Science.gov

Sample records for deep sea multi-locus

  1. Speciation in the Deep Sea: Multi-Locus Analysis of Divergence and Gene Flow between Two Hybridizing Species of Hydrothermal Vent Mussels

    PubMed Central

    Faure, Baptiste; Jollivet, Didier; Tanguy, Arnaud; Bonhomme, François; Bierne, Nicolas

    2009-01-01

    Background Reconstructing the history of divergence and gene flow between closely-related organisms has long been a difficult task of evolutionary genetics. Recently, new approaches based on the coalescence theory have been developed to test the existence of gene flow during the process of divergence. The deep sea is a motivating place to apply these new approaches. Differentiation by adaptation can be driven by the heterogeneity of the hydrothermal environment while populations should not have been strongly perturbed by climatic oscillations, the main cause of geographic isolation at the surface. Methodology/Principal Finding Samples of DNA sequences were obtained for seven nuclear loci and a mitochondrial locus in order to conduct a multi-locus analysis of divergence and gene flow between two closely related and hybridizing species of hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis. The analysis revealed that (i) the two species have started to diverge approximately 0.760 million years ago, (ii) the B. azoricus population size was 2 to 5 time greater than the B. puteoserpentis and the ancestral population and (iii) gene flow between the two species occurred over the complete species range and was mainly asymmetric, at least for the chromosomal regions studied. Conclusions/Significance A long history of gene flow has been detected between the two Bathymodiolus species. However, it proved very difficult to conclusively distinguish secondary introgression from ongoing parapatric differentiation. As powerful as coalescence approaches could be, we are left by the fact that natural populations often deviates from standard assumptions of the underlying model. A more direct observation of the history of recombination at one of the seven loci studied suggests an initial period of allopatric differentiation during which recombination was blocked between lineages. Even in the deep sea, geographic isolation may well be a crucial promoter of speciation

  2. Deep pockets for deep seas

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Peter Auster, a fisheries ecologist with the National Undersea Research Center in Connecticut, plans to assess degradation of the deep-shelf seafloor from bottom trawling. Magnus Ngoile, an official with Tanzania's National Environmental Management Council, will work on building capacity of poor villagers to protect their coastline. And Alison Rieser, a lawyer with the University of Maine School of Law, will produce a textbook to educate scientists on how to apply the law for marine conservation.These individuals are among 11 recipients of the Pew Charitable Trust's 10th annual marine conservation fellowships, announced on July 12. With each recipient receiving an award of $150,000, the program is the world's largest award for marine conservationists. Other 1999 recipients will be involved with areas including investigating marine pollution in the Arctic region, examining economic incentives for conservation in Baja, Mexico, and establishing a marine conservation biology training program for minority students.

  3. A Deep-Sea Simulation.

    ERIC Educational Resources Information Center

    Montes, Georgia E.

    1997-01-01

    Describes an activity that simulates exploration techniques used in deep-sea explorations and teaches students how this technology can be used to take a closer look inside volcanoes, inspect hazardous waste sites such as nuclear reactors, and explore other environments dangerous to humans. (DDR)

  4. Ploughing the deep sea floor.

    PubMed

    Puig, Pere; Canals, Miquel; Company, Joan B; Martín, Jacobo; Amblas, David; Lastras, Galderic; Palanques, Albert

    2012-09-13

    Bottom trawling is a non-selective commercial fishing technique whereby heavy nets and gear are pulled along the sea floor. The direct impact of this technique on fish populations and benthic communities has received much attention, but trawling can also modify the physical properties of seafloor sediments, water–sediment chemical exchanges and sediment fluxes. Most of the studies addressing the physical disturbances of trawl gear on the seabed have been undertaken in coastal and shelf environments, however, where the capacity of trawling to modify the seafloor morphology coexists with high-energy natural processes driving sediment erosion, transport and deposition. Here we show that on upper continental slopes, the reworking of the deep sea floor by trawling gradually modifies the shape of the submarine landscape over large spatial scales. We found that trawling-induced sediment displacement and removal from fishing grounds causes the morphology of the deep sea floor to become smoother over time, reducing its original complexity as shown by high-resolution seafloor relief maps. Our results suggest that in recent decades, following the industrialization of fishing fleets, bottom trawling has become an important driver of deep seascape evolution. Given the global dimension of this type of fishery, we anticipate that the morphology of the upper continental slope in many parts of the world’s oceans could be altered by intensive bottom trawling, producing comparable effects on the deep sea floor to those generated by agricultural ploughing on land. PMID:22951970

  5. Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific.

    PubMed

    Mino, Sayaka; Makita, Hiroko; Toki, Tomohiro; Miyazaki, Junichi; Kato, Shingo; Watanabe, Hiromi; Imachi, Hiroyuki; Watsuji, Tomo-O; Nunoura, Takuro; Kojima, Shigeaki; Sawabe, Tomoo; Takai, Ken; Nakagawa, Satoshi

    2013-01-01

    Deep-sea hydrothermal vent fields are areas on the seafloor with high biological productivity fueled by microbial chemosynthesis. Members of the Aquificales genus Persephonella are obligately chemosynthetic bacteria, and appear to be key players in carbon, sulfur, and nitrogen cycles in high temperature habitats at deep-sea vents. Although this group of bacteria has cosmopolitan distribution in deep-sea hydrothermal ecosystem around the world, little is known about their population structure such as intraspecific genomic diversity, distribution pattern, and phenotypic diversity. We developed the multi-locus sequence analysis (MLSA) scheme for their genomic characterization. Sequence variation was determined in five housekeeping genes and one functional gene of 36 Persephonella hydrogeniphila strains originated from the Okinawa Trough and the South Mariana Trough (SNT). Although the strains share >98.7% similarities in 16S rRNA gene sequences, MLSA revealed 35 different sequence types (ST), indicating their extensive genomic diversity. A phylogenetic tree inferred from all concatenated gene sequences revealed the clustering of isolates according to the geographic origin. In addition, the phenotypic clustering pattern inferred from whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis can be correlated to their MLSA clustering pattern. This study represents the first MLSA combined with phenotypic analysis indicative of allopatric speciation of deep-sea hydrothermal vent bacteria. PMID:23630523

  6. Advanced deep sea diving equipment

    NASA Technical Reports Server (NTRS)

    Danesi, W. A.

    1972-01-01

    Design requirements are generated for a deep sea heavy duty diving system to equip salvage divers with equipment and tools that permit work of the same quality and in times approaching that done on the surface. The system consists of a helmet, a recirculator for removing carbon dioxide, and the diver's dress. The diver controls the inlet flow by the recirculatory control valve and is able to change closed cycle operation to open cycle if malfunction occurs. Proper function of the scrubber in the recirculator minimizes temperature and humidity effects as it filters the returning air.

  7. Deep-sea pleistocene biostratigraphy.

    PubMed

    Lidz, L

    1966-12-16

    The first detailed paleontological analysis of a deep-sea pistoncore from the Caribbean Sea has been completed. The core, P6304-8, was raised from 3927 meters, east of Beata Ridge at 14 degrees 59'N, 69 degrees 20'W. Formerly, stratigraphic works in this area were based on studies of paleotemperature, measured by the oxygen isotope mass spectrometry method, or on micropaleontological analysis by means of rapid or cursory examinations. For core P6304-8, samples for foraminiferal analysis were taken at 10-centimeter intervals and split into smaller samples containing an average of 710 individuals (smallest sample, 517 individuals); all individuals were then identified and counted. By use of data derived from populations of this size, a statistical reliability was insured within a 5 percent limnit. Temperature oscillations, the best method of portraying Pleistocene stratigraphy, were shown by using ratios of the relative abundances of tropical and subtropical planktonic foraminifera to those found in temperate and cooler waters. These ratios correlate well with existing paleotemperature measurements for the same core, obtained by the oxygen isotope mass spectrometry method. PMID:17821563

  8. Temperature impacts on deep-sea biodiversity.

    PubMed

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. PMID:25523624

  9. Population structure of deep-sea chemolithoautotrophs: identification of phenotypic and genotypic correlations

    NASA Astrophysics Data System (ADS)

    Mino, S.; Nakagawa, S.; Sawabe, T.; Miyazaki, J.; Makita, H.; Nunoura, T.; Yamamoto, M.; Takai, K.

    2012-12-01

    Deep-sea hydrothermal fields are areas on the seafloor of high biological productivity fueled primarily by microbial chemosynthesis. Chemolithoautotrophic Epsilonproteobacteria and Persephonella with an ability to utilize inorganic substrates such as elemental sulfur and hydrogen are important members in wide range of temperature conditions in deep-sea hydrothermal vents. However, little is known about their population genetic structure such as intraspecific genetic diversity, distribution pattern, and phenotypic characteristics. Previously, using genetic approach based on multi-locus sequence analysis (MLSA), we clarified that Epsilonproteobacteria Group A, B, F, and Persephonella populations were geographically separated, and Epsilonproteobacteria appeared to diverge by mutation rather than recombination. Contrary to genetic evidence for allopatric segregation in deep-sea chemoautotrophs, however, phenotypic evidence has never been found. In addition, analyzing such a phenotypic characteristic may lead to a better understanding of the interactions microbes have with their environment. In this study, we present a metabolomic approach based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to reveal phenotypic biogeographical discrimination. We demonstrated the whole-cell MALDI-TOF MS method on Epsilonproteobacteria and Persephonella populations. These chemoautotrophic strains used in this study were isolated from chimney structures, vent fluids, and hydrothermal sediments. These hydrothermal samples were collected from geographically separated hydrothermal areas of the South Mariana Trough, Okinawa Trough and Central Indian Ridge. Based on mass peaks (signal/noise >10) within the m/z range of 2000-14000, phenotypic analysis was carried out by cluster analysis. The result of phenotypic analysis was compared with the genotypic clusters. The whole-cell MALDI-TOF MS revealed that Persephonella population was identified to

  10. Measurement of light scattering in deep sea

    NASA Astrophysics Data System (ADS)

    Maragos, N.; Balasi, K.; Domvoglou, T.; Kiskiras, I.; Lenis, D.; Maniatis, M.; Stavropoulos, G.

    2016-04-01

    The deep-sea neutrino telescope in the Mediterranean Sea, being prepared by the KM3NET collaboration, will contain thousands of optical sensors to readout. The accurate knowledge of the optical properties of deep-sea water is of great importance for the neutrino event reconstruction process. In this study we describe our progress in designing an experimental setup and studying a method to measure the parameters describing the absorption and scattering characteristics of deep-sea water. Three PMTs will be used to measure in situ the scattered light emitted from six laser diodes in three different wavelengths covering the Cherenkov radiation spectrum. The technique for the evaluation of the parameters is based on Monte Carlo simulations and our results show that we are able to determine these parameters with satisfying precision.

  11. Colonization of the deep sea by fishes.

    PubMed

    Priede, I G; Froese, R

    2013-12-01

    Analysis of maximum depth of occurrence of 11 952 marine fish species shows a global decrease in species number (N) with depth (x; m): log10 N = -0·000422x + 3·610000 (r(2)  = 0·948). The rate of decrease is close to global estimates for change in pelagic and benthic biomass with depth (-0·000430), indicating that species richness of fishes may be limited by food energy availability in the deep sea. The slopes for the Classes Myxini (-0·000488) and Actinopterygii (-0·000413) follow this trend but Chondrichthyes decrease more rapidly (-0·000731) implying deficiency in ability to colonize the deep sea. Maximum depths attained are 2743, 4156 and 8370 m for Myxini, Chondrichthyes and Actinopterygii, respectively. Endemic species occur in abundance at 7-7800 m depth in hadal trenches but appear to be absent from the deepest parts of the oceans, >9000 m deep. There have been six global oceanic anoxic events (OAE) since the origin of the major fish taxa in the Devonian c. 400 million years ago (mya). Colonization of the deep sea has taken place largely since the most recent OAE in the Cretaceous 94 mya when the Atlantic Ocean opened up. Patterns of global oceanic circulation oxygenating the deep ocean basins became established coinciding with a period of teleost diversification and appearance of the Acanthopterygii. Within the Actinopterygii, there is a trend for greater invasion of the deep sea by the lower taxa in accordance with the Andriashev paradigm. Here, 31 deep-sea families of Actinopterygii were identified with mean maximum depth >1000 m and with >10 species. Those with most of their constituent species living shallower than 1000 m are proposed as invasive, with extinctions in the deep being continuously balanced by export of species from shallow seas. Specialized families with most species deeper than 1000 m are termed deep-sea endemics in this study; these appear to persist in the deep by virtue of global distribution enabling recovery

  12. Colonization of the deep sea by fishes

    PubMed Central

    Priede, I G; Froese, R

    2013-01-01

    Analysis of maximum depth of occurrence of 11 952 marine fish species shows a global decrease in species number (N) with depth (x; m): log10N = −0·000422x + 3·610000 (r2 = 0·948). The rate of decrease is close to global estimates for change in pelagic and benthic biomass with depth (−0·000430), indicating that species richness of fishes may be limited by food energy availability in the deep sea. The slopes for the Classes Myxini (−0·000488) and Actinopterygii (−0·000413) follow this trend but Chondrichthyes decrease more rapidly (−0·000731) implying deficiency in ability to colonize the deep sea. Maximum depths attained are 2743, 4156 and 8370 m for Myxini, Chondrichthyes and Actinopterygii, respectively. Endemic species occur in abundance at 7–7800 m depth in hadal trenches but appear to be absent from the deepest parts of the oceans, >9000 m deep. There have been six global oceanic anoxic events (OAE) since the origin of the major fish taxa in the Devonian c. 400 million years ago (mya). Colonization of the deep sea has taken place largely since the most recent OAE in the Cretaceous 94 mya when the Atlantic Ocean opened up. Patterns of global oceanic circulation oxygenating the deep ocean basins became established coinciding with a period of teleost diversification and appearance of the Acanthopterygii. Within the Actinopterygii, there is a trend for greater invasion of the deep sea by the lower taxa in accordance with the Andriashev paradigm. Here, 31 deep-sea families of Actinopterygii were identified with mean maximum depth >1000 m and with >10 species. Those with most of their constituent species living shallower than 1000 m are proposed as invasive, with extinctions in the deep being continuously balanced by export of species from shallow seas. Specialized families with most species deeper than 1000 m are termed deep-sea endemics in this study; these appear to persist in the deep by virtue of global distribution enabling

  13. Climate Influence on Deep Sea Populations

    PubMed Central

    Company, Joan B.; Puig, Pere; Sardà, Francesc; Palanques, Albert; Latasa, Mikel; Scharek, Renate

    2008-01-01

    Dynamics of biological processes on the deep-sea floor are traditionally thought to be controlled by vertical sinking of particles from the euphotic zone at a seasonal scale. However, little is known about the influence of lateral particle transport from continental margins to deep-sea ecosystems. To address this question, we report here how the formation of dense shelf waters and their subsequent downslope cascade, a climate induced phenomenon, affects the population of the deep-sea shrimp Aristeus antennatus. We found evidence that strong currents associated with intense cascading events correlates with the disappearance of this species from its fishing grounds, producing a temporary fishery collapse. Despite this initial negative effect, landings increase between 3 and 5 years after these major events, preceded by an increase of juveniles. The transport of particulate organic matter associated with cascading appears to enhance the recruitment of this deep-sea living resource, apparently mitigating the general trend of overexploitation. Because cascade of dense water from continental shelves is a global phenomenon, we anticipate that its influence on deep-sea ecosystems and fisheries worldwide should be larger than previously thought. PMID:18197243

  14. Deep-sea Hexactinellida (Porifera) of the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Janussen, Dorte; Tabachnick, Konstantin R.; Tendal, Ole S.

    2004-07-01

    New Hexactinellida from the deep Weddel Sea are described. This moderately diverse hexactinellid fauna includes 14 species belonging to 12 genera, of which five species and one subgenus are new to science: Periphragella antarctica n. sp., Holascus pseudostellatus n. sp., Caulophacus (Caulophacus) discohexactinus n. sp., C. ( Caulodiscus) brandti n. sp., C. ( Oxydiscus) weddelli n. sp., and C. ( Oxydiscus) n. subgen. So far, 20 hexactinellid species have been reported from the deep Weddell Sea, 15 are known from the northern part and 10 only from here, while 10 came from the southern area, and five of these only from there. However, this apparent high "endemism" of Antarctic hexactinellid sponges is most likely the result of severe undersampling of the deep-sea fauna. We find no reason to believe that a division between an oceanic and a more continental group of species exists. The current poor database indicates that a substantial part of the deep hexactinellid fauna of the Weddell Sea is shared with other deep-sea regions, but it does not indicate a special biogeographic relationship with any other ocean.

  15. In Brief: Deep-sea observatory

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  16. The study of deep-sea cephalopods.

    PubMed

    Hoving, Henk-Jan T; Perez, Jose Angel A; Bolstad, Kathrin S R; Braid, Heather E; Evans, Aaron B; Fuchs, Dirk; Judkins, Heather; Kelly, Jesse T; Marian, José E A R; Nakajima, Ryuta; Piatkowski, Uwe; Reid, Amanda; Vecchione, Michael; Xavier, José C C

    2014-01-01

    "Deep-sea" cephalopods are here defined as cephalopods that spend a significant part of their life cycles outside the euphotic zone. In this chapter, the state of knowledge in several aspects of deep-sea cephalopod research are summarized, including information sources for these animals, diversity and general biogeography and life cycles, including reproduction. Recommendations are made for addressing some of the remaining knowledge deficiencies using a variety of traditional and more recently developed methods. The types of oceanic gear that are suitable for collecting cephalopod specimens and images are reviewed. Many groups of deep-sea cephalopods require taxonomic reviews, ideally based on both morphological and molecular characters. Museum collections play a vital role in these revisions, and novel (molecular) techniques may facilitate new use of old museum specimens. Fundamental life-cycle parameters remain unknown for many species; techniques developed for neritic species that could potentially be applied to deep-sea cephalopods are discussed. Reproductive tactics and strategies in deep-sea cephalopods are very diverse and call for comparative evolutionary and experimental studies, but even in the twenty-first century, mature individuals are still unknown for many species. New insights into diet and trophic position have begun to reveal a more diverse range of feeding strategies than the typically voracious predatory lifestyle known for many cephalopods. Regular standardized deep-sea cephalopod surveys are necessary to provide insight into temporal changes in oceanic cephalopod populations and to forecast, verify and monitor the impacts of global marine changes and human impacts on these populations. PMID:24880796

  17. Autonomous, Retrievable, Deep Sea Microbial Fuel Cell

    NASA Astrophysics Data System (ADS)

    Richter, K.

    2014-12-01

    Microbial fuel cells (MFCs) work by providing bacteria in anaerobic sediments with an electron acceptor (anode) that stimulates metabolism of organic matter. The buried anode is connected via control circuitry to a cathode exposed to oxygen in the overlying water. During metabolism, bacteria release hydrogen ions into the sediment and transfer electrons extra-cellularly to the anode, which eventually reduce dissolved oxygen at the cathode, forming water. The open circuit voltage is approximately 0.8 v. The voltage between electrodes is operationally kept at 0.4 v with a potentiastat. The current is chiefly limited by the rate of microbial metabolism at the anode. The Office of Naval Research has encouraged development of microbial fuel cells in the marine environment at a number of academic and naval institutions. Earlier work in shallow sediments of San Diego Bay showed that the most important environmental parameters that control fuel cell power output in San Diego Bay were total organic carbon in the sediment and seasonal water temperature. Current MFC work at SPAWAR includes extension of microbial fuel cell tests to the deep sea environment (>1000 m) and, in parallel, testing microbial fuel cells in the laboratory under deep sea conditions. One question we are asking is whether MFC power output from deep water sediments repressurized and chilled in the laboratory comparable to those measured in situ. If yes, mapping the power potential of deep sea sediments may be made much easier, requiring sediment grabs and lab tests rather than deployment and retrieval of fuel cells. Another question we are asking is whether in situ temperature and total organic carbon in the deep sea sediment can predict MFC power. If yes, then we can make use of the large collection of publicly available, deep sea oceanographic measurements to make these predictions, foregoing expensive work at sea. These regressions will be compared to those derived from shallow water measurements.

  18. Mass extinctions in the deep sea

    NASA Technical Reports Server (NTRS)

    Thomas, E.

    1988-01-01

    The character of mass extinctions can be assessed by studying extinction patterns of organisms, the fabric of the extinction, and assessing the environmental niche and mode of life of survivors. Deep-sea benthic foraminifera have been listed as little affected by the Cretaceous-Tertiary (K-T) mass extinction, but very few quantitative data are available. New data on deep-sea Late Maestrichtian-Eocene benthic foraminifera from Maud Rise (Antractica) indicate that about 10 percent of the species living at depths of 2000 to 2500 m had last appearances within 1 my of the Cretaceous-Tertiary (K-T) boundary, versus about 25 percent of species at 1000 to 1500 m. Many survivors from the Cretaceous became extinct in a period of global deep-sea benthic foraminiferal extinction at the end of the Paleocene, a time otherwise marked by very few extinctions. Preliminary conclusions suggest that the deep oceanic environment is essentially decoupled from the shallow marine and terrestrial environment, and that even major disturbances of one of these will not greatly affect the other. This gives deep-sea benthic faunas a good opportunity to recolonize shallow environments from greater depths and vice versa after massive extinctions. The decoupling means that data on deep-sea benthic boundary was caused by the environmental effects of asteriod impact or excessive volcanism. The benthic foraminiferal data strongly suggest, however, that the environmental results were strongest at the Earth's surface, and that there was no major disturbance of the deep ocean; this pattern might result both from excessive volcanism and from an impact on land.

  19. Experimental investigation of deep sea riser interaction

    SciTech Connect

    Huse, E.

    1996-12-31

    In future deep sea field developments the drag force and corresponding static deflections of the risers due to current can become quite large. The prevention of mechanical contact (collision) between the risers will need more careful evaluation than in moderate water depths. The paper describes a series of model experiments in a Norwegian fjord to determine criteria for on-set of collisions between the risers of a deep sea TLP. The current was modeled using the natural tidal current in the fjord. Results from the tests are summarized and used for verification of numerical calculations of collision criteria.

  20. Deep sea tides determination from GEOS-3

    NASA Technical Reports Server (NTRS)

    Maul, G. A.; Yanaway, A.

    1978-01-01

    GEOS 3 altimeter data in a 5 degree X 5 degree square centered at 30 deg N, 70 deg W were analyzed to evaluate deep sea tide determination from a spacecraft. The signal to noise ratio of known tidal variability to altimeter measurement of sea level above the ellipsoid was 0.1. A sample was obtained in a 5 deg x 5 deg area approximately once every four days. The randomly spaced time series was analyzed using two independent least squares techniques.

  1. Mesoscale eddies transport deep-sea sediments

    PubMed Central

    Zhang, Yanwei; Liu, Zhifei; Zhao, Yulong; Wang, Wenguang; Li, Jianru; Xu, Jingping

    2014-01-01

    Mesoscale eddies, which contribute to long-distance water mass transport and biogeochemical budget in the upper ocean, have recently been taken into assessment of the deep-sea hydrodynamic variability. However, how such eddies influence sediment movement in the deepwater environment has not been explored. Here for the first time we observed deep-sea sediment transport processes driven by mesoscale eddies in the northern South China Sea via a full-water column mooring system located at 2100 m water depth. Two southwestward propagating, deep-reaching anticyclonic eddies passed by the study site during January to March 2012 and November 2012 to January 2013, respectively. Our multiple moored instruments recorded simultaneous or lagging enhancement of suspended sediment concentration with full-water column velocity and temperature anomalies. We interpret these suspended sediments to have been trapped and transported from the southwest of Taiwan by the mesoscale eddies. The net near-bottom southwestward sediment transport by the two events is estimated up to one million tons. Our study highlights the significance of surface-generated mesoscale eddies on the deepwater sedimentary dynamic process. PMID:25089558

  2. Extreme Longevity in Proteinaceous Deep-Sea Corals

    SciTech Connect

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  3. Factors controlling ebro deep-sea fan growth, Mediterranean Sea

    SciTech Connect

    Nelson, C.H.; Maldonado, A.; Alonso, B.; Palanques, A.; Ryan, W.B.F.; Kastens, K.; O'Connel, S.

    1985-01-01

    Tectonic, sediment-source and sea-level factors control depositional patterns of the Ebro deep-sea fan system. In unstable, steep continental slope terrain, mass movement of material results in wide gullied canyons and formation of non-channelized debris aprons. These fan channels develop low sinuosity and generally traverse the continental rise without feeding into depositional lobes because of steep gradients (1:50 to 1:100) and sediment draining into the subsiding Valencia Valley graben. An abundance of sediment input points from mass failure and many river-fed canyons contributes to a depositional pattern of side-by-side debris aprons and separate channel-levee complexes. When a large sediment supply feeds a channel for a relatively long period 1) fan valley sinuosity increases: 2) channel walls are modified through undercutting, slumping, and crevasse splays: 3) channel bifurcation occurs: 4) incipient depositional lobe formation begins. Lowering of sea levels in Late Pleistocene time permitted the access of coarse river sediment to slope valleys and promoted deposition of numerous turbidites and active growth of the fan. During the Holocene, when sea levels have been high, a regime of hemipelagic sedimentation, mass movement, and debris apron sedimentation has dominated.

  4. Deep-Sea Research Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is an aerial view of the deep-sea research submarine 'Ben Franklin' at dock. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  5. Deep-Sea Submarine 'Ben Franklin'

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The deep-sea submarine 'Ben Franklin' is being docked in the harbor. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life. It also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effect of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.

  6. A deep-sea sediment transport storm

    NASA Astrophysics Data System (ADS)

    Gross, Thomas F.; Williams, A. J.; Newell, A. R. M.

    1988-02-01

    Photographs taken of the sea bottom since the 1960s suggest that sediments at great depth may be actively resuspended and redistributed1. Further, it has been suspected that active resus-pension/transport may be required to maintain elevated concentrations of particles in deep-sea nepheloid layers. But currents with sufficient energy to erode the bottom, and to maintain the particles in suspension, have not been observed concurrently with large concentrations of particles in the deep nepheloid layer2-4. The high-energy benthic boundary-layer experiment (HEBBLE) was designed to test the hypothesis that bed modifications can result from local erosion and deposition as modelled by simple one-dimensional local forcing mechanics5. We observed several 'storms' of high kinetic energy and near-bed flow associated with large concentrations of suspended sediment during the year-long deployments of moored instruments at the HEBBLE study site. These observations, at 4,880 m off the Nova Scotian Rise in the north-west Atlantic, indicate that large episodic events may suspend bottom sediments in areas well removed from coastal and shelf sources.

  7. Platinum group nuggets in deep sea sediments

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Bates, B. A.; Wheelock, M. M.

    1984-01-01

    The existence of iron meteor oblation spheres in deep sea sediments was known for over a century. These spheres generally were believed to be composed of either pure magnetite and wustite or an oxide shell surrounding a NiFe metal core. A large number of 300 micron to 600 micron spheres found were pure oxide spheres, usually containing a solitary 10 micron platinum group nugget (pgn) composed almost entirely of group VIII metals. Twelve PGN's were analyzed and most had chondritic abundances with some depletions that correlate with element volatility. PGN formation by oxidation of a molten metal sphere entering the atmosphere cannot occur if the oxygen abundance in the atmosphere is less than half of its present value. The first appearance of PGN's in the geological record should mark when, in the Earth's history, oxygen rose to this level.

  8. The dynamics of biogeographic ranges in the deep sea.

    PubMed

    McClain, Craig R; Hardy, Sarah Mincks

    2010-12-01

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography. PMID:20667884

  9. The dynamics of biogeographic ranges in the deep sea

    PubMed Central

    McClain, Craig R.; Hardy, Sarah Mincks

    2010-01-01

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography. PMID:20667884

  10. The Deep Seas--Unexpectedly, An Astounding Variety of Life

    ERIC Educational Resources Information Center

    MOSAIC, 1976

    1976-01-01

    As oceanographic technology advances, the study of deep-sea environments is accelerating. Numerous ecological theories concerning deep-sea food relationships, environmental extremes, and life forms are changing as the environments of the deepest ocean trenches are studied. Thousands of new species are being discovered and studied constantly. (MA)

  11. Adapting to the Deep Sea: A Fun Activity with Bioluminescence

    ERIC Educational Resources Information Center

    Rife, Gwynne

    2006-01-01

    Over the past decade, much has been learned about the ocean's secrets and especially about the creatures of the deep sea. The deepest parts of the oceans are currently the focus of many new discoveries in both the physical and biological sciences. Middle school students find the deep sea fascinating and especially seem to enjoy its mysterious and…

  12. Biodiversity Science In The Deep Sea: The ESF EuroDEEP Programme

    NASA Astrophysics Data System (ADS)

    Jonckheere, I. G.

    2007-12-01

    What little we know of deep-sea ecosystems indicates that they host one of the highest biodiversities on the planet as well as important mineral and biological resources, which are increasingly being exploited. Understanding deep-sea biodiversity and ecosystem functioning, from viruses to megafauna, is essential to assess the impact of natural and anthropogenic factors and provide management options. The aim of the multidisciplinary ESF EUROCORES Programme EuroDEEP, Ecosystem Functioning and Biodiversity in Deep Sea, is to further explore and identify the different deep-sea habitats, assessing both the abiotic and biotic processes that sustain and maintain deep-sea communities. The scope is to interpret variations of biodiversity within and between deep-sea habitats, and the interactions of the biota with the ecosystems in which they live. The resulting scientific data are a prerequisite for the sustainable use and the development of management and conservation options aiming at the sustainable use of marine resources that will benefit society as a whole. The Programme aims at providing the necessary framework and funding for the development of top-quality deep- sea research at the European level in a global context (Census of Marine Life and SCOR/IGBP). In particular, it builds on sharing of national large-scale resources, which are essential for deep-sea research (i.e. ships, ROVs, submersibles, AUVs, deep-towed vehicles, deep-sea sampling equipment, new sensors, etc.) as well as the coordination of efforts amongst scientists and laboratories from the countries involved and links with ongoing projects. EuroDEEP will participate in the development of new technologies as well as data management, analysis and modelling. Most of all, EuroDEEP will catalyse excellent research on what biodiversity exists in the deep sea, how it is generated and maintained by abiotic and biotic processes, and what the role of the deep-sea is in the biogeochemical processes affecting the

  13. A checklist of the deep sea fishes of the Levant Sea, Mediterranean Sea.

    PubMed

    Goren, Menachem; Galil, Bella S

    2015-01-01

    We list sixty five fish species collected at depths greater than 500 m in the Levant Basin, including 10 depth records. The Levantine bathyal ichthyofauna is characterized by its eurybathy, with an upper bathymetric boundary that permitted penetration of the shallow Gibraltar and Siculo-Tunisian sills, and a much lower bathymetric boundary than recorded for conspecifics elsewhere. The opportunistic and resilient ichthyofauna re-colonized recently the deep-sea following the last anoxic event (~ 6 kyr), forming assemblages notably distinct from those in the western Mediterranean. The exploration and production of deep seabed hydrocarbons have raised the specter of severe direct impacts to the deep habitats. There is an urgent need for documenting the full extent of deep-sea biodiversity, and for providing information for the development of competent and pragmatic management plans and effective conservation policies. PMID:26250288

  14. Low incidence of clonality in cold water corals revealed through the novel use of standardized protocol adapted to deep sea sampling

    USGS Publications Warehouse

    Becheler, Ronan; Cassone, Anne-Laure; Noel, Philippe; Mouchel, Olivier; Morrison, Cheryl; Arnaud-Haond, Sophie

    2016-01-01

    Sampling in the deep sea is a technical challenge, which has hindered the acquisition of robust datasets that are necessary to determine the fine-grained biological patterns and processes that may shape genetic diversity. Estimates of the extent of clonality in deep-sea species, despite the importance of clonality in shaping the local dynamics and evolutionary trajectories, have been largely obscured by such limitations. Cold-water coral reefs along European margins are formed mainly by two reef-building species, Lophelia pertusa and Madrepora oculata. Here we present a fine-grained analysis of the genotypic and genetic composition of reefs occurring in the Bay of Biscay, based on an innovative deep-sea sampling protocol. This strategy was designed to be standardized, random, and allowed the georeferencing of all sampled colonies. Clonal lineages discriminated through their Multi-Locus Genotypes (MLG) at 6–7 microsatellite markers could thus be mapped to assess the level of clonality and the spatial spread of clonal lineages. High values of clonal richness were observed for both species across all sites suggesting a limited occurrence of clonality, which likely originated through fragmentation. Additionally, spatial autocorrelation analysis underlined the possible occurrence of fine-grained genetic structure in several populations of both L. pertusa and M. oculata. The two cold-water coral species examined had contrasting patterns of connectivity among canyons, with among-canyon genetic structuring detected in M. oculata, whereas L. pertusa was panmictic at the canyon scale. This study exemplifies that a standardized, random and georeferenced sampling strategy, while challenging, can be applied in the deep sea, and associated benefits outlined here include improved estimates of fine grained patterns of clonality and dispersal that are comparable across sites and among species.

  15. Geomicrobiology of deep-sea hydrothermal vents.

    PubMed

    Jannasch, H W; Mottl, M J

    1985-08-23

    During the cycling of seawater through the earth's crust along the mid-ocean ridge system, geothermal energy is transferred into chemical energy in the form of reduced inorganic compounds. These compounds are derived from the reaction of seawater with crustal rocks at high temperatures and are emitted from warm (deep-sea communities are thus maintained primarily by terrestrial rather than by solar energy. Reduced sulfur compounds appear to represent the major electron donors for aerobic microbial metabolism, but methane-, hydrogen-, iron-, and manganese-oxidizing bacteria have also been found. Methanogenic, sulfur-respiring, and extremely thermophilic isolates carry out anaerobic chemosynthesis. Bacteria grow most abundantly in the shallow crust where upwelling hot, reducing hydrothermal fluid mixes with downwelling cold, oxygenated seawater. The predominant production of biomass, however, is the result of symbiotic associations between chemolithotrophic bacteria and certain invertebrates, which have also been found as fossils in Cretaceous sulfide ores of ophiolite deposits. PMID:17841485

  16. Oxygen isotopes in deep sea spherules

    NASA Technical Reports Server (NTRS)

    Mayeda, T. K.; Clayton, R. N.; Brownlee, D. E.

    1984-01-01

    The determination of the genetic relationships between the dust and small particles in the solar system, and the meteorites and larger bodies are examined. Oxygen isotopes proved useful in the identification of such relationships between one meteorite group and another. Of the various samples of submillimeter extraterrestrial particles available for laboratory study, only the deep sea spherules are abundant enough for precise oxygen isotope analysis using existing techniques. Complications arise in interpretation of the isotopic data, since these particles were melted during passage through the Earth's atmosphere, and have been in contact with seawater for prolonged periods. Spherules that were originally silicates are considered with the originally metallic ones to deduce their preterrestrial isotopic compositions. The type 1 spherules which enter the atmosphere as metallic particles, contain only atmospheric oxygen. The type S spherules contain a mixture of atmospheric oxygen and their original extraterrestrial oxygen. It is suggested that the Earth's mesosphere is strongly enriched in heavy isotopes of oxygen at altitudes near 90 km at which the iron particles are oxidized. Fractionation due to the combined diffusion of O atoms and O2 molecules may be responsible.

  17. Geomicrobiology of Deep-Sea Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Jannasch, Holger W.; Mottl, Michael J.

    1985-08-01

    During the cycling of seawater through the earth's crust along the midocean ridge system, geothermal energy is transferred into chemical energy in the form of reduced inorganic compounds. These compounds are derived from the reaction of seawater with crustal rocks at high temperatures and are emitted from warm (<= 25 degrees C) and hot (~ 350 degrees C) submarine vents at depths of 2000 to 3000 meters. Chemolithotrophic bacteria use these reduced chemical species as sources of energy for the reduction of carbon dioxide (assimilation) to organic carbon. These bacteria form the base of the food chain, which permits copious populations of certain specifically adapted invertebrates to grow in the immediate vicinity of the vents. Such highly prolific, although narrowly localized, deep-sea communities are thus maintained primarily by terrestrial rather than by solar energy. Reduced sulfur compounds appear to represent the major electron donors for aerobic microbial metabolism, but methane-, hydrogen-, iron-, and manganese-oxidizing bacteria have also been found. Methanogenic, sulfur-respiring, and extremely thermophilic isolates carry out anaerobic chemosynthesis. Bacteria grow most abundantly in the shallow crust where upwelling hot, reducing hydrothermal fluid mixes with downwelling cold, oxygenated seawater. The predominant production of biomass, however, is the result of symbiotic associations between chemolithotrophic bacteria and certain invertebrates, which have also been found as fossils in Cretaceous sulfide ores of ophiolite deposits.

  18. Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure.

    PubMed

    Scoma, Alberto; Yakimov, Michail M; Boon, Nico

    2016-01-01

    The Deepwater Horizon accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons within deep-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation. PMID:27536290

  19. Challenging Oil Bioremediation at Deep-Sea Hydrostatic Pressure

    PubMed Central

    Scoma, Alberto; Yakimov, Michail M.; Boon, Nico

    2016-01-01

    The Deepwater Horizon accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (bio)technology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons within deep-sea environments remain unanswered, as well as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil bioassimilation are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled oil. The fate of solid alkanes (tar), hydrocarbon degradation rates and the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea despite being present at hydrocarbon seeps at the Gulf of Mexico have been largely overlooked. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation. PMID:27536290

  20. Extreme longevity in proteinaceous deep-sea corals.

    PubMed

    Roark, E Brendan; Guilderson, Thomas P; Dunbar, Robert B; Fallon, Stewart J; Mucciarone, David A

    2009-03-31

    Deep-sea corals are found on hard substrates on seamounts and continental margins worldwide at depths of 300 to approximately 3,000 m. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age dates from the deep water proteinaceous corals Gerardia sp. and Leiopathes sp. show that radial growth rates are as low as 4 to 35 mum year(-1) and that individual colony longevities are on the order of thousands of years. The longest-lived Gerardia sp. and Leiopathes sp. specimens were 2,742 years and 4,265 years, respectively. The management and conservation of deep-sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep-water fishing practices. In light of their unusual longevity, a better understanding of deep-sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea habitat-forming species. PMID:19307564

  1. The MEUST deep sea infrastructure in the Toulon site

    NASA Astrophysics Data System (ADS)

    Lamare, Patrick

    2016-04-01

    The MEUST infrastructure (Mediterranean Eurocentre for Underwater Sciences and Technologies) is a permanent deep sea cabled infrastructure currently being deployed off shore of Toulon, France. The design and the status of the infrastructure are presented.

  2. Challenging the paradigms of deep-sea ecology.

    PubMed

    Danovaro, Roberto; Snelgrove, Paul V R; Tyler, Paul

    2014-08-01

    Deep-sea ecosystems represent Earth's major ecological research frontier. Focusing on seafloor ecosystems, we demonstrate how new technologies underpin discoveries that challenge major ecological hypotheses and paradigms, illuminating new deep-sea geosphere-biosphere interactions. We now recognize greater habitat complexity, new ecological interactions and the importance of 'dark energy', and chemosynthetic production in fuelling biodiversity. We also acknowledge functional hotspots that contradict a food-poor, metabolically inactive, and minor component of global carbon cycles. Symbioses appear widespread, revealing novel adaptations. Populations show complex spatial structure and evolutionary histories. These new findings redefine deep-sea ecology and the role of Earth's largest biome in global biosphere functioning. Indeed, deep-sea exploration can open new perspectives in ecological research to help mitigate exploitation impacts. PMID:25001598

  3. Erbium-doped fiber lasers as deep-sea hydrophones

    NASA Astrophysics Data System (ADS)

    Bagnoli, P. E.; Beverini, N.; Bouhadef, B.; Castorina, E.; Falchini, E.; Falciai, R.; Flaminio, V.; Maccioni, E.; Morganti, M.; Sorrentino, F.; Stefani, F.; Trono, C.

    2006-11-01

    The present work describes the development of a hydrophone prototype for deep-sea acoustic detection. The base-sensitive element is a single-mode erbium-doped fiber laser. The high sensitivity of these sensors makes them particularly suitable for a wide range of deep-sea acoustic applications, including geological and marine mammals surveys and above all as acoustic detectors in under-water telescopes for high-energy neutrinos.

  4. Deep-Sea Hydrothermal-Vent Sampler

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Venkateswaran, Kasthur; Matthews, Jaret B.

    2008-01-01

    An apparatus is being developed for sampling water for signs of microbial life in an ocean hydrothermal vent at a depth of as much as 6.5 km. Heretofore, evidence of microbial life in deep-sea hydrothermal vents has been elusive and difficult to validate. Because of the extreme conditions in these environments (high pressures and temperatures often in excess of 300 C), deep-sea hydrothermal- vent samplers must be robust. Because of the presumed low density of biomass of these environments, samplers must be capable of collecting water samples of significant volume. It is also essential to prevent contamination of samples by microbes entrained from surrounding waters. Prior to the development of the present apparatus, no sampling device was capable of satisfying these requirements. The apparatus (see figure) includes an intake equipped with a temperature probe, plus several other temperature probes located away from the intake. The readings from the temperature probes are utilized in conjunction with readings from flowmeters to determine the position of the intake relative to the hydrothermal plume and, thereby, to position the intake to sample directly from the plume. Because it is necessary to collect large samples of water in order to obtain sufficient microbial biomass but it is not practical to retain all the water from the samples, four filter arrays are used to concentrate the microbial biomass (which is assumed to consist of particles larger than 0.2 m) into smaller volumes. The apparatus can collect multiple samples per dive and is designed to process a total volume of 10 L of vent fluid, of which most passes through the filters, leaving a total possibly-microbe-containing sample volume of 200 mL remaining in filters. A rigid titanium nose at the intake is used for cooling the sample water before it enters a flexible inlet hose connected to a pump. As the water passes through the titanium nose, it must be cooled to a temperature that is above a mineral

  5. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents

    USGS Publications Warehouse

    Reysenbach, A.-L.; Liu, Yajing; Banta, A.B.; Beveridge, T.J.; Kirshtein, J.D.; Schouten, S.; Tivey, M.K.; Von Damm, K. L.; Voytek, M.A.

    2006-01-01

    Deep-sea hydrothermal vents are important in global biogeochemical cycles, providing biological oases at the sea floor that are supported by the thermal and chemical flux from the Earth's interior. As hot, acidic and reduced hydrothermal fluids mix with cold, alkaline and oxygenated sea water, minerals precipitate to form porous sulphide-sulphate deposits. These structures provide microhabitats for a diversity of prokaryotes that exploit the geochemical and physical gradients in this dynamic ecosystem. It has been proposed that fluid pH in the actively venting sulphide structures is generally low (pH < 4.5), yet no extreme thermoacidophile has been isolated from vent deposits. Culture-independent surveys based on ribosomal RNA genes from deep-sea hydrothermal deposits have identified a widespread euryarchaeotal lineage, DHVE2 (deep-sea hydrothermal vent euryarchaeotic 2). Despite the ubiquity and apparent deep-sea endemism of DHVE2, cultivation of this group has been unsuccessful and thus its metabolism remains a mystery. Here we report the isolation and cultivation of a member of the DHVE2 group, which is an obligate thermoacidophilic sulphur- or iron-reducing heterotroph capable of growing from pH 3.3 to 5.8 and between 55 and 75??C. In addition, we demonstrate that this isolate constitutes up to 15% of the archaeal population, providing evidence that thermoacidophiles may be key players in the sulphur and iron cycling at deep-sea vents. ?? 2006 Nature Publishing Group.

  6. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents.

    PubMed

    Reysenbach, Anna-Louise; Liu, Yitai; Banta, Amy B; Beveridge, Terry J; Kirshtein, Julie D; Schouten, Stefan; Tivey, Margaret K; Von Damm, Karen L; Voytek, Mary A

    2006-07-27

    Deep-sea hydrothermal vents are important in global biogeochemical cycles, providing biological oases at the sea floor that are supported by the thermal and chemical flux from the Earth's interior. As hot, acidic and reduced hydrothermal fluids mix with cold, alkaline and oxygenated sea water, minerals precipitate to form porous sulphide-sulphate deposits. These structures provide microhabitats for a diversity of prokaryotes that exploit the geochemical and physical gradients in this dynamic ecosystem. It has been proposed that fluid pH in the actively venting sulphide structures is generally low (pH < 4.5), yet no extreme thermoacidophile has been isolated from vent deposits. Culture-independent surveys based on ribosomal RNA genes from deep-sea hydrothermal deposits have identified a widespread euryarchaeotal lineage, DHVE2 (deep-sea hydrothermal vent euryarchaeotic 2). Despite the ubiquity and apparent deep-sea endemism of DHVE2, cultivation of this group has been unsuccessful and thus its metabolism remains a mystery. Here we report the isolation and cultivation of a member of the DHVE2 group, which is an obligate thermoacidophilic sulphur- or iron-reducing heterotroph capable of growing from pH 3.3 to 5.8 and between 55 and 75 degrees C. In addition, we demonstrate that this isolate constitutes up to 15% of the archaeal population, providing evidence that thermoacidophiles may be key players in the sulphur and iron cycling at deep-sea vents. PMID:16871216

  7. Multi-locus Association Testing with Penalized Regression

    PubMed Central

    Basu, Saonli; Pan, Wei; Shen, Xiaotong; Oetting, William S.

    2012-01-01

    In multi-locus association analysis, since some markers may not be associated with a trait, it seems attractive to use penalized regression with the capability of automatic variable selection. On the other hand, in spite of a rapidly growing body of literature on penalized regression, most focus on variable selection and outcome prediction, for which penalized methods are generally more effective than their non-penalized counterparts. However, for statistical inference, i.e. hypothesis testing and interval estimation, it is less clear how penalized methods would perform, or even how to best apply them, largely due to lack of studies on this topic. In our motivating data for a cohort of kidney transplant recipients, it is of primary interest to assess whether a group of genetic variants are associated with a binary clinical outcome, acute rejection at 6 months. In this paper, we study some technical issues and alternative implementations of hypothesis testing in Lasso penalized logistic regression, and compare their performance with each other and with several existing global tests, some of which are specifically designed as variance component tests for high-dimensional data. The most interesting, and perhaps surprising, conclusion of this study is that, for low to moderately high-dimensional data, statistical tests based on Lasso penalized regression are not necessarily more powerful than some existing global tests. In addition, in penalized regression, rather than building a test based on a single selected “best” model, combining multiple tests, each of which is built on a candidate model, might be more promising. PMID:21922539

  8. 46 CFR 167.40-20 - Deep-sea sounding apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SHIPS Certain Equipment Requirements § 167.40-20 Deep-sea sounding apparatus. Nautical school ships shall be equipped with an efficient or electronic deep-sea sounding apparatus. The electronic deep-sea... 46 Shipping 7 2011-10-01 2011-10-01 false Deep-sea sounding apparatus. 167.40-20 Section...

  9. 46 CFR 167.40-20 - Deep-sea sounding apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SHIPS Certain Equipment Requirements § 167.40-20 Deep-sea sounding apparatus. Nautical school ships shall be equipped with an efficient or electronic deep-sea sounding apparatus. The electronic deep-sea... 46 Shipping 7 2010-10-01 2010-10-01 false Deep-sea sounding apparatus. 167.40-20 Section...

  10. Sea-level fluctuations and deep-sea sedimentation rates.

    PubMed

    Worsley, T R; Davies, T A

    1979-02-01

    Sediment accumulation rate curves from 95 drilled cores from the Pacific basin and sea-level curves derived from continental margin seismic stratigraphy show that high biogenous sediment accumulation rates correspond to low eustatic sea levels for at least the last 48 million years. This relationship fits a simple model of high sea levels producing lower land/sea ratios and hence slower chemical erosion of the continents, and vice versa. PMID:17734144

  11. Deep-sea channel/submarine-yazoo system of the Labrador Sea: A new deep-water facies model

    SciTech Connect

    Hesse, R.; Rakofsky, A. )

    1992-05-01

    The deep-sea channel/submarine-yazoo system is a newly recognized deep-water depositional environment that is significantly different from previously documented turbidite environments. The new system is in many ways the antithesis of classical deep-sea fans. The purpose of this paper is to present the characteristics and elements of the system, develop a facies model for it, establish the system variables, and discuss its possible significance in the geologic record and in subsurface exploration. Previous investigators of deepwater turbidite sediments often faced difficulties in trying to fit their sequences into traditional single-source, deep-sea fan models. The present model fills part of an obvious gap in interpretation schemes for deep-water clastic sediments.

  12. INDEX SATAL Expedition 2010, a discovery of deep sea potentials

    NASA Astrophysics Data System (ADS)

    Wirasantosa, S.; Hammond, S. R.; Pandoe, W.; Holden, J. F.; Djamaluddin, R.; Permana, H.; Nganro, N.; Abidin, H.; Shank, T. M.; Priadi, B.; Fryer, P.; Makarim, S.; Sulistiyo, B.; Triarso, E.; Troa, R.; Iswinardi, I.; Potter, J.; Anantasena, Y.; Triyono, T.; Surachman, Y.

    2010-12-01

    A joint Indonesia - U.S. Expedition to Sangihe Talaud waters (INDEX SATAL) in the north area of the North Sulawesi Province has been conducted by the Okeanos Explorer of NOAA and the Baruna Jaya IV of Indonesia during July - August, 2010. The joint expedition was the first of its kind that covered multi aspects of science which aimed at discoveries of deep sea potential resources and processes in the sea of Sangihe Talaud. Considering the advantage of both ship capabilities, the Okeanos Explorer covered the area of larger depths of 2000 metres to 6000 metres, while the Baruna Jaya IV worked the area of less than 2000 metres. Using multibeam equipment, the Okeanos Explorer discovered deep sea features of seamounts and bathymetric pattern of the western Sangihe ridge, Talaud ridge and the northeastern part of the exploration area. Deep sea morphology and bathymetric features of the area show newly discovery of seamounts and other deep sea features. The largest seamount in the explored area, the Kawio Barat seamount, has been discovered as an active submarine volcano showing hydrothermal activities. CTD casts in selected locations indicated the occurence of hydrothermal activities, which were later confirmed by ROV (Remotely Operated Vehicles) equipped with high definition cameras. Chimneys and smokers in the Kawio Barat and their associated deep sea biotas were recorded. Variety of seabed rocks in the dive areas were also recorded. Baruna Jaya IV explored the Sangihe ridge with multibeam and supported by CTD casts and sampling devices. Bathymetric features of less than 2000 metres were recorded and various deep sea biotas were discovered and sampled. Discoveries by INDEX SATAL 2010 has provided an insight into deep sea resources, specific features, volcanic and hydrothermal processes and potentials for further identifications.

  13. Factors governing the deep ventilation of the Red Sea

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Vassilis P.; Zhan, Peng; Sofianos, Sarantis S.; Raitsos, Dionysios E.; Qurban, Mohammed; Abualnaja, Yasser; Bower, Amy; Kontoyiannis, Harilaos; Pavlidou, Alexandra; Asharaf, T. T. Mohamed; Zarokanellos, Nikolaos; Hoteit, Ibrahim

    2015-11-01

    A variety of data based on hydrographic measurements, satellite observations, reanalysis databases, and meteorological observations are used to explore the interannual variability and factors governing the deep water formation in the northern Red Sea. Historical and recent hydrographic data consistently indicate that the ventilation of the near-bottom layer in the Red Sea is a robust feature of the thermohaline circulation. Dense water capable to reach the bottom layers of the Red Sea can be regularly produced mostly inside the Gulfs of Aqaba and Suez. Occasionally, during colder than usual winters, deep water formation may also take place over coastal areas in the northernmost end of the open Red Sea just outside the Gulfs of Aqaba and Suez. However, the origin as well as the amount of deep waters exhibit considerable interannual variability depending not only on atmospheric forcing but also on the water circulation over the northern Red Sea. Analysis of several recent winters shows that the strength of the cyclonic gyre prevailing in the northernmost part of the basin can effectively influence the sea surface temperature (SST) and intensify or moderate the winter surface cooling. Upwelling associated with periods of persistent gyre circulation lowers the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme heat loss by the sea surface. In addition, the occasional persistence of the cyclonic gyre feeds the surface layers of the northern Red Sea with nutrients, considerably increasing the phytoplankton biomass.

  14. Light and vision in the deep-sea benthos: II. Vision in deep-sea crustaceans.

    PubMed

    Frank, Tamara M; Johnsen, Sönke; Cronin, Thomas W

    2012-10-01

    Using new collecting techniques with the Johnson-Sea-Link submersible, eight species of deep-sea benthic crustaceans were collected with intact visual systems. Their spectral sensitivities and temporal resolutions were determined shipboard using electroretinography. Useable spectral sensitivity data were obtained from seven species, and in the dark-adapted eyes, the spectral sensitivity peaks were in the blue region of the visible spectrum, ranging from 470 to 497 nm. Under blue chromatic adaptation, a secondary sensitivity peak in the UV portion of the spectrum appeared for two species of anomuran crabs: Eumunida picta (λ(max)363 nm) and Gastroptychus spinifer (λ(max)383 nm). Wavelength-specific differences in response waveforms under blue chromatic adaptation in these two species suggest that two populations of photoreceptor cells are present. Temporal resolution was determined in all eight species using the maximum critical flicker frequency (CFF(max)). The CFF(max) for the isopod Booralana tricarinata of 4 Hz proved to be the lowest ever measured using this technique, and suggests that this species is not able to track even slow-moving prey. Both the putative dual visual pigment system in the crabs and the extremely slow eye of the isopod may be adaptations for seeing bioluminescence in the benthic environment. PMID:22956247

  15. Species-specific bioluminescence facilitates speciation in the deep sea.

    PubMed

    Davis, Matthew P; Holcroft, Nancy I; Wiley, Edward O; Sparks, John S; Leo Smith, W

    2014-01-01

    The vast darkness of the deep sea is an environment with few obvious genetic isolating barriers, and little is known regarding the macroevolutionary processes that have shaped present-day biodiversity in this habitat. Bioluminescence, the production and emission of light from a living organism through a chemical reaction, is thought to occur in approximately 80 % of the eukaryotic life that inhabits the deep sea (water depth greater than 200 m). In this study, we show, for the first time, that deep-sea fishes that possess species-specific bioluminescent structures (e.g., lanternfishes, dragonfishes) are diversifying into new species at a more rapid rate than deep-sea fishes that utilize bioluminescence in ways that would not promote isolation of populations (e.g., camouflage, predation). This work adds to our understanding of how life thrives and evolution shaped present-day biodiversity in the deep sea, the largest and arguably least explored habitat on earth. PMID:24771948

  16. Deep-sea diversity patterns are shaped by energy availability

    NASA Astrophysics Data System (ADS)

    Woolley, Skipton N. C.; Tittensor, Derek P.; Dunstan, Piers K.; Guillera-Arroita, Gurutzeta; Lahoz-Monfort, José J.; Wintle, Brendan A.; Worm, Boris; O’Hara, Timothy D.

    2016-05-01

    The deep ocean is the largest and least-explored ecosystem on Earth, and a uniquely energy-poor environment. The distribution, drivers and origins of deep-sea biodiversity remain unknown at global scales. Here we analyse a database of more than 165,000 distribution records of Ophiuroidea (brittle stars), a dominant component of sea-floor fauna, and find patterns of biodiversity unlike known terrestrial or coastal marine realms. Both patterns and environmental predictors of deep-sea (2,000–6,500 m) species richness fundamentally differ from those found in coastal (0–20 m), continental shelf (20–200 m), and upper-slope (200–2,000 m) waters. Continental shelf to upper-slope richness consistently peaks in tropical Indo-west Pacific and Caribbean (0–30°) latitudes, and is well explained by variations in water temperature. In contrast, deep-sea species show maximum richness at higher latitudes (30–50°), concentrated in areas of high carbon export flux and regions close to continental margins. We reconcile this structuring of oceanic biodiversity using a species–energy framework, with kinetic energy predicting shallow-water richness, while chemical energy (export productivity) and proximity to slope habitats drive deep-sea diversity. Our findings provide a global baseline for conservation efforts across the sea floor, and demonstrate that deep-sea ecosystems show a biodiversity pattern consistent with ecological theory, despite being different from other planetary-scale habitats.

  17. Deep-sea diversity patterns are shaped by energy availability.

    PubMed

    Woolley, Skipton N C; Tittensor, Derek P; Dunstan, Piers K; Guillera-Arroita, Gurutzeta; Lahoz-Monfort, José J; Wintle, Brendan A; Worm, Boris; O'Hara, Timothy D

    2016-05-19

    The deep ocean is the largest and least-explored ecosystem on Earth, and a uniquely energy-poor environment. The distribution, drivers and origins of deep-sea biodiversity remain unknown at global scales. Here we analyse a database of more than 165,000 distribution records of Ophiuroidea (brittle stars), a dominant component of sea-floor fauna, and find patterns of biodiversity unlike known terrestrial or coastal marine realms. Both patterns and environmental predictors of deep-sea (2,000-6,500 m) species richness fundamentally differ from those found in coastal (0-20 m), continental shelf (20-200 m), and upper-slope (200-2,000 m) waters. Continental shelf to upper-slope richness consistently peaks in tropical Indo-west Pacific and Caribbean (0-30°) latitudes, and is well explained by variations in water temperature. In contrast, deep-sea species show maximum richness at higher latitudes (30-50°), concentrated in areas of high carbon export flux and regions close to continental margins. We reconcile this structuring of oceanic biodiversity using a species-energy framework, with kinetic energy predicting shallow-water richness, while chemical energy (export productivity) and proximity to slope habitats drive deep-sea diversity. Our findings provide a global baseline for conservation efforts across the sea floor, and demonstrate that deep-sea ecosystems show a biodiversity pattern consistent with ecological theory, despite being different from other planetary-scale habitats. PMID:27193685

  18. The deep sea is a major sink for microplastic debris

    PubMed Central

    Woodall, Lucy C.; Sanchez-Vidal, Anna; Canals, Miquel; Paterson, Gordon L.J.; Coppock, Rachel; Sleight, Victoria; Calafat, Antonio; Rogers, Alex D.; Narayanaswamy, Bhavani E.; Thompson, Richard C.

    2014-01-01

    Marine debris, mostly consisting of plastic, is a global problem, negatively impacting wildlife, tourism and shipping. However, despite the durability of plastic, and the exponential increase in its production, monitoring data show limited evidence of concomitant increasing concentrations in marine habitats. There appears to be a considerable proportion of the manufactured plastic that is unaccounted for in surveys tracking the fate of environmental plastics. Even the discovery of widespread accumulation of microscopic fragments (microplastics) in oceanic gyres and shallow water sediments is unable to explain the missing fraction. Here, we show that deep-sea sediments are a likely sink for microplastics. Microplastic, in the form of fibres, was up to four orders of magnitude more abundant (per unit volume) in deep-sea sediments from the Atlantic Ocean, Mediterranean Sea and Indian Ocean than in contaminated sea-surface waters. Our results show evidence for a large and hitherto unknown repository of microplastics. The dominance of microfibres points to a previously underreported and unsampled plastic fraction. Given the vastness of the deep sea and the prevalence of microplastics at all sites we investigated, the deep-sea floor appears to provide an answer to the question—where is all the plastic? PMID:26064573

  19. The deep sea is a major sink for microplastic debris.

    PubMed

    Woodall, Lucy C; Sanchez-Vidal, Anna; Canals, Miquel; Paterson, Gordon L J; Coppock, Rachel; Sleight, Victoria; Calafat, Antonio; Rogers, Alex D; Narayanaswamy, Bhavani E; Thompson, Richard C

    2014-12-01

    Marine debris, mostly consisting of plastic, is a global problem, negatively impacting wildlife, tourism and shipping. However, despite the durability of plastic, and the exponential increase in its production, monitoring data show limited evidence of concomitant increasing concentrations in marine habitats. There appears to be a considerable proportion of the manufactured plastic that is unaccounted for in surveys tracking the fate of environmental plastics. Even the discovery of widespread accumulation of microscopic fragments (microplastics) in oceanic gyres and shallow water sediments is unable to explain the missing fraction. Here, we show that deep-sea sediments are a likely sink for microplastics. Microplastic, in the form of fibres, was up to four orders of magnitude more abundant (per unit volume) in deep-sea sediments from the Atlantic Ocean, Mediterranean Sea and Indian Ocean than in contaminated sea-surface waters. Our results show evidence for a large and hitherto unknown repository of microplastics. The dominance of microfibres points to a previously underreported and unsampled plastic fraction. Given the vastness of the deep sea and the prevalence of microplastics at all sites we investigated, the deep-sea floor appears to provide an answer to the question-where is all the plastic? PMID:26064573

  20. Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable

    PubMed Central

    Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J.; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios

    2010-01-01

    Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated

  1. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.

    PubMed

    Danovaro, Roberto; Company, Joan Batista; Corinaldesi, Cinzia; D'Onghia, Gianfranco; Galil, Bella; Gambi, Cristina; Gooday, Andrew J; Lampadariou, Nikolaos; Luna, Gian Marco; Morigi, Caterina; Olu, Karine; Polymenakou, Paraskevi; Ramirez-Llodra, Eva; Sabbatini, Anna; Sardà, Francesc; Sibuet, Myriam; Tselepides, Anastasios

    2010-01-01

    Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes) reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components investigated

  2. First biological measurements of deep-sea corals from the Red Sea

    PubMed Central

    Roder, C.; Berumen, M. L.; Bouwmeester, J.; Papathanassiou, E.; Al-Suwailem, A.; Voolstra, C. R.

    2013-01-01

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ‘deep-sea’ and ‘cold-water’ corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited. PMID:24091830

  3. Ichnology of pelagic carbonate in New Zealand and Denmark: Shelf Sea or Deep Sea

    SciTech Connect

    Ekdale, A.A. )

    1990-05-01

    Today, pelagic carbonate ooze is an exclusive feature of deep-sea environments 1 km or more in depth. In contrast, the extensive epicratonic seas that characterized the Late Cretaceous and early Tertiary received great thicknesses of pelagic carbonate sediment in environments only a few hundred meters deep. Distinguishing between deep-sea and shelf-sea carbonate is not an easy task, but ichnologic investigation helps. Biogenic sedimentary structures, ichnofacies, and ichnofabrics in Cretaceous-Tertiary epicratonic pelagic deposits display many similarities to those in deep-sea sediment. Ichnologic features in shelf-sea chalk and limestone in both New Zealand and northern Europe reveal some interesting paleobathymetric trends. These trends include a general decrease in crustacean traces (Thalassinoides, etc.) and bioerosion traces (Trypanites, etc.) with increasing water depth, accompanied by a concomitant increase in worm burrows (Zoophycos, etc.). Maastrichtian-Oligocene pelaic limestone in New Zealand and Maastrichtian-Paleocene chalk in Denmark neither of which represent a truly deep-sea setting, exhibit similar ichnofacies and ichnofabrics. Some notable differences exist because the New Zealand platform was less extensive and more tectonically active than the northern European shelf. Pelagic strata in New Zealand are associated with shallow-water quartzose sandstone beneath and fossiliferous calcarenite above, as well as deep-water bedded chert within, the pelagic carbonate sequence. In New Zealand strata Zoophycos-rich facies dominate Thalassinoides-rich facies, and bored hardgrounds are uncommon; in Danish chalk sequences the opposite is true in both cases.

  4. Deep seawater inherent optical properties in the Southern Ionian Sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.; Capone, A.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Avanzini, C.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    2007-02-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Čerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60 100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 m-1 (corresponding to an absorption length of 67 m) close to the one of optically pure water and it does not show seasonal variation.

  5. Species distribution models of tropical deep-sea snappers.

    PubMed

    Gomez, Céline; Williams, Ashley J; Nicol, Simon J; Mellin, Camille; Loeun, Kim L; Bradshaw, Corey J A

    2015-01-01

    Deep-sea fisheries provide an important source of protein to Pacific Island countries and territories that are highly dependent on fish for food security. However, spatial management of these deep-sea habitats is hindered by insufficient data. We developed species distribution models using spatially limited presence data for the main harvested species in the Western Central Pacific Ocean. We used bathymetric and water temperature data to develop presence-only species distribution models for the commercially exploited deep-sea snappers Etelis Cuvier 1828, Pristipomoides Valenciennes 1830, and Aphareus Cuvier 1830. We evaluated the performance of four different algorithms (CTA, GLM, MARS, and MAXENT) within the BIOMOD framework to obtain an ensemble of predicted distributions. We projected these predictions across the Western Central Pacific Ocean to produce maps of potential deep-sea snapper distributions in 32 countries and territories. Depth was consistently the best predictor of presence for all species groups across all models. Bathymetric slope was consistently the poorest predictor. Temperature at depth was a good predictor of presence for GLM only. Model precision was highest for MAXENT and CTA. There were strong regional patterns in predicted distribution of suitable habitat, with the largest areas of suitable habitat (> 35% of the Exclusive Economic Zone) predicted in seven South Pacific countries and territories (Fiji, Matthew & Hunter, Nauru, New Caledonia, Tonga, Vanuatu and Wallis & Futuna). Predicted habitat also varied among species, with the proportion of predicted habitat highest for Aphareus and lowest for Etelis. Despite data paucity, the relationship between deep-sea snapper presence and their environments was sufficiently strong to predict their distribution across a large area of the Pacific Ocean. Our results therefore provide a strong baseline for designing monitoring programs that balance resource exploitation and conservation planning, and

  6. Orbital forcing of deep-sea benthic species diversity

    USGS Publications Warehouse

    Cronin, T. M.; Raymo, M.E.

    1997-01-01

    Explanations for the temporal and spatial patterns of species biodiversity focus on stability-time, disturbance-mosaic (biogenic microhabitat heterogeneity) and competition-predation (biotic interactions) hypotheses. The stability-time hypothesis holds that high species diversity in the deep sea and in the tropics reflects long-term climatic stability. But the influence of climate change on deep-sea diversity has not been studied and recent evidence suggests that deep-sea environments undergo changes in climatically driven temperature and flux of nutrients and organic-carbon during glacial-interglacial cycles. Here we show that Pliocene (2.85-2.40 Myr) deep-sea North Atlantic benthic ostracod (Crustacea) species diversity is related to solar insolation changes caused by 41,000-yr cycles of Earth's obliquity (tilt). Temporal changes in diversity, as measured by the Shannon- Weiner index, H(S), correlate with independent climate indicators of benthic foraminiferal oxygen-isotope ratios (mainly ice volume) and ostracod Mg:Ca ratios (bottomwater temperature). During glacial periods, H(S) = 0.2-0.6, whereas during interglacials, H(S) = 1.2-1.6, which is three to four times as high. The control of deep-sea benthic diversity by cyclic climate change at timescales of 103-104 yr does not support the stability-time hypothesis because it shows that the deep sea is a temporally dynamic environment. Diversity oscillations reflect large-scale response of the benthic community to climatically driven changes in either thermohaline circulation, bottom temperature (or temperature-related factors) and food, and a coupling of benthic diversity to surface productivity.

  7. Species Distribution Models of Tropical Deep-Sea Snappers

    PubMed Central

    Gomez, Céline; Williams, Ashley J.; Nicol, Simon J.; Mellin, Camille; Loeun, Kim L.; Bradshaw, Corey J. A.

    2015-01-01

    Deep-sea fisheries provide an important source of protein to Pacific Island countries and territories that are highly dependent on fish for food security. However, spatial management of these deep-sea habitats is hindered by insufficient data. We developed species distribution models using spatially limited presence data for the main harvested species in the Western Central Pacific Ocean. We used bathymetric and water temperature data to develop presence-only species distribution models for the commercially exploited deep-sea snappers Etelis Cuvier 1828, Pristipomoides Valenciennes 1830, and Aphareus Cuvier 1830. We evaluated the performance of four different algorithms (CTA, GLM, MARS, and MAXENT) within the BIOMOD framework to obtain an ensemble of predicted distributions. We projected these predictions across the Western Central Pacific Ocean to produce maps of potential deep-sea snapper distributions in 32 countries and territories. Depth was consistently the best predictor of presence for all species groups across all models. Bathymetric slope was consistently the poorest predictor. Temperature at depth was a good predictor of presence for GLM only. Model precision was highest for MAXENT and CTA. There were strong regional patterns in predicted distribution of suitable habitat, with the largest areas of suitable habitat (> 35% of the Exclusive Economic Zone) predicted in seven South Pacific countries and territories (Fiji, Matthew & Hunter, Nauru, New Caledonia, Tonga, Vanuatu and Wallis & Futuna). Predicted habitat also varied among species, with the proportion of predicted habitat highest for Aphareus and lowest for Etelis. Despite data paucity, the relationship between deep-sea snapper presence and their environments was sufficiently strong to predict their distribution across a large area of the Pacific Ocean. Our results therefore provide a strong baseline for designing monitoring programs that balance resource exploitation and conservation planning, and

  8. Ecosystem function and services provided by the deep sea

    NASA Astrophysics Data System (ADS)

    Thurber, A. R.; Sweetman, A. K.; Narayanaswamy, B. E.; Jones, D. O. B.; Ingels, J.; Hansman, R. L.

    2014-07-01

    The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbors processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In

  9. Multi-locus DNA sequencing of Toxoplasma gondii isolated from Brazilian pigs identifies genetically divergent strains

    PubMed Central

    Frazão-Teixeira, E.; Sundar, N.; Dubey, J. P.; Grigg, M. E.; de Oliveira, F. C. R.

    2010-01-01

    Five Toxoplasma gondii isolates (TgPgBr1–5) were isolated from hearts and brains of pigs freshly purchased at the market of Campos dos Goytacazes, Northern Rio de Janeiro State, Brazil. Four of the five isolates were highly pathogenic in mice. Four genotypes were identified. Multi-locus PCR-DNA sequencing showed that each strain possessed a unique combination of archetypal and novel alleles not previously described in South America. The data suggest that different strains circulate in pigs destined for human consumption from those previously isolated from cats and chickens in Brazil. Further, multi-locus PCR-RFLP analyses failed to accurately genotype the Brazilian isolates due to the high presence of atypical alleles. This is the first report of multi-locus DNA sequencing of T. gondii isolates in pigs from Brazil. PMID:21051148

  10. Abrupt climate change and collapse of deep-sea ecosystems

    USGS Publications Warehouse

    Yasuhara, Moriaki; Cronin, T. M.; Demenocal, P.B.; Okahashi, H.; Linsley, B.K.

    2008-01-01

    We investigated the deep-sea fossil record of benthic ostracodes during periods of rapid climate and oceanographic change over the past 20,000 years in a core from intermediate depth in the northwestern Atlantic. Results show that deep-sea benthic community "collapses" occur with faunal turnover of up to 50% during major climatically driven oceanographic changes. Species diversity as measured by the Shannon-Wiener index falls from 3 to as low as 1.6 during these events. Major disruptions in the benthic communities commenced with Heinrich Event 1, the Inter-Aller??d Cold Period (IACP: 13.1 ka), the Younger Dryas (YD: 12.9-11.5 ka), and several Holocene Bond events when changes in deep-water circulation occurred. The largest collapse is associated with the YD/IACP and is characterized by an abrupt two-step decrease in both the upper North Atlantic Deep Water assemblage and species diversity at 13.1 ka and at 12.2 ka. The ostracode fauna at this site did not fully recover until ???8 ka, with the establishment of Labrador Sea Water ventilation. Ecologically opportunistic slope species prospered during this community collapse. Other abrupt community collapses during the past 20 ka generally correspond to millennial climate events. These results indicate that deep-sea ecosystems are not immune to the effects of rapid climate changes occurring over centuries or less. ?? 2008 by The National Academy of Sciences of the USA.

  11. Slope and deep-sea abundance across scales: Southern Ocean isopods show how complex the deep sea can be

    NASA Astrophysics Data System (ADS)

    Kaiser, Stefanie; Barnes, David K. A.; Brandt, Angelika

    2007-08-01

    How animals are distributed in the world's largest surface environment, the deep sea, is poorly understood. The ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) III cruise probed richness and abundance of one group, peracarid crustaceans (isopods, amphipods, cumaceans, tanaidaceans, mysidaceans), as a model of deep-sea fauna across Southern Ocean (SO) sites. Analysis of samples from the ANDEEP cruises reveals SO isopods to be highly abundant, rich and endemic as many other taxa in the region are known to be. Samples taken across three spatial scales include sites tens, hundreds and thousands of kilometers apart, sites stretching from the Southern Cape Basin (South Atlantic) to continental Antarctica and including depths from 1030 to 5000 m. Across these spatial scales we investigated ecological success (abundance) of peracarids at order, family, and species levels. Remarkably no significant relationship was found between abundance and spatial scale at any taxonomic level. That is, the variability in abundance at major regional scale is no different to that across just tens of kilometres. Most taxa were represented in only a few samples, but we suggest most inhabitants of the deep Weddell Sea environment to be very patchy rather than rare. Separate plots of family, genus, and species abundance by sample number revealed this to be true—nearly all genera and species are an order of magnitude more abundant than 'background' levels in just one or two samples. Our isopod and amphipod samples reveal the Atlantic sector of the SO, one of the most dynamic and important regions influencing the global deep-sea environment, to be highly complex. Our study suggests that, at least with regard to the study taxa and area, the typical comparisons of regions that are made by ecologists miss the scale at which crucial ecological variability happens. Even without ice scours creating topographical complexity (as on the shelf) the

  12. Phylogenetic Relationships among Deep-Sea and Chemosynthetic Sea Anemones: Actinoscyphiidae and Actinostolidae (Actiniaria: Mesomyaria)

    PubMed Central

    Rodríguez, Estefanía; Daly, Marymegan

    2010-01-01

    Sea anemones (Cnidaria, Actiniaria) are present in all marine ecosystems, including chemosynthetic environments. The high level of endemicity of sea anemones in chemosynthetic environments and the taxonomic confusion in many of the groups to which these animals belong makes their systematic relationships obscure. We use five molecular markers to explore the phylogenetic relationships of the superfamily Mesomyaria, which includes most of the species that live in chemosynthetic, deep-sea, and polar sea habitats and to test the monophyly of the recently defined clades Actinostolina and Chemosynthina. We found that sea anemones of chemosynthetic environments derive from at least two different lineages: one lineage including acontiate deep-sea taxa and the other primarily encompassing shallow-water taxa. PMID:20532040

  13. Characterization of Deep Sea Fish Gut Bacteria with Antagonistic Potential, from Centroscyllium fabricii (Deep Sea Shark).

    PubMed

    Bindiya, E S; Tina, K J; Raghul, Subin S; Bhat, Sarita G

    2015-06-01

    The bacterial isolates from Centroscyllium fabricii (deep sea shark) gut were screened for antagonistic activity by cross-streak method and disc diffusion assay. This study focuses on strain BTSS-3, which showed antimicrobial activity against pathogenic bacteria including Salmonella Typhimurium, Proteus vulgaris, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, Bacillus circulans, Bacillus macerans and Bacillus pumilus. BTSS3 was subjected to phenotypic characterization using biochemical tests, SEM imaging, exoenzyme profiling and antibiotic susceptibility tests. Comparative 16S rDNA gene sequence analysis indicated that this strain belonged to the genus Bacillus, with high (98%) similarity to 16S rDNA sequences of Bacillus amyloliquefaciens. The chemical nature of the antibacterial substance was identified by treatment with proteolytic enzymes. The antibacterial activity was reduced by the action of these enzymes pointing out its peptide nature. It was observed from the growth and production kinetics that the bacteriocin was produced in the eighth hour of incubation, i.e., during the mid-log growth phase of the bacteria. PMID:25740801

  14. Analytical calculation of muon intensities under deep sea-water

    NASA Technical Reports Server (NTRS)

    Inazawa, H.; Kobayakawa, K.

    1985-01-01

    The study of the energy loss of high energy muons through different materials, such as rock and sea-water can cast light on characteristics of lepton interactions. There are less ambiguities for the values of atomic number (Z) and mass number (A) in sea-water than in rock. Muon intensities should be measured as fundamental data and as background data for searching the fluxes of neutrino. The average range energy relation in sea-water is derived. The correction factors due to the range fluctuation is also computed. By applying these results, the intensities deep under sea are converted from a given muon energy spectra at sea-level. The spectra of conventional muons from eta, K decays have sec theta enhancement. The spectrum of prompt muons from charmed particles is almost isotropic. The effect of prompt muons is examined.

  15. Deep-sea primary production at the Galapagos hydrothermal vents

    SciTech Connect

    Karl, D.M.; Wirsen, C.O.; Jannasch, H.W.

    1980-03-21

    Dense animal populations surrounding recently discovered hydrothermal vents at the Galapagos Rift sea-floor spreading center, 2550 meters deep, are probably sustained by microbial primary production. Energy in the form of geothermically reduced sulfur compounds emitted from the vents is liberated during oxidation and used for the reduction of carbon dioxide to organic matter by chemosynthetic bacteria.

  16. Using near infrared light for deep sea mining observation systems

    NASA Astrophysics Data System (ADS)

    Lu, Huimin; Li, Yujie; Li, Xin; Yang, Jianmin; Serikawa, Seiichi

    2015-10-01

    In this paper, we design a novel deep-sea near infrared light based imaging equipment for deep-sea mining observation systems. The spectral sensitivity peaks are in the red region of the invisible spectrum, ranging from 750nm to 900nm. In addition, we propose a novel underwater imaging model that compensates for the attenuation discrepancy along the propagation path. The proposed model fully considered the effects of absorption, scattering and refraction. We also develop a locally adaptive Laplacian filtering for enhancing underwater transmission map after underwater dark channel prior estimation. Furthermore, we propose a spectral characteristic-based color correction algorithm to recover the distorted color. In water tank experiments, we made a linear scale of eight turbidity steps ranging from clean to heavily scattered by adding deep sea soil to the seawater (from 500 to 2000 mg/L). We compared the results of different turbidity underwater scene, illuminated alternately with near infrared light vs. white light. Experiments demonstrate that the enhanced NIR images have a reasonable noise level after the illumination compensation in the dark regions and demonstrates an improved global contrast by which the finest details and edges are significantly enhanced. We also demonstrate that the effective distance of the designed imaging system is about 1.5 meters, which can meet the requirement of micro-terrain observation around the deep-sea mining systems. Remotely Operated Underwater Vehicle (ROV)-based experiments also certified the effectiveness of the proposed method.

  17. Microhabitats of benthic foraminifera within deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Corliss, Bruce H.

    1985-04-01

    Benthic foraminifera are protozoans found throughout the deep-sea environment, secreting a test of calcium carbonate or constructing a test of cemented sediment particles (agglutinated or arenaceous foraminifera). In typical deep-sea sediments, the organic cement of agglutinated taxa degrades upon burial in the sediment and, consequently, few specimens survive in the fossil record. In contrast, calcareous species are well preserved in most oceanic sediments, except at abyssal depths where most carbonate sediment is dissolved because of high levels of carbonate under-saturation of the bottom waters. Although benthic foraminifera have been widely used in studies of Cenozoic palaeoceanography, little is known about the ecology of deep-sea species. I present here an analysis of living (stained) benthic foraminifera within the upper 15 cm of deep-sea sediments, which reveals species-specific microhabitat preferences, with distinct morphological features found with epifaunal and infaunal species. The existence of infaunal habitats suggests that the distribution of certain foraminifera is not directly controlled by overlying bottom-water conditions, but by physicochemical conditions within the sediments. The microhabitat preferences may also explain interspecific carbon isotope differences, as existing data show that infaunal foraminifera generally have lower δ13C isotope values than epifaunal species.

  18. Potential biomass in deep-sea hydrothermal vent ecosystem

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Takai, K.

    2012-12-01

    Since the first discovery of black smoker vents hosting chemosynthetic macrofaunal communities (Spiess et al., 1980), submarine hydrothermal systems and associated biota have attracted interest of many researchers (e.g., Humphris et al., 1995; Van Dover, 2000; Wilcock et al., 2004). In the past couple of decades, particular attention has been paid to chemolithoautotrophic microorganisms that sustain the hydrothermal vent-endemic animal communities as the primary producer. This type of microorganisms obtains energy from inorganic substances (e.g., sulfur, hydrogen, and methane) derived from hydrothermal vent fluids, and is often considered as an important modern analogue to the early ecosystems of the Earth as well as the extraterrestrial life in other planets and moons (e.g., Jannasch and Mottl, 1985; Nealson et al., 2005; Takai et al., 2006). Even today, however, the size of this type of chemosynthetic deep-sea hydrothermal vent ecosystem is largely unknown. Here, we present geophysical and geochemical constraints on potential biomass in the deep-sea hydrothermal vent ecosystem. The estimation of the potential biomass in the deep-sea hydrothermal vent ecosystem is based on hydrothermal fluid flux calculated from heat flux (Elderfield and Schltz, 1996), maximum chemical energy available from metabolic reactions during mixing between hydrothermal vent fluids and seawater (McCollom, 2007), and maintenance energy requirements of the chemolithoautotrophic microorganisms (Hoehler, 2004). The result shows that the most of metabolic energy sustaining the deep-sea hydrothermal vent ecosystem is produced by oxidation reaction of reduced sulfur, although some parts of the energy are derived from hydrogenotrophic and methanotrophic reactions. The overall total of the potential biomass in deep-sea hydrothermal vent ecosystem is calculated to be much smaller than that in terrestrial ecosystems including terrestrial plants. The big difference in biomass between the

  19. Recent advances in deep-sea natural products.

    PubMed

    Skropeta, Danielle; Wei, Liangqian

    2014-08-01

    Covering: 2009 to 2013. This review covers the 188 novel marine natural products described since 2008, from deep-water (50->5000 m) marine fauna including bryozoa, chordata, cnidaria, echinodermata, microorganisms, mollusca and porifera. The structures of the new compounds and details of the source organism, depth of collection and country of origin are presented, along with any relevant biological activities of the metabolites. Where reported, synthetic studies on the deep-sea natural products have also been included. Most strikingly, 75% of the compounds were reported to possess bioactivity, with almost half exhibiting low micromolar cytotoxicity towards a range of human cancer cell lines, along with a significant increase in the number of microbial deep-sea natural products reported. PMID:24871201

  20. Multi-locus DNA sequencing of Toxoplasma gondii isolated from Brazilian pigs identifies genetically divergent strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five Toxoplasma gondii isolates (TgPgBr1-5) were isolated from hearts and brains of pigs freshly purchased at the market of Campos dos Goytacazes, Northern Rio de Janeiro State, Brazil. Four of the five isolates were highly pathogenic in mice. Four genotypes were identified. Multi-locus DNA sequenci...

  1. 47 CFR 32.6424 - Submarine and deep sea cable expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Submarine and deep sea cable expense. 32.6424... Submarine and deep sea cable expense. (a) This account shall include expenses associated with submarine and deep sea cable. (b) Subsidiary record categories shall be maintained as provided in § 32.2424....

  2. 47 CFR 32.6424 - Submarine and deep sea cable expense.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Submarine and deep sea cable expense. 32.6424... Submarine and deep sea cable expense. (a) This account shall include expenses associated with submarine and deep sea cable. (b) Subsidiary record categories shall be maintained as provided in § 32.2424....

  3. 47 CFR 32.6424 - Submarine and deep sea cable expense.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Submarine and deep sea cable expense. 32.6424... Submarine and deep sea cable expense. (a) This account shall include expenses associated with submarine and deep sea cable. (b) Subsidiary record categories shall be maintained as provided in § 32.2424....

  4. 46 CFR 167.40-20 - Deep-sea sounding apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Deep-sea sounding apparatus. 167.40-20 Section 167.40-20... SHIPS Certain Equipment Requirements § 167.40-20 Deep-sea sounding apparatus. Nautical school ships shall be equipped with an efficient or electronic deep-sea sounding apparatus. The electronic...

  5. 47 CFR 32.6424 - Submarine and deep sea cable expense.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Submarine and deep sea cable expense. 32.6424... Submarine and deep sea cable expense. (a) This account shall include expenses associated with submarine and deep sea cable. (b) Subsidiary record categories shall be maintained as provided in § 32.2424....

  6. 46 CFR 167.40-20 - Deep-sea sounding apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Deep-sea sounding apparatus. 167.40-20 Section 167.40-20... SHIPS Certain Equipment Requirements § 167.40-20 Deep-sea sounding apparatus. Nautical school ships shall be equipped with an efficient or electronic deep-sea sounding apparatus. The electronic...

  7. 46 CFR 167.40-20 - Deep-sea sounding apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Deep-sea sounding apparatus. 167.40-20 Section 167.40-20... SHIPS Certain Equipment Requirements § 167.40-20 Deep-sea sounding apparatus. Nautical school ships shall be equipped with an efficient or electronic deep-sea sounding apparatus. The electronic...

  8. 47 CFR 32.6424 - Submarine and deep sea cable expense.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Submarine and deep sea cable expense. 32.6424... Submarine and deep sea cable expense. (a) This account shall include expenses associated with submarine and deep sea cable. (b) Subsidiary record categories shall be maintained as provided in § 32.2424....

  9. The South China Sea Deep: A Research Project on Life History of Marginal Sea

    NASA Astrophysics Data System (ADS)

    Wang, P.

    2011-12-01

    A major research project has been launched in China to investigate evolution and various processes in the deep-water part a of the South China Sea. The "South China Sea Deep" project (2011-2018) is supported by the NSF of China with a total budget no less than ~23 US Dollar (150 Million Chinese yuan), and covers a broad spectrum of scientific topics. Advanced geophysical and geochemical tools will be applied to re-estimate the age of its oceanic crust, to verify the existence of the "Hainan Mantle Plume", and to explore the origin of volcanic chains in the deep basin. Sedimentary archives, both off-shore and on-shore, will be analyzed to reconstruct the history of sediment response to the basin evolution, with focus on changes of deep-water circulation driven by tectonic deformation of the basin. Deep-water observations will be organized to examine near-bottom sediment transport, methane seepages, and microbial distribution and ecology above and below sea-floor. With a combination of tectonic-magmatic, sedimentologic-paleoceanographic, and microbiological-geochemical approaches, the project is expected to reveal the life history of the South China Sea, the largest low-latitude marginal sea in the modern world. Recent progress of the project will be presented, and perspectives of international cooperation will be discussed.

  10. Pleistocene Deep Sea ostracods from the Bering Sea (IODP expedition 323)

    NASA Astrophysics Data System (ADS)

    Alvarez Zarikian, Carlos A.

    2016-03-01

    The study presents the first Pleistocene (0-1.9 Ma) record of Deep Sea ostracods from the Bering Sea, derived primarily from Integrated Ocean Drilling Program Expedition 323, Site U1344 (59°3.0‧N, 179°12.2‧W, 3171 m of water depth). Deep Sea ostracod abundances in the Bering Sea sediments are some of the lowest that have been recorded in bathyal and abyssal marine environments (<1 specimen per sediment gram). In comparison, benthic foraminifera are several orders of magnitude more abundant in the same samples. The humble ostracod assemblage at Site U1344 is predominantly composed of deep water species Krithe sawanensis, Fallacihowella sp. A, Cytheropteron spp., Eucytherura sp., Argilloecia toyamaensis, and Bradleya mesembrina. Less abundant taxa include Munseyella melzeri, Munseyella ristveti, Cluthia sp., Robertsonites hanaii, and Microcythere mediostriata. Some of these taxa (e.g. Fallacihowella sp. A, Bradleya mesembrina, Microcythere mediostriata) are reported for the first time in the North Pacific. The predominance of the genera Krithe, Fallacihowella, Cytheropteron and Argilloecia indicates cold, ventilated bottom waters. The deep Bering Sea ostracod assemblage shares many common and closely related species with continental slope faunas from the Gulf of Alaska, the Okhotsk Sea, the Arctic Ocean, and even the subpolar North Atlantic. A few continental shelf ostracods, such as species of Munseyella and Robertsonites, are present at Sites U1344 and U1343, in the northern slope of the Aleutian Basin. The presence of shallow water ostracods at the Bering Sea slope sites is possibly explained by sea ice rafting. Exceptionally low ostracod abundance in the U1344 record did not permit evaluating links between ostracod faunas and paleoceanographic conditions; however, an increase in ostracod occurrences throughout the middle Pleistocene at Site U1344 appears to correlate with general sea ice expansion in the Bering Sea. High primary surface productivity, high

  11. 75 FR 7435 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications... Atlantic deep-sea red crab fishery, including a target total allowable catch (TAC) and a fleet-wide days-at-sea (DAS) allocation. The implementing regulations for the Atlantic Deep-Sea Red Crab...

  12. Risk assessment of a deep sea pipeline

    SciTech Connect

    Egan, G.R.; Zebroski, E.L.; Kaplan, S.

    1996-12-31

    A unique design of subsea gas pipeline has been under consideration for several years. It would traverse the Arabian Sea for 1,100 kilometers with a large part of it at depths over 3,000 meters and temperatures near 2 C. A Probabilistic Risk Analysis has been performed with special attention to the novel technical features of the design, construction and operating environments. The factors considered to date have included: pipe and materials design for internal pressures to 500 bar and external pressures to 430 bar, laydown processes, materials quality and QA/QC, piping stress and strain levels in laydown and spans, route selection, and other factors. The methods used to screen, rank, and quantify the risks are described. The scenarios involving the principal hazards are described and the risks are quantified. Options for further risk control and reduction measures are also identified. The results at this stage show relatively low expected values for the principal risks. Assuming effective implementation of the available control measures, the proposed design is calculated to have risk levels lower than the historical average for similar mega-projects.

  13. Sediment reworking rates in deep sediments of the Mediterranean Sea.

    PubMed

    Barsanti, M; Delbono, I; Schirone, A; Langone, L; Miserocchi, S; Salvi, S; Delfanti, R

    2011-07-01

    Different pelagic areas of the Mediterranean Sea have been investigated in order to quantify physical and biological mixing processes in deep sea sediments. Herein, results of eleven sediment cores sampled at different deep areas (> 2000 m) of the Western and Eastern Mediterranean Sea are presented. ²¹⁰Pb(xs) and ¹³⁷Cs vertical profiles, together with ¹⁴C dating, are used to identify the main processes characterising the different areas and, finally, controlling mixing depths (SML) and bioturbation coefficients (D(b)). Radionuclide vertical profiles and inventories indicate that bioturbation processes are the dominant processes responsible for sediment reworking in deep sea environments. Results show significant differences in sediment mixing depths and bioturbation coefficients among areas of the Mediterranean Sea characterised by different trophic regimes. In particular, in the Oran Rise area, where the Almeria-Oran Front induces frequent phytoplankton blooms, we calculate the highest values of sediment mixing layers (13 cm) and bioturbation coefficients (0.187 cm² yr⁻¹), and the highest values of ²¹⁰Pb(xs) and ¹³⁷Cs inventories. Intermediate values of SML and D(b) (~6 cm and ~0.040 cm² yr⁻¹, respectively) characterise the mesothrophic Algero-Balearic basin, while in the Southern Tyrrhenian Sea mixing parameters (SML of 3 cm and D(b) of 0.011 cm² yr⁻¹ are similar to those calculated for the oligotrophic Eastern Mediterranean (SML of 2 cm and D(b) of ~0.005 cm² yr⁻¹). PMID:21561644

  14. Deep Sea Benthic Foraminifera: Love Cold, Fear Warm

    NASA Astrophysics Data System (ADS)

    Thomas, E.

    2007-12-01

    The fossil record provides understanding of possible linkages between long-term environmental changes and evolution of assemblages and morphological species of deep-sea benthic foraminifera, of which the phylogeny is still little known. Deep-sea benthic foraminifera have long morphological species lives and do not commonly suffer massive extinctions: they live in the largest habitat on earth, species have large geographic ranges or are cosmopolitan, and they use motile propagules to rapidly re-populate regions where populations have been destroyed. Extinction occurs only when rapid and severe environmental change affects such a large part of the deep ocean that no refugia exist, even for common species. Deep-sea benthic foraminifera reacted to global cooling (in the earliest Oligocene, middle Miocene and middle Pleistocene) not by extinction, but by a gradual turnover of species. The most extensive turnover occurred in the late Eocene through earliest Oligocene, when some presently important ecological niches were first filled. In contrast, deep-sea benthic foraminifera suffered severe extinction (30-50% of species, including common, cosmopolitan, long-lived species) during the rapid global warming of the Paleocene-Eocene Thermal Maximum (PETM), a time of high CO2 levels and potential ocean acidification. The extinction was followed by slow recovery of faunas, but diversity never returned to pre-extinction levels. The PETM and later, less severe short-term periods of global warming (hyperthermals ETM1 and ETM2) were characterized by low diversity faunas dominated by small, thin-walled individuals. No significant net extinction occurred during the later hyperthermals. Such faunas might reflect dissolution, low oxygen conditions, or blooming of opportunistic species after environmental disturbance. Most commonly cited causes of the PETM extinction are: 1. low oxygen concentrations, 2. acidification of the oceans, 3. increase or decrease in oceanic productivity and

  15. Biofilm transplantation in the deep sea.

    PubMed

    Wagner-Döbler, Irene

    2016-05-01

    A gold rush is currently going on in microbial ecology, which is powered by the possibility to determine the full complexity of microbial communities through next-generation sequencing. Accordingly, enormous efforts are underway to describe microbiomes worldwide, in humans, animals, plants, soil, air and the ocean. While much can be learned from these studies, only experiments will finally unravel mechanisms. One of the key questions is how a microbial community is assembled from a pool of bacteria in the environment, and how it responds to change - be it the increase in CO2 concentration in the ocean, or antibiotic treatment of the gut microbiome. The study by Zhang et al. () in this issue is one of the very few that approaches this problem experimentally in the natural environment. The authors selected a habitat which is both extremely interesting and difficult to access. They studied the Thuwal Seep in the Red Sea at 850 m depth and used a remotely operated vehicle (ROV) to place a steel frame carrying substrata for biofilm growth into the brine pool and into the adjacent normal bottom water (NBW). Biofilms were allowed to develop for 3 days, and then those that had been growing in the brine pool were transported to normal bottom water and stayed there for another 3 days, and vice versa. The 'switched' biofilms were then compared with their source communities by metagenome sequencing. Strikingly, both 'switched' biofilms were now dominated by the same two species. These species were able to cope with conditions in both source ecosystems, as shown by assembly of their genomes and detection of expression of key genes. The biofilms had adapted to environmental change, rather than to brine pools or NBW. The study shows both the resilience and adaptability of biofilm communities and has implications for microbial ecology in general and even for therapeutic approaches such as transplantation of faecal microbiomes. PMID:27169388

  16. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Tecchio, Samuele; Coll, Marta; Christensen, Villy; Company, Joan B.; Ramírez-Llodra, Eva; Sardà, Francisco

    2013-05-01

    There is increasing fishing pressure on the continental margins of the oceans, and this raises concerns about the vulnerability of the ecosystems thriving there. The current knowledge of the biology of deep-water fish species identifies potential reduced resilience to anthropogenic disturbance. However, there are extreme difficulties in sampling the deep sea, resulting in poorly resolved and indirectly obtained food-web relationships. Here, we modelled the flows and biomasses of a Mediterranean deep-sea ecosystem, the Catalan Sea continental slope at depths of 1000-1400 m. This is the first model of a deep-water ecosystem in the Mediterranean Sea. The objectives were to (a) quantitatively describe the food web structure of the ecosystem, (b) examine the role of key species in the ecosystem, and (c) explore the vulnerability of this deep-sea ecosystem to potential future fishing exploitation. We used the Ecopath with Ecosim (EwE) modelling approach and software to model the ecosystem. The trophic model included 18 consumers, a marine snow group, and a sediment detritus group. Trophic network analysis identified low levels of consumer biomass cycling and low system omnivory index when compared with expected values of marine ecosystems, and higher cycling and omnivory when compared with available EwE models of shallower areas of the Mediterranean Sea. The majority of flows in the ecosystem were concentrated at the trophic level of first-order consumers (TL 2). Benthic invertebrates and demersal sharks were identified to have key ecological roles in the ecosystem. We used the dynamic temporal model Ecosim to simulate expansion of the red-shrimp benthic trawl fishery that currently operates at shallower depths, down to 800 m depth. The simulations showed reductions in fish biomass and that the state of the deep continental slope ecosystem in the western Mediterranean seems to be the result of a long-term succession process, which has reached ecological stability, and is

  17. The deep-sea hub of the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Anghinolfi, M.; Calzas, A.; Dinkespiler, B.; Cuneo, S.; Favard, S.; Hallewell, G.; Jaquet, M.; Musumeci, M.; Papaleo, R.; Raia, G.; Valdy, P.; Vernin, P.

    2006-11-01

    The ANTARES neutrino telescope, currently under construction at 2500 m depth off the French Mediterranean coast, will contain 12 detection lines, powered and read out through a deep-sea junction box (JB) hub. Electrical energy from the shore station is distributed through a transformer with multiple secondary windings and a plugboard with 16 deep sea-mateable electro-optic connectors. Connections are made to the JB outputs using manned or remotely operated submersible vehicles. The triply redundant power management and slow control system is based on two identical AC-powered systems, communicating with the shore through 160 Mb/s fibre G-links and a third battery-powered system using a slower link. We describe the power and slow control systems of the underwater hub.

  18. Alchemy or Science? Compromising Archaeology in the Deep Sea

    NASA Astrophysics Data System (ADS)

    Adams, Jonathan

    2007-06-01

    In the torrid debate between archaeology and treasure hunting, compromise is often suggested as the pragmatic solution, especially for archaeology carried out either in deep water or beyond the constraints that commonly regulate such activities in territorial seas. Both the wisdom and the need for such compromise have even been advocated by some archaeologists, particularly in forums such as the internet and conferences. This paper argues that such a compromise is impossible, not in order to fuel confrontation but simply because of the nature of any academic discipline. We can define what archaeology is in terms of its aims, theories, methods and ethics, so combining it with an activity founded on opposing principles must transform it into something else. The way forward for archaeology in the deep sea does not lie in a contradictory realignment of archaeology’s goals but in collaborative research designed to mesh with emerging national and regional research and management plans.

  19. Recent results from the ANTARES deep sea neutrino telescope

    NASA Astrophysics Data System (ADS)

    Coyle, Paschal

    2013-02-01

    The ANTARES deep sea neutrino telescope has acquired over four years of high quality data. This data has been used to measure the oscillation parameters of atmospheric neutrinos and also to search for neutrinos of a nonterrestrial origin. Competitive upper limits on the fluxes of neutrinos from dark matter annihilation in the Sun, a variety of Galactic and extra-galactic sources, both steady and transient, are presented.

  20. Antarctic Marine Biodiversity and Deep-Sea Hydrothermal Vents

    PubMed Central

    Chown, Steven L.

    2012-01-01

    The diversity of many marine benthic groups is unlike that of most other taxa. Rather than declining from the tropics to the poles, much of the benthos shows high diversity in the Southern Ocean. Moreover, many species are unique to the Antarctic region. Recent work has shown that this is also true of the communities of Antarctic deep-sea hydrothermal vents. Vent ecosystems have been documented from many sites across the globe, associated with the thermally and chemically variable habitats found around these, typically high temperature, streams that are rich in reduced compounds and polymetallic sulphides. The animal communities of the East Scotia Ridge vent ecosystems are very different to those elsewhere, though the microbiota, which form the basis of vent food webs, show less differentiation. Much of the biological significance of deep-sea hydrothermal vents lies in their biodiversity, the diverse biochemistry of their bacteria, the remarkable symbioses among many of the marine animals and these bacteria, and the prospects that investigations of these systems hold for understanding the conditions that may have led to the first appearance of life. The discovery of diverse and unusual Antarctic hydrothermal vent ecosystems provides opportunities for new understanding in these fields. Moreover, the Antarctic vents south of 60°S benefit from automatic conservation under the Convention on the Conservation of Antarctic Marine Living Resources and the Antarctic Treaty. Other deep-sea hydrothermal vents located in international waters are not protected and may be threatened by growing interests in deep-sea mining. PMID:22235192

  1. Ecosystem function and services provided by the deep sea

    NASA Astrophysics Data System (ADS)

    Thurber, A. R.; Sweetman, A. K.; Narayanaswamy, B. E.; Jones, D. O. B.; Ingels, J.; Hansman, R. L.

    2013-11-01

    The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services and provisions that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of provisioning, regulating and cultural services become apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses which are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary to fuel surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a diversity of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown which has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and time scales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, that covers the majority of the globe, harbors processes that directly impact humans in a diversity of ways, however the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society.

  2. Chemosynthesis in the deep-sea: life without the sun

    NASA Astrophysics Data System (ADS)

    Smith, C.

    2012-12-01

    Chemosynthetic communities in the deep-sea can be found at hydrothermal vents, cold seeps, whale falls and wood falls. While these communities have been suggested to exist in isolation from solar energy, much of the life associated with them relies either directly or indirectly on photosynthesis in the surface waters of the oceans. The sun indirectly provides oxygen, a byproduct of photosynthesis, which aerobic chemosynthetic microorganisms require to synthesize organic carbon from CO2. Planktonic life stages of many vent and cold seep invertebrates also directly feed on photosynthetically produced organic matter as they disperse to new vent and seep systems. While a large portion of the life at deep-sea chemosynthetic habitats can be linked to the sun and so could not survive without it, a small portion of anaerobically chemosynthetic microorganisms can persist in its absence. These small and exotic organisms have developed a way of life in the deep-sea which involves the use of resources originating in their entirety from terrestrial sources.

  3. How Deep-Sea Wood Falls Sustain Chemosynthetic Life

    PubMed Central

    Bienhold, Christina; Pop Ristova, Petra; Wenzhöfer, Frank; Dittmar, Thorsten; Boetius, Antje

    2013-01-01

    Large organic food falls to the deep sea – such as whale carcasses and wood logs – are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals. PMID:23301092

  4. How deep-sea wood falls sustain chemosynthetic life.

    PubMed

    Bienhold, Christina; Pop Ristova, Petra; Wenzhöfer, Frank; Dittmar, Thorsten; Boetius, Antje

    2013-01-01

    Large organic food falls to the deep sea--such as whale carcasses and wood logs--are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals. PMID:23301092

  5. Deep-sea smokers: windows to a subsurface biosphere?

    PubMed

    Deming, J W; Baross, J A

    1993-07-01

    Since the discovery of hyperthermophilic microbial activity in hydrothermal fluids recovered from "smoker" vents on the East Pacific Rise, the widely accepted upper temperature limit for life (based on pure culture data) has risen from below the boiling point of water at atmospheric pressure to approximately 115 degrees C. Many microbiologists seem willing to speculate that the maximum may be closer to 150 degrees C. We have postulated not only higher temperatures than these (under deep-sea hydrostatic pressures), but also the existence of a biosphere subsurface to accessible seafloor vents. New geochemical information from the Endeavour Segment of the Juan de Fuca Ridge indicative of subsurface organic material caused us to re-examine both the literature on hyperthermophilic microorganisms cultured from deep-sea smoker environments and recent results of microbial sampling efforts at actively discharging smokers on the Endeavour Segment. Here we offer the case for a subsurface biosphere based on an interdisciplinary view of microbial and geochemical analyses of Endeavour smoker fluids, a case in keeping with rapidly evolving geophysical understanding of organic stability under deep-sea hydrothermal conditions. PMID:11538298

  6. Late Eocene impact events recorded in deep-sea sediments

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1988-01-01

    Raup and Sepkoski proposed that mass extinctions have occurred every 26 Myr during the last 250 Myr. In order to explain this 26 Myr periodicity, it was proposed that the mass extinctions were caused by periodic increases in cometary impacts. One method to test this hypothesis is to determine if there were periodic increases in impact events (based on crater ages) that correlate with mass extinctions. A way to test the hypothesis that mass extinctions were caused by periodic increases in impact cratering is to look for evidence of impact events in deep-sea deposits. This method allows direct observation of the temporal relationship between impact events and extinctions as recorded in the sedimentary record. There is evidence in the deep-sea record for two (possibly three) impact events in the late Eocene. The younger event, represented by the North American microtektite layer, is not associated with an Ir anomaly. The older event, defined by the cpx spherule layer, is associated with an Ir anomaly. However, neither of the two impact events recorded in late Eocene deposits appears to be associated with an unusual number of extinctions. Thus there is little evidence in the deep-sea record for an impact-related mass extinction in the late Eocene.

  7. Russian deep-sea investigations of Antarctic fauna

    NASA Astrophysics Data System (ADS)

    Malyutina, Marina

    2004-07-01

    A review of the Russian deep-sea investigation of Antarctic fauna beginning from the first scientific collection of Soviet whaling fleet expeditions 1946-1952 is presented. The paper deals with the following expeditions, their main tasks and results. These expeditions include three cruises of research vessel (R.V.) Ob in the Indian sector of the Antarctic and in the Southern Pacific (1955-1958); 11 cruises of the R.V. Akademik Kurchatov in the southern Atlantic (November-December 1971); 16 cruises of the R.V. Dmitriy Mendeleev in the Australia-New Zealand area and adjacent water of the Antarctic (December 1975-March 1976); 43 cruises of the R.V. Akademik Kurchatov in the southern Atlantic (October 1985-February 1986); and 43 cruises of the R.V. Dmitriy Mendeleev in the Atlantic sector of the South Ocean (January-May 1989). A list of the main publications on the benthic taxa collected during these expeditions with data of their distribution is presented. The results of Russian explorations of the Antarctic fauna are presented as theoretical conclusions in the following topics: (1) Vertical zonation in the distribution of the Antarctic deep-sea fauna; (2) Biogeographic division of the abyssal and hadal zones; (3) Origin of the Antarctic deep-sea fauna; (4) Distributional pathways of the Antarctic abyssal fauna through the World Ocean.

  8. Rhone deep-sea fan: morphostructure and growth pattern

    SciTech Connect

    Droz, L.; Bellaiche, G.

    1985-03-01

    A detailed bathymetric survey of the Rhone deep-sea fan and its feeder canyon using Sea-Beam, reveals morphologic features such as very tight meanders of the canyon and channel courses, cutoff meanders, and downslope narrowing of the inner channel floor. Striking similarities exist between these deep-sea features and some continental landforms, especially in alluvial plain areas or desert environments. Sea-Beam also reveals evidence of huge slump scars affecting the slope and fan. The superficial structure of the Rhone Fan results from the stacking of numerous lenticular acoustic units displaying specific seismic characters in which the authors recognized channel and levee facies. Except in the upper fan area, these units have not been constant; they have generally migrated, owing to shifting of the channel throughout fan evolution. Construction of the fan probably began as early as the early Pliocene and continued to the close of the Wurmian (late Wisconsinian). The fan's growth pattern could be associated with climatic fluctuations. The principal sedimentary mechanism responsible for the growth of the fan appears to be turbidity currents, but mass gravity flows have also been an important factor in building the fan by occasionally blocking the main channel and forcing it to migrate.

  9. Deep-sea pennatulaceans (sea pens) - recent discoveries, morphological adaptations, and responses to benthic oceanographic parameters

    NASA Astrophysics Data System (ADS)

    Williams, G. C.

    2015-12-01

    Pennatulaceans are sessile, benthic marine organisms that are bathymetrically wide-ranging, from the intertidal to approximately 6300 m in depth, and are conspicuous constituents of deep-sea environments. The vast majority of species are adapted for anchoring in soft sediments by the cylindrical peduncle - a muscular hydrostatic skeleton. However, in the past decade a few species ("Rockpens") have been discovered and described that can attach to hard substratum such as exposed rocky outcrops at depths between 669 and 1969 m, by a plunger-like adaptation of the base of the peduncle. Of the thirty-six known genera, eleven (or 30%) have been recorded from depths greater than 1000 m. The pennatulacean depth record holders are an unidentified species of Umbellula from 6260 m in the Peru-Chile Trench and a recently-discovered and described genus and species, Porcupinella profunda, from 5300 m the Porcupine Abyssal Plain of the northeastern Atlantic. A morphologically-differentiated type of polyp (acrozooid) have recently been discovered and described in two genera of shallow-water coral reef sea pens. Acrozooids apparently represent asexual buds and presumably can detach from the adult to start clonal colonies through asexual budding. Acrozooids are to be expected in deep-sea pennatulaceans, but so far have not been observed below 24 m in depth. Morphological responses at depths greater than 1000 m in deep-sea pennatulaceas include: fewer polyps, larger polyps, elongated stalks, and clustering of polyps along the rachis. Responses to deep-ocean physical parameters and anthropogenic changes that could affect the abundance and distribution of deep-sea pennatulaceans include changes in bottom current flow and food availability, changes in seawater temperature and pH, habitat destruction by fish trawling, and sunken refuse pollution. No evidence of the effects of ocean acidification or other effects of anthropogenic climate change in sea pens of the deep-sea has been

  10. Pressure laboratories for parameter controlled experimentation of deep sea environments

    NASA Astrophysics Data System (ADS)

    Steffen, H.; Holscher, B.; Gust, G.; Thomsen, L.

    2003-04-01

    The in-situ examination of deep sea environments poses many challenges and cannot always be optimised which places the researcher at a disadvantage upon encountering high costs, few possibilities of controlling the naturally given parameters such as temperature, pressure or hydrodynamic conditions, and weather conditions while at sea. To overcome these limitations, pressure laboratories are emerging tools for biological, chemical and geological studies. The Department of Ocean Engineering 1 of the Technical University Hamburg-Harburg has been developing different types of pressure laboratories to meet the needs of the natural sciences. Three types of experimental settings were identified for examination and manipulation: experiments with artificial samples, natural samples that have been decompressed during recovery and re-pressurised, and, finally, natural samples in their original, undamaged state. We concentrate on the latter type of settings. For the laboratory simulations, different transfer units are needed for the decompression-free transfer from field site to laboratory, depending on sample type consisting of either fluids, solid-liquid suspensions including small particles and living organisms, or sediment cores. The pressure labs are thus linked to the in-situ site through special sample and transfer units which collect the undisturbed deep sea samples. As a result, laboratory investigation, after sample transfer, is very similar to in-situ analysis, but with the advantage of perfect control of the sample's environment and condition including the hydrodynamics at the sea bed. Two pressure laboratories that accomplish the given investigation tasks with different types of samples for depths down to 5500 m will be presented together with the related technology for sample acquisition. The latest system will be mobile, fully modular, and container based. Examples of experiments, some completed and some in progress, will be shown: Biological experiments include

  11. Seqestration of dissolved organic carbon in the deep sea

    SciTech Connect

    Daniel J. Repeta

    2006-03-01

    There are 600 GT of dissolved organic carbon (DOC) sequestered in seawater. The marine inventory of DOC is set by its concentration in the deep sea, which is nearly constant at 35+2µM C, irrespective of sample location or depth. Isotopic measurements show deep sea DOC to be depleted in radiocarbon, with an apparent radiocarbon age of between 4000ybp (Atlantic) and 6000ybp (Pacific). From the radiocarbon data, we can infer that deep sea DOC is inert and does not cycle on less than millennial time scales. However, high precision DOC measurements show deep sea concentrations are variable at the + 1-2µM DOC level, suggesting a fraction of deep sea DOC, equivalent to 15-30Gt C, is cycling on short time scales, acting as a sink for new, atmospheric carbon. This project is designed to identify and quantify the biological and physical processes that sequester DOM in the deep sea by making compound specific radiocarbon measurements on sugars and proteins extracted from deep sea DOC. Our Hawaii surface seawater sample has a DIC Δ14C value of 72 + 7 ‰ and shows the influence of bomb radiocarbon on surface water DIC values. HMWDOC Δ14C is 10 ‰, significantly depleted in radiocarbon relative to DIC. Purification of HMWDOC by reverse phase HPLC yields seven neutral sugars with radiocarbon values of 47 – 67‰. Assuming the radiocarbon determinations of individual sugars in HMWDOC serve as replicates, then the average Δ14C for neutral sugars in HMWDOC is 57 + 6 ‰(1 SD, n=11), only slightly depleted in 14C relative to DIC. There has been a sharp decrease in radiocarbon values for DIC in the North Pacific Ocean over the past few decades. If neutral sugars cycle more slowly than DIC, we would expect them to have correspondingly higher radiocarbon values. Previous studies have modeled upper ocean DOC as a two component mixture of newly synthesized DOC with a radiocarbon value equal to DIC, and an old component with a radiocarbon value equal to deep sea DO14C. In order to

  12. First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction

    PubMed Central

    Thuy, Ben; Kiel, Steffen; Dulai, Alfréd; Gale, Andy S.; Kroh, Andreas; Lord, Alan R.; Numberger-Thuy, Lea D.; Stöhr, Sabine; Wisshak, Max

    2014-01-01

    Owing to the assumed lack of deep-sea macrofossils older than the Late Cretaceous, very little is known about the geological history of deep-sea communities, and most inference-based hypotheses argue for repeated recolonizations of the deep sea from shelf habitats following major palaeoceanographic perturbations. We present a fossil deep-sea assemblage of echinoderms, gastropods, brachiopods and ostracods, from the Early Jurassic of the Glasenbach Gorge, Austria, which includes the oldest known representatives of a number of extant deep-sea groups, and thus implies that in situ diversification, in contrast to immigration from shelf habitats, played a much greater role in shaping modern deep-sea biodiversity than previously thought. A comparison with coeval shelf assemblages reveals that, at least in some of the analysed groups, significantly more extant families/superfamilies have endured in the deep sea since the Early Jurassic than in the shelf seas, which suggests that deep-sea biota are more resilient against extinction than shallow-water ones. In addition, a number of extant deep-sea families/superfamilies found in the Glasenbach assemblage lack post-Jurassic shelf occurrences, implying that if there was a complete extinction of the deep-sea fauna followed by replacement from the shelf, it must have happened before the Late Jurassic. PMID:24850917

  13. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    PubMed

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature. PMID:24739960

  14. Identification of new deep sea sinuous channels in the eastern Arabian Sea.

    PubMed

    Mishra, Ravi; Pandey, D K; Ramesh, Prerna; Clift, Peter D

    2016-01-01

    Deep sea channel systems are recognized in most submarine fans worldwide as well as in the geological record. The Indus Fan is the second largest modern submarine fan, having a well-developed active canyon and deep sea channel system. Previous studies from the upper Indus Fan have reported several active channel systems. In the present study, deep sea channel systems were identified within the middle Indus Fan using high resolution multibeam bathymetric data. Prominent morphological features within the survey block include the Raman Seamount and Laxmi Ridge. The origin of the newly discovered channels in the middle fan has been inferred using medium resolution satellite bathymetry data. Interpretation of new data shows that the highly sinuous deep sea channel systems also extend to the east of Laxmi Ridge, as well as to the west of Laxmi Ridge, as previously reported. A decrease in sinuosity southward can be attributed to the morphological constraints imposed by the elevated features. These findings have significance in determining the pathways for active sediment transport systems, as well as their source characterization. The geometry suggests a series of punctuated avulsion events leading to the present array of disconnected channels. Such channels have affected the Laxmi Basin since the Pliocene and are responsible for reworking older fan sediments, resulting in loss of the original erosional signature supplied from the river mouth. This implies that distal fan sediments have experienced significant signal shredding and may not represent the erosion and weathering conditions within the onshore basin at the time of sedimentation. PMID:27386293

  15. Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea.

    PubMed

    Lai, Xintian; Cao, Lixiang; Tan, Hongming; Fang, Shu; Huang, Yali; Zhou, Shining

    2007-12-01

    To elucidate fungal diversity in methane hydrate-bearing deep-sea marine sediments in the South China Sea, internal transcribed spacer (ITS) regions of rRNA genes from five different sediment DNA samples were amplified and phylogenetically analyzed. Total five ITS libraries were constructed and 413 clones selected randomly were grouped into 24 restriction patterns by Amplified Ribosomal DNA Restriction Analysis (ARDRA). ITS sequences of 44 representative clones were determined and compared with the GenBank database using gapped-BLAST. The phylogenetic analysis showed that the ITS sequences (71-97% similarity) were similar to those of Phoma, Lodderomyces, Malassezia, Cryptococcus, Cylindrocarpon, Hortaea, Pichia, Aspergillus and Candida. The remaining sequences were not associated to any known fungi or fungal sequences in the public database. The results suggested that methane hydrate-bearing deep-sea marine sediments harbor diverse fungi. This is the first report on fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. PMID:18059498

  16. Sea-surface and deep-magnetic data at Vavilov Seamount, Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Muccini, Filippo; Cocchi, Luca; Locritani, Marina; Carmisciano, Cosmo

    2016-04-01

    Sea surface and deep magnetic data were acquired at Vavilov seamount, in the Tyrrhenian sea. Vavilov seamount is located in the central portion of the homonymous Vavilov basin. The seamount stands about 2800 meters above the seafloor at 3600 meters depth, with the top at about 800 meters below the sea level. Oceanization of the basin occurred during the Late Miocene-Early Pliocene. The magnetic data were collected in 2011 on board the Nave Ammiraglio Magnaghi by using a Marine Magnetics Seaspy magnetometer. The sea surface magnetic survey was realized with two different grids: the first regional one, with 13 parallel lines about 43 Km long, 3 Km spaced (104° N oriented) and 6 tie control lines about 40 Km long, 5 Km spaced (014° N oriented). The second one was realized to better define the volcanic structure of the seamount, and was achieved by acquiring 12 magnetic parallel lines (104° N), 18 Km long and 1 Km spaced. The deep magnetic data were collected by towing a magnetic sensor coupled with a L3 sidescan sonar Klein 3000. A set of 5 parallel lines were acquired in correspondence of the bathymetric top of the seamount with the sensor flying at about constant depth of 700 meters. These data represents the first near-bottom magnetic data collected for Vavilov seamount and it allows comparison between sea-surface and deep magnetic data.

  17. Antifouling potentials of eight deep-sea-derived fungi from the South China Sea.

    PubMed

    Zhang, Xiao-Yong; Xu, Xin-Ya; Peng, Jiang; Ma, Chun-Feng; Nong, Xu-Hua; Bao, Jie; Zhang, Guang-Zhao; Qi, Shu-Hua

    2014-04-01

    Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701-009, Micrococcus luteus UST950701-006 and Pseudoalteromonas piscida UST010620-005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi. PMID:24532297

  18. Distribution and assessment of marine debris in the deep Tyrrhenian Sea (NW Mediterranean Sea, Italy).

    PubMed

    Angiolillo, Michela; di Lorenzo, Bianca; Farcomeni, Alessio; Bo, Marzia; Bavestrello, Giorgio; Santangelo, Giovanni; Cau, Angelo; Mastascusa, Vincenza; Cau, Alessandro; Sacco, Flavio; Canese, Simonepietro

    2015-03-15

    Marine debris is a recognized global ecological concern. Little is known about the extent of the problem in the Mediterranean Sea regarding litter distribution and its influence on deep rocky habitats. A quantitative assessment of debris present in the deep seafloor (30-300 m depth) was carried out in 26 areas off the coast of three Italian regions in the Tyrrhenian Sea, using a Remotely Operated Vehicle (ROV). The dominant type of debris (89%) was represented by fishing gears, mainly lines, while plastic objects were recorded only occasionally. Abundant quantities of gears were found on rocky banks in Sicily and Campania (0.09-0.12 debris m(-2)), proving intense fishing activity. Fifty-four percent of the recorded debris directly impacted benthic organisms, primarily gorgonians, followed by black corals and sponges. This work provides a first insight on the impact of marine debris in Mediterranean deep ecosystems and a valuable baseline for future comparisons. PMID:25604749

  19. Exploitation of deep-sea resources: the urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms.

    PubMed

    Mestre, Nélia C; Calado, Ricardo; Soares, Amadeu M V M

    2014-02-01

    The advent of industrial activities in the deep sea will inevitably expose deep-sea organisms to potentially toxic compounds. Although international regulations require environmental risk assessment prior to exploitation activities, toxicity tests remain focused on shallow-water model species. Moreover, current tests overlook potential synergies that may arise from the interaction of chemicals with natural stressors, such as the high pressures prevailing in the deep sea. As pressure affects chemical reactions and the physiology of marine organisms, it will certainly affect the toxicity of pollutants arising from the exploitation of deep-sea resources. We emphasize the need for environmental risk assessments based on information generated from ecotoxicological trials that mimic, as close as possible, the deep-sea environment, with emphasis to a key environmental factor - high hydrostatic pressure. PMID:24230462

  20. Deep sea mega-geomorphology: Progress and problems

    NASA Technical Reports Server (NTRS)

    Bryan, W. B.

    1985-01-01

    Historically, marine geologists have always worked with mega-scale morphology. This is a consequence both of the scale of the ocean basins and of the low resolution of the observational remote sensing tools available until very recently. In fact, studies of deep sea morphology have suffered from a serious gap in observational scale. Traditional wide-beam echo sounding gave images on a scale of miles, while deep sea photography has been limited to scales of a few tens of meters. Recent development of modern narrow-beam echo sounding coupled with computer-controlled swath mapping systems, and development of high-resolution deep-towed side-scan sonar, are rapidly filling in the scale gap. These technologies also can resolve morphologic detail on a scale of a few meters or less. As has also been true in planetary imaging projects, the ability to observe phenomena over a range of scales has proved very effective in both defining processes and in placing them in proper context.

  1. Age, growth rates, and paleoclimate studies of deep sea corals

    USGS Publications Warehouse

    Prouty, Nancy G; Roark, E. Brendan; Andrews, Allen; Robinson, Laura; Hill, Tessa; Sherwood, Owen; Williams, Branwen; Guilderson, Thomas P.; Fallon, Stewart

    2015-01-01

    Deep-water corals are some of the slowest growing, longest-lived skeletal accreting marine organisms. These habitat-forming species support diverse faunal assemblages that include commercially and ecologically important organisms. Therefore, effective management and conservation strategies for deep-sea corals can be informed by precise and accurate age, growth rate, and lifespan characteristics for proper assessment of vulnerability and recovery from perturbations. This is especially true for the small number of commercially valuable, and potentially endangered, species that are part of the black and precious coral fisheries (Tsounis et al. 2010). In addition to evaluating time scales of recovery from disturbance or exploitation, accurate age and growth estimates are essential for understanding the life history and ecology of these habitat-forming corals. Given that longevity is a key factor for population maintenance and fishery sustainability, partly due to limited and complex genetic flow among coral populations separated by great distances, accurate age structure for these deep-sea coral communities is essential for proper, long-term resource management.

  2. Subsea salt flows in the Atlantis II Deep and Thetis Deep, Red Sea

    NASA Astrophysics Data System (ADS)

    Feldens, P.; Schmidt, M.; Mitchell, N.; Basaham, A. S.

    2012-04-01

    In the area of today's Red Sea, evaporites were widely deposited during the Miocene. Due to the ongoing rifting and seafloor spreading, the evaporites have lost their lateral constraint and started to move downslope. High sediment temperatures near the Red Sea graben and the weak rheology of halite may also favour evaporite movement. However, the deformation mechanism as well as the velocity of these flows is largely unknown. New high-resolution multibeam and seismic data were recorded in March 2011 (P408-2 cruise) within the framework of the project "The Jeddah Transect", a cooperation between King Abdulaziz University, Saudi-Arabia and GEOMAR, Germany. The data give new insights into evaporite flows in the area of the Atlantis II Deep. This ~400 m deep seafloor depression is located at about 21°N in the central Red Sea graben and is partly filled with hot saline brine (T~68°C, S~270‰). The brine-seawater interface at about 2050 mbsl coincides with the depth of a subseafloor salt layer in the seismic reflection data. The rough seafloor morphology of the Atlantis II Deep area is dominated by a sequence of normal faults showing vertical offsets of several hundred meters. However, SW-NE directed lineaments parallel to the seafloor gradient in the south east and possibly north-west of the deep, with typical heights between 20 and 40 m, widths between 300 and 1000 m and lengths exceeding 10 km in places, are interpreted as surface indications of subsurface evaporite flow. The fronts of some of these flows are well rounded, and their occurrence is limited to areas of low seafloor gradients. Generally, the appearance of evaporite flows in the Atlantis II Deep is comparable to salt flows in the Thetis Deep at ~23°N (Mitchell et al., 2010). Furthermore, deformed hemipelagic layers deposited on top of the Miocene evaporites indicate salt movement 60 km off the central rift axis. A second research cruise is planned in March 2012 (RV Pelagia) to obtain more high

  3. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    SciTech Connect

    Roark, E B; Guilderson, T P; Dunbar, R B; Ingram, B L

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimens as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.

  4. Deep-Sea Benthic Footprint of the Deepwater Horizon Blowout

    PubMed Central

    Montagna, Paul A.; Baguley, Jeffrey G.; Cooksey, Cynthia; Hartwell, Ian; Hyde, Larry J.; Hyland, Jeffrey L.; Kalke, Richard D.; Kracker, Laura M.; Reuscher, Michael; Rhodes, Adelaide C. E.

    2013-01-01

    The Deepwater Horizon (DWH) accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer. PMID:23950956

  5. Deep-sea Lebensspuren of the Australian continental margins

    NASA Astrophysics Data System (ADS)

    Przeslawski, Rachel; Dundas, Kate; Radke, Lynda; Anderson, Tara J.

    Much of the deep sea comprises soft-sediment habitats dominated by comparatively low abundances of species-rich macrofauna and meiofauna. Although often not observed, these animals bioturbate the sediment during feeding and burrowing, leaving signs of their activities called Lebensspuren ('life traces'). In this study, we use still images to quantify Lebensspuren from the eastern (1921 images, 13 stations, 1300-2200 m depth) and western (1008 images, 11 stations, 1500-4400 m depth) Australian margins using a univariate measure of trace richness and a multivariate measure of Lebensspuren assemblages. A total of 46 Lebensspuren types were identified, including those matching named trace fossils and modern Lebensspuren found elsewhere in the world. Most traces could be associated with waste, crawling, dwellings, organism tests, feeding, or resting, but the origin of 15% of trace types remains unknown. Assemblages were significantly different between the two regions and depth profiles, with five Lebensspuren types accounting for over 95% of the differentiation (ovoid pinnate trace, crater row, spider trace, matchstick trace, mesh trace). Lebensspuren richness showed no strong relationships with depth, total organic carbon, or mud, although there was a positive correlation to chlorin index (i.e., organic freshness) in the eastern margin, with richness increasing with organic freshness. Lebensspuren richness was not related to epifauna either, indicating that epifauna may not be the primary source of Lebensspuren. Despite the abundance and distinctiveness of several traces both in the current and previous studies (e.g., ovoid pinnate, mesh, spider), their origin and distribution remains a mystery. We discuss this and several other considerations in the identification and quantification of Lebensspuren. This study represents the first comprehensive catalogue of deep-sea Lebensspuren in Australian waters and highlights the potential of Lebensspuren as valuable and often

  6. Deep-sea benthic footprint of the deepwater horizon blowout.

    PubMed

    Montagna, Paul A; Baguley, Jeffrey G; Cooksey, Cynthia; Hartwell, Ian; Hyde, Larry J; Hyland, Jeffrey L; Kalke, Richard D; Kracker, Laura M; Reuscher, Michael; Rhodes, Adelaide C E

    2013-01-01

    The Deepwater Horizon (DWH) accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km(2). Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km(2). Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer. PMID:23950956

  7. Power, fresh water, and food from cold, deep sea water.

    PubMed

    Othmer, D F; Roels, O A

    1973-10-12

    Many times more solar heat energy accumulates in the vast volume of warm tropic seas than that produced by all of our power plants. The looming energy crisis causes a renewal of interest in utilizing this stored solar heat to give, in addition to electric power, vast quantities of fresh water. Warm surface water, when evaporated, generates steam, to power a turbine, then fresh water when the steam is condensed by the cold water. A great increase in revenues over that from power and fresh water is shown by a substantial mariculture pilot plant. Deep sea water contains large quantities of nutrients. These feed algae which feed shellfish, ultimately shrimps and lobsters, in shallow ponds. Wastes grow seaweed of value; and combined revenues from desalination, power generation, and mariculture will give substantial profit. PMID:17777883

  8. Deep-sea methane seep sediments in the Okhotsk Sea sustain diverse and abundant anammox bacteria.

    PubMed

    Shao, Sudong; Luan, Xiwu; Dang, Hongyue; Zhou, Haixia; Zhao, Yakun; Liu, Haitao; Zhang, Yunbo; Dai, Lingqing; Ye, Ying; Klotz, Martin G

    2014-02-01

    Marginal sea methane seep sediments sustain highly productive chemosynthetic ecosystems and are hotspots of intense biogeochemical cycling. Rich methane supply stimulates rapid microbial consumption of oxygen; these systems are thus usually hypoxic to anoxic. This and reported evidence for resident nitrogen fixation suggest the presence of an anaerobic ammonium-oxidizing (anammox) bacterial community in methane seep sediments. To test this hypothesis, we employed detection of genes encoding 16S rRNA gene and hydrazine dehydrogenase (hzo) to investigate the structure, abundance and distribution of the anammox bacterial community in the methane seep sediments of the Okhotsk Sea. Diverse complements of Candidatus Scalindua-related 16S rRNA and hzo gene sequences were obtained. Most of the deep-sea sites harbored abundant hzo genes with copy numbers as high as 10(7)  g(-1) sediment. In general, anammox bacterial signatures were significantly more abundant in the deep-water sediments. Sediment porewater NO3-, NOx- (i.e. NO3- + NO2-), NOx-/NH4+ and sediment silt content correlated with in situ distribution patterns of anammox bacterial marker genes, likely because they determine anammox substrate availability and sediment geochemistry, respectively. The abundance and distribution of anammox bacterial gene markers indicate a potentially significant contribution of anammox bacteria to the marine N cycle in the deep-sea methane seep sediments. PMID:24164560

  9. Three-dimensional model of the Rhone deep-sea fan from sea-beam profiles

    SciTech Connect

    Bellaiche, G.; Droz, L.

    1988-08-01

    The authors model has been elaborated from the sea-beam map of the Rhone deep-sea fan established from a network of 328 parallel and overlapping sea-beam profiles 40 to 60 km long, issued from the Deltarho-Profans cruises of the R.V. Jean-Charcot. It represents marine areas ranging from /minus/2,580 to /minus/200 m. The area above /minus/200 m (marine and continental) has been constructed from preexisting data. This model has been built by Szep (Laboratoire de Geodynamique, Villefranche) at a scale of 1/200,000 by superimposing and pasting on a series of cut-out polystyrene sheets. The thickness of these sheets varies from 5 mm (corresponding to 50 m elevation), in the areas shallower than /minus/2,000 m, to 2 mm (20 m elevation) in the deeper areas in order to provide smoother, more precise fan morphology. The resulting vertical exaggeration is 20. The size of the model, in centimeters, is 144 (L) /times/ 78 (W) /times/ 33 (H). It weighs about 15 kg. All the main features displayed by the sea-beam map are striking: meandering deep central channel, abandoned channels, new fan construction linked with channel avulsion, gravity fault scars, damming salt domes. Other features such as deep, small basins at the foot of the canyons are very clear and illustrate the strength of the erosive processes occurring in these areas.

  10. Deep-Sea Mining: Integrating Geology, Oceanography, and Engineering

    NASA Astrophysics Data System (ADS)

    Meyer, F. Michael; Halbach, Peter E.; Martens, Peer N.; Hein, James R.; Scott, Steve

    2008-09-01

    Shaping the Future: Deep-Sea Minerals and Mining Congress; Aachen, Germany, 9-13 March 2008; A strong increase in the global demand for metallic raw materials, coupled with rising market prices, has heightened interest in marine seabed mineral deposits and the feasibility of their extraction for many marine scientists, engineers, and mining companies. This interest focuses not only on base and precious metals but also on strategically important elements needed for high-technology applications, such as cobalt, nickel, molybdenum, titanium, gallium, selenium, telurium, indium, and the rare earth elements.

  11. Paleoceanographic implications of Miocene deep-sea hiatuses.

    USGS Publications Warehouse

    Keller, G.; Barron, J.A.

    1983-01-01

    Miocene paleoceanographic evolution exhibits major changes resulting from the opening and closing of passages, the subsequent changes in oceanic circulation, and development of major Antarctic glaciation. The consequences and timing of these events can be observed in variations in the distribution of deep-sea hiatuses, sedimentation patterns, and biogeographic distribution of planktic organisms. The main aspects of the present oceanic circulation system and sediment distribution pattern were established by 13.5 to 12.5 Ma (hiatus NH 3), coincident with the establishment of a major East Antarctic ice cap. -from Authors

  12. Meteoroid ablation spheres from deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Blanchard, M. B.; Brownlee, D. E.; Bunch, T. E.; Hodge, P. W.; Kyte, F. T.

    1980-01-01

    The paper deals with an examination of spheres that are magnetically extracted from mid-Pacific abyssal clays that are up to half a million years old. The spheres are divided into three groups using their dominant mineralogy - namely, iron, glassy, and silicate. Most spheres were formed from particles that completely melted as they separated from their parent meteoroids during the ablation process. It is concluded that the mineralogy and composition of the deep-sea spheres are identical in many respects to the meteorite fusion crusts, laboratory-created ablation debris, and the ablated interplanetary dust particles in the stratospheric collection.

  13. Space Suit Technologies Protect Deep-Sea Divers

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Working on NASA missions allows engineers and scientists to hone their skills. Creating devices for the high-stress rigors of space travel pushes designers to their limits, and the results often far exceed the original concepts. The technologies developed for the extreme environment of space are often applicable here on Earth. Some of these NASA technologies, for example, have been applied to the breathing apparatuses worn by firefighters, the fire-resistant suits worn by racecar crews, and, most recently, the deep-sea gear worn by U.S. Navy divers.

  14. Deep sea AUV navigation using multiple acoustic beacons

    NASA Astrophysics Data System (ADS)

    Ji, Da-xiong; Song, Wei; Zhao, Hong-yu; Liu, Jian

    2016-04-01

    Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles (AUVs). To estimate the vehicle position, we present an algorithm using an extended Kalman filter (EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment. Owing to high latency, variable sound speed multipath transmissions and unreliability in acoustic measurements, outlier recognition techniques are proposed as well. The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments. Our results show the improved performance over prior techniques based on position computation.

  15. Lack of Spatial Subdivision for the Snapper Lutjanus purpureus (Lutjanidae - Perciformes) from Southwest Atlantic Based on Multi-Locus Analyses.

    PubMed

    da Silva, Raimundo; Sampaio, Iracilda; Schneider, Horacio; Gomes, Grazielle

    2016-01-01

    The Caribbean snapper Lutjanus purpureus is a marine species fish commonly found associated with rocky seabeds and is widely distributed along of Western Atlantic. Data on stock delineation and stock recognition are essential for establishing conservation measures for commercially fished species. However, few studies have investigated the population genetic structure of this economically valuable species, and previous studies (based on only a portion of the mitochondrial DNA) provide an incomplete picture. The present study used a multi-locus approach (12 segments of mitochondrial and nuclear DNA) to elucidate the levels of genetic diversity and genetic connectivity of L. purpureus populations and their demographic history. L. purpureus has high levels of genetic diversity, which probably implies in high effective population sizes values for the species. The data show that this species is genetically homogeneous throughout the geographic region analyzed, most likely as a result of dispersal during larval phase. Regarding demographic history, a historical population growth event occurred, likely due to sea level changes during the Pleistocene. PMID:27556738

  16. Ubiquitous healthy diatoms in the deep sea confirms deep carbon injection by the biological pump

    NASA Astrophysics Data System (ADS)

    Agustí, Susana; González-Gordillo, Jose I.; Vaqué, Dolors; Estrada, Marta; Cerezo, Maria I.; Salazar, Guillem; Gasol, Josep M.; Duarte, Carlos M.

    2016-04-01

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean awaits confirmation. Photosynthetic plankton, directly responsible for trapping CO2 in organic form in the surface layer, are a key constituent of the flux of sinking particles and are assumed to die and become detritus upon leaving the photic layer. Research in the 1960-70's reported the occasional presence of well-preserved phytoplankton cells in the deep ocean, but these observations, which could signal at rapid sinking rates, were considered anecdotal. Using new developments we tested the presence of healthy phytoplankton cells in the deep sea (2000 to 4000 m depth) along the Malaspina 2010 Circumnavigation Expedition, a global expedition sampling the bathypelagic zone of the Atlantic, Indian and Pacific Oceans. In particular, we used a new microplankton sampling device, the Bottle-Net, 16S rDNA sequences, flow cytometric counts, vital stains and experiments to explore the abundance and health status of photosynthetic plankton cells between 2,000 and 4,000 m depth along the Circumnavigation track. We described the community of microplankton (> 20μm) found at the deep ocean (2000-4000 m depth), surprisingly dominated by phytoplankton, and within this, by diatoms. Moreover, we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark sea. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from few days to few weeks, corresponding to sinking rates of 124 to 732 m d-1, comparable to those of fast sinking aggregates and faecal pellets. These results confirm the

  17. [Some peculiarities of brain phospholipids in deep sea fishes].

    PubMed

    Pomazanskaia, L F; Pravdina, N I; Chirkovskaia, E V

    1975-01-01

    Total phospholipids (PL) as well as the content of various phospholipid classes and their fatty acid composition have been investigated in the brain of mesopelagic and abyssal marine teleosts. These species were compared to shallow water ones. The brain of deep sea fishes was found to be very poor in PL as compared to the brain of mesopelagic ans surface water species. No differences concerning the brain PL content were revealed between the two last mentioned groups. The relative content of separate PL classes was very similar in all the species studied irrespectively of the depth of their habitat. Peculiarities were found in fatty acid composition of individual PL from deep sea species as compared to surface ones. The deeper the habitat, the lower the content of saturated fatty acids, especially of the stearic acid. The lowest content of saturated fatty acids, maximum level of polyenoic fatty acids as well as some peculiarities in the relative content of particular fatty acids were found in the brain of ultraabyssal (6, 000 m) Leucicorus sp. PMID:1217333

  18. Global ocean conveyor lowers extinction risk in the deep sea

    NASA Astrophysics Data System (ADS)

    Henry, Lea-Anne; Frank, Norbert; Hebbeln, Dierk; Wienberg, Claudia; Robinson, Laura; van de Flierdt, Tina; Dahl, Mikael; Douarin, Mélanie; Morrison, Cheryl L.; López Correa, Matthias; Rogers, Alex D.; Ruckelshausen, Mario; Roberts, J. Murray

    2014-06-01

    General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth's largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium-thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6 kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500 km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.

  19. Adaptation to deep-sea methane seeps from Cretaceous shallow-water black shale environments?

    NASA Astrophysics Data System (ADS)

    Kiel, Steffen; Wiese, Frank; Titus, Alan

    2013-04-01

    Sulfide-enriched environments in shallow water were considered as sites where animals acquire pre-adaptations enabling them to colonize deep-sea hydrothermal vents and seeps or where they survived extinction events in their deep-sea habitats. Here we present upper Cenomanian (early Late Cretaceous) shallow-water seep communities from the Tropic Shale in the Western Interior Seaway, USA, that lived during a time of extremely warm deep-water temperatures, which supposedly facilitates adaptations to the deep sea, and time-equivalent with a period of widespread oceanic and photic zone anoxia (OAE 2) that supposedly extinguished deep-water vent and seep faunas. Contrary to the expectation, the taxa inhabiting the Tropic Shale seeps were not found at any coeval or younger deep-water seep or vent deposit. This suggests that (i) pre-adaptations for living at deep-sea vents and seeps do not evolve at shallow-water methane seeps, and probably also not in sulfide-rich shallow-water environments in general; (ii) a low temperature gradient from shallow to deep water does not facilitate onshore-offshore adaptations to deep-sea vents and seeps; and (iii) shallow-water seeps did not act as refuges for deep-sea vent and seep animals. We hypothesize that the vast majority of adaptations to successfully colonize deep-sea vents and seeps are acquired below the photic zone.

  20. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump.

    PubMed

    Agusti, S; González-Gordillo, J I; Vaqué, D; Estrada, M; Cerezo, M I; Salazar, G; Gasol, J M; Duarte, C M

    2015-01-01

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124-732 m d(-1)) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean. PMID:26158221

  1. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump

    PubMed Central

    Agusti, S.; González-Gordillo, J. I.; Vaqué, D.; Estrada, M.; Cerezo, M. I.; Salazar, G.; Gasol, J. M.; Duarte, C. M.

    2015-01-01

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean. PMID:26158221

  2. Resource quality affects carbon cycling in deep-sea sediments.

    PubMed

    Mayor, Daniel J; Thornton, Barry; Hay, Steve; Zuur, Alain F; Nicol, Graeme W; McWilliam, Jenna M; Witte, Ursula F M

    2012-09-01

    Deep-sea sediments cover ~70% of Earth's surface and represent the largest interface between the biological and geological cycles of carbon. Diatoms and zooplankton faecal pellets naturally transport organic material from the upper ocean down to the deep seabed, but how these qualitatively different substrates affect the fate of carbon in this permanently cold environment remains unknown. We added equal quantities of (13)C-labelled diatoms and faecal pellets to a cold water (-0.7 °C) sediment community retrieved from 1080 m in the Faroe-Shetland Channel, Northeast Atlantic, and quantified carbon mineralization and uptake by the resident bacteria and macrofauna over a 6-day period. High-quality, diatom-derived carbon was mineralized >300% faster than that from low-quality faecal pellets, demonstrating that qualitative differences in organic matter drive major changes in the residence time of carbon at the deep seabed. Benthic bacteria dominated biological carbon processing in our experiments, yet showed no evidence of resource quality-limited growth; they displayed lower growth efficiencies when respiring diatoms. These effects were consistent in contrasting months. We contend that respiration and growth in the resident sediment microbial communities were substrate and temperature limited, respectively. Our study has important implications for how future changes in the biochemical makeup of exported organic matter will affect the balance between mineralization and sequestration of organic carbon in the largest ecosystem on Earth. PMID:22378534

  3. Significant anaerobic production of fluorescent dissolved organic matter in the deep East Sea (Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghyun; Kim, Guebuem

    2016-07-01

    The distribution of fluorescent dissolved organic matter (FDOM) in the East Sea (Sea of Japan) was examined by excitation-emission matrix spectroscopy with parallel factor analysis (PARAFAC). Humic-like FDOM (FDOMH) increased with depth and was significantly correlated with Apparent Oxygen Utilization (AOU), indicating that FDOMH in the deep water is mainly produced by oxidation of organic matter. In addition, a surprisingly large excess of FDOMH relative to that expected from the observed AOU was found from 1000 m to the bottom (up to 3500 m). Based on the high-resolution geographical distribution and characteristics of FDOM in the East Sea, we conclude that this excess likely originates from anaerobic FDOMH production in subsurface bottom sediments. This FDOMH flux accounts for 8-15% of the total FDOM production in the water column. Our results suggest that anaerobic activities in subsurface sediments are an important hidden source of FDOM in the ocean.

  4. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, G.; Cronin, T. M.; Okahashi, H.

    2009-01-01

    A benthic microfaunal record from the equatorial Atlantic Ocean over the past four glacial-interglacial cycles was investigated to understand temporal dynamics of deep-sea latitudinal species diversity gradients (LSDGs). The results demonstrate unexpected instability and high amplitude fluctuations of species diversity in the tropical deep ocean that are correlated with orbital-scale oscillations in global climate: Species diversity is low during glacial and high during interglacial periods. This implies that climate severely influences deep-sea diversity, even at tropical latitudes, and that deep-sea LSDGs, while generally present for the last 36 million years, were weakened or absent during glacial periods. Temporally dynamic LSDGs and unstable tropical diversity require reconsideration of current ecological hypotheses about the generation and maintenance of biodiversity as they apply to the deep sea, and underscore the potential vulnerability and conservation importance of tropical deep-sea ecosystems.

  5. Milankovitch tuning of deep-sea records: Implications for maximum rates of change of sea level

    NASA Astrophysics Data System (ADS)

    Berger, Wolfgang H.

    2013-02-01

    The analysis of several stacked and tuned records from the deep-sea floor yields two rather different sets of values for rates of sea-level rise. One of these reflects "regular" growth and decay and the other represents rapid decay of polar ice. Typical rise rates during rapid decay are near 1.2 m per century; with higher values seemingly following an abundance distribution that may be described by a standard deviation of 0.4 m per century (one third of the typical value). Distributions are based on a millennium resolution, leaving room for higher values for selected centuries within any millennium. Nevertheless, rise values beyond 5 m per century seem highly unusual. The quality of the match between deep-sea record (taken as differential) and Milankovitch forcing is excellent for the last 400,000 years (that is, the time since the "mid-Brunhes Event," a period that may be referred to as the "Emiliani Chron") but is poor in certain time spans before that. Difficulties associated with precise dating and a changing level of instability of polar ice prevent identification of trigger events for deglaciation. What is observable is that during periods of rapid decay, once sea level started to rise, it kept doing so for millennia (presumably till suitable ice masses were used up). Thus, it seems that a rise of sea level is itself a positive feedback on rapid melting of ice. Negative feedback, if real (as assumed in certain hypotheses about the origin of the Younger Dryas) is an unexpected exception that presumably relies on a high threshold value of sea-level rise.

  6. Microbial Evolution at High Pressure: Deep Sea and Laboratory Studies

    NASA Astrophysics Data System (ADS)

    Bartlett, D. H.

    2011-12-01

    Elevated hydrostatic pressures are present in deep-sea and deep-Earth environments where this physical parameter has influenced the evolution and characteristics of life. Piezophilic (high-pressure-adapted) microbes have been isolated from diverse deep-sea settings, and would appear likely to occur in deep-subsurface habitats as well. In order to discern the factors enabling life at high pressure my research group has explored these adaptations at various levels, most recently including molecular analyses of deep-sea trench communities, and through the selective evolution of the model microbe Escherichia coli in the laboratory to progressively higher pressures. Much of the field work has focused on the microbes present in the deeper portions of the Puerto Rico Trench (PRT)and in the Peru-Chile Trench (PCT), from 6-8.5 km below the sea surface (~60-85 megapascals pressure). Culture-independent phylogenetic data on the Bacteria and Archaea present on particles or free-living, along with data on the microeukarya present was complemented with genomic analyses and the isolation and characterization of microbes in culture. Metagenomic analyses of the PRT revealed increased genome sizes and an overrepresentation at depth of sulfatases for the breakdown of sulfated polysaccharides and specific categories of transporters, including those associated with the transport of diverse cations or carboxylate ions, or associated with heavy metal resistance. Single-cell genomic studies revealed several linneages which recruited to the PRT metagenome far better than existing marine microbial genome sequences. analyses. Novel high pressure culture approaches have yielded new piezophiles including species preferring very low nutrient levels, those living off of hydrocarbons, and those adapted to various electron donor/electron acceptor combinations. In order to more specifically focus on functions enabling life at increased pressure selective evolution experiments were performed with

  7. Automated Video Quality Assessment for Deep-Sea Video

    NASA Astrophysics Data System (ADS)

    Pirenne, B.; Hoeberechts, M.; Kalmbach, A.; Sadhu, T.; Branzan Albu, A.; Glotin, H.; Jeffries, M. A.; Bui, A. O. V.

    2015-12-01

    Video provides a rich source of data for geophysical analysis, often supplying detailed information about the environment when other instruments may not. This is especially true of deep-sea environments, where direct visual observations cannot be made. As computer vision techniques improve and volumes of video data increase, automated video analysis is emerging as a practical alternative to labor-intensive manual analysis. Automated techniques can be much more sensitive to video quality than their manual counterparts, so performing quality assessment before doing full analysis is critical to producing valid results.Ocean Networks Canada (ONC), an initiative of the University of Victoria, operates cabled ocean observatories that supply continuous power and Internet connectivity to a broad suite of subsea instruments from the coast to the deep sea, including video and still cameras. This network of ocean observatories has produced almost 20,000 hours of video (about 38 hours are recorded each day) and an additional 8,000 hours of logs from remotely operated vehicle (ROV) dives. We begin by surveying some ways in which deep-sea video poses challenges for automated analysis, including: 1. Non-uniform lighting: Single, directional, light sources produce uneven luminance distributions and shadows; remotely operated lighting equipment are also susceptible to technical failures. 2. Particulate noise: Turbidity and marine snow are often present in underwater video; particles in the water column can have sharper focus and higher contrast than the objects of interest due to their proximity to the light source and can also influence the camera's autofocus and auto white-balance routines. 3. Color distortion (low contrast): The rate of absorption of light in water varies by wavelength, and is higher overall than in air, altering apparent colors and lowering the contrast of objects at a distance.We also describe measures under development at ONC for detecting and mitigating

  8. Phosphorus Speciation in Skeletal Aragonite of Deep Sea Corals

    NASA Astrophysics Data System (ADS)

    Mason, H. E.; Montagna, P.; Phillips, B. L.

    2007-12-01

    Phosphorus plays an important role in the world oceans as a limiting nutrient and can serve as an indicator of productivity. This link to bioactivity also relates P concentration to changes in atmospheric CO2 through biotic sequestration. The P concentration of ocean water is also connected to changes in deep sea ocean circulation that are also vehicles for global climate change. A paleoproxy for oceanic P concentration recently has been developed based on the P content in skeletal aragonite of deep-sea corals. The P-content of the septa record the ambient ocean P concentration at the time the time of deposition, which can be measured at high spatial resolution by methods such as ICP-MS. Although the correlation of P content of coral aragonite and ambient seawater suggests that phosphate is incorporated into the aragonite structure during crystal growth, the P speciation in the skeletal aragonite is unknown. We have studied P speciation in deep-sea coral aragonite collected from various localities using P-31 single pulse (SP) and cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopic techniques. Spectra of all samples contain a broad peak (>6 ppm full width at half maximum; FWHM) at a chemical shift of 3.0 to 3.5 ppm which is tentatively assigned to phosphate defects in the aragonite structure. Variable contact time CP/MAS NMR spectra indicates that the broad peak at 3.0 to 3.5 ppm is enhanced at short CP contact times, suggesting that H bearing species are important for accommodating phosphate in the aragonite structure. A subset of the samples gives spectra containing an additional, narrow peak (~ 1.5 ppm FWHM) at a chemical shift of 2.6 ppm. The spectral characteristics of this narrow peak, including both chemical shift and CP dynamics, are similar those of hydroxyl-containing apatite phases. On this basis and the small width of the peak it is assigned to crystalline apatite inclusions. These inclusions account for up to

  9. Multi-locus sequence data reveal a new species of coral reef goby (Teleostei: Gobiidae: Eviota), and evidence of Pliocene vicariance across the Coral Triangle.

    PubMed

    Tornabene, L; Valdez, S; Erdmann, M V; Pezold, F L

    2016-05-01

    Here, multi-locus sequence data are coupled with observations of live colouration to recognize a new species, Eviota punyit from the Coral Triangle, Indian Ocean and Red Sea. Relaxed molecular clock divergence time estimation indicates a Pliocene origin for the new species, and the current distribution of the new species and its sister species Eviota sebreei supports a scenario of vicariance across the Indo-Pacific Barrier, followed by subsequent range expansion and overlap in the Coral Triangle. These results are consistent with the 'centre of overlap' hypothesis, which states that the increased diversity in the Coral Triangle is due in part to the overlapping ranges of Indian Ocean and Pacific Ocean faunas. These findings are discussed in the context of other geminate pairs of coral reef fishes separated by the Indo-Pacific Barrier. PMID:27021219

  10. Deep oceanic currents and sea floor interactions offshore SE Africa

    NASA Astrophysics Data System (ADS)

    Raisson, François; Cazzola, Carlo; Ferry, Jean-Noel

    2016-04-01

    The Pamela Research program, which involves Total and Ifremer and their associated partners (French Universities, CNRS, IFPEN), is currently working to acquire new multidisciplinary data in the Mozambique Channel, in order to improve our knowledge and use this area as "laboratory" for comprehension of sedimentary/stratigraphical/geodynamical/structural and biological processes. The area comprised between the austral ocean and the southern tip of the African continent is a major place for Atlantic and Indian waters exchange, with high impact on the global climate (de Rujiter et al., 1999, Beal et al., 2011). Its prolongation toward the Mozambique Channel is a great playground to study effects of bottom currents on the sea floor. In this synthesis, we compile information about the major oceanic currents that occur at different water depth in the area, and we started listing the main published or ongoing studies, some of them in the scope of the Pamela project, related to sea floor interactions with bottom currents. These interactions are characterized by erosional features: submarine erosions, truncations, stratigraphic hiatuses, associated to depositional features: various types of contouritic drifts, sediment waves, asymmetric turbiditic levees etc. (Simpson et al., 1974, Uenzelmann-Neben et al., 2007, Uenzelmann-Neben & Huhn, 2009, Palermo et al., 2014). Movements of the main water masses in the Mozambique basin are strongly driven by thermohaline circulation but also sea floor topography and coast configuration: the Mozambique Current is not a persistent current but composed by southward moving anticyclonic eddies (De Rujiter et al., 2002, Ridderinkhof & de Rujiter, 2003, Swart et al., 2010, Halo et al., 2014). Deep currents flow northward along the western edge of the Mozambique basin: the North Atlantic Deep Waters (NADW) and the Antarctic Intermediate Waters (AAIW) flow along the Mozambican continental slope and form the Mozambique Undercurrent. A portion of

  11. Catalysis of carbon monoxide methanation by deep sea manganate minerals

    NASA Technical Reports Server (NTRS)

    Cabrera, A. L.; Maple, M. B.; Arrhenius, G.

    1990-01-01

    The catalytic activity of deep sea manganese nodule minerals for the methanation of carbon monoxide was measured with a microcatalytic technique between 200 and 460 degrees C. The manganate minerals were activated at 248 degrees C by immersion into a stream of hydrogen in which pulses of carbon monoxide were injected. Activation energies for the methanation reaction and hydrogen desorption from the manganate minerals were obtained and compared with those of pure nickel. Similar energy values indicate that the activity of the nodule materials for the reaction appears to be related to the amount of reducible transition metals present in the samples (ca. 11 wt.-%). Since the activity of the nodule minerals per gram is comparable to that of pure nickel, most of the transition metal ions located between manganese oxide layers appear to be exposed and available to catalyze the reaction.

  12. 77 FR 35850 - Safety Zone; F/V Deep Sea, Penn Cove, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Homeland Security FR Federal Register NPRM Notice of Proposed Rulemaking A. Regulatory History and... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; F/V Deep Sea, Penn Cove, WA AGENCY: Coast... the Fishing Vessel (F/V) Deep Sea, located in Penn Cove, WA. This action is necessary to ensure...

  13. Permanent carbon dioxide storage in deep-sea sediments.

    PubMed

    House, Kurt Zenz; Schrag, Daniel P; Harvey, Charles F; Lackner, Klaus S

    2006-08-15

    Stabilizing the concentration of atmospheric CO(2) may require storing enormous quantities of captured anthropogenic CO(2) in near-permanent geologic reservoirs. Because of the subsurface temperature profile of terrestrial storage sites, CO(2) stored in these reservoirs is buoyant. As a result, a portion of the injected CO(2) can escape if the reservoir is not appropriately sealed. We show that injecting CO(2) into deep-sea sediments below [corrected] 3,000-m water depth and a few hundred meters of sediment provides permanent geologic storage even with large geomechanical perturbations. At the high pressures and low temperatures common in deep-sea sediments, CO(2) resides in its liquid phase and can be denser than the overlying pore fluid, causing the injected CO(2) to be gravitationally stable. Additionally, CO(2) hydrate formation will impede the flow of CO(2)(l) and serve as a second cap on the system. The evolution of the CO(2) plume is described qualitatively from the injection to the formation of CO(2) hydrates and finally to the dilution of the CO(2)(aq) solution by diffusion. If calcareous sediments are chosen, then the dissolution of carbonate host rock by the CO(2)(aq) solution will slightly increase porosity, which may cause large increases in permeability. Karst formation, however, is unlikely because total dissolution is limited to only a few percent of the rock volume. The total CO(2) storage capacity within the 200-mile economic zone of the U.S. coastline is enormous, capable of storing thousands of years of current U.S. CO(2) emissions. PMID:16894174

  14. Abyssal and deep circulation in the Eastern Mediterranean Sea (Ionian Sea)

    NASA Astrophysics Data System (ADS)

    Artale, Vincenzo; Bensi, Manuel; Falcini, Federico; Marullo, Salvatore; Rubino, Angelo

    2016-04-01

    In the mid-1990s, experimental evidences on the Eastern Mediterranean Transient (EMT) were presented and it was shown that the Mediterranean abyssal circulation is not in a steady state but can be subjected to episodic sudden changes (Roether et al., 1996). In the last 10 years the Ionian Sea, the central and deepest part of the Mediterranean Sea, was subjected to relevant scientific interests from a theoretical and experimental point of view. Among these, there is the discovery of the BiOS (Bimodal Oscillating System), one new mechanism that drives a periodic (almost decadal) redistribution of surface and subsurface waters in the Eastern Mediterranean, with considerable feedbacks in the variability of the deep-water formation both in the southern Adriatic and in the Levantine and Aegean sub-basins (Gačić et al., 2010). In the Ionian Sea, numerous recent observational campaigns have been conducted to investigate the behaviour of deep and abyssal waters, at depths between 2000-4000m that are comparable to the mean global ocean depth (Rubino and Hainbucher, 2007; Bensi et al., 2013). There, advection, diffusion and vertical stability of the water masses can assume an important role on the internal quasi-periodical variability, creating the preconditions for catastrophic events such as the EMT or reversals of the Ionian circulation (Pisacane et al., 2006). Since there are no significant deep heat sources in the world ocean, waters that fill the deep ocean can only return to the sea surface as a result of downward mixing of heat from the sea surface to the bottom and vice versa and this occurs through eddy diffusion. Along our presentation, mainly through the analysis of the deepest CTD casts taken from 2009 to 2011 in the eastern basins and in particular in the Ionian Sea, we will show a significant change in the deep thermohaline structure (including its biogeochemical and hydrological characteristics), giving an indication on the time scale of the renewal of deep

  15. Devosia pacifica sp. nov., isolated from deep-sea sediment.

    PubMed

    Jia, Yan-Yu; Sun, Cong; Pan, Jie; Zhang, Wei-Yan; Zhang, Xin-Qi; Huo, Ying-Yi; Zhu, Xu-Fen; Wu, Min

    2014-08-01

    A novel bacterial strain, NH131(T), was isolated from deep-sea sediment of South China Sea. Cells were strictly aerobic, Gram-stain negative, short rod-shaped and motile with a single lateral flagellum. Strain NH131(T) grew optimally at pH 6.5-7.0 and 25-30 °C. 16S rRNA gene sequence analysis revealed that strain NH131(T) belonged to the genus Devosia, sharing the highest sequence similarity with the type strain, Devosia geojensis BD-c194(T) (96.2%). The predominant fatty acids were C(18 : 1)ω7c, 11-methyl C(18 : 1)ω7c, C(18 : 0) and C(16 : 0). Ubiquinone 10 was the predominant ubiquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phospholipid, three glycolipids and two unknown lipids. The DNA G+C content of strain NH131(T) was 63.0 mol%. On the basis of the results of polyphasic identification, it is suggested that strain NH131(T) represents a novel species of the genus Devosia for which the name Devosia pacifica sp. nov. is proposed. The type strain is NH131(T) ( = JCM 19305(T) = KCTC 32437(T)). PMID:24827705

  16. Virtual Investigations of an Active Deep Sea Volcano

    NASA Astrophysics Data System (ADS)

    Sautter, L.; Taylor, M. M.; Fundis, A.; Kelley, D. S.; Elend, M.

    2013-12-01

    Axial Seamount, located on the Juan de Fuca spreading ridge 300 miles off the Oregon coast, is an active volcano whose summit caldera lies 1500 m beneath the sea surface. Ongoing construction of the Regional Scale Nodes (RSN) cabled observatory by the University of Washington (funded by the NSF Ocean Observatories Initiative) has allowed for exploration of recent lava flows and active hydrothermal vents using HD video mounted on the ROVs, ROPOS and JASON II. College level oceanography/marine geology online laboratory exercises referred to as Online Concept Modules (OCMs) have been created using video and video frame-captured mosaics to promote skill development for characterizing and quantifying deep sea environments. Students proceed at their own pace through a sequence of short movies with which they (a) gain background knowledge, (b) learn skills to identify and classify features or biota within a targeted environment, (c) practice these skills, and (d) use their knowledge and skills to make interpretations regarding the environment. Part (d) serves as the necessary assessment component of the laboratory exercise. Two Axial Seamount-focused OCMs will be presented: 1) Lava Flow Characterization: Identifying a Suitable Cable Route, and 2) Assessing Hydrothermal Vent Communities: Comparisons Among Multiple Sulfide Chimneys.

  17. Beta-diversity on deep-sea wood falls reflects gradients in energy availability

    PubMed Central

    McClain, Craig; Barry, James

    2014-01-01

    Wood falls on the deep-sea floor represent a significant source of energy into the food-limited deep sea. Unique communities of primarily wood- and sulfide-obligate species form on these wood falls. However, little is known regarding patterns and drivers of variation in the composition of wood fall communities through space and time, and thus, how wood falls contribute to deep-sea biodiversity. Eighteen Acacia logs varying in size were placed and retrieved after five years at a 3200 m site in the Pacific Ocean. We found that the taxonomic composition and structure of deep-sea wood fall communities varied considerably and equated with considerable differences in energy usage and availability. Our findings suggest that natural variability in wood falls may contribute significantly to deep-sea diversity. PMID:24718094

  18. Deep structure and isostasy of the central Scotia Sea

    NASA Astrophysics Data System (ADS)

    Teterin, D. E.; Dubinin, E. P.; Udintsev, G. B.

    2015-07-01

    About 30 Ma ago in the Early Oligocene, the Drake Passage started to open and the Scotia lithospheric plate started to form. Although extensively studied during the past decade, the tectonic structure and evolution of the plate are still largely unclear. According to present-day notions, three large blocks—western, central, and eastern—are distinguished within the plate by the morphological features of undersea topography and anomalous geophysical fields in different reductions. From the standpoint of the origin and evolution, the central block is most interesting. In this work, we have studied the peculiar features of the deep structure and mechanism of isostatic equilibration for the central part of this plate using density modeling and cross-spectral analyzing. The density model has been constructed along the free-air gravity profile that intersects the central part of the Scotia Sea from the southeast to the northwest. The model estimates of crustal density are slightly lower than the average density of the oceanic crust and vary within 2.65 to 2.75 g/cm3. The transfer functions between the bathymetry and free-air gravity anomalies (gravitational admittance) have been calculated. By comparing the predicted and empirical transfer functions, we determined the mechanism of isostatic compensation and estimated the depths of the compensating boundaries. Together with the results of morphological analysis on undersea topography and geophysical fields (Teterin et al., 2015), these estimates suggest that the central Scotia Sea probably followed a different evolution scenario than the commonly accepted spreading model. This part of the Scotia Sea is probably a large fragment of the continental bridge that connected the South America with Antarctic and sank due to the heating and extension of the continental lithosphere.

  19. 76 FR 36511 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-22

    ... United States; Atlantic Deep-Sea Red Crab; Amendment 3 AGENCY: National Marine Fisheries Service (NMFS... Fishery Management Council (Council) has submitted Amendment 3 to the Atlantic Deep-Sea Red Crab...

  20. Simply actuated closure for a pressure vessel - Design for use to trap deep-sea animals

    NASA Technical Reports Server (NTRS)

    Yayanos, A. A.

    1977-01-01

    A pressure vessel is described that can be closed by a single translational motion within 1 sec. The vessel is a key component of a trap for small marine animals and operates automatically on the sea floor. As the vessel descends to the sea floor, it is subjected both internally and externally to the high pressures of the deep sea. The mechanism for closing the pressure vessel on the sea floor is activated by the timed release of the ballast which was used to sink the trap. As it rises to the sea surface, the internal pressure of the vessel remains near the value present on the sea floor. The pressure vessel has been used in simulated ocean deployments and in the deep ocean (9500 m) with a 75%-85% retention of the deep-sea pressure. Nearly 100% retention of pressure can be achieved by using an accumulator filled with a gas.

  1. Standing stock of deep-sea metazoan meiofauna in the Sulu Sea and adjacent areas

    NASA Astrophysics Data System (ADS)

    Shimanaga, Motohiro; Nomaki, Hidetaka; Suetsugu, Kishiko; Murayama, Masafumi; Kitazato, Hiroshi

    2007-01-01

    Standing stocks of deep-sea metazoan meiofauna were investigated in the Sulu Sea, one of the most isolated marginal basins with comparably warm bottom-water temperatures (˜10 °C) at depths below 1000 m. A decline in the abundance and biomass of organisms with increasing water depth occurred in the basin, but the abundances at bathyal and abyssal sites in the Sulu Basin appeared to be lower than standard values worldwide when adjusted for water depth. There is no significant correlation between meiofaunal abundance and the concentration of chloroplastic pigment equivalents (CPE) in the sediment, an indicator of the amount of organic matter derived from primary production. The ratios of meiofaunal abundance to CPE concentration at the sampling sites were as small as those observed at comparable depths in the Red Sea. These suggest that the quantity of "food" is not a primary factor limiting the density of organisms in the basin. It is hypothesized that a higher respiratory activity of benthos caused by warm bottom water and a lower food quality could be important factors regulating the metazoan meiofaunal standing stocks in the Sulu Sea.

  2. Radiocarbon in the Weddell Sea as observed in a deep-sea coral and in krill

    SciTech Connect

    Michel, R.L.; Druffel, E.M.

    1983-03-01

    Radiocarbon mesurements were performed on krill and coral samples collected from the Weddell Sea during IWSOE '80. These are the first radiocarbon measurements available from this area since 1973. These data reveal carbon-14 levels for Weddell surface water and southern Weddell Shelf water. These data indicate that the radiocarbon levels in surface waters in 1980 were the same or slightly lower than those present in 1973. In addition, an unusually low ..delta../sup 14/C value for shelf water (from coral) at 500 m is evidence that Warm Deep Water (WDW) may penetrate much further and more frequently onto the shelf region than had previously been expected.

  3. Persistence of Pristine Deep-Sea Coral Gardens in the Mediterranean Sea (SW Sardinia)

    PubMed Central

    Bo, Marzia; Bavestrello, Giorgio; Angiolillo, Michela; Calcagnile, Lucio; Canese, Simonepietro; Cannas, Rita; Cau, Alessandro; D’Elia, Marisa; D’Oriano, Filippo; Follesa, Maria Cristina; Quarta, Gianluca; Cau, Angelo

    2015-01-01

    Leiopathes glaberrima is a tall arborescent black coral species structuring important facies of the deep-sea rocky bottoms of the Mediterranean Sea that are severely stifled by fishing activities. At present, however, no morphological in vivo description, ecological characterization, age dating and evaluation of the possible conservation actions have ever been made for any population of this species in the basin. A dense coral population was reported during two Remotely Operated Vehicle (ROV) surveys conducted on a rocky bank off the SW coasts of Sardinia (Western Mediterranean Sea). L. glaberrima forms up to 2 m-tall colonies with a maximal observed basal diameter of nearly 7 cm. The radiocarbon dating carried out on a colony from this site with a 4 cm basal diameter revealed an approximately age of 2000 years. Considering the size-frequency distribution of the colonies in the area it is possible to hypothesize the existence of other millennial specimens occupying a supposedly very stable ecosystem. The persistence of this ecosystem is likely guaranteed by the heterogeneous rocky substrate hosting the black coral population that represents a physical barrier against the mechanical impacts acted on the surrounding muddy areas, heavily exploited as trawling fishing grounds. This favorable condition, together with the existence of a nursery area for catsharks within the coral ramifications and the occurrence of a meadow of the now rare soft bottom alcyonacean Isidella elongata in small surviving muddy enclaves, indicates that this ecosystem have to be considered a pristine Mediterranean deep-sea coral sanctuary that would deserve special protection. PMID:25790333

  4. Persistence of pristine deep-sea coral gardens in the Mediterranean Sea (SW Sardinia).

    PubMed

    Bo, Marzia; Bavestrello, Giorgio; Angiolillo, Michela; Calcagnile, Lucio; Canese, Simonepietro; Cannas, Rita; Cau, Alessandro; D'Elia, Marisa; D'Oriano, Filippo; Follesa, Maria Cristina; Quarta, Gianluca; Cau, Angelo

    2015-01-01

    Leiopathes glaberrima is a tall arborescent black coral species structuring important facies of the deep-sea rocky bottoms of the Mediterranean Sea that are severely stifled by fishing activities. At present, however, no morphological in vivo description, ecological characterization, age dating and evaluation of the possible conservation actions have ever been made for any population of this species in the basin. A dense coral population was reported during two Remotely Operated Vehicle (ROV) surveys conducted on a rocky bank off the SW coasts of Sardinia (Western Mediterranean Sea). L. glaberrima forms up to 2 m-tall colonies with a maximal observed basal diameter of nearly 7 cm. The radiocarbon dating carried out on a colony from this site with a 4 cm basal diameter revealed an approximately age of 2000 years. Considering the size-frequency distribution of the colonies in the area it is possible to hypothesize the existence of other millennial specimens occupying a supposedly very stable ecosystem. The persistence of this ecosystem is likely guaranteed by the heterogeneous rocky substrate hosting the black coral population that represents a physical barrier against the mechanical impacts acted on the surrounding muddy areas, heavily exploited as trawling fishing grounds. This favorable condition, together with the existence of a nursery area for catsharks within the coral ramifications and the occurrence of a meadow of the now rare soft bottom alcyonacean Isidella elongata in small surviving muddy enclaves, indicates that this ecosystem have to be considered a pristine Mediterranean deep-sea coral sanctuary that would deserve special protection. PMID:25790333

  5. 75 FR 27219 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications...), Commerce. ACTION: Final rule. SUMMARY: NMFS issues final specifications for the 2010 Atlantic deep- sea red... document is also accessible via the Internet at http://www.nefmc.org . NMFS prepared a Final...

  6. A multi-locus approach to barcoding in the Anopheles strodei subgroup (Diptera: Culicidae)

    PubMed Central

    2013-01-01

    Background The ability to successfully identify and incriminate pathogen vectors is fundamental to effective pathogen control and management. This task is confounded by the existence of cryptic species complexes. Molecular markers can offer a highly effective means of species identification in such complexes and are routinely employed in the study of medical entomology. Here we evaluate a multi-locus system for the identification of potential malaria vectors in the Anopheles strodei subgroup. Methods Larvae, pupae and adult mosquitoes (n = 61) from the An. strodei subgroup were collected from 21 localities in nine Brazilian states and sequenced for the COI, ITS2 and white gene. A Bayesian phylogenetic approach was used to describe the relationships in the Strodei Subgroup and the utility of COI and ITS2 barcodes was assessed using the neighbor joining tree and “best close match” approaches. Results Bayesian phylogenetic analysis of the COI, ITS2 and white gene found support for seven clades in the An. strodei subgroup. The COI and ITS2 barcodes were individually unsuccessful at resolving and identifying some species in the Subgroup. The COI barcode failed to resolve An. albertoi and An. strodei but successfully identified approximately 92% of all species queries, while the ITS2 barcode failed to resolve An. arthuri and successfully identified approximately 60% of all species queries. A multi-locus COI-ITS2 barcode, however, resolved all species in a neighbor joining tree and successfully identified all species queries using the “best close match” approach. Conclusions Our study corroborates the existence of An. albertoi, An. CP Form and An. strodei in the An. strodei subgroup and identifies four species under An. arthuri informally named A-D herein. The use of a multi-locus barcode is proposed for species identification, which has potentially important utility for vector incrimination. Individuals previously found naturally infected with Plasmodium

  7. A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi

    PubMed Central

    Wang, Yan-Ting; Xue, Ya-Rong; Liu, Chang-Hong

    2015-01-01

    Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development. PMID:26213949

  8. A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi.

    PubMed

    Wang, Yan-Ting; Xue, Ya-Rong; Liu, Chang-Hong

    2015-08-01

    Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development. PMID:26213949

  9. Novel use of burrow casting as a research tool in deep-sea ecology.

    PubMed

    Seike, Koji; Jenkins, Robert G; Watanabe, Hiromi; Nomaki, Hidetaka; Sato, Kei

    2012-08-23

    Although the deep sea is the largest ecosystem on Earth, its infaunal ecology remains poorly understood because of the logistical challenges. Here we report the morphology of relatively large burrows obtained by in situ burrow casting at a hydrocarbon-seep site and a non-seep site at water depths of 1173 and 1455 m, respectively. Deep and complex burrows are abundant at both sites, indicating that the burrows introduce oxygen-rich sea water into the deep reducing substrate, thereby influencing benthic metabolism and nutrient fluxes, and providing an oxic microhabitat for small organisms. Burrow castings reveal that the solemyid bivalve Acharax johnsoni mines sulphide from the sediment, as documented for related shallow-water species. To our knowledge, this is the first study to examine in situ burrow morphology in the deep sea by means of burrow casting, providing detailed information on burrow structure which will aid the interpretation of seabed processes in the deep sea. PMID:22298806

  10. Historical influences on deep-sea isopod diversity in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, George D. F.

    1998-01-01

    Most isopod crustaceans in the North Atlantic deep sea belong to the suborder Asellota. In contrast, South Atlantic isopod faunas have a significant component of flabelliferan isopods, a phylogenetic clade that contains suborders derived evolutionarily later than the Asellota. The flabelliferans decrease diversity from shallow water to deep water and on a south-to-north latitudinal gradient. Although many asellote families are endemic to the deep sea, none of the flabelliferan families appear to have evolved in the abyss. Recent colonisations of the deep sea, which may have been limited to the southern hemisphere by oceanographic conditions, have significant consequences for observed regional diversities of some taxa. Instability in oceanographic conditions owing to glaciation and benthic storms may have further limited benthic species richness of the North Atlantic deep-sea benthos.

  11. Novel use of burrow casting as a research tool in deep-sea ecology

    PubMed Central

    Seike, Koji; Jenkins, Robert G.; Watanabe, Hiromi; Nomaki, Hidetaka; Sato, Kei

    2012-01-01

    Although the deep sea is the largest ecosystem on Earth, its infaunal ecology remains poorly understood because of the logistical challenges. Here we report the morphology of relatively large burrows obtained by in situ burrow casting at a hydrocarbon-seep site and a non-seep site at water depths of 1173 and 1455 m, respectively. Deep and complex burrows are abundant at both sites, indicating that the burrows introduce oxygen-rich sea water into the deep reducing substrate, thereby influencing benthic metabolism and nutrient fluxes, and providing an oxic microhabitat for small organisms. Burrow castings reveal that the solemyid bivalve Acharax johnsoni mines sulphide from the sediment, as documented for related shallow-water species. To our knowledge, this is the first study to examine in situ burrow morphology in the deep sea by means of burrow casting, providing detailed information on burrow structure which will aid the interpretation of seabed processes in the deep sea. PMID:22298806

  12. Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data

    PubMed Central

    Raupach, Michael J.; Mayer, Christoph; Malyutina, Marina; Wägele, Johann-Wolfgang

    2008-01-01

    The Asellota are a highly variable group of Isopoda with many species in freshwater and marine shallow-water environments. However, in the deep sea, they show their most impressive radiation with a broad range of astonishing morphological adaptations and bizarre body forms. Nevertheless, the evolution and phylogeny of the deep-sea Asellota are poorly known because of difficulties in scoring morphological characters. In this study, the molecular phylogeny of the Asellota is evaluated for 15 marine shallow-water species and 101 deep-sea species, using complete 18S and partial 28S rDNA gene sequences. Our molecular data support the monophyly of most deep-sea families and give evidence for a multiple colonization of the deep sea by at least four major lineages of asellote isopods. According to our molecular data, one of these lineages indicates an impressive radiation in the deep sea. Furthermore, the present study rejects the monophyly of the family Janiridae, a group of plesiomorphic shallow-water Asellota, and several shallow-water and deep-sea genera (Acanthaspidia, Ianthopsis, Haploniscus, Echinozone, Eurycope, Munnopsurus and Syneurycope). PMID:19033145

  13. A climate-related oxidizing event in deep-sea sediment from the Bering Sea

    USGS Publications Warehouse

    Gardner, J.V.; Dean, W.E.; Klise, D.H.; Baldauf, J.G.

    1982-01-01

    Many cores from the deep basins of the Bering Sea have a thin oxidized zone within otherwise reduced sediment. This oxidized zone began to form about 6000 yr ago and represents an interval of about 3200 yr. Mineralogically, the oxidized and reduced sediments are similar, but chemically they differ. Concentrations of Fe and C are lower, and concentrations of Mn, Ba, Co, Mo, and Ni are higher in the oxidized than in the reduced sediment. Mn is enriched about 10-fold in the oxidized zone relative to its concentration in the reduced sediment, Mo about threefold, and Ba, Co, and Ni about twofold. These data suggest that the oxidized zone developed diagenetically as the result of the balance between the flux of organic matter and the available dissolved oxygen in bottom and interstitial waters. We propose that the Bering Sea was substantially ice covered when global glacial conditions prevailed. during the transition to global interglacial conditions, seasonal meltwater from thawing sea ice formed a lens of fresh water that decreased organic productivity. During the winter seasons, however, sea ice reformed and caused downwelling of dense, oxygen-rich waters to recharge bottom waters. The combination of lower organic productivity and more oxygen-rich bottom water allowed oxidized sediment to accumulate. Once full interglacial conditions were established, the volume of sea ice produced was insufficient to affect either productivity or the supply of dissolved oxygen and so bottom conditions again became reducing. Similar events probably occurred during the onset of global glacial conditions, and similar oxidized layers probably formed at these times. Such oxidized zones are highly unstable, however, in a reducing environment and, once buried beyond the influence of bacterial and infaunal activities, are depleted of their available oxygen and converted to reduced sediment. ?? 1982.

  14. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons.

    PubMed

    Guardiola, Magdalena; Uriz, María Jesús; Taberlet, Pierre; Coissac, Eric; Wangensteen, Owen Simon; Turon, Xavier

    2015-01-01

    Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp). We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column) that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m). We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla), Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm) of sediment was significantly different from deeper layers. We found that qualitative (presence-absence) and quantitative (relative number of reads) data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs) showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation efforts on

  15. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons

    PubMed Central

    Guardiola, Magdalena; Uriz, María Jesús; Taberlet, Pierre; Coissac, Eric; Wangensteen, Owen Simon; Turon, Xavier

    2015-01-01

    Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp). We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column) that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100–2,250 m). We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla), Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm) of sediment was significantly different from deeper layers. We found that qualitative (presence-absence) and quantitative (relative number of reads) data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs) showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation efforts on

  16. Optimization of DNA Extraction from Deep-sea Basalt

    NASA Astrophysics Data System (ADS)

    Wang, H.; Edwards, K. J.

    2007-12-01

    Studies on the microorganisms that inhabit deep-sea basalt can provide information on this dark ecosystem, which will contribution to our understanding of mass transformation and energy flow in the deep ocean. However, molecular methods for use with metal- and clay-rich rock materials such as basalt have not been suitably developed at present, yet are critically required in order to be able to fully evaluate the basalt biotope. For example, inefficient DNA extraction might lead to loss of information about important components of this community, and misinterpretation about the total community diversity and function. In order to investigate the effects of sample pretreated method, particle size, different DNA extraction methods and cell density on extracted DNA yields, two basalt samples were collected from the East Pacific Rise 9° N during research cruise AT11- 20 in Nov 2004. Basalt samples were crushed to different particle size, washed with ddH2O and 100% ethanol respectively, and autoclaved. Marinobacter aquaeolei cultures with different cell densities were inoculated into differently treated basalt samples. Pure culture and basalt samples without inoculation were used as positive and negative control to evaluate the extracting efficiency. FastDNA spin for soil kit, GeneClean for ancient DNA kit and UltraCleanTM soil DNA Kit are used for DNA extraction. Results showed that DNA yields increased with culture density. FastDNA spin for soil kit gave the highest DNA yields, which is almost 10 times more than that of UltraCleanTM soil DNA Kit. Ethanol washing and ddH2O washing did not make big difference to DNA yields. Mineral composition and surface areas might also affect DNA yields.

  17. A multi-locus time-calibrated phylogeny of the siphonous green algae.

    PubMed

    Verbruggen, Heroen; Ashworth, Matt; LoDuca, Steven T; Vlaeminck, Caroline; Cocquyt, Ellen; Sauvage, Thomas; Zechman, Frederick W; Littler, Diane S; Littler, Mark M; Leliaert, Frederik; De Clerck, Olivier

    2009-03-01

    The siphonous green algae are an assemblage of seaweeds that consist of a single giant cell. They comprise two sister orders, the Bryopsidales and Dasycladales. We infer the phylogenetic relationships among the siphonous green algae based on a five-locus data matrix and analyze temporal aspects of their diversification using relaxed molecular clock methods calibrated with the fossil record. The multi-locus approach resolves much of the previous phylogenetic uncertainty, but the radiation of families belonging to the core Halimedineae remains unresolved. In the Bryopsidales, three main clades were inferred, two of which correspond to previously described suborders (Bryopsidineae and Halimedineae) and a third lineage that contains only the limestone-boring genus Ostreobium. Relaxed molecular clock models indicate a Neoproterozoic origin of the siphonous green algae and a Paleozoic diversification of the orders into their families. The inferred node ages are used to resolve conflicting hypotheses about species ages in the tropical marine alga Halimeda. PMID:19141323

  18. Causes and Consequences of Multi-Locus Imprinting Disturbances in Humans.

    PubMed

    Sanchez-Delgado, Marta; Riccio, Andrea; Eggermann, Thomas; Maher, Eamonn R; Lapunzina, Pablo; Mackay, Deborah; Monk, David

    2016-07-01

    Eight syndromes are associated with the loss of methylation at specific imprinted loci. There has been increasing evidence that these methylation defects in patients are not isolated events occurring at a given disease-associated locus but that some of these patients may have multi-locus imprinting disturbances (MLID) affecting additional imprinted regions. With the recent advances in technology, methylation profiling has revealed that imprinted loci represent only a small fraction of the methylation differences observed between the gametes. To figure out how imprinting anomalies occur at multiple imprinted domains, we have to understand the interplay between DNA methylation and histone modifications in the process of selective imprint protection during pre-implantation reprogramming, which, if disrupted, leads to these complex imprinting disorders (IDs). PMID:27235113

  19. CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast.

    PubMed

    Walter, Jessica M; Chandran, Sunil S; Horwitz, Andrew A

    2016-12-01

    Demands on the industrial and academic yeast strain engineer have increased significantly in the era of synthetic biology. Installing complex biosynthetic pathways and combining point mutations are tedious and time-consuming using traditional methods. With multiplex engineering tools, these tasks can be completed in a single step, typically achieving up to sixfold compression in strain engineering timelines. To capitalize on this potential, a variety of yeast CRISPR-Cas methods have been developed, differing largely in how the guide RNA (gRNA) reagents that direct the Cas9 nuclease are delivered. However, in nearly all reported protocols, the time savings of multiplexing is offset by multiple days of cloning to prepare the required reagents. Here, we discuss the advantages and opportunities of CRISPR-Cas-assisted multiplexing (CAM), a same-day, cloning-free method for multi-locus engineering in yeast. J. Cell. Physiol. 231: 2563-2569, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991244

  20. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    PubMed

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. PMID:25911507

  1. Effect of sea water interaction on strontium isotope composition of deep-sea basalts

    USGS Publications Warehouse

    Julius, Dasch E.; Hedge, C.E.; Dymond, J.

    1973-01-01

    Analyses of rim-to-interior samples of fresh tholeiitic pillow basalts, deuterically altered holocrystalline basalts, and older, weathered tholeiitic basalts from the deep sea indicate that 87Sr 86Sr ratios of the older basalts are raised by low temperature interaction with strontium dissolved in sea water. 87Sr 86Sr correlates positively with H2O in these basalts; however, there is little detectable modification of the strontium isotope composition in rocks with H2O contents less than 1%. The isotope changes appear to be a function of relatively long-term, low-temperature weathering, rather than high-temperature or deuteric alteration. Strontium abundance and isotopic data for these rocks suggest that strontium content is only slightly modified by interaction with sea water, and it is a relatively insensitive indicator of marine alteration. Average Rb-Sr parameters for samples of apparently unaltered basalt are: Rb = 1.11 ppm; Sr = 132 ppm; 87Sr 86Sr = 0.70247. ?? 1973.

  2. Modern Tasman Sea surface reservoir ages from deep-sea black corals

    NASA Astrophysics Data System (ADS)

    Komugabe, Aimée F.; Fallon, Stewart J.; Thresher, Ronald E.; Eggins, Stephen M.

    2014-01-01

    Marine reservoir ages are a key element in calculating and constraining uncertainty in radiocarbon age estimates and are also essential to better understand regional ocean circulation. In this study, we present a new method to reconstruct long-term, high-resolution sea surface reservoir ages based on analysis of the organic skeleton of deep-sea (560 m) black coral (Anthozoa, Antipatharia). Our results confirm that antipatharians are extremely slow growing (typical radial growth rate for a South Pacific specimen around 0.03 mm/yr). Coupled uranium series and radiocarbon measurements were made on black coral collected live from the Norfolk Ridge (north Tasman Sea) to provide the first modern reservoir ages for this region. At the Norfolk Ridge, the average reservoir age between 1790 AD and 1900 AD was ∼330 years. This was followed by a steep decrease over time of about 70 years to 1950 AD (our most modern value). This indicates an increase in surface ocean ventilation of water masses in this region. These results are consistent with observational studies for the early twentieth century, which suggest significant changes in regional circulation of the southwest pacific.

  3. Sperm whale assessment in the Western Ionian Sea using acoustic data from deep sea observatories

    NASA Astrophysics Data System (ADS)

    Caruso, Francesco; Bellia, Giorgio; Beranzoli, Laura; De Domenico, Emilio; Larosa, Giuseppina; Marinaro, Giuditta; Papale, Elena; Pavan, Gianni; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Scandura, Danila; Sciacca, Virginia; Viola, Salvatore

    2015-04-01

    The Italian National Institute of Nuclear Physics (INFN) operates two deep sea infrastructures: Capo Passero, Western Ionian Sea 3,600 meters of depth, and Catania Wester Ionian Sea 2,100 m depth. At the two sites, several research observatories have been run: OnDE, NEMO-SN1, SMO, KM3NeT-Italia most of them jointly operated between INFN and INGV. In all these observatories, passive acoustic sensors (hydrophones) have been installed. Passive Acoustics Monitoring (PAM) is nowadays the main tool of the bioacoustics to study marine mammals. In particular, receiving the sounds emitted by cetaceans from a multi-hydrophones array installed in a cabled seafloor observatory, a research about the ecological dynamics of the species may be performed. Data acquired with the hydrophones installed aboard the OnDE, SMO and KM3NeT-Italia observatories will be reported. Thanks to acquired data, the acoustic presence of the sperm whales was assessed and studied for several years (2005:2013). An "ad hoc" algorithm was also developed to allow the automatic identification of the "clicks" emitted by the sperm whales and measure the size of detected animals. According to the results obtained, the sperm whale population in the area is well-distributed in size, sex and sexual maturity. Although specimens more than 14 meters of length (old males) seem to be absent.

  4. Multi-locus Genotypes Underlying Temperature Sensitivity in a Mutationally Induced Trait

    PubMed Central

    Lee, Jonathan T.; Taylor, Matthew B.; Shen, Amy; Ehrenreich, Ian M.

    2016-01-01

    Determining how genetic variation alters the expression of heritable phenotypes across conditions is important for agriculture, evolution, and medicine. Central to this problem is the concept of genotype-by-environment interaction (or ‘GxE’), which occurs when segregating genetic variation causes individuals to show different phenotypic responses to the environment. While many studies have sought to identify individual loci that contribute to GxE, obtaining a deeper understanding of this phenomenon may require defining how sets of loci collectively alter the relationship between genotype, environment, and phenotype. Here, we identify combinations of alleles at seven loci that control how a mutationally induced colony phenotype is expressed across a range of temperatures (21, 30, and 37°C) in a panel of yeast recombinants. We show that five predominant multi-locus genotypes involving the detected loci result in trait expression with varying degrees of temperature sensitivity. By comparing these genotypes and their patterns of trait expression across temperatures, we demonstrate that the involved alleles contribute to temperature sensitivity in different ways. While alleles of the transcription factor MSS11 specify the potential temperatures at which the trait can occur, alleles at the other loci modify temperature sensitivity within the range established by MSS11 in a genetic background- and/or temperature-dependent manner. Our results not only represent one of the first characterizations of GxE at the resolution of multi-locus genotypes, but also provide an example of the different roles that genetic variants can play in altering trait expression across conditions. PMID:26990313

  5. Geologic evolution of the Bering Sea Komandorksy deep basin

    SciTech Connect

    Bogdanov, N.A.

    1986-07-01

    The deep-water Komandorsky basin is located in the southwestern part of the Bering Sea. On the east, it is separated from the Aleutian basin by the submerged Shirshov Ridge; on the west, it is bordered by structures of the north Kamchatka accretionary prism. The Komandorsky basin is characterized by strongly dissected relief of it acoustic basement, which is overlain by a 1.5 to 2.0-km thick sedimentary cover. The western part of the basin is occupied by a rift zone, which is characterized by modern seismicity and high heat flow. It is considered to be the axial zone of Miocene-Pleistocene spreading. On the north terrace of the Komandorsky island arc, traced active volcanos provide evidence that subduction is occurring under the arc from the north. The spreading rift zone is reflected on the continent in Miocene-Pleistocene volcanic rocks, characterized by typical oceanic tholeiitic composition. The Komandorsky basin formed as a result of spreading during the Maestrichtian. Spreading within the basin occurred during the early and middle Oligocene and the late Miocene. East and west of the spreading axis, accretionary prisms formed. The latter are observed along the western flank of the Shirshov Ridge and on the eastern sides of the Kamchatka Peninsula and Koraginsky Island.

  6. Density estimates for deep-sea gastropod assemblages

    NASA Astrophysics Data System (ADS)

    Rex, Michael A.; Etter, Ron J.; Nimeskern, Phillip W.

    1990-04-01

    Extensive boxcore sampling in the Atlantic Continental Slope and Rise study permitted the first precise measurement of gastropod density in the bathyal region of the deep sea. Gastropod density decreases significantly and exponentially with depth (250-3494 m), and density-depth regression lines do not differ significantly in either slope or elevatiob over horizontal scales of approximately 1000 km. The subclasses Prosobranchia and Opisthobranchia both show significant decreases in density with depth. Predatory taxa (neogastropods and opisthobranchs) exhibit significantly steeper declines in density with depth than do taxa dominated by deposit feeders (archaeogastropods and mesogastropods). Members of upper trophic levels may be more sensitive to the reduction in nutrient input with increased depth because of the energy loss between trophic levels in the food chain. A comparison of density estimates of gastropods from boxcore, grab and anchor-dredge samples taken in the same region revealed no significant differences in density-depth relationships among the sampling methods. A synthesis of data from 777 boxcore samples collected from the Atlantic, Caribbean and Pacific over a depth range of 250-7298 m indicates that the decline in gastropod density with depth is a global trend with only moderate inter-regional variation.

  7. Adaptive radiation of chemosymbiotic deep-sea mussels

    PubMed Central

    Lorion, Julien; Kiel, Steffen; Faure, Baptiste; Kawato, Masaru; Ho, Simon Y. W.; Marshall, Bruce; Tsuchida, Shinji; Miyazaki, Jun-Ichi; Fujiwara, Yoshihiro

    2013-01-01

    Adaptive radiations present fascinating opportunities for studying the evolutionary process. Most cases come from isolated lakes or islands, where unoccupied ecological space is filled through novel adaptations. Here, we describe an unusual example of an adaptive radiation: symbiotic mussels that colonized island-like chemosynthetic environments such as hydrothermal vents, cold seeps and sunken organic substrates on the vast deep-sea floor. Our time-calibrated molecular phylogeny suggests that the group originated and acquired sulfur-oxidizing symbionts in the Late Cretaceous, possibly while inhabiting organic substrates and long before its major radiation in the Middle Eocene to Early Oligocene. The first appearance of intracellular and methanotrophic symbionts was detected only after this major radiation. Thus, contrary to expectations, the major radiation may have not been triggered by the evolution of novel types of symbioses. We hypothesize that environmental factors, such as increased habitat availability and/or increased dispersal capabilities, sparked the radiation. Intracellular and methanotrophic symbionts were acquired in several independent lineages and marked the onset of a second wave of diversification at vents and seeps. Changes in habitat type resulted in adaptive trends in shell lengths (related to the availability of space and energy, and physiological trade-offs) and in the successive colonization of greater water depths. PMID:24048154

  8. Deep sea hydrothermal plumes and their interaction with oscillatory flows

    NASA Astrophysics Data System (ADS)

    Xu, Guangyu; di Iorio, Daniela

    2012-09-01

    The acoustic scintillation method is applied to the investigation and monitoring of a vigorous hydrothermal plume from Dante within the Main Endeavour vent field (MEF) in the Endeavour Ridge segment. A 40 day time series of the plume's vertical velocity and temperature fluctuations provides a unique opportunity to study deep sea plume dynamics in a tidally varying horizontal cross flow. An integral plume model that takes into account ambient stratification and horizontal cross flows is established from the conservation equations of mass, momentum and density deficit. Using a linear additive entrainment velocity in the model (E = αUm + βU⊥) that is a function of both the plume relative axial velocity (Um) and the relative ambient flow perpendicular to the plume (U⊥) gives consistent results to the experimental data, suggesting entrainment coefficients α = 0.1 and β = 0.6. Also from the integral model, the plume height in a horizontal cross flow (Ua) is shown to scale as 1.8B1/3Ua-1/3N-2/3 for 0.01 ≤ Ua ≤ 0.1 m/s where B is the initial buoyancy transport and N is the ambient stratification, both of which are assumed constant.

  9. Carbon dioxide sequestration in deep-sea basalt

    PubMed Central

    Goldberg, David S.; Takahashi, Taro; Slagle, Angela L.

    2008-01-01

    Developing a method for secure sequestration of anthropogenic carbon dioxide in geological formations is one of our most pressing global scientific problems. Injection into deep-sea basalt formations provides unique and significant advantages over other potential geological storage options, including (i) vast reservoir capacities sufficient to accommodate centuries-long U.S. production of fossil fuel CO2 at locations within pipeline distances to populated areas and CO2 sources along the U.S. west coast; (ii) sufficiently closed water-rock circulation pathways for the chemical reaction of CO2 with basalt to produce stable and nontoxic (Ca2+, Mg2+, Fe2+)CO3 infilling minerals, and (iii) significant risk reduction for post-injection leakage by geological, gravitational, and hydrate-trapping mechanisms. CO2 sequestration in established sediment-covered basalt aquifers on the Juan de Fuca plate offer promising locations to securely accommodate more than a century of future U.S. emissions, warranting energized scientific research, technological assessment, and economic evaluation to establish a viable pilot injection program in the future. PMID:18626013

  10. Adaptive radiation of chemosymbiotic deep-sea mussels.

    PubMed

    Lorion, Julien; Kiel, Steffen; Faure, Baptiste; Kawato, Masaru; Ho, Simon Y W; Marshall, Bruce; Tsuchida, Shinji; Miyazaki, Jun-Ichi; Fujiwara, Yoshihiro

    2013-11-01

    Adaptive radiations present fascinating opportunities for studying the evolutionary process. Most cases come from isolated lakes or islands, where unoccupied ecological space is filled through novel adaptations. Here, we describe an unusual example of an adaptive radiation: symbiotic mussels that colonized island-like chemosynthetic environments such as hydrothermal vents, cold seeps and sunken organic substrates on the vast deep-sea floor. Our time-calibrated molecular phylogeny suggests that the group originated and acquired sulfur-oxidizing symbionts in the Late Cretaceous, possibly while inhabiting organic substrates and long before its major radiation in the Middle Eocene to Early Oligocene. The first appearance of intracellular and methanotrophic symbionts was detected only after this major radiation. Thus, contrary to expectations, the major radiation may have not been triggered by the evolution of novel types of symbioses. We hypothesize that environmental factors, such as increased habitat availability and/or increased dispersal capabilities, sparked the radiation. Intracellular and methanotrophic symbionts were acquired in several independent lineages and marked the onset of a second wave of diversification at vents and seeps. Changes in habitat type resulted in adaptive trends in shell lengths (related to the availability of space and energy, and physiological trade-offs) and in the successive colonization of greater water depths. PMID:24048154

  11. Taxonomic evaluation of putative Streptomyces scabiei strains held in the ARS (NRRL) Culture Collection using multi-locus sequence analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 str...

  12. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology

    PubMed Central

    Wang, Shi-Bo; Feng, Jian-Ying; Ren, Wen-Long; Huang, Bo; Zhou, Ling; Wen, Yang-Jun; Zhang, Jin; Dunwell, Jim M.; Xu, Shizhong; Zhang, Yuan-Ming

    2016-01-01

    Genome-wide association studies (GWAS) have been widely used in genetic dissection of complex traits. However, common methods are all based on a fixed-SNP-effect mixed linear model (MLM) and single marker analysis, such as efficient mixed model analysis (EMMA). These methods require Bonferroni correction for multiple tests, which often is too conservative when the number of markers is extremely large. To address this concern, we proposed a random-SNP-effect MLM (RMLM) and a multi-locus RMLM (MRMLM) for GWAS. The RMLM simply treats the SNP-effect as random, but it allows a modified Bonferroni correction to be used to calculate the threshold p value for significance tests. The MRMLM is a multi-locus model including markers selected from the RMLM method with a less stringent selection criterion. Due to the multi-locus nature, no multiple test correction is needed. Simulation studies show that the MRMLM is more powerful in QTN detection and more accurate in QTN effect estimation than the RMLM, which in turn is more powerful and accurate than the EMMA. To demonstrate the new methods, we analyzed six flowering time related traits in Arabidopsis thaliana and detected more genes than previous reported using the EMMA. Therefore, the MRMLM provides an alternative for multi-locus GWAS. PMID:26787347

  13. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology.

    PubMed

    Wang, Shi-Bo; Feng, Jian-Ying; Ren, Wen-Long; Huang, Bo; Zhou, Ling; Wen, Yang-Jun; Zhang, Jin; Dunwell, Jim M; Xu, Shizhong; Zhang, Yuan-Ming

    2016-01-01

    Genome-wide association studies (GWAS) have been widely used in genetic dissection of complex traits. However, common methods are all based on a fixed-SNP-effect mixed linear model (MLM) and single marker analysis, such as efficient mixed model analysis (EMMA). These methods require Bonferroni correction for multiple tests, which often is too conservative when the number of markers is extremely large. To address this concern, we proposed a random-SNP-effect MLM (RMLM) and a multi-locus RMLM (MRMLM) for GWAS. The RMLM simply treats the SNP-effect as random, but it allows a modified Bonferroni correction to be used to calculate the threshold p value for significance tests. The MRMLM is a multi-locus model including markers selected from the RMLM method with a less stringent selection criterion. Due to the multi-locus nature, no multiple test correction is needed. Simulation studies show that the MRMLM is more powerful in QTN detection and more accurate in QTN effect estimation than the RMLM, which in turn is more powerful and accurate than the EMMA. To demonstrate the new methods, we analyzed six flowering time related traits in Arabidopsis thaliana and detected more genes than previous reported using the EMMA. Therefore, the MRMLM provides an alternative for multi-locus GWAS. PMID:26787347

  14. Deep-sea macrourid fishes scavenge on plant material: Evidence from in situ observations

    NASA Astrophysics Data System (ADS)

    Jeffreys, Rachel M.; Lavaleye, Marc S. S.; Bergman, Magda J. N.; Duineveld, Gerard C. A.; Witbaard, Rob; Linley, Thom

    2010-04-01

    Deep-sea benthic communities primarily rely on an allochthonous food source. This may be in the form of phytodetritus or as food falls e.g. sinking carcasses of nekton or debris of marine macrophyte algae. Deep-sea macrourids are the most abundant demersal fish in the deep ocean. Macrourids are generally considered to be the apex predators/scavengers in deep-sea communities. Baited camera experiments and stable isotope analyses have demonstrated that animal carrion derived from the surface waters is an important component in the diets of macrourids; some macrourid stomachs also contained vegetable/plant material e.g. onion peels, oranges, algae. The latter observations led us to the question: is plant material an attractive food source for deep-sea scavenging fish? We simulated a plant food fall using in situ benthic lander systems equipped with a baited time-lapse camera. Abyssal macrourids and cusk-eels were attracted to the bait, both feeding vigorously on the bait, and the majority of the bait was consumed in <30 h. These observations indicate (1) plant material can produce an odour plume similar to that of animal carrion and attracts deep-sea fish, and (2) deep-sea fish readily eat plant material. This represents to our knowledge the first in situ documentation of deep-sea fish ingesting plant material and highlights the variability in the scavenging nature of deep-sea fishes. This may have implications for food webs in areas where macrophyte/seagrass detritus is abundant at the seafloor e.g. canyon systems and continental shelves close to seagrass meadows (Bahamas and Mediterranean).

  15. Cosmopolitanism and Biogeography of the Genus Manganonema (Nematoda: Monhysterida) in the Deep Sea

    PubMed Central

    Zeppilli, Daniela; Vanreusel, Ann; Danovaro, Roberto

    2011-01-01

    Simple Summary The deep sea comprises more than 60% of the Earth surface, and likely represents the largest reservoir of as yet undiscovered biodiversity. Nematodes are the most abundant taxon on Earth and are particularly abundant and diverse in the deep sea. Nevertheless, knowledge of their biogeography especially in the deep sea is still at its infancy. This article explores the distribution of the genus Manganonema in the deep Atlantic Ocean and Mediterranean Sea providing new insights about this apparently rare deep-sea genus. Abstract Spatial patterns of species diversity provide information about the mechanisms that regulate biodiversity and are important for setting conservation priorities. Present knowledge of the biogeography of meiofauna in the deep sea is scarce. This investigation focuses on the distribution of the deep-sea nematode genus Manganonema, which is typically extremely rare in deep-sea sediment samples. Forty-four specimens of eight different species of this genus were recorded from different Atlantic and Mediterranean regions. Four out of the eight species encountered are new to science. We report here that this genus is widespread both in the Atlantic and in the Mediterranean Sea. These new findings together with literature information indicate that Manganonema is a cosmopolitan genus, inhabiting a variety of deep-sea habitats and oceans. Manganonema shows the highest diversity at water depths >4,000 m. Our data, therefore, indicate that this is preferentially an abyssal genus that is able, at the same time, to colonize specific habitats at depths shallower than 1,000 m. The analysis of the distribution of the genus Manganonema indicates the presence of large differences in dispersal strategies among different species, ranging from locally endemic to cosmopolitan. Lacking meroplanktonic larvae and having limited dispersal ability due to their small size, it has been hypothesized that nematodes have limited dispersal potential. However, the

  16. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    PubMed Central

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L.; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C.; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q.; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J.; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Motz, Holger; Neff, Max; Nezri, Emma nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E.; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G.; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J. M.; Stolarczyk, Thierry; Taiuti, Mauro G. F.; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts. PMID:23874425

  17. Iron sequestration in young deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Baldermann, Andre; Warr, Laurence; Letofsky-Papst, Ilse; Böttcher, Michael

    2014-05-01

    average) within the upper 25 m of sediment. Within the first 3 meters of the sedimentary pile, iron sequestration related to green clay formation is ~11 times higher than that of pyritization. Even at greater depths ≥ 3 mbsf, where the pyritization reaction becomes progressively more important and 29 to 66% of the initial detrital ferrihydrite input is almost dissolved, ~50% of iron sequestration can be attributed to glauconitization. Initial mass balance calculations of the sediment's iron budget indicate that iron sequestration at ODP Site 959 is mainly controlled by the competing rates of pyritization and glauconitization. Iron sequestration associated with early diagenetic green clay formation could significantly impact the bioavailability of reactive iron in marine aqueous systems and thus influence both the marine iron cycle and deep biosphere environment. The role of deep-water glauconitization on iron availability and sequestration should be considered in future ocean-atmospheric models of the iron biogeochemical cycle. Baldermann, A., Warr, L.N., Grathoff, G.H. & Dietzel, M. (2013) The rate and mechanism of deep-sea glauconite formation at the Ivory Coast-Ghana Marginal Ridge. Clays and Clay Minerals, 61, 258-276.

  18. The first records of deep-sea fauna - a correction and discussion

    NASA Astrophysics Data System (ADS)

    Etter, W.; Hess, H.

    2015-06-01

    The soundings in deep waters of Baffin Bay, together with the recovery of a basket star by John Ross in 1818, was a milestone in the history of deep-sea research. Although the alleged water depths of up to 1950 m were by far not reached, these were nevertheless the first soundings in deep bathyal (to perhaps uppermost abyssal) depths. Furthermore, the recovery of a benthic animal proved that animal life existed at great depths. Yet this was not the first published record of deep-sea fauna as it is often portrayed. This merit goes to accidental catches of the stalked crinoid Cenocrinus asterius that were recovered with fishing lines from upper bathyal environments near Antillean islands. In addition, the description of several deep-sea fishes considerably predated the John Ross episode.

  19. Reviews and syntheses: the first records of deep-sea fauna - a correction and discussion

    NASA Astrophysics Data System (ADS)

    Etter, W.; Hess, H.

    2015-11-01

    The soundings in deep waters of Baffin Bay, together with the recovery of a basket star by John Ross in 1818, was a milestone in the history of deep-sea research. Although the alleged water depths of up to 1950 m were by far not reached, these were nevertheless the first soundings in deep bathyal (to perhaps uppermost abyssal) depths. Furthermore, the recovery of a benthic animal proved that animal life existed at great depths. Yet this was not the first published record of deep-sea fauna as it is often portrayed. This merit goes to accidental catches of the stalked crinoid Cenocrinus asterius that were recovered with fishing lines from upper bathyal environments near Antillean islands. In addition, the description of several deep-sea fishes considerably predated the John Ross episode.

  20. Genomic and population genetic analysis of deep-sea vent chemoautotrophs

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Shimamura, S.; Takaki, Y.; Mino, S.; Makita, H.; Sawabe, T.; Takai, K.

    2012-12-01

    Deep-sea vents are the light-independent, highly productive ecosystems driven primarily by chemoautotrophs. Most of the invertebrates thrive there through their relationship with symbiotic chemoautotrophs. Chemoautotrophs are microorganisms that are able to fix inorganic carbon using a chemical energy obtained through the oxidation of reduced compounds. Following the discovery of deep-sea vent ecosystems in 1977, there has been an increasing knowledge that deep-sea vent chemoautotrophs display remarkable physiological and phylogenetic diversity. Recent microbiological studies have led to an emerging view that the majority of deep-sea vent chemoautotrophs have the ability to derive energy from multiple redox couples other than the conventional sulfur-oxygen couple. Genomic, metagenomic and postgenomic studies have considerably accelerated the comprehensive understanding of molecular mechanisms of deep-sea vent chemoautotrophy, even in unculturable endosymbionts of vent fauna. For example, genomic analysis suggested that there were previously unrecognized evolutionary links between deep-sea vent chemoautotrophs and important human/animal pathogens. However, relatively little is known about the genome of horizontally transmitted endosymbionts. In this study, we sequenced whole genomes of the probably horizontally transmitted endosymbionts of two different gastropod species from a deep-sea hydrothermal field, as an effort to address questions about 1) the genome evolution of horizontally transmitted, facultative endosymbionts, 2) their genomic variability, and 3) genetic differences among symbionts of various deep-sea vent invertebrates. Both endosymbiont genomes display features consistent with ongoing genome reduction such as large proportions of pseudogenes and transposable elements. The genomes encode multiple functions for chemoautotrophic respirations, probably reflecting their adaptation to their niches with continuous changes in environmental conditions. When

  1. Selective erosion by gravity flows in the deep-sea Lofoten Basin, Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Sverre Laberg, Jan; Forwick, Matthias; Johannessen, Hilde B.; Ivanov, Mikhail; Kenyon, Neil H.; Vorren, Tore O.

    2010-05-01

    Deposits from gravity flows form a substantial part of the Lofoten Basin stratigraphy, a deep-water basin offshore Norway. This includes glacigenic debris flows from the shelf edge/upper slope, sandy turbidites from canyon - channel systems and debris flow deposits from submarine landslides. Little is, however, known about the properties of the gravity flows and their interaction with the sea floor sediments. We present newly acquired deep-towed side-scan sonar data co-registered with sub-bottom profiles showing small and large-scale irregularities of the sea floor in two areas relatively recently affected by gravity flows. The first area is located at about 2700 m water depth and is part of the distal Andøya Slide. Here, three several km wide and about 25 m thick lensoid and acoustically transparent deposits with a slightly irregular relief are inferred to represent debris flow deposits from submarine landslides originating from the nearby continental slope. The seafloor both below the debris flows and between and not affected by the debris flows is irregular due to closed seafloor depressions. They occur randomly and with a variety of forms up to 1 km across, 500 m wide and some meters deep. The second area is the Lofoten Basin Channel near its termination at about 3200 m water depth, beyond which laterally extensive sheets of normal graded sand interbedded with thinner mud layers occur. Sea floor depressions appear in several morphological forms on the channel flanks. The largest is more than 1 km long, up to 250 m wide, some meters deep has its longest axis parallel to the flow direction. It becomes less distinct in the down-flow direction. Other features in this area include densely spaced longitudinal features. In both areas the irregular sea floor morphology is inferred to be flute marks (or scours) formed by erosive gravity flows. Erosion of channel flanks by turbidity currents is well known from other studies but is not commonly described from the most

  2. Between land and sea: divergent data stewardship practices in deep-sea biosphere research

    NASA Astrophysics Data System (ADS)

    Cummings, R.; Darch, P.

    2013-12-01

    Data in deep-sea biosphere research often live a double life. While the original data generated on IODP expeditions are highly structured, professionally curated, and widely shared, the downstream data practices of deep-sea biosphere laboratories are far more localized and ad hoc. These divergent data practices make it difficult to track the provenance of datasets from the cruise ships to the laboratory or to integrate IODP data with laboratory data. An in-depth study of the divergent data practices in deep-sea biosphere research allows us to: - Better understand the social and technical forces that shape data stewardship throughout the data lifecycle; - Develop policy, infrastructure, and best practices to improve data stewardship in small labs; - Track provenance of datasets from IODP cruises to labs and publications; - Create linkages between laboratory findings, cruise data, and IODP samples. In this paper, we present findings from the first year of a case study of the Center for Dark Energy Biosphere Investigations (C-DEBI), an NSF Science and Technology Center that studies life beneath the seafloor. Our methods include observation in laboratories, interviews, document analysis, and participation in scientific meetings. Our research uncovers the data stewardship norms of geologists, biologists, chemists, and hydrologists conducting multi-disciplinary research. Our research team found that data stewardship on cruises is a clearly defined task performed by an IODP curator, while downstream it is a distributed task that develops in response to local need and to the extent necessary for the immediate research team. IODP data are expensive to collect and challenging to obtain, often costing $50,000/day and requiring researchers to work twelve hours a day onboard the ships. To maximize this research investment, a highly trained IODP data curator controls data stewardship on the cruise and applies best practices such as standardized formats, proper labeling, and

  3. Seasonal bathymetric migrations of deep-sea fishes and decapod crustaceans in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Aguzzi, J.; Company, J. B.; Bahamon, N.; Flexas, M. M.; Tecchio, S.; Fernandez-Arcaya, U.; García, J. A.; Mechó, A.; Koenig, S.; Canals, M.

    2013-11-01

    Seasonal variations in the photophase length seem to drive migrations of marine animals, a phenomenon still largely unknown in deep-sea fishes and decapod crustaceans. Here, we report depth-oriented migrations of species living in the continental slope of the NW Mediterranean after repeated trawl sampling between 900 and 1500 m depths in four seasons. To understand the variations in the catchability of animals as a function of water depth, we analysed the relationship between population depth shifts and environmental factors by performing a multiparametric habitat monitoring at sea surface (PAR), in the water column (temperature and salinity), and on the seabed (organic matter flux and total mass flux). Significant connections are studied by NMDS and GAM analyses. Bathymetric changes in most targeted species are identified from winter, when distribution was the deepest, to spring and summer, and finally autumn, when the shallowest distribution was observed prior to a sudden bathymetric retreat. The analysis of size-class frequency distributions (Kolmogorov-Smirnov test) discards an effect of the juvenile recruitment on these bathymetric changes. Which environmental factor imparts seasonality to these depth-oriented migrations has not yet been clarified. A strong connection is found with water temperature and salinity, associated to flow of the Levantine Intermediate Water (LIW) and the Western Mediterranean Deep Water (WMDW). The studied depth range was affected by seasonal fluctuations of both water masses and the interphase amongst them. LIW showed a stronger seasonal pattern, getting warmer, saltier in autumn and fresher in winter. The migration of most species towards shallower depths in spring, summer and autumn, and the sudden migration to deeper grounds in winter could therefore be related to changes in LIW temperature and salinity.

  4. Peptide synthesis in simulated deep sea hydrothermal environments

    NASA Astrophysics Data System (ADS)

    Lemke, K. H.; Rosenbauer, R. J.; Bird, D. K.

    The synthesis of oligomeric biomolecules such as peptides is the key step marking the evolution from prebiotic chemistry to biochemistry[1]. While monomer synthesis has been demonstrated to proceed in high-energy impact shock, lightning, cavitation or UV-radiation^dominated environments,[2] monomer oligomerization requires lower energy yields,[3] typically found in geological settings such as deep-sea hydrothermal environments (DSHE). In particular, increasing temperatures are predicted to shift the thermodynamic equilibrium between amino acids and product peptide as well as between precursor and successor peptide toward the product oligopeptide,[4,5] however, this hypothesis has not been tested experimentally. Using hydrothermal gold cells we demonstrate the formation of short peptides from the amino acid glycine in the temperature range 160°C to 260°C and 200 bar, conditions typical of DSHE. We show that glycine and product peptides enter into equilibrium and demonstrate a lowering of the Gibbs energies of diglycine and diketopiperazine formation from glycine with increasing temperature. Our results confirm that the thermodynamic stability of the peptide bond in diglycine and diketopiperazine increases relative to the free amino acid with increasing temperature.[4] They support a high temperature origin of life and the early emergence of peptides during chemical evolution. [1] Imai, E., Honda, H., Hatori, K., Brack, A. & Matsuno, K., (1999) Science, 283, 831. [2] Chyba, C.F. and Sagan, C. (1992) Nature 355, 125. [3] Kawamura K. and Yukioka M. (2001) Thermochim. Acta, 375, 9 [4] Shock, E.L. (1992) Geochim. Cosmochim. Acta, 56, 3481 [5] Amend J.P. and Helgeson H.C. (2000) Biophy. Chem., 84, 105.

  5. Altererythrobacter aurantiacus sp. nov., isolated from deep-sea sediment.

    PubMed

    Zhang, Gaiyun; Yang, Yanliu; Wang, Lina

    2016-09-01

    A Gram-negative, aerobic, coccoid bacterium, strain O30(T), was isolated from a deep-sea sediment sample collected from the west Pacific. 16S rRNA gene sequence analysis revealed that this strain is affiliated with the family Erythrobacteraceae in the class Alphaproteobacteria, and is closely related to the members of the genera Erythromicrobium (96.6 %), Porphyrobacter (95.5-96.3 %), Altererythrobacter (94.1-96.2 %) and Erythrobacter (94.2-96.2 %). Phylogenetic analysis including all described species of the family Erythrobacteraceae revealed that the isolate forms a clade in the cluster of the genus Altererythrobacter. Strain O30(T) was found to grow at 4-40 °C, pH 6.0-10.0 and in the presence of 0.5-7.0 % (w/v) NaCl. Chemotaxonomic analysis revealed ubiquinones Q-8, Q-9 and Q-10 as the predominant respiratory quinones, summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C17:1 ω6c and C16:0 as major fatty acids, and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid as the major polar lipids. The DNA G + C content was determined to be 56.9 mol %. On the basis of phenotypic and genotypic data presented in this study, strain O30(T) represents a novel species within the genus Altererythrobacter, for which the name Altererythrobacter aurantiacus sp. nov. is proposed; the type strain is O30(T) (= CGMCC 1.12762(T) = JCM 19853(T) = LMG 28110(T) = MCCC 1A09962(T)). PMID:27371378

  6. Deep-sea benthic foraminifera, carbonate dissolution and species diversity in Hardangerfjord, Norway: An initial assessment

    NASA Astrophysics Data System (ADS)

    Alve, Elisabeth; Murray, John W.; Skei, Jens

    2011-03-01

    This is the first record of live (stained) deep-sea benthic foraminifera in the 850 m deep silled Hardangerfjord, the second deepest fjord in Western Norway. Estimates of organic carbon flux (˜2.5 g Cm -2 y -1) show that the fjord-values are comparable to similar depths on the continental slope. Accordingly, although these first samples only provide relative abundance data, the low proportion of live to dead individuals in the top cm of the sediment suggests a low foraminifera biomass. Another similarity with the deep sea is that the abiotic environment of the deep basins is stable even though the deepest basins are isolated from the open deep sea by the continental shelf and sills in the outer parts of the fjord suggesting that the deep-sea species are introduced as propagules during deep-water renewals. There is evidence of an increase in dissolution of fragile calcareous tests (e.g., Nonionella iridea) especially in the innermost part of Hardangerfjord since the 1960s and this has led to a relative increase in dead agglutinated assemblages. The presence of larger forms with tests >1 mm provides substrata for the attachment of smaller forms and therefore an increase in species diversity. Indeed, the diversity is comparable both to that of the open deep sea and that of reported macrofauna from the same sites, reflecting similar ecological status. Holtedahl (1965) suggested that there may be some down-slope transport of sediment into the deep basins with the deposition of turbidites. Despite some evidence of transport, no major recent disturbance due to turbidite deposition seems to have occurred and hence Hardangerfjord presents a unique environment with elements of deep-sea faunas in a land-locked setting.

  7. Trophic Dynamics of Deep-Sea Megabenthos Are Mediated by Surface Productivity

    PubMed Central

    Tecchio, Samuele; van Oevelen, Dick; Soetaert, Karline; Navarro, Joan; Ramírez-Llodra, Eva

    2013-01-01

    Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ13C and δ15N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation. PMID:23691098

  8. Species-energy relationship in the deep sea: A test using the Quaternary fossil record

    USGS Publications Warehouse

    Hunt, G.; Cronin, T. M.; Roy, K.

    2005-01-01

    Little is known about the processes regulating species richness in deep-sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species-energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep-sea fossil record of benthic foraminifera and statistical meta-analyses of temperature-richness and productivity-richness relationships in 10 deep-sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature-richness relationship in the deep-sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species. ??2005 Blackwell Publishing Ltd/CNRS.

  9. Trophic dynamics of deep-sea megabenthos are mediated by surface productivity.

    PubMed

    Tecchio, Samuele; van Oevelen, Dick; Soetaert, Karline; Navarro, Joan; Ramírez-Llodra, Eva

    2013-01-01

    Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ(13)C and δ(15)N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation. PMID:23691098

  10. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning

    PubMed Central

    Dell’Anno, Antonio; Corinaldesi, Cinzia

    2015-01-01

    Viruses are key biological agents of prokaryotic mortality in the world oceans, particularly in deep-sea ecosystems where nearly all of the prokaryotic C production is transformed into organic detritus. However, the extent to which the decomposition of viral particles (i.e., organic material of viral origin) influences the functioning of benthic deep-sea ecosystems remains completely unknown. Here, using various independent approaches, we show that in deep-sea sediments an important fraction of viruses, once they are released by cell lysis, undergo fast decomposition. Virus decomposition rates in deep-sea sediments are high even at abyssal depths and are controlled primarily by the extracellular enzymatic activities that hydrolyze the proteins of the viral capsids. We estimate that on a global scale the decomposition of benthic viruses releases ∼37–50 megatons of C per year and thus represents an important source of labile organic compounds in deep-sea ecosystems. Organic material released from decomposed viruses is equivalent to 3 ± 1%, 6 ± 2%, and 12 ± 3% of the input of photosynthetically produced C, N, and P supplied through particles sinking to bathyal/abyssal sediments. Our data indicate that the decomposition of viruses provides an important, previously ignored contribution to deep-sea ecosystem functioning and has an important role in nutrient cycling within the largest ecosystem of the biosphere. PMID:25848024

  11. Evidence for Permo-Triassic colonization of the deep sea by isopods.

    PubMed

    Lins, Luana S F; Ho, Simon Y W; Wilson, George D F; Lo, Nathan

    2012-12-23

    The deep sea is one of the largest ecosystems on Earth and is home to a highly diverse fauna, with polychaetes, molluscs and peracarid crustaceans as dominant groups. A number of studies have proposed that this fauna did not survive the anoxic events that occurred during the Mesozoic Era. Accordingly, the modern fauna is thought to be relatively young, perhaps having colonized the deep sea after the Eocene/Oligocene boundary. To test this hypothesis, we performed phylogenetic analyses of nuclear ribosomal 18S and 28S and mitochondrial cytochrome oxidase I and 16S sequences from isopod crustaceans. Using a molecular clock calibrated with multiple isopod fossils, we estimated the timing of deep-sea colonization events by isopods. Our results show that some groups have an ancient origin in the deep sea, with the earliest estimated dates spanning 232-314 Myr ago. Therefore, anoxic events at the Permian-Triassic boundary and during the Mesozoic did not cause the extinction of all the deep-sea fauna; some species may have gone extinct while others survived and proliferated. The monophyly of the 'munnopsid radiation' within the isopods suggests that the ancestors of this group evolved in the deep sea and did not move to shallow-water refugia during anoxic events. PMID:23054914

  12. Deep-sea hydrothermal vents: potential hot spots for natural products discovery?

    PubMed

    Thornburg, Christopher C; Zabriskie, T Mark; McPhail, Kerry L

    2010-03-26

    Deep-sea hydrothermal vents are among the most extreme and dynamic environments on Earth. However, islands of highly dense and biologically diverse communities exist in the immediate vicinity of hydrothermal vent flows, in stark contrast to the surrounding bare seafloor. These communities comprise organisms with distinct metabolisms based on chemosynthesis and growth rates comparable to those from shallow water tropical environments, which have been rich sources of biologically active natural products. The geological setting and geochemical nature of deep-sea vents that impact the biogeography of vent organisms, chemosynthesis, and the known biological and metabolic diversity of Eukarya, Bacteria, and Archaea, including the handful of natural products isolated to date from deep-sea vent organisms, are considered here in an assessment of deep-sea hydrothermal vents as potential hot spots for natural products investigations. Of critical importance too are the logistics of collecting deep vent organisms, opportunities for re-collection considering the stability and longevity of vent sites, and the ability to culture natural product-producing deep vent organisms in the laboratory. New cost-effective technologies in deep-sea research and more advanced molecular techniques aimed at screening a more inclusive genetic assembly are poised to accelerate natural product discoveries from these microbial diversity hot spots. PMID:20099811

  13. Bathyal sea urchins of the Bahamas, with notes on covering behavior in deep sea echinoids (Echinodermata: Echinoidea)

    NASA Astrophysics Data System (ADS)

    Pawson, David L.; Pawson, Doris J.

    2013-08-01

    In a survey of the bathyal echinoderms of the Bahama Islands region using manned submersibles, approximately 200 species of echinoderms were encountered and documented; 33 species were echinoids, most of them widespread in the general Caribbean area. Three species were found to exhibit covering behavior, the piling of debris on the upper surface of the body. Active covering is common in at least 20 species of shallow-water echinoids, but it has been reliably documented previously only once in deep-sea habitats. Images of covered deep-sea species, and other species of related interest, are provided. Some of the reasons adduced in the past for covering in shallow-water species, such as reduction of incident light intensity, physical camouflage, ballast in turbulent water, protection from desiccation, presumably do not apply in bathyal species. The main reasons for covering in deep, dark, environments are as yet unknown. Some covering behavior in the deep sea may be related to protection of the genital pores, ocular plates, or madreporite. Covering in some deep-sea species may also be merely a tactile reflex action, as some authors have suggested for shallow-water species.

  14. Man and the Last Great Wilderness: Human Impact on the Deep Sea

    PubMed Central

    Ramirez-Llodra, Eva; Tyler, Paul A.; Baker, Maria C.; Bergstad, Odd Aksel; Clark, Malcolm R.; Escobar, Elva; Levin, Lisa A.; Menot, Lenaick; Rowden, Ashley A.; Smith, Craig R.; Van Dover, Cindy L.

    2011-01-01

    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short

  15. Man and the last great wilderness: human impact on the deep sea.

    PubMed

    Ramirez-Llodra, Eva; Tyler, Paul A; Baker, Maria C; Bergstad, Odd Aksel; Clark, Malcolm R; Escobar, Elva; Levin, Lisa A; Menot, Lenaick; Rowden, Ashley A; Smith, Craig R; Van Dover, Cindy L

    2011-01-01

    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO(2) and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2) and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short

  16. Pliocene pre-glacial North Atlantic: A coupled sea surface-deep ocean circulation climate response

    SciTech Connect

    Ishman, S.E.; Dowsett, H.J. . National Center)

    1992-01-01

    A latitudinal transect of North Atlantic Deep Sea Drilling Project Holes from the equatorial region to 56 N in the 2,300- to 3,000-meter depth range was designed for a high-resolution study of coupled sea surface and deep ocean response to climate change. Precise age control was provided using magnetostratigraphic and biostratigraphic data from the cores to identify the 4.0 to 2.2 Ma interval, a period of warm-to-cool climatic transitions in the North Atlantic. The objective is to evaluate incremental (10 kyr) changes in sea surface temperatures (SST) and deep North Atlantic circulation patterns between 4.0 and 2.2 Ma to develop a coupled sea surface-deep ocean circulation response model. Sea surface temperature (SST) estimates are based on planktic foraminifer-based factor-analytic transfer functions. Oxygen isotopic data from paired samples provide tests of the estimated temperature gradients between localities. Benthic foraminifer assemblage data and [partial derivative]O-18 and [partial derivative]C-13 Isotopic data are used to quantitatively determine changes in deep North Atlantic circulation. These data are used to determine changes in source area (North Atlantic Deep Water (NADW) or Antarctic Bottom Water) and (or) in the components of NADW that were present (Upper or Lower NADW). These paired paleoceanographic sea surface and deep circulation interpretations over a 1.8 my interval form the basis for a coupled sea surface-deep circulation response model for the Pliocene North Atlantic Ocean.

  17. Another bipolar deep-sea anemone: new species of Iosactis (Actiniaria, Endomyaria) from Antarctica

    NASA Astrophysics Data System (ADS)

    Rodríguez, Estefanía

    2012-06-01

    A new species of deep-sea burrowing sea anemone is described and illustrated from Antarctica. Iosactis antarctica sp. nov. is characterised by easily deciduous tentacles with sphincters in the base, smooth column, endodermal marginal sphincter, same mesenteries proximally and distally, 24 perfect mesenteries regularly arranged, diffuse retractor musculature and basilar muscles well developed. Iosactis antarctica sp. nov. is the second species of the deep-sea abyssal genus Iosactis; it differs from I. vagabunda in internal anatomy, cnidae and geographic distribution. The description of I. antarctica sp. nov. provides the opportunity to revaluate the morphology of the proximal end of this genus.

  18. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    PubMed Central

    Bougouffa, S.; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Z.; Al-Suwailem, A.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools. PMID:23542623

  19. Impacts on the Deep-Sea Ecosystem by a Severe Coastal Storm

    PubMed Central

    Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M.; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B.; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem. PMID:22295084

  20. Aestuariivita atlantica sp. nov., isolated from deep-sea sediment.

    PubMed

    Li, Guizhen; Lai, Qiliang; Du, Yaping; Liu, Xiupian; Sun, Fengqin; Shao, Zongze

    2015-10-01

    A novel strain, 22II-S11-z3T, was isolated from the deep-sea sediment of the Atlantic Ocean. The bacterium was aerobic, Gram-staining-negative, oxidase-positive and catalase-negative, oval- to rod-shaped, and non-motile. Growth was observed at salinities of 1-9 % NaCl and temperatures of 10-45 °C. The isolate could hydrolyse aesculin and Tweens 20, 40 and 80, but not gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S11-z3T belonged to the genus Aestuariivita, with highest sequence similarity to Aestuariivita boseongensis KCTC 42052T (97.5 %). The average nucleotide identity and digital DNA-DNA hybridization values between strain 22II-S11-z3T and A. boseongensis KCTC 42052T were 71.5 % and 20.0 ± 2.3 %, respectively. The G+C content of the chromosomal DNA was 65.5 mol%. The principal fatty acids (>5 %) were summed feature 8 (C18 : 1ω7c/ω6c) (35.2 %), C19 : 0 cyclo ω8c (20.9 %), C16 : 0 (11.8 %), 11-methyl C18 : 1ω7c (11.4 %) and C12 : 1 3-OH (9.4 %). The respiratory quinone was determined to be Q-10. Diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, nine unidentified phospholipids, one unidentified aminolipid and two unidentified lipids were present. The combined genotypic and phenotypic data show that strain 22II-S11-z3T represents a novel species of the genus Aestuariivita, for which the name Aestuariivita atlantica sp. nov. is proposed, with the type strain 22II-S11-z3T ( = KCTC 42276T = MCCC 1A09432T). PMID:26297013

  1. Hydrothermal mixing: Fuel for life in the deep-sea

    NASA Astrophysics Data System (ADS)

    Hentscher, M.; Bach, W.; Amend, J.; McCollom, T.

    2009-04-01

    Deep-sea hydrothermal vent systems show a wide range of fluid compositions and temperatures. They reach from highly alkaline and reducing, like the Lost City hydrothermal field, to acidic and reducing conditions, (e. g., the Logatchev hydrothermal field) to acidic and oxidizing conditions (e. g., island arc hosted systems). These apparently hostile vent systems are generally accompanied by high microbial activity forming the base of a food-web that often includes higher organisms like mussels, snails, or shrimp. The primary production is boosted by mixing of chemically reduced hydrothermal vent fluids with ambient seawater, which generates redox disequilibria that serve as energy source for chemolithoautotrophic microbial life. We used geochemical reaction path models to compute the affinities of catabolic (energy-harvesting) and anabolic (biosynthesis) reactions along trajectories of batch mixing between vent fluids and 2 °C seawater. Geochemical data of endmember hydrothermal fluids from 12 different vent fields (Lost City, Rainbow, Logatchev, TAG, EPR 21 °N, Manus Basin, Mariana Arc, etc.) were included in this reconnaissance study of the variability in metabolic energetics in global submarine vent systems. The results show a distinction between ultramafic-hosted and basalt-hosted hydrothermal systems. The highest energy yield for chemolithotrophic catabolism in ultramafic-hosted hydrothermal systems is reached at low temperature and under slightly aerobic to aerobic conditions. The dominant reactions, for example at Rainbow or Lost City, are the oxidation of H2, Fe2+ and methane. At temperatures >60 °C, anaerobic metabolic reactions, e. g., sulphate reduction and methanogenesis, become more profitable. In contrast, basalt-hosted systems, such as TAG and 21 °N EPR uniformly indicate H2S oxidation to be the catabolically dominant reaction over the entire microbial-relevant temperature range. Affinities were calculated for the formation of individual cellular

  2. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima.

    PubMed

    Cartapanis, Olivier; Bianchi, Daniele; Jaccard, Samuel L; Galbraith, Eric D

    2016-01-01

    The burial of organic carbon in marine sediments removes carbon dioxide from the ocean-atmosphere pool, provides energy to the deep biosphere, and on geological timescales drives the oxygenation of the atmosphere. Here we quantify natural variations in the burial of organic carbon in deep-sea sediments over the last glacial cycle. Using a new data compilation of hundreds of sediment cores, we show that the accumulation rate of organic carbon in the deep sea was consistently higher (50%) during glacial maxima than during interglacials. The spatial pattern and temporal progression of the changes suggest that enhanced nutrient supply to parts of the surface ocean contributed to the glacial burial pulses, with likely additional contributions from more efficient transfer of organic matter to the deep sea and better preservation of organic matter due to reduced oxygen exposure. These results demonstrate a pronounced climate sensitivity for this global carbon cycle sink. PMID:26923945

  3. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima

    PubMed Central

    Cartapanis, Olivier; Bianchi, Daniele; Jaccard, Samuel L.; Galbraith, Eric D.

    2016-01-01

    The burial of organic carbon in marine sediments removes carbon dioxide from the ocean–atmosphere pool, provides energy to the deep biosphere, and on geological timescales drives the oxygenation of the atmosphere. Here we quantify natural variations in the burial of organic carbon in deep-sea sediments over the last glacial cycle. Using a new data compilation of hundreds of sediment cores, we show that the accumulation rate of organic carbon in the deep sea was consistently higher (50%) during glacial maxima than during interglacials. The spatial pattern and temporal progression of the changes suggest that enhanced nutrient supply to parts of the surface ocean contributed to the glacial burial pulses, with likely additional contributions from more efficient transfer of organic matter to the deep sea and better preservation of organic matter due to reduced oxygen exposure. These results demonstrate a pronounced climate sensitivity for this global carbon cycle sink. PMID:26923945

  4. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima

    NASA Astrophysics Data System (ADS)

    Cartapanis, Olivier; Bianchi, Daniele; Jaccard, Samuel L.; Galbraith, Eric D.

    2016-02-01

    The burial of organic carbon in marine sediments removes carbon dioxide from the ocean-atmosphere pool, provides energy to the deep biosphere, and on geological timescales drives the oxygenation of the atmosphere. Here we quantify natural variations in the burial of organic carbon in deep-sea sediments over the last glacial cycle. Using a new data compilation of hundreds of sediment cores, we show that the accumulation rate of organic carbon in the deep sea was consistently higher (50%) during glacial maxima than during interglacials. The spatial pattern and temporal progression of the changes suggest that enhanced nutrient supply to parts of the surface ocean contributed to the glacial burial pulses, with likely additional contributions from more efficient transfer of organic matter to the deep sea and better preservation of organic matter due to reduced oxygen exposure. These results demonstrate a pronounced climate sensitivity for this global carbon cycle sink.

  5. Features of the vertical phytoplankton structure in the deep-sea parts of the Caspian Sea in summer

    NASA Astrophysics Data System (ADS)

    Pautova, L. A.; Kravchishina, M. D.; Vostokov, S. V.; Zernova, V. V.; Silkin, V. A.

    2015-06-01

    The new features of the vertical phytoplankton distribution in the central and southern deep-water parts of the Caspian Sea are identified on the basis of long-term observations (2004-2012, 419 samples). Systematic study of phytoplankton in the Middle Caspian for nine years has shown that the interannual variability in the dominant summer phytoplankton complex is due to traditional species of diatoms and dinoflagellates and also coccolithophores, a new systematic group for the Caspian Sea (June 2010). It was first determined that summer phytoplankton of the deep-water parts in the Middle and Southern Caspian is similar in species, quantitative, and spatial (vertical) structure. A zone of higher phytoplankton productivity was first found in the area of the Absheron Sill. Two types of communities and their boundary were first distinguished in the vertical structure of summer phytoplankton of the deep-sea parts: warm-water and cold-water (below the thermocline). The boundary between them corresponds to the lower boundary of the seasonal thermocline (maximum depths up to 50-60 m) with the highest wet total phytoplankton biomass and chlorophyll a concentrations. The intensity of stratification of the water column by temperature mainly causes the vertical phytoplankton structure. The anomalously large deep-sea accumulations of diatoms cells containing chlorophyll (remains of winter-spring blooms) were first found in the near-bottom layers of the northern slope of the Derbent Depression. Their presence at the depths of 300-400 m is probably caused by the slope cascading. The lower boundary (500 m) of phytoplankton abundance in the Caspian Sea with chlorophyll-containing cells of fresh water green algae were registered by the authors for the first time in the central areas of the Derbent and South Caspian depressions. This phenomenon was caused by the contribution of cold Caucasus rivers through a system of submarine canyons from the shelf to the deep sea areas.

  6. Multi-locus sequence typing confirms the clonality of Trichomonas gallinae isolates circulating in European finches.

    PubMed

    Ganas, Petra; Jaskulska, Barbara; Lawson, Becki; Zadravec, Marko; Hess, Michael; Bilic, Ivana

    2014-04-01

    In recent years, Trichomonas gallinae emerged as the causative agent of an infectious disease of passerine birds in Europe leading to epidemic mortality of especially greenfinches Chloris chloris and chaffinches Fringilla coelebs. After the appearance of finch trichomonosis in the UK and Fennoscandia, the disease spread to Central Europe. Finch trichomonosis first reached Austria and Slovenia in 2012. In the present study the genetic heterogeneity of T. gallinae isolates from incidents in Austria and Slovenia were investigated and compared with British isolates. For this purpose comparative sequence analyses of the four genomic loci ITS1-5.8S-ITS2, 18S rRNA, rpb1 and Fe-hydrogenase were performed. The results corroborate that one clonal T. gallinae strain caused the emerging infectious disease within passerine birds and that the disease is continuing to spread in Europe. The same clonal strain was also found in a columbid bird from Austria. Additionally, the present study demonstrates clearly the importance of multi-locus sequence typing for discrimination of circulating T. gallinae strains. PMID:24476813

  7. Efficient network-guided multi-locus association mapping with graph cuts

    PubMed Central

    Azencott, Chloé-Agathe; Grimm, Dominik; Sugiyama, Mahito; Kawahara, Yoshinobu

    2013-01-01

    Motivation: As an increasing number of genome-wide association studies reveal the limitations of the attempt to explain phenotypic heritability by single genetic loci, there is a recent focus on associating complex phenotypes with sets of genetic loci. Although several methods for multi-locus mapping have been proposed, it is often unclear how to relate the detected loci to the growing knowledge about gene pathways and networks. The few methods that take biological pathways or networks into account are either restricted to investigating a limited number of predetermined sets of loci or do not scale to genome-wide settings. Results: We present SConES, a new efficient method to discover sets of genetic loci that are maximally associated with a phenotype while being connected in an underlying network. Our approach is based on a minimum cut reformulation of the problem of selecting features under sparsity and connectivity constraints, which can be solved exactly and rapidly. SConES outperforms state-of-the-art competitors in terms of runtime, scales to hundreds of thousands of genetic loci and exhibits higher power in detecting causal SNPs in simulation studies than other methods. On flowering time phenotypes and genotypes from Arabidopsis thaliana, SConES detects loci that enable accurate phenotype prediction and that are supported by the literature. Availability: Code is available at http://webdav.tuebingen.mpg.de/u/karsten/Forschung/scones/. Contact: chloe-agathe.azencott@tuebingen.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23812981

  8. Genotyping of Giardia duodenalis isolates from dogs in Guangdong, China based on multi-locus sequence.

    PubMed

    Zheng, Guochao; Alsarakibi, Muhamd; Liu, Yuanjia; Hu, Wei; Luo, Qin; Tan, Liping; Li, Guoqing

    2014-06-01

    This study aimed to identify the assemblages (or subassemblages) of Giardia duodenalis by using normal or nested PCR based on 4 genetic loci: glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), β-giardin (bg), and small subunit ribosomal DNA (18S rRNA) genes. For this work, a total of 216 dogs' fecal samples were collected in Guangdong, China. The phylogenetic trees were constructed with MEGA5.2 by using the neighbor-joining method. Results showed that 9.7% (21/216) samples were found to be positive; moreover, 10 samples were single infection (7 isolates assemblage A, 2 isolates assemblage C, and 1 isolate assemblage D) and 11 samples were mixed infections where assemblage A was predominant, which was potentially zoonotic. These findings showed that most of the dogs in Guangdong were infected or mixed-infected with assemblage A, and multi-locus sequence typing could be the best selection for the genotype analysis of dog-derived Giardia isolates. PMID:25031472

  9. Allele Intersection Analysis: A Novel Tool for Multi Locus Sequence Assignment in Multiply Infected Hosts

    PubMed Central

    Arthofer, Wolfgang; Riegler, Markus; Schuler, Hannes; Schneider, Daniela; Moder, Karl; Miller, Wolfgang J.; Stauffer, Christian

    2011-01-01

    Wolbachia are wide-spread, endogenous α-Proteobacteria of arthropods and filarial nematodes. 15–75% of all insect species are infected with these endosymbionts that alter their host's reproduction to facilitate their spread. In recent years, many insect species infected with multiple Wolbachia strains have been identified. As the endosymbionts are not cultivable outside living cells, strain typing relies on molecular methods. A Multi Locus Sequence Typing (MLST) system was established for standardizing Wolbachia strain identification. However, MLST requires hosts to harbour individual and not multiple strains of supergroups without recombination. This study revisits the applicability of the current MLST protocols and introduces Allele Intersection Analysis (AIA) as a novel approach. AIA utilizes natural variations in infection patterns and allows correct strain assignment of MLST alleles in multiply infected host species without the need of artificial strain segregation. AIA identifies pairs of multiply infected individuals that share Wolbachia and differ in only one strain. In such pairs, the shared MLST sequences can be used to assign alleles to distinct strains. Furthermore, AIA is a powerful tool to detect recombination events. The underlying principle of AIA may easily be adopted for MLST approaches in other uncultivable bacterial genera that occur as multiple strain infections and the concept may find application in metagenomic high-throughput parallel sequencing projects. PMID:21789233

  10. Genotyping of Giardia duodenalis Isolates from Dogs in Guangdong, China Based on Multi-Locus Sequence

    PubMed Central

    Zheng, Guochao; Alsarakibi, Muhamd; Liu, Yuanjia; Hu, Wei; Luo, Qin; Tan, Liping

    2014-01-01

    This study aimed to identify the assemblages (or subassemblages) of Giardia duodenalis by using normal or nested PCR based on 4 genetic loci: glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), β-giardin (bg), and small subunit ribosomal DNA (18S rRNA) genes. For this work, a total of 216 dogs' fecal samples were collected in Guangdong, China. The phylogenetic trees were constructed with MEGA5.2 by using the neighbor-joining method. Results showed that 9.7% (21/216) samples were found to be positive; moreover, 10 samples were single infection (7 isolates assemblage A, 2 isolates assemblage C, and 1 isolate assemblage D) and 11 samples were mixed infections where assemblage A was predominant, which was potentially zoonotic. These findings showed that most of the dogs in Guangdong were infected or mixed-infected with assemblage A, and multi-locus sequence typing could be the best selection for the genotype analysis of dog-derived Giardia isolates. PMID:25031472

  11. Diazotrophy in the Deep: Measuring Rates and Identifying Biological Mediators of N2 fixation in Deep-Sea Sediments

    NASA Astrophysics Data System (ADS)

    Dekas, A. E.; Fike, D. A.; Chadwick, G.; Connon, S. A.; Orphan, V. J.

    2013-12-01

    Biological N2 fixation (the conversion of N2 to NH3) is the largest natural source of bioavailable nitrogen to the biosphere, and dictates the rate of community productivity in many nitrogen-limited environments. Deep-sea sediments are traditionally not thought to host N2 fixation, however evidence from a metagenomics dataset targeting deep-sea methanotrophic archaea (ANME) suggested their ability to fix N2 (Pernthaler, et al., PNAS 2008). Using stable isotope labeling experiments and FISH-NanoSIMS, a technique which allows the visualization of isotopic composition within phylogenetically identified cells on the nanometer scale, we demonstrated that the ANME are capable of N2 fixation (Dekas et al., Science 2009). In the present work, we use FISH-NanoSIMS and bulk Isotope Ratio Mass Spectrometry (IRMS) to show that the ANME are the most significant source of new nitrogen at a Costa Rican methane seep. This suggests that the ANME may play a significant role in N2 fixation in methane seeps worldwide. We expand our investigation of deep-sea diazotrophy to include diverse habitats, including sulfide- and carbon-rich whalefalls, and observe that N2 fixation is widespread in sediments on the seafloor. Outside of methane seeps, N2 fixation appears to be mediated by a diversity of anaerobic microbes potentially including methanogens and sulfate reducing bacteria. Interestingly, deep-sea N2 fixation often occurs in the presence of high levels of NH4+. Our observations challenge long-held hypotheses about where and when N2 fixation occurs, and suggest a bigger role for N2 fixation on the seafloor - and potentially the deep-biosphere - than previously realized.

  12. Gravity deposits in deep sea fans and on Continental Slopes, Black Sea

    SciTech Connect

    Ivanov, M.K.; Konyukhov, A.I.

    1988-08-01

    The Danube fan has a classical structure. It is clearly expressed in the bottom relief and traced by reflection profiles for more than 200 km. The fan body is levee valley, which splits in a mid-fan area into numerous meandering distributaries. The fan consists of gravity and hemipelagic deposits. These are mainly turbidites of various compositions. Channels are filled with grain-flow deposits (sand), debris-flow deposits (sandy clay with shells), and slides from valley walls (mud, sapropelic mud). Levees in upper and mid-fan areas are formed by specific turbidite sequences: mudstone crumbs in the base, thinly laminated silt and clays in the middle, blue mud on the top. Hemipelagic sediments increase noticeably on outer slopes of the levees. In the Pleistocene sequences these are mud; in the Holocene, sapropelic mud and coccolith-diatom ooze. Distal turbidites are widespread in the lower fan areas. In the base of each cycle is a thin sand-silt layer with unclear graded bedding; the upper part is represented by mud. Reflection profiles demonstrate an ancient fan system with buried channels and levees. Configurations of these bodies are very similar to those of the modern fans. The sedimentary lens on the sea floor opposite the mouths of submarine canyons of the Rioni, Inguri, Kodori, Supsa, and Chorokh Rivers was formed by overlapped modern and ancient fans. The Inguri and Rioni produced a practically single submarine fan, the largest in this area. It is rather well expressed morphologically and traced by reflection profiles for more than 100 km. In its lower part it overlays a number of small fans. The Rioni-Inguri fan is smaller than the Danube, but the whole system of overlapped fans occupies an area of about 17,000 km/sup 2/, being more than 3 km thick. The composition and structure of sediments in this deep-sea system change sharply, depending on the geomorphological position.

  13. Geochemical evidence for anoxic deep water in the Arabian Sea during the last glaciation

    SciTech Connect

    Sarkar, A.; Bhattacharya, S.K.; Sarin, M.M. )

    1993-03-01

    Various paleoceanographic studies have indicated that the deep ocean was probably depleted in dissolved oxygen during the last glacial period ([approximately]18 kyr B.P.; [delta][sup 18]O, stage 2) compared to present time. However, direct evidence of low oxygen content in the deep waters has been lacking. Here, the authors report geochemical evidence of near anoxic conditions in the deep Arabian Sea during the entire last glacial cycle ([delta][sup 18]O; stages 2, 3, and 4). Anoxia is inferred from the concomitant enrichment of organic carbon and authigenic uranium in the glacial sections of a core from the deep eastern Arabian Sea. The anoxic conditions during the last glacial period, probably caused by a change in deep water circulation, evidently enhanced preservation of organic matter and simultaneous removal of uranium from seawater. 57 refs., 3 figs., 2 tabs.

  14. Large Deep-Ocean Impacts, Sea-Floor Hiatuses, and Apparent Short Term Sea-Level Changes

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.

    2001-12-01

    Widespread discontinuities and unconformities in deep-sea sedimentary records (hiatuses) often correspond to rapid fluctuations in eustatic sea level. Such global paleoceanographic events have been attributed to vertical tectonic movements, to changes in ocean basin configuration and volume, and to glacial versus non-glacial climates. Alternatively, megatsunami waves generated by large deep-ocean impacts cause widespread erosion of the sea floor centered on the impact site. At the shoreline, run-up heights can exceed 1 km on a global scale. These high-energy events might be the source of some sea-floor hiatuses as well as stratigraphic intervals currently interpreted as short-term regression and transgression (r-t) pulses in sea level. A widespread hiatus, probable impact ejecta, ocean chemistry and sediment changes, and r-t pulse occurring at ~68-67 Ma indicate that a large oceanic impact might have preceded the Chicxulub impact by a few million years. The hiatus proximal to the Cretaceous-Tertiary (K-T) boundary is most pronounced in the northern Pacific basin and, because tsunami amplitude is proportional to water depth, could not have been caused by the shallow-water (<=100 m) Chicxulub impact at ~65 Ma. Thus K-T time likely experienced two large bolide impacts, one of which occurred in the deep ocean.

  15. An autonomous underwater telescope for measuring the scattering of light in the deep sea

    NASA Astrophysics Data System (ADS)

    Balasi, K. G.; Domvoglou, T.; Kiskiras, I.; Lenis, D.; Maniatis, M.; Maragos, N.; Stavropoulos, G.

    2016-05-01

    The KM3NeT research infrastructure will be a deep sea multidisciplinary observatory in the Mediterranean Sea housing a neutrino telescope. Accurate knowledge of the optical properties of the sea water is important for the performance evaluation of the telescope. In this work we describe the deployment of the equipment that we had previously examined by Monte Carlo (MC) simulationsl, in the context of the scattering experiment in order to evaluate the parameters describing the scattering characteristics of the sea water. Four photomultipliers (PMTs) were used to measure in situ the scattered light emitted by six laser diodes in three different wavelengths covering the Cherenkov radiation spectrum.

  16. Evaluation of multi-locus models for genome-wide association studies: a case study in sugar beet

    PubMed Central

    Würschum, T; Kraft, T

    2015-01-01

    Association mapping has become a widely applied genomic approach to dissect the genetic architecture of complex traits. A major issue for association mapping is the need to control for the confounding effects of population structure, which is commonly done by mixed models incorporating kinship information. In this case study, we employed experimental data from a large sugar beet population to evaluate multi-locus models for association mapping. As in linkage mapping, markers are selected as cofactors to control for population structure and genetic background variation. We compared different biometric models with regard to important quantitative trait locus (QTL) mapping parameters like the false-positive rate, the QTL detection power and the predictive power for the proportion of explained genotypic variance. Employing different approaches we show that the multi-locus model, that is, incorporating cofactors, outperforms the other models, including the mixed model used as a reference model. Thus, multi-locus models are an attractive alternative for association mapping to efficiently detect QTL for knowledge-based breeding. PMID:25351864

  17. Evaluation of multi-locus models for genome-wide association studies: a case study in sugar beet.

    PubMed

    Würschum, T; Kraft, T

    2015-03-01

    Association mapping has become a widely applied genomic approach to dissect the genetic architecture of complex traits. A major issue for association mapping is the need to control for the confounding effects of population structure, which is commonly done by mixed models incorporating kinship information. In this case study, we employed experimental data from a large sugar beet population to evaluate multi-locus models for association mapping. As in linkage mapping, markers are selected as cofactors to control for population structure and genetic background variation. We compared different biometric models with regard to important quantitative trait locus (QTL) mapping parameters like the false-positive rate, the QTL detection power and the predictive power for the proportion of explained genotypic variance. Employing different approaches we show that the multi-locus model, that is, incorporating cofactors, outperforms the other models, including the mixed model used as a reference model. Thus, multi-locus models are an attractive alternative for association mapping to efficiently detect QTL for knowledge-based breeding. PMID:25351864

  18. Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic

    PubMed Central

    Rex, Michael A.; Stuart, Carol T.; Coyne, Gina

    2000-01-01

    Latitudinal species diversity gradients (LSDGs) in the Northern Hemisphere are the most well established biogeographic patterns on Earth. Despite long-standing interest in LSDGs as a central problem in ecology, their explanation remains uncertain. In terrestrial as well as coastal and pelagic marine ecosystems, these poleward declines in diversity typically have been represented and interpreted in terms of species richness, the number of coexisting species. Newly discovered LSDGs in the bathyal (500–4,000 m) benthos of the North Atlantic may help to resolve the underlying causes of these large-scale trends because the deep sea is such a physically distinct environment. However, a major problem in comparing surface and deep-sea LSDGs is that the latter have been measured differently, by using species diversity indices that are affected by both species richness and the evenness of relative abundance. Here, we demonstrate that deep-sea isopods, gastropods, and bivalves in the North Atlantic do exhibit poleward decreases in species richness, just as those found in other environments. A comprehensive systematic revision of the largest deep-sea gastropod family (Turridae) has provided a unique database on geographic distributions that is directly comparable to those used to document LSDGs in surface biotas. This taxon also shows a poleward decline in the number of species. Seasonal organic enrichment from sinking phytodetritus is the most plausible ecological explanation for deep-sea LSDGs and is the environmental factor most consistently associated with depressed diversity in a variety of bathyal habitats. PMID:10759545

  19. Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea

    PubMed Central

    Sapir, Amir; Dillman, Adler R.; Connon, Stephanie A.; Grupe, Benjamin M.; Ingels, Jeroen; Mundo-Ocampo, Manuel; Levin, Lisa A.; Baldwin, James G.; Orphan, Victoria J.; Sternberg, Paul W.

    2013-01-01

    The deep sea is Earth's largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over 2 years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes' intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host's body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep-sea biosphere. PMID:24575084

  20. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents.

    PubMed

    Burgaud, Gaëtan; Hué, Nguyen Thi Minh; Arzur, Danielle; Coton, Monika; Perrier-Cornet, Jean-Marie; Jebbar, Mohamed; Barbier, Georges

    2015-11-01

    Hydrostatic pressure plays a significant role in the distribution of life in the biosphere. Knowledge of deep-sea piezotolerant and (hyper)piezophilic bacteria and archaea diversity has been well documented, along with their specific adaptations to cope with high hydrostatic pressure (HHP). Recent investigations of deep-sea microbial community compositions have shown unexpected micro-eukaryotic communities, mainly dominated by fungi. Molecular methods such as next-generation sequencing have been used for SSU rRNA gene sequencing to reveal fungal taxa. Currently, a difficult but fascinating challenge for marine mycologists is to create deep-sea marine fungus culture collections and assess their ability to cope with pressure. Indeed, although there is no universal genetic marker for piezoresistance, physiological analyses provide concrete relevant data for estimating their adaptations and understanding the role of fungal communities in the abyss. The present study investigated morphological and physiological responses of fungi to HHP using a collection of deep-sea yeasts as a model. The aim was to determine whether deep-sea yeasts were able to tolerate different HHP and if they were metabolically active. Here we report an unexpected taxonomic-based dichotomic response to pressure with piezosensitve ascomycetes and piezotolerant basidiomycetes, and distinct morphological switches triggered by pressure for certain strains. PMID:26226336

  1. Impact of Deepwater Horizon Spill on food supply to deep-sea benthos communities

    USGS Publications Warehouse

    Prouty, Nancy G.; Swarzenski, Pamela; Mienis, Furu; Duineveld, Gerald; Demopoulos, Amanda; Ross, Steve W.; Brooke, Sandra

    2016-01-01

    Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11). Marine (e.g., autochthonous) sources of organic matter dominated the sediment traps in both years, however after the spill, there was a pronounced reduction in marinesourced OM, including a reduction in marine-sourced sterols and n-alkanes and a concomitant decrease in sediment trap organic carbon and pigment flux. Results from this study indicate a reduction in primary production and carbon export to the deep-sea in 2010-2011, at least 6-18 months after the spill started. Whereas satellite observations indicate an initial increase in phytoplankton biomass, results from this sediment trap study define a reduction in primary production and carbon export to the deep-sea community. In addition, a dilution from a low-14C carbon source (e.g., petrocarbon) was detected in the sediment trap samples after the spill, in conjunction with a change in the petrogenic composition. The data presented here fills a critical gap in our knowledge of biogeochemical processes and sub-acute impacts to the deep-sea that ensued after the 2010 DWH spill.

  2. 13C-18O bonding (Δ47) in deep-sea corals: a calibration study

    NASA Astrophysics Data System (ADS)

    Kimball, J. B.; Tripati, A.; Dunbar, R. B.; Eagle, R.

    2013-12-01

    Deep-sea corals are a potentially valuable archive of temperature in intermediate and deep waters, regions for which a paucity of temperature data exists. These archives could give valuable insight into the natural variability of areas of the ocean that play an active role in large-scale climate dynamics. Due to significant 'vital effects' (i.e., non-equilibrium mineral compositions) in δ18O, however, deep-sea coral have been challenging to develop as a paleotemperature proxy. Clumped-isotope paleothermometry is a new method that may circumvent some of the known complications with δ18O paleotemperature analysis in deep-sea coral. This geothermometer is based on the ordering of heavy 13C-18O ';clumps' in carbonate minerals. Initial calibration studies have shown that the method is independent from the solution chemistry of the precipitating fluids as well as 'vital effects' in deep-sea corals and other types of carbonates. Some kinetic effects have been observed in tropical corals and speleothems. Here we report new data in order to further develop clumped isotopes as a paleothermometer in deep-sea corals as well as to investigate taxon-specific effects. 13C-18O bond ordering was analyzed in live-collected scleractinian (Enallopsammia sp.) and gorgonian (Isididae and Coralliidae) deep-sea corals. We determined mass 47 anomalies in samples (Δ47), which refers to the parts per thousand excess of 13C-18O-16O in CO2 produced on acid digestion of a sample, relative to the amount predicted to be present if isotopes were randomly distributed amongst all CO2 isotopologues. Measured Δ47 values were compared to in situ temperatures and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects.

  3. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    PubMed

    Nakamura, Itsumi; Meyer, Carl G; Sato, Katsufumi

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats. PMID:26061525

  4. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei

    PubMed Central

    Nakamura, Itsumi; Meyer, Carl G.; Sato, Katsufumi

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200–300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200–300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats. PMID:26061525

  5. Impact of Deepwater Horizon spill on food supply to deep-sea benthos communities

    NASA Astrophysics Data System (ADS)

    Prouty, N. G.; Campbell, P. L.; Mienis, F.; Duineveld, G.; Demopoulos, A. W. J.; Ross, S. W.; Brooke, S.

    2016-02-01

    Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound-specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11). Marine (e.g., autochthonous) sources of organic matter (OM) dominated the sediment traps in both years, however after the spill, there was a pronounced reduction in marine-sourced OM, including a reduction in marine-sourced sterols and n-alkanes and a concomitant decrease in sediment trap organic carbon and pigment flux. Results from this study indicate a reduction in primary production and carbon export to the deep-sea in 2010-2011, at least 6-18 months after the spill started. Whereas satellite observations indicate an initial increase in phytoplankton biomass, results from this sediment trap study define a reduction in primary production and carbon export to the deep-sea community. In addition, a dilution from a low-14C carbon source (e.g., petro-carbon) was detected in the sediment trap samples after the spill, in conjunction with a change in the petrogenic composition. The data presented here fills a critical gap in our knowledge of biogeochemical processes and sub-acute impacts to the deep-sea that ensued after the 2010 DWH spill.

  6. Environmental selection of protistan plankton communities in hypersaline anoxic deep-sea basins, Eastern Mediterranean Sea

    PubMed Central

    Filker, Sabine; Stock, Alexandra; Breiner, Hans-Werner; Edgcomb, Virginia; Orsi, William; Yakimov, Michail M; Stoeck, Thorsten

    2013-01-01

    High salt concentrations, absence of light, anoxia, and high hydrostatic pressure make deep hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea one of the most polyextreme habitats on Earth. Taking advantage of the unique chemical characteristics of these basins, we tested the effect of environmental selection and geographic distance on the structure of protistan communities. Terminal restriction fragment length polymorphism (T-RFLP) analyses were performed on water samples from the brines and seawater/brine interfaces of five basins: Discovery, Urania, Thetis, Tyro, and Medee. Using statistical analyses, we calculated the partitioning of diversity among the ten individual terminal restriction fragment (T-RF) profiles, based on peak abundance and peak incidence. While a significant distance effect on spatial protistan patterns was not detected, hydrochemical gradients emerged as strong dispersal barriers that likely lead to environmental selection in the DHAB protistan plankton communities. We identified sodium, magnesium, sulfate, and oxygen playing in concerto as dominant environmental drivers for the structuring of protistan plankton communities in the Eastern Mediterranean DHABs. PMID:23239531

  7. Environmental selection of protistan plankton communities in hypersaline anoxic deep-sea basins, Eastern Mediterranean Sea.

    PubMed

    Filker, Sabine; Stock, Alexandra; Breiner, Hans-Werner; Edgcomb, Virginia; Orsi, William; Yakimov, Michail M; Stoeck, Thorsten

    2013-02-01

    High salt concentrations, absence of light, anoxia, and high hydrostatic pressure make deep hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea one of the most polyextreme habitats on Earth. Taking advantage of the unique chemical characteristics of these basins, we tested the effect of environmental selection and geographic distance on the structure of protistan communities. Terminal restriction fragment length polymorphism (T-RFLP) analyses were performed on water samples from the brines and seawater/brine interfaces of five basins: Discovery, Urania, Thetis, Tyro, and Medee. Using statistical analyses, we calculated the partitioning of diversity among the ten individual terminal restriction fragment (T-RF) profiles, based on peak abundance and peak incidence. While a significant distance effect on spatial protistan patterns was not detected, hydrochemical gradients emerged as strong dispersal barriers that likely lead to environmental selection in the DHAB protistan plankton communities. We identified sodium, magnesium, sulfate, and oxygen playing in concerto as dominant environmental drivers for the structuring of protistan plankton communities in the Eastern Mediterranean DHABs. PMID:23239531

  8. The transfer of river load to deep-sea fans: A quantitative approach

    SciTech Connect

    Wetzel, A. )

    1993-10-01

    Submarine fans and turbidite systems are major petroleum reservoirs in many sedimentary basins worldwide. The size of a river-fed deep-sea fan is controlled mainly by the amount of sediment available from a terrestrial source, whereas sea level fluctuations only trigger mass transfer to the deep sea. The deposition rate and fan length correlate for most fans formed on abyssal plains. Fan size is independent of depositional environment (lake or sea), time span, or geological period, which may be characterized by different amplitudes and frequencies of sea level fluctuations. In climatically stable regions such as the tropics about 25 [+-] 10% of the suspended river load reaching the river mouth is transported to the deep sea over the long term. The type of river mouth affects the amount of material transported to the deep sea; estuaries with deeply incised canyons may transfer 6-8 times more material than fluvial-dominated and lobate deltas, provided the suspended river load is equal in both cases. For most river-fed deep-sea fans, a well-defined geometry develops on unconfined abyssal plains. The width/length ratio is about 0.2 at the base of the slope, and reaches a maximum of 0.5 farther downward. This is in good agreement with flume experiments. The volume of such fans resting on a planar base is roughly 0.35 [times] area [times] maximum thickness. The quantitative relationships of fans with respect to geometry, deposition rate, and river suspended discharge may provide some basic for basin modeling and calculation of the sediment budget of erosional-depositional systems.

  9. Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106

    USGS Publications Warehouse

    Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.

    1994-01-01

    Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.

  10. Ecological impacts of large-scale disposal of mining waste in the deep sea

    PubMed Central

    Hughes, David J.; Shimmield, Tracy M.; Black, Kenneth D.; Howe, John A.

    2015-01-01

    Deep-Sea Tailings Placement (DSTP) from terrestrial mines is one of several large-scale industrial activities now taking place in the deep sea. The scale and persistence of its impacts on seabed biota are unknown. We sampled around the Lihir and Misima island mines in Papua New Guinea to measure the impacts of ongoing DSTP and assess the state of benthic infaunal communities after its conclusion. At Lihir, where DSTP has operated continuously since 1996, abundance of sediment infauna was substantially reduced across the sampled depth range (800–2020 m), accompanied by changes in higher-taxon community structure, in comparison with unimpacted reference stations. At Misima, where DSTP took place for 15 years, ending in 2004, effects on community composition persisted 3.5 years after its conclusion. Active tailings deposition has severe impacts on deep-sea infaunal communities and these impacts are detectable at a coarse level of taxonomic resolution. PMID:25939397