphenylphosphonium bromide as a salt at a molar ratio of 1:4. Fourier transform infrared spectroscopy was conducted to highlight the chemical structure and mechanism of the combination of the four DESs. New spectra illustrating the combination of the functional groups of the HBDs and salt were observed and interpreted. This study is the first to investigate the properties of neoteric phosphonium-based DESs. PMID:25985123

  13. Highly efficient extraction of anthocyanins from grape skin using deep eutectic solvents as green and tunable media.

    PubMed

    Jeong, Kyung Min; Zhao, Jing; Jin, Yan; Heo, Seong Rok; Han, Se Young; Yoo, Da Eun; Lee, Jeongmi

    2015-12-01

    Deep eutectic solvents (DESs) were investigated as tunable, environmentally benign, yet superior extraction media to enhance the extraction of anthocyanins from grape skin, which is usually discarded as waste. Ten DESs containing choline chloride as hydrogen bond acceptor combined with different hydrogen bond donors were screened for high extraction efficiencies based on the anthocyanin extraction yields. As a result, citric acid, D-(+)-maltose, and fructose were selected as the effective DES components, and the newly designed DES, CM-6 that is composed of citric acid and D-(+)-maltose at 4:1 molar ratio, exhibited significantly higher levels of anthocyanin extraction yields than conventional extraction solvents such as 80 % aqueous methanol. The final extraction method was established based on the ultrasound-assisted extraction under conditions optimized using response surface methodology. Its extraction yields were double or even higher than those of conventional methods that are time-consuming and use volatile organic solvents. Our method is truly a green method for anthocyanin extraction with great extraction efficiency using a minimal amount of time and solvent. Moreover, this study suggested that grape skin, the by-products of grape juice processing, could serve as a valuable source for safe, natural colorants or antioxidants by use of the eco-friendly extraction solvent, CM-6. PMID:26534763

  14. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids.

    PubMed

    Tan, Ting; Zhang, Mingliang; Wan, Yiqun; Qiu, Hongdeng

    2016-03-01

    Deep eutectic solvents (DESs) were used as novel mobile phase additives to improve chromatographic separation of four quaternary alkaloids including coptisine chloride, sanguinarine, berberine chloride and chelerythrine on a C18 column. DESs as a new class of ionic liquids are renewably sourced, environmentally benign, low cost and easy to prepare. Seven DESs were obtained by mixing different hydrogen acceptors and hydrogen-bond donors. The effects of organic solvents, the concentration of DESs, the types of DESs and the pH values of the buffer solution on the separation of the analytes were investigated. The composition of acetonitrile and 1.0% deep eutectic solvents aqueous solution (pH 3.3, adjusted with hydrochloric acid) in a 32:68 (v/v) ratio was used as optimized mobile phase, with which four quaternary alkaloids were well separated. When a small amount of DESs was added in the mobile phase for the separation of alkaloids on the C18 column, noticeable improvements were distinctly observed such as decreasing peak tailing and improving resolution. The separation mechanism mediated by DESs as mobile phase additives can be attributed to combined effect of both hydrogen acceptors and hydrogen-bond donors. For example, choline chloride can effectively cover the residual silanols on silica surface and ethylene glycol can reduce the retention time of analytes. The proposed method has been applied to determine BerbC in Lanqin Chinese herbal oral solution and BerbC tablet. Utilization of DESs in mobile phase can efficiently improve separation and selectivity of analytes from complex samples. PMID:26717817

  15. The Effect of Temperature on Kinetics and Diffusion Coefficients of Metallocene Derivatives in Polyol-Based Deep Eutectic Solvents

    PubMed Central

    Bahadori, Laleh; Chakrabarti, Mohammed Harun; Manan, Ninie Suhana Abdul; Hashim, Mohd Ali; Mjalli, Farouq Sabri; AlNashef, Inas Muen; Brandon, Nigel

    2015-01-01

    The temperature dependence of the density, dynamic viscosity and ionic conductivity of several deep eutectic solvents (DESs) containing ammonium-based salts and hydrogen bond donvnors (polyol type) are investigated. The temperature-dependent electrolyte viscosity as a function of molar conductivity is correlated by means of Walden’s rule. The oxidation of ferrocene (Fc/Fc+) and reduction of cobaltocenium (Cc+/Cc) at different temperatures are studied by cyclic voltammetry and potential-step chronoamperometry in DESs. For most DESs, chronoamperometric transients are demonstrated to fit an Arrhenius-type relation to give activation energies for the diffusion of redox couples at different temperatures. The temperature dependence of the measured conductivities of DES1 and DES2 are better correlated with the Vogel-Tamman-Fulcher equation. The kinetics of the Fc/Fc+ and Cc+/Cc electrochemical systems have been investigated over a temperature range from 298 to 338 K. The heterogeneous electron transfer rate constant is then calculated at different temperatures by means of a logarithmic analysis. The glycerol-based DES (DES5) appears suitable for further testing in electrochemical energy storage devices. PMID:26642045

  16. Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in production of sugar

    NASA Astrophysics Data System (ADS)

    Nor, Nur Atikah Md; Mustapha, Wan Aida Wan; Hassan, Osman

    2015-09-01

    Oil Palm Empty Fruit Bunch (OPEFB) was pretreated using Deep Eutectic Solvent (DES) at different parameters to enable a highest yield of sugar. DES is a combination of two or more cheap and safe components to form a eutectic mixture through hydrogen bond interaction, which has a melting point lower than that of each component. DES can be used to replace ionic liquids (ILs), which are more expensive and toxic. In this study, OPEFB was pretreated with DES mixture of choline chloride: urea in 1:2 molar ratio. The pretreatment was performed at temperature 110°C and 80°C for 4 hours and 1 hour. Pretreatment A (110°C, 4 hours), B (110°C, 1 hour), C (80°C, 4 hours) and D (80°C, 1 hour). Enzymatic hydrolysis was done by using the combination of two enzymes, namely, Cellic Ctec2 and Cellic Htec2. The treated fiber is tested for crystallinity using XRD and functional group analysis using FTIR, to check the effect of the pretreatment on the fiber and compared it with the untreated fiber. From XRD analysis, DES successfully gave an effect towards degree of crystallinity of cellulose. Pretreatment A (110°C, 4 hours) and B (110°C, 1 hour) successfully reduce the percentage of crystallinity while pretreatment C (80°C, 4 hours) and D (80°C, 1 hour) increased the percentage of crystallinity. From FTIR analysis, DES cannot remove the functional group of lignin and hemicellulose but it is believed that DES can expose the structure of cellulose. Upon enzymatic hydrolysis, DES-treated fiber successfully produced sugar but not significantly when compared with raw. Pretreatment A (110°C, 4 hours), B (110°C, 1 hour), C (80°C, 4 hours) and D (80°C, 1 hour) produced glucose at the amount of 60.47 mg/ml, 66.33 mg/ml, 61.96 mg/ml and 59.12 mg/ml respectively. However, pretreatment C gave the highest xylose (70.01 mg/ml) production compared to other DES pretreatments.

  17. Electrochemistry and speciation of Au(+) in a deep eutectic solvent: growth and morphology of galvanic immersion coatings.

    PubMed

    Ballantyne, Andrew D; Forrest, Gregory C H; Frisch, Gero; Hartley, Jennifer M; Ryder, Karl S

    2015-11-11

    In this study we compare the electrochemical and structural properties of three gold salts AuCl, AuCN and KAu(CN)2 in a Deep Eutectic Solvent (DES) electrolyte (Ethaline 200) in order to elucidate factors affecting the galvanic deposition of gold coatings on nickel substrates. A chemically reversible diffusion limited response was observed for AuCl, whereas AuCN and KAu(CN)2 showed much more complicated, kinetically limited responses. Galvanic exchange reactions were performed on nickel substrates from DES solutions of the three gold salts; the AuCN gave a bright gold coating, the KAu(CN)2 solution give a visibly thin coating, whilst the coating from AuCl was dull, friable and poorly adhesive. This behaviour was rationalised by the differing speciation for each of these compounds, as evidenced by EXAFS methods. Analysis of EXAFS data shows that AuCl forms the chlorido-complex [AuCl2](-), AuCN forms a mixed [AuCl(CN)](-) species, whereas KAu(CN)2 maintains its [Au(CN)2](-) structure. The more labile Cl(-) enables easier reduction of Au when compared to the tightly bound cyanide species, hence leading to slower kinetics of deposition and differing electrochemical behaviour. We conclude that metal speciation in DESs is a function of the initial metal salt and that this has a strong influence on the mechanism and rate of growth, as well as on the morphology of the metal deposit obtained. In addition, these coatings are also extremely promising from a technological perspective as Electroless Nickel Immersion Gold (ENIG) finishes in the printed circuit board (PCB) industry, where the elimination of acid in gold plating formulation could potentially lead to more reliable coatings. Consequently, these results are both significant and timely. PMID:26523806

  18. Magnetic graphene oxide modified with choline chloride-based deep eutectic solvent for the solid-phase extraction of protein.

    PubMed

    Huang, Yanhua; Wang, Yuzhi; Pan, Qi; Wang, Ying; Ding, Xueqin; Xu, Kaijia; Li, Na; Wen, Qian

    2015-06-01

    Four kinds of green deep eutectic solvents (DESs) based on choline chloride (ChCl) have been synthesized and coated on the surface of magnetic graphene oxide (Fe3O4@GO) to form Fe3O4@GO-DES for the magnetic solid-phase extraction of protein. X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FESEM) and thermal gravimetric analysis (TGA) were employed to characterize Fe3O4@GO-DES, and the results indicated the successful preparation of Fe3O4@GO-DES. The UV-vis spectrophotometer was used to measure the concentration of protein after extraction. Single factor experiments proved that the extraction amount was influenced by the types of DESs, solution temperature, solution ionic strength, extraction time, protein concentration and the amount of Fe3O4@GO-DES. Comparison of Fe3O4@GO and Fe3O4@GO-DES was carried out by extracting bovine serum albumin, ovalbumin, bovine hemoglobin and lysozyme. The experimental results showed that the proposed Fe3O4@GO-DES performs better than Fe3O4@GO in the extraction of acidic protein. Desorption of protein was carried out by eluting the solid extractant with 0.005 mol L(-1) Na2HPO4 contained 1 mol L(-1) NaCl. The obtained elution efficiency was about 90.9%. Attributed to the convenient magnetic separation, the solid extractant could be easily recycled. PMID:26002214

  19. Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries.

    PubMed

    Boisset, Aurélien; Menne, Sebastian; Jacquemin, Johan; Balducci, Andrea; Anouti, Mérièm

    2013-12-14

    In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF6; or nitrate, NO3). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li(+), X(-) and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO4 (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g(-1) with a good efficiency (99%) is observed in the DES based on the LiNO3 salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs. PMID:24153449

  20. Part I: Virtual laboratory versus traditional laboratory: Which is more effective for teaching electrochemistry? Part II: The green synthesis of aurones using a deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Hawkins, Ian C.

    The role of the teaching laboratory in science education has been debated over the last century. The goals and purposes of the laboratory are still debated and while most science educators consider laboratory a vital part of the education process, they differ widely on the purposes for laboratory and what methods should be used to teach laboratory. One method of instruction, virtual labs, has become popular among some as a possible way of capitalizing on the benefits of lab in a less costly and more time flexible format. The research regarding the use of virtual labs is limited and the few studies that have been done on General Chemistry labs do not use the virtual labs as a substitute for hands-on experiences, but rather as a supplement to a traditional laboratory program. This research seeks to determine the possible viability of a virtual simulation to replace a traditional hands-on electrochemistry lab in the General Chemistry II course sequence. The data indicate that for both content knowledge and the development of hands-on skills the virtual lab showed no significant difference in overall scores on the assessments, but that an individual item related to the physical set-up of a battery showed better scores for the hands-on labs over the virtual labs. Further research should be done to determine if these results are similar in other settings with the use of different virtual labs and how the virtual labs compare to other laboratories using different learning styles and learning goals. One often cited purpose of laboratory experiences in the context of preparing chemists is to simulate the experiences common in chemical research so graduate experience in a research laboratory was a necessary part of my education in the field of laboratory instruction. This research experience provided me the opportunity, to complete an organic synthesis of aurones using a deep eutectic solvent. These solvents show unique properties that make them a viable alternative to ionic liquids. Aurones are a unique biological product in many plants and preliminary research has shown that these chemicals could be viable drug candidates. The use of the deep eutectic solvent provides a green and inexpensive way to make large numbers of different aurones quickly. In this dissertation, we show the synthesis of 12 different aurones using this method.

  1. Emulsification liquid-liquid microextraction based on deep eutectic solvent: An extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples.

    PubMed

    Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza

    2015-12-18

    In this study, for the first time, a simple, inexpensive and sensitive method named emulsification liquid-liquid microextraction based on deep eutectic solvent (ELLME-DES) was used for the extraction of benzene, toluene, ethylbenzene (BTE) and seven polycyclic aromatic hydrocarbons (PAHs) from water samples. In a typical experiment, 100?L of DES (as water-miscible extraction solvent) was added to 1.5mL of sample solution containing target analytes. A homogeneous solution was formed immediately. Injection of 100?L of THF (as emulsifier agent) into homogeneous solution provided a turbid state. After extraction, phase separation (aqueous phase/DES rich phase) was performed by centrifugation. DES rich phase was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the calibration graphs were linear in the concentration range from 10 to 200?g/L for benzene, 10-400?g/L for toluene, 1-400?g/L for ethylbenzene, biphenyl, chrysene and fluorene, and 0.1-400?g/L for anthracene, benzo[a]pyrene, phenanthrene and pyrene. The coefficients of determination (r(2)) and limits of detection were 0.9924-0.9997 and 0.02-6.8?g/L, respectively. This procedure was successfully applied to the determination of target analytes in spiked water samples. The relative mean recoveries ranged from 93.1 to 103.3%. PMID:26614169

  2. Preparation of bio-deep eutectic solvent triggered cephalopod shaped silver chloride-DNA hybrid material having antibacterial and bactericidal activity.

    PubMed

    Bhatt, Jitkumar; Mondal, Dibyendu; Bhojani, Gopal; Chatterjee, Shruti; Prasad, Kamalesh

    2015-11-01

    2.5% w/w DNA (Salmon testes) was solubilized in a bio-deep eutectic solvent [(bio-DES), obtained by the complexation of choline chloride and ethylene glycol at 1:2 molar ratio] containing 1% w/w of silver chloride (AgCl) to yield a AgCl decorated DNA based hybrid material. Concentration dependent formation of AgCl crystals in the DES was observed and upon interaction with DNA it gave formation of a cephalopod shaped hybrid material. DNA was found to maintain its chemical and structural stability in the material. Further, AgCl microstructures were found to have orderly self assembled on the DNA helices indicating the electrostatic interaction between Ag(+) and phosphate side chain of DNA as a driving force for the formation of the material with ordered microstructural distribution of AgCl. Furthermore, the functionalized material exhibited excellent antibacterial and bactericidal activity against both Gram negative and Gram positive pathogenic bacteria. PMID:26249573

  3. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts

    SciTech Connect

    Tripathy, Satya N. Wojnarowska, Zaneta; Knapik, Justyna; Paluch, Marian; Shirota, Hideaki; Biswas, Ranjit

    2015-05-14

    A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10{sup ?1}-10{sup 6} Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai’s coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.

  4. Deep eutectic liquid organic salt as a new solvent for liquid-phase microextraction and its application in ligandless extraction and preconcentraion of lead and cadmium in edible oils.

    PubMed

    Karimi, Mehdi; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Tamaddon, Fatemeh; Azadi, Davood

    2015-11-01

    Deep eutectic liquid organic salt was used as the solvent and a liquid phase microextraction (DES-LPME) combined with electrothermal atomic absorption spectrometry (ETAAS) was developed for separation, preconcentration and determination of lead and cadmium in edible oils. A 4:1 mixture of deep eutectic solvent and 2% nitric acid (200 µL) was added to an oil sample. The mixture was vortexed and transferred into a water bath at 50 °C and stirred for 5 minutes. After the extraction was completed, the phases were separated by centrifugation, and the enriched analytes in the deep eutectic solvent phase were determined by ETAAS. Under optimized extraction conditions and for an oil sample of 28 g, enhancement factors of 198 and 195 and limits of detection (defined as 3 Sb/m) of 8 and 0. 2 ng kg(-1) were achieved for lead and cadmium respectively. The method was successfully applied to the determination of lead and cadmium in various edible oils. PMID:26452873

  5. Use of formulations based on choline chloride-malonic acid deep eutectic solvent for back end of line cleaning in integrated circuit fabrication

    NASA Astrophysics Data System (ADS)

    Taubert, Jenny

    Interconnection layers fabricated during back end of line processing in semiconductor manufacturing involve dry etching of a low-k material and deposition of copper and metal barriers to create copper/dielectric stacks. After plasma etching steps used to form the trenches and vias in the dielectric, post etch residues (PER) that consist of organic polymer, metal oxides and fluorides, form on top of copper and low-k dielectric sidewalls. Currently, most semiconductor companies use semi aqueous fluoride (SAF) based formulations containing organic solvent(s) for PER removal. Unfortunately, these formulations adversely impact the environmental health and safety (EHS) requirements of the semiconductor industry. Environmentally friendly "green" formulations, free of organic solvents, are preferred as alternatives to remove PER. In this work, a novel low temperature molten salt system, referred as deep eutectic solvent (DES) has been explored as a back end of line cleaning (BEOL) formulation. Specifically, the DES system comprised of two benign chemicals, malonic acid (MA) and choline chloride (CC), is a liquid at room temperature. In certain cases, the formulation was modified by the addition of glacial acetic acid (HAc). Using these formulations, selective removal of three types of PER generated by timed CF4/O2 etching of DUV PR films on Cu was achieved. Type I PER was mostly organic in character (fluorocarbon polymer type) and had a measured thickness of 160 nm. Type II PER was much thinner (25 nm) and consisted of a mixture of organic and inorganic compounds (copper fluorides). Further etching generated 17 nm thick Type III PER composed of copper fluorides and oxides. Experiments were also conducted on patterned structures. Cleaning was performed by immersing samples in a temperature controlled (30 or 40° C) double jacketed vessel for a time between 1 and 5 minutes. Effectiveness of cleaning was characterized using SEM, XPS and single frequency impedance measurements. Type II and III residues, which contained copper compounds were removed in CC/MA DES within five minutes through dissolution and subsequent complexation of copper by malonic acid. Removal of Type I PER required the addition of glacial acetic acid to the DES formulation. Single frequency impedance measurement appears to be a good in situ method to follow the removal of the residues. High water solubility of the components of the system in conjunction with their environmental friendly nature, make the DES an attractive alternative to SAF.

  6. Molecular and ionic diffusion in aqueous - deep eutectic solvent mixtures: Probing inter-molecular interactions using PFG NMR

    E-print Network

    D'Agostino, Carmine; Gladden, Lynn F.; Mantle, Mick D.; Abbott, Andrew P.; Ahmed, Essa I.; Al-Murshedi, Azhar Y. M.; Harris, Robert C.

    2015-06-02

    are attracting considerable attention in many applications such as catalysts,1-3 solvents,4-6 electro-plating,7 purification media8 and others.9, 10 In many of these applications, the addition of water has little effect upon the chemical properties... with a diffusion probe capable of producing magnetic field gradient pulses up to 11.76 T m-1 in the z-direction and using a pulsed gradient stimulated echo (PGSTE) sequence with a homospoil gradient, which is usually preferred to the standard pulsed...

  7. Dielectric Relaxations of (Acetamide + Electrolyte) Deep Eutectic Solvents in the Frequency Window, 0.2 ? ?/GHz ? 50: Anion and Cation Dependence.

    PubMed

    Mukherjee, Kallol; Das, Anuradha; Choudhury, Samiran; Barman, Anjan; Biswas, Ranjit

    2015-06-25

    Dielectric relaxation (DR) measurements in the frequency range 0.2 ? ?/GHz ? 50 have been carried out for neat molten acetamide and six different (acetamide + electrolyte) deep eutectic solvents (DESs) for investigating ion effects on DR dynamics in these ionic DESs. Electrolytes used are lithium salts of bromide (LiBr), nitrate (LiNO3), and perchlorate (LiClO4); sodium salts of perchlorate (NaClO4) and thiocyante (NaSCN); and potassium thiocyanate (KSCN). With these electrolytes acetamide forms DESs approximately at an 80:20 mol ratio. Simultaneous fits to the measured permittivity (??) and loss (??) spectra of these DESs at ?293 K require a sum of four Debye (4-D) processes with relaxation times spread over picosecond to nanosecond regime. In contrast, DR spectra for neat molten acetamide (?354 K) depict 2-D relaxation with time constants ?50 ps and ?5 ps. For both the neat and ionic systems, the undetected dispersion, ?? – n(D)2, remains to be ?3–4. Upon comparison, measured DR dynamics reveal pronounced anion and cation effects. Estimated static dielectric constants (?0) from fits for these DESs cover the range 12 < ?0 < 30 and are remarkably lower than that (?0 ? 64) measured for molten acetamide at ?354 K. Hydrodynamic effective rotation volumes (Veff) estimated from the slowest DR relaxation time constants vary with ion identity and are much smaller than the molecular volume of acetamide. This decrease of ?0 and Veff is attributed respectively to the pinning of acetamide molecules by ions and orientation jumps and undetected portion to the limited frequency coverage employed in these measurements PMID:26012789

  8. Dissolution of biological samples in deep eutectic solvents: an approach for extraction of polycyclic aromatic hydrocarbons followed by liquid chromatography-fluorescence detection.

    PubMed

    Helalat-Nezhad, Zahra; Ghanemi, Kamal; Fallah-Mehrjardi, Mehdi

    2015-05-15

    A novel sample preparation method based on the complete dissolution of marine biological samples in choline chloride-oxalic acid (ChCl-Ox) deep eutectic solvent was developed for fast and efficient extraction of eight polycyclic aromatic hydrocarbons (PAHs) using minimum volumes of cyclohexane. The extracted PAHs were purified and then measured by high-performance liquid chromatography-fluorescence detection (HPLC-FL). The effect of key parameters on extraction recoveries and precision was investigated. At optimized conditions, the studied samples were dissolved under atmospheric pressure in ChCl-Ox (1:2) at 55°C for 30min, which is considerably lower than the temperature used in the classical and current methods. After dissolution, it took approximately 20min to quantitatively extract the PAHs from ChCl-Ox using 5mL cyclohexane. Depending on the analyte, the developed method was linear over the calibration range 1.0-250, 2.0-250, and 5.0-250ngg(-1), with r(2)>0.996. The detection limits of the method were between 0.50 and 3.08ngg(-1). The intra-day and inter-day precisions (based on the relative standard deviation, n=5) of the spiked PAHs at a concentration level of 50ngg(-1) were better than 12.6% and 13.3%, respectively. Individual PAH recoveries from spiked marine fish and macroalgae samples were in the range of 71.6% to 109.6%. For comparison, the spiked samples were also subjected to the Soxhlet extraction method. The simplicity of the procedure, high extraction efficiency, short analysis time, and use of safe and inexpensive components suggest the proposed method has a high potential for utilization in routine trace PAH analysis in biological samples. PMID:25857544

  9. A novel digestion method based on a choline chloride-oxalic acid deep eutectic solvent for determining Cu, Fe, and Zn in fish samples.

    PubMed

    Habibi, Emadaldin; Ghanemi, Kamal; Fallah-Mehrjardi, Mehdi; Dadolahi-Sohrab, Ali

    2013-01-31

    A novel and efficient digestion method based on choline chloride-oxalic acid (ChCl-Ox) deep eutectic solvent (DES) was developed for flame atomic absorption spectrometry (FAAS) determination of Cu, Zn, and Fe in biological fish samples. Key parameters that influence analyte recovery were investigated and optimized, using the fish protein certified reference material (CRM, DORM-3) throughout the procedure. In this method, 100 mg of the sample was dissolved in ChCl-Ox (1:2, molar ratio) at 100°C for 45 min. Then, 5.0 mL HNO(3) (1.0 M) was added. After centrifugation, the supernatant solution was filtered, diluted to a known volume, and analyzed by FAAS. Under optimized conditions, an excellent agreement between the obtained results and the certified values was observed, using Student's t-test (P=0.05); the extraction recovery of the all elements was greater than 95.3%. The proposed method was successfully applied to the determination of analytes in different tissues (muscle, liver, and gills) having a broad concentration range in a marine fish sample. The reproducibility of the method was validated by analyzing all samples by our method in a different laboratory, using inductively coupled plasma optical emission spectrometry (ICP-OES). For comparison, a conventional acid digestion (CAD) method was also used for the determination of analytes in all studied samples. The simplicity of the proposed experimental procedure, high extraction efficiency, short analysis time, lack of concentrated acids and oxidizing agents, and the use of safe and inexpensive components demonstrate the high potential of ChCl-Ox (1:2) for routine trace metal analysis in biological samples. PMID:23327946

  10. Low-frequency collective dynamics in deep eutectic solvents of acetamide and electrolytes: a femtosecond Raman-induced Kerr effect spectroscopic study.

    PubMed

    Biswas, Ranjit; Das, Anuradha; Shirota, Hideaki

    2014-10-01

    In this study, we have investigated the ion concentration dependent collective dynamics in two series of deep eutectic solvent (DES) systems by femtosecond Raman-induced Kerr effect spectroscopy, as well as some physical properties, e.g., shear viscosity (?), density (?), and surface tension (?). The DES systems studied here are [0.75CH3CONH2 + 0.25{f?KSCN + (1 - f?)NaSCN}] and [0.78CH3CONH2 + 0.22{f?LiBr + (1 - f?)LiNO3}] with f = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. ? of these DES systems shows near insensitivity to f, while ? shows a moderate dependence on f. Interestingly, ? exhibits a strong dependence on f. In the low-frequency Kerr spectra, obtained via the Fourier transform of the collected Kerr transients, a characteristic band at ?70 cm(-1) is clear in [0.78CH3CONH2 + 0.22{f?LiBr + (1 - f?)LiNO3}] DES especially at the larger f. The band is attributed to the intermolecular hydrogen bond of acetamide. Because of less depolarized Raman activities of intermolecular/interionic vibrational motions, which are mostly translational (collision-induced or interaction-induced) motions, of spherical ions, the intermolecular hydrogen-bonding band is clearly observed. In contrast, the intermolecular hydrogen-bonding band is buried in the other intermolecular/interionic vibrational motions, which includes translational and reorientational (librational) motions and their cross-terms, in [0.75CH3CONH2 + 0.25{f?KSCN + (1 - f?)NaSCN}] system. The first moment (M1) of the intermolecular/interionic vibrational band in these DES systems is much higher than that in typical neutral molecular liquids and shows a weak but contrasting dependence on the bulk parameter ??/?. The time constants for picosecond overdamped Kerr transients in both the DES systems, which are obtained on the basis of the analysis fitted by a triexponential function, are rather insensitive to f for both the DES systems, but all the three time constants (fast: ?1-3 ps; intermediate: ?7-20 ps; and slow: ?100 ps) are different between the [0.78CH3CONH2 + 0.22{f?LiBr + (1 - f?)LiNO3}] and [0.75CH3CONH2 + 0.25{f?KSCN + (1 - f?)NaSCN}] systems. These results indicate that the intermolecular/interionic interactions in DES systems is strongly influenced by the ionic species present in these DES systems. PMID:25296820

  11. Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems.

    PubMed

    Aroso, Ivo M; Silva, João C; Mano, Francisca; Ferreira, Ana S D; Dionísio, Madalena; Sá-Nogueira, Isabel; Barreiros, Susana; Reis, Rui L; Paiva, Alexandre; Duarte, Ana Rita C

    2016-01-01

    A therapeutic deep eutectic system (THEDES) is here defined as a deep eutectic solvent (DES) having an active pharmaceutical ingredient (API) as one of the components. In this work, THEDESs are proposed as enhanced transporters and delivery vehicles for bioactive molecules. THEDESs based on choline chloride (ChCl) or menthol conjugated with three different APIs, namely acetylsalicylic acid (AA), benzoic acid (BA) and phenylacetic acid (PA), were synthesized and characterized for thermal behaviour, structural features, dissolution rate and antibacterial activity. Differential scanning calorimetry and polarized optical microscopy showed that ChCl:PA (1:1), ChCl:AA (1:1), menthol:AA (3:1), menthol:BA (3:1), menthol:PA (2:1) and menthol:PA (3:1) were liquid at room temperature. Dissolution studies in PBS led to increased dissolution rates for the APIs when in the form of THEDES, compared to the API alone. The increase in dissolution rate was particularly noticeable for menthol-based THEDES. Antibacterial activity was assessed using both Gram-positive and Gram-negative model organisms. The results show that all the THEDESs retain the antibacterial activity of the API. Overall, our results highlight the great potential of THEDES as dissolution enhancers in the development of novel and more effective drug delivery systems. PMID:26586342

  12. A simple, efficient and environmentally benign synthetic protocol for the synthesis of spirooxindoles using choline chloride-oxalic acid eutectic mixture as catalyst/solvent system.

    PubMed

    Khandelwal, Sarita; Rajawat, Anshu; Tailor, Yogesh Kumar; Kumar, Mahendra

    2014-01-01

    An efficient and environmentally benign domino protocol has been presented for the synthesis of structurally diverse spirooxindoles spiroannulated with pyranopyridopyrimidines, indenopyridopyrimidines, and chromenopyridopyrimidines involving three-component reaction of aminouracils, isatins and cyclic carbonyl compounds in deep eutectic solvent (choline chloride-oxalic acid: 1:1) which acts as efficient catalyst and environmentally benign reaction medium. The present protocol offers several advantages such as operational simplicity with easy workup, shorter reaction times excellent yields with superior atom economy and environmentally benign reaction conditions with the use of cost-effective, recyclable, non-toxic and bio-degradable DES as catalyst/solvent. PMID:25329839

  13. Charge transport and structural dynamics in carboxylic-acid-based deep eutectic mixtures.

    PubMed

    Griffin, Philip J; Cosby, Tyler; Holt, Adam P; Benson, Roberto S; Sangoro, Joshua R

    2014-08-01

    Charge transport and structural dynamics in the 1:2 mol ratio mixture of lidocaine and decanoic acid (LID-DA), a model deep eutectic mixture (DEM), have been characterized over a wide temperature range using broad-band dielectric spectroscopy and depolarized dynamic light scattering. Additionally, Fourier transform infrared spectroscopy measurements were performed to assess the degree of proton transfer between the neutral parent molecules. From our detailed analysis of the dielectric spectra, we have determined that this carboxylic-acid-based DEM is approximately 25% ionic at room temperature. Furthermore, we have found that the characteristic diffusion rate of mobile charge carriers is practically identical to the rate of structural relaxation at all measured temperatures, indicating that fast proton transport does not occur in LID-DA. Our results demonstrate that while LID-DA exhibits the thermal characteristics of a DEM, its charge transport properties resemble those of a protic ionic liquid. PMID:25025600

  14. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts.

    PubMed

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs. PMID:18587401

  15. Deep Metastable Eutectic Nanometer-Scale Particles in the MgO-Al2O3-SiO2 System

    NASA Technical Reports Server (NTRS)

    Reitmeijer, Frans J. M.; Nash, J. A., III

    2011-01-01

    Laboratory vapor phase condensation experiments systematically yield amorphous, homogeneous, nanoparticles with unique deep metastable eutectic compositions. They formed during the nucleation stage in rapidly cooling vapor systems. These nanoparticles evidence the complexity of the nucleation stage. Similar complex behavior may occur during the nucleation stage in quenched-melt laboratory experiments. Because of the bulk size of the quenched system many of such deep metastable eutectic nanodomains will anneal and adjust to local equilibrium but some will persist metastably depending on the time-temperature regime and melt/glass transformation.

  16. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    SciTech Connect

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit

    2014-03-14

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH{sub 2} + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH{sub 2}) considered are acetamide (CH{sub 3}CONH{sub 2}), propionamide (CH{sub 3}CH{sub 2}CONH{sub 2}), and butyramide (CH{sub 3}CH{sub 2}CH{sub 2}CONH{sub 2}); the electrolytes (LiX) are lithium perchlorate (LiClO{sub 4}), lithium bromide (LiBr), and lithium nitrate (LiNO{sub 3}). Differential scanning calorimetric measurements reveal glass transition temperatures (T{sub g}) of these DEs are ?195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ?100–150 K above their individual T{sub g}s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH{sub 3}CONH{sub 2} + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in terms of temporal heterogeneity and amide clustering in these multi-component melts.

  17. Eutectic nucleation in hypoeutectic Al-Si alloys

    SciTech Connect

    Nafisi, S. Ghomashchi, R.; Vali, H.

    2008-10-15

    The nucleation mechanism of eutectic grains in hypoeutectic Al-Si foundry alloys has been investigated by examining deep etched specimens in high-resolution field emission gun scanning electron microscope (FEG-SEM) and by using in-situ Focused Ion Beam (FIB) milling and microscopy. Both unmodified and Sr-modified alloys were studied to characterize the nucleation mechanism of eutectic silicon flakes and fibers. It is proposed that following nucleation of eutectic Al on the primary {alpha}-Al dendrites, fine Si particles form at the solidification front upon which the eutectic Si flakes and fibers could develop. The formation of small Si particles is attributed to Si enrichment of the remaining melt due to the formation of eutectic Al (aluminum spikes) at the eutectic temperature. A hypothesis is then proposed to explain the mechanism of eutectic grains formation with main emphasis on the eutectic Si phase.

  18. Catalytic dehydration of carbohydrates suspended in organic solvents promoted by AlCl3 /SiO2 coated with choline chloride.

    PubMed

    Yang, Jie; De Oliveira Vigier, Karine; Gu, Yanlong; Jérôme, François

    2015-01-01

    We show that the coating of choline chloride on silica-supported AlCl3 allows the dehydration of carbohydrates to successfully proceed in low boiling point organic solvents. The concept is based on the in?situ formation of a deep eutectic liquid phase on the catalyst surface, thus facilitating the interaction between the solid catalyst and insoluble carbohydrate. PMID:25404114

  19. Lamellar eutectic growth with anisotropic interphase boundaries

    NASA Astrophysics Data System (ADS)

    Akamatsu, S.; Bottin-Rousseau, S.; Faivre, G.; Ghosh, S.; Plapp, M.

    2015-06-01

    We present a numerical study of the effect of a free-energy anisotropy of the solid- solid interphase boundaries on the formation of tilted lamellar microstructures during directional solidification of nonfaceted binary eutectic alloys. We used two different methods - phase-field (PF) and dynamic boundary-integral (BI) - to simulate the growth of periodic eutectic patterns in two dimensions. For a given Wulff plot of the interphase boundary, which characterizes a eutectic grain with a given relative orientation of the two solid phases, the lamellar tilt angle depends on the angle between the thermal axis z and a reference crystallographic axis. Both PF and BI results confirm the general validity of a recent approximate theory which assumes that, at the trijunctions, the surface tension vector of the interphase boundary is parallel to z. In particular, a crystallographic locking of the lamellae onto a direction close to a deep minimum in the Wulff plot is well reproduced in the simulations.

  20. Study of eutectic formation

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Eisa, G. F.; Baskaran, V.; Richardson, D. C.

    1984-01-01

    A theory was developed for the influence of convection on the microstructure of lamellar eutectics. Convection is predicted to produce a coarser microstructure, especially at low freezing rates and large volume fractions of the minority phase. Similary convection is predicted to lower the interfacial undercooling, especially at low freezing rates. Experiments using spin-up/spin-down were performed on the Mn-Bi eutectic. This stirring had a dramatic effect on the microstructure, not only making it coarser but at low freezing rates also changing the morphology of the MnBi. The coarsering persisted to moderately high freezing rates. At the lowest freezing rate, vigorous stirring caused the MnBi to be concentrated at the periphery of the ingot and absent along the center. Progress was made on developing a technique for revealing the three-dimensional microstructure of the MnBi eutectic by time-lapse videotaping while etching.

  1. Part I: Virtual Laboratory versus Traditional Laboratory: Which Is More Effective for Teaching Electrochemistry? Part II: The Green Synthesis of Aurones Using a Deep Eutectic Solvent

    ERIC Educational Resources Information Center

    Hawkins, Ian C.

    2013-01-01

    The role of the teaching laboratory in science education has been debated over the last century. The goals and purposes of the laboratory are still debated and while most science educators consider laboratory a vital part of the education process, they differ widely on the purposes for laboratory and what methods should be used to teach…

  2. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning

    PubMed Central

    Heffernan, Rhys; Paliwal, Kuldip; Lyons, James; Dehzangi, Abdollah; Sharma, Alok; Wang, Jihua; Sattar, Abdul; Yang, Yuedong; Zhou, Yaoqi

    2015-01-01

    Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on C? atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone ? and ? angles, respectively, and 8° and 32° for mean absolute errors of C?-based ? and ? angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking. PMID:26098304

  3. Coatings for directional eutectics

    NASA Technical Reports Server (NTRS)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  4. Template-Directed Directionally Solidified 3D Mesostructured AgCl-KCl Eutectic Photonic Crystals.

    PubMed

    Kim, Jinwoo; Aagesen, Larry K; Choi, Jun Hee; Choi, Jaewon; Kim, Ha Seong; Liu, Jinyun; Cho, Chae-Ryong; Kang, Jin Gu; Ramazani, Ali; Thornton, Katsuyo; Braun, Paul V

    2015-08-19

    3D mesostructured AgCl-KCl photonic crystals emerge from colloidal templating of eutectic solidification. Solvent removal of the KCl phase results in a mesostructured AgCl inverse opal. The 3D-template-induced confinement leads to the emergence of a complex microstructure. The 3D mesostructured eutectic photonic crystals have a large stop band ranging from the near-infrared to the visible tuned by the processing. PMID:26177830

  5. Composition formulas of binary eutectics.

    PubMed

    Ma, Y P; Dong, D D; Dong, C; Luo, L J; Wang, Q; Qiang, J B; Wang, Y M

    2015-01-01

    The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1(st)-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618

  6. Composition formulas of binary eutectics

    PubMed Central

    Ma, Y. P.; Dong, D. D.; Dong, C.; Luo, L. J.; Wang, Q.; Qiang, J. B.; Wang, Y. M.

    2015-01-01

    The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618

  7. Non-Covalent Derivatives: Cocrystals and Eutectics.

    PubMed

    Stoler, Emily; Warner, John C

    2015-01-01

    Non-covalent derivatives (NCDs) are formed by incorporating one (or more) coformer molecule(s) into the matrix of a parent molecule via non-covalent forces. These forces can include ionic forces, Van der Waals forces, hydrogen bonding, lipophilic-lipophilic interactions and pi-pi interactions. NCDs, in both cocrystal and eutectic forms, possess properties that are unique to their supramolecular matrix. These properties include critical product performance factors such as solubility, stability and bioavailability. NCDs have been used to tailor materials for a variety of applications and have the potential to be used in an even broader range of materials and processes. NCDs can be prepared using little or no solvent and none of the reagents typical to synthetic modifications. Thus, NCDs represent a powerfully versatile, environmentally-friendly and cost-effective opportunity. PMID:26287141

  8. Coatings for directional eutectics

    NASA Technical Reports Server (NTRS)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Significant advances have been made in the development of an environmentally stable coating for a very high strength, directionally solidified eutectic alloy designated NiTaC-13. Three duplex (two-layer) coatings survived 3,000 hours on a cyclic oxidation test (1,100 C to 90 C). These coatings were fabricated by first depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam heated source, followed by depositing an aluminizing overlayer. The alloy after exposure with these coatings was denuded of carbide fibers at the substrate/coating interface. It was demonstrated that TaC fiber denudation can be greatly retarded by applying a carbon-bearing coating. The coating was applied by thermal spraying followed by aluminization. Specimens coated with NiCrAlCY+Al survived over 2,000 hours in the cyclic oxidation test with essentially no TaC denudation. Coating ductility was studied for coated and heat-treated bars, and stress rupture life at 871 C and 1,100 C was determined for coated and cycled bars.

  9. Directional Solidification of Eutectic Ceramics

    NASA Technical Reports Server (NTRS)

    Sayir, Ali

    2001-01-01

    Two major problems associated with structural ceramics are lack of damage tolerance and insufficient strength and creep resistance at very high temperatures of interest for aerospace application. This work demonstrated that the directionally solidified eutectics can have unique poly-phase microstructures and mechanical properties superior to either constituent alone. The constraining effect of unique eutectic microstructures result in higher resistance to slow crack growth and creep. Prospect of achieving superior properties through controlled solidification are presented and this technology can also be beneficial to produce new class of materials.

  10. Morphological instabilities of lamellar eutectics

    NASA Astrophysics Data System (ADS)

    Karma, Alain; Sarkissian, Armand

    1996-03-01

    We present the results of a numerical study based on the boundary integral technique of interfacial pattern formation in directional solidification of thin-film lamellar eutectics at low velocity. Microstructure selection maps that identify the stability domains of various steady-state and nonsteady-state growth morphologies in the spacing-composition (? C 0) plane are constructed for the transparent organic alloy CBr4-C2Cl6 and for a model eutectic alloy with two solid phases of identical physical properties. In CBr4-C2Cl6, the basic set of instabilities that limit steady-state growth is richer than expected. It consists of three primary instabilities, two of which are oscillatory, which bound the domain of the commonly observed axisymmetric lamellar morphology, and two secondary oscillatory instabilities, which bound the domain of the nonaxisymmetric (tilted) lamellar morphology. The latter is predicted to occur over a hypereutectic range of composition which coincides well with experiment. Moreover, the steady tilt bifurcation lies between but does not directly bound either of these two domains, which are consequently disjoint. Four stable oscillatory microstructures, at least three of which have been seen experimentally, are predicted to occur in unstable regimes. In the model alloy, the structure is qualitatively similar, except that a stable domain of tilted steady-state growth is not found, in agreement with previous random-walk simulations. Furthermore, the composition range of stability of the axisymmetric morphology decreases sharply with increasing spacing away from minimum undercooling but extends further off-eutectic than predicted by the competitive growth criterion. In addition, oscillations with a wavelength equal to two ? lead to lamella termination at a small distance above the onset of instability. The implications of these two features for the eutectic to dendrite transition are examined with the conclusion that in the absence of heterogeneous nucleation, this transition should be histeritic at small velocity and temperature gradient.

  11. Eutectic Growth in Three Dimensions

    SciTech Connect

    H. Walker; Shan Liu; J.H. Lee; R. Trivedi

    2007-07-01

    Critical experimental studies have been carried out to examine the stability of eutectic morphology in three-dimensional (3-D) samples under diffusive growth conditions. By directionally solidifying capillary samples of the well-characterized Al-Cu eutectic alloy, it is shown that the observed minimum spacing agrees with the value predicted by the Jackson and Hunt (JH) model, but the range of stable spacing is reduced significantly in three dimensions. The ratio of the maximum to minimum eutectic spacing in three dimensions is found to be only 1.2 compared to the predicted value of 2.0 in two dimensions. The narrow range of stable spacing is shown to be due to the instabilities in the third dimension that forms when the local spacing becomes larger than some critical spacing value, which corresponds to the maximum stable spacing. A new mechanism of lamellar creation in the third dimension is observed in which lamella with a local spacing larger than the critical value becomes unstable and forms a sidewise perturbation that becomes enlarged at the leading front and then propagates parallel to the lamella to create a new lamella. Alternately, an array of sidewise perturbations form, which then coalesce at their leading fronts and then become detached from the parent lamella to form a new lamella.

  12. Determining eutectic composition in metal alloys

    NASA Technical Reports Server (NTRS)

    Ashbrook, R. L.; Kim, Y. G.

    1977-01-01

    Tube crucible and furnace are used to separate eutectic mixture from trial-melt ingot. As ingot is a slowly heated to melting point, initial surface meeting will be eutectic mixture. Molten metal is collected at bottom of crucible, where it is solidified.

  13. Eutectic Contact Inks for Solar Cells

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1985-01-01

    Low-resistance electrical contacts formed on solar cells by melting powders of eutectic composition of semiconductor and dopant. Process improves cell performance without subjecting cell to processing temperatures high enough to degrade other characteristics.

  14. Metastability of Au-Ge liquid nanocatalysts: Ge vapor-liquid-solid nanowire growth far below the bulk eutectic temperature.

    PubMed

    Adhikari, Hemant; Marshall, Ann F; Goldthorpe, Irene A; Chidsey, Christopher E D; McIntyre, Paul C

    2007-12-01

    The vapor-liquid-solid mechanism of nanowire (NW) growth requires the presence of a liquid at one end of the wire; however, Au-catalyzed Ge nanowire growth by chemical vapor deposition can occur at approximately 100 degrees C below the bulk Au-Ge eutectic. In this paper, we investigate deep sub-eutectic stability of liquid Au-Ge catalysts on Ge NWs quantitatively, both theoretically and experimentally. We construct a binary Au-Ge phase diagram that is valid at the nanoscale and show that equilibrium arguments, based on capillarity, are inconsistent with stabilization of Au-Ge liquid at deep sub-eutectic temperatures, similar to those used in Ge NW growth. Hot-stage electron microscopy and X-ray diffraction are used to test the predictions of nanoscale phase equilibria. In addition to Ge supersaturation of the Au-Ge liquid droplet, which has recently been invoked as an explanation for deep sub-eutectic Ge NW growth, we find evidence of a substantial kinetic barrier to Au solidification during cooling below the nanoscale Au-Ge eutectic temperature. PMID:19206662

  15. Stability of eutectic interface during directional solidification

    SciTech Connect

    Han, S.H.

    1996-04-23

    Directional solidification of eutectic alloys shows different types of eutectic morphologies. These include lamellar, rod, oscillating and tilting modes. The growth of these morphologies occurs with a macroscopically planar interface. However, under certain conditions, the planar eutectic front becomes unstable and gives rise to a cellular or a dendritic structure. This instability leads to the cellular/dendritic structure of either a primary phase or a two-phase structure. The objective of this work is to develop a fundamental understanding of the instability of eutectic structure into cellular/dendritic structures of a single phase and of two-phases. Experimental studies have been carried out to examine the transition from a planar to two-phase cellular and dendritic structures in a ceramic system of Alumina-Zirconia (Al{sub 2}O{sub 3}-ZrO{sub 2}) and in a transparent organic system of carbon tetrabromide and hexachloroethane (CBr{sub 4}-C{sub 2}Cl{sub 6}). Several aspects of eutectic interface stability have been examined.

  16. Directionally solidified eutectic alloy gamma-beta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1977-01-01

    A pseudobinary eutectic alloy composition was determined by a previously developed bleed-out technique. The directionally solidified eutectic alloy with a composition of Ni-37.4Fe-10.0Cr-9.6Al (in wt%) had tensile strengths decreasing from 1,090 MPa at room temperature to 54 MPa at 1,100 C. The low density, excellent microstructural stability, and oxidation resistance of the alloy during thermal cycling suggest that it might have applicability as a gas turbine vane alloy while its relatively low high temperature strength precludes its use as a blade alloy. A zirconium addition increased the 750 C strength, and a tungsten addition was ineffective. The gamma=beta eutectic alloys appeared to obey a normal freezing relation.

  17. Some physicochemical studies on organic eutectics

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Singh, S. K.; Singh, R. A.

    2007-03-01

    The phase diagrams of phenothiazine with each of m-nitrobenzoic acid ( m-NBA) and m-dinitrobenzene ( m-DNB) have been studied by thaw-melt method. These materials have been characterized by X-ray diffraction. Growth behavior of the parent components, eutectic and charge transfer complex (CTC) studied by measuring the rate of movement of the growth front in a capillary suggests the applicability of Hillig-Turnbull equation for the system. Microstructure and electrical conductivities of congruent melting complexes and eutectics have been determined. The low electrical conductivities of these materials have been due to weak interaction and mixed stacking of donor and acceptor. Excess thermodynamics functions of the charge-transfer (CT) materials and eutectics have been determined.

  18. Contact melting and the structure of binary eutectic near the eutectic point

    E-print Network

    Oleksiy Bystrenko; Valeriy Kartuzov

    2014-09-04

    Computer simulations of contact melting and associated interfacial phenomena in binary eutectic systems were performed on the basis of the standard phase-field model with miscibility gap in solid state. It is shown that the model predicts the existence of equilibrium three-phase (solid-liquid-solid) states above the eutectic temperature, which suggest the explanation of the phenomenon of phase separation in liquid eutectic observed in experiments. The results of simulations provide the interpretation for the phenomena of contact melting and formation of diffusion zone observed in the experiments with binary metal-silicon systems.

  19. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  20. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E. (Ames, IA); Yost, Frederick G. (Cedar Crest, NM); Smith, John F. (Ames, IA); Miller, Chad M. (Ames, IA); Terpstra, Robert L. (Ames, IA)

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  1. Modeling of microstructure evolution in regular eutectic growth

    NASA Astrophysics Data System (ADS)

    Zhu, M. F.; Hong, C. P.

    2002-10-01

    The growth morphology of regular eutectics has been studied using a model eutectic alloy and a transparent CBr4-C2Cl6 eutectic alloy. A modified cellular automaton (MCA) model is developed to model the evolution of regular eutectic microstructures. Different from the classical cellular automata in which only the temperature field is involved, the present model also includes the solute redistribution and the curvature effect during eutectic solidification. The finite-volume method, which is coupled with the cellular automaton model, is used to calculate the solute field in the calculation domain. The growth velocities of both eutectic phases are evaluated according to the local undercooling, consisting of thermal, solutal, and curvature undercoolings. The cooperative and competitive growth mechanisms of two eutectic phases are embedded in the present MCA model. The effects of diffusion and growth velocity on eutectic growth morphology, such as lamellar spacing and interface shape, were systematically investigated. The simulation results reveal a wide range of realistic eutectic growth features, such as eutectic oscillatory growth, selection of eutectic lamellar spacing accomplished by lamellar branching or lamellar termination, as well as interaction between the solute redistribution and the adjustment of volume fractions.

  2. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  3. Two-stage eutectic metal brushes

    DOEpatents

    Hsu, John S (Oak Ridge, TN) [Oak Ridge, TN

    2009-07-14

    A two-stage eutectic metal brush assembly having a slip ring rigidly coupled to a shaft, the slip ring being electrically coupled to first voltage polarity. At least one brush is rigidly coupled to a second ring and slidingly engaged to the slip ring. Eutectic metal at least partially fills an annulus between the second ring and a stationary ring. At least one conductor is rigidly coupled to the stationary ring and electrically coupled to a second voltage polarity. Electrical continuity is maintained between the first voltage polarity and the second voltage polarity. Periodic rotational motion is present between the stationary ring and the second ring. Periodic rotational motion is also present between the brush and the slip ring.

  4. Crystallography of Alumina-YAG-Eutectic

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  5. Resolving issues of content uniformity and low permeability using eutectic blend of camphor and menthol.

    PubMed

    Gohel, M C; Nagori, S A

    2009-11-01

    The aim of present study were to arrest the problem of content uniformity without the use of harmful organic solvent and to improve ex vivo permeability of captopril, a low dose class III drug as per biological classification system. Eutectic mixture of camphor and menthol was innovatively used in the work. Captopril solution in eutectic mixture was blended with Avicel PH 102 and then the mixture was blended with mannitol in different ratios. Formulated batches were characterized for angle of repose and Carr's index. A selected batch was filled in hard gelatin capsule. Tablet dosage form was also developed. Capsules and tablets were characterized for in vitro drug release in 0.1N HCl. Additionally, the captopril tablets were analyzed for content uniformity and ex vivo drug permeation study using rat ileum in modified apparatus. The measurement of angle of repose and Carr's index revealed that the powder blend exhibited good flow property and compressibility. The captopril capsules and tablets exhibited immediate drug release in 0.1 N HCl. The captopril tablets passed content uniformity test as per IP 1996. Ex vivo permeation of captopril, formulated with eutectic mixture, was faster than control. The permeation was increased by 15% at the end of 3 h. Tablets and capsule exhibited reasonable short term stability with no considerable change in performance characteristics. PMID:20376214

  6. Solvent immersion imprint lithography.

    PubMed

    Vasdekis, A E; Wilkins, M J; Grate, J W; Kelly, R T; Konopka, A E; Xantheas, S S; Chang, T-M

    2014-06-21

    We present Solvent Immersion Imprint Lithography (SIIL), a technique for polymer functionalization and microsystem prototyping. SIIL is based on polymer immersion in commonly available solvents. This was experimentally and computationally analyzed, uniquely enabling two practical aspects. The first is imprinting and bonding deep features that span the 1 to 100 ?m range, which are unattainable with existing solvent-based methods. The second is a functionalization scheme characterized by a well-controlled, 3D distribution of chemical moieties. SIIL is validated by developing microfluidics with embedded 3D oxygen sensors and microbioreactors for quantitative metabolic studies of a thermophile anaerobe microbial culture. Polystyrene (PS) was employed in the aforementioned applications; however all soluble polymers - including inorganic ones - can be employed with SIIL under no instrumentation requirements and typical processing times of less than two minutes. PMID:24789571

  7. Ideal Eutectic Phase Diagrams Chemistry 243

    E-print Network

    Ronis, David M.

    at equilibrium. This is what happens below the eutectic temperature. To see this, con- sider the total free the equilibrium conditions: µ (0) i (solid, T) = µ (0) i (liquid, T) + RT ln(xi), i = A, B. (1) or using the fact that G (0) fus(i) µ (0) i (liquid, T) - µ (0) i (solid, T) = 0 at the normal melting point, T = T(i) MP

  8. Directionally solidified eutectic gamma plus beta nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Jackson, M. R. (inventor)

    1977-01-01

    A directionally solidified multivariant eutectic gamma + beta nickel-base superalloy casting having improved high temperature strength and oxidation resistance properties is provided. This comprises a two phase eutectic structure containing, on a weight percent basis, 5.0-15.0 tungsten, 8.5-14.5 aluminum, 0.0-35.0 cobalt and the balance being nickel. Embedded within the gamma phase nickel-base matrix are aligned eutectic beta phase (primarily (NiCo)Al reinforcing lamellae.

  9. Solvent substitution

    SciTech Connect

    Not Available

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  10. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.

    1999-01-01

    The long term goal of this project is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. Prior experimental results on the influence of microgravity on the microstructure of fibrous eutectics have been contradictory. Theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in the melt sufficiently to cause a measurable change in microstructure when the eutectic grows at minimum supercooling. Currently, there are four other hypotheses that might explain the observed changes in microstructure of fibrous eutectics caused by convection: (1) Disturbance of the concentration boundary layer arising from an off-eutectic melt composition and growth at the extremum; (2) Disturbance of the concentration boundary layer of a habit-modifying impurity; (3) Disturbance of the concentration boundary layer arising from an off-eutectic interfacial composition due to non-extremum growth; and (4) A fluctuating freezing rate combined with differences in the kinetics of fiber termination and fiber formation. We favor the last of these hypotheses. Thus, the primary objective of the present grant is to determine experimentally and theoretically the influence of a periodically varying freezing rate on eutectic solidification. A secondary objective is to determine the influence of convection on the microstructure of at least one other eutectic alloy that might be suitable for flight experiments.

  11. Synthesis and electronic applications of oxide-metal eutectic composites

    SciTech Connect

    Holder, J.D.; Cochran, J.K.; Hill, D.N.; Chapman, A.T.; Clark, G.W.

    1980-01-01

    A review is given of important developments in the synthesis of oxide-metal eutectic composites and the composite application in the continuing development of field emitters. Known metal oxide-metal binary and ternary eutectic systems are listed. The synthesis, electrical conductivity, thermodynamics, and applications are discussed. (FS)

  12. Diffusionless crystal growth in a eutectic system during rapid solidification

    SciTech Connect

    Galenko, P. K. Herlach, D. M.

    2006-07-15

    Experiments on nonequilibrium rapid eutectic growth are surveyed. The applicability limits of the modern theoretical models describing rapid solidification of binary systems are assessed. A problem of rapid eutectic growth when the local equilibrium is violated in the solute diffusion field (in the bulk liquid and at the solid-liquid interface) is formulated. An analytical solution to the problem of rapid lamellar eutectic growth under local nonequilibrium conditions in the solute diffusion field is found. It is shown that the diffusion-limited growth of a eutectic pattern ceases as soon as a chemically homogeneous crystalline phase begins to grow when the critical point V=V{sub D} is achieved (V is the solid-liquid interface velocity and V{sub D} is the solute diffusion speed in the bulk liquid). At V {>=} V{sub D}, eutectic decomposition is suppressed and the nascent homogeneous crystalline phase has the initial (nominal) chemical composition of the binary system.

  13. Eutectics as improved pharmaceutical materials: design, properties and characterization.

    PubMed

    Cherukuvada, Suryanarayan; Nangia, Ashwini

    2014-01-28

    Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by stable eutectics of the hygroscopic salt of the anti-tuberculosis drug ethambutol as a case study. A current gap in the characterization of eutectic microstructure may be fulfilled through pair distribution function (PDF) analysis of X-ray diffraction data, which could be a rapid signature technique to differentiate eutectics from their components. PMID:24322207

  14. Solvent Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities such as corn and molasses was an important historical fermentation. Unfortunately,...

  15. DNA-Based Asymmetric Catalysis: Role of Ionic Solvents and Glymes.

    PubMed

    Zhao, Hua; Shen, Kai

    2014-01-01

    Recently, DNA has been evaluated as a chiral scaffold for metal complexes to construct so called 'DNA-based hybrid catalysts', a robust and inexpensive alternative to enzymes. The unique chiral structure of DNA allows the hybrid catalysts to catalyze various asymmetric synthesis reactions. However, most current studies used aqueous buffers as solvents for these asymmetric reactions, where substrates/products are typically suspended in the solutions. The mass transfer limitation usually requires a long reaction time. To overcome this hurdle and to advance DNA-based asymmetric catalysis, we evaluated a series of ionic liquids (ILs), inorganic salts, deep eutectic solvents (DES), glymes, glycols, acetonitrile and methanol as co-solvents/additives for the DNA-based asymmetric Michael addition. In general, these additives induce indistinguishable changes to the DNA B-form duplex conformation as suggested by circular dichroism (CD) spectroscopy, but impose a significant influence on the catalytic efficiency of the DNA-based hybrid catalyst. Conventional organic solvents (e.g. acetonitrile and methanol) led to poor product yields and/or low enantioselectivities. Most ILs and inorganic salts cause the deactivation of the hybrid catalyst except 0.2 M [BMIM][CF3COO] (95.4% ee and 93% yield) and 0.2 M [BMIM]Cl (93.7% ee and 89% yield). Several other additives have also been found to improve the catalytic efficiency of the DNA-based hybrid catalyst (control reaction without additive gives >99% ee and 87% yield): 0.4 M glycerol (>99% ee and 96% yield at 5 °C or 96.2% ee and 83% yield at room temperature), 0.2 M choline chloride/glycerol (1:2) (92.4% ee and 90% yield at 5 °C or 94.0% ee and 88% yield at room temperature), and 0.5 M dipropylene glycol dimethyl ether (>99% ee and 87% yield at room temperature). The use of some co-solvents/additives allows the Michael addition to be performed at a higher temperature (e.g. room temperature vs 5 °C) and a shorter reaction time (24 h vs 3 days). In addition, we found that a brief pre-sonication (5 min) of DNA in MOPS buffer prior to the reaction could improve the performance of the DNA-based hybrid catalyst. We have also shown that this DNA-based catalysis method is suitable for a variety of different substrates and relatively large-scale reactions. In conclusion, a judicious selection of benign co-solvents/additives could improve the catalytic efficiency of DNA-based hybrid catalyst. PMID:25386337

  16. Creep resistance of directionally solidified eutectic ceramics : experiments and model

    E-print Network

    Yi, Jin, 1971-

    2004-01-01

    The creep resistance of the directionally solidified eutectic ceramic of Al?0?/c-ZrO?(Y?0?) was studied in the temperature range of 1200-1520?C both exprimentally and by the mechanistic dislocation model. The topologically ...

  17. Phase-field modeling of eutectic growth Francois Drolet,1

    E-print Network

    Grant, Martin

    of directional solidification when the solid phase is a single or two phase state. The crystallization of a eutectic compound under isothermal conditions is also considered. For that process, the transformed volume

  18. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox. William R.; Regel, Liya L.

    1999-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the projects in the present grant is to test hypotheses for the reported influence of microgravity on the microstructure of eutectics. The prior experimental results on the influence of microgravity on the microstructure of eutectics have been contradictory. With lamellar eutectics, microgravity had a negligible effect on the microstructure. Microgravity experiments with fibrous eutectics sometimes showed a finer microstructure and sometimes a coarser microstructure. Most research has been done on the MnBi/Bi rod-like eutectic. Larson and Pirich obtained a two-fold finer microstructure both from microgravity and by use of a magnetic field to quench buoyancy-driven convection. Smith, on the other hand, observed no change in microgravity. Prior theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in front of a growing eutectic sufficiently to cause a measurable change in microstructure. We assumed that the bulk melt was at the eutectic composition and that freezing occurred at the extremum, i.e. with minimum total undercooling at the freezing interface. There have been four hypotheses attempting to explain the observed changes in microstructure of fibrous eutectics caused by convection: I .A fluctuating freezing rate, combined with unequal kinetics for fiber termination and branching. 2. Off-eutectic composition, either in the bulk melt due to an off-eutectic feed or at the freezing interface because of departure from the extremum condition. 3. Presence of a strong habit modifying impurity whose concentration at the freezing interface would be altered by convection. At the beginning of the present grant, we favored the first of these hypotheses and set out to test it both experimentally and theoretically. We planned the following approaches: I .Pass electric current pulses through the MnBi/Bi eutectic during directional solidification in order to produce an oscillatory freezing rate. 2. Directionally solidify the MnBi/Bi eutectic on Mir using the QUELD II gradient freeze furnace developed by Professor Smith at Queen's University. 3. Select another fibrous eutectic system for investigation using the Accelerated Crucible Rotation Technique to introduce convection. 4. Develop theoretical models for eutectic solidification with an oscillatory freezing rate. Because of the problems with Mir, we substituted ground-based experiments at Queen's University with QUELD II vertical and horizontal, with and without vibration of the furnace. The Al-Si system was chosen for the ACRT experiments. Three related approaches were used to model eutectic solidification with an oscillatory freezing rate. A sharp interface model was used to calculate composition oscillations at the freezing interface in response to imposed freezing rate oscillations.

  19. New eutectic alloys and their heats of transformation

    NASA Technical Reports Server (NTRS)

    Farkas, D.; Birchenall, C. E.

    1985-01-01

    Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.

  20. Eutectic Trimming of Polysilicon Micro Hemispherical Resonating Gyroscope

    E-print Network

    Ayazi, Farrokh

    Eutectic Trimming of Polysilicon Micro Hemispherical Resonating Gyroscope Benoit Hamelin, Vahid stiffness modification for mode trimming of poly-silicon micro hemispherical resonating gyroscope (HRG MEMS resonant gyroscopes are vital components of an Inertial Measurement Unit (IMU), and can enable

  1. Influence of convection on rod spacing of eutectics

    NASA Technical Reports Server (NTRS)

    Caram, R.; Chandrasekhar, S.; Wilcox, W. R.

    1990-01-01

    This paper describes a three-dimensional numerical model to study the influence of convection on the rod-like microstructure of an eutectic system. This model is based on a central finite difference approach. By applying it, the average concentration near the solid/liquid interface of a growing rod-like eutectic was determined for eutectic compositions C(e) of 0.03, 0.05, and 0.10. Following Jackson and Hunt (1966), the average interfacial composition was converted to a change of undercooling at the interface and, finally, to spacing between the rods. The change in rod spacing with increasing intensity of convection was calculated assuming the eutectic grows at minimum interfacial undercooling. It was confirmed that an increase in convection should coarsen the microstructure (i.e., the rod spacing increases with increasing intensity of stirring).

  2. Lamellar coupled growth in the neopentylglycol-(D)camphor eutectic

    NASA Astrophysics Data System (ADS)

    Witusiewicz, V. T.; Sturz, L.; Hecht, U.; Rex, S.

    2014-01-01

    Lamellar eutectic growth was investigated in the transparent organic alloy neopentylglycol-(D)camphor of eutectic composition (NPG-45.3 wt% DC) using bulk (3D) and thin (2D) samples. Two types of eutectic grains were observed in the polycrystalline samples, either with lamellae well aligned to the direction of solidification or inclined at an angle of 21.5±1.5°. The well aligned grains were used for determining lamellar spacing as function of growth velocity V and temperature gradient G. Based on these data the Jackson-Hunt constant was evaluated to be KJH=1.60±0.15 ?m3 s-1. For low growth velocity experiments the contact angles for (DC) and (NPG) lamellae at eutectic triple junctions were also evaluated, being ?(DC)=50.9±4.1° and ?(NPG)=41.8±4.7°, respectively. Using these values, as well as phase diagram data and the Gibbs-Thomson coefficients, the chemical coefficient of diffusion of (D)camphor in the eutectic liquid at eutectic temperature 53 °C was estimated to be DL=97±15 ?m2 s-1.

  3. Traveling waves, two-phase fingers, and eutectic colonies in thin-sample directional solidification of a ternary eutectic alloy

    NASA Astrophysics Data System (ADS)

    Akamatsu, Silvère; Faivre, Gabriel

    2000-04-01

    We present an experimental investigation of the morphological transition of lamellar eutectic growth fronts called ``formation of eutectic colonies'' by the method of thin-sample directional solidification of a transparent model alloy, CBr4-C2Cl6. This morphological transition is due to the presence in the melt of traces of chemical components other than those of the base binary alloy (impurities). In this study, we use naphthalene as an impurity. The formation of eutectic colonies has generally been viewed as an impurity-driven Mullins-Sekerka instability of the envelope of the lamellar front. This traditional view neglects the strong interaction existing between the Mullins-Sekerka process and the dynamics of the lamellar pattern. This investigation brings to light several original features of the formation of eutectic colonies, in particular, the emission of long-wavelength traveling waves, and the appearance of dendritelike structures called two-phase fingers, which are connected with this interaction. We study the part played by these phenomena in the transition to eutectic colonies as a function of the impurity concentration. Recent theoretical results on the linear stability of ternary lamellar eutectic fronts [Plapp and Karma, Phys. Rev. E 60, 6865 (1999)] shed light on some aspects of the observed phenomena.

  4. Traveling waves, two-phase fingers, and eutectic colonies in thin-sample directional solidification of a ternary eutectic alloy

    PubMed

    Akamatsu; Faivre

    2000-04-01

    We present an experimental investigation of the morphological transition of lamellar eutectic growth fronts called "formation of eutectic colonies" by the method of thin-sample directional solidification of a transparent model alloy, CBr4-C2Cl6. This morphological transition is due to the presence in the melt of traces of chemical components other than those of the base binary alloy (impurities). In this study, we use naphthalene as an impurity. The formation of eutectic colonies has generally been viewed as an impurity-driven Mullins-Sekerka instability of the envelope of the lamellar front. This traditional view neglects the strong interaction existing between the Mullins-Sekerka process and the dynamics of the lamellar pattern. This investigation brings to light several original features of the formation of eutectic colonies, in particular, the emission of long-wavelength traveling waves, and the appearance of dendritelike structures called two-phase fingers, which are connected with this interaction. We study the part played by these phenomena in the transition to eutectic colonies as a function of the impurity concentration. Recent theoretical results on the linear stability of ternary lamellar eutectic fronts [Plapp and Karma, Phys. Rev. E 60, 6865 (1999)] shed light on some aspects of the observed phenomena. PMID:11088155

  5. Ultrasound in lead-bismuth eutectic

    SciTech Connect

    Dierckx, M.; Van Dyck, D.

    2011-07-01

    The Belgian Nuclear Research Centre (SCK.CEN) is in the process of designing MYRRHA, a new multi-purpose irradiation facility to replace the ageing BR2. MYRRHA is a fast spectrum reactor cooled with lead-bismuth eutectic (LBE). As liquid metal is opaque to visual light, ultrasonic measurement techniques are selected to fulfill essential tasks that, according to our assessment, will be demanded by licensing authorities, in particular: fuel assembly identification and localization of a lost fuel assembly. To that end, a considerable research effort at SCK.CEN is devoted to study ultrasonic propagation in LBE. As ultrasonic experiments in LBE are elaborate and expensive to set up, we are particularly interested in to what extent experiments in water can be extrapolated to LBE - one of the main focuses of this article. We describe and present results of a first experiment with this goal which shows that the signal to noise ratio is better in LBE and that we even see small diffuse reflections up to 40 deg. off normal. On the other hand, we do not see internal reflections in stainless steel objects in LBE which we do in water. Therefore, we conclude that experiments in water can be used to validate algorithms for LBE on the condition that they do not rely on internal reflections. We also present solutions to tackle the essential tasks: fuel assembly identification and lost object localization. The requirements for the ultrasonic equipment implementing these solutions are also discussed. (authors)

  6. Ternary eutectic growth of Ag-Cu-Sb alloy within ultrasonic field

    NASA Astrophysics Data System (ADS)

    Zhai, Wei; Hong, Zhenyu; Wei, Bingbo

    2007-08-01

    The liquid to solid transformation of ternary Ag42.4Cu21.6Sb36 eutectic alloy was accomplished in an ultrasonic field with a frequency of 35 kHz, and the growth mechanism of this ternary eutectic was examined. Theoretical calculations predict that the sound intensity in the liquid phase at the solidification interface increases gradually as the interface moves up from the sample bottom to its top. The growth mode of ( ? + ? + Sb) ternary eutectic exhibits a transition of “divorced eutectic—mixture of anomalous and regular structures—regular eutectic” along the sample axis due to the inhomogeneity of sound field distribution. In the top zone with the highest sound intensity, the cavitation effect promotes the three eutectic phases to nucleate independently, while the acoustic streaming efficiently suppresses the coupled growth of eutectic phases. In the meantime, the ultrasonic field accelerates the solute transportation at the solid-liquid interface, which reduces the solute solubility of eutectic phases.

  7. Thermochemical and microstructural studies on binary organic eutectics and complexes

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Singh, R. A.

    2004-06-01

    The phase diagram, solidification kinetics and differential scanning calorimetry of a few charge-transfer (CT) complexes of pyrene with p-benzoquinone, m-dinitrobenzene and m-nitrobenzoic acid have been studied. These materials have been characterized by X-ray diffraction. Microstructure and electrical conductivities of congruent melting complexes and eutectics have been determined. The data indicate that side-by-side nucleation of donor and acceptor results both in eutectic as well as CT complex formation under the present experimental conditions. This explains low electrical conductivities of these materials due to weak interaction and mixed stacking of donor and acceptor. Excess thermodynamics functions of the CT materials and eutectics have been determined and results have been discussed in the light of electron donor-acceptor interactions between the components.

  8. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    SciTech Connect

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary eutectic salt mixture consisting of Li- Na- and K- carbonates has the potential as gasification catalyst. To verify the literature reported, melting points for various compositions consisting of these three salts and the temperature range over which the mixture remained molten were determined in the lab. For mixtures with different concentrations of the three salts, the temperatures at which the mixtures were found to be in complete molten state were recorded. By increasing the amount of Li2CO3, the melting temperature range was reduced significantly. In the literature, the eutectic mixtures of Li- Na- and K-carbonates are claimed to have a lower activation energy than that of K2CO3 alone and they remain molten at a lower temperature than pure K2CO3. The slow increase in the gasification rates with eutectics reported in the literature is believed to be due to a gradual penetration of the coals and coal char particles by the molten and viscous catalyst phase. The even spreading of the salt phase seems to increase the overall carbon conversion rate. In the next reporting period, a number of eutectic salts and methods of their application on the coal will be identified and tested.

  9. Microstructural evolution of eutectic Au-Sn solder joints

    SciTech Connect

    Song, Ho Geon

    2002-05-31

    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  10. Nonisothermal eutectic crystallization K. R. Elder1,2

    E-print Network

    Gunton, James D.

    and welding processes. To understand the complex morphologies that occur in eutectic solidification spatial variations in temperature field created by latent heat production at the amorphous-crystal fronts for the Fe-B system. It is well known that the production of latent heat during solidification

  11. Eutectic alloys. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Moore, P.

    1980-01-01

    These 250 abstracts from the international literature provide summaries of the preparation, treatments, composition and structure, and properties of eutectic alloys. Techniques for directional solidification and treatments including glazing, coating, and fiber reinforcement are discussed. In addition to the mechanical and thermal properties, the superconducting, corrosion, resistance, and thermionic emission and adsorption properties are described.

  12. Directional solidification of eutectic composites in space environment

    NASA Technical Reports Server (NTRS)

    Yue, A. S.

    1972-01-01

    The Ni-Ni3Ta eutectic and a nickel-base alloy containing 30 wt pct Ta were solidified unidirectionally in an electron beam floating zone melting apparatus. It was found that the volume fraction of the Ni3Ta phase in the Ni-Ni3Ta eutectic mixture was increased from 7.6 to 36 volume pct in agreement with the theory as predicted. Tensile properties of the randomly solidified and unidirectionally solidified Ni-Ni3Ta eutectic were determined as function of solidification rate and temperature. It was found that the ultimate tensile strength decreased as both the test temperature and solidification rate increased. An elongation of 40 pct was obtained for a nickelbase alloy containing 30 wt at room temperature. This unusually large elongation was attributed to the superplastic behavior of the alloy. The critical currents versus the external fields at 2.5, 3.0, 3.5 and 4.2 deg for the unidirectionally solidified Pb-Sn eutectic were measured. The values of critical fields at zero critical currents were obtained by extrapolation.

  13. Devitrification studies of wollastonite-tricalcium phosphate eutectic glass.

    PubMed

    Magallanes-Perdomo, M; Pena, P; De Aza, P N; Carrodeguas, R G; Rodríguez, M A; Turrillas, X; De Aza, S; De Aza, A H

    2009-10-01

    The present paper describes and discusses the devitrification and crystallization process of wollastonite-tricalcium phosphate (W-TCP) eutectic glass. This process was studied in situ from room temperature up to 1375 degrees C, by neutron diffractometry in vacuum. The data obtained were combined and compared with those performed in ambient atmosphere by differential thermal analysis and with those of samples fired in air at selected temperatures, and then cooled down and subsequently studied by laboratory XRD and field emission scanning electron microscopy fitted with energy X-ray dispersive spectroscopy. The experimental evidence indicates that the devitrification of W-TCP eutectic glass begins at approximately 870 degrees C with the crystallization of a Ca-deficient apatite phase, followed by wollastonite-2M (CaSiO(3)) crystallization at approximately 1006 degrees C. At 1375 degrees C, the bio-glass-ceramic is composed of quasi-rounded colonies formed by a homogeneous mixture of pseudowollastonite (CaSiO(3)) and alpha-tricalcium phosphate (Ca(3)(PO(4))(2)). This microstructure corresponds to irregular eutectic structures. It was also found that it is possible to obtain from the eutectic composition of the wollastonite-tricalcium phosphate binary system a wide range of bio-glass-ceramics, with different crystalline phases present, through appropriate design of thermal treatments. PMID:19427932

  14. Growth and scintillation properties of Eu doped BaCl2/LiF eutectic scintillator

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Hishinuma, Kosuke; Kurosawa, Shunsuke; Yamaji, Akihiro; Shoji, Yasuhiro; Pejchal, Jan; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2015-12-01

    Eu doped BaCl2/LiF eutectics were grown by the micro-pulling down method and their directionally solidified eutectic (DSE) system has been investigated. The grown eutectic showed main phases of cubic LiF and orthorhombic BaCl2. In these eutectics, the 399 nm emission of Eu2+ 4f5d was obtained. It shows the intrinsic decay time of about 410 ns. The light yield of the 1-mm-thick eutectic showed 7000 ph/5.5 MeV alpha-ray.

  15. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.

    1998-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the present projects is to test hypotheses for the reported influence of microgravity on the microstructure of three fibrous eutectics (MnBi-Bi, InSb-NiSb, Al3Ni-Al). A secondary objective is to determine the influence of convection on the microstructure of other eutectic alloys. Two doctoral students and a masters student supported as a teaching assistant were recruited for this research. Techniques were developed for directional solidification of MnBi-Bi eutectics with periodic application of current pulses to produce an oscillatory freezing rate. Image analysis techniques were developed to obtain the variation in MnBi fiber spacing, which was found to be normally distributed. The mean and standard deviation of fiber spacing were obtained for several freezing conditions. Eighteen ampoules were prepared for use in the gradient freeze furnace QUELD developed at Queen's University for use in microgravity. Nine of these ampoules will be solidified soon at Queen's in a ground-based model. We hope to solidify the other nine in the QUELD that is mounted on the Canadian Microgravity Isolation Mount on MIR. Techniques are being developed for directional solidification of the Al-Si eutectic at different freezing rates, with and without application of accelerated crucible rotation to induce convection. For the first time, theoretical methods are being developed to analyze eutectic solidification with an oscillatory freezing rate. In a classical sharp-interface model, we found that an oscillatory freezing rate increases the deviation of the average interfacial composition from the eutectic, and increases the undercooling of the two phases by different amounts. This would be expected to change the volume fraction solidifying and the fiber spacing. Because of difficulties in tracking the freezing interfaces of the two solid phases, a phase-field model is also being developed. A paper demonstrating application of phase field methods to periodic structures has been submitted for publication.

  16. The UC2-x - Carbon eutectic: A laser heating study

    NASA Astrophysics Data System (ADS)

    Manara, D.; Boboridis, K.; Morel, S.; De Bruycker, F.

    2015-11-01

    The UC2-x - carbon eutectic has been studied by laser heating and fast multi-wavelength pyrometry under inert atmosphere. The study has been carried out on three compositions, two of which close to the phase boundary of the UC2-x - C miscibility gap (with C/U atomic ratios 2 and 2.1), and one, more crucial, with a large excess of carbon (C/U = 2.82). The first two compositions were synthesised by arc-melting. This synthesis method could not be applied to the last composition, which was therefore completed directly by laser irradiation. The U - C - O composition of the samples was checked by using a combustion method in an ELTRA® analyser. The eutectic temperature, established to be 2737 K ± 20 K, was used as a radiance reference together with the cubic - tetragonal (? ? ?) solid state transition, fixed at 2050 K ± 20 K. The normal spectral emissivity of the carbon-richer compounds increases up to 0.7, whereas the value 0.53 was established for pure hypostoichiometric uranium dicarbide at the limit of the eutectic region. This increase is analysed in the light of the demixing of excess carbon, and used for the determination of the liquidus temperature (3220 K ± 50 K for UC2.82). Due to fast solid state diffusion, also fostered by the cubic - tetragonal transition, no obvious signs of a lamellar eutectic structure could be observed after quenching to room temperature. The eutectic surface C/UC2-x composition could be qualitatively, but consistently, followed during the cooling process with the help of the recorded radiance spectra. Whereas the external liquid surface is almost entirely constituted by uranium dicarbide, it gets rapidly enriched in demixed carbon upon freezing. Demixed carbon seems to quickly migrate towards the inner bulk during further cooling. At the ? ? ? transition, uranium dicarbide covers again the almost entire external surface.

  17. Solvent wash solution

    DOEpatents

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  18. Solvent wash solution

    DOEpatents

    Neace, James C. (Blackville, SC)

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  19. Nucleation and Growth of Eutectic Si in Al-Si Alloys with Na Addition

    NASA Astrophysics Data System (ADS)

    Li, J. H.; Barrirero, J.; Engstler, M.; Aboulfadl, H.; Mücklich, F.; Schumacher, P.

    2015-03-01

    Al-5 wt pct Si-based alloys with Na additions (19 and 160 ppm) have been produced by controlled sand casting and melt spinning. Entrained droplet technique and differential scanning calorimetry were employed to investigate the nucleation behavior of eutectic Si. High-resolution transmission electron microscopy and atom probe tomography were used to investigate the distribution of Na atoms within eutectic Si and at the interfaces between eutectic Si and eutectic Al. It was found that (i) only 19 ppm Na addition results into a high undercooling (49 K (49 °C)) of the entrained eutectic droplet. However, further increasing Na addition up to 160 ppm exerts no positive effect on the nucleation of eutectic Si, instead a decreased undercooling (29 K (29 °C)) was observed. (ii) Na addition suppresses the growth of eutectic Si due to the Na segregation at the interface between eutectic Si and eutectic Al, and (iii) Na addition promotes significant multiple Si twins, which can be attributed to the proposed adsorption of Na atoms at the intersection of Si twins and along the <112>Si growth direction of Si. The present investigation demonstrates, for the first time, a direct observation on the distribution of Na atoms within eutectic Si and thereby provides strong experimental supports to the well-accepted impurity-induced twinning growth mechanism and poisoning of the twin plane re-entrant edge growth mechanism.

  20. Eutectic bonding of boron-aluminum structural components. II

    NASA Technical Reports Server (NTRS)

    Niemann, J. T.; Garrett, R. A.

    1974-01-01

    Eutectic bonding is a diffusion brazing process developed for fabricating boron-aluminum components from composite monolayer. This process relies on the diffusion of a thin surface film of copper into the aluminum matrix to form a liquid phase when heated above the copper-aluminum eutectic temperature of 1018 F. This type of fabrication offers design flexibility in that skin thickness may be varied, the stiffness geometry and orientation can be varied, and local reinforcement can be added. In addition, this type of boron-aluminum structure offers high efficiency. Also, this method of construction can be cost-comparative with complex titanium shapes; simple tooling permits easy layup, bonding is a one-step operation, and little finish machining is required.

  1. Electromagnetic response of anisotropic eutectic metamaterials in THz range

    NASA Astrophysics Data System (ADS)

    Reyes-Coronado, A.; Acosta, M. F.; Merino, R. I.; Orera, V. M.; Kenanakis, G.; Katsarakis, N.; Kafesaki, M.; Soukoulis, C. M.

    2010-10-01

    We study the electromagnetic (EM) response of anisotropic eutectic metamaterials, consisting in cylindrical polaritonic LiF rods embedded in a KCl host. The specular reflectance of the samples was measured at far infrared (3-12 THz). The sample reflection was simulated by modeling the eutectic structure and solving numerically Maxwell equations for the EM fields. The reflectance was also calculated from simple effective response functions models. A good agreement was obtained between experimental and calculated spectra. From the effective response functions calculations, we obtained a range of frequencies in which the system behaves as a homogeneous effective anisotropic media, with a hyperbolic dispersion relation, opening possibilities for negative refraction and focusing applications.

  2. Coatings for directional eutectics. [for corrosion and oxidation resistance

    NASA Technical Reports Server (NTRS)

    Felten, E. J.; Strangman, T. E.; Ulion, N. E.

    1974-01-01

    Eleven coating systems based on MCrAlY overlay and diffusion aluminide prototypes were evaluated to determine their capability for protecting the gamma/gamma prime-delta directionally solidified eutectic alloy (Ni-20Cb-6Cr-2.5Al) in gas turbine engine applications. Furnace oxidation and hot corrosion, Mach 0.37 burner-rig, tensile ductility, stress-rupture and thermomechanical fatigue tests were used to evaluate the coated gamma/gamma prime-delta alloy. The diffusion aluminide coatings provided adequate oxidation resistance at 1144 K (1600 F) but offered very limited protection in 114 K (1600 F) hot corrosion and 1366 K (2000 F) oxidation tests. A platinum modified NiCrAlY overlay coating exhibited excellent performance in oxidation testing and had no adverse effects upon the eutectic alloy.

  3. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, James A. (Livermore, CA); Hayden, H. Wayne (Oakridge, TN)

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  4. Solvents in novolak synthesis

    NASA Astrophysics Data System (ADS)

    Sobodacha, Chet J.; Lynch, Thomas J.; Durham, Dana L.; Paradis, Valerie R.

    1993-09-01

    Novolac resins may be prepared with or without a solvent present. We have found that solvent power greatly affects the properties of the finished resin and thus gives the resist chemist another variable with which to `fine-tune' resist properties. Using designed experiments, we investigated the effect of solvent power, as measured by Hansen's Solubility Parameters, of a number of solvents and solvent mixtures on the final properties of the novolac resin. We found that the relative molecular weight (RMW) and dissolution rate of a novolac resin can be varied by selection of a solvent or solvent mixture with the appropriate polarity and hydrogen- bonding characteristics. The solvent polarity and hydrogen-bonding characteristics may affect the stability of the cresol/formaldehyde transition state, thus causing the observed changes in RMW and dissolution rate.

  5. Metastable Eutectic Equilibrium in Natural Environments: Recent Development and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A., III; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica compositions of circumstellar dust presolar and solar nebula grains in the matrix of the collected aggregate IDPs (Interplanetary Dust Particles). Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra) fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous, and typically nano-to micrometer-sized, metastable eutectic materials.

  6. Metastable Eutectic Equilibrium in Natural Environments: Recent Developments and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Fans J. M.; Nuth, Joseph A., II; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica, compositions of circumstellar dust, presolar and solar nebula grains in the matrix of the collected aggregate IDPs. Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra)fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous and typically nano- to micrometer-sized, metastable eutectic materials.

  7. Solvent recycle/recovery

    SciTech Connect

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  8. Solvents and sustainable chemistry

    PubMed Central

    Welton, Tom

    2015-01-01

    Solvents are widely recognized to be of great environmental concern. The reduction of their use is one of the most important aims of green chemistry. In addition to this, the appropriate selection of solvent for a process can greatly improve the sustainability of a chemical production process. There has also been extensive research into the application of so-called green solvents, such as ionic liquids and supercritical fluids. However, most examples of solvent technologies that give improved sustainability come from the application of well-established solvents. It is also apparent that the successful implementation of environmentally sustainable processes must be accompanied by improvements in commercial performance. PMID:26730217

  9. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (inventor)

    1979-01-01

    An element comprising sapphire, ruby or blue sapphire can be bonded to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  10. Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite

    PubMed Central

    Lee, Seoung Wan; Kim, Jeong Tae; Hong, Sung Hwan; Park, Hae Jin; Park, Jun-Young; Lee, Nae Sung; Seo, Yongho; Suh, Jin Yoo; Eckert, Jürgen; Kim, Do Hyang; Park, Jin Man; Kim, Ki Buem

    2014-01-01

    The outstading mechanical properties of bimodal ultrafine eutectic composites (BUECs) containing length scale hierarchy in eutectic structure were demonstrated by using AFM observation of surface topography with quantitative height measurements and were interpreted in light of the details of the deformation mechanisms by three different interface modes. It is possible to develop a novel strain accommodated eutectic structure for triggering three different interface-controlled deformation modes; (I) rotational boundary mode, (II) accumulated interface mode and (III) individual interface mode. A strain accommodated microstructure characterized by the surface topology gives a hint to design a novel ultrafine eutectic alloys with excellent mechanical properties. PMID:25265897

  11. Refinement of Promising Coating Compositions for Directionally Cast Eutectics

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Felten, E. J.; Benden, R. S.

    1976-01-01

    The successful application of high creep strength, directionally solidified gamma/gamma prime-delta (Ni-19.7Cb-6Cr-2.5Al) eutectic superalloy turbine blades requires the development of suitable coatings for airfoil, root and internal blade surfaces. In order to improve coatings for the gamma/gamma prime-delta alloy, the current investigation had the goals of (1) refining promising coating compositions for directionally solidified eutectics, (2) evaluating the effects of coating/ substrate interactions on the mechanical properties of the alloy, and (3) evaluating diffusion aluminide coatings for internal surfaces. Burner rig cyclic oxidation, furnace cyclic hot corrosion, ductility, and thermal fatigue tests indicated that NiCrAlY+Pt(63 to 127 micron Ni-18Cr-12Al-0.3Y + 6 micron Pt) and NiCrAlY(63 to 127 micron Ni-18Cr-12Al-0.3Y) coatings are capable of protecting high temperature gas path surfaces of eutectic alloy airfoils. Burner rig (Mach 0.37) testing indicated that the useful coating life of the 127 micron thick coatings exceeded 1000 hours at 1366 K (2000 deg F). Isothermal fatigue and furnance hot corrosion tests indicated that 63 micron NiCrAlY, NiCrAlY + Pt and platinum modified diffusion aluminide (Pt + Al) coating systems are capable of protecting the relatively cooler surfaces of the blade root. Finally, a gas phase coating process was evaluated for diffusion aluminizing internal surfaces and cooling holes of air-cooled gamma/gamma prime-delta turbine blades.

  12. Creep in Directionally Solidified NiAl-Mo Eutectics

    SciTech Connect

    Dudova, Marie; Kucharova, Kveta; Bartak, Tomas; Bei, Hongbin; George, Easo P; Somsen, Ch.; Dlouhy, A.

    2011-01-01

    A directionally solidified NiAl-Mo eutectic and an NiAl intermetallic, having respective nominal compositions Ni-45.5Al-9Mo and Ni-45.2Al (at.%), were loaded in compression at 1073 and 1173 K. Formidable strengthening by regularly distributed Mo fibres (average diameter 600 nm, volume fraction 14%) was observed. The fibres can support compression stresses transferred from the plastically deforming matrix up to a critical stress of the order of 2.5 GPa, at which point they yield. Microstructural evidence is provided for the dislocation-mediated stress transfer from the NiAl to the Mo phase.

  13. Microstructure of directionally solidified CrAs/GaAs eutectic

    SciTech Connect

    Holmes, D.E.; Koo, L.Y.

    1995-04-01

    The microstructure of the CrAs/GaAs eutectic directionally solidified by both the Czochralski (Cz) and vertical Bridgman (VB) methods consists of arrays of CrAs rods oriented along the axis of solidification in a GaAs matrix. Microdefects in Cz material including striations, terminations and nucleations, coalescence and branching, and oscillatory instabilities are prevalent and are the result of dynamic morphological adjustment under fluctuating conditions of microscopic solidification. In contrast, selected regions of VB material exhibit near-ideal hexagonal packing of circular rods in the matrix. Cause-effect relationships between microstructure and conditions of solidification were determined and are presented and discussed.

  14. Development of high temperature fasteners using directionally solidified eutectic alloys

    NASA Technical Reports Server (NTRS)

    George, F. D.

    1972-01-01

    The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.

  15. Directional solidification of Pb-Sn eutectic with vibration

    NASA Technical Reports Server (NTRS)

    Caram, Rubens; Banan, Mohsen; Wilcox, William R.

    1991-01-01

    Pb-Sn eutectic alloy was directionally solidified at 1.4 to 3.2 cm/hr with forced convection induced by axial vibration of the growth ampoule with a frequency of 10 to 40 Hz and an amplitude of 0.5 to 1.0 mm. To determine the exact growth rate, an interface demarcation technique was applied. The lamellar spacing was increased 10 to 40 percent in ingots solidified with vibration compared to those solidified without vibration. The average intensity of convection in the melt under axial vibration of the ampoule was estimated by comparing the experimental results with a theoretical model.

  16. Pattern Formation and Growth Kinetics in Eutectic Systems

    SciTech Connect

    Jing Teng

    2007-12-01

    Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rodl, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to characterize the cell shape and tip undercooling and the experimental results are compared with the predictions of the model. From the investigation of cell/dendrite transition, a model is proposed, from which the condition for the onset of the transition can be obtained.

  17. Eutectic Morphology of Al-7Si-0.3Mg Alloys with Scandium Additions

    NASA Astrophysics Data System (ADS)

    Pandee, Phromphong; Gourlay, C. M.; Belyakov, S. A.; Ozaki, Ryota; Yasuda, Hideyuki; Limmaneevichitr, Chaowalit

    2014-09-01

    The mechanisms of Al-Si eutectic refinement due to scandium (Sc) additions have been studied in an Al-7Si-0.3Mg foundry alloy. The evolution of eutectic microstructure is studied by thermal analysis and interrupted solidification, and the distribution of Sc is studied by synchrotron micro-XRF mapping. Sc is shown to cause significant refinement of the eutectic silicon. The results show that Sc additions strongly suppress the nucleation of eutectic silicon due to the formation of ScP instead of AlP. Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction similar to past work with Na, Ca, and Y additions. It is found that Sc segregates to the eutectic aluminum and AlSi2Sc2 phases and not to eutectic silicon, suggesting that impurity-induced twinning does not operate. The results suggest that Sc refinement is mostly caused by the significantly reduced silicon nucleation frequency and the resulting increase in mean interface growth rate.

  18. Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials

    SciTech Connect

    Wu, Hsin-jay; Chen, Sinn-wen; Foo, Wei-jian; Jeffrey Snyder, G.

    2012-07-09

    Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which consisted of Ag{sub 5}Te{sub 3} and Te phases, with additional 200-600 nm size particles of PbTe. The self-assembled interfaces altered the thermal and electronic transport properties in the bulk Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a low thermal conductivity ({kappa} = 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak of 0.41 at 400 K.

  19. Competitive stochastic growth model for the 3D morphology of eutectic Si in Al-Si alloys

    E-print Network

    Schmidt, Volker

    Competitive stochastic growth model for the 3D morphology of eutectic Si in Al-Si alloys Gerd for the simulation of the 3D morphology of eutectic silicon in Al-Si alloys, which represents the colonies-Si alloys, coral-like eutectic Si, stochastic growth model, multivariate time series, FIB-SEM tomography

  20. Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character.

    PubMed

    Rice, James W; Fu, Jinxia; Suuberg, Eric M

    2010-09-01

    To better characterize the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the anthracene (1) + pyrene (2) system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at 404 K at x(1) = 0.22. A model based on eutectic formation can be used to predict the enthalpy of fusion associated with the mixture. For mixtures that contain x(1) < 0.90, the enthalpy of fusion is near that of pure pyrene. This and X-ray diffraction results indicate that mixtures of anthracene and pyrene have pyrene-like crystal structures and energetics until the composition nears that of pure anthracene. Solid-vapor equilibrium studies show that mixtures of anthracene and pyrene form solid azeotropes at x(1) of 0.03 and 0.14. Additionally, mixtures at x(1) = 0.99 sublime at the vapor pressure of pure anthracene, suggesting that anthracene behavior is not significantly influenced by x(2) = 0.01 in the crystal structure. PMID:21116474

  1. Synthesis of discrete aluminophosphate -CLO nanocrystals in a eutectic mixture.

    PubMed

    Tao, Shuo; Xu, Renshun; Li, Xiaolei; Li, Dawei; Ma, Huaijun; Wang, Donge; Xu, Yunpeng; Tian, Zhijian

    2015-08-01

    Extra-large-pore aluminophosphate -CLO (i.e., DNL-1) nanocrystals were synthesized in a eutectic mixture composed of diethylamine hydrochloride (DEAC) and ethylene glycol (EG) with 1-methylimidazole (1-MIm) as an additional amine using both conventional and microwave heating. The effects of the synthesis parameters, such as the amount of 1-MIm and the P/Al ratio, on the formation of DNL-1 nanocrystals were studied. The products were characterized using a variety of techniques. XRD, DLS, SEM and TEM results indicate that the as-synthesized DNL-1 nanocrystals have good crystallinity and narrow particle size distributions, and their average particle size was controlled in the 100-220nm range by simply adjusting the amount of 1-MIm. TG-DSC and N2 adsorption analyses reveal that the as-synthesized DNL-1 nanocrystals exhibit good thermal stability and the calcined samples possess high BET surface areas and large pore volumes. In addition, the cooperative structure-directing effects of 1-MIm and the eutectic mixture cation (DEA(+)) in the formation of DNL-1 nanocrystals were discussed. PMID:25897847

  2. A fully coupled 2D model of equiaxed eutectic solidification

    SciTech Connect

    Charbon, Ch.; LeSar, R.

    1995-12-31

    We propose a model of equiaxed eutectic solidification that couples the macroscopic level of heat diffusion with the microscopic level of nucleation and growth of the eutectic grains. The heat equation with the source term corresponding to the latent heat release due to solidification is calculated numerically by means of an implicit finite difference method. In the time stepping scheme, the evolution of solid fraction is deduced from a stochastic model of nucleation and growth which uses the local temperature (interpolated from the FDM mesh) to determine the local grain density and the local growth rate. The solid-liquid interface of each grain is tracked by using a subdivision of each grain perimeter in a large number of sectors. The state of each sector (i.e. whether it is still in contact with the liquid or already captured by an other grain) and the increase of radius of each grain during one time step allows one to compute the increase of solid fraction. As for deterministic models, the results of the model are the evolution of temperature and of solid fraction at any point of the sample. Moreover the model provides a complete picture of the microstructure, thus not limiting the microstructural information to the average grain density but allowing one to compute any stereological value of interest. We apply the model to the solidification of gray cast iron.

  3. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, J.A.; Hayden, H.W.

    1995-01-10

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  4. Solvent-free synthesis

    EPA Science Inventory

    This chapter gives a brief introduction about solvent-free reactions whose importance can be gauged by the increasing number of publications every year during the last decade. The mechanistic aspects of the reactions under solvent-free conditions have been highlighted. Our observ...

  5. ONSITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery: atmospheric batch distillation, vacuum heat-pump distillation, and a low-emission vapor degreaser with closed solvent, liquid an...

  6. Alternative Green Solvents Project

    NASA Technical Reports Server (NTRS)

    Maloney, Phillip R.

    2012-01-01

    Necessary for safe and proper functioning of equipment. Mainly halogenated solvents. Tetrachloride, Trichloroethylene (TCE), CFC-113. No longer used due to regulatory/safety concerns. Precision Cleaning at KSC: Small % of total parts. Used for liquid oxygen (LOX) systems. Dual solvent process. Vertrel MCA (decafluoropentane (DFP) and trons-dichloroethylene) HFE-7100. DFP has long term environmental concerns. Project Goals: a) Identify potential replacements. b) 22 wet chemical processes. c) 3 alternative processes. d) Develop test procedures. e) Contamination and cleaning. f) Analysis. g) Use results to recommend alternative processes. Conclusions: a) No alternative matched Vertrel in this study. b) No clear second place solvent. c) Hydrocarbons- easy; Fluorinated greases- difficult. d) Fluorinated component may be needed in replacement solvent. e) Process may need to make up for shortcoming of the solvent. f) Plasma and SCC02 warrant further testing.

  7. Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy

    NASA Technical Reports Server (NTRS)

    Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.

  8. Enhancement of cell and tissue destruction in cryosurgery by use of eutectic freezing

    NASA Astrophysics Data System (ADS)

    Han, Bumsoo; Bischof, John C.

    2003-06-01

    An in vitro study was performed to investigate a more effective method of destroying malignant tissue during cyrosurgery, which is based on eutectic crystallization. Eutectic formation is a solidification process through which water and solutes form a hydrate and can be recognized by a secondary heat release in differential scanning calorimetry (DSC). We investigated whether it is possible to induce eutectic crystallization by infusing concentrated salt solutions into cell suspension and tissue systems. These systems included AT-1 rat prostate tumor and normal rat liver tissues. In cell suspensions, the post-thaw viability significantly drops at or below the temperatures where eutectic crystallization occurred. When eutectic crystallization is induced in tissues, histological analysis shows significantly enhanced freezing injury. These results imply that this method may be of benefit in cryosurgical applications particularly at the edge of the iceball where tumor cell survival is in question. The possible advantages of inducing eutectic crystallization are i) enhancement of direct cell injury; ii) enlargement of effective cryosurgical cell/tissue destruction zone by selecting a salt with a high eutectic temperature; and iii) improvement of the efficacy of monitoring during cryosurgery.

  9. Preferred growth orientation and microsegregation behaviors of eutectic in a nickel-based single-crystal superalloy

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Ma, Dexin; Bührig-Polaczek, Andreas

    2015-04-01

    A nickel-based single-crystal superalloy was employed to investigate the preferred growth orientation behavior of the (? + ??) eutectic and the effect of these orientations on the segregation behavior. A novel solidification model for the eutectic island was proposed. At the beginning of the eutectic island’s crystallization, the core directly formed from the liquid by the eutectic reaction, and then preferably grew along [100] direction. The crystallization of the eutectic along [110] always lagged behind that in [100] direction. The eutectic growth in [100] direction terminated on impinging the edge of the dendrites or another eutectic island. The end of the eutectic island’s solidification terminates due to the encroachment of the eutectic liquid/solid interface at the dendrites or another eutectic island in [110] direction. The distribution of the alloying elements depended on the crystalline axis. The degree of the alloying elements’ segregation was lower along [100] than [110] direction with increasing distance from the eutectic island’s center.

  10. Solvent alternatives guide

    SciTech Connect

    Elion, J.M.; Monroe, K.R.; Hill, E.A.

    1996-06-01

    It is no longer legal to manufacture or import chlorofluorocarbon 113 or methyl chloroform solvents, and companies that currently clean their parts with either material are now required to implement environmentally safe substitutes. To help find alternative methods, Research Triangle Institute`s Surface Cleaning Technology Program has designed a Solvent Alternatives Guide (SAGE), an online tool that enables access to practical information and recommendations for acceptable solvents. Developed in partnership with the US Environmental Protection Agency, SAGE is available free of charge on the Internet`s World Wide Web.

  11. Traceable Co-C eutectic points for thermocouple calibration

    SciTech Connect

    Jahan, F.; Ballico, M. J.

    2013-09-11

    National Measurement Institute of Australia (NMIA) has developed a miniature crucible design suitable for measurement by both thermocouples and radiation thermometry, and has established an ensemble of five Co-C eutectic-point cells based on this design. The cells in this ensemble have been individually calibrated using both ITS-90 radiation thermometry and thermocouples calibrated on the ITS-90 by the NMIA mini-coil methodology. The assigned ITS-90 temperatures obtained using these different techniques are both repeatable and consistent, despite the use of different furnaces and measurement conditions. The results demonstrate that, if individually calibrated, such cells can be practically used as part of a national traceability scheme for thermocouple calibration, providing a useful intermediate calibration point between Cu and Pd.

  12. Control of eutectic solidification microstructures through laser spot perturbations

    NASA Astrophysics Data System (ADS)

    Akamatsu, S.; Lee, K.; Losert, W.

    2006-03-01

    We report on a new experimental technique for controlling lamellar (nonfaceted) eutectic microstructures and testing their stability in thin-sample directional solidification (TDS) of a model transparent alloy (CBr4- C2Cl6). We observe the solidification front in real time by optical microscopy. We use micromanipulation with a holographic laser spot array for perturbing the solidification front on a scale ranging from one to ten times the average lamellar spacing value (typically 10- 100 ?m). These perturbations arise from local heating due to the absorption of the laser light by the liquid slightly ahead of the front. We show that the laser spot perturbation technique can be efficiently used as a tool for mapping out the large range of accessible lamellar spacings and for creation of desired patterns such as smooth spacing gradients or tilt domains.

  13. Critical temperature of the lead bismuth eutectic (LBE) alloy

    NASA Astrophysics Data System (ADS)

    Azad, Abdul-Majeed

    2005-05-01

    Liquid metals such as Bi and Pb and Pb-Bi eutectic alloy are serious contenders for use as coolant in LMFBRs in lieu of sodium due to a number of attractive characteristics (high density, low moderation, low neutron absorption and activation, high boiling point and poor interaction with water and air, etc.). Analysis of hypothetical accidents is of relevance to predict the catastrophe involving loss of coolant accident (LOCA) in LMFBRs. One key parameter to take into account is the critical temperature data of the liquid metals for reactor safety analysis. This communication reports the application of a theoretical model called internal pressure approach to predict the critical temperature ( Tc) of the LBE alloy for the first time.

  14. Self Assembled Structures by Directional Solidification of Eutectics

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  15. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

    DOEpatents

    Nerad, Bruce A. (Longmont, CO); Krantz, William B. (Boulder, CO)

    1988-01-01

    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  16. Microstructure and Strength of NiTi-Nb Eutectic Braze Joining NiTi Wires

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Wang, Cong; Dunand, David C.

    2015-04-01

    NiTi wires were brazed together via liquid eutectic formation between NiTi and Nb powders deposited at the wire contact region. The brazed region shows proeutectic NiTi(Nb) in contact with the wires, sandwiching a NiTi-Nb eutectic structure, whose microhardness and stiffness, as characterized via nanoindentation, are higher than the NiTi wires, while also showing signs of high ductility. NiTi-Nb eutectic bonding may thus be a viable approach for producing shape-memory NiTi scaffolds brazed from stacked, woven, or braided wires.

  17. Phase-field modeling of microelastically controlled eutectic lamellar growth in a Ti-Fe system

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Z.; Rezende, J. L.; Kundin, J.

    2012-06-01

    We have developed a microelastical phase-field model to incorporate elastic energy and misfit stresses in eutectic growth. We apply the model to assess the formation of eutectic structures in Ti-Fe alloy, which exhibit high lattice mismatch owing to difference between lattice parameters of ?-Ti and FeTi phases. Numerical simulations of both directional and free eutectic growth are performed by applying cubic anisotropy to the Ti-Fe system. The resulted microstructures are presented and the corresponding stress distributions are evaluated.

  18. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  19. Eutectic superalloys by edge-defined, film-fed growth

    NASA Technical Reports Server (NTRS)

    Hurley, G. F.

    1975-01-01

    The feasibility of producing directionally solidified eutectic alloy composites by edge-defined, film-fed growth (EFG) was carried out. The three eutectic alloys which were investigated were gamma + delta, gamma/gamma prime + delta, and a Co-base TaC alloy containing Cr and Ni. Investigations into the compatibility and wettability of these metals with various carbides, borides, nitrides, and oxides disclosed that compounds with the largest (negative) heats of formation were most stable but poorest wetting. Nitrides and carbides had suitable stability and low contact angles but capillary rise was observed only with carbides. Oxides would not give capillary rise but would probably fulfill the other wetting requirements of EFG. Tantalum carbide was selected for most of the experimental portion of the program based on its exhibiting spontaneous capillary rise and satisfactory slow rate of degradation in the liquid metals. Samples of all three alloys were grown by EFG with the major experimental effort restricted to gamma + delta and gamma/gamma prime + delta alloys. In the standard, uncooled EFG apparatus, the thermal gradient was inferred from the growth speed and was 150 to 200 C/cm. This value may be compared to typical gradients of less than 100 C/cm normally achieved in a standard Bridgman-type apparatus. When a stream of helium was directed against the side of the bar during growth, the gradient was found to improve to about 250 C/cm. In comparison, a theoretical gradient of 700 C/cm should be possible under ideal conditions, without the use of chills. Methods for optimizing the gradient in EFG are discussed, and should allow attainment of close to the theoretical for a particular configuration.

  20. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  1. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  2. Cleaning without chlorinated solvents

    NASA Technical Reports Server (NTRS)

    Thompson, L. M.; Simandl, R. F.

    1995-01-01

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92 percent. The program has been a twofold effort. Vapor degreasers used in batch cleaning operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting, and bonding. Cleaning ability was determined using techniques such as x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes, and swelling of epoxies.

  3. Cleaning without chlorinated solvents

    SciTech Connect

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  4. Pre-eutectic densification in MgF/sub 2/-CaF/sub 2/

    SciTech Connect

    Hu, S C; De Jonghe, L C

    1982-04-01

    Increased densification rates were found as much as 200/sup 0/C below the eutectic temperature (980/sup 0/C) for MgF/sub 2/ containing small amounts of CaF/sub 2/. Constant heating rate and constant temperature sintering data, as well as microstructural developments indicated that solid state grain-boundary transport rates had been enhanced by the eutectic forming additive. The effect saturated at about 1 wt % CaF/sub 2/. The results suggest that densification of ceramic powders could be favorably affected without a substantial increase in the grain growth rate, by the addition of small amounts of eutectic forming additives, and sintering below the eutectic temperature. 6 figures.

  5. Effect of boron on the microstructure of near-eutectic Al-Si alloys

    SciTech Connect

    Wu Yuying . E-mail: wyy532001@163.com; Liu Xiangfa; Bian Xiufang

    2007-02-15

    The effect of boron on the microstructure of a near-eutectic Al-Si alloy (ZL109) was investigated by scanning electron microscopy (SEM) and electron beam microprobe analysis (EPMA). It was found that {alpha}-Al dendrites and eutectic clusters were significantly refined by the addition of boron. Another interesting discovery is that the near-eutectic alloy exhibited hypereutectic structure characteristics when the level of boron added exceeds 0.3%, i.e., primary Si is precipitated in the eutectic microstructure. A new type of nucleation substrate for the primary Si is found, Al {sub x}Ca {sub m}B {sub n}Si. This appears to be the main reason for the precipitation of primary Si.

  6. The influence of ternary alloying elements on the Al-Si eutectic microstructure and the Si morphology

    NASA Astrophysics Data System (ADS)

    Darlapudi, A.; McDonald, S. D.; Terzi, S.; Prasad, A.; Felberbaum, M.; StJohn, D. H.

    2016-01-01

    The influence of the ternary alloying elements Cu, Mg and Fe on the Al-Si eutectic microstructure is investigated using a commercial purity Al-10 wt%Si alloy in unmodified and Sr-modified conditions. A change in the Al-Si eutectic microstructure was associated with a change in the nucleation density of the eutectic grains caused by the addition of ternary alloying elements. When the ternary alloying element addition resulted in an increase in the eutectic nucleation frequency, a fibrous to flake-like transition was observed within the eutectic grain. When the ternary alloying element addition decreased the eutectic nucleation frequency significantly, a change in the eutectic morphology from flake-like to a mixture of flake-like and fibrous morphologies was observed. The mechanism of Al-Si eutectic modification is discussed. The growth velocity of the eutectic grain - liquid interface and the constitutional driving force available for growth are proposed as important parameters that influence the degree of eutectic modification in Al-Si alloys.

  7. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    SciTech Connect

    Shen, Junjun Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-05-12

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  8. The roles of Eu during the growth of eutectic Si in Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  9. Formation mechanism of primary phases and eutectic structures within undercooled Pb-Sb-Sn ternary alloys

    NASA Astrophysics Data System (ADS)

    Wang, Weili; Dai, Fuping; Wei, Bingbo

    2007-08-01

    The solidification characteristics of three types of Pb-Sb-Sn ternary alloys with different primary phases were studied under substantial undercooling conditions. The experimental results show that primary (Pb) and SbSn phases grow in the dendritic mode, whereas primary (Sb) phase exhibits faceted growth in the form of polygonal blocks and long strips. (Pb) solid solution phase displays strong affinity with SbSn intermetallic compound so that they produce various morphologies of pseudobinary eutectics, but it can only grow in the divorced eutectic mode together with (Sb) phase. Although (Sb) solid solution phase and SbSn intermetallic compound may grow cooperatively within ternary eutectic microstructures, they seldom form pseudobinary eutectics independently. The (Pb)+(Sb)+SbSn ternary eutectic structure usually shows lamellar morphology, but appears as anomalous eutectic when its volume fraction becomes small. EDS analyses reveal that all of the three primary (Pb), (Sb) and SbSn phases exhibit conspicuous solute trapping effect during rapid solidification, which results in the remarkable extension of solute solubility.

  10. Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions.

    PubMed

    Baird, Jared A; Taylor, Lynne S

    2011-06-01

    The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions. PMID:20141502

  11. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  12. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  13. Edge Drift of Eutectic SnPb Lines: Electromigration of Flip Chip Solder

    NASA Astrophysics Data System (ADS)

    Joo, Y.-C.; Yoon, M.-S.; Ko, M.-K.; Kim, O.-H.; Kim, B.-N.; Park, Y.-B.

    2006-02-01

    We have investigated the characteristics of eutectic SnPb electromigration using edge drift structure. An incubation stage for the edge drift was observed in the eutectic SnPb electromigration, i.e. there was a time duration before an edge began to move. During the incubation stage for the edge drift, depletion of Pb at the cathode end was observed. From the change of resistance, the activation energies for the incubation stage and for edge movement stage were calculated to be 0.88 eV and 1.02 eV, respectively. Comparing the activation energies for each stage with the reported values of Pb in eutectic SnPb and those of Sn in Sn, Pb we found that during the incubation stage, Pb migrated before Sn, and the edge movement is resulted from migration of Sn. These results suggested that Pb depletion is a prerequisite for the electromigration-induced void nucleation in eutectic SnPb solder. Threshold current density of eutectic SnPb was measured as a function of line length, and it did not change with line lengths significantly. This result indicated that the Blech product in eutectic SnPb did not agree on that in Al interconnect.

  14. Laser-Induced Melting of Co-C Eutectic Cells as a New Research Tool

    NASA Astrophysics Data System (ADS)

    van der Ham, E.; Ballico, M.; Jahan, F.

    2015-08-01

    A new laser-based technique to examine heat transfer and energetics of phase transitions in metal-carbon fixed points and potentially to improve the quality of phase transitions in furnaces with poor uniformity is reported. Being reproducible below 0.1 K, metal-carbon fixed points are increasingly used as reference standards for the calibration of thermocouples and radiation thermometers. At NMIA, the Co-C eutectic point is used for the calibration of thermocouples, with the fixed point traceable to the International Temperature Scale (ITS-90) using radiation thermometry. For thermocouple use, these cells are deep inside a high-uniformity furnace, easily obtaining excellent melting plateaus. However, when used with radiation thermometers, the essential large viewing cone to the crucible restricts the furnace depth and introduces large heat losses from the front furnace zone, affecting the quality of the phase transition. Short laser bursts have been used to illuminate the cavity of a conventional Co-C fixed-point cell during various points in its melting phase transition. The laser is employed to partially melt the metal at the rear of the crucible providing a liquid-solid interface close to the region being observed by the reference pyrometer. As the laser power is known, a quantitative estimate of can be made for the Co-C latent heat of fusion. Using a single laser pulse during a furnace-induced melt, a plateau up to 8 min is observed before the crucible resumes a characteristic conventional melt curve. Although this plateau is satisfyingly flat, well within 100 mK, it is observed that the plateau is laser energy dependent and elevates from the conventional melt "inflection-point" value.

  15. Emulsification Of Eutectic Salt Mixtures In Fluid Vehicles

    NASA Astrophysics Data System (ADS)

    Vanderhoff, J. W.; El-Aasser, M. S.; Hawkins, T. W.

    1988-05-01

    High-internal-phase-volume emulsions of 75 volt 3/18/79 potassium iodide/sodium iodide/ urea model eutectic salt mixture in 83.5/16.5 Sartomer R-45HT hydroxy-terminated polybutadi-ene/Nujol mineral oil binder mixture were prepared at 60°C using water-in-oil emulsifiers and cured with isophorone diisocyanate or Desmodur N-100. The Nujol mineral oil enhanced the emulsification with a negligible reduction in the tensile properties of the cured elastomer. The average emulsion droplet sizes were ca. 200 nm initially, but increased slowly during curing to 500-1000 nm. The coalescence of the emulsion droplets followed the second-order dependence predicted by the von Smoluchowski diffusion-controlled flocculation; the rate constants were 1.05x10-18 and 9.58x10-18 cc/droplet-sec for dirnethyldioctadecylammonium bromide and Span 85 sorbitan trioleate, respectively. The isophorone diisocyanate reacted with emulsifiers containing primary hydroxyl or amine groups, to give unstable emulsions or no emulsions at all. Dimethyldioctadecylammonium bromide with no primary hydroxyl or amine groups, however, did not react with isocyanates and gave stable emulsions. The reaction of the R-45HT hydroxy-terminated polybutadiene with isophorone diisocyanate followed the expec-ted second-order kinetics with a rate constant of 3.42x10-4 liters/mole-sec at 60°C. The tensile properties of the cured elastomers and emulsions generally increased with increasing NCO/OH ratio up to 1.6/1.0. With increasing volume fraction of dispersed phase, the maximum stress (tensile strength) decreased, the maximum strain (percent elongation) increased, and the initial modulus (tensile modulus) decreased, in contrast to the behavior of conventional filled polymer systems; however, the maximum stresses were in accord with theoretical values for a filled polymer in which the filler particles bear no load, the initial moduli were in accord with the predictions of an isostrain model, and the maximum strain increased with in-creasing volume fraction of dispersed phase; these unusual variations, which were attributed to the liquid nature of the emulsion droplets, were used to estimate the elastomer proper-ties required to give the desired properties: 60-100 psi maximum stress, 80-150% maximum strain, and 500-2000 psi initial modulus for an 88/12 eutectic salt/crosslinked polybutadi-ene composite containing 20% aluminum particles. The addition of 20% aluminum particles gave a modest improvement in tensile properties, and the addition of 2.5% or 3.5% submicroscopic carbon black particles gave a greater improvement; however, the tensile properties were still slightly short of the desired properties.

  16. Halogenated solvent remediation

    DOEpatents

    Sorenson, Kent S.

    2004-08-31

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. A preferred method includes adding a composition to the ground water wherein the composition is an electron donor for microbe-mediated reductive dehalogenation of the halogenated solvents and enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative compositions effective in these methods include surfactants such as C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2 -C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof. Especially preferred compositions for use in these methods include lactic acid, salts of lactic acid, such as sodium lactate, lactate esters, and mixtures thereof. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the composition.

  17. Solvent resistant copolyimide

    NASA Technical Reports Server (NTRS)

    Chang, Alice C. (Inventor); St. Clair, Terry L. (Inventor)

    1995-01-01

    A solvent resistant copolyimide was prepared by reacting 4,4'-oxydiphthalic anhydride with a diaimine blend comprising, based on the total amount of the diamine blend, about 75 to 90 mole percent of 3,4'-oxydianiline and about 10 to 25 mole percent p-phenylene diamine. The solvent resistant copolyimide had a higher glass transition temperature when cured at 350.degree. , 371.degree. and 400.degree. C. than LaRC.TM.-IA. The composite prepared from the copolyimide had similar mechanical properties to LaRC.TM.-IA. Films prepared from the copolyimide were resistant to immediate breakage when exposed to solvents such as dimethylacetamide and chloroform. The adhesive properties of the copolyimide were maintained even after testing at 23.degree., 150.degree., 177.degree. and 204.degree. C.

  18. Safe battery solvents

    DOEpatents

    Harrup, Mason K. (Idaho Falls, ID); Delmastro, Joseph R. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID)

    2007-10-23

    An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

  19. Halogenated solvent remediation

    DOEpatents

    Sorenson, Jr., Kent S. (Windsor, CO)

    2008-11-11

    Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.

  20. Preparation of eutectic substrate mixtures for enzymatic conversion of ATC to L-cysteine at high concentration levels.

    PubMed

    Youn, Sung Hun; Park, Hae Woong; Choe, Deokyeong; Shin, Chul Soo

    2014-06-01

    High concentration eutectic substrate solutions for the enzymatic production of L-cysteine were prepared. Eutectic melting of binary mixtures consisting of D,L-2-amino-?(2)-thiazoline-4-carboxylic acid (ATC) as a substrate and malonic acid occurred at 39 °C with an ATC mole fraction of 0.5. Formation of eutectic mixtures was confirmed using SEM, SEM-EDS, and XPS surface analyses. Sorbitol, MnSO4, and NaOH were used as supplements for the enzymatic reactions. Strategies for sequential addition of five compounds, including a binary ATC mixture and supplements, during preparation of eutectic substrate solutions were established. Eutectic substrate solutions were stable for 24 h. After 6 h of enzymatic reactions, a 550 mM L-cysteine yield was obtained from a 670 mM eutectic ATC solution. PMID:24249216

  1. Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis.

    PubMed

    Kanavarioti, A; Monnard, P A; Deamer, D W

    2001-01-01

    Polymeric compounds similar to oligonucleotides are relevant to the origin of life and particularly to the concept of an RNA world. Although short oligomers of RNA can be synthesized nonenzymatically under laboratory conditions by second-order reactions in concentrated solutions, there is no consensus on how these polymers could have been synthesized de novo on the early Earth from dilute solutions of monomers. To address this question in the context of an RNA world, we have explored ice eutectic phases as a reaction medium. When an aqueous solution freezes, the solutes become concentrated in the spaces between the ice crystals. The increased concentration offsets the effect of the lower temperature and accelerates the reaction. Here we show that in the presence of metal ions in dilute solutions, frozen samples of phosphoimidazolide-activated uridine react within days at -18 degrees C to form oligouridylates up to 11 bases long. Product yields typically exceed 90%, and approximately 30% of the oligomers include one or more 3'-5' linkages. These conditions facilitate not only the notoriously difficult oligouridylate synthesis, but also the oligomerization of activated cytidylate, adenylate, and guanylate. To our knowledge, this represents the first report to indicate that ice matrices on the early Earth may have accelerated certain prebiotic polymerization reactions. PMID:12448990

  2. Eutectic Phases in Ice Facilitate Nonenzymatic Nucleic Acid Synthesis

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia; Monnard, Pierre-Alain; Deamer, David W.

    2001-09-01

    Polymeric compounds similar to oligonucleotides are relevant to the origin of life and particularly to the concept of an RNA world. Although short oligomers of RNA can be synthesized nonenzymatically under laboratory conditions by second-order reactions in concentrated solutions, there is no consensus on how these polymers could have been synthesized de novo on the early Earth from dilute solutions of monomers. To address this question in the context of an RNA world, we have explored ice eutectic phases as a reaction medium. When an aqueous solution freezes, the solutes become concentrated in the spaces between the ice crystals. The increased concentration offsets the effect of the lower temperature and accelerates the reaction. Here we show that in the presence of metal ions in dilute solutions, frozen samples of phosphoimidazolide-activated uridine react within days at -18°C to form oligouridylates up to 11 bases long. Product yields typically exceed 90%, and ~30% of the oligomers include one or more 3?-5? linkages. These conditions facilitate not only the notoriously difficult oligouridylate synthesis, but also the oligomerization of activated cytidylate, adenylate, and guanylate. To our knowledge, this represents the first report to indicate that ice matrices on the early Earth may have accelerated certain prebiotic polymerization reactions.

  3. Microanalysis of an oxidized cobalt oxide: Zirconia eutectic

    SciTech Connect

    Bentley, J.; McKernan, S.; Carter, C.B.; Revcolevschi, A.

    1993-12-31

    The compositions of CoO, Co{sub 3}O{sub 4}, and Ca-stabilized cubic ZrO{sub 2} in an oxidized directionally solidified CoO-ZrO{sub 2} eutectic were determined by PEELS and EDS. An oxygen gradient exists across the Co{sub 3}O{sub 4} with highest levels near the ZrO{sub 2} interface. Oxygen ELNES for CoO and Co{sub 3}O{sub 4} are quite different; published oxygen ELNES have been incorrectly attributed to CoO. Normalized Co-L{sub 23} white line intensity (WLI) ratios for CoO and Co{sub 3}O{sub 4} are similar (0.53 {plus_minus} 0.02) but L{sub 3}/L{sub 2} WLI ratios are 3.88 and 2.58, respectively. ELCE data suggest Co{sub 3}O{sub 4} has the inverse spinel structure.

  4. Solvents: Theory and Application

    E-print Network

    Yoo, S. J. Ben

    .microchemicals.eu/technical-information Photoresists, developers, remover, adhesion promoters, etchants, and solvents ... Phone: +49 731 36080-409 Fax: Even in pure water without any traces of impurities, at room temperature the autoprotolysis forms ­ in case of bonded H- and O-atoms also called hydrogen bonds. The permanent dipole moment D of typical

  5. Organic solvent topical report

    SciTech Connect

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  6. Organic solvent topical report

    SciTech Connect

    Cowley, W.L.

    1998-04-30

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  7. Solvent extraction processes compared

    SciTech Connect

    Kogut, K.E.

    1994-04-01

    Solvent ectraction processes are often difficult to compare. Waste processors need to understand how the process works in order to make a good choice for waste stream applications. The technologies used by Carver-Greenfield Process, B.E.S.T., and NuKEM`s method are described.

  8. DESIGNING GREENER SOLVENTS

    EPA Science Inventory

    Computer-aided design of chemicals and chemical mixtures provides a powerful tool to help engineers identify cleaner process designs and more-benign alternatives to toxic industrial solvents. Three software programs are discussed: (1) PARIS II (Program for Assisting the Replaceme...

  9. ONSITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery. The technologies were (1) atmospheric batch distillation, (2) vacuum heat-pump distillation, and (3) low-emission vapor degreas...

  10. Experimental Continuous Solvent Extraction Apparatus 

    E-print Network

    Unknown

    2011-08-17

    -scale solvent drying processes that emit volatile organic compounds (VOC's). These exhausts could be recirculated for the purposes of emission point elimination, heat recovery and solvent reuse. The aim was to create an environmental control process which would...

  11. MUTAGENICITY OF SELECTED ORGANIC SOLVENTS

    EPA Science Inventory

    Mutagenicity of selected organic solvents. Scand J Work Environ Health 11 (1985): suppl 1, 75-82. For certain organic solvents, such as benzene, vinyl chloride, styrene, technical grade trichloroethylene, and acrylonitrile, the available studies provide convincing evidence to dem...

  12. DESIGNING ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES

    EPA Science Inventory

    Since the signing of 1987 Montreal Protocol, reducing and eliminating the use of harmful solvents has become an internationally imminent environmental protection mission. Solvent substitution is an effective way to achieve this goal. The Program for Assisting the Replacement of...

  13. Solvent substitution for electronic products

    SciTech Connect

    Benkovich, M.K.

    1992-01-01

    Allied-Signal Inc., Kansas City Division (KCD), manufactures the electrical, electrochemical, mechanical, and plastic components for nuclear weapons. The KCD has made a commitment to eliminate the use of chlorohydrocarbon (CHC) and chlorofluorocarbon (CFC) solvents to the greatest technical extent possible consistent with nuclear safety and stockpile reliability requirements. Current cleaning processes in the production departments use trichloroethylene, 1,1,1-trichloroethane, and various CFC-113 based solvents. Several non-halogenated solvents (Solvent A - an aqueous solvent based on N,N-dimethylacetamide, Solvent B - an aqueous mixture of ethanol amines, Solvent C - a hydrocarbon solvent based on octadecyl acetate, Solvent D - a terpene (d-limonene) hydrocarbon solvent combined with emulsifiers, Solvent E - a terpene (d-limonene) hydrocarbon solvent combined with a separation agent, d-limonene, and isopropyl alcohol) were evaluated to determine the most effective, non-chlorinated, non-fluorinated, alternate solvent cleaning system. All of these solvents were evaluated using current manual spray cleaning processes. The solvents were evaluated for their effectiveness in removing a rosin based RMA solder flux, a particular silicone mold release, and oils, greases, mold releases, resins, etc. The Meseran Surface Analyzer was used to measure organic contamination on the samples before and after cleaning. An Omega Meter Model 600 was also used to detect solder flux residues. Solvents C, D, E and d-limonene the best alternatives to trichloroethylene for removing all of the contaminants tested. For this particular electronic assembly, d-limonene was chosen as the alternate because of material compatibility and long-term reliability concerns.

  14. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Chen, X. F.; Johnson, D. R.; Noebe, R. D.; Oliver, B. F.

    1995-01-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  15. Re-evaluation of the eutectic region of the LiBr-KBr-LiF system

    SciTech Connect

    Redey, L.; Guidotti, R.A.

    1996-05-01

    The separator pellet in a thermal battery consists of electrolyte immobilized by a binder (typically, MgO powder). The melting point of the electrolyte determines the effective operating window for its use in a thermal battery. The development of a two-hour thermal battery required the use of a molten salt that had a lower melting point and larger liquidus range than the LiCl-KCl eutectic which melts at 352 C. Several candidate eutectic electrolyte systems were evaluated for their suitability for this application. One was the LiCl-LiBr-KBr eutectic used at Argonne National Laboratories for high-temperature rechargeable batteries for electric-vehicle applications. Using a custom-designed high-temperature conductivity cell, the authors were able to readily determine the liquidus region for the various compositions studied around the original eutectic for the LiBr-KBr-LiF system. The actual eutectic composition was found to be 60.0 m/o LiBr-37.5 m/o KBr-2.5 m/o LiF with a melting point of 324 {+-} 0.5 C.

  16. Directional growth and characterization of Fe?Al?Nb eutectic alloys

    NASA Astrophysics Data System (ADS)

    Mota, M. A.; Coelho, A. A.; Bejarano, J. M. Z.; Gama, S.; Caram, R.

    1999-03-01

    The manufacturing of components for operation at high temperatures requires the use of metallic materials which can keep satisfactory mechanical and chemical properties, even at temperatures beyond 1000°C. An interesting alternative to solve such a problem is the use of directionally solidified eutectic alloys. A potentially promising system for the manufacture of structural materials, and so far not totally studied, is the eutectic based on the Fe-Al-Nb system, which involves the (FeAl) 2Nb phase and the FeAl solid solution. Eutectic samples from this system were directionally solidified in a vertical Bridgman crystal growth unit. The objective of the experiments was to determine the influence of the growth rate on the eutectic microstructure. The ingots obtained were investigated by using optical and electron scanning microscopy. At low growth rate, the eutectic microstructure remained regular, even though it showed several types of microstructure defects. As the growth rate was increased, a transition from lamellar to fibrous morphology was observed.

  17. PU/SS EUTECTIC ASSESSMENT IN 9975 PACKAGINGS IN A STORAGE FACILITY DURING EXTENDED FIRE

    SciTech Connect

    Gupta, N.

    2012-03-26

    In a radioactive material (RAM) packaging, the formation of eutectic at the Pu/SS (plutonium/stainless steel) interface is a serious concern and must be avoided to prevent of leakage of fissile material to the environment. The eutectic temperature for the Pu/SS is rather low (410 C) and could seriously impact the structural integrity of the containment vessel under accident conditions involving fire. The 9975 packaging is used for long term storage of Pu bearing materials in the DOE complex where the Pu comes in contact with the stainless steel containment vessel. Due to the serious consequences of the containment breach at the eutectic site, the Pu/SS interface temperature is kept well below the eutectic formation temperature of 410 C. This paper discusses the thermal models and the results for the extended fire conditions (1500 F for 86 minutes) that exist in a long term storage facility and concludes that the 9975 packaging Pu/SS interface temperature is well below the eutectic temperature.

  18. Construction and Characterization of Mini-ruthenium-Carbon Eutectic Cells for Industrial Use

    NASA Astrophysics Data System (ADS)

    Diril, A.; Bourson, F.; Parga, C.; Sadli, M.

    2015-09-01

    High-temperature eutectic fixed points have proved to be convenient tools for temperature scale dissemination and thermometer calibrations/checks at temperatures above 1100°C. In order to investigate the feasibility of metal-carbon eutectic cells in industrial applications as a means for assessing the traceability of non-contact thermometers, a batch of cells was constructed at LNE-Cnam, NPL, and TUBITAK UME. Compared to the usual dimensions of high-temperature fixed point cells (45 mm in length × 24 mm in diameter), a new cell design was created to fit with industrial applications. TUBITAK UME constructed and characterized five ruthenium-carbon (Ru-C) eutectic cells of dimensions 24 mm in length × 24 mm in diameter. One of these cells has been selected and characterized at CEA premises. Ru-C eutectic cells have been evaluated in terms of short-term repeatability, reproducibility, furnace effect, sharp temperature ramps, and the effect of cell location. Measurements at TÜB?TAK UME have been performed with a transfer standard pyrometer calibrated at the copper point and a BB3500pg high-temperature blackbody furnace was used for construction and measurement. For the measurements at CEA, a Land Standard—HIMERT S1 radiation thermometer and a VITI induction furnace were used. In this article results of the measurements at TÜB?TAK UME and CEA will be presented. The possible use of these mini-eutectic cells as industrial temperature standards will be discussed.

  19. A quantitative study of factors influencing lamellar eutectic morphology during solidification

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F. S.

    1981-01-01

    The factors that influence the shape of the solid-liquid interface of a lamellar binary eutectic alloy are evaluated. Alloys of carbon tetrabromide and hexachloroethane which serve as a transparent analogue of lamellar metallic eutectics are used. The observed interface shapes are analyzed by computer-aided methods. The solid-liquid interfacial free energies of each of the individual phases comprising the eutectic system are measured as a function of composition using a 'grain boundary groove' technique. The solid-liquid interfacial free energy of the two phases are evaluated directly from the eutectic interface. The phase diagram for the system, the heat of fusion as a function of composition, and the density as a function of composition are measured. The shape of the eutectic interface is controlled mainly by the solid-liquid and solid-solid interfacial free energy relationships at the interface and by the temperature gradient present, rather than by interlamellar diffusion in the liquid at the interface, over the range of growth rates studied.

  20. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Atul Sheth; Chandramouli Sastry

    2001-03-31

    Most of the tasks on the project have successfully been completed and reported. A 12 month no-cost extension has been requested to complete the remaining tasks. This report summarizes the accomplishments of the first six months of the no-cost extensions period. The acetic acid extraction showed that acetic acid has more effect on the extraction of the ternary catalyst (LNK) ions than water. Based on the extraction results, the order of the recovery capability of Na{sub 2}CO{sub 3} using acetic acid, sulfuric acid and water extractions is sulfuric acid {ge} acetic acid > water; the order for K{sub 2}CO{sub 3} is sulfuric acid > water >acetic acid; and the order for Li{sub 2}CO{sub 3} is acetic acid > sulfuric acid >water. A process flowsheet for the catalyst recovery process was proposed based on the results. Scanning electron microscopy (SEM) studies showed most of the particles (coal) appear amorphous. Some coal particles are as large as 50-60 {micro}m, but most are smaller. One can also easily see a few crystalline particles (10-20 {micro}m) with sharp facets and corners. The electron micrographs of gasified char samples (reactor-aged) of the LNKcoal mixture showed that a dramatic change is obvious in the morphology and crystallinity of the sample and is consistent with the results obtained from the x-ray diffraction studies. XRD studies of reactor-aged samples showed a substantial increase in the sample crystallinity (due to the gasification of amorphous carbon). The eutectic salt presumably mostly converted to sulfates.

  1. PARIS II: DESIGNING GREENER SOLVENTS

    EPA Science Inventory

    PARIS II (the program for assisting the replacement of industrial solvents, version II), developed at the USEPA, is a unique software tool that can be used for customizing the design of replacement solvents and for the formulation of new solvents. This program helps users avoid ...

  2. Solvent Immersion Imprint Lithography

    SciTech Connect

    Vasdekis, Andreas E.; Wilkins, Michael J.; Grate, Jay W.; Kelly, Ryan T.; Konopka, Allan; Xantheas, Sotiris S.; Chang, M. T.

    2014-06-21

    The mechanism of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally brought into contact with a non-modified surface to permanently bond. The underlying polymer-solvent interactions were experimentally and theoretically investigated, and enabled rapid polymer microsystem prototyping. During imprinting, small molecule integration in the molded surfaces was feasible, a principle applied to oxygen sensing. Polystyrene (PS) was employed for microbiological studies at extreme environmental conditions. The thermophile anaerobe Clostridium Thermocellum was grown in PS pore-scale micromodels, revealing a double mean generation lifetime than under ideal culture conditions. Microsystem prototyping through directed polymer dissolution is simple and accessible, while simultaneous patterning, bonding, and surface/volume functionalization are possible in less than one minute.

  3. Solvent replacement for green processing.

    PubMed Central

    Sherman, J; Chin, B; Huibers, P D; Garcia-Valls, R; Hatton, T A

    1998-01-01

    The implementation of the Montreal Protocol, the Clean Air Act, and the Pollution Prevention Act of 1990 has resulted in increased awareness of organic solvent use in chemical processing. The advances made in the search to find "green" replacements for traditional solvents are reviewed, with reference to solvent alternatives for cleaning, coatings, and chemical reaction and separation processes. The development of solvent databases and computational methods that aid in the selection and/or design of feasible or optimal environmentally benign solvent alternatives for specific applications is also discussed. Images Figure 2 Figure 3 PMID:9539018

  4. SOLVENT FIRE BY-PRODUCTS

    SciTech Connect

    Walker, D; Samuel Fink, S

    2006-05-22

    Southwest Research Institute (SwRI) conducted a burn test of the Caustic-Side Solvent Extraction (CSSX) solvent to determine the combustion products. The testing showed hydrogen fluoride gas is not a combustion product from a solvent fire when up to 70% of the solvent is consumed. The absence of HF in the combustion gases may reflect concentration of the modifier containing the fluoride groups in the unburned portion. SwRI reported results for other gases (CO, HCN, NOx, formaldehyde, and hydrocarbons). The results, with other supporting information, can be used for evaluating the consequences of a facility fire involving the CSSX solvent inventory.

  5. DOI: 10.1002/adfm.200701216 Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for

    E-print Network

    DOI: 10.1002/adfm.200701216 Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation- sensitive materials such as organics. For most applications requiring a liquid metal, EGaIn is superior This paper describes the rheological behavior of the liquid metal eutectic gallium-indium (EGa

  6. Corrosion Test of US Steels in Lead-Bismuth Eutectic (LBE) and Kinetic Modeling of Corrosion in LBE Systems

    E-print Network

    McDonald, Kirk

    1 Corrosion Test of US Steels in Lead-Bismuth Eutectic (LBE) and Kinetic Modeling of Corrosion compatibility and corrosion in lead-bismuth eutectic (LBE) systems present a critical challenge for using LBE lead and bismuth, oxygen in LBE will "passivate" the steel surface with formation of an oxide film

  7. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    SciTech Connect

    Knowlton, W.B. |

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  8. The influences of convection on directional solidification of eutectic Bi/MnBi

    NASA Technical Reports Server (NTRS)

    Larson, David J., Jr.

    1988-01-01

    Eutectic alloys of Bi-Mn were directionally solidified using the Bridgman-Stockbarger technique to determine the influences of gravitationally-driven thermo-solutal convection on the Bi-MnBi rod eutectic. Experiments were conducted that varied the level of convection by varying the growth parameters and growth orientation, by microgravity damping, by applied magnetic field damping, and by imposing forced convection. Peltier interface demarcation and in situ thermocouple measurements were used to monitor interface velocity and thermal gradient and to evaluate interface planarity.

  9. Numerical study: Iron corrosion-resistance in lead-bismuth eutectic coolant by molecular dynamics method

    SciTech Connect

    Arkundato, Artoto; Su'ud, Zaki; Abdullah, Mikrajuddin; Widayani,; Celino, Massimo

    2012-06-06

    In this present work, we report numerical results of iron (cladding) corrosion study in interaction with lead-bismuth eutectic coolant of advanced nuclear reactors. The goal of this work is to study how the oxygen can be used to reduce the corrosion rate of cladding. The molecular dynamics method was applied to simulate corrosion process. By evaluating the diffusion coefficients, RDF functions, MSD curves of the iron and also observed the crystal structure of iron before and after oxygen injection to the coolant then we concluded that a significant and effective reduction can be achieved by issuing about 2% number of oxygen atoms to lead-bismuth eutectic coolant.

  10. Numerical study of the effect of the shape of the phase diagram on the eutectic freezing temperature

    SciTech Connect

    Ode, M.; Shimono, M.; Sasajima, N.; Yamada, Y.; Bloembergen, P.

    2013-09-11

    To evaluate the reliability of metal-carbon eutectic systems as fixed points for the next generation of high-temperature standards the effect of thermodynamic properties related to the shape of eutectic phase diagram on the freezing temperature is investigated within the context of the numerical multi-phase-field model. The partition coefficient and liquidus slopes of the two solids involved in the eutectic reaction are varied deliberately and independently. The difference between the eutectic temperature and the freezing temperature is determined in dependence of the solid/liquid (s/l) interface shape and concentration. Where appropriate reference is made to the Jackson-Hunt analytical theory. It is shown that there are mainly two typical conditions to decrease the undercooling: 1) a small liquidus slope and 2) the associated difference between the eutectic composition and the liquid composition during solidification.

  11. Directionally solidified Eu doped CaF2/Li3AlF6 eutectic scintillator for neutron detection

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Hishinuma, Kousuke; Kurosawa, Shunsuke; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-12-01

    Eu doped CaF2/Li3AlF6 eutectics were grown by ?-PD method. The directionally solidified eutectic with well-aligned 600 nm diameter Eu:CaF2 scintillator fibers surrounded with Li3AlF6 was prepared. The grown eutectics showed an emission peak at 422 nm ascribed to Eu2+ 4f-5d transition from Eu:CaF2 scintillation fiber. Li concentration in the Eu:CaF2-Li3AlF6 eutectic is around 0.038 mol/cm3,which is two times higher than that of LiCaAlF6 single crystal (0.016 mol/cm3). The light yield of Eu:CaF2-Li3AlF6 eutectic was around 7000 ph/neutron. The decay time was about 550 ns (89%) and 1450 ns (11%).

  12. Lead-Bismuth-Eutectic Spallation Neutron Source for Nuclear Transmuter Y. Gohar, J. Herceg, L Krajtl, D. Pointer, J. Saiveau, T. Sofu, and P. Finck

    E-print Network

    McDonald, Kirk

    Lead-Bismuth-Eutectic Spallation Neutron Source for Nuclear Transmuter Y. Gohar, J. Herceg, L South Cass Avenue Argonne, IL 60439 Abstract A lead-bismuth eutectic (LBE) spallation target design in the target window to enhance its operating life. I. Introduction A lead-bismuth eutectic (LBE) spallation

  13. Solvent Fractionation of Lignin

    SciTech Connect

    Chatterjee, Sabornie; Saito, Tomonori

    2014-01-01

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. The major issues for the commercial production of value added high performance lignin products are lignin s physical and chemical heterogenities. To overcome these problems, a variety of procedures have been developed to produce pure lignin suitable for high performace applications such as lignin-derived carbon materials. However, most of the isolation procedures affect lignin s properties and structure. In this chapter, a short review of the effect of solvent fractionation on lignin s properties and structure is presented.

  14. Solvent Blending Strategy to Upgrade MCU CSSX Solvent to Equivalent Next-Generation CSSX Solvent

    SciTech Connect

    Delmau, Laetitia Helene; Moyer, Bruce A

    2012-12-01

    The results of the present study have validated an equal-volume blending strategy for upgrading freshly prepared CSSX solvent to a blended solvent functionally equivalent to NG-CSSX solvent. It is shown that blending fresh CSSX solvent as currently used in MCU with an equal volume of an NG-CSSX solvent concentrate of appropriate composition yields a blended solvent composition (46.5 mM of MaxCalix, 3.5 mM of BOBCalixC6, 0.5 M of Cs-7SB, 3 mM of guanidine suppressor, and 1.5 mM of TOA in Isopar L) that exhibits equivalent batch ESS performance to that of the NG-CSSX solvent containing 50 mM of MaxCalix, 0.5 M of Cs-7SB, and 3 mM of guanidine suppressor in Isopar L. The solvent blend composition is robust to third-phase formation. Results also show that a blend containing up to 60% v/v of CSSX solvent could be accommodated with minimal risk. Extraction and density data for the effect of solvent concentration mimicking diluent evaporation or over-dilution of the equal-volume blended solvent are also given, providing input for setting operational limits. Given that the experiments employed all pristine chemicals, the results do not qualify a blended solvent starting with actual used MCU solvent, which can be expected to have undergone some degree of degradation. Consequently, further work should be considered to evaluate this risk and implement appropriate remediation if needed.

  15. Free energy change of off-eutectic binary alloys on solidification

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.

    1991-01-01

    A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.

  16. Solidification and microstructures of binary ice-I/hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Kirby, S.H.; Rieck, K.D.; Stern, L.A.

    2007-01-01

    The microstructures of two-phase binary aggregates of ice-I + salt-hydrate, prepared by eutectic solidification, have been characterized by cryogenic scanning electron microscopy (CSEM). The specific binary systems studied were H2O-Na2SO4, H2O-MgSO4, H2O-NaCl, and H2O-H2SO4; these were selected based on their potential application to the study of tectonics on the Jovian moon Europa. Homogeneous liquid solutions of eutectic compositions were undercooled modestly (??T - 1-5 ??C); similarly cooled crystalline seeds of the same composition were added to circumvent the thermodynamic barrier to nucleation and to control eutectic growth under (approximately) isothermal conditions. CSEM revealed classic eutectic solidification microstructures with the hydrate phase forming continuous lamellae, discontinuous lamellae, or forming the matrix around rods of ice-I, depending on the volume fractions of the phases and their entropy of dissolving and forming a homogeneous aqueous solution. We quantify aspects of the solidification behavior and microstructures for each system and, with these data articulate anticipated effects of the microstructure on the mechanical responses of the materials.

  17. Use of Eutectic Fixed Points to Characterize a Spectrometer for Earth Observations

    NASA Astrophysics Data System (ADS)

    Salim, Saber G. R.; Fox, Nigel P.; Woolliams, Emma R.; Winkler, Rainer; Pegrum, Heather M.; Sun, Tong; Grattan, Ken T. V.

    2007-12-01

    A small palm-sized, reference spectrometer, mounted on a remote-controlled model helicopter is being developed and tested by the National Physical Laboratory (NPL) in conjunction with City University, London. The developed system will be used as a key element for field vicarious calibration of optical earth observation systems in the visible-near infrared (VNIR) region. The spectrometer is hand held, low weight, and uses a photodiode array. It has good stray light rejection and wide spectral coverage, allowing simultaneous measurements from 400 to 900 nm. The spectrometer is traceable to NPL’s primary standard cryogenic radiometer via a high-temperature metal-carbon eutectic fixed-point blackbody. Once the fixed-point temperature has been determined (using filter radiometry), the eutectic provides a high emissivity and high stability source of known spectral radiance over the emitted spectral range. All wavelength channels of the spectrometer can be calibrated simultaneously using the eutectic transition without the need for additional instrumentation. The spectrometer itself has been characterized for stray light performance and wavelength accuracy. Its long-term and transportation stability has been proven in an experiment that determined the “World’s Bluest Sky”—a process that involved 56 flights, covering 100,000 km in 72 days. This vicarious calibration methodology using a eutectic standard is presented alongside the preliminary results of an evaluation study of the spectrometer characteristics.

  18. Evaluation of magnesium-aluminum eutectic to improve combustion efficiency in low burning rate propellants

    NASA Technical Reports Server (NTRS)

    Northam, B. G.; Sullivan, E. M.

    1973-01-01

    A previous investigation indicated that combustion efficiency of low burning-rate propellants could be improved if the aluminum fuel was replaced by aluminum particles coated with a magnesium-aluminum eutectic alloy (ALCAL). The purpose of the present investigation was to evaluate the possibility of improving the combustion efficiency of these propellants by admixing the eutectic with the aluminum rather than coating the aluminum. Tests of three propellants similar in every respect except for the metal fuel were conducted in test motors with 4.54 kg (10 lbm) of propellant. The first propellant used aluminum fuel; the second contained aluminum admixed with magnesium-aluminum eutectic; the third used ALCAL. The test results show the the admixed fuel gave better low burning-rate combustion efficiency than the other two. The test results also showed that the ALCAL was deficient in that much, if not all, of the coating material could be found as the fine particles in a bimodal mix of aluminum and eutectic. The combustion efficiency of low burning-rate aluminized propellants can be significantly improved by mixing a small amount of magnesium-aluminum alloy with the aluminum fuel.

  19. Mechanical Properties and Fracture Behavior of Directionally Solidified NiAl-V Eutectic Composites

    NASA Astrophysics Data System (ADS)

    Milenkovic, Srdjan; Caram, Rubens

    2015-02-01

    Directional solidification of eutectic alloys has been recognized as promising technique for producing in situ composite materials exhibiting balance of properties. Therefore, an in situ NiAl-V eutectic composite has been successfully directionally solidified using Bridgman technique. The mechanical behavior of the composite including fracture resistance, microhardness, and compressive properties at room and elevated temperatures was investigated. Damage evolution and fracture characteristics were also discussed. The obtained results indicate that the NiAl-V eutectic retains high yield strength up to 1073 K (800 °C), above which there is a rapid decrease in strength. Its yield strength is higher than that of binary NiAl and most of the NiAl-based eutectics. The exhibited fracture toughness of 28.5 MPa?m is the highest of all other NiAl-based systems investigated so far. The material exhibited brittle fracture behavior of transgranular type and all observations pointed out that the main fracture micromechanism was cleavage.

  20. MEASUREMENTS OF SPECIFIC ELECTRICAL CONTACT RESISTANCE BETWEEN SIC AND LEAD-LITHIUM EUTECTIC ALLOY

    E-print Network

    Abdou, Mohamed

    candidate material for flow channel inserts for the dual coolant blanket concept. Here, the total electricalMEASUREMENTS OF SPECIFIC ELECTRICAL CONTACT RESISTANCE BETWEEN SIC AND LEAD-LITHIUM EUTECTIC ALLOY purposes, the electrical properties of an FCI can be based on the intrinsic electrical conductivity

  1. Microstructure of Czochralski-grown Si-TaSi 2 eutectic composites

    NASA Astrophysics Data System (ADS)

    Ditchek, B. M.; Hefter, J.; Middleton, T. R.; Pelleg, J.

    1990-05-01

    The effects of forced convection, orientation of the Si matrix and a 1300°C anneal on the rod-like microstructure of a Si-TaSi 2 semiconductor-metal eutectic grown by Czochralski crystal growth methods were studied. Analysis of the rod density, the distribution of the localized rod density and rod shape was performed using an automated, scanning electron microscope image analysis technique. Czochralski growth was found to lead to transverse wafers with localized rod density variations distributed in a spiral-like pattern analogous to the distribution of dopants found in transverse wafers of Czochralski-grown semiconductor crystals. The magnitude of the seed and crucible rotation rates affected the extent and position of rod density variations. At high rotation rates, portions of a wafer were found to have off-eutectic, Si-rich cellular structures. Finally, the eutectic microstructure was found to be stable at high temperatures. Although a 1300°C-24 h anneal did cause a reduction in the aspect ratio of the rod cross-section, no coarsening of the eutectic structure was observed.

  2. Banding due to temperature oscillations in the unidirectional solidification of eutectic alloys

    NASA Technical Reports Server (NTRS)

    Kidron, A.

    1972-01-01

    Banding observed in unidirectional solidification of eutectic alloys is shown to be due to melting back of the freezing interface because of oscillations in the temperature of the furnace. General theoretical criteria as to the amplitude and frequency of the permissible temperature oscillations are given to ensure that banding will not occur.

  3. A New Analytical Approach to Predict Spacing Selection in Lamellar and Rod Eutectic Systems

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Stefanescu, Doru M.

    2003-01-01

    The Jackson and Hunt (JH) theory has been modified to relax the assumption of isothermal solid liquid interface used in their treatment. Based on the predictions of this modified theory, the traditional definitions of regular and irregular eutectics are revised. For regular eutectics, the new model identifies a range of spacing within the limits defined by the minimum undercooling of the a and beta phases. For the irregular Al-Si eutectic system, two different spacing selection mechanisms were identified: (1) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda (sub t); (2) the average spacing (lambda (sub av) greater than lambda (sub t) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model, a semiempirical expression has been developed to account for the influence of the temperature gradient, which is dominant in the irregular Al-Si system. The behavior of the Fe-Fe3C eutectic is also discussed. The theoretical calculations have been found to be in good agreement with the published experimental measurements.

  4. A New Analytical Approach to Predict Spacing Selection in Lamellar and Rod Eutectic Systems

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Stefanescu, D. M.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Jackson and Hunt (JH) theory has been modified to relax the assumption of isothermal solid/liquid interface(SLI) used in their treatment. Based on the predictions of this modified theory the traditional definitions of regular and irregular eutectics are revised. For regular eutectics the new model identifies a range of spacing within the limits defined by the minimum undercooling of the alpha and beta phase. For the irregular Al-Si eutectic system two different spacing selection mechanisms were identified: a) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda(sub I); b) the average spacing (lambda(sub av) greater than lambda(sub I)) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model a semiempirical expression has been developed to account for the influence of the temperature gradient, which is dominant in the irregular Al-Si system. The behavior of the Fe-Fe3C eutectic is also discussed The theoretical calculations have been found to be in good agreement with the published experimental measurements.

  5. Critical temperature of the leadbismuth eutectic (LBE) alloy Abdul-Majeed Azad *

    E-print Network

    Azad, Abdul-Majeed

    ­52 www.elsevier.com/locate/jnucmat #12;etc. On the other hand metals such as Bi (melting point = 544 K; boiling point = 2022 K) and Pb (melting point = 600 K; boiling point = 1837 K) as well as the Pb­Bi eutectic alloy (LBE, melting point = 396 K; boil- ing point = 1943 K) have been serious contenders for use

  6. A novel LiCl-BaCl2:Eu2+ eutectic scintillator for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Lukosi, Eric D.; Zhuravleva, Mariya; Lindsey, Adam C.; Melcher, Charles L.

    2015-10-01

    A natLiCl-BaCl2:Eu2+ eutectic scintillator was synthesized by the vertical Bridgman method aiming at the application of thermal neutron detection. The molar ratio of LiCl and BaCl2 was 75.1/24.9, which corresponds to the eutectic composition in the LiCl-BaCl2 system. The grown eutectic showed a periodic microstructure of BaCl2:Eu2+ and LiCl phases with 2-3 ?m thickness. The ?-particle induced radioluminescence spectrum of the scintillator showed an intense emission peak at 406 nm due to the Eu2+ 5d1?4f emission from the BaCl2:Eu2+ phase and an additional weak emission peak at 526 nm. The scintillation decay time was 412 ns. LiCl-BaCl2:Eu2+ eutectic samples exhibited non-correlated neutron detection efficiency and light yield as a function of crystal length, suggesting material non-uniformities within the boule. The relative light yield was equal to or greater than that of Nucsafe lithium glass. Gamma-ray exposures indicate that gamma/neutron threshold discrimination for higher energy gamma-rays will be limited.

  7. Experimental investigation of forced-convection heat-transfer characteristics of lead-bismuth eutectic

    NASA Technical Reports Server (NTRS)

    Lubarsky, Bernard

    1951-01-01

    The forced-convection heat-transfer characteristics of lead-bismuth eutectic were experimentally investigated. Experimental values of Nusselt number for lead-bismuth fell considerably below predicted values. The addition of a wetting agent did not change the heat transfer characteristics.

  8. The binary eutectic of NSAIDS and two-phase liquid system for enhanced membrane permeation.

    PubMed

    Yuan, Xudong; Capomacchia, A C

    2005-01-01

    The eutectic properties of binary mixtures of some nonsteroidal anti-inflammatory drugs (NSAIDs) with ibuprofen were studied using differential scanning calorimetry (DSC) and phase equilibrium diagrams. The melting points of selected NSAIDs were significantly depressed due to binary eutectic formation with ibuprofen. Ketoprofen and ibuprofen were selected to study the effect of eutectic formation on membrane permeation using Franz diffusion cells and snake skin as the model membrane. The presence of aqueous isopropyl alcohol (IPA) was necessary to completely transform the solid drugs into an oily state at ambient temperature. As much as the 99.6% of ibuprofen and the 88.8% of ketoprofen added were found in the oily phase of the two-phase liquid system formed when aqueous IPA was added to the eutectic mixture. Due to the high drug concentration in the oily phase, and maximum thermodynamic activity, the two-phase liquid system showed enhanced membrane permeation rates of ibuprofen (37.5 microg/cm2/hr) and ketoprofen (33.4 microg/cm2/hr) compared to other reference preparations used. PMID:15776808

  9. Phase field analysis of Eutectic Breakdown J. R. Green, P. K. Jimack, A. M. Mullis

    E-print Network

    Jimack, Peter

    Phase field analysis of Eutectic Breakdown J. R. Green, P. K. Jimack, A. M. Mullis December 18, 2006 Abstract In this paper an isotropic multi-phase-field model is extended to in- clude the effects of anisotropy and the spontaneous nucleation of an absent phase. This model is derived and compared against

  10. Experimental Investigation of Evaporation Behavior of Polonium and Rare-Earth Elements in Lead-Bismuth Eutectic Pool

    SciTech Connect

    Shuji Ohno; Shinya Miyahara; Yuji Kurata; Ryoei Katsura; Shigeru Yoshida

    2006-07-01

    Equilibrium evaporation behavior was experimentally investigated for polonium ({sup 210}Po) in liquid lead-bismuth eutectic (LBE) and for rare-earth elements gadolinium (Gd) and europium (Eu) in LBE to understand and clarify the transfer behavior of toxic impurities from LBE coolant to a gas phase. The experiments utilized the 'transpiration method' in which saturated vapor in an isothermal evaporation pot was transported by inert carrier gas and collected outside of the pot. While the previous paper ICONE12-49111 has already reported the evaporation behavior of LBE and of tellurium in LBE, this paper summarizes the outlines and the results of experiments for important impurity materials {sup 210}Po and rare-earth elements which are accumulated in liquid LBE as activation products and spallation products. In the experiments for rare-earth elements, non-radioactive isotope was used. The LBE pool is about 330-670 g in weight and has a surface area of 4 cm x 14 cm. {sup 210}Po experiments were carried out with a smaller test apparatus and radioactive {sup 210}Po produced through neutron irradiation of LBE in the Japan Materials Testing Reactor (JMTR). We obtained fundamental and instructive evaporation data such as vapor concentration, partial vapor pressure of {sup 210}Po in the gas phase, and gas-liquid equilibrium partition coefficients of the impurities in LBE under the temperature condition between 450 and 750 deg. C. The {sup 210}Po test revealed that Po had characteristics to be retained in LBE but was still more volatile than LBE solvent. A part of Eu tests implied high volatility of rare-earth elements comparable to that of Po. This tendency is possibly related to the local enrichment of the solute near the pool surface and needs to be investigated more. These results are useful and indispensable for the evaluation of radioactive materials transfer to the gas phase in LBE-cooled nuclear systems. (authors)

  11. On the nature of eutectic carbides in Cr-Ni white cast irons

    NASA Astrophysics Data System (ADS)

    Laird, G.; Nielsen, R. L.; MacMillan, N. H.

    1991-08-01

    The mechanical and tribological properties of white cast irons are strongly dependent on whether they contain M7C3 or M3C carbides (M = Fe, Cr, etc.). In an effort to improve the wear resistance of such materials, the United States Bureau of Mines has studied the effects of adding 0.3 to 2.3 wt pct (throughout) Si to hypoeutectic irons containing approximately 8.5 pct Cr and 6.0 pct Ni. The eutectic carbides formed were identified by electron microprobe analysis, X-ray diffraction, and scanning electron (SEM) and optical microscopies. In addition, differential thermal analysis (DTA) was used to study the process of solidification. At Si contents of 0.3 and 1.2 pct, the eutectic carbides exhibited a duplex structure, consisting of cores of M7C3 surrounded by shells of M3C. Additionally, the microstructure contained ledeburite (M3C + ?Fe (austenite)). At the higher Si content of 1.6 pct, the eutectic carbides consisted entirely of M7C3, and some ledeburite remained. Last, when the Si content was raised to 2.3 pct, the eutectic carbides again consisted entirely of M7C3, but ledeburite was no longer formed. These observations can be explained in terms of the effects of Si and, to a lesser extent, of Ni on the shape of the liquidus surface of the metastable Fe-Cr-C phase diagram. The addition of Si reduces the roles played by the four-phase class II p reaction L + M7C3 ? M3C + ?Fe and the ledeburitic eutectic reaction L ? M3C + ?Fe in the overall process of solidification.

  12. Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Goldsby, D.L.; Durham, W.B.; Kirby, S.H.

    2011-01-01

    Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ???0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ???6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates. Copyright ?? 2011 by the American Geophysical Union.

  13. Reliability of Au-Ge and Au-Si Eutectic Solder Alloys for High-Temperature Electronics

    NASA Astrophysics Data System (ADS)

    Chidambaram, Vivek; Yeung, Ho Beng; Shan, Gao

    2012-08-01

    High-temperature electronics will facilitate deeper drilling, accessing harder-to-reach fossil fuels in oil and gas industry. A key requirement is reliability under harsh conditions for a minimum continuous operating time of 500 h at 300°C. Eutectic solder alloys are generally favored due to their excellent fatigue resistance. Performance of Au-Ge and Au-Si eutectic solder alloys at 300°C up to 500 h has been evaluated. Nanoindentation results confirm the loss of strength of Au-Ge and Au-Si eutectic solder alloys during thermal aging at 300°C, as a result of grain coarsening. However, the pace at which the Au-Ge eutectic alloy loses its strength is much slower when compared with Au-Si eutectic alloy. The interfacial reactions between these eutectic solder alloys and the underbump metallization (UBM), i.e., electroless nickel immersion gold (ENIG) UBM and Cu/Au UBM, have been extensively studied. Spalling of Au3Cu intermetallic compound is observed at the interface between Au-Ge eutectic solder and the Cu/Au UBM, when aged at 300°C for 500 h, while the consumption of ENIG UBM is nominal. Unlike the Au-Si solder joint, hot ball shear testing at high temperature confirmed that the Au-Ge joint on ENIG UBM, when aged at 300°C for 500 h, could still comply with the minimum qualifying bump shear strength based on the UBM dimension used in this work. Thus, it has been determined that, among these two binary eutectic alloys, Au-Ge eutectic alloy could fulfill the minimum requirement specified by the oil and gas exploration industry.

  14. Refinement of Eutectic Si in High Purity Al-5Si Alloys with Combined Ca and P Additions

    NASA Astrophysics Data System (ADS)

    Ludwig, Thomas Hartmut; Li, Jiehua; Schaffer, Paul Louis; Schumacher, Peter; Arnberg, Lars

    2015-01-01

    The effects of combined additions of Ca and P on the eutectic Si in a series of high purity Al-5 wt pct Si alloys have been investigated with the entrained droplet technique and complementary sets of conventional castings. Differential scanning calorimetry (DSC) and thermal analysis were used to investigate the eutectic droplet undercooling and the recalescence undercooling, respectively. Optical microscopy, SEM, EPMA, and TEM were employed to characterize the resultant microstructures. It was found that 250 ppm Ca addition to Al-5Si wt pct alloys with higher P contents leads to a significant increase of the eutectic droplet undercooling. For low or moderate cooling rates, the TEM results underline that Ca additions do not promote Si twinning. Thus, a higher twin density cannot be expected in Ca containing Al-Si alloys after, e.g., sand casting. Consequently, a refinement of the eutectic Si from coarse flake-like to fine plate-like structure, rather than a modification of the eutectic Si to a fibrous morphology, was achieved. This strongly indicates that the main purpose of Ca additions is to counteract the coarsening effect of the eutectic Si imposed by higher P concentrations. Significant multiple Si twinning was observed in melt-spun condition; however, this can be attributed to the higher cooling rate. After DSC heating (slow cooling), most of Si twins disappeared. Thus, the well-accepted impurity-induced twinning mechanism may be not valid in the case of Ca addition. The possible refinement mechanisms were discussed in terms of nucleation and growth of eutectic Si. We propose that the pre-eutectic Al2Si2Ca phase and preferential formation of Ca3P2 deactivate impurity particles, most likely AlP, poisoning the nucleation sites for eutectic Si.

  15. Supercritical multicomponent solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (inventors)

    1983-01-01

    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  16. COMPUTER AIDED SOLVENT DESIGN FOR THE ENVIRONMENT

    EPA Science Inventory

    Solvent substitution is an effective and useful means of eliminating the use of harmful solvents, but finding substitute solvents which are less harmful and as effective as currently used solvents presents significant difficulties. Solvent substitution is a form of reverse engin...

  17. Solvent degradation products in nuclear fuel processing solvents

    SciTech Connect

    Shook, H.E. Jr.

    1988-06-01

    The Savannah River Plant uses a modified Purex process to recover enriched uranium and separate fission products. This process uses 7.5% tri-n-butyl phosphate (TBP) dissolved in normal paraffin hydrocarbons for the solvent extraction of a nitric acid solution containing the materials to be separated. Periodic problems in product decontamination result from solvent degradation. A study to improve process efficiency has identified certain solvent degradation products and suggested mitigation measures. Undecanoic acid, lauric acid, and tridecanoic acid were tentatively identified as diluent degradation products in recycle solvent. These long-chain organic acids affect phase separation and lead to low decontamination factors. Solid phase extraction (SPE) was used to concentrate the organic acids in solvent prior to analysis by high performance liquid chromatography (HPLC). SPE and HPLC methods were optimized in this work for analysis of decanoic acid, undecanoic acid, and lauric acid in solvent. Accelerated solvent degradation studies with 7.5% TBP in normal paraffin hydrocarbons showed that long-chain organic acids and long-chain alkyl butyl phosphoric acids are formed by reactions with nitric acid. Degradation of both tributyl phosphate and hydrocarbon can be minimized with purified normal paraffin replacing the standard grade presently used. 12 refs., 1 fig., 3 tabs.

  18. Cesium Concentration in MCU Solvent

    SciTech Connect

    Walker, D

    2006-01-18

    During Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) operations, Cs-137 concentrations in product streams will vary depending on the location in the process and on the recent process conditions. Calculations of cesium concentrations under a variety of operating conditions reveal the following: (1) Under nominal operations with salt solution feed containing 1.1 Ci Cs-137 per gallon, the maximum Cs-137 concentration in the process will occur in the strip effluent (SE) and equal 15-16.5 Ci/gal. (2) Under these conditions, the majority of the solvent will contain 0.005 to 0.01 Ci/gal, with a limited portion of the solvent in the contactor stages containing {approx}4 Ci/gal. (3) When operating conditions yield product near 0.1 Ci Cs-137/gal in the decontaminated salt solution (DSS), the SE cesium concentration will be the same or lower than in nominal operations, but majority of the stripped solvent will increase to {approx}2-3 Ci/gal. (4) Deviations in strip and waste stream flow rates cause the largest variations in cesium content: (a) If strip flow rates deviate by -30% of nominal, the SE will contain {approx}23 Ci/gal, although the cesium content of the solvent will increase to only 0.03 Ci/gal; (b) If strip flow rate deviates by -77% (i.e., 23% of nominal), the SE will contain 54 Ci/gal and solvent will contain 1.65 Ci/gal. At this point, the product DSS will just reach the limit of 0.1 Ci/gal, causing the DSS gamma monitors to alarm; and (c) Moderate (+10 to +30%) deviations in waste flow rate cause approximately proportional increases in the SE and solvent cesium concentrations. Recovery from a process failure due to poor cesium stripping can achieve any low cesium concentration required. Passing the solvent back through the contactors while recycling DSS product will produce a {approx}70% reduction during one pass through the contactors (assuming the stripping D value is no worse than 0.36). If the solvent is returned to the solvent hold tank (containing additional, unstripped solvent), 3.3 tank turnovers will reduce the cesium content by an order of magnitude. Under these conditions, the solvent cesium concentration can be reduced to <0.03 Ci/gal during 8 hours at nominal solvent flow rates (2.8 gpm).

  19. Automated detection and characterization of microstructural features: application to eutectic particles in single crystal Ni-based superalloys

    NASA Astrophysics Data System (ADS)

    Tschopp, M. A.; Groeber, M. A.; Fahringer, R.; Simmons, J. P.; Rosenberger, A. H.; Woodward, C.

    2010-03-01

    Serial sectioning methods continue to produce an abundant amount of image data for quantifying the three-dimensional nature of material microstructures. Here, we discuss a methodology to automate detecting and characterizing eutectic particles taken from serial images of a production turbine blade made of a heat-treated single crystal Ni-based superalloy (PWA 1484). This method includes two important steps for unassisted eutectic particle characterization: automatically identifying a seed point within each particle and segmenting the particle using a region growing algorithm with an automated stop point. Once detected, the segmented eutectic particles are used to calculate microstructural statistics for characterizing and reconstructing statistically representative synthetic microstructures for single crystal Ni-based superalloys. The significance of this work is its ability to automate characterization for analysing the 3D nature of eutectic particles.

  20. Peculiarities of aluminium interaction with Ga85In15 eutectics as evidenced by X-ray synchrotron diagnostics

    NASA Astrophysics Data System (ADS)

    Nizovskii, A. I.; Bukhtiyarov, V. I.; Veligzhanin, A. A.; Zubavichus, Y. V.; Murzin, V. Y.; Chernyshov, A. A.; Khlebnikov, A. S.; Senin, R. A.; Kazakov, I. V.; Vorobyov, A. A.

    2012-09-01

    A set of X-ray synchrotron techniques, viz., diffraction, EXAFS/XANES spectroscopy and microtomography, is applied to elucidate microstructural changes in a technical aluminium alloy treated with GaIn eutectics. Such a treatment gives rise simultaneously to a prominent enbrittlement of the material and its activation towards reaction with water with the hydrogen evolution. The latter fact makes the activated aluminium a promising energy carrier for the small-scale hydrogen energetics. It is demonstrated that both phenomena are caused by the fast diffusion of the eutectics along intergrain boundaries and microcracks throughout the bulk of polycrystalline Al. The diffusion is promoted by the formation of (Al-Ga-In) solid solution in near-surface regions of Al crystalline grains. The progressive loss of activity of aluminium treated with GaIn eutectics upon a prolonged storage in humid air is due to the decomposition of the eutectics accompanied by the segregation of indium metal and partial gallium oxidation.

  1. Swelling of lignites in organic solvents

    SciTech Connect

    R.G. Makitra; D.V. Bryk

    2008-10-15

    Data on the swelling of Turkish lignites can be summarized using linear multiparameter equations that take into account various properties of solvents. Factors responsible for the amounts of absorbed solvents are the basicity and cohesion energy density of the solvents.

  2. Deep learning.

    PubMed

    LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey

    2015-05-28

    Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. PMID:26017442

  3. Deep learning

    NASA Astrophysics Data System (ADS)

    Lecun, Yann; Bengio, Yoshua; Hinton, Geoffrey

    2015-05-01

    Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

  4. Electronic absorption spectra of U3+ and U4+ in molten LiCl-RbCl eutectic

    NASA Astrophysics Data System (ADS)

    Nagai, T.; Uehara, A.; Fujii, T.; Sato, N.; Yamana, H.

    2010-03-01

    In the non-aqueous reprocessing process of spent nuclear fuels by the pyro-electrochemical method, a spent fuel is dissolved into molten LiCl-KCl and NaCl-CsCl eutectics and dissolved uranium and plutonium are collected as either metal or oxide. However, the binary alkali chloride mixture with the lowest melting point is the LiCl-RbCl eutectic. In this study, electronic absorption spectra of U3+ and U4+ in molten LiCl-RbCl eutectic at various temperatures between 673 and 973 K were measured by the UV/Vis/NIR spectrophotometry. We confirmed that these spectra were similar to those in molten LiCl-KCl and NaCl-CsCl eutectics. The sensitive absorption bands of U4+ in LiCl-RbCl eutectic were found at 22000, 16500, 14900, 8600, and 4950 cm-1. The large absorption bands of U4+ over 25000 cm-1 increased with increasing melt temperature, while absorption peaks at 15500-4000 cm-1 decreased. The large absorption bands of U3+ in LiCl-RbCl eutectic were observed over 14000 cm-1. The sensitive absorption bands of U3+ at Vis/NIR region were found at 13300, 11500-11200, 9800-9400, and 8250 cm-1, and these peaks decreased with increasing temperature.

  5. Superalloy eutectic composites with the VI A refractory elements - Cr, Mo and W

    NASA Technical Reports Server (NTRS)

    Jackson, M. R.; Walter, J. L.

    1976-01-01

    The paper discusses the phase equilibria for the ternary systems NiAlCr, NiAlMo, and NiAlW, with emphasis on reactions from the liquid state, although some of the solid state reactions are mentioned. It is shown that eutectics in the Ni-Al-refractory element (Cr, Mo, W) systems offer the potential for high-temperature turbine blade and vane applications. In particular, it is shown that the phase diagrams of these ternary systems can be manipulated to alter the eutectic phases and morphologies by simple quaternary alloying modifications. The resultant combination of chemistry and structure can be controlled to ensure a behavior that is well-matched to hot section component materials requirements.

  6. Experimental Evidence for a Zigzag Bifurcation in Bulk Lamellar Eutectic Growth

    NASA Astrophysics Data System (ADS)

    Akamatsu, Silvère; Bottin-Rousseau, Sabine; Faivre, Gabriel

    2004-10-01

    We present real-time observations of the directional-solidification patterns of a transparent nonfaceted eutectic alloy (CBr4-C2Cl6) in bulk samples. The growth front of the two-phase solid is observed from the top through the liquid and the glass wall of the container with a long-distance microscope. We show that, in near-eutectic CBr4-C2Cl6 alloys, the upper stability limit of the stationary lamellar patterns is due to a zigzag bifurcation, which occurs at an interlamellar spacing of about 0.85?m, where ?m is the minimum-undercooling spacing. The zigzag patterns undergo a lamella breakup instability leading to the creation of new lamellae at about 1.1?m. On the other hand, the lower stability limit of the stationary patterns is due to the same instability as in thin samples, namely, a lamella termination instability that occurs at about 0.7?m.

  7. Thermoelectric properties of Bi2Te3-PbTe pseudo binary near the eutectic composition.

    PubMed

    Jung, Kyooho; Jang, Ho Won; Kang, Chong-Yun; Yoo, Myong-Jae; Choi, Won Chel; Kim, Jin-Sang

    2012-04-01

    (Bi2Te3)(1-x)(PbTe)(x) binary systems near eutectic composition were prepared by melting of elemental metals and a sequential water quenching process and their microstructures and thermoelectric properties were investigated. Multiple phases such as Bi2Te3, BiPbTe and PbTe were observed due to phase separation when the composition x was higher than the eutectic point. Also the electrical conduction type of the alloys converted from p-type to n-type in the phase separated alloys. The lattice thermal conductivities in the phase-separated alloys are lower than those in alloys without phase separation, attributable to increased boundary scattering. PMID:22849153

  8. TEM/HREM structural characterization of directionally solidified GaAs-CrAs eutectic crystals

    SciTech Connect

    Ruvimov, S.; Liliental-Weber, Z.; Swider, W.; Washburn, J.; Holmes, D.E.

    1996-12-31

    Conventional and high resolution electron microscopy have been applied to characterize the microstructure of the CrAs-GaAs eutectic. The CrAs-GaAs eutectic crystals were directionally solidified by the Czochralski method in order to produce an ordered array of CrAs rods embedded in a GaAs matrix. The CrAs rods of 2--3 {micro}m in diameter align parallel to the growth axis of the ingot. Where the GaAs matrix is found to contain structural defects, the CrAs rods are effectively defect-free. The CrAs has an orthorhombic structure with the parameters a = 3.5 {+-} 0.1 {angstrom}, b = 6.2 {+-} 0.1 {angstrom}, c = 5.7 {+-} 0.1 {angstrom}. The c-axis is close to the direction of solidification.

  9. Development of Ti/Ti{sub 3}Sn functionally gradient material produced by eutectic bonding method

    SciTech Connect

    Kirihara, S.; Takeda, M.; Tsujimoto, T.

    1996-07-15

    Although many materials which have a single function have been developed, future needs are anticipated to include materials which have various functions. A functionally gradient material (FGM) which has characteristics of two different materials is a promising candidate for multi-functional material. The present methods for production of FGM, however, are very complicated and costly. In this study the authors answer the serious problem of high production cost by fabricating the FGM by a eutectic bonding method. This fabrication method includes structural control of FGM by changing the cooling process. They describe Ti/Ti{sub 3}Sn FGM obtained by the eutectic bonding method, and tell how the structure of its composition gradient part is changed by controlling the cooling process.

  10. Deep Lysimeter

    DOEpatents

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2004-06-01

    A deep lysimeter including a hollow vessel having a chamber, a fill conduit extending into the chamber through apertures, a semi-permeable member mounted on the vessel and in fluid communication with the fill conduit, and a line connection for retrieving the lysimeter.

  11. Selective Au-Si eutectic bonding for Si-based MEMS applications

    SciTech Connect

    Lee, A.; Lehew, S.; Yu, C.

    1995-05-22

    A novel method of fabricating three-dimensional silicon micro electromechanical systems (MEMS) is presented, using selectivity thin film deposited Au-Si eutectic bond pads. Utilizing this process, complicated structures such as microgrippers and microchannels are fabricated. Bond strengths are higher than the silicon fracture strength and the bond areas can be localized and aligned to the processed wafer. The process and the applications are described in this paper.

  12. Spectroelectrochemical Study of Neptunium in Molten LiCl-KCl Eutectic

    NASA Astrophysics Data System (ADS)

    Polovov, Ilya B.; Sharrad, Clint A.; May, Iain; Volkovich, Vladimir A.; Vasin, Boris D.

    2007-12-01

    Neptunium behaviour in an LiCl-KCl eutectic melt at 723 K was studied using spectroelectrochemistry. Cathodic reduction of neptunium(IV)-containing melts led to the formation of Np(III) ions and then neptunium metal. Electronic absorption spectra of Np(IV) and Np(III) chloro species in LiCl-KCl melt were recorded and resolved into individual Gaussian bands. The nature of neptunium complex ions in the melt is discussed.

  13. Influence of freezing rate changes of MnBi-Bi eutectic microstructure. [effects of space processing

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Doddi, K.; Nair, M.; Larson, D. J.

    1983-01-01

    In an attempt to explain the influence of space processing on the microstructure of MnBi-Bi, eutectic mixtures were directionally solidified with a sudden change of translation rate. The MnBi fiber spacing was able to adapt to the changing freezing rate as predicted by heat transfer computations. Thus the microstructure adapts more rapidly than the freezing rate could be changed in the present experiments.

  14. Comparison of Co-C Eutectic-Point Cells for Thermocouple Calibration Between SP and NMIJ

    NASA Astrophysics Data System (ADS)

    Ogura, H.; Holmsten, M.; Klason, P.

    2015-03-01

    As recently reported, the metal-carbon eutectic points seem to be useful as practical reference points for calibrating thermocouples. The melting temperature of the cobalt-carbon eutectic point (Co-C, is an ideal solution for a reference point being at approximately the middle between the freezing point of copper and the melting point of palladium . In this study, a comparison of reference Co-C cells used for thermocouple calibration service was performed between the Technical Institute of Sweden (SP) and the National Metrology Institute of Japan (NMIJ) by means of two circulating Pt/Pd thermocouples and one circulating Co-C cell in order to investigate the reliability of thermocouple calibration at the Co-C eutectic point. The reference Co-C cell at SP was designed and constructed in the National Physical Laboratory (NPL), and provided to SP, while the reference Co-C cell at NMIJ as well as the circulating cell was designed and constructed at NMIJ. The melting temperature of the reference Co-C cells at SP and NMIJ were evaluated by using the calibrated radiation thermometers at NPL and NMIJ, respectively, prior to the circulation of the thermocouples and the cell between SP and NMIJ. The temperature difference between the reference cells of SP and NMIJ, as measured by means of the circulating thermocouples, was found to be within , while that measured by means of the circulating cell was found to be within . The temperature of reference cells at SP and NMIJ was found to agree within an expanded uncertainty in spite of different temperature traceability chains. This means that the calibration of thermocouples at the Co-C eutectic point was sufficiently reliable.

  15. Diffusion welding of a directionally solidified gamma/gamma prime - delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1977-01-01

    Hot-press diffusion welding parameters were developed for a directionally solidified, gamma/gamma prime-delta eutectic alloy. Based on metallography, a good diffusion weld was achieved at 1100 C under 34.5 MPa (5 ksi) pressure for 1 hour. In addition, a dissimilar metal weld between gamma/gamma prime-delta and IN-100 was successfully made at 1100 C under 20.7 MPa (3 ksi) pressure for 1 hour.

  16. Deep-Sky Companions: The Secret Deep

    NASA Astrophysics Data System (ADS)

    O'Meara, Stephen James; Motta, Photographs by Mario

    2011-06-01

    Preface; Acknowledgments; 1. About this book; 2. The secret deep; Appendix A. The secret deep: basic data; Appendix B. Twenty additional secret deep objects; Appendix C. Deep-sky lists: comparison table; Appendix D. Photo credits; Index; The Secret Deep checklist.

  17. Fission product solvent extraction

    SciTech Connect

    Moyer, B.A.; Bonnesen, P.V.; Sachleben, R.A.

    1998-02-01

    Two main objectives concerning removal of fission products from high-level tank wastes will be accomplished in this project. The first objective entails the development of an acid-side Cs solvent-extraction (SX) process applicable to remediation of the sodium-bearing waste (SBW) and dissolved calcine waste (DCW) at INEEL. The second objective is to develop alkaline-side SX processes for the combined removal of Tc, Cs, and possibly Sr and for individual separation of Tc (alone or together with Sr) and Cs. These alkaline-side processes apply to tank wastes stored at Hanford, Savannah River, and Oak Ridge. This work exploits the useful properties of crown ethers and calixarenes and has shown that such compounds may be economically adapted to practical processing conditions. Potential benefits for both acid- and alkaline-side processing include order-of-magnitude concentration factors, high rejection of bulk sodium and potassium salts, and stripping with dilute (typically 10 mM) nitric acid. These benefits minimize the subsequent burden on the very expensive vitrification and storage of the high-activity waste. In the case of the SRTALK process for Tc extraction as pertechnetate anion from alkaline waste, such benefits have now been proven at the scale of a 12-stage flowsheet tested in 2-cm centrifugal contactors with a Hanford supernatant waste simulant. SRTALK employs a crown ether in a TBP-modified aliphatic kerosene diluent, is economically competitive with other applicable separation processes being considered, and has been successfully tested in batch extraction of actual Hanford double-shell slurry feed (DSSF).

  18. In-situ observations of nanoscale effects in germanium nanowire growth with ternary eutectic alloys.

    PubMed

    Biswas, Subhajit; O'Regan, Colm; Morris, Michael A; Holmes, Justin D

    2015-01-01

    Vapour-liquid-solid (VLS) techniques are popular routes for the scalable synthesis of semiconductor nanowires. In this article, in-situ electron microscopy is used to correlate the equilibrium content of ternary (Au0.75 Ag0.25 -Ge and Au0.65 Ag0.35 -Ge) metastable alloys with the kinetics, thermodynamics and diameter of Ge nanowires grown via a VLS mechanism. The shape and geometry of the heterogeneous interfaces between the liquid eutectic and solid Ge nanowires varies as a function of nanowire diameter and eutectic alloy composition. The behaviour of the faceted heterogeneous liquid-solid interface correlates with the growth kinetics of the nanowires, where the main growth facet at the solid nanowire-liquid catalyst drop contact line lengthens for faster nanowire growth kinetics. Pronounced diameter dependent growth kinetics, as inferred from liquid-solid interfacial behaviour, is apparent for the synthesised nanowires. Direct in-situ microscopy observations facilitates the comparison between the nanowire growth behaviour from ternary (Au-Ag-Ge) and binary (Au-Ge) eutectic systems. PMID:25196560

  19. Spectrophotometric and electrochemical study of neptunium ions in molten NaCl-CsCl eutectic

    NASA Astrophysics Data System (ADS)

    Uehara, Akihiro; Nagai, Takayuki; Fujii, Toshiyuki; Shirai, Osamu; Yamana, Hajimu

    2013-06-01

    The chemical oxidation states of NpO2+, Np4+ and Np3+ in NaCl-CsCl eutectic were controlled by using Cl2, O2, H2 and Ar gas mixtures, the redox behavior and electronic absorption properties of their Np ions were studied. The Np4+ was prepared from NpO2Cl by bubbling Cl2 gas into the melt in the presence of carbon rod. Np3+ was quantitatively prepared by bubbling H2-Ar gas mixture. The molar absorptivities of NpO2+, Np4+ and Np3+ were determined in molten NaCl-CsCl eutectic at 923 K and hypersensitive transitions of Np4+ and Np3+ ions were assigned. Since the polarizing ability of the cations in the NaCl-CsCl eutectic is lower than that in some other melts, it has been shown that the coordination symmetry of the Np-Cl complex is higher. In the electrochemical measurement of Np4+, the cathodic current for the reduction of Np4+ was found to be controlled by the diffusion of Np4+. The temperature dependence of the diffusion coefficient between 823 and 923 K was formulated to be lnD=-4304/T-6.172. The formal redox potential of the Np4+|Np3+ couple depended on the temperature, this dependence was formulated as ENp|Np?'=-1.313+6.210×10-4T V (vs. Cl2|Cl-).

  20. A New Analytical Approach to Predict Spacing Selection in Lamellar and Rod Eutectic Systems

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In this paper, we reexamine the Jackson and Hunt (JH) theory and relax the assumption of isothermal solid/liquid interface(SLI) used in their treatment. A modification of the term B. in the expression of the solute concentration profile is also proposed. Based on the predictions of this modified theory the traditional definitions of regular and irregular eutectics are discussed. For regular eutectics the new model identifies a range of spacing within the limits defined by the minimum undercooling of the alpha and beta phase. For the irregular Al-Si eutectic system in particular we identified two different spacing selection mechanisnis: a) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda(sub I); b) the average spacing in the microstructure (lambda(sub av) > lambda(sub I)) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model a semi-empirical expression has been developed to account for the influence of the temperature gradient. The theoretical calculations have been found to be in good agreement with the published experimental measurements.

  1. Lamellar Spacing Selection in Al-Si Eutectic System: a Theoretical Investigation

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Curreri, Peter A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    It is well known that irregular eutectics such as Al-Si and Fe-C exhibit larger lamellar spacings and undercoolings compared to the predictions made by the Jackson and Hunt (JH) theory. In this paper, we reexamine the JH theory and relax some of the assumptions used in that treatment. The modified theoretical model has enhanced capabilities to predict the lamellar spacing in both regular and irregular eutectics. For the Al-Si system in particular we identified two different spacing selection mechanisms:a) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda(sub I); b) the average spacing in the microstructure (lambda(sub av) greater than lambda(sub I)) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model a semi-empirical expression has been developed to account for the influence of the temperature gradient. Application of a Mullin and Sekerka type stability analysis for eutectics will also be presented and the results compared to the modified JH model. It will be shown that the both theoretical approaches are in good agreement with each other and also with the published experimental measurements.

  2. Improved calcium sulfate recovery from a reverse osmosis retentate using eutectic freeze crystallization.

    PubMed

    Randall, D G; Mohamed, R; Nathoo, J; Rossenrode, H; Lewis, A E

    2013-01-01

    A novel low temperature crystallization process called eutectic freeze crystallization (EFC) can produce both salt(s) and ice from a reverse osmosis (RO) stream by operating at the eutectic temperature of a solution. The EFC reject stream, which is de-supersaturated with respect to the scaling component, can subsequently be recycled back to the RO process for increased water recovery. This paper looks at the feasibility of using EFC to remove calcium sulfate from an RO retentate stream and compares the results to recovery rates at 0 and 20 °C. The results showed that there was a greater yield of calcium sulfate obtained at 0 °C as compared with 20 °C. Operation under eutectic conditions, with only a 20% ice recovery, resulted in an even greater yield of calcium sulfate (48%) when compared with yields obtained at operating temperatures of 0 and 20 °C (15% at 0 °C and 13% at 20 °C). The theoretical calcium recoveries were found to be 75 and 70% at 0 and 20 °C respectively which was higher than the experimentally determined values. The EFC process has the added advantage of producing water along with a salt. PMID:23128631

  3. SAGE--SOLVENT ALTERNATIVES GUIDE

    EPA Science Inventory

    SAGE is a comprehensive guide designed to provide pollution prevention information on solvent and process alternatives for parts cleaning and degreasing. SAGE does not recommend any ozone depleting chemicals. SAGE was developed by the Surface Cleaning Program at Research Triang...

  4. ON-SITE SOLVENT RECOVERY

    EPA Science Inventory

    This study evaluated the product quality, waste reduction/pollution prevention, and economic aspects of three technologies for onsite solvent recovery: atmospheric batch distillation, vacuum heat-pump distillation, and low-emission vapor degreasing. The atmospheric and vacuum ...

  5. RESIDUAL RISK ASSESSMENT: HALOGENATED SOLVENTS

    EPA Science Inventory

    This source category previously subjected to a technology-based standard will be examined to determine if health or ecological risks are significant enough to warrant further regulation for Halogenated Solvent Degreasing Facilities. These assessments utilize existing models and d...

  6. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing

    NASA Astrophysics Data System (ADS)

    Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Kim, In-Tae; Park, Geun-Il

    2013-06-01

    The separation characteristics of surrogate rare-earth fission products in a eutectic (LiCl-KCl) molten salt were investigated. This system is based on the eutectic salt used for the pyroprocessing treatment of used nuclear fuel (UNF). The investigation was performed using an integrated rare-earth separation apparatus comprising a precipitation reactor, a solid detachment device, and a layer separation device. To separate rare-earth fission products, a phosphate precipitation method using both Li3PO4 and K3PO4 as a precipitant was performed. The use of an equivalent phosphate precipitant composed of 0.408 molar ratio-K3PO4 and 0.592 molar ratio-Li3PO4 can preserve the original eutectic ratio, LiCl-0.592 molar ratio (or 45.2 wt%), as well as provide a high separation efficiency of over 99.5% under conditions of 550 °C and Ar sparging when using La, Nd, Ce, and Pr chlorides. The mixture of La, Nd, Ce, and Pr phosphate had a typical monoclinic (or monazite) structure, which has been proposed as a reliable host matrix for the permanent disposal of a high-level waste form. To maximize the reusability of purified eutectic waste salt after rare-earth separation, the successive rare-earth separation process, which uses both phosphate precipitation and an oxygen sparging method, were introduced and tested with eight rare-earth (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) chlorides. In the successive rare-earth separation process, the phosphate reaction was terminated within 1 h at 550 °C, and a 4-8 h oxygen sparging time were required to obtain over a 99% separation efficiency at 700-750 °C. The mixture of rare-earth precipitates separated by the successive rare-earth separation process was found to be phosphate, oxychloride, and oxide. Through the successive rare-earth separation process, the eutectic ratio of purified salt maintained its original value, and impurity content including the residual precipitant of purified salt can be minimized.

  7. X-Ray Fluorescence Solvent Detection at the Substrate-Adhesive Interface

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Evans, Kurt; Weber, Bart; Headrick, Sarah

    2005-01-01

    With environmental regulations limiting the use of volatile organic compounds, low-vapor pressure solvents have replaced traditional degreasing solvents for bond substrate preparation. When used to clean and prepare porous bond substrates such as phenolic composites, low vapor pressure solvents can penetrate deep into substrate pore networks and remain there for extended periods. Trapped solvents can interact with applied adhesives either prior to or during cure, potentially compromising bond properties. Currently, methods for characterizing solvent time-depth profiles in bond substrates are limited to bulk gravimetric or sectioning techniques. While sectioning techniques such as microtome allow construction of solvent depth profiles, their depth resolution and reliability are limited by substrate type. Sectioning techniques are particularly limited near the adhesive-substrate interface where depth resolution is further limited by adhesive-substrate hardness and, in the case of a partially cured adhesive, mechanical properties differences. Additionally, sectioning techniques cannot provide information about lateral solvent diffusion. Cross-section component mapping is an alternative method for measuring solvent migration in porous substrates that eliminates the issues associated with sectioning techniques. With cross-section mapping, the solvent-wiped substrate is sectioned perpendicular rather than parallel to the wiped surface, and the sectioned surface is analyzed for the solvent or solvent components of interest using a two-dimensional mapping or imaging technique. Solvent mapping can be performed using either direct or indirect methods. With a direct method, one or more solvent components are mapped using red or Raman spectroscopy together with a moveable sample stage and/or focal plane array detector. With an indirect method, an elemental "tag" not present in the substrate is added to the solvent before the substrate is wiped. Following cross sectioning, the tag element can then be mapped by its characteristic x-ray emission using either x-ray fluorescence, or electron-beam energy-and wavelength-dispersive x-ray spectrometry. The direct mapping techniques avoid issues of different diffusion or migration rates of solvents and elemental tags, while the indirect techniques avoid spectral resolution issues in cases where solvents and substrates have adjacent or overlapping peaks. In this study, cross-section component indirect mapping is being evaluated as a method for measuring migration of d-limonene based solvents in glass-cloth phenolic composite (GCP) prior to and during subsequent bonding and epoxy adhesive cure.

  8. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    NASA Technical Reports Server (NTRS)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  9. Coal liquefaction process with enhanced process solvent

    DOEpatents

    Givens, Edwin N. (Bethlehem, PA); Kang, Dohee (Macungie, PA)

    1984-01-01

    In an improved coal liquefaction process, including a critical solvent deashing stage, high value product recovery is improved and enhanced process-derived solvent is provided by recycling second separator underflow in the critical solvent deashing stage to the coal slurry mix, for inclusion in the process solvent pool.

  10. Deep Vein Thrombosis

    MedlinePLUS

    Deep vein thrombosis, or DVT, is a blood clot that forms in a vein deep in the body. Most deep vein clots occur in the lower leg or thigh. If the vein swells, the condition is called thrombophlebitis. A deep ...

  11. Computational comparison of oxidation stability: Solvent/salt monomers vs solvent-solvent/salt pairs

    NASA Astrophysics Data System (ADS)

    Kim, Dong Young; Park, Min Sik; Lim, Younhee; Kang, Yoon-Sok; Park, Jin-Hwan; Doo, Seok-Gwang

    2015-08-01

    A fundamental understanding of the anodic stabilities of electrolytes is important for the development of advanced high-voltage electrolytes. In this study, we calculated and systematically compared the oxidation stabilities of monomeric solvents and anions, and bimolecular solvent-solvent and anion-solvent systems that are considered to be high-voltage electrolyte components, using ab initio calculations. Oxidation stabilities of solvent or anion monomers without considering specific solvation molecules cannot represent experimental oxidation stabilities. The oxidation of electrolytes usually forms neutral or cationic radicals, which immediately undergo further reactions stabilizing the products. Oxidatively driven intermolecular reactions are the main reason for the lower oxidation stabilities of electrolytes compared with those of monomeric compounds. Electrolyte components such as tetramethylene sulfone (TMS), ethyl methyl sulfone (EMS), bis(oxalate)borate (BOB-), and bis(trifluoromethane)sulfonamide (TFSI-) that minimize such intermolecular chemical reactions on oxidation can maintain the oxidation stabilities of monomers. In predictions of the theoretical oxidation stabilities of electrolytes, simple comparisons of highest occupied molecular orbital energies can be misleading, even if microsolvation or bulk clusters are considered. Instead, bimolecular solvent complexes with a salt anion should be at least considered in oxidation calculations. This study provides important information on fundamental and applied aspects of the development of electrolytes.

  12. H, not O or pressure, causes eutectic T depression in the Fe-FeS System to 8 GPa

    NASA Astrophysics Data System (ADS)

    Buono, Antonio S.; Walker, David

    2015-04-01

    The Fe-FeS system maintains a eutectic temperature of 990 ± 10 °C to at least 8 GPa if starting materials and pressure media are rigorously dehydrated. Literature reports of pressure-induced freezing point depression of the eutectic for the Fe-FeS system are not confirmed. Modest addition of oxygen alone is confirmed to cause negligible freezing point depression at 6 GPa. Addition of H alone causes a progressive decrease in the eutectic temperature with P in the Fe-FeS-H system to below 965 °C at 6 GPa to below 950 °C at 8 GPa. It is our hypothesis that moisture contamination in unrigorously dried experiments may be an H source for freezing point depression. O released from H2O disproportionation reacts with Fe and is sequestered as ferropericlase along the sample capsules walls, leaving the H to escape the system and/or enter the Fe-FeS mixture. The observed occurrence of ferropericlase on undried MgO capsule margins is otherwise difficult to explain, because an alternate source for the oxygen in the ferropericlase layer is difficult to identify. This study questions the use of pressure-depressed Fe-S eutectic temperatures and suggests that the lower eutectic temperatures sometimes reported are achieved by moving into the ternary Fe-S-H system. These results adjust slightly the constraints on eutectic temperatures allowed for partly solidified cores on small planets. H substantially diminishes the temperature extent of the melting interval in Fe-S by reducing the melting points of the crystalline phases more than it depresses the eutectic.

  13. Microstructural development and mechanical behavior of eutectic bismuth-tin and eutectic indium-tin in response to high temperature deformation

    SciTech Connect

    Goldstein, J.L.F.

    1993-11-01

    The mechanical behavior and microstructure of eutectic Bi-Sn and In-Sn solders were studied in parallel in order to better understand high temperature deformation of these alloys. Bi-Sn solder joints were made with Cu substrates, and In-Sn joints were made with either Cu or Ni substrates. The as-cast microstructure of Bi-Sn is complex regular, with the two eutectic phases interconnected in complicated patterns. The as-cast microstructure of In-Sn depends on the substrate. In-Sn on Cu has a non-uniform microstructure caused by diffusion of Cu into the solder during sample preparation, with regions of the Sn-rich {gamma} phase imbedded in a matrix of the In-rich {beta} phase. The microstructure of In-Sn on Ni is uniform and lamellar and the two phases are strongly coupled. The solders deform non-uniformly, with deformation concentrating in a band along the length of the sample for Bi-Sn and In-Sn on Cu, though the deformation is more diffuse in In-Sn than in Bi-Sn. Deformation of In-Sn on Ni spreads throughout the width of the joint. The different deformation patterns affect the shape of the stress-strain curves. Stress-strain curves for Bi-Sn and In-Sn on Cu exhibit sharp decays in the engineering stress after reaching a peak. Most of this stress decay is removed for In-Sn on Ni. The creep behavior of In-Sn also depends on the substrate, with the creep deformation controlled by the soft P phase of the eutectic for In-Sn on Cu and controlled by the harder {gamma} phase for In-Sn on Ni. When In-Sn on Ni samples are aged, the microstructure coarsens and changes to an array of {gamma} phase regions in a matrix of the {beta} phase, and the creep behavior changes to resemble that of In-Sn on Cu. The creep behavior of Bi-Sn changes with temperature. Two independent mechanisms operate at lower temperatures, but there is still some question as to whether one or both of these, or a third mechanism, operates at higher temperatures.

  14. DOE solvent handbook information sheet

    SciTech Connect

    Chavez, A.A.

    1992-01-01

    Solvents and cleaners are used in the Department of Defense (DOD) and the Department of Energy-Defense Program (DOE-DP) maintenance facilities for removing wax, grease, oil, carbon, machining fluids, solder fluxes, mold releases, and other contaminants before repairing or electroplating parts. Private industry also uses cleaners and degreasers for surface preparation of various metals. Growing environmental and worker safety concerns have brought attention to these solvents and cleaners, most of which are classified as toxic. Tightening government regulations have already excluded the use of some chemicals, and restrict the use of various halogenated hydrocarbons because of their atmospheric-ozone depleting effects, as well as their cancer-related risks. As a result, a program was established to develop an efficient, easily accessible, electronic solvent utilization handbook. This is being accomplished by: (1) identifying solvents (alternatives) that are not currently restricted by government regulations for use DOE-DP facilities, and private industry, (2) evaluating their cleaning performance, (3) evaluating their corrosivity, (4) evaluating their air emissions, (5) evaluating the possibility of recycling or recovering all or portions of the alternative degreasers, (6) testing substitute solvents compatibility with non-metallic materials, (7) inputting all of the data gathered (including previous biodegradability information) into a database, and (8) developing a methodology for efficient, widespread access to the data base information system.

  15. DOE solvent handbook information sheet

    SciTech Connect

    Chavez, A.A.

    1992-05-01

    Solvents and cleaners are used in the Department of Defense (DOD) and the Department of Energy-Defense Program (DOE-DP) maintenance facilities for removing wax, grease, oil, carbon, machining fluids, solder fluxes, mold releases, and other contaminants before repairing or electroplating parts. Private industry also uses cleaners and degreasers for surface preparation of various metals. Growing environmental and worker safety concerns have brought attention to these solvents and cleaners, most of which are classified as toxic. Tightening government regulations have already excluded the use of some chemicals, and restrict the use of various halogenated hydrocarbons because of their atmospheric-ozone depleting effects, as well as their cancer-related risks. As a result, a program was established to develop an efficient, easily accessible, electronic solvent utilization handbook. This is being accomplished by: (1) identifying solvents (alternatives) that are not currently restricted by government regulations for use DOE-DP facilities, and private industry, (2) evaluating their cleaning performance, (3) evaluating their corrosivity, (4) evaluating their air emissions, (5) evaluating the possibility of recycling or recovering all or portions of the alternative degreasers, (6) testing substitute solvents compatibility with non-metallic materials, (7) inputting all of the data gathered (including previous biodegradability information) into a database, and (8) developing a methodology for efficient, widespread access to the data base information system.

  16. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  17. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    SciTech Connect

    Tiwary, C. S. Chattopadhyay, K.; Chakraborty, S.; Mahapatra, D. R.

    2014-05-28

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al{sub 2}Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al{sub 2}Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80?nm.

  18. Microstructure of the Sn-Cu{sub 6}Sn{sub 5} fibrous eutectic and its modification by segregation

    SciTech Connect

    Drevet, B.; Camel, D.; Favier, J.J.

    1996-10-01

    The influence of segregation due to thermal convection on the microstructure of Sn-Cu{sub 6}Sn{sub 5} fibrous eutectic alloys is studied in a Bridgman type configuration. The eutectic microstructure is characterized by means of image analysis, X-ray diffraction and scanning and transmission electron microscopy. In the absence of segregation, the eutectic is regular and its growth controlled by that of the Cu{sub 6}Sn{sub 5} fibers. The effect of interphases on eutectic spacing, through orientation relationships between fibers and matrix, is also evidenced. The influence of segregation can be summed up by the following effects. At first, in agreement with the Jackson and Hunt model, it leads to a variation of the eutectic spacing which results from a variation of the fiber volume fraction. Then, the spacing is much greater than the one obtained in the absence of segregation, due to a different tin growth plane and non-optimized fiber/matrix orientation relationships. Finally, the absence of steady state leads to a large dispersion of the spacing associated with a microstructural disorder.

  19. Thermodynamic description and unidirectional solidification of eutectic organic alloys: IV. Binary systems neopentylglycol-succinonitrile and amino-methyl-propanediol-succinonitrile

    SciTech Connect

    Witusiewicz, V.T. . E-mail: victor@access.rwth-aachen.de; Sturz, L.; Hecht, U.; Rex, S.

    2005-01-03

    The temperature and enthalpy of transformations of organic alloys from the binary systems neopentylglycol-succinonitrile (NPG-SCN) and 2-amino-2-methyl-1,3-propanediol-succinonitrile (AMPD-SCN) were measured by means of differential scanning calorimetry (DSC). The phase diagrams of these binary systems were assessed via the CALPHAD approach using Thermo-Calc by simultaneously optimizing the thermodynamic and phase equilibrium data measured in the present work. Proper agreements between the experimental and calculated data for the phase diagrams as well as for the thermochemical properties were achieved. Experiments and calculations show that both the NPG-SCN and the AMPD-SCN systems exhibit a non-variant eutectic reaction with the eutectic point at 90.45 mol% SCN (318.0 K) and at 97.39 mol% SCN (325.7 K), respectively. In the NPG-SCN system the temperature of the eutectic reaction is about 3 K higher than the temperature of the transformation from the ordered crystals (OCs) to the orientationally disordered crystals (ODICs), whereas the eutectic reaction in the AMPD-SCN involves the OCs of AMPD and the ODICs of SCN. Unidirectional solidification experiments were performed with selected NPG-SCN and AMPD-SCN alloys in order to verify phases involved in solid-liquid equilibria and the nature of eutectic growth in these systems. We find that eutectic growth in NPG-SCN eutectic alloy occurs with both solid phases being non-facetted and with a rod-like eutectic structure. The eutectic as well as some hypo-eutectic alloys from the AMPD-SCN system show irregular eutectic growth with a non-facetted BCC{sub A}2 phase of SCN and a facetted monoclinic phase of AMPD.

  20. Exxon donor solvent liquefaction process

    NASA Astrophysics Data System (ADS)

    Neavel, R. C.

    1981-03-01

    The Exxon donor solvent (EDS) coal liquefaction system is a direct liquefaction procedure. Coal is chemically reacted and dissolved in a recycle solvent that is hydrogenated between passes to the liquefaction reactor. More than 2.6 barrels of a synthetic crude boiling below 1000 F are produced per ton of dry, high volatile coal feed. Other ranks of coal can be effectively liquefied. The process development has proceeded to a 250 ton/day pilot plant stage that went into operation in June 1980. The presentation addresses the chemical reactions and process conditions that result in ease of operability and flexibility of the EDS process.

  1. Solvent reorganization of electron transitions in viscous solvents

    SciTech Connect

    Ghorai, Pradip K.; Matyushov, Dmitry V.

    2006-04-14

    We develop a model of electron transfer reactions at conditions of nonergodicity when the time of solvent relaxation crosses the observation time window set up by the reaction rate. Solvent reorganization energy of intramolecular electron transfer in a charge-transfer molecule dissolved in water and acetonitrile is studied by molecular dynamics simulations at varying temperatures. We observe a sharp decrease of the reorganization energy at a temperature identified as the temperature of structural arrest due to cage effect, as discussed by the mode-coupling theory. This temperature also marks the onset of the enhancement of translational diffusion relative to rotational relaxation signaling the breakdown of the Stokes-Einstein relation. The change in the reorganization energy at the transition temperature reflects the dynamical arrest of the slow, collective relaxation of the solvent related to the relaxation of the solvent dipolar polarization. An analytical theory proposed to describe this effect agrees well with both the simulations and experimental Stokes shift data. The theory is applied to the analysis of charge-transfer kinetics in a low-temperature glass former. We show that the reorganization energy is substantially lower than its equilibrium value for the low-temperature portion of the data. The theory predicts the possibility of discontinuous changes in the dependence of the electron transfer rate on the free energy gap when the reaction switches between ergodic and nonergodic regimes.

  2. Organic solvent desorption from two tegafur polymorphs.

    PubMed

    Bobrovs, Raitis; Acti?š, Andris

    2013-11-30

    Desorption behavior of 8 different solvents from ? and ? tegafur (5-fluoro-1-(tetrahydro-2-furyl)uracil) has been studied in this work. Solvent desorption from samples stored at 95% and 50% relative solvent vapor pressure was studied in isothermal conditions at 30 °C. The results of this study demonstrated that: solvent desorption rate did not differ significantly for both phases; solvent desorption in all cases occurred faster from samples with the largest particle size; and solvent desorption in most cases occurred in two steps. Structure differences and their surface properties were not of great importance on the solvent desorption rates because the main factor affecting desorption rate was sample particle size and sample morphology. Inspection of the structure packing showed that solvent desorption rate and amount of solvent adsorbed were mainly affected by surface molecule arrangement and ability to form short contacts between solvent molecule electron donor groups and freely accessible tegafur tetrahydrofuran group hydrogens, as well as between solvents molecule proton donor groups and fluorouracil ring carbonyl and fluoro groups. Solvent desorption rates of acetone, acetonitrile, ethyl acetate and tetrahydrofuran multilayers from ? and ? tegafur were approximately 30 times higher than those of solvent monolayers. Scanning electron micrographs showed that sample storage in solvent vapor atmosphere promotes small tegafur particles recrystallization to larger particles. PMID:24060368

  3. Kinetic Monte Carlo Simulations of Rod Eutectics and the Surface Roughening Transition in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Bentz, Daniel N.; Betush, William; Jackson, Kenneth A.

    2003-01-01

    In this paper we report on two related topics: Kinetic Monte Carlo simulations of the steady state growth of rod eutectics from the melt, and a study of the surface roughness of binary alloys. We have implemented a three dimensional kinetic Monte Carlo (kMC) simulation with diffusion by pair exchange only in the liquid phase. Entropies of fusion are first chosen to fit the surface roughness of the pure materials, and the bond energies are derived from the equilibrium phase diagram, by treating the solid and liquid as regular and ideal solutions respectively. A simple cubic lattice oriented in the {100} direction is used. Growth of the rods is initiated from columns of pure B material embedded in an A matrix, arranged in a close packed array with semi-periodic boundary conditions. The simulation cells typically have dimensions of 50 by 87 by 200 unit cells. Steady state growth is compliant with the Jackson-Hunt model. In the kMC simulations, using the spin-one Ising model, growth of each phase is faceted or nonfaceted phases depending on the entropy of fusion. There have been many studies of the surface roughening transition in single component systems, but none for binary alloy systems. The location of the surface roughening transition for the phases of a eutectic alloy determines whether the eutectic morphology will be regular or irregular. We have conducted a study of surface roughness on the spin-one Ising Model with diffusion using kMC. The surface roughness was found to scale with the melting temperature of the alloy as given by the liquidus line on the equilibrium phase diagram. The density of missing lateral bonds at the surface was used as a measure of surface roughness.

  4. Experimental determination of the stability diagram of a lamellar eutectic growth front

    NASA Astrophysics Data System (ADS)

    Ginibre, Marie; Akamatsu, Silvère; Faivre, Gabriel

    1997-07-01

    We present an experimental study of the growth patterns of directionally solidified thin samples of the lamellar eutectic alloy CBr4-C2Cl6 as a function of the pattern wavelength ?, the solidification velocity V, and the alloy concentration C, within the so-called planar coupled zone of the parameter space. Capillary-anisotropy effects and three-dimensional (3D) effects are minimized by an appropriate choice of the eutectic grain size, the eutectic grain orientation, and the sample thickness. We first verify the old proposition made by Jackson and Hunt [Trans. AIME 236, 1129 (1996)] that the basic patterns (i.e., the stationary, spatially periodic, reflection-symmetric, 2D patterns) of our system are stable over a finite range of ? at given V and C, the lower bound of which is determined by a local, lamella-termination instability. We show that the upper bound of the basic state stability range is marked by a primary Hopf bifurcation toward an oscillatory state. The nature of the oscillatory state, and the threshold value for the bifurcation, depend on C. Other, secondary bifurcations occur at higher ?. In total, we identify six different types of low-symmetry extended growth patterns: the already-known steady symmetry-broken, or ``tilted'' state [K. Kassner and C. Misbah, Phys. Rev. A 44, 6533 (1991); G. Faivre and J. Mergy, ibid., 45, 7320 (1992)], and five new types of oscillatory and/or tilted states. We determine the stability domains of the various states in the plane (C,?V1/2), and characterize the various primary and secondary bifurcations of our system. Our experimental results are in good quantitative agreement with the stability diagram numerically calculated by Karma and Sarkissian [Metall. Mater. Trans. 27A, 635 (1996)] in the frame of a 2D model without capillary anisotropy.

  5. Temperature monitoring of the lead bismuth eutectic flow in the MEGAPIE target

    NASA Astrophysics Data System (ADS)

    Ivanov, S.; Dementjev, S.

    2006-09-01

    An Electromagnetic Pump System (EMPS) for the MEGAPIE target has been developed, produced and tested at the Institute of Physics, University of Latvia, during the recent two years in the framework of the MEGAPIE-TEST Project (MEGAWatt Pilot Experiment - TESTing) funded by the Euratom 5^th Framework Programme as an implementation of transmutation technology te{1}. The EMPS operates when submerged in the lead bismuth eutectic (LBE), with its temperature ranging within 220-380°C (the temperature changing rate 5-10°C/s), depending on the proton beam trip. The electromagnetic pump system is responsible for the lead bismuth eutectic flow in the MEGAPIE target. Discontinue of the by-pass flow, as the result of the channel blockage by helium bubbles, could lead, under certain conditions, to undesirable consequences, including even disintegration of the beam entrance window. Therefore, monitoring of the flow during the target operation is very important. The results of the original electrodynamic and thermohydraulic calculations of the electromagnetic pump system are presented in the paper. These results assume the monitoring of the lead bismuth eutectic flow through electric regimes for electromagnetic pumps and LBE temperature measurements. The procedure rests upon the strong correlation between the LBE temperature at the EMPS inlet and outlet, the flow rate and the electric regime for the pump operation. A special PC code, which allows to control the intensity of the LBE flow in the EMPS channel at steady and transient temperature regimes of the target operation, has been developed and used. There are presented recommendations on the PC code adoption for the MEGAPIE target control system at the end of the paper. Figs 10, Refs 4.

  6. Preparation and valuation of a topical solution containing eutectic mixture of itraconazole and phenol.

    PubMed

    Park, Chun-Woong; Kim, Ju-Young; Rhee, Yun-Seok; Oh, Tack-Oon; Ha, Jung-Myung; Choi, Na-Young; Chi, Sang-Cheol; Park, Eun-Seok

    2012-11-01

    The purposes of this study were to prepare a topical solution containing itraconazole (ITR)-phenol eutectic mixture and to evaluate its ex vivo skin permeation, in vivo deposition and in vivo irritation. The eutectic mixture was prepared by agitating ITR and phenol (at a weight ratio of 1:1) together at room temperature. The effects of additives on the skin permeation of ITR were evaluated using excised hairless mouse skin. The in vivo skin deposition and skin irritation studies were performed in Sprague-Dawley rat and New Zealand white rabbit model. The permeability coefficient of ITR increased with addition of oleic acid in the topical solution. Otherwise, the permeability coefficient was inversely proportional to the concentration of the thickening agent, HPMC. The optimized topical solution contained 9 wt% of the ITR-phenol eutectic mixture, 9.0 wt% of oleic acid, 5.4 wt% of hydroxypropylmethyl cellulose and 76.6 wt% of benzyl alcohol. The steady-state flux and permeability coefficient of the optimized topical solution were 0.90 ± 0.20 ?g/cm(2)·h and 22.73 ± 5.73 × 10(6) cm/h, respectively. The accumulated of ITR in the epidermis and dermis at 12 h was 49.83 ± 9.02 ?g/cm(2). The topical solution did not cause irritation to the skins of New Zealand white rabbits. Therefore, the findings of this study indicate the possibilities for the topical application of ITR via an external preparation. PMID:23212635

  7. (abstract) A Brief, Selective Review of Thermal Cycling Fatigue in Eutectic Tin-Lead Solder

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    This paper reviews selected parts of the current literature relevant to thermo-mechanical fatigue mechanisms in eutectic tin-lead solder, and suggests a general outline to account for some observed failures. The field is found to be complex. One recent experimental study finds some failure modes to be sensitive to joint geometry. Attempts to extrapolate from test environments to service environments have had only limited success. Much work remains to be done before fatigue failures in this material can be considered as under practical control.

  8. A Directionally Solidified Iron-chromium-aluminum-tantalum Carbide Eutectic Alloy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1977-01-01

    A eutectic alloy, Fe-13.6CR-3.7Al+9TaC, was directionally solidified in a high gradient furnace, producing a microstructure of alined TaC fibers in an oxidation resistant alpha-iron matrix. Tensile and stress rupture properties, thermal cycling resistance, and microstructures were evaluated. The alloy displays at 1000 C an ultimate tensile strength of 58 MPa and a 100-hour rupture life at a stress of 21 MPa. Thermal cycling to 1100 C induces faceting in the TaC fibers.

  9. Spatial profile of thermoelectric effects during Peltier pulsing in Bi and Bi/MnBi eutectic

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.

    1987-01-01

    The spatial profile of the thermal transients that occur during and following the current pulsing associated with Peltier Interface Demarcation during directional solidification is studied. Results for pure Bi are presented in detail and compared with corresponding results for the Bi/MnBi eutectic. Significant thermal transients occur throughout the sample that can be accounted for by the Peltier effect, the Thomson effect, and Joule heating. These effects are separated and their behavior is studied as a function of time, current density, and position with respect to the solid/liquid interface.

  10. Direct Observations of Silver Nanoink Sintering and Eutectic Remelt Reaction with Copper

    SciTech Connect

    Elmer, J. W.; Specht, Eliot D

    2010-01-01

    Ag nanoink sintering kinetics and subsequent melting is studied using in-situ synchrotron based x-ray diffraction. Direct observations of Ag nanoink sintering on Cu demonstrate its potential for materials joining since the Ag nanoink sinters at low temperatures but melts at high temperatures. Results show low expansion coefficient of sintered Ag, non-linear expansion as Ag densifies and interdiffuses with Cu above 500 C, remelting consistent with bulk Ag, and eutectic reaction with Cu demonstrating its usefulness as a high temperature bonding medium

  11. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy.

    PubMed

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  12. Resistance of a gamma/gamma prime - delta directionally solidified eutectic alloy to recrystallization

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1975-01-01

    The lamellar directionally solidified nickel-base eutectic alloy gamma/gamma prime-delta has potential as an advanced turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 705 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and the appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability is not a serious problem in the use of this alloy.

  13. Zero-gravity growth of a sodium chloride-lithium fluoride eutectic mixture

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yeh, C. W.; Yue, B. K.

    1982-01-01

    Continuous and discontinuous lithium fluoride fibers embedded in a sodium chloride matrix were produced in space and on Earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convective current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and Earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of lithium fluoride fibers along the growth direction.

  14. The effect of low Au concentrations on the properties of eutectic Sn/Pb

    SciTech Connect

    Kramer, P.A.

    1992-05-01

    This study was of the effects moderately low Au concentrations ({le} 10 wt%) have on the mechanical properties and microstructure of an eutectic Sn/Pb alloy. Vibration (60--90 Hz swept sine wave for 30 hours) and thermal cycling (0--110C for 1450 cycles) reliability tests were performed on fine pitch leaded chip carriers using eutectic Sn/Pb solder on PCBs (printed circuit boards) with 0, 5, 10, 20, and 50{mu}in nominal Au thicknesses. Testing was also performed on double shear creep specimens consisting of arrays of regular pitch joints. There was a dramatic increase in the number of joints containing voids with increasing Au concentration, an effect more pronounced in the creep joints than in the reliability joints. These voids tended to coalesce and grow during rework simulation of the reliability joints. AuSn{sub 4} intermetallics present in toe of 4.8 wt% (50 {mu}in) Au vibration joints rotated from initial vertical perpendicular to surface of PCB metallization, solidification positions to roughly horizontal (parallel to plating surface) orientations during rework simulation and during aging of the parts. The AuSn{sub 4} intermetallics in the toe of the 4.8 wt% (50{mu}in) Au reflowed joints also rotated after vibration testing. No joint failures were observed in either vibration tested or thermally cycled specimens. Cracks formed in some of the vibration tested specimen joints under the heel of the gull-wing lead at Pb-rich phases. Thermally cycled specimens showed eutectic microstructure and intermetallic coarsening without crack formation. Creep tests showed loss of the superplasticity in eutectic Sn/Pb alloys with even the lowest Au concentration tested of 0.2 wt% Au. Intermetallic rotation was not a factor in crack propagation, but void presence was. Cracks tended to form in joints containing voids before forming in void-free joints. Crack propagation followed Sn/Sn grain boundaries and Sn/Pb phase boundaries from Pb-rich phase to Pb-rich phase.

  15. Evaluation of an advanced directionally solidified gamma/gamma'-alpha Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Henry, M. F.; Jackson, M. R.; Gigliotti, M. F. X.; Nelson, P. B.

    1979-01-01

    An attempt was made to improve on the properties of the candidate jet engine turbine blade material AG-60, a gamma/gamma prime-alpha Mo eutectic composite. Alloy 38 (AG-170) was evaluated in the greatest detail. This alloy, Ni-5.88 A1-29.74 Mo-1.65 V-1.2C Re (weight percent), represents an improvement beyond AG-60, based on mechanical testing of the transverse and/or longitudinal orientations over a range of temperatures in tension, shear, rupture, and rupture after thermal exposure. It is likely that other alloys in the study represent a similar improvement.

  16. Surface structure of the liquid Au[subscript 72]Ge[subscript 28] eutectic phase: X-ray reflectivity

    SciTech Connect

    Pershan, P.S.; Stoltz, S.E.; Mechler, S.; Shpyrko, O.G.; Grigoriev, A.Y.; Balagurusamy, V.S. K.; Lin, B.H.; Meron, M.

    2009-12-01

    The surface structure of the liquid phase of the Au{sub 72}Ge{sub 28} eutectic alloy has been measured using resonant and nonresonant x-ray reflectivity and grazing incidence x-ray diffraction. In spite of the significant differences in the surface tension of liquid Ge and Au the Gibbs adsorption enhancement of Ge concentration at the surface is minimal. This is in striking contrast to all the other binary alloys with large differences in the respective surface tensions measured up to date. In addition there is no evidence of the anomalous strong surface layering or in-plane crystalline order that has been reported for the otherwise quite similar liquid Au{sub 82}Si{sub 18} eutectic. Instead, the surface of eutectic Au{sub 72}Ge{sub 28} is liquidlike and the layering can be explained by the distorted crystal model with only slight modifications to the first layer.

  17. Directional solidification of Mo{sub 5}Si{sub 3}-MoSi{sub 2} eutectic

    SciTech Connect

    Borowicz, S.M.; Heatherly, L.; Zee, R.H.; George, E.P.

    1999-07-01

    The Mo-Si phase diagram exhibits a Mo{sub 5}Si{sub 3}-MoSi{sub 2} eutectic at the 54% Si composition. Since the terminal phases have comparable melting points and are equidistant from the eutectic composition, there is the possibility of obtaining lamellar microstructures in this system. In addition, if the alloys are directionally solidified, there is the further possibility of obtaining aligned lamellae. In this study, a high temperature (xenon-arc-lamp) optical floating zone furnace is utilized to directionally solidify Mo-Si alloys of the eutectic composition. Growth conditions are systematically varied to investigate their effects on the solidification microstructure. Growth rates and rotation speeds are identified that result in lamellar microstructures.

  18. Containerless processing and rapid solidification of Nb-Si alloys in the niobium-rich eutectic range

    NASA Technical Reports Server (NTRS)

    Hofmeister, W. H.; Bayuzick, R. J.; Robinson, M. B.; Bertero, G. A.

    1991-01-01

    Containerless processing and rapid solidification techniques were used to process Nb-Si alloys in the Nb-rich eutectic range. Electromagnetically levitated drops were melted and subsequently splat-quenched from different temperatures. A variety of eutectic morphologies was obtained as a function of the degree of superheating or undercooling of the drops prior to splatting. Metallic glass was observed only in drops quenched from above the melting temperature. Microstructures of splats deeply undercooled prior to quenching were very fine and uniform. These results are discussed in terms of classic nucleation theory concepts and the expected heat evolution at different regions of the splat during the rapid quenching process. The locations of the coupled-zone boundaries for the alpha-Nb + Nb3Si eutectic are also suggested.

  19. Replacement solvents for use in chemical synthesis

    DOEpatents

    Molnar, Linda K. (Philadelphia, PA); Hatton, T. Alan (Sudbury, MA); Buchwald, Stephen L. (Newton, MA)

    2001-05-15

    Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.

  20. Method for analyzing solvent extracted sponge core

    SciTech Connect

    Ellington, W.E.; Calkin, C.L.

    1988-11-22

    For use in solvent extracted sponge core measurements of the oil saturation of earth formations, a method is described for quantifying the volume of oil in the fluids resulting from such extraction. The method consists of: (a) separating the solvent/oil mixture from the water in the extracted fluids, (b) distilling at least a portion of the solvent from the solvent/oil mixture substantially without co-distillation or loss of the light hydrocarbons in the mixture, (c) determining the volume contribution of the solvent remaining in the mixture, and (d) determining the volume of oil removed from the sponge by substracting the determined remaining solvent volume.

  1. NATURAL ATTENUATION OF CHLORINATED SOLVENTS

    EPA Science Inventory

    The protocol will simply describe in detail, with references and illustrations, the approach currently used by staff of the SPRD to evaluate natural attenuation of chlorinated solvents in ground water. Staff of SPRD, and staff of the Air Force Center for environmental excellence...

  2. Risk assessment for halogenated solvents

    SciTech Connect

    Travis, C.C.

    1988-01-01

    A recent development in the cancer risk area is the advent of biologically based pharmacokinetic and pharmacodynamic models. These models allow for the incorporation of biological and mechanistic data into the risk assessment process. These advances will not only improve the risk assessment process for halogenated solvents but will stimulate and guide basic research in the biological area.

  3. Evaluation of the Pd-C eutectic fixed point and the Pt/Pd thermocouple

    NASA Astrophysics Data System (ADS)

    Pearce, J. V.; Ogura, H.; Izuchi, M.; Machin, G.

    2009-10-01

    A Pd-C eutectic fixed point cell (1492 °C) was constructed to investigate its utility for thermocouple calibration. The primary aim of the study was to evaluate the long-term stability, immersion characteristics (influence of heat conduction along the thermocouple stem) and robustness of a Pd-C fixed point using a Pt/Pd thermocouple, especially constructed for this purpose. The performance of both devices at this relatively high temperature could therefore be tested. The melting and freezing plateaux at the Pd-C eutectic point were measured using the Pt/Pd thermocouple. The total exposure to the Pd-C melting temperature was about 850 h for the fixed point cell and 550 h for the thermocouple. The standard deviations of the melting and freezing points were 1.03 µV (0.041 °C) and 0.77 µV (0.031 °C) respectively. The emfs of the thermocouple at the melting point were observed to drift by about 0.1 °C. The immersion measurements show that for the current cell design, the measuring junction should be at most 30 mm from the bottom of the thermowell to be properly immersed. The long-term performance and robustness of the fixed point indicate a promising future for its use as a fixed point for calibration of noble metal thermocouples.

  4. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    SciTech Connect

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  5. Phase Structure and Cyclic Deformation in Eutectic Tin-Lead Alloy: A Numerical Analysis

    SciTech Connect

    FANG,HUEI ELIOT; Li,W; SHEN,Y.-L

    1999-09-09

    This study is devoted to providing a mechanistic rationale of coarsening induced failure in solder alloys during thermomechanical fatigue. Micromechanical modeling of cyclic deformation of eutectic tin-lead alloy was undertaken using the finite element method. The models consist of regularly arranged tin-rich and lead-rich phases, simulating the lamellar array and colony structure in a typical eutectic system. A fine structure and a coarse structure, bearing the same phase fraction but different in the aspect ratio of each lead-rich layer and in the number of lead-rich layers in each colony, are utilized for representing the microstructure before and after coarsening, respectively. Both phases are treated as elastic-plastic solids with their respective properties. For simplicity the creep effect is ignored without compromising the main objective of this study. Cyclic loading under pure shear and uniaxial conditions is modeled. It is found that both the fine and coarse structures exhibit essentially the same macroscopic stress-strain response. The coarse structure, however, shows a greater maximum effective plastic strain on a local scale throughout the deformation. The numerical result implies that, in a solder joint, a locally coarsened region may not be mechanically weaker than its surrounding, but it is subject to early damage initiation due to accumulated plasticity. Other implications regarding solder alloy failure and micromechanical modeling of two-phase materials are discussed.

  6. Aerosol thermodynamics of potassium salts, double salts, and water content near the eutectic

    NASA Astrophysics Data System (ADS)

    Kelly, James T.; Wexler, Anthony S.; Chan, Chak K.; Chan, Man N.

    2008-05-01

    Water uptake by hygroscopic constituents of atmospheric particles has implications for climate and health. This article focuses on three topics related to calculating particle water uptake. First, an electrodynamic balance (EDB) is used to measure water activity for supersaturated binary KNO3 and KCl solutions. The EDB measurements for KNO3 confirm earlier predictions, while those for KCl confirm earlier measurements. Second, our earlier theory for the variation in mutual deliquescence relative humidity (MDRH) with temperature (T) is extended to double salt systems. The MDRH(T) equation for double salt systems reduces to the earlier equation under some conditions, and predictions for two systems are in reasonable agreement with solubility-based calculations. Finally, an approximate treatment of water uptake in the MDRH region (i.e., near the eutectic) is evaluated, and a new approach is developed that accounts for particle composition. The new approach represents predictions of a benchmark model well and eliminates most of the error associated with the earlier method. Although simple treatments of water uptake near the eutectic may introduce error into equilibrium calculations, their use can sometimes be justified based on inherent limitations of aerosol representations in chemistry-transport models. Results of this study can be used to improve calculations of water content in atmospheric aerosol models.

  7. Local coordination state of rare earth in eutectic scintillators for neutron detector applications

    PubMed Central

    Masai, Hirokazu; Yanagida, Takayuki; Mizoguchi, Teruyasu; Ina, Toshiaki; Miyazaki, Takamichi; Kawaguti, Noriaki; Fukuda, Kentaro

    2015-01-01

    Atomic distribution in phosphors for neutron detection has not been fully elucidated, although their ionization efficiency is strongly dependent on the state of the rare earth in the matrix. In this work, we examine optical properties of Eu-doped 80LiF-20CaF2 eutectics for neutron detector applications based on the Eu distribution. At low concentrations, aggregation of Eu cations is observed, whereas homogeneous atomic dispersion in the CaF2 layer, to substitute Ca2+ ions, is observed in the eutectics at high concentrations. Eu LIII edge X-ray absorption fine structure (XAFS) analysis suggests that neutron responses do not depend on the amount of Eu2+ ions. However, transparency, which depends on an ordered lamellar structure, is found to be important for a high light yield in neutron detection. The results confirm the effectiveness of the basic idea concerning the separation of radiation absorbers and activators in particle radiation scintillation and present potential for further improvement of novel bulk detectors. PMID:26292726

  8. Local coordination state of rare earth in eutectic scintillators for neutron detector applications.

    PubMed

    Masai, Hirokazu; Yanagida, Takayuki; Mizoguchi, Teruyasu; Ina, Toshiaki; Miyazaki, Takamichi; Kawaguti, Noriaki; Fukuda, Kentaro

    2015-01-01

    Atomic distribution in phosphors for neutron detection has not been fully elucidated, although their ionization efficiency is strongly dependent on the state of the rare earth in the matrix. In this work, we examine optical properties of Eu-doped 80LiF-20CaF2 eutectics for neutron detector applications based on the Eu distribution. At low concentrations, aggregation of Eu cations is observed, whereas homogeneous atomic dispersion in the CaF2 layer, to substitute Ca(2+) ions, is observed in the eutectics at high concentrations. Eu LIII edge X-ray absorption fine structure (XAFS) analysis suggests that neutron responses do not depend on the amount of Eu(2+) ions. However, transparency, which depends on an ordered lamellar structure, is found to be important for a high light yield in neutron detection. The results confirm the effectiveness of the basic idea concerning the separation of radiation absorbers and activators in particle radiation scintillation and present potential for further improvement of novel bulk detectors. PMID:26292726

  9. Experimental evidence for a zigzag bifurcation in bulk lamellar eutectic growth.

    PubMed

    Akamatsu, Silvère; Bottin-Rousseau, Sabine; Faivre, Gabriel

    2004-10-22

    We present real-time observations of the directional-solidification patterns of a transparent nonfaceted eutectic alloy (CBr4-C2Cl6) in bulk samples. The growth front of the two-phase solid is observed from the top through the liquid and the glass wall of the container with a long-distance microscope. We show that, in near-eutectic CBr4-C2Cl6 alloys, the upper stability limit of the stationary lamellar patterns is due to a zigzag bifurcation, which occurs at an interlamellar spacing of about 0.85 lambda(m), where lambda(m) is the minimum-undercooling spacing. The zigzag patterns undergo a lamella breakup instability leading to the creation of new lamellae at about 1.1 lambda(m). On the other hand, the lower stability limit of the stationary patterns is due to the same instability as in thin samples, namely, a lamella termination instability that occurs at about 0.7 lambda(m). PMID:15525090

  10. Thermodynamics of reaction of praseodymium with gallium-indium eutectic alloy

    NASA Astrophysics Data System (ADS)

    Melchakov, S. Yu.; Ivanov, V. A.; Yamshchikov, L. F.; Volkovich, V. A.; Osipenko, A. G.; Kormilitsyn, M. V.

    2013-06-01

    Thermodynamic properties of Ga-In eutectic alloys saturated with praseodymium were determined for the first time employing the electromotive force method. The equilibrium potentials of the Pr-In alloys saturated with praseodymium (8.7-12.1 mol.% Pr) and Pr-Ga-In alloys (containing 0.0012-6.71 mol.% Pr) were measured between 573-1073 K. Pr-In alloy containing solid PrIn3 with known thermodynamic properties was used as the reference electrode when measuring the potentials of ternary Pr-In-Ga alloys. Activity, partial and excessive thermodynamic functions of praseodymium in alloys with indium and Ga-In eutectic were calculated. Activity (a), activity coefficients (?) and solubility (X) of praseodymium in the studied temperature range can be expressed by the following equations: lga?-Pr(In) = 4.425 - 11965/T ± 0.026. lg??-Pr(Ga-In) = 5.866 - 14766/T ± 0.190. lg??-Pr(Ga-In) = 2.351 - 9996/T ± 0.39. lg?Pr(Ga-In) = 3.515 - 4770/T ± 0.20.

  11. Time-resolved fluorescence line-narrowing of Eu3+ in biocompatible eutectic glass-ceramics.

    PubMed

    Sola, D; Balda, R; Al-Saleh, M; Peña, J I; Fernández, J

    2013-03-11

    The spectroscopic properties of Eu(3+) in biocompatible glass and glass-ceramic eutectic rods of composition 0.8CaSiO(3)-0.2Ca(3)(PO(4))(2) doped with 0.5 wt% of Eu(2)O(3) are investigated to explore their potential applications as optical probes. The samples were obtained by the laser floating zone technique. Depending on the growth rate, they exhibit three (two crystalline and one amorphous) or two (one crystalline and one amorphous) phases. The crystalline phases correspond to Ca(2)SiO(4) and apatite-like structures. At high growth rates the system presents an amorphous arrangement which gives a glass phase. The results of time-resolved fluorescence line narrowing spectroscopy obtained under excitation within the inhomogeneous broadened (7)F(0)?(5)D(0) absorption band allow to isolate the emission from Eu(3+) ions in the crystalline and amorphous environments and to accurately correlate the spectroscopic properties with the microstructure of these eutectics. PMID:23482227

  12. Local coordination state of rare earth in eutectic scintillators for neutron detector applications

    NASA Astrophysics Data System (ADS)

    Masai, Hirokazu; Yanagida, Takayuki; Mizoguchi, Teruyasu; Ina, Toshiaki; Miyazaki, Takamichi; Kawaguti, Noriaki; Fukuda, Kentaro

    2015-08-01

    Atomic distribution in phosphors for neutron detection has not been fully elucidated, although their ionization efficiency is strongly dependent on the state of the rare earth in the matrix. In this work, we examine optical properties of Eu-doped 80LiF-20CaF2 eutectics for neutron detector applications based on the Eu distribution. At low concentrations, aggregation of Eu cations is observed, whereas homogeneous atomic dispersion in the CaF2 layer, to substitute Ca2+ ions, is observed in the eutectics at high concentrations. Eu LIII edge X-ray absorption fine structure (XAFS) analysis suggests that neutron responses do not depend on the amount of Eu2+ ions. However, transparency, which depends on an ordered lamellar structure, is found to be important for a high light yield in neutron detection. The results confirm the effectiveness of the basic idea concerning the separation of radiation absorbers and activators in particle radiation scintillation and present potential for further improvement of novel bulk detectors.

  13. Eutectic superalloys strengthened by delta Ni3Cb lamellae, and gamma prime, Ni3Al precipitates.

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.; Thompson, E. R.

    1972-01-01

    Bivariant eutectic alloys, located on a liquidus surface within the Ni-Cb-Cr-Al quaternary, were identified which permitted the production of aligned delta Ni3Cb lamellae within a nichrome matrix containing the fcc precipitate gamma prime Ni3Al. The volume fraction of delta and gamma prime could be varied significantly by compositional changes. After directional solidification certain alloys possessed improved ductility and corrosion resistance with respect to the Ni3Al-Ni3Cb eutectic, while their values of tensile and creep strength approached or exceeded those for the Ni3Al-Ni3Cb pseudobinary system. The mechanical properties of the directionally solidified alloy, Ni-19.7 wt % Cb-6.0 wt % Cr-2.5 wt % Al, were evaluated. Its longitudinal strength in tension and creep was found to be superior to all advanced nickel base superalloys. It is thus demonstrated that useful properties for gas turbine airfoil applications can be achieved by reinforcing a strong and tough gamma nichrome matrix containing precipitated gamma prime by a strong lamellar intermetallic compound having greater strength at elevated temperature.

  14. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys

    PubMed Central

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-01-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility. PMID:25160691

  15. A promising new class of high-temperature alloys: eutectic high-entropy alloys.

    PubMed

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-01-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility. PMID:25160691

  16. Review of fuel/cladding eutectic formation in metallic SFR fuel pins

    SciTech Connect

    Denman, M.; Todreas, N.; Driscoll, M.

    2012-07-01

    Sodium-cooled Fast Reactors (SFRs) remain a strong contender amongst the Generation IV reactor concepts. Metallic fuel has been a primary fuel option for SFR designers in the US and was used extensively in the first generation of SFRs. One of the benefits of metallic fuel is its chemical compatibility with the coolant; unfortunately this compatibility does not extend to steel cladding at elevated temperatures. It has been known that uranium, plutonium, and rare earths diffuse with cladding constituents to form a low melting point fuel/cladding eutectic which acts to thin the cladding once the interfacial temperature rises above the system liquidus temperature. Since the 1960's, many experiments have been performed and published to evaluate the rate of fuel/cladding eutectic formation and the temperature above which melting will begin as a function of fuel/cladding interfacial temperature, time at temperature, fuel constituents (uranium, fissium or uranium (plutonium) zirconium), cladding type (stainless steel 316, stainless steel 306, D9 or HT9), beginning of life linear power, plutonium enrichment and burnup. The results of these tests, however, remain scattered across conference and journal papers spanning 50 years. The tests used to collect this data also varied in experimental procedure throughout the years. This paper will consolidate the experimental data into four groups of similar test conditions and expand upon the testing performed for each group in detail. A companion paper in PSA 2011 will discuss predictive correlations formulated from this database. (authors)

  17. Assessment of plant toxicity threshold of several heat transfer and storage fluids and eutectic salts

    SciTech Connect

    Nishita, H.

    1980-10-01

    Plant toxicity threshold levels of several heat transfer and storage fluids and eutectic salts were determined by using a modified Neubauer technique. Barley seed germination and seedling growth were used for the toxicity tests. The general order of toxicity of the fluids applied to three mineral soils was ethylene gloycol > Dow 200 much greater than Caloria HT43 > Therminol 66. The toxicity order of the fluids applied to an organic soil was ethylene glycol > Caloria HT43 > Dow 200 > Therminol 66. Thus, Therminol 66 was the least toxic among the fluids used. Among the eutectic salts tested Dupont HITEC was more toxic than 8.4 percent NaCl-86.3 percent NaNO/sub 3/-5.3 percent Na/sub 2/SO/sub 4/ mixture in three of the four soils used. In the fourth soil there was no apparent difference of toxicity between the two salt mixtures. Depending on the fluid and the salt mixture, the toxicity threshold levels for barley seedlings ranged from 4451 to 317,488 ppM in the soils used.

  18. Investigation on the effect of metallic impurity Zn in solvent during photolithography process

    NASA Astrophysics Data System (ADS)

    Jeon, Byoung-Tak; Kim, Ook-Hyun; Baik, Jeong-Heon; Ha, Jeong-Hyuk; Lee, Il-Ho; Yang, Weon-Sik

    2005-05-01

    The trend toward narrower line widths in the manufacture of integrated circuits has put an increasing burden on contamination control in every aspect of semiconductor fabrication. For a deep sub micrometer device, metal contamination appearing on the device can cause fatal problems including increasing the leakage current at the p-n junction, decreasing the breakdown voltage of oxide. Many lithographic defects have been known and evaluated, however, the effects of metallic impurity (Zn) in solvent are seldom reported during lithography process. Solvents are component material for Photoresist and have been used for prewet, strippers, EBR, rinse and so on during photolithography process. Lithography plays a very important role because it is applied repeatedly onto the wafer surface during device manufacturing. Unfortunately, pattern lifting happened to well formation layer wafers that were reworked on a normal iline litho process after stripping the Photoresist with solvent (PGMEA). We also detected blocked pattern defect at 0.18 CMOS gate pattern coated with DUV resist applied solvent prewet step after BARC coating. From various investigations, we could know that pattern lifting and blocked defect were derived from solvent (PGMEA). In this paper, we show mechanism of adhesion fails and blocked defect happened by metallic impurity Zn in solvent during solvent rework and prewet on organic BARC film. It shows that proper control of metallic impurities in thinner is an important item in FAB.

  19. Deep pockets for deep seas

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Peter Auster, a fisheries ecologist with the National Undersea Research Center in Connecticut, plans to assess degradation of the deep-shelf seafloor from bottom trawling. Magnus Ngoile, an official with Tanzania's National Environmental Management Council, will work on building capacity of poor villagers to protect their coastline. And Alison Rieser, a lawyer with the University of Maine School of Law, will produce a textbook to educate scientists on how to apply the law for marine conservation.These individuals are among 11 recipients of the Pew Charitable Trust's 10th annual marine conservation fellowships, announced on July 12. With each recipient receiving an award of $150,000, the program is the world's largest award for marine conservationists. Other 1999 recipients will be involved with areas including investigating marine pollution in the Arctic region, examining economic incentives for conservation in Baja, Mexico, and establishing a marine conservation biology training program for minority students.

  20. Deep Vein Thrombosis

    MedlinePLUS

    ... page from the NHLBI on Twitter. What Is Deep Vein Thrombosis? Español Deep vein thrombosis (throm-BO-sis), or DVT, is a blood clot that forms in a vein deep in the body. Blood clots occur when blood ...

  1. Deep breathing after surgery

    MedlinePLUS

    ... way to do so is by doing deep breathing exercises. Deep breathing keeps your lungs well-inflated and ... your or nurse told you. Do these deep-breathing exercises as directed by your doctor or nurse.

  2. Deep Research Submarine

    E-print Network

    Woertz, Jeff

    2002-02-01

    The Deep Sea Research Submarine (Figure 1) is a modified VIRGINIA Class Submarine that incorporates a permanently installed Deep Sea Operations Compartment (Figure 2). Table 1 summarizes the characteristics of the Deep ...

  3. Solvent Extraction of Furfural From Biomass

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.

    1984-01-01

    Solvent-extraction method reduces energy required to remove furfural produced during acid hydrolysis of biomass. Acid hydrolysis performed in vessel containing both solvents and reacting ingredients. With intimate contact between solvents and aqueous hydrolyis liqour, furfural removed form liquor almost as fast as it forms.

  4. Firing of pulverized solvent refined coal

    DOEpatents

    Derbidge, T. Craig (Sunnyvale, CA); Mulholland, James A. (Chapel Hill, NC); Foster, Edward P. (Macungie, PA)

    1986-01-01

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  5. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    DOEpatents

    Bohnert, George W. (Harrisonville, MO); Hand, Thomas E. (Lee's Summit, MO); DeLaurentiis, Gary M. (Jamestown, CA)

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  6. Performance optimization of diffused Li on Ga/In eutectic, In/Sn solder and eutectic Ga/In Ohmic contacts to n-high purity-crystalline (100) Ge

    NASA Astrophysics Data System (ADS)

    Khan, Khizar; Gang, Yang; Wang, Guojian; Xiang, Wenchang; Guan, Yutong; Mei, Dongming

    2012-02-01

    Performance optimization study of novel contacts such as diffused lithium on Ga/In eutectic (75.5/24.5 wt%), In/Sn solder (95.0/5.0 wt%) and Ga/In eutectic (75.5/24.5 wt%) to n-high purity-crystalline <100> Ge (HP-SC-Ge) has been presented. Ultrasonically clean samples taken from same substrate were used to process the contacts followed by their characterization utilizing current--voltage (I--V), Hall-effect and AFM measurements. Extreme care was introduced to minimize the effect of parasitic oxide layers. Contacts such as diffused Li on eutectic Ga/In and In/Sn solder were processed in an inert glove box and characterized at 305 K (RT) and 77 K (LN) respectively. Comparative study revealed that Ga/In eutectics contacts behave throughout linear and stable, showing strong hall-effect to that of its counter parts. This was attributed due to the high adsorption behavior of anions at liquid (Ga--In) contacts and improved wettability. Whereas, for In/Sn solder case, the contacts processing considerations were substantially different, mainly because of its poor solder flow, excessive void formation, and heterogeneous phase distribution responsible for process yield loss. For diffused Li on Ga/In eutectic contacts, the linearity of the obtained Ohmic profiles was not consistent due to the high reactivity of the Li with HP-SC-Ge substrate. This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota.

  7. SOLVENT DISPERSION AND FLOW METER CALCULATION RESULTS

    SciTech Connect

    Nash, C.; Fondeur, F.; Peters, T.

    2013-06-21

    Savannah River National Laboratory (SRNL) found that the dispersion numbers for the six combinations of CSSX:Next Generation Solvent (NGS) “blend” and pure NGS versus salt solution, caustic wash, and strip aqueous solutions are all good. The dispersion numbers are indications of processability with centrifugal contactors. A comparison of solvent physical and thermal properties shows that the Intek™ solvent flow meter in the plant has a reading biased high versus calibrated flow when NGS is used, versus the standard CSSX solvent. The flow meter, calibrated for CSSX solvent, is predicted to read 2.8 gpm of NGS in a case where the true flow of NGS is 2.16 gpm.

  8. Batch extracting process using magneticparticle held solvents

    DOEpatents

    Nunez, Luis (Elmhurst, IL); Vandergrift, George F. (Bolingbrook, IL)

    1995-01-01

    A process for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents.

  9. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth.

    PubMed

    Lu, Haiming; Meng, Xiangkang

    2015-01-01

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size. PMID:26053237

  10. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth

    NASA Astrophysics Data System (ADS)

    Lu, Haiming; Meng, Xiangkang

    2015-06-01

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size.

  11. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth

    PubMed Central

    Lu, Haiming; Meng, Xiangkang

    2015-01-01

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size. PMID:26053237

  12. Spectrographic analysis of bismuth-tin eutectic alloys by spark-ignited low-voltage ac-arc excitation

    NASA Technical Reports Server (NTRS)

    Huff, E. A.; Kulpa, S. J.

    1969-01-01

    Spectrographic method determines individual stainless steel components in molten bismuth-42 w/o tin eutectic to determine the solubility of Type 304 stainless steels. It utilizes the high sensitivity and precision of the spark-ignited, low-voltage ac-arc excitation of samples rendered homogeneous by dissolution.

  13. Pyrochemical extraction of transition metals from Pacific Ocean deep sea nodules

    SciTech Connect

    von Winbush, S.; Maroni, V.A.

    1987-01-01

    Considerable success has been achieved in lixiviation transition metals from Pacific Ocean deep sea nodules. These nodules typically contain approx.30 wt% Mn, approx.7 wt% Fe, approx.1 wt% Ni, approx.1 wt% Cu, and approx.0.3 wt% Co. Samples of the nodules have been subjected to extraction tests at 450C using LiCl-KCl eutectic and MgCl2-NaCl-KCl eutectic. The most impressive results came from studies using the Mg, Na, K/Cl eutectic. With this salt, nearly 100% of the Co, Cu, Fe, Mn, and Ni are brought into solution. The dissolution reaction is quite vigorous, with nearly complete extraction occurring in a very short time (minutes) following melting of the eutectic. Quantitative recovery of cobalt is achieved with nodule-to-salt weight ratios as high as 1:3. Electronic absorption spectroscopy (carried out on the molten extract solution at the test temperature) showed that the oxidation state of the dissolved transition metals are CoS , CuS , FeT , MnS , and NiS . At temperatures greater than or equal to450C, the FeT and CuS distill out of the extract solution at a rapid rate and condense as binary halides or halide complexes. Using a combination of distillation followed by electrochemical reduction of the CoS and NiS in the extract salt, it appears possible to recover a fairly high grade of cobalt metal and nickel metal as well as high grade CuS , FeT , and MnS in the form of a halide salt (CuCl2, FeCl3) or an oxide precipitate (Mn2O3).

  14. Preventing Deep Vein Thrombosis

    MedlinePLUS

    ... AQ FREQUENTLY ASKED QUESTIONS FAQ174 WOMEN’S HEALTH Preventing Deep Vein Thrombosis • What is deep vein thrombosis ( DVT) ? • How does a clot form ... diagnosed? • How is DVT treated? • Glossary What is deep vein thrombosis (DVT)? Deep vein thrombosis is a ...

  15. Threshold current density of electromigration in eutectic SnPb solder

    SciTech Connect

    Yeh, Y.T.; Chou, C.K.; Hsu, Y.C.; Chen Chih; Tu, K.N.

    2005-05-16

    Electromigration has emerged as an important reliability issue in the microelectronics packaging industry since the dimension of solder joints has continued to shrink. In this letter, we report a technique that enables the precise measurement of the important parameters of solder electromigration, such as activation energy, critical length, threshold current density, effective charge numbers, and electromigration rate. Patterned Cu/Ti films in a Si trench were employed for eutectic SnPb solder to be reflowed on, and thus solder Blech specimens were fabricated. Atomic force microscope was used to measure the depletion volume caused by electromigration on the cathode end. The threshold current density is estimated to be 8.5x10{sup 3} A/cm{sup 2} at 100 deg. C, which relates directly to the maximum allowable current that a solder joint can carry without electromigration damage. This technique facilitates the scientifically systematic investigation of electromigration in solders.

  16. Competitive growth of stable and metastable Fe- C- X eutectics: Part I. experiments

    NASA Astrophysics Data System (ADS)

    Magnin, P.; Kurz, W.

    1988-08-01

    The effect of small additions of Si, P, Cr, Mn, Ti, Al, and S to pure Fe-C eutectic, upon the transi-tion velocities from grey to white and white to grey cast iron, has been measured by varying the growth rate during directional solidification. As a result, it is found that alloying elements can be classified into three types: graphitizing (Si, Al, P, and S), carburizing (Cr), and “hysteretic effect” (Mn, Ti). The well-known influence of a thermal gradient (or the superheat) has been shown to af-fect only the grey-to-white transition. Growth undercoolings were measured as a function of growth rate, while the average lamellar spacings were determined from transverse sections of directionally solidified samples. A small addition of the element studied can have a marked effect upon these parameters.

  17. Massively Parallel Phase-Field Simulations for Ternary Eutectic Directional Solidification

    E-print Network

    Bauer, Martin; Steinmetz, Philipp; Jainta, Marcus; Berghoff, Marco; Schornbaum, Florian; Godenschwager, Christian; Köstler, Harald; Nestler, Britta; Rüde, Ulrich

    2015-01-01

    Microstructures forming during ternary eutectic directional solidification processes have significant influence on the macroscopic mechanical properties of metal alloys. For a realistic simulation, we use the well established thermodynamically consistent phase-field method and improve it with a new grand potential formulation to couple the concentration evolution. This extension is very compute intensive due to a temperature dependent diffusive concentration. We significantly extend previous simulations that have used simpler phase-field models or were performed on smaller domain sizes. The new method has been implemented within the massively parallel HPC framework waLBerla that is designed to exploit current supercomputers efficiently. We apply various optimization techniques, including buffering techniques, explicit SIMD kernel vectorization, and communication hiding. Simulations utilizing up to 262,144 cores have been run on three different supercomputing architectures and weak scalability results are show...

  18. Thermoelectric and morphological effects of Peltier pulsing on directional solidification of eutectic Bi-Mn

    NASA Technical Reports Server (NTRS)

    Silberstein, R. P.; Larson, D. J., Jr.; Dressler, B.

    1984-01-01

    Extensive in situ thermal measurements using Peltier Interface Demarcation (PID) during directional solidification of eutectic Bi/MnBi were carried out. Observations indicate that significant thermal transients occur throughout the sample as a result of the Peltier pulsing. The contributions of the Peltier, Thomson, and Joule heats were separated and studied as a function of pulse intensity and polarity. The Joule and the combined Peltier and Thomson thermal contributions were determined as a function of time during and after the current pulses, close to the solid/liquid interface. Variations of the Bi/MnBi particle morphology clearly reveal the interface shape, changes in interface velocity, meltback, and temporary loss of cooperative growth, as a result of the pulsing.

  19. Fabrication of capacitive absolute pressure sensor using Si-Au eutectic bonding in SOI wafer

    NASA Astrophysics Data System (ADS)

    Ryeol Lee, Kang; Kim, Kunnyun; Park, Hyo-Derk; Kim, Yong Kook; Choi, Seung-Woo; Choi, Woo-Beom

    2006-04-01

    A capacitive absolute pressure sensor was fabricated using a large deflected diaphragm with a sealed vacuum cavity formed by removing handling silicon wafer and oxide layers from a SOI wafer after eutectic bonding of a silicon wafer to the SOI wafer. The deflected displacements of the diaphragm formed by the vacuum cavity in the fabricated sensor were similar to simulation results. Initial capacitance values were about 2.18pF and 3.65pF under normal atmosphere, where the thicknesses of the diaphragm used to fabricate the vacuum cavity were 20 µm and 30 µm, respectively. Also, it was confirmed that the differences of capacitance value from 1000hPa to 5hPa were about 2.57pF and 5.35pF, respectively.

  20. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    SciTech Connect

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk

    2013-07-01

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  1. Scaling law for CBr4-C2Cl6 lamellar eutectic in directional solidification

    NASA Astrophysics Data System (ADS)

    Jun-ming, Liu; Zhi-guo, Liu; Zhuang-chun, Wu

    1993-10-01

    A coupling equation of directional solidification of CBr4(?)-C2Cl6(?) eutectic is solved numerically. Profiles and profile bifurcation of the solidifying interface as functions of the interlamellar spacing are studied in detail. It is believed that the critical bifurcating point of the solidifying interface of each lamella coincides with its marginally stable position and hence, a new scaling law is derived. Existence of the band of spacing selection is also studied. For a given solidifying rate, the critical bifurcating point of ?/liquid interface is the upper limit of this band, and its lower limit corresponds to the critical bifurcating point of ?/liquid interface. Our analyses interpret the latest relevant experimental data reasonably.

  2. Alloy and structural optimization of a directionally solidified lamellar eutectic alloy

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1976-01-01

    Mechanical property characterization tests of a directionally solidified Ni-20 percent Cb-2.5 percent Al-6 percent Cr cellular eutectic turbine blade alloy demonstrated excellent long time creep stability and indicated intermediate temperature transverse tensile ductility and shear strength to be somewhat low for turbine blade applications. Alloy and structural optimization significantly improves these off-axis properties with no loss of longitudinal creep strength or stability. The optimized alloy-structure combination is a carbon modified Ni-20.1 percent Cb-2.5 percent Al-6.0 percent Cr-0.06 percent C composition processed under conditions producing plane front solidification and a fully-lamellar microstructure. With current processing technology, this alloy exhibits a creep-rupture advantage of 39 C over the best available nickel base superalloy, directionally solidified MAR M200+ Hf. While improved by about 20 percent, shear strength of the optimized alloy remains well below typical superalloy values.

  3. Eutectic equilibria in the quaternary system Fe-Cr-Mn-C

    NASA Technical Reports Server (NTRS)

    Nowotny, H.; Wayne, S.; Schuster, J. C.

    1982-01-01

    The constitution of the quaternary system, Fe-Cr-Mn-C and to a lesser extent of the quinary system, Fe-Cr-Mn-Al-C were examined for in situ composite alloy candidates. Multivariant eutectic compositions were determined from phase equilibria studies wherein M7C3 carbides (approximately 30% by volume) formed from the melt within gamma iron. An extended field of the hexagonal carbide, (Cr, Fe, Mn)7 C3, was found without undergoing transformation to the orthorhombic structure. Increasing stability for this carbide was found for higher ratios of Cr/Fe(+) Cr + Mn. Aluminum additions promoted a ferritic matrix while manganese favored the desired gamma austenitic matrix. In coexistence with the matrix phase, chromium enters preferentially the carbide phase while manganese distributes equally between the gamma matrix and the M7C3 carbide. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities.

  4. Meloxicam transdermal delivery: effect of eutectic point on the rate and extent of skin permeation

    PubMed Central

    Mohammadi-Samani, Soliman; Yousefi, Gholamhossein; Mohammadi, Farhad; Ahmadi, Fatemeh

    2014-01-01

    Objective(s): Drug delivery through the skin can transfer therapeutic levels of drugs for pharmacological effects. Analgesics such as NSAIDs have gastrointestinal side effects and topical dosage forms of these drugs are mainly preferred, especially for local pains. Meloxicam is one of NSAIDs with no topical form in the market. In this research, we attempted to quantify the skin permeation of a meloxicam topical preparation and to show how permeation would be increased by using thymol as an enhancer. The effect of eutectic point of drug and thymol mixture on rate and extent of skin permeation was also studied. Materials and Methods: Different mixtures of thymol and meloxicam (2:8, 4:6, 5:5, 6:4, 8:2) were prepared and their melting point were obtained by differential scanning calorimetry. Then drug permeation was measured using diffusion cells and the Guinea pig skin. Results: Mixtures in ratios 5:5 and 4:6 of meloxicam / thymol showed a new endotherm at 149 and 140°C in DSC thermograms. The permeability of meloxicam from the creams containing 6:4, 5:5 and 4:6 ratios of meloxicam to thymol were 4.71, 15.2, 22.06 µg/cm2 respectively. This was significantly different from the cream of pure meloxicam (3.76 µg/cm2). Conclusion: This study set out to determine that thymol plays as a skin permeation enhancer and increases the meloxicam skin absorption and this enhancement is significant at the eutectic point of drug-enhancer mixture. PMID:24711894

  5. Learning Deep Generative Ruslan Salakhutdinov

    E-print Network

    Toronto, University of

    Learning Deep Generative Models Ruslan Salakhutdinov Departments of Computer Science reserved Keywords deep learning, deep belief networks, deep Boltzmann machines, graphical models Abstract suggest that building such systems requires models with deep architectures that involve many layers

  6. Asphaltene aggregation in organic solvents.

    PubMed

    Oh, Kyeongseok; Ring, Terry A; Deo, Milind D

    2004-03-01

    Asphaltenic solids formed in the Rangely field in the course of a carbon dioxide flood and heptane insolubles in the oil from the same field were used in this study. Four different solvents were used to dissolve the asphaltenes. Near-infrared (NIR) spectroscopy was used to determine the onset of asphaltene precipitation by heptane titration. When the onset values were plotted versus asphaltene concentrations, distinct break points (called critical aggregation concentrations (CAC) in this paper) were observed. CACs for the field asphaltenes dissolved in toluene, trichloroethylene, tetrahydrofuran, and pyridine occurred at concentrations of 3.0, 3.7, 5.0, and 8.2 g/l, respectively. CACs are observed at similar concentrations as critical micelle concentrations (CMC) for the asphaltenes in the solvents employed and can be interpreted to be the points at which rates of asphaltene aggregations change. CMC values of asphaltenes determined from surface tension measurements (in pyridine and TCE) were slightly higher than the CAC values measured by NIR onset measurements. The CAC for heptane-insoluble asphaltenes in toluene was 3.1 g/l. Thermal gravimetric analysis (TGA) and elemental compositions of the two asphaltenes showed that the H/C ratio of the heptane-insoluble asphaltenes was higher and molecular weight (measured by vapor pressure osmometry) was lower. PMID:14757097

  7. Solvent Extraction External Radiation Stability Testing

    SciTech Connect

    Peterson, R.A.

    2001-01-05

    Personnel irradiated a number of samples of calixarene-based solvent. Analysis of these samples indicated that measurable loss of the calixarene occurred at very high doses (-16 Mrad). No measurable loss of the Cs-7SB modifier occurred at equivalent doses. The primary degradation product, 4-sec-butylphenol, observed during analysis of the samples came from degradation of the modifier. Also, TOA proved more susceptible to damage than the other components of the solvent. The total degradation of the solvent proved relatively minor. The consistent solvent performance, as indicated by the measured D Cs values, after exposure at high total doses serves as evidence of the relatively low degree of degradation of the solvent components. Additional tests employing internal irradiation of solvents with both simulants and SRS tank waste will be completed by the end of March 2001 to provide confirmation of the results presented herein.

  8. Solvent dependent photophysical properties of dimethoxy curcumin

    NASA Astrophysics Data System (ADS)

    Barik, Atanu; Indira Priyadarsini, K.

    2013-03-01

    Dimethoxy curcumin (DMC) is a methylated derivative of curcumin. In order to know the effect of ring substitution on photophysical properties of curcumin, steady state absorption and fluorescence spectra of DMC were recorded in organic solvents with different polarity and compared with those of curcumin. The absorption and fluorescence spectra of DMC, like curcumin, are strongly dependent on solvent polarity and the maxima of DMC showed red shift with increase in solvent polarity function (?f), but the above effect is prominently observed in case of fluorescence maxima. From the dependence of Stokes' shift on solvent polarity function the difference between the excited state and ground state dipole moment was estimated as 4.9 D. Fluorescence quantum yield (?f) and fluorescence lifetime (?f) of DMC were also measured in different solvents at room temperature. The results indicated that with increasing solvent polarity, ?f increased linearly, which has been accounted for the decrease in non-radiative rate by intersystem crossing (ISC) processes.

  9. Femtosecond dynamics in hydrogen-bonded solvents

    SciTech Connect

    Castner, E.W. Jr.; Chang, Y.J.

    1993-09-01

    We present results on the ultrafast dynamics of pure hydrogen-bonding solvents, obtained using femtosecond Fourier-transform optical-heterodyne-detected, Raman-induced Kerr effect spectroscopy. Solvent systems we have studied include the formamides, water, ethylene glycol, and acetic acid. Inertial and diffusive motions are clearly resolved. We comment on the effect that such ultrafast solvent motions have on chemical reactions in solution.

  10. Solvent effects on photostability of metal dithizonates

    SciTech Connect

    Chen, N.L.; Lai, E.P.C.

    1987-01-01

    The photodecompositions of five typical metal dithizonates have been studied in various solvents under the irradiation of 310-nm UV light and ordinary indoor illumination. In methylene chloride and chloroform the decomposition mechanism is confirmed to be the interaction of these metal dithizonates and the oxidants arising from the photodecomposition of the solvent. In carbon tetrachloride the decompositions were fast and were observed to be first-order in the dithizonates. In benzene, no apparent photodecomposition was found. Since these solvent effects are independent of the metal, benzene is probably the best solvent for the extraction-spectrophotometry of unstable dithizonates.

  11. Conserve Energy: Modernize Your Solvent Deasphalting Unit 

    E-print Network

    Lambert, J. S.; Gleitsmann, J. W.

    1983-01-01

    be modified easily to incorporate the en rgy saving features of modern units, at a small fraction of the investment required for complete replacement. EVAPORATIVE SOLVENT RECOVERY Because the solvent used has a high vapor pressure and the DAO and asphalt... products are almost non-volatile, recovery of the solvent is relatively easy. Older units relied on a single stage of solvent evaporation, using large amounts of low pressure steam to supply the heat required. However, tor the past 20 y ars Foster...

  12. MCU MATERIALS COMPATIBILITY WITH CSSX SOLVENT

    SciTech Connect

    Fondeur, F

    2006-01-13

    The Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) plans to use several new materials of construction not previously used with CSSX solvent. SRNL researchers tested seven materials proposed for service in seal and gasket applications. None of the materials leached detectable amounts of components into the CSSX solvent during 96 hour tests. All are judged acceptable for use based on their effect on the solvent. However, some of the materials adsorbed solvent or changed dimensions during contact with solvent. Consultation with component and material vendors with regard to performance impact and in-use testing of the materials is recommended. Polyetheretherketone (PEEK), a material selected for use in contactor bearing seals, did not gain weight or change dimensions on contact with CSSX solvent. Analysis of the solvent contacted with this material showed no impurities and the standard dispersion test gave acceptable phase separation results. The material contains a leachable hydrocarbon substance, detectable on exposed surfaces, that did not adversely contaminate the solvent within the limits of the testing. We recommend contacting the vendor to determine the source and purpose of this component, or, alternatively, pursue the infrared analysis of the PEEK in an effort to better define potential impacts.

  13. Single polymer chains in poor solvent: Using the bond fluctuation method with explicit solvent

    NASA Astrophysics Data System (ADS)

    Jentzsch, Christoph; Werner, Marco; Sommer, Jens-Uwe

    2013-03-01

    We use the bond fluctuation model with explicit solvent to study single polymer chains under poor solvent conditions. Static and dynamic properties of the bond fluctuation model with explicit solvent are compared with the implicit solvent model, and the ?-temperatures are determined for both solvent models. We show that even in the very poor solvent regime, dynamics is not frozen for the explicit solvent model. We investigate some aspects of the structure of a single collapsed globule and show that rather large chain lengths are necessary to reach the scaling regime of a dense sphere. The force-extension curve of a single polymer chain under poor solvent conditions in the fixed end-to-end distance ensemble is analyzed. We find that the transition of the tadpole conformation to the stretched chain conformation is rather smooth because of fluctuation effects, which is in agreement with recent experimental results.

  14. Quantitation of buried contamination by use of solvents. [degradation of silicone polymers by amine solvents

    NASA Technical Reports Server (NTRS)

    Pappas, S. P.; Hsiao, Y. C.; Hill, L. W.

    1973-01-01

    Spore recovery form cured silicone potting compounds using amine solvents to degrade the cured polymers was investigated. A complete list of solvents and a description of the effect of each on two different silicone polymers is provided.

  15. Stability of metastable phase and soft magnetic properties of bulk Fe-B nano-eutectic alloy prepared by undercooling solidification combined with CU-mold chilling

    NASA Astrophysics Data System (ADS)

    Yang, Changlin; Zhang, Jun; Huang, Huili; Song, Qijiao; Liu, Feng

    2015-11-01

    Bulk Fe83B17 nano-eutectic alloys were prepared by undercooling solidification combined with Cu-mold chilling method. Stable phase Fe2B and metastable phase Fe3B were found to coexist in the as-solidified microstructure. The soft magnetic properties were improved significantly by the nano-lamellar eutectic and the metastable phase and, were increased further by annealing at 1173 K for 1.5 h after which the metastable phase was decomposed completely.

  16. Characterization and comparison of lidocaine-tetracaine and lidocaine-camphor eutectic mixtures based on their crystallization and hydrogen-bonding abilities.

    PubMed

    Gala, Urvi; Chuong, Monica C; Varanasi, Ravi; Chauhan, Harsh

    2015-06-01

    Eutectic mixtures formed between active pharmaceutical ingredients and/or excipients provide vast scope for pharmaceutical applications. This study aimed at the exploration of the crystallization abilities of two eutectic mixtures (EM) i.e., lidocaine-tetracaine and lidocaine-camphor (1:1 w/w). Thermogravimetric analysis (TGA) for degradation behavior whereas modulated temperature differential scanning calorimetry (MTDSC) set in first heating, cooling, and second heating cycles, was used to qualitatively analyze the complex exothermic and endothermic thermal transitions. Raman microspectroscopy characterized vibrational information specific to chemical bonds. Prepared EMs were left at room temperature for 24 h to visually examine their crystallization potentials. The degradation of lidocaine, tetracaine, camphor, lidocaine-tetracaine EM, and lidocaine-camphor EM began at 196.56, 163.82, 76.86, 146.01, and 42.72°C, respectively, which indicated that eutectic mixtures are less thermostable compared to their individual components. The MTDSC showed crystallization peaks for lidocaine, tetracaine, and camphor at 31.86, 29.36, and 174.02°C, respectively (n?=?3). When studying the eutectic mixture, no crystallization peak was observed in the lidocaine-tetracaine EM, but a lidocaine-camphor EM crystallization peak was present at 18.81°C. Crystallization occurred in lidocaine-camphor EM after being kept at room temperature for 24 h, but not in lidocaine-tetracaine EM. Certain peak shifts were observed in Raman spectra which indicated possible interactions of eutectic mixture components, when a eutectic mixture was formed. We found that if the components forming a eutectic mixture have crystallization peaks close to each other and have sufficient hydrogen-bonding capability, then their eutectic mixture is least likely to crystallize out (as seen in lidocaine-tetracaine EM) or vice versa (lidocaine-camphor EM). PMID:25370024

  17. Thermodynamic description and unidirectional solidification of eutectic organic alloys: III. Binary systems neopentylglycol-(D)camphor and amino-methyl-propanediol-(D)camphor

    SciTech Connect

    Witusiewicz, V.T. . E-mail: victor@access.rwth-aachen.de; Sturz, L.; Hecht, U.; Rex, S.

    2004-11-08

    The temperature and enthalpy of transformation of organic alloys from the binary systems neopentylglycol-(D)camphor (NPG-DC) and 2-amino-2-methyl-1,3-propanediol-(D)camphor (AMPD-DC) were measured by means of differential scanning calorimetry (DSC). The phase diagrams of these binary systems were assessed via the CALPHAD approach using Thermo-Calc by simultaneously optimizing the thermodynamic and phase equilibrium data measured in the present work. Proper agreements between the experimental and calculated data for the phase diagrams as well as for the thermochemical properties were achieved. Experiments and calculations show that both the NPG-DC and the AMPD-DC system exhibit a nonvariant eutectic reaction with the eutectic point at 36.2 mol% DC and 326.0 K and at 9.3 mol% DC and 362.0 K, respectively. In each system the temperature of the eutectic reaction is higher than the temperature of the transformation from the ordered crystals to the orientationally disordered (plastic) crystals. Unidirectional solidification experiments were performed with several alloys in order to verify the nature of eutectic growth: We find that in both systems eutectic growth occurs with both solid phases being non-facetted and with a lamellar or rod-like eutectic structure. Due to the optical activity of DC its distribution in the solid samples is well detectible in polarised light.

  18. Eutectic morphology evolution and Sr-modification in Al-Si based alloys studied by 3D phase-field simulation coupled to Calphad data

    NASA Astrophysics Data System (ADS)

    Eiken, J.; Apel, M.

    2015-06-01

    The mechanical properties of Al-Si cast alloys are mainly controlled by the morphology of the eutectic silicon. Phase-field simulations were carried out to study the evolution of the multidimensional branched eutectic structures in 3D. Coupling to a Calphad database provided thermodynamic data for the multicomponent multiphase Al-Si-Sr-P system. A major challenge was to model the effect of the trace element Sr. Minor amounts of Sr are known to modify the silicon morphology from coarse flakes to fine coral-like fibers. However, the underlying mechanisms are still not fully understood. Two different in literature most discussed mechanisms were modelled: a) an effect of Sr on the growth kinetics of eutectic silicon and b) the formation of Al2Si2Sr on AlP particles, which consumes most potent nucleation sites and forces eutectic silicon to form with lower frequency and higher undercooling. The phase-field simulations only revealed a successful modification of the eutectic morphology when both effects acted in combination. Only in this case a clear depression of the eutectic temperature was observed. The required phase formation sequence L ? fcc-(Al) ? AlP ? Al2Si2Sr ? (Si) determines critical values for the Sr and P content.

  19. Solid-Liquid Interfacial Energy of Solid Neopentylglycol Solution in Equilibrium with Neopentylglycol-Aminomethylpropanediol Eutectic Liquid

    NASA Astrophysics Data System (ADS)

    Bayram, Ümit; Özer, Alaaddin; Aksöz, Sezen; Mara?l?, Necmettin

    2013-09-01

    The grain boundary groove shapes for solid neopentylglycol solution (NPG-40 mol pct AMPD) in equilibrium with the neopentylglycol (NPG)-aminomethylpropanediol (AMPD) eutectic liquid (NPG-42.2 mol pct AMPD) have been directly observed using a horizontal linear temperature gradient apparatus. From the observed grain boundary groove shapes, the Gibbs-Thomson coefficient (?) and solid-liquid interfacial energy ( ? SL) of solid NPG solution have been determined to be (7.4 ± 0.7) × 10-8 K m and (6.4 ± 1.0) × 10-3 J m-2, respectively. The grain boundary energy of solid NPG solution has been determined to be (12.5 ± 1.0) × 10-3 J m-2 from the observed grain boundary groove shapes. The ratio of thermal conductivity of equilibrated eutectic liquid to thermal conductivity of solid NPG solution has also been determined to be 0.48.

  20. Recycling of LiCl-KCl eutectic based salt wastes containing radioactive rare earth oxychlorides or oxides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Cho, Y. Z.; Son, S. M.; Lee, T. K.; Yang, H. C.; Kim, I. T.; Lee, H. S.

    2012-01-01

    Recycling of LiCl-KCl eutectic salt wastes containing radioactive rare earth oxychlorides or oxides was studied to recover renewable salts from the salt wastes and to minimize the radioactive wastes by using a vacuum distillation method. Vaporization of the LiCl-KCl eutectic salt was effective above 900 °C and at 5 Torr. The condensations of the vaporized salt were largely dependent on temperature gradient. Based on these results, a recycling system of the salt wastes as a closed loop type was developed to obtain a high efficiency of the salt recovery condition. In this system, it was confirmed that renewable salt was recovered at more than 99 wt.% from the salt wastes, and the changes in temperature and pressure in the system could be utilized to understand the present condition of the system operation.

  1. Stress analysis, thermomechanical fatique evaluation, and root subcomponent testing of gamma/gamma prime-delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Jackson, J. J.

    1976-01-01

    Thermomechanical fatigue (TMF) and root subcomponent tensile, creep, and low cycle fatigue (LCF) tests were conducted to determine the capability of a fully lamellar directionally solidified eutectic alloy to sustain the airfoil thermal fatigue and root attachment loads anticipated in advanced, hollow, high work turbine blades. A three dimensional finite element elastic stress analysis was performed on typical advanced hollow eutectic airfoil and root-platform designs to determine appropriate conditions for these tests. Results of TMF tests conducted on longitudinal specimens (stress axis parallel to the solidification direction) containing a simulated leading edge cooling hole pattern indicated the longitudinal TMF properties to be more than adequate for the particular advanced hollow blade analyzed, with the strain range for a 10,000 cycle life being more than 50% above the maximum strain range calculated for the advanced hollow blade.

  2. Development and Evaluation of Directionally-Solidified NiAl/(CR,MO)-Based Eutectic Alloys for Airfoil Applications

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Locci, I. E.; Whittenberger, J. D.

    2001-01-01

    The results of recent efforts to develop directionally-solidified alloys based on the Ni-33Al-31Cr-3Mo eutectic composition are discussed. These developmental efforts included studying the effects of macroalloying and growth rates on microstructure formation as well as the elevated temperature compressive and tensile properties of these alloys. These observations revealed that contrary to conventional opinion, the cellular microstructure was stronger and tougher than the planar eutectic microstructure due to a microstructural refinement of the cell size and interlamellar spacing. The high temperature strengths of these alloys are compared with those of commercial superalloys and advanced NiAl single crystals. The implications of this research on airfoil manufacturing and applications are discussed.

  3. Self-calibration of a W/Re thermocouple using a miniature Ru-C (1954 °C) eutectic cell

    SciTech Connect

    Ongrai, O.; University of Surrey, Guildford, Surrey; National Institute of Metrology, Klong 5, Klong Luang, Pathumthani ; Pearce, J. V.; Machin, G.; Sweeney, S. J.

    2013-09-11

    Previous successful investigations of miniature cobalt-carbon (Co-C, 1324 °C) and palladium-carbon (Pd-C, 1492 °C) high temperature fixed-point cells for thermocouple self-calibration have been reported [1-2]. In the present work, we describe a series of measurements of a miniature ruthenium-carbon (Ru-C) eutectic cell (melting point 1954 °C) to evaluate the repeatability and stability of a W/Re thermocouple (type C) by means of in-situ calibration. A miniature Ru-C eutectic fixed-point cell with outside diameter 14 mm and length 30 mm was fabricated to be used as a self-calibrating device. The performance of the miniature Ru-C cell and the type C thermocouple is presented, including characterization of the stability, repeatability, thermal environment influence, ITS-90 temperature realization and measurement uncertainty.

  4. A method to enhance the data transfer rate of eutectic Sb-Te phase-change recording media

    NASA Astrophysics Data System (ADS)

    Yeh, Tung-Ti; Hsieh, T.-E.; Shieh, Han-Ping D.

    2005-07-01

    This work describes the effect of nitrogen doping to eutectic Sb-Te phase-change materials in order to enhance the speed of the amorphous-to-crystalline phase transformation. When nitrogen at a sputtering gas flow ratio of N2/Ar=3% was doped in the eutectic Ge-In-Sb-Te recording layer, the data transfer rate was increased up to 1.6 times. When thin GeNx nucleation promotion layers were further added in below and above the recording layer, an overall enhancement up to 3.3 times in data transfer rate was achieved. The nitrogen contents corresponding to the N2/Ar flow ratios (N2/Ar=0%-10%) were calibrated by electron spectroscopy for chemical analysis. Transmission electron microscopy revealed that nitrogen doping was able to promote the phase transformation by generating numerous nucleation sites uniformly distributed in the recording layer and hence increased the recrystallization speed.

  5. Green Solvents for Precision Cleaning

    NASA Technical Reports Server (NTRS)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul

    2013-01-01

    Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the moderate processing conditions of 323 K, 13.8 MPa, 30 min and 750 rpm.

  6. Taoism and Deep Ecology.

    ERIC Educational Resources Information Center

    Sylvan, Richard; Bennett, David

    1988-01-01

    Contrasted are the philosophies of Deep Ecology and ancient Chinese. Discusses the cosmology, morality, lifestyle, views of power, politics, and environmental philosophies of each. Concludes that Deep Ecology could gain much from Taoism. (CW)

  7. Deep vein thrombosis - discharge

    MedlinePLUS

    You were treated for deep venous thrombosis (DVT). This is a condition in which a blood clot forms in a vein that is not on ... especially if it gets worse upon taking a deep breath in You cough up blood

  8. Green chemicals: Searching for cleaner solvents

    SciTech Connect

    Lucas, A.

    1994-10-05

    While increased pressure from EPA has solvents producers scrambling to find greener alternatives, many say the cost effectiveness and performance characteristics of traditional technologies are such that they will not disappear quickly. Though a variety of alternative {open_quotes}green{close_quotes} solvents have been developed and commercialized, better means of solvent recovery have also come along, ensuring continued use of many organic solvents. The 1990 Clean Air Act (CAA), designed to eliminate volatile organic compounds (VOCs), ozone depleters, and other hazardous air pollutants (HAPs), has put limits on many organic solvents. Those most under fire are chlorinated solvents, such as methylene chloride, 1,1,1 trichloroethylene (methyl chloroform), and chlorofluorocarbon (CFC)-113. Producers have been developing a variety of lower VOC solvents to replace those being phased out or regulated. Among those likely to experience most growth are aliphatic hydrocarbons to replace chlorinated solvents in cleaning applications. Growth is also expected for alcohols, esters, and glycol ethers for other end-use applications.

  9. ENHANCED PROCESSING OF GREEN SOLVENTS - PHASE I

    EPA Science Inventory

    Solvents are a valuable processing tool in the chemical and related industries. Solvents are used to enhance mass transfer, heat transfer and in most cases are a processing aid and eventually are not used in the final product but to enhance the fabrication of the final pr...

  10. Gallium complexes and solvent extraction of gallium

    SciTech Connect

    Coleman, J.P.; Graham, C.R.; Monzyk, B.F.

    1988-05-03

    This patent describes a process for recovering gallium from aqueous solutions containing gallium which comprises contacting such a solution with an organic solvent containing at least 2% by weight of a water-insoluble N-organo hydroxamic acid having at least about 8 carbon atoms to extract gallium, and separating the gallium loaded organic solvent phase from the aqueous phase.

  11. REMEDIATION OF CONTAMINATED SOILS BY SOLVENT FLUSHING

    EPA Science Inventory

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, ...

  12. EXPERIENCES IN DESIGNING SOLVENTS FOR THE ENVIRONMENT

    EPA Science Inventory

    Solvents used throughout industry are chosen to meet specific technological requirements such as solute solubility, cleaning and degreasing, or being a medium for paints and coatings. With the increasing awareness of the human health effects and environmental tisks of solvent use...

  13. EXPERIENCES IN DESIGNING SOLVENTS FOR THE ENVIRONMENT

    EPA Science Inventory

    Solvents used throughout industry are chosen to meet specific technological requirements such as solute solubility, cleaning and degreasing, or being a medium for paints and coatings. With the increasing awareness of the human health effects and environmental risks of solvent use...

  14. Interfacial chemistry in solvent extraction systems

    SciTech Connect

    Neuman, R.D.

    1990-01-01

    Significant progress has been made in our research program investigating the interfacial chemistry in solvent extraction systems. Our present research is emphasizing characterization of the structure and dynamics of macroscopic and microscopic interfaces which occur in hydrometallurgical solvent extraction systems. Some highlights of our recent accomplishments are summarized in this report.

  15. Pneumatic conveying of pulverized solvent refined coal

    DOEpatents

    Lennon, Dennis R. (Allentown, PA)

    1984-11-06

    A method for pneumatically conveying solvent refined coal to a burner under conditions of dilute phase pneumatic flow so as to prevent saltation of the solvent refined coal in the transport line by maintaining the transport fluid velocity above approximately 95 ft/sec.

  16. REMEDIATION OF CONTAMINATED SOILS BY SOLVENT FLUSHING

    EPA Science Inventory

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. his technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, a...

  17. Remediating pesticide contaminated soils using solvent extraction

    SciTech Connect

    Sahle-Demessie, E.; Meckes, M.C.; Richardson, T.L.

    1996-12-31

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p{prime}-DDT, p,p{prime}-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as solvents over a wide range of operating conditions. It was demonstrated that a six-stage methanol extraction using a solvent-to-soil ratio of 1.6 can decrease pesticide levels in the soil by more than 99% and reduce the volume of material requiring further treatment by 25 times or more. The high solubility of the pesticides in methanol resulted in rapid extraction rates, with the system reaching quasi-equilibrium state in 30 minutes. The extraction efficiency was influenced by the number of extraction stages, the solvent-to-soil ratio, and the soil moisture content. Various methods were investigated to regenerate and recycle the solvent. Evaporation and solvent stripping are low cost and reliable methods for removing high pesticide concentrations from the solvent. For low concentrations, GAC adsorption may be used. Precipitating and filtering pesticides by adding water to the methanol/pesticide solution was not successful when tested with soil extracts. 26 refs., 10 figs., 6 tabs.

  18. Coal mining with a liquid solvent

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Miller, C. G.

    1979-01-01

    Study suggests carbonated water can dissolve or suspend coal and carry it to surface. Mixture of carbon dioxide and water may be coal solvent that will make unmanned mining reality. When used with proposed process monitoring coal solubility with conventional strain gage, solvent is basis for rapid cost effective extraction of coal from underground seams.

  19. REMEDIATING PESTICIDE CONTAMINATED SOILS USING SOLVENT EXTRACTION

    EPA Science Inventory

    Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p'-DDT, p,p'-DDD,, p,p'-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as sol...

  20. SAFETY OF ORGANIC SOLVENTS IN WASTE TANKS

    SciTech Connect

    Van Tuyl, H. H.

    1983-08-01

    This report addresses flash points and flammability limits of flammable gases found in waste tanks, primarily hydrocarbon mixtures derived from waste solvents. The effect of vapor pressure is discussed. Particular attention is given to Purex solvent. The pertinent facts are then applied to the safety of the waste tanks of concern.

  1. Improved Supercritical-Solvent Extraction of Coal

    NASA Technical Reports Server (NTRS)

    Compton, L.

    1982-01-01

    Raw coal upgraded by supercritical-solvent extraction system that uses two materials instead of one. System achieved extraction yields of 20 to 49 weight percent. Single-solvent yields are about 25 weight percent. Experimental results show extraction yields may be timedependent. Observed decreases in weight of coal agreed well with increases in ash content of residue.

  2. Supercritical-Multiple-Solvent Extraction From Coal

    NASA Technical Reports Server (NTRS)

    Corcoran, W.; Fong, W.; Pichaichanarong, P.; Chan, P.; Lawson, D.

    1983-01-01

    Large and small molecules dissolve different constituents. Experimental apparatus used to test supercritical extraction of hydrogen rich compounds from coal in various organic solvents. In decreasing order of importance, relevant process parameters were found to be temperature, solvent type, pressure, and residence time.

  3. SOLVENT RECOVERY AT VANDENBERG AIR FORCE BASE

    EPA Science Inventory

    The report gives results of a feasibility study of the addition of vapor recovery and solvent purification equipment for Vandenberg Air Force Base (VAFB) to reuse the large quantities of waste solvent generated in space shuttle preparation operations. (NOTE: Operation of VAFB as ...

  4. Microstructures and superplastic behavior of eutectic Fe-C and Ni-Cr white cast irons produced by rapid solidification

    NASA Astrophysics Data System (ADS)

    Kum, D. W.; Frommeyer, G.; Grant, N. J.; Sherby, O. D.

    1987-10-01

    Superplastic behavior of two commercial grade white cast irons, eutectic Fe-C and Ni-Cr white cast irons, was investigated at intermediate temperatures (650 to 750 °C). For this purpose, rapidly solidified powders of the cast irons were fully consolidated by compaction and rolling at about 650 °C. The volume fractions of cementite in the eutectic cast iron and in the Ni-Cr cast iron were 64 pct and 51 pct, respectively, and both cast irons consisted of fine equiaxed grains of cementite (1 to 2 ?m) and ferrite (0.5 to 2 ?m). The cast iron compacts exhibited high strain-rate sensitivity (strain-rate-sensitivity exponent of 0.35 to 0.46) and high tensile ductility (total elongation of 150 pct to 210 pct) at strain rates of 10-4 to 10-3 s-1 and at 650 °C to 750 °C. Microstructure evaluations were made by TEM, SEM, and optical microscopy methods. The equiaxed grains in the as-compacted samples remained unchanged even after large tensile deformation. It is concluded that grain boundary sliding ( e.g., along cementite grain boundaries in the case of the eutectic cast iron) is the principal mode of plastic deformation in both cast irons during superplastic testing conditions.

  5. An optimal method for phosphorylation of rare earth chlorides in LiCl-KCl eutectic based waste salt

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Kim, J. H.; Cho, Y. Z.; Choi, J. H.; Lee, T. K.; Park, H. S.; Park, G. I.

    2013-11-01

    A study on an optimal method for the phosphorylation of rare earth chlorides in LiCl-KCl eutectic waste salt generated the pyrochemical process of spent nuclear fuel was performed. A reactor with a pitched four blade impeller was designed to create a homogeneous mixing zone in LiCl-KCl eutectic salt. A phosphorylation test of NdCl3 in the salt was carried out by changing the operation conditions (operation temperature, stirring rate, agent injection amount). Based on the results of the test, a proper operation condition (450 °C, 300 rpm, 1 eq. of phosphorylation agent) for over a 0.99 conversion ratio of NdCl3 to NdPO4 was determined. Under this condition, multi-component rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Y) chlorides were effectively converted into phosphate forms. It was confirmed that the existing regeneration process of LiCl-KCl eutectic waste salt can be greatly improved and simplified through these phosphorylation test results.

  6. The structures expected in a simple ternary eutectic system: Part II. The Al-Ag-Cu ternary system

    NASA Astrophysics Data System (ADS)

    McCartney, D. G.; Jordan, R. M.; Hunt, J. D.

    1980-08-01

    Ternary alloys of various compositions from the aluminum rich corner of the Al-Ag-Cu system were directionally solidified at several different growth rates ranging from 6.4 × 10-1 mm·S-1 to 5.6 × 10-3 mm· s-1. The region of two phase coupled growth between ?-Al and CuAl2 was determined at a growth rate of 6.4 × 10-1 mm· s-1. The composition range over which a fully ternary eutectic structure formed was investigated for several different growth rates. The results are found to be consistent with the predictions of the competitive growth model set out in Part I,1 and it would seem that the ternary eutectic composition of the published phase diagram may be incorrect. Scanning electron microscopy, using the backscattered electron signal, was used, together with optical microscopy, to study the microstructures formed. The ternary eutectic between ?-Al, Ag2Al, and CuAl2 was found to be semiregular, and the unusual morphology of the two phase dendrites between ?-Al and Ag2Al is explained.

  7. PARIS II: Computer Aided Solvent Design for Pollution Prevention

    EPA Science Inventory

    This product is a summary of U.S. EPA researchers' work developing the solvent substitution software tool PARIS II (Program for Assisting the Replacement of Industrial Solvents, version 2.0). PARIS II finds less toxic solvents or solvent mixtures to replace more toxic solvents co...

  8. Deep Web video

    ScienceCinema

    None Available

    2012-03-28

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  9. Deep Space Telecommunications

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  10. Deep space optical communications

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.; Lesh, James R.

    1987-01-01

    Preliminary concepts and designs of a deep space optical link for planetary and deep space science are described. As a mission application, attention is given to a spacecraft optical transceiver package (OPTRANSDAC) attached to a Mars rover vehicle. Also considered are a preliminary concept for a 1000-AU mission, and to a tentative long-range plan for NASA's deep space optical communications program.

  11. Deep Lambertian Networks Introduction

    E-print Network

    Toronto, University of

    Deep Lambertian Networks Introduction Learns distributions over 3D object shapes from sets of 2D-shot recognition possible Uses multiplicative interactions to approximate the Lambertian reflectance model Deep 30 50 Experiments Deep Lambertian Networks Inference Samples from albedo DBN Face Relighting Simple

  12. Deep Web video

    SciTech Connect

    None Available

    2009-06-01

    To make the web work better for science, OSTI has developed state-of-the-art technologies and services including a deep web search capability. The deep web includes content in searchable databases available to web users but not accessible by popular search engines, such as Google. This video provides an introduction to the deep web search engine.

  13. Toxic hepatitis in occupational exposure to solvents

    PubMed Central

    Malaguarnera, Giulia; Cataudella, Emanuela; Giordano, Maria; Nunnari, Giuseppe; Chisari, Giuseppe; Malaguarnera, Mariano

    2012-01-01

    The liver is the main organ responsible for the metabolism of drugs and toxic chemicals, and so is the primary target organ for many organic solvents. Work activities with hepatotoxins exposures are numerous and, moreover, organic solvents are used in various industrial processes. Organic solvents used in different industrial processes may be associated with hepatotoxicity. Several factors contribute to liver toxicity; among these are: species differences, nutritional condition, genetic factors, interaction with medications in use, alcohol abuse and interaction, and age. This review addresses the mechanisms of hepatotoxicity. The main pathogenic mechanisms responsible for functional and organic damage caused by solvents are: inflammation, dysfunction of cytochrome P450, mitochondrial dysfunction and oxidative stress. The health impact of exposure to solvents in the workplace remains an interesting and worrying question for professional health work. PMID:22719183

  14. Characterization of Nanoparticles by Solvent Infrared Spectroscopy.

    PubMed

    Kiefer, Johannes; Grabow, Janet; Kurland, Heinz-Dieter; Müller, Frank A

    2015-12-15

    The characterization of the surface chemistry of nanoparticles using infrared spectroscopy of adsorbed solvents is proposed. In conventional IR spectroscopy of nanomaterials the capability of characterizing the chemistry of the surface is limited. To overcome these limitations, we record IR spectra of different solvents inside a fixed bed of the nanopowder to be tested. Using water and different alcohols as solvents enables the characterization of the nanomaterial's surface chemistry via the molecular interactions affecting the hydrogen-bonding network in the solvent. Different ceramic nanopowders (titania, two different iron oxides, and iron oxide nanocrystallites embedded in a closed silica matrix) are studied using water, ethanol, and n-butanol as solvents. The OH stretching region of the IR spectra reveals characteristic differences in the surface chemistry of the nanoparticles. The proposed method is fast and straightforward, and hence, it can be a versatile tool for rapid screening. PMID:26593634

  15. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart NNNN of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  16. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart QQQQ of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  17. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart QQQQ of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  18. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart NNNN of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  19. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart RRRR of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...Solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  20. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart NNNN of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  1. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart QQQQ of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  2. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2009-07-01 true Default Organic HAP Contents of Solvents and Solvent Blends...to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends...63.5758(a)(6), when detailed organic HAP content data for solvent blends...

  3. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart RRRR of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...Solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  4. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Default Organic HAP Contents of Solvents and Solvent Blends...to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends...63.5758(a)(6), when detailed organic HAP content data for solvent blends...

  5. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Default Organic HAP Contents of Solvents and Solvent Blends...to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends...63.5758(a)(6), when detailed organic HAP content data for solvent blends...

  6. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart NNNN of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  7. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart RRRR of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...Solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  8. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2012-07-01 true Default Organic HAP Contents of Solvents and Solvent Blends...to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends...63.5758(a)(6), when detailed organic HAP content data for solvent blends...

  9. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 true Default Organic HAP Contents of Solvents and Solvent Blends...to Subpart VVVV of Part 63—Default Organic HAP Contents of Solvents and Solvent Blends...63.5758(a)(6), when detailed organic HAP content data for solvent blends...

  10. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart RRRR of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...Solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  11. Structural changes in Bi-43 wt % Sn eutectic alloy under superplastic deformation

    NASA Astrophysics Data System (ADS)

    Korshak, V. F.; Shapovalov, Yu. A.; Prymak, O.; Kryshtal, A. P.; Vasilenko, R. L.

    2015-08-01

    Methods of scanning electron microscopy have been used to study the microstructure of superplastically deformed samples of eutectic alloy Bi-43 wt % Sn. The observed specific features of the deformation relief of the samples reveal the active development of the viscous dislocation-diffusion flow under superplasticity conditions. The manifestation of the hydrodynamic mode of deformation has been revealed under these conditions. The opportunity of the realization of viscous mechanisms of the transport of substance and of the manifestation of the effect of superplasticity are explained by the appearance in the material of a state that is characterized by a high dislocation density and low strength properties. An additional increase in the dislocation density and softening under superplasticity conditions are attributed to the occurrence of structural and phase transformations stimulated by deformation, the relaxation of significant internal elastic stresses, and the instability of the structural state of the initially nonequilibrium alloy in the field of mechanical stresses. Factors responsible for the appearance of significant internal elastic stresses in the alloy are analyzed.

  12. Microstructural evolution and atomic transport by thermomigration in eutectic tin-lead flip chip solder joints

    SciTech Connect

    Yang, Dan; Wu, B. Y.; Chan, Y. C.; Tu, K. N.

    2007-08-15

    The thermomigration behavior of eutectic tin-lead flip chip solder joints at an ambient temperature of 150 deg. C was investigated in terms of microstructural evolution, atomic transport, and numerical simulation. Pb accumulation and phase separation were observed in solder joints near a melting temperature after 50 h, which was supported by energy dispersive x-ray and element mapping analysis. It is believed that Pb atoms migrated from the chip side (the hot side) to the substrate side (the cold side) under a temperature gradient. Thermal electrical finite element simulation for the real flip chip test structure showed the existence of a temperature difference between the substrate side and the chip side. In addition, a temperature gradient above 1000 deg. C/cm across the adjacent unpowered solder joints was predicted. This was also verified by temperature measurements with thermocouples. The atomic flux of Pb due to thermomigration was calculated here, which was agreeable with the values originally reported. Also, the driving force of thermomigration was estimated to be 10{sup -17} N, even approaching the same order with that of electromigration under a current density of 10{sup 4} A/cm{sup 2}.

  13. Simulation of Grain Growth in a Near-Eutectic Solder Alloy

    SciTech Connect

    TIKARE,VEENA; VIANCO,PAUL T.

    1999-12-16

    Microstructural evolution due to aging of solder alloys determines their long-term reliability as electrical, mechanical and thermal interconnects in electronics packages. The ability to accurately determine the reliability of existing electronic components as well as to predict the performance of proposed designs depends upon the development of reliable material models. A kinetic Monte Carlo simulation was used to simulate microstructural evolution in solder-class materials. The grain growth model simulated many of the microstructural features observed experimentally in 63Sn-37Pb, a popular near-eutectic solder alloy. The model was validated by comparing simulation results to new experimental data on coarsening of Sn-Pb solder. The computational and experimental grain growth exponent for two-phase solder was found to be much lower than that for normal, single phase grain growth. The grain size distributions of solders obtained from simulations were narrower than that of normal grain growth. It was found that the phase composition of solder is important in determining grain growth behavior.

  14. Microstructural evolution and atomic transport by thermomigration in eutectic tin-lead flip chip solder joints

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Wu, B. Y.; Chan, Y. C.; Tu, K. N.

    2007-08-01

    The thermomigration behavior of eutectic tin-lead flip chip solder joints at an ambient temperature of 150 °C was investigated in terms of microstructural evolution, atomic transport, and numerical simulation. Pb accumulation and phase separation were observed in solder joints near a melting temperature after 50 h, which was supported by energy dispersive x-ray and element mapping analysis. It is believed that Pb atoms migrated from the chip side (the hot side) to the substrate side (the cold side) under a temperature gradient. Thermal electrical finite element simulation for the real flip chip test structure showed the existence of a temperature difference between the substrate side and the chip side. In addition, a temperature gradient above 1000 °C/cm across the adjacent unpowered solder joints was predicted. This was also verified by temperature measurements with thermocouples. The atomic flux of Pb due to thermomigration was calculated here, which was agreeable with the values originally reported. Also, the driving force of thermomigration was estimated to be 10-17 N, even approaching the same order with that of electromigration under a current density of 104 A/cm2.

  15. Modified Welding Technique of a Hypo-Eutectic Al-Cu Alloy for Higher Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Ghosh, B. R.; Gupta, R. K.; Biju, S.; Sinha, P. P.

    GTAW process is used for welding of pressure vessels made of hypo-eutectic Al-Cu alloy AA2219 containing 6.3% Cu. As welded Yield strength of the alloy was found to be in the range of 140-150 MPa, using conventional single pass GTAW technique on both AC and DCSP modes. Interestingly, it was also found that weld-strength decreased with increase in thickness of the weld coupons. Welding metallurgy of AA2219 Al alloy was critically reviewed and factors responsible for lower properties were identified. Multipass GTAW on DCSP mode was postulated to improve the weld strength of this alloy. A systematic experimentation using 12 mm thick plates was carried out and YS of 200 MPa has been achieved in the as welded condition. Thorough characterization including optical and electron microscopy was conducted to validate the metallurgical phenomena attributable to improvement in weld strength. This paper presents the conceptual understanding of welding metallurgy of AA2219 alloy and validation by experiments, which could lead to better weld properties using multipass GTAW on DCSP mode.

  16. Effect of oxidation on the Mechanical Properties of Liquid Gallium and Eutectic Gallium-Indium

    E-print Network

    Qin Xu; Nikolai Qudalov; Qiti Guo; Heinrich Jaeger; Eric Brown

    2012-01-23

    Liquid metals exhibit remarkable mechanical properties, in particular large surface tension and low viscosity. However, these properties are greatly affected by oxidation when exposed to air. We measure the viscosity, surface tension, and contact angle of gallium (Ga) and a eutectic gallium-indium alloy (eGaIn) while controlling such oxidation by surrounding the metal with an acid bath of variable concentration. Rheometry measurements reveal a yield stress directly attributable to an oxide skin that obscures the intrinsic behavior of the liquid metals. We demonstrate how the intrinsic viscosity can be obtained with precision through a scaling technique that collapses low- and high-Reynolds number data. Measuring surface tension with a pendant drop method, we show that the oxide skin generates a surface stress that mimics surface tension and develop a simple model to relate this to the yield stress obtained from rheometry. We find that yield stress, surface tension, and contact angle all transition from solid-like to liquid behavior at the same critical acid concentration, thereby quantitatively confirming that the wettability of these liquid metals is due to the oxide skin.

  17. Tensile tests on MANET II steel in circulating Pb Bi eutectic

    NASA Astrophysics Data System (ADS)

    Glasbrenner, H.; Gröschel, F.; Kirchner, T.

    2003-05-01

    Off-beam tensile tests have been performed on MANET II steel in the eutectic Pb-55.5Bi (LBE) and Ar during commissioning of the LiSoR loop, an experimental liquid metal loop, which was developed to investigate the influence of Pb-Bi on possible structural materials under static load and irradiation. Test temperatures were 180-300 °C. MANET II (11% CrMoVNb steel) exhibits good swelling and creep resistance behaviour under irradiation up to around 500 °C. Good corrosion resistance of this material is expected due to the absence of the element Ni in the steel matrix which has a high solubility in LBE. All specimens showed a ductile fracture in Ar. In LBE a loss of ductility was observed at the test temperatures of 250 and 300 °C in comparison to the Ar samples. SEM analysis of the fracture surface of these specimens revealed a mixed mode, i.e. dimple and brittle fracture and penetration of Pb-Bi along the grain boundaries, which is a typical finding for liquid metal embrittlement.

  18. Potential containment materials for liquid-lead and lead-bismuth eutectic spallation neutron source

    SciTech Connect

    Park, J.J.; Butt, D.P.; Beard, C.A.

    1997-11-01

    Lead (Pb) and lead-bismuth eutectic (44Pb-56Bi) have been the two primary candidate liquid-metal target materials for the production of spallation neutrons. Selection of a container material for the liquid-metal target will greatly affect the lifetime and safety of the target subsystem. For the lead target, niobium-1 (wt%) zirconium (Nb-1Zr) is a candidate containment material for liquid lead, but its poor oxidation resistance has been a major concern. The oxidation rate of Nb-1Zr was studied based on the calculations of thickness loss due to oxidation. According to these calculations, it appeared that uncoated Nb-1Zr may be used for a one-year operation at 900 C at P{sub O{sub 2}} = 1 {times} 10{sup {minus}6} torr, but the same material may not be used in argon with 5-ppm oxygen. Coating technologies to reduce the oxidation of Nb-1Zr are reviewed, as are other candidate refractory metals such as molybdenum, tantalum, and tungsten. For the Pb-Bi target, three candidate containment materials are suggested based on a literature survey of the materials compatibility and proton irradiation tests: Croloy 2-1/4, modified 9Cr-1Mo, and 12Cr-1Mo (HT-9) steel. These materials seem to be used only if the lead-bismuth is thoroughly deoxidized and treated with zirconium and magnesium.

  19. Compatibility of martensitic/austenitic steel welds with liquid lead bismuth eutectic environment

    NASA Astrophysics Data System (ADS)

    Van den Bosch, J.; Almazouzi, A.

    2009-04-01

    The high-chromium ferritic/martensitic steel T91 and the austenitic stainless steel 316L are to be used in contact with liquid lead-bismuth eutectic (LBE), under high irradiation doses. Both tungsten inert gas (TIG) and electron beam (EB) T91/316L welds have been examined by means of metallography, scanning electron microscopy (SEM-EDX), Vickers hardness measurements and tensile testing both in inert gas and in LBE. Although the T91/316L TIG weld has very good mechanical properties when tested in air, its properties decline sharply when tested in LBE. This degradation in mechanical properties is attributed to the liquid metal embrittlement of the 309 buttering used in TIG welding of T91/316L welds. In contrast to mixed T91/316L TIG welding, the mixed T91/316L EB weld was performed without buttering. The mechanical behaviour of the T91/316L EB weld was very good in air after post weld heat treatment but deteriorated when tested in LBE.

  20. Development and Evaluation of a Co-C Eutectic-Point Cell for Thermocouple Calibration

    NASA Astrophysics Data System (ADS)

    Holmsten, M.; Ogura, H.; Klason, P.; Ljungblad, S.

    2015-08-01

    The cobalt-carbon (Co-C) eutectic point at has in previous studies proved to be suitable as a reference for thermocouple calibration above . For types S, R, and B, it fills the gap between the copper point and the palladium point, and for Pt/Pd thermocouples, it extends the range from the copper point. This work describes the implementation of the Co-C reference point at the Technical Institute of Sweden (SP). A Co-C cell was developed and manufactured at SP in a collaboration project with the National Metrology Institute of Japan (NMIJ). The principle of the cell is a hybrid design with double walls, both for the outer crucible and the inner thermometer well, with graphite foil between the walls. To evaluate the performance of the developed cell (SP cell), a comparison between the SP cell and another cell, manufactured and provided from the National Physics Laboratory (NPL) in England, is performed using Pt/Pd thermocouples as transfer standards. The comparison showed very good agreement, with differences below 40 mK, using the same furnace and two different thermocouples. The expanded uncertainty for the comparison was estimated to be 70 mK.

  1. Micro-IBA analysis of Au/Si eutectic "crop-circles"

    NASA Astrophysics Data System (ADS)

    Amato, Giampiero; Battiato, Alfio; Croin, Luca; Jaksic, Milko; Siketic, Zdravko; Vignolo, Umberto; Vittone, Ettore

    2015-04-01

    When a thin gold layer is deposited onto the native oxide of a silicon wafer and is annealed at temperatures greater than 600 °C, peculiar circular features, few micrometers in diameter, with a regular polygon at the centre of each circle, reminiscent of so called "alien" crop circles, can be observed. A model has been recently proposed in Matthews et al. [1], where the formation of such circular structures is attributed to the interdiffusion of gold and silicon through holes in the native oxide induced by the weakening of the amorphous silica matrix occurring during the annealing process. The rupture of the liquid Au/Si eutectic disc surrounding the pinhole in the oxide causes the debris to be pulled to the edges of the disk, forming Au droplets around it and leaving an empty zone of bare silicon oxide. In this paper, we present a morphological study and a RBS/PIXE analyses of these circular structures, carried out by scanning electron microscopy and by 4 MeV C microbeam, respectively. The results confirm the depletion of gold in the denuded circular zones, and the presence of gold droplets in the centers, which can be attributed to the Au segregation occurring during the cooling stage.

  2. Response of MnBi-Bi eutectic to freezing rate changes

    NASA Technical Reports Server (NTRS)

    Nair, M.; Fu, T.-W.; Wilcox, W. R.; Doddi, K.; Ravishankar, P. S.; Larson, D.

    1982-01-01

    Reference is made to a study by Fu and Wilcox (1981), which treated theoretically the influence on freezing rate of sudden changes in translation rate in the Bridgman-Stockbarger technique. This treatment is extended here to a linear ramped translation rate and an oscillatory freezing rate. It is found that oscillations above a few hertz are highly damped in small-diameter apparatus. An experimental test is carried out of the theoretical predictions for a sudden change of translation rate. The MnBi-Bi eutectic is solidified with current-induced interface demarcation. The experimental results accord reasonably well with theory if the silica ampoule wall is assumed to either (1) contribute only a resistance to heat exchange between the sample and the furnace wall or (2) transmit heat effectively in the axial direction by radiation. In an attempt to explain the fact that a finer microstructure is obtained in space, MnBi-Bi microstructure is determined when the freezing rate is increased or decreased rapidly. Preliminary results suggest that fiber branching does not occur as readily as fiber termination.

  3. Reaction, Transport and Settling Behavior of Lead-Bismuth Eutectic in Flowing Liquid Sodium

    SciTech Connect

    Shinya Miyahara; Shuji Ohno; Nobuhiro Yamamoto; Junichi Saito; Masaru Hirabayashi

    2006-07-01

    The experimental study has been carried out to investigate reaction, transport and settling behavior of lead-bismuth eutectic (LBE) in flowing liquid sodium. In the test, 168 g of LBE were poured into flowing sodium from the top of a vertical-type sodium loop which contained 23.2 kg of sodium. The initial temperature of LBE and sodium was 673 K. The flow rate and the maximum velocity of sodium in the loop were controlled and measured at 20 dm{sup 3}/min and 1 m/sec, respectively, using an electro-magnetic pump and an electro-magnetic flow meter. The sodium loop has a settling chamber at the lower part to investigate the concentration decrease behavior of solid particle reaction products in the sodium due to the settling effect. The concentration was measured by sodium sampling from the 11 positions of the loop during the experiment and its post-test chemical analysis. The temperature changes at the various parts of the loop were also measured during the experiment by thermo-couples attached on the outer surface of the loop. Ultrasonic detectors were attached on the outer surface of the loop below the position of a LBE pour nozzle to demonstrate the utility as a leak detector. (authors)

  4. The thermophysical and transport properties of eutectic NaK near room temperature

    SciTech Connect

    O'Donnell, W.J.; Papanikolaou, P.G.; Reed, C.B.

    1989-02-01

    The purpose of this report is to compile recommended room temperature thermophysical properties of NaK/sub 78/. The report was prepared to provide a single unified collection of property values for the eutectic sodium-potassium alloy. These properties include density, kinematic and absolute viscosities, thermal conductivity, specific heat, electrical resistivity, electrical conductivity, Prandtl number, and thermal diffusivity. Each section of the report contains a completely referenced property that focuses in the 0--80/degree/C temperature range. All available data for each property have been taken from original publications. The individual sections are organized following a specific outline, considering: discussion of experimental methods, discussion of sources and error, discussion of each reference, tabular presentation of all available data, graphical presentation of the data, recommendations, tabular presentation of recommended values, an equation to calculate recommended values, and a graphical presentation of the recommended curve (0--80/degree/C) generated from the above equation. Also included are experimental methods, whether the references included equations to fit the data, and whether or not these references were primary sources. 26 refs., 12 figs., 14 tabs.

  5. Interaction study between MOX fuel and eutectic lead-bismuth coolant

    NASA Astrophysics Data System (ADS)

    Vigier, Jean-François; Popa, Karin; Tyrpekl, Vaclav; Gardeur, Sébastien; Freis, Daniel; Somers, Joseph

    2015-12-01

    In the frame of the MYRRHA reactor project, the interaction between fuel pellets and the reactor coolant is essential for safety evaluations, e.g. in case of a pin breach. Therefore, interaction tests between uranium-plutonium mixed oxide (MOX) pellets and molten lead bismuth eutectic (LBE) have been performed and three parameters were studied, namely the interaction temperature (500 °C and 800 °C), the oxygen content in LBE and the stoichiometry of the MOX (U0.7Pu0.3O2-x and U0.7Pu0.3O2.00). After 50 h of interaction in closed containers, the pellet integrity was preserved in all cases. Whatever the conditions, neither interaction compounds (crystalline or amorphous) nor lead and bismuth diffusion into the surface regions of the MOX pellets has been detected. In most of the conditions, actinide releases into LBE were very limited (in the range of 0.01-0.15 mg), with a homogeneous release of the different actinides present in the MOX. Detected values were significantly higher in the 800 °C and low LBE oxygen content tests for both U0.7Pu0.3O2-x and U0.7Pu0.3O2.00, with 1-2 mg of actinide released in these conditions.

  6. Mechanistic Selection and Growth of Twinned Bicrystalline Primary Si in Near Eutectic Al-Si Alloys

    SciTech Connect

    Choonho Jung

    2006-12-12

    Morphological evolution and selection of angular primary silicon is investigated in near-eutectic Al-Si alloys. Angular silicon arrays are grown directionally in a Bridgman furnace at velocities in the regime of 10{sup -3} m/sec and with a temperature gradient of 7.5 x 10{sup 3} K/m. Under these conditions, the primary Si phase grows as an array of twinned bicrystalline dendrites, where the twinning gives rise to a characteristic 8-pointed star-shaped primary morphology. While this primary Si remains largely faceted at the growth front, a complex structure of coherent symmetric twin boundaries enables various adjustment mechanisms which operate to optimize the characteristic spacings within the primary array. In the work presented here, this primary silicon growth morphology is examined in detail. In particular, this thesis describes the investigation of: (1) morphological selection of the twinned bicrystalline primary starshape morphology; (2) primary array behavior, including the lateral propagation of the starshape grains and the associated evolution of a strong <100> texture; (3) the detailed structure of the 8-pointed star-shaped primary morphology, including the twin boundary configuration within the central core; (4) the mechanisms of lateral propagation and spacing adjustment during array evolution; and (5) the thermosolutal conditions (i.e. operating state) at the primary growth front, including composition and phase fraction in the vicinity of the primary tip.

  7. Prebiotic chemistry in eutectic solutions at the water-ice matrix.

    PubMed

    Menor-Salván, César; Marín-Yaseli, Margarita R

    2012-08-21

    A crystalline ice matrix at subzero temperatures can maintain a liquid phase where organic solutes and salts concentrate to form eutectic solutions. This concentration effect converts the confined reactant solutions in the ice matrix, sometimes making condensation and polymerisation reactions occur more favourably. These reactions occur at significantly high rates from a prebiotic chemistry standpoint, and the labile products can be protected from degradation. The experimental study of the synthesis of nitrogen heterocycles at the ice-water system showed the efficiency of this scenario and could explain the origin of nucleobases in the inner Solar System bodies, including meteorites and extra-terrestrial ices, and on the early Earth. The same conditions can also favour the condensation of monomers to form ribonucleic acid and peptides. Together with the synthesis of these monomers, the ice world (i.e., the chemical evolution in the range between the freezing point of water and the limit of stability of liquid brines, 273 to 210 K) is an under-explored experimental model in prebiotic chemistry. PMID:22660387

  8. Intraband magneto-optical studies of InSb-NiSb eutectic

    NASA Astrophysics Data System (ADS)

    Chin, A. K.; Sievers, A. J.

    1981-12-01

    A comprehensive magneto-optical study of the light-hole valence band of InSb-NiSb eutectic is presented. Transmission spectra in the Faraday geometry are measured in the spectral region below 350 cm-1 and at the CO2 laser frequency of 933 cm-1. Temperature dependence (from 1.2 to 80 K) and magnetic fields (from zero field to 350 kG) are used to interpret the experimental data. Transitions among acceptor impurity levels are observed in the zero magnetic-field spectra. With an applied magnetic field, intravalence band transitions and transitions from acceptor levels to the valence band are observed. The Luttinger coefficients of the valence band as calculated from the effective masses of the acceptor level to valence-band transitions are ?L1 = 30.9, ?¯L = 15.3, and KL = 12.9. From the zero-field positions of the transitions, the ground-state acceptor level is determined to be 83±3 cm-1 above the top of the valence band. Bound hole-phonon coupling is observed in the pinning behavior and nonlinear field dependence of the acceptor to valence-band transitions. Free hole-phonon coupling is observed for the first time in the nonlinear field dependence of the intraband transitions.

  9. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125...Specifications for Denaturants § 21.125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative....

  10. THE DESIGN OF TECHNOLOGICALLY EFFECTIVE AND ENVIRONMENTALLY BENIGN SOLVENT SUBSTITUTES

    EPA Science Inventory

    There is presently considerable interest in finding environmentally benign replacement solvents that can perform in many different applications as solvents normally do. This requires solvents with desirable properties, e.g., ability to dissolve certain compounds, and without oth...

  11. Treatment of Chlorinated Solvents by Nitrogen-Fixing and

    E-print Network

    Chu, Kung-Hui "Bella"

    Treatment of Chlorinated Solvents by Nitrogen-Fixing and Nitrate-Supplied Methane Oxidizers in predicting chlorinated solvent removals in such systems. Nitrogen-fixing columns consistently outperformed beneficial. Volatilecontaminantsofparticularconcernforsubsurface remediation include chlorinated solvents

  12. Environmental Impacts on Nuclear Reprocessing Solvents

    NASA Astrophysics Data System (ADS)

    Gillens, A. R.; Fessenden, J. E.

    2009-12-01

    Nuclear tests have been employed ever since the first nuclear explosion in Alamogordo, NM during the mid-1940s. Nuclear weapons pose a threat to civil society and result in extensive biological (medical) damages. For this reason, treaties banning nuclear tests and weapons have been employed since the 1960s to cease proliferation of weapons. However, as nuclear tests continue in secrecy and actinides, such as plutonium and uranium, are eligible for theft, nuclear forensics is needed to prevent weapons proliferation. In this study, solvents [tributyl phosphate (TBP), dodecane, decanol] used in reprocessing spent nuclear fuel are analyzed using an isotope ratio mass spectrometer, which provides indisputable evidence in identifying the operation in which solvents were used. Solvent samples are observed under variable conditions in the laboratory for different time periods. It is assumed that their carbon isotope values (?13C) will become more positive (shift heavy) with time. It is found that the solvents are hygroscopic. TBP leaves the most robust signature compared to the other solvents studied and the isotope values for all solvents under all conditions become more positive with time. This study serves as primary research in understanding how solvents behave under variable conditions in the laboratory and how this could be translated to the environment in fate and transport studies.

  13. Organic Solvent Tolerant Lipases and Applications

    PubMed Central

    Kanwar, Shamsher S.

    2014-01-01

    Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented. PMID:24672342

  14. Effect of solvent characteristics on coal liquefaction

    SciTech Connect

    Huang, He; Wang, Shaojie; Wang, Keyu; Klein, M.T.; Calkins, W.H.

    1996-12-31

    It has been known for a long time that the characteristics of the liquefaction solvent has a profound effect on direct coal liquefaction. The amount of hydrogen consumed during the liquefaction process, the degree and quantity of retrograde reactions that occur, and the quality of the liquid products are all influenced by the process solvent. A number of analytical approaches have been developed to determine the important characteristics of the solvent for coal liquefaction. The hydrogen donor ability has clearly been important. However, such other characteristics of a liquefaction solvent as solubility parameter, content and type of higher aromatic hydrocarbons, and phenolic content have also been found to be significant. Finseth et al. have shown that the bulk of the hydrogen consumed from an uncatalyzed donor solvent liquefaction above 400{degrees}C is consumed in gas generation, heteroatom removal and hydrogenolysis of the coal matrix. Wilson et al. have also shown that the major role of hydrogen in uncatalyzed liquefaction is consumed by alkyl fission and hydrogenolysis reactions and not with hydrogenating aromatic rings. McMillan et al. have postulated that a radical hydrogen transfer process along with donor solvent capping of thermally produced radicals from the coal as possible processes involved with the hydroaromatic donor solvents in coal liquefaction. With the development of a short contact time batch reactor (SCTBR), determining the influence of the processing solvent on the liquefaction rates, conversion profiles and the quality of the liquid product at a particular time became possible. The influence of type of solvent, combined with other effects, such as gas atmosphere (i.e., in hydrogen and in nitrogen) and catalyst, on the coal liquefaction is reported in this paper.

  15. What makes critical-solvent processes work

    SciTech Connect

    Brule, M.R.; Corbett, R.W.

    1984-06-01

    Critical-solvent processing (sometimes called supercritical-gas extraction) is an ongoing technology based on phase-equilibrium phenomena in the critical region. Many new practical applications of critical-solvent processing are being conceived and implemented in the food, drug and chemical industries. The advantages afforded by critical-solvent processing in performing difficult separations such as caffeine from coffee, nicotine from tobacco, chemotherapeutic drugs from plants, and chemical feedstocks from petroleum and synfuels residua have been realized just in the last decade or so.

  16. Cleaning solvent substitution in electronic assemblies

    SciTech Connect

    Meier, G.J.

    1993-09-01

    Alternatives to chlorinated and fluorinated solvents have been identified, qualified, and implemented into production of complex electronic assemblies. Extensive compatibility studies were performed with components, piece-parts, and materials. Electrical testing and accelerated aging were used to screen for detrimental, long-term effects. A terpene, d-limonene, has been selected as the solvent of choice for cleaning complex electronic assemblies, and has been found to be compatible with the components and materials tested. A brief history of the overall project will be presented, along with representative cleaning efficiency results, compatibility results, and residual solvent data.

  17. Firing of pulverized solvent refined coal

    DOEpatents

    Lennon, Dennis R. (Allentown, PA); Snedden, Richard B. (McKeesport, PA); Foster, Edward P. (Macungie, PA); Bellas, George T. (Library, PA)

    1990-05-15

    A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

  18. Optical nonlinearity of HBI in different solvents

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Ma, Lina; Geng, Yaohui; Zhang, Siwen; Wang, Zhe; Cheng, Xiaoman

    2014-04-01

    2-(2'-Hydroxyphenyl) benzimidazole (HBI) is one kind of organic molecules featuring excited-state proton transfer (ESPT). The nonlinear optical properties of 2-(2'-hydroxyphenyl) benzimidazole (HBI) in different polar solvents were investigated by means of Z-scan technique under the excitation of the 1064 nm picoseconds laser pulse. The experimental results show that the nonlinear refractive indices decrease with the enhancement of the polarity of the solvent. The nonlinear refractive indices sensitive to the solvent polarity allow them to be widely used for the optoelectronic devices.

  19. Genomic and Genetic Approaches to Solvent Tolerance

    SciTech Connect

    Eleftherios T. Papoutsakis

    2005-06-10

    The proposed research is to understand and exploit the molecular basis that determines tolerance of the industrially important anaerobic clostridia to solvents. Furthermore, we aim to develop general genomic and metabolic engineering strategies for understanding the molecular basis of tolerance to chemicals and for developing tolerant strains. Our hypothesis is that the molecular basis of what makes bacterial cells able to withstand high solvent concentrations can be used to metabolically engineer cells so that they can tolerate higher concentrations of solvents and related chemicals.

  20. Switchable solvents and methods of use thereof

    DOEpatents

    Jessop, Philip G.; Eckert, Charles A.; Liotta, Charles L.; Heldebrant, David J.

    2013-08-20

    A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.

  1. Switchable solvents and methods of use thereof

    DOEpatents

    Jessop, Philip G. (Kingston, CA); Eckert, Charles A. (Atlanta, GA); Liotta, Charles L. (Atlanta, GA); Heldebrant, David J. (Richland, WA)

    2011-07-19

    A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.

  2. Switchable solvents and methods of use thereof

    DOEpatents

    Jessop, Philip G; Eckert, Charles A; Liotta, Charles L; Heldebrant, David J

    2014-04-29

    A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.

  3. Accelerated solvent extraction of petroleum contaminated sediments 

    E-print Network

    Bauguss, Jeffery Lynn

    1997-01-01

    Attempts have been made in recent years to find acceptable alternatives to classical soxhlet extraction of petroleum contaminated sediments. One such method that is very promising is accelerated solvent extraction also referred to as high pressure...

  4. Optimizing injected solvent fraction in stratified reservoirs 

    E-print Network

    Moon, Gary Michael

    1993-01-01

    Waterflooding has become standard practice for extending the productive life of many solution gas drive reservoirs, but has the disadvantage of leaving a substantial residual oil volume in the reservoir. Solvent flooding has been offered as a...

  5. Innovative Technologies for Chlorinated Solvent Remediation

    NASA Astrophysics Data System (ADS)

    Pennell, Kurt D.; Cápiro, Natalie L.

    2014-07-01

    The following sections are included: * INTRODUCTION * TRADITIONAL REMEDIATION TECHNOLOGIES (1980s) * RESEARCH AND DEVELOPMENT OF INNOVATIVE REMEDIATION TECHNOLOGIES (1990s-2000s) * CURRENT TRENDS IN CHLORINATED SOLVENT REMEDIATION (2010s) * CLOSING THOUGHTS * REFERENCES

  6. Volatile Solvent Use among Western Australian Adolescents.

    ERIC Educational Resources Information Center

    Carroll, Annemaree; Houghton, Stephen; Odgers, Peta

    1998-01-01

    Semistructured interviews were conducted with 40 adolescents who reported inhaling volatile solvents. All were aware of the short-term health risks involved in use, and most reported experiencing ill effects. Offers suggestions for intervention. (Author/GCP)

  7. United States Air Force Wipe Solvent Testing

    NASA Technical Reports Server (NTRS)

    Hornung, Steven D.; Beeson, Harold D.

    2000-01-01

    The Wright-Patterson Air Force Base (WPAFB), as part of the Air Force Material Command, requested that NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) conduct testing and analyses in support of the United States Air Force Wipe Solvent Development Project. The purpose of the wipe solvent project is to develop an alternative to be used by Air Force flight line and maintenance personnel for the wipe cleaning of oxygen equipment. This report provides material compatibility, liquid oxygen (LOX) mechanical impact, autogenous ignition temperature (AIT), and gauge cleaning test data for some of the currently available solvents that may be used to replace CFC-113 and methyl chloroform. It provides data from previous WSTF test programs sponsored by the Naval Sea Systems Command, the Kennedy Space Center, and other NASA programs for the purpose of assisting WP AFB in identifying the best alternative solvents for validation testing.

  8. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  9. Brayton Solvent Recovery Heat Pump Technology Update 

    E-print Network

    Enneking, J. C.

    1993-01-01

    The Brayton cycle technology was developed to reduce the temperature of gas streams containing solvents in order to condense and recover them. While the use of turbo compressor/expander machinery in conjunction with an energy recuperator...

  10. How solvent vapors can improve steam floods

    SciTech Connect

    Vogel, J.

    1996-11-01

    Thermal recovery methods depend for their success on the viscosity reduction of heavy crude oils at high temperatures. The viscosity of a heavy oil can also be reduced if it is diluted with a low-viscosity solvent, such as one of the lighter hydrocarbons. It is not surprising that there has been considerable interest in combining the two methods. The process of injecting vaporized solvent with the steam for a gravity drainage type recovery is described here along with a description of the particular phase behavior of steam/solvent mixtures which is beneficial to the process. And computer simulations which compare steam-only and steam/solvent floods under Athabasca-type conditions are overviewed.

  11. Modelling the effect of solvents on carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrates are polar molecules and their conformational and anomeric equilibrium can be strongly influenced by solvents. This review provides examples of studies addressing different issues of glycochemistry, such as anomeric equilibrium, conformational changes in rings, modelling of inter-residu...

  12. Biological monitoring of chlorinated hydrocarbon solvents

    SciTech Connect

    Monster, A.C.

    1986-08-01

    The possibility of biological monitoring of exposure to some volatile, halogenated hydrocarbons will be discussed. Most of these agents are widely used as solvents. All agents act on the nervous system as narcotics and differ widely in toxicity. Most of the solvents undergo biotransformation to metabolites. This allows biological assessment of exposure by measurement of the solvent and/or metabolites in exhaled air, blood, and/or urine. However, the same metabolites may occur with exposure to different chlorinated hydrocarbons, eg, trichloroethanol and trichloroacetic acid from exposure to trichloroethene, tetrachloroethene, and 1,1,1-trichloroethane. On the other hand, these agents differ widely in the percentage that is metabolized. There are large gaps in our knowledge, however, and much research will have to be carried out before even tentative data can be established for most of the solvents.

  13. SOLVENT EXTRACTION OF ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Based on experiments with model systems of known organic water pollutants and environmental samples, conclusions are reached concerning the best general solvent for extraction and the most appropriate methods for related manipulations. Chloroform, methylene chloride-ether mixture...

  14. Process for solvent refining of coal using a denitrogenated and dephenolated solvent

    DOEpatents

    Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA); Schweighardt, Frank K. (Allentown, PA)

    1984-01-01

    A process is disclosed for the solvent refining of non-anthracitic coal at elevated temperatures and pressure in a hydrogen atmosphere using a hydrocarbon solvent which before being recycled in the solvent refining process is subjected to chemical treatment to extract substantially all nitrogenous and phenolic constituents from the solvent so as to improve the conversion of coal and the production of oil in the solvent refining process. The solvent refining process can be either thermal or catalytic. The extraction of nitrogenous compounds can be performed by acid contact such as hydrogen chloride or fluoride treatment, while phenolic extraction can be performed by caustic contact or contact with a mixture of silica and alumina.

  15. Enhanced electroanalysis in lithium potassium eutectic (LKE) using microfabricated square microelectrodes.

    PubMed

    Corrigan, Damion K; Blair, Ewen O; Terry, Jonathan G; Walton, Anthony J; Mount, Andrew R

    2014-11-18

    Molten salts (MSs) are an attractive medium for chemical and electrochemical processing and as a result there is demand for MS-compatible analysis technologies. However, MSs containing redox species present a challenging environment in which to perform analytical measurements because of their corrosive nature, significant thermal convection and the high temperatures involved. This paper outlines the fabrication and characterization of microfabricated square microelectrodes (MSMs) designed for electrochemical analysis in MS systems. Their design enables precise control over electrode dimension, the minimization of stress because of differential thermal expansion through design for high temperature operation, and the minimization of corrosive attack through effective insulation. The exemplar MS system used for characterization was lithium chloride/potassium chloride eutectic (LKE), which has potential applications in pyrochemical nuclear fuel reprocessing, metal refining, molten salt batteries and electric power cells. The observed responses for a range of redox ions between 400 and 500 °C (673 and 773 K) were quantitative and typical of microelectrodes. MSMs also showed the reduced iR drop, steady-state diffusion-limited response, and reduced sensitivity to convection seen for microelectrodes under ambient conditions and expected for these electrodes in comparison to macroelectrodes. Diffusion coefficients were obtained in close agreement with literature values, more readily and at greater precision and accuracy than both macroelectrode and previous microelectrode measurements. The feasibility of extracting individual physical parameters from mixtures of redox species (as required in reprocessing) and of the prolonged measurement required for online monitoring was also demonstrated. Together, this demonstrates that MSMs provide enhanced electrode devices widely applicable to the characterization of redox species in a range of MS systems. PMID:25284431

  16. Twin Astir: An irradiation experiment in liquid Pb Bi eutectic environment

    NASA Astrophysics Data System (ADS)

    Van den Bosch, J.; Al Mazouzi, A.; Benoit, Ph.; Bosch, R. W.; Claes, W.; Smolders, B.; Schuurmans, P.; Abderrahim, H. Aït

    2008-06-01

    The Twin Astir irradiation program, currently under irradiation in the BR2 reactor at SCK.CEN is aimed at determining the separate and possibly synergetic effects of a liquid lead bismuth eutectic (LBE) environment and neutron irradiation. It will lead to a parameterisation of the key influencing factors on the mechanical properties of the candidate structural materials for the future experimental accelerator driven system (ADS). The experiment consists of six capsules containing mainly mini tensile samples and one capsule containing mini DCT's (disc shaped compact tension specimens). Three of the tensile containing capsules and half of the DCT containing capsule are filled each with approximately 20 ml of low oxygen (10 -6 wt%) LBE. To complete the filling of these capsules with LBE under controlled conditions a dedicated filling installation was constructed at SCK.CEN. The other three tensile containing capsules are subjected to PWR water conditions, in order to discriminate the effect of PbBi under irradiation from the effect of the irradiation itself. To extract the effect of the PbBi corrosion itself on the material properties, one of the capsules is undergoing the thermal cycles of the BR2 reactor without being subjected to irradiation. This results in a matrix of three irradiation doses in LBE (0, 1.5 and 2.5 dpa) and two environments (PbBi and PWR water conditions). Here we will present the detailed concept and the status of the Twin Astir project, describe the materials under irradiation and report on our experience with the licensing of the experiment.

  17. Hydrogen recovery by novel solvent systems

    SciTech Connect

    Shinnar, R.; Ludmer, Z.; Ullmann, A.

    1991-08-01

    The objective of this work is to develop a novel method for purification of hydrogen from coal-derived synthesis gas. The study involved a search for suitable mixtures of solvents for their ability to separate hydrogen from the coal derived gas stream in significant concentration near their critical point of miscibility. The properties of solvent pairs identified were investigated in more detail to provide data necessary for economic evaluation and process development.

  18. Method of stripping metals from organic solvents

    DOEpatents

    Todd, Terry A. (Aberdeen, ID); Law, Jack D. (Pocatello, ID); Herbst, R. Scott (Idaho Falls, ID); Romanovskiy, Valeriy N. (St. Petersburg, RU); Smirnov, Igor V. (St.-Petersburg, RU); Babain, Vasily A. (St-Petersburg, RU); Esimantovski, Vyatcheslav M. (St-Petersburg, RU)

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  19. Solvent tuned single molecule dual emission in protic solvents: effect of polarity and H-bonding.

    PubMed

    Chevreux, S; Allain, C; Wilbraham, L; Nakatani, K; Jacques, P; Ciofini, I; Lemercier, G

    2015-12-22

    has recently been proposed as a promising new molecule displaying solvent-tuned dual emission, highlighting an original and newly-described charge transfer model. The study of the photophysical behaviour of this molecule was extended to include protic solvents. The effects of polarity and hydrogen bonding lead to an even more evident dual emission associated with a large multi-emission band in some solvents like methanol, highlighting as a promising candidate for white light emission. PMID:26411633

  20. Caustic-Side Solvent Extraction: Chemical and Physical Properties of the Optimized Solvent

    SciTech Connect

    Delmau, L.H.

    2002-10-08

    This work was undertaken to optimize the solvent used in the Caustic Side Solvent Extraction (CSSX) process and to measure key chemical and physical properties related to its performance in the removal of cesium from the alkaline high-level salt waste stored in tanks at the Savannah River Site. The need to adjust the solvent composition arose from the prior discovery that the previous baseline solvent was supersaturated with respect to the calixarene extractant. The following solvent-component concentrations in Isopar{reg_sign} L diluent are recommended: 0.007 M calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) extractant, 0.75 M 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (Cs-7SB) phase modifier, and 0.003 M tri-n-octylamine (TOA) stripping aid. Criteria for this selection included BOBCalixC6 solubility, batch cesium distribution ratios (D{sub Cs}), calculated flowsheet robustness, third-phase formation, coalescence rate (dispersion numbers), and solvent density. Although minor compromises within acceptable limits were made in flowsheet robustness and solvent density, significant benefits were gained in lower risk of third-phase formation and lower solvent cost. Data are also reported for the optimized solvent regarding the temperature dependence of D{sub Cs} in extraction, scrubbing, and stripping (ESS); ESS performance on recycle; partitioning of BOBCalixC6, Cs-7SB, and TOA to aqueous process solutions; partitioning of organic anions; distribution of metals; solvent phase separation at low temperatures; solvent stability to elevated temperatures; and solvent density and viscosity. Overall, the technical risk of the CSSX process has been reduced by resolving previously identified issues and raising no new issues.

  1. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Presented is Deep Space Network (DSN) progress in flight project support, tracking and data acquisition (TDA) research and technology, network engineering, hardware and software implementation, and operations.

  2. The deep space network

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Summaries are given of Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.

  3. Solvent Extraction and Ion Exchange in Radiochemistry

    NASA Astrophysics Data System (ADS)

    Skarnemark, G.

    In 1805, Bucholz extracted uranium from a nitric acid solution into ether and back-extracted it into pure water. This is probably the first reported solvent-extraction investigation. During the following decades, the distribution of neutral compounds between aqueous phases and pure solvents was studied, e.g., by Peligot, Berthelot and Jungfleisch, and Nernst. Selective extractants for analytical purposes became available during the first decades of the twentieth century. From about 1940, extractants such as organophosphorous esters and amines were developed for use in the nuclear fuel cycle. This connection between radiochemistry and solvent-extraction chemistry made radiochemists heavily involved in the development of new solvent extraction processes, and eventually solvent extraction became a major separation technique in radiochemistry. About 160 years ago, Thompson and Way observed that soil can remove potassium and ammonium ions from an aqueous solution and release calcium ions. This is probably the first scientific report on an ion-exchange separation. The first synthesis of the type of organic ion exchangers that are used today was performed by Adams and Holmes in 1935. Since then, ion-exchange techniques have been used extensively for separations of various radionuclides in trace as well as macro amounts. During the last 4 decades, inorganic ion exchangers have also found a variety of applications. Today, solvent extraction as well as ion exchange are used extensively in the nuclear industry and for nuclear, chemical, and medical research. Some of these applications are discussed in the chapter.

  4. Phase separation phenomena of polysulfone/solvent/organic nonsolvent and polyethersulfone/solvent/organic nonsolvent systems

    SciTech Connect

    Wang, Dongliang; Li, K.; Sourirajan, S.; Teo, W.K. . Dept. of Chemical Engineering)

    1993-12-10

    The precipitation values (PVs) of several organic nonsolvents in polysulfone (PSf)/solvent and polyethersulfone (PESf)/solvent systems were measured in temperatures ranging from 10 to 80 C by the direct titration method and compared with those of water in the same systems. The solvents used were N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAC); the organic nonsolvents employed were methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, ethylene glycol, and diethylene glycol as well as acetic acid and propionic acid. The compositions of nonsolvent, polymer, and solvent at the precipitation points for different polymer concentrations up to 10 wt% were also determined at 30 C with respect to both the polymers and six nonsolvents presented. These results were used to obtain the polymer precipitation curves in the polymer-solvent-nonsolvent triangular phase diagrams and to determine the theta composition of solvent-nonsolvent triangular phase diagrams and to determine the theta composition of solvent-nonsolvent for a polymer. The effect of temperature on the precipitation value was observed to be dramatically different for different polymer/solvent/nonsolvent systems. These results were explained on the basis of polar and nonpolar interactions of the polymer, solvent, and nonsolvent system.

  5. CHEMICAL STABILITY OF POLYPHENYLENE SULFIDE IN THE NEXT GENERATION SOLVENT FOR CAUSTIC-SIDE SOLVENT EXTRACTION

    SciTech Connect

    Fondeur, F.; Fink, S.

    2011-12-08

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. For simplicity, this solvent is referred to as the Next Generation Solvent (NGS). The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The initial deployment target envisioned for the technology was within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with polyphenylene sulfide (PPS), the polymer used in the coalescers within MCU. This report provides the data from exposing PPS polymer to NGS. The test was conducted over a three month period. PPS is remarkably stable in the presence of the next generation solvent. Testing showed no indication of swelling or significant leaching. Preferential sorption of the Modifier on PPS was observed but the same behavior occurs with the baseline solvent. Therefore, PPS coalescers exposed to the NGS are expected to perform comparably to those in contact with the baseline solvent.

  6. A deep reef in deep trouble

    USGS Publications Warehouse

    Menza, Charles; Kendall, M.; Rogers, C.; Miller, J.

    2007-01-01

    The well-documented degradation of shallower reefs which are often closer to land and more vulnerable to pollution, sewage and other human-related stressors has led to the suggestion that deeper, more remote offshore reefs could possibly serve as sources of coral and fish larvae to replenish the shallower reefs. Yet, the distribution, status, and ecological roles of deep (>30 m) Caribbean reefs are not well known. In this report, an observation of a deep reef which has undergone a recent extensive loss of coral cover is presented. In stark contrast to the typical pattern of coral loss in shallow reefs, the deeper corals were most affected. This report is the first description of such a pattern of coral loss on a deep reef.

  7. Thermal residual stresses in directionally-solidified alumina-YAG and alumina-zirconia eutectic composites: Measurement and modeling

    NASA Astrophysics Data System (ADS)

    Frazer, Colleen Shea

    Single crystal ceramic oxides have excellent oxidation resistance and creep properties, vital to aerospace and high temperature applications. Directionally-solidified eutectic ceramic fibers have high strength and improved flaw tolerance over single crystal fibers but often have lower toughness due to the high degree of interfacial bonding between the phases which prevents crack deflection. The toughness is affected by the residual stresses in these in-situ composites, arising from thermal expansion mismatch between the constituent phases. The magnitude and sign of the stresses depend upon the relative thermal expansion behavior of each material, the degree of interfacial bonding, and the temperature difference from the stress-free temperature. Since the extent of interfacial bonding and the exact stress-free temperature cannot be known a priori, the thermal residual stresses in these composites must be experimentally measured and coupled with theoretical modeling to be fully described. In this study, residual thermal stresses in Al2O3-YAG and Al2O3-ZrO2(Y2O3) directionally solidified eutectics are measured using x-ray diffraction single crystal techniques at ambient and elevated temperatures and modeled using finite element analysis methods (FEM). Cross-sectional microstructures, in the form of two-dimensional Scanning Electron Microscopy images, are used to form a template for the phase volumes, resulting in models with improved accuracy over those using idealized geometries. Residual stresses measured in the Al2O3-YAG eutectic are low, under 290 MPa (+/- 170 MPa), as is expected. The finite element model for this system shows volume-averaged stresses on the order of 100 MPa. Residual stresses measured in the Al2O phase of the Al2O 3-ZrO2(Y2O3) hyper-eutectic are on the order of -250 to -400 MPa (+/- 200 MPa) at room temperature, rising to 1150 to 1300 MPa (+/- 310) at 900°C. The hydrostatic stress-free temperature for the Al2O3 phase is calculated to be at 330°C (+/- 200°C). Averaged theoretical stresses for the Al2O3 phase of Al2O-ZrO 2(Y2O3) at room temperature are on the order of -175 to -530 MPa.

  8. Early stage of material movements in eutectic SnPb solder joint undergoing current stressing at 150{degree}C.

    SciTech Connect

    Ho, C. E.; Lee, A.; Subramanian, K. N.; Liu, W.; Michigan State Univ.

    2007-07-10

    X-ray fluorescence spectroscopy was used to study movements of Sn and Pb in the eutectic SnPb solder joint undergoing electromigration with a current density of 10{sup 4} A/cm{sup 2} at 150 C. During early stages of current stressing, Sn moves toward the anode faster than Pb. However, on continued application of current stressing, both Sn and Pb will continue to accumulate at the anode. Such accumulation of conductive species facilitates the formation of hillock with associated valley near the cathode.

  9. Volume Fraction Determination in Cast Superalloys and DS Eutectic Alloys by a New Practice for Manual Point Counting

    NASA Technical Reports Server (NTRS)

    Andrews, C. W.

    1976-01-01

    Volume fraction of a constituent or phase was estimated in six specimens of conventional and DS-eutectic superalloys, using ASTM E562-76, a new standard recommended practice for determining volume fraction by systematic manual point count. Volume fractions determined ranged from 0.086 to 0.36, and with one exception, the 95 percent relative confidence limits were approximately 10 percent of the determined volume fractions. Since the confidence-limit goal of 10 percent, which had been arbitrarily chosen previously, was achieved in all but one case, this application of the new practice was considered successful.

  10. Carburization and heat treatment to cause carbide precipitation in gamma/gamma prime-delta eutectic alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Dreshfield, R. L.

    1977-01-01

    In an attempt to improve their longitudinal shear strength, several directionally solidified eutectic alloy compositions with minor element modifications were pact, carburized, and heat treated to provide selective carbide precipitation at the cell and grain boundaries. The directionally solidified Ni-17.8 Nb-6Cr-2.5Al-3Ta (weight percent) alloy was selected for the shear strength evaluation because it showed the shallowest delta-denuded zone at the carburized surface. The carburization-carbide precipitation treatment, however, did not appear to improve the longitudinal shear strength of the alloy.

  11. Resistance of a directionally solidified gamma/gamma prime-delta eutectic alloy to recrystallization. [Ni-base alloy

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1976-01-01

    A lamellar nickel-base directionally-solidified eutectic gamma/gamma prime-delta alloy has potential as an advanced gas turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 750 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability may not be a serious problem in the use of this alloy.

  12. Study of iron structure stability in high temperature molten lead-bismuth eutectic with oxygen injection using molecular dynamics simulation

    SciTech Connect

    Arkundato, Artoto; Su'ud, Zaki; Sudarko; Shafii, Mohammad Ali; Celino, Massimo

    2014-09-30

    Corrosion of structural materials in high temperature molten lead-bismuth eutectic is a major problem for design of PbBi cooled reactor. One technique to inhibit corrosion process is to inject oxygen into coolant. In this paper we study and focus on a way of inhibiting the corrosion of iron using molecular dynamics method. For the simulation results we concluded that effective corrosion inhibition of iron may be achieved by injection 0.0532 wt% to 0.1156 wt% oxygen into liquid lead-bismuth. At this oxygen concentration the structure of iron material will be maintained at about 70% in bcc crystal structure during interaction with liquid metal.

  13. Investigation on stability of directionally solidified CBr4 C2Cl6 lamellar eutectic by using multiphase field simulation

    NASA Astrophysics Data System (ADS)

    Zhu, Yao-Chan; Wang, Jin-Cheng; Yang, Gen-Cang; Zhao, Da-Wen

    2007-03-01

    With the multiphase field method, the stability of lamellar basic state is investigated during the directional solidification of eutectic alloy CBr4-C2Cl6. A great number of lamellar patterns observed in experiments are simulated, and a stability diagram for lamellar pattern selections is presented. The simulated growth behaviours of these patterns are found to be qualitatively consistent with Karma et al's numerical calculations and experimental results. The formation of the primary instability is attributed to the destabilization of solute boundary layer.

  14. Crystallographic Texture and Orientation Variants in Al2O3-Y3Al5O12 Directionally Solidified Eutectic Crystals

    NASA Technical Reports Server (NTRS)

    Frazer, Colleen S.; Dickey, Elizabeth C.; Sayir, Ali; Farmer, Serene (Technical Monitor)

    2001-01-01

    Eutectic rods of Al2O3 and Y3Al5O12 were grown by a laser-heated float zone method, and their microstructure and crystallographic texture were studied by scanning electron microscopy, electron backscattered diffraction and x-ray diffraction. The composites were found to be highly textured with two twin-related crystallographic orientation relationships between the phases. Electron backscattered diffraction was employed to determine the spatial distribution of the orientational variants within the samples and to define the crystallographic orientation of various microstructural features.

  15. Electromigration and thermomigration in lead-free tin-silver-copper and eutectic tin-lead flip chip solder joints

    NASA Astrophysics Data System (ADS)

    Ou Yang, Fan-Yi

    Phase separation and microstructure change of eutectic SnPb and SnAgCu flip chip solder joint were investigated under thermomigration, electromigration, stressmigration and the combination of these effects. Different morphological behaviors under DC and AC electromigration were seen. Phase separation with Pb rich phase migration to the anode was observed when current density is below 1.6 x 104 A/cm2 at 100°C. For some cases, phase separation of Pb-rich phase and Su-rich phase as well as refinement of lamellar microstructure has also been observed. We propose that the refinement is due to recrystallization. On the other hand, time-dependent melting of eutectic SnPb flip chip solder joints has been observed to occur frequently with current density above 1.6 x 104 A/cm 2at 100°C. It has been found that it is due to joule heating of the on-chip Al interconnects. We found that electromigration has especially generated voids at the anode of the Al. This damage has greatly increased the resistance of the Al, which produces the heat needed to melt the solder joint. Owing to the line-to-bump configuration in flip chip solder joints, current crowding occurs when electrons enters into or exits from the solder bump. At the cathode contact, current crowding induced pancake-type void formation was observed widely. Furthermore, at the anode contact, we note that hillock or whisker forms. The cross-sectioned surface in SnPb showed dimple and bulge after electromigration, while that of SnAgCu remained flat. The difference is due to a larger back stress in the SnAgCu, consequently electromigration in SnAgCu is slower than that in SnPb. For thermomigration in eutectic SnPb flip chip solder joints, phase separation of Sn and Pb occurred, with Pb moving to the cold end. Both Sn and Pb have a stepwise concentration profile across solder bump. Refinement of lamellar microstructure was observed, indicating recrystallization. Also, thermomigration in eutectic SnAgCu flip chip solder joint were presented. It seems that vacancy flux plays a dominant role in thermomigration in Pb-free solder bumps; voids formed on the cold end and Sn moved to the hot end.

  16. Study on a regeneration process of LiCl-KCl eutectic based waste salt generated from the pyrochemical process

    SciTech Connect

    Eun, H.C.; Cho, Y.Z.; Choi, J.H.; Kim, J.H.; Lee, T.K.; Park, H.S.; Kim, I.T.; Park, G.I.

    2013-07-01

    A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)

  17. Solvent disperser for removing oil from sponge core

    SciTech Connect

    Di Foggio, R.

    1988-09-20

    This patent describes method for dispersing solvent for use in determining the oil saturation of an earth formation by means of sponge coring, comprising: (a) receiving solvent dripping downwardly, and (b) conducting the received solvent by means of capillary action to an application zone located and dimensioned for passing such solvent to the sponge in a sponge core barrel.

  18. 29 CFR 1915.32 - Toxic cleaning solvents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Toxic cleaning solvents. 1915.32 Section 1915...and Preservation § 1915.32 Toxic cleaning solvents. (a) When toxic solvents...exposed to these solvents. (1) The cleaning operation shall be completely...

  19. 29 CFR 1915.32 - Toxic cleaning solvents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Toxic cleaning solvents. 1915.32 Section 1915...and Preservation § 1915.32 Toxic cleaning solvents. (a) When toxic solvents...exposed to these solvents. (1) The cleaning operation shall be completely...

  20. 29 CFR 1915.32 - Toxic cleaning solvents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Toxic cleaning solvents. 1915.32 Section 1915...and Preservation § 1915.32 Toxic cleaning solvents. (a) When toxic solvents...exposed to these solvents. (1) The cleaning operation shall be completely...

  1. 29 CFR 1915.32 - Toxic cleaning solvents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Toxic cleaning solvents. 1915.32 Section 1915...and Preservation § 1915.32 Toxic cleaning solvents. (a) When toxic solvents...exposed to these solvents. (1) The cleaning operation shall be completely...

  2. 29 CFR 1915.32 - Toxic cleaning solvents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Toxic cleaning solvents. 1915.32 Section 1915...and Preservation § 1915.32 Toxic cleaning solvents. (a) When toxic solvents...exposed to these solvents. (1) The cleaning operation shall be completely...

  3. COMPUTER-AIDED SOLVENT DESIGN FOR POLLUTION PREVENTION: PARIS II

    EPA Science Inventory

    Solvent substitution is an attractive way of elijminating the use of regulated solvents because it usually does not require major chanages in existing processes, equipment or operations. Successful solvent substitution is dependent on finding solvents that are as effective or be...

  4. In-Situ X-Ray Diffraction Observations of Low Temperature Ag-Nanoink Sintering and High Temperature Eutectic Reaction with Copper

    SciTech Connect

    Elmer, J. W.; Specht, Eliot D

    2012-01-01

    Nanoinks, which contain nm sized metallic particles suspended in an organic dispersant fluid, are finding numerous microelectronic applications. Nanoinks sinter at much lower temperatures than bulk metals due to their high surface area to volume ratio and small radius of curvature, which reduces their melting points significantly below their bulk values. The unusually low melting and sintering temperatures have unique potential for materials joining since their melting points increase dramatically after initial sintering. In this paper Ag nanoink is studied using in-situ synchrotron based x-ray diffraction to follow the kinetics of the initial sintering step by analysis of diffraction patterns, and to directly observe the high remelt temperature of sintered nanoinks. Ag nanoink is further explored as a possible eutectic bonding medium with copper by tracking phase transformations to high temperatures where melting occurs at the Ag-Cu eutectic temperature, demonstrating nanoinks as a viable eutectic bonding medium.

  5. Reduction behavior of UO22+ in molten LiCl-RbCl and LiCl-KCl eutectics by using tungsten

    NASA Astrophysics Data System (ADS)

    Nagai, Takayuki; Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu

    2013-08-01

    The reduction of uranium from UO22+ to UO2+ or U4+ in molten LiCl-RbCl and LiCl-KCl eutectics was examined by using tungsten and chlorine gas. Spectrophotometric technique was adopted to determine the concentration of uranium species. When tungsten was immersed into the LiCl-RbCl eutectic melt at 400 °C without supplying chlorine gas, 36% of the total weight of the hexavalent of UO22+ was reduced to the pentavalent of UO2+. Under purging chlorine gas into the melt, 96% of UO22+ was reduced to the tetravalent of U4+. Tungsten oxy-chloride of WOCl4 was produced via the reductions of UO22+, which was volatized from the melt and adsorbed on the upper part of experimental cell. On the other hand, 84% of UO22+ in the LiCl-KCl eutectic melt at 500 °C was reduced to U4+ by using tungsten and chlorine gas.

  6. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations.

  7. The deep space network

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The progress is reported of Deep Space Network (DSN) research in the following areas: (1) flight project support, (2) spacecraft/ground communications, (3) station control and operations technology, (4) network control and processing, and (5) deep space stations. A description of the DSN functions and facilities is included.

  8. Deep-diving dinosaurs

    NASA Astrophysics Data System (ADS)

    Hayman, John

    2012-08-01

    Dysbaric bone necrosis demonstrated in ichthyosaurs may be the result of prolonged deep diving rather than rapid ascent to escape predators. The bone lesions show structural and anatomical similarity to those that may occur in human divers and in the deep diving sperm whale, Physeter macrocephalus.

  9. Chlorinated solvent replacements recycle/recovery review report

    SciTech Connect

    Beal, M.; Hsu, D.; McAtee, R.E.; Weidner, J.R. ); Berg, L.; McCandless, F.P.; Waltari, S.; Peterson, C. . Dept. of Chemical Engineering)

    1992-08-01

    This report is a literature review of waste solvents recycle/recovery methods and shows the results of solvent separations using membrane and distillation technologies. The experimental solvent recovery methods were conducted on solvent replacements for chlorinated solvents at Montana State University. The literature review covers waste solvents separation using distillation, membranes decantation, filtration, carbon adsorption, solvent extraction, and other vapor-phase separation techniques. The results of this study identify solvent distillation methods as the most common separation technique. The alternative separation methods typically supplement distillation. The study shows the need for industries to identify waste solvent disposal methods and investigate the economics of waste solvent recycling as a possible waste reduction method.

  10. [Deep neck infections].

    PubMed

    Nowak, Katarzyna; Szyfter, Witold

    2006-01-01

    Deep neck infection is relatively rare but potentially life threatening complication of common oropharyngeal infections. This retrospective study was aimed at analyzing the occurrence of complications, diagnostic methods and proper management of deep neck infection. A review was conducted in 32 cases who were diagnosed as having deep neck infection from 1995 to 2005. The causes of deep neck infections were tonsillitis (16 cases), tooth diseases (6 cases), paratonsillar abscess (4 cases), parotitis (1 case), pussy lymphonodes after tonsillectomy (2 cases), pussy congenital neck cyst (1 case), chronic otitis media (1 case), parotitis (1 case), foreign body of the esophagus (1 case). All the puss bacterial cultivation were positive. All the patients were treated by different ways of chirurgical drainage and use of large dosage of antibiotics. Deep neck infection should be suspected in patients with long lasting fever and painful swelling of the neck and treatment should begin quick as possible. PMID:17152800

  11. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart MMMM of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...CAS number for an entry, that entry's organic HAP mass fraction must be used for...

  12. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart PPPP of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...CAS number for an entry, that entry's organic HAP mass fraction must be used for...

  13. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart MMMM of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...CAS number for an entry, that entry's organic HAP mass fraction must be used for...

  14. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart PPPP of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...CAS number for an entry, that entry's organic HAP mass fraction must be used for...

  15. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart PPPP of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...CAS number for an entry, that entry's organic HAP mass fraction must be used for...

  16. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart MMMM of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...CAS number for an entry, that entry's organic HAP mass fraction must be used for...

  17. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart MMMM of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...CAS number for an entry, that entry's organic HAP mass fraction must be used for...

  18. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart MMMM of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...CAS number for an entry, that entry's organic HAP mass fraction must be used for...

  19. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart PPPP of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...CAS number for an entry, that entry's organic HAP mass fraction must be used for...

  20. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for Solvents and Solvent...to Subpart PPPP of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent...CAS number for an entry, that entry's organic HAP mass fraction must be used for...