Sample records for deep survey evolution

  1. Very deep IRAS survey - constraints on the evolution of starburst galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacking, P.; Houck, J.R.; Condon, J.J.

    1987-05-01

    Counts of sources (primarily starburst galaxies) from a deep 60 microns IRAS survey published by Hacking and Houck (1987) are compared with four evolutionary models. The counts below 100 mJy are higher than expected if no evolution has taken place out to a redshift of approximately 0.2. Redshift measurements of the survey sources should be able to distinguish between luminosity-evolution and density-evolution models and detect as little as a 20 percent brightening or increase in density of infrared sources per billion years ago (H/0/ = 100 km/s per Mpc). Starburst galaxies cannot account for the reported 100 microns background withoutmore » extreme evolution at high redshifts. 21 references.« less

  2. A very deep IRAS survey - Constraints on the evolution of starburst galaxies

    NASA Astrophysics Data System (ADS)

    Hacking, Perry; Condon, J. J.; Houck, J. R.

    1987-05-01

    Counts of sources (primarily starburst galaxies) from a deep 60 microns IRAS survey published by Hacking and Houck (1987) are compared with four evolutionary models. The counts below 100 mJy are higher than expected if no evolution has taken place out to a redshift of approximately 0.2. Redshift measurements of the survey sources should be able to distinguish between luminosity-evolution and density-evolution models and detect as little as a 20 percent brightening or increase in density of infrared sources per billion years ago (H/0/ = 100 km/s per Mpc). Starburst galaxies cannot account for the reported 100 microns background without extreme evolution at high redshifts.

  3. Deep Extragalactic X-Ray Surveys

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Hasinger, G.

    2005-09-01

    Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from deep surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for deep extragalactic X-ray surveys.

  4. Deep Imaging Survey

    NASA Image and Video Library

    2003-07-25

    This is the first Deep Imaging Survey image taken by NASA Galaxy Evolution Explorer. On June 22 and 23, 2003, the spacecraft obtained this near ultraviolet image of the Groth region by adding multiple orbits for a total exposure time of 14,000 seconds. Tens of thousands of objects can be identified in this picture. http://photojournal.jpl.nasa.gov/catalog/PIA04627

  5. WFIRST: Science from Deep Field Surveys

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Foley, Ryan; WFIRST Deep Field Working Group

    2018-06-01

    WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.3 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area about 100-200 times larger, for a comparable investment in time. Moreover, wider fields on scales of 10-20 square degrees could achieve depths comparable to large HST surveys at medium depths such as GOODS and CANDELS, and would enable multi-epoch supernova science that could be matched in area to LSST Deep Drilling fields or other large survey areas. Such fields may benefit from being placed on locations in the sky that have ancillary multi-band imaging or spectroscopy from other facilities, from the ground or in space. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.

  6. WFIRST: Science from Deep Field Surveys

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton; Foley, Ryan; WFIRST Deep Field Working Group

    2018-01-01

    WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.3 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area about 100-200 times larger, for a comparable investment in time. Moreover, wider fields on scales of 10-20 square degrees could achieve depths comparable to large HST surveys at medium depths such as GOODS and CANDELS, and would enable multi-epoch supernova science that could be matched in area to LSST Deep Drilling fields or other large survey areas. Such fields may benefit from being placed on locations in the sky that have ancillary multi-band imaging or spectroscopy from other facilities, from the ground or in space. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.

  7. The Great Observatories Origins Deep Survey

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark

    2008-05-01

    Observing the formation and evolution of ordinary galaxies at early cosmic times requires data at many wavelengths in order to recognize, separate and analyze the many physical processes which shape galaxies' history, including the growth of large scale structure, gravitational interactions, star formation, and active nuclei. Extremely deep data, covering an adequately large volume, are needed to detect ordinary galaxies in sufficient numbers at such great distances. The Great Observatories Origins Deep Survey (GOODS) was designed for this purpose as an anthology of deep field observing programs that span the electromagnetic spectrum. GOODS targets two fields, one in each hemisphere. Some of the deepest and most extensive imaging and spectroscopic surveys have been carried out in the GOODS fields, using nearly every major space- and ground-based observatory. Many of these data have been taken as part of large, public surveys (including several Hubble Treasury, Spitzer Legacy, and ESO Large Programs), which have produced large data sets that are widely used by the astronomical community. I will review the history of the GOODS program, highlighting results on the formation and early growth of galaxies and their active nuclei. I will also describe new and upcoming observations, such as the GOODS Herschel Key Program, which will continue to fill out our portrait of galaxies in the young universe.

  8. The Hubble Deep UV Legacy Survey (HDUV): Survey Overview and First Results

    NASA Astrophysics Data System (ADS)

    Oesch, Pascal; Montes, Mireia; HDUV Survey Team

    2015-08-01

    Deep HST imaging has shown that the overall star formation density and UV light density at z>3 is dominated by faint, blue galaxies. Remarkably, very little is known about the equivalent galaxy population at lower redshifts. Understanding how these galaxies evolve across the epoch of peak cosmic star-formation is key to a complete picture of galaxy evolution. Here, we present a new HST WFC3/UVIS program, the Hubble Deep UV (HDUV) legacy survey. The HDUV is a 132 orbit program to obtain deep imaging in two filters (F275W and F336W) over the two CANDELS Deep fields. We will cover ~100 arcmin2, reaching down to 27.5-28.0 mag at 5 sigma. By directly sampling the rest-frame far-UV at z>~0.5, this will provide a unique legacy dataset with exquisite HST multi-wavelength imaging as well as ancillary HST grism NIR spectroscopy for a detailed study of faint, star-forming galaxies at z~0.5-2. The HDUV will enable a wealth of research by the community, which includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble sequence from sub-galactic clumps. This poster provides an overview of the HDUV survey and presents the reduced data products and catalogs which will be released to the community.

  9. The Hubble Deep UV Legacy Survey (HDUV)

    NASA Astrophysics Data System (ADS)

    Montes, Mireia; Oesch, Pascal

    2015-08-01

    Deep HST imaging has shown that the overall star formation density and UV light density at z>3 is dominated by faint, blue galaxies. Remarkably, very little is known about the equivalent galaxy population at lower redshifts. Understanding how these galaxies evolve across the epoch of peak cosmic star-formation is key to a complete picture of galaxy evolution. Here, we present a new HST WFC3/UVIS program, the Hubble Deep UV (HDUV) legacy survey. The HDUV is a 132 orbit program to obtain deep imaging in two filters (F275W and F336W) over the two CANDELS Deep fields. We will cover ~100 arcmin2 sampling the rest-frame far-UV at z>~0.5, this will provide a unique legacy dataset with exquisite HST multi-wavelength imaging as well as ancillary HST grism NIR spectroscopy for a detailed study of faint, star-forming galaxies at z~0.5-2. The HDUV will enable a wealth of research by the community, which includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble sequence from sub-galactic clumps. This poster provides an overview of the HDUV survey and presents the reduced data products and catalogs which will be released to the community, reaching down to 27.5-28.0 mag at 5 sigma. By directly sampling the rest-frame far-UV at z>~0.5, this will provide a unique legacy dataset with exquisite HST multi-wavelength imaging as well as ancillary HST grism NIR spectroscopy for a detailed study of faint, star-forming galaxies at z~0.5-2. The HDUV will enable a wealth of research by the community, which includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble

  10. A warm Spitzer survey of the LSST/DES 'Deep drilling' fields

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Farrah, Duncan; Brandt, Niel; Sako, Masao; Richards, Gordon; Norris, Ray; Ridgway, Susan; Afonso, Jose; Brunner, Robert; Clements, Dave; Cooray, Asantha; Covone, Giovanni; D'Andrea, Chris; Dickinson, Mark; Ferguson, Harry; Frieman, Joshua; Gupta, Ravi; Hatziminaoglou, Evanthia; Jarvis, Matt; Kimball, Amy; Lubin, Lori; Mao, Minnie; Marchetti, Lucia; Mauduit, Jean-Christophe; Mei, Simona; Newman, Jeffrey; Nichol, Robert; Oliver, Seb; Perez-Fournon, Ismael; Pierre, Marguerite; Rottgering, Huub; Seymour, Nick; Smail, Ian; Surace, Jason; Thorman, Paul; Vaccari, Mattia; Verma, Aprajita; Wilson, Gillian; Wood-Vasey, Michael; Cane, Rachel; Wechsler, Risa; Martini, Paul; Evrard, August; McMahon, Richard; Borne, Kirk; Capozzi, Diego; Huang, Jiashang; Lagos, Claudia; Lidman, Chris; Maraston, Claudia; Pforr, Janine; Sajina, Anna; Somerville, Rachel; Strauss, Michael; Jones, Kristen; Barkhouse, Wayne; Cooper, Michael; Ballantyne, David; Jagannathan, Preshanth; Murphy, Eric; Pradoni, Isabella; Suntzeff, Nicholas; Covarrubias, Ricardo; Spitler, Lee

    2014-12-01

    We propose a warm Spitzer survey to microJy depth of the four predefined Deep Drilling Fields (DDFs) for the Large Synoptic Survey Telescope (LSST) (three of which are also deep drilling fields for the Dark Energy Survey (DES)). Imaging these fields with warm Spitzer is a key component of the overall success of these projects, that address the 'Physics of the Universe' theme of the Astro2010 decadal survey. With deep, accurate, near-infrared photometry from Spitzer in the DDFs, we will generate photometric redshift distributions to apply to the surveys as a whole. The DDFs are also the areas where the supernova searches of DES and LSST are concentrated, and deep Spitzer data is essential to obtain photometric redshifts, stellar masses and constraints on ages and metallicities for the >10000 supernova host galaxies these surveys will find. This 'DEEPDRILL' survey will also address the 'Cosmic Dawn' goal of Astro2010 through being deep enough to find all the >10^11 solar mass galaxies within the survey area out to z~6. DEEPDRILL will complete the final 24.4 square degrees of imaging in the DDFs, which, when added to the 14 square degrees already imaged to this depth, will map a volume of 1-Gpc^3 at z>2. It will find ~100 > 10^11 solar mass galaxies at z~5 and ~40 protoclusters at z>2, providing targets for JWST that can be found in no other way. The Spitzer data, in conjunction with the multiwavelength surveys in these fields, ranging from X-ray through far-infrared and cm-radio, will comprise a unique legacy dataset for studies of galaxy evolution.

  11. The Great Observatories Origins Deep Survey Spitzer Legacy Science Program

    NASA Astrophysics Data System (ADS)

    Dickinson, M.; GOODS Team

    2005-12-01

    The Great Observatories Origins Deep Survey (GOODS) is a multiwavelength anthology of deep field programs using NASA's Great Observatories and the most powerful ground-based facilities to create a public data resource for studying the formation and evolution of galaxies and active galactic nuclei (AGN) throughout cosmic history. GOODS incorporates a Spitzer Legacy Program, which has obtained the deepest observations with that telescope at 3.6 to 24 microns. The Spitzer/IRAC data detect the rest-frame near-infrared light from galaxies out to z ˜ 6, providing valuable information on their stellar populations and masses. The MIPS 24μ m data are a sensitive probe of re-emitted energy from dust-obscured star formation and AGN out to z ˜ 3. I will very briefly introduce the survey and summarize science highlights from the Spitzer data.

  12. SEDS: The Spitzer Extended Deep Survey. Survey Design, Photometry, and Deep IRAC Source Counts

    NASA Technical Reports Server (NTRS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Arendt, A.; Barmby, P.; Barro, G; Bell, E. F.; Bouwens, R.; Cattaneo, A.; hide

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg(exp 2) to a depth of 26 AB mag (3sigma) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 micron. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 +/- 1.0 and 4.4 +/- 0.8 nW / square m/sr at 3.6 and 4.5 micron to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  13. Accelerated Evolution of the Lyα Luminosity Function at z >~ 7 Revealed by the Subaru Ultra-deep Survey for Lyα Emitters at z = 7.3

    NASA Astrophysics Data System (ADS)

    Konno, Akira; Ouchi, Masami; Ono, Yoshiaki; Shimasaku, Kazuhiro; Shibuya, Takatoshi; Furusawa, Hisanori; Nakajima, Kimihiko; Naito, Yoshiaki; Momose, Rieko; Yuma, Suraphong; Iye, Masanori

    2014-12-01

    We present the ultra-deep Subaru narrowband imaging survey for Lyα emitters (LAEs) at z = 7.3 in the Subaru/XMM-Newton Deep Survey (SXDS) and Cosmic Evolution Survey (COSMOS) fields (~0.5 deg2) with a total integration time of 106 hr. Exploiting our new sharp bandwidth filter, NB101, installed on the Suprime-Cam, we have reached L(Lyα) = 2.4 × 1042 erg s-1 (5σ) for z = 7.3 LAEs, about four times deeper than previous Subaru z >~ 7 studies, which allows us to reliably investigate the evolution of the Lyα luminosity function (LF) for the first time down to the luminosity limit same as those of Subaru z = 3.1-6.6 LAE samples. Surprisingly, we only find three and four LAEs in the SXDS and COSMOS fields, respectively, while one expects a total of ~65 LAEs by our survey in the case of no Lyα LF evolution from z = 6.6 to 7.3. We identify a decrease of the Lyα LF from z = 6.6 to 7.3 at the >90% confidence level from our z = 7.3 Lyα LF with the best-fit Schechter parameters of L*{Lyα } = 2.7+8.0-1.2 × 1042 {erg} {s}-1 and φ * = 3.7+17.6-3.3 × 10-4 {Mpc}-3 for a fixed α = -1.5. Moreover, the evolution of the Lyα LF is clearly accelerated at z > 6.6 beyond the measurement uncertainties including cosmic variance. Because no such accelerated evolution of the UV-continuum LF or the cosmic star formation rate (SFR) is found at z ~ 7, but suggested only at z > 8, this accelerated Lyα LF evolution is explained by physical mechanisms different from a pure SFR decrease but related to the Lyα production and escape in the process of cosmic reionization. Because a simple accelerating increase of intergalactic medium neutral hydrogen absorbing Lyα cannot be reconciled with Thomson scattering of optical depth measurements from WMAP and Planck, our findings may support new physical pictures suggested by recent theoretical studies, such as the existence of HI clumpy clouds within cosmic ionized bubbles that are selectively absorbing Lyα and the large ionizing photon escape

  14. REVIEWS OF TOPICAL PROBLEMS: Sky surveys and deep fields of ground-based and space telescopes

    NASA Astrophysics Data System (ADS)

    Reshetnikov, Vladimir P.

    2005-11-01

    Selected results obtained in major observational sky surveys (DSS, 2MASS, 2dF, SDSS) and deep field observations (HDF, GOODS, UHDF, etc.) are reviewed. Modern surveys provide information on the characteristics and space distribution of millions of galaxies. Deep fields allow one to study galaxies at the stage of formation and to trace their evolution over billions of years. The wealth of observational data is altering the face of modern astronomy: the formulation of problems and their solutions are changing and all the previous knowledge, from planetary studies in the solar system to the most distant galaxies and quasars, is being revised.

  15. Evolution Of The Galaxy Major Merger Rate Since Z 6 In The Muse Hubble Ultra Deep Field Survey.

    NASA Astrophysics Data System (ADS)

    Ventou, E.; Contini, T.; MUSE-GTO Collaboration

    2017-06-01

    Over the past two decades, strong evidence that galaxies have undergone a significant evolution over cosmic time were found. Do galaxy mergers, one of the main driving mechanisms behind the growth of galaxies, played a key role in their evolution at significant look-back time? Due to the difficulty to identify these violent interactions between galaxies at high redshifts, the major merger rate, involving two galaxies of similar masses, was constrained so far up to redshift z 3, from previous studies of spectrocopic pair counts. Thanks to MUSE, which is perfectly suited to identify close pairs of galaxies with secure spectroscopic redshifts, we are now able to extend such studies up to z 6. I will present the results obtained from deep (10-30h) MUSE observations in the Hubble Ultra Deep Field. We provide the first constraints on the galaxy major merger evolution over 12 Gyrs (0.2 < z < 6) and over a broad range of stellar masses, showing that there is a flattening of the major merger rate evolution at very high redshift.

  16. DeepLensing: The Use of Deep Machine Learning to Find Strong Gravitational Lenses in Astronomical Surveys

    NASA Astrophysics Data System (ADS)

    Nord, Brian

    2017-01-01

    Strong gravitational lenses have potential as very powerful probes of dark energy and cosmic structure. However, efficiently finding lenses poses a significant challenge—especially in the era of large-scale cosmological surveys. I will present a new application of deep machine learning algorithms to find strong lenses, as well as the strong lens discovery program of the Dark Energy Survey (DES).Strong lenses provide unique information about the evolution of distant galaxies, the nature of dark energy, and the shapes of dark matter haloes. Current and future surveys, like DES and the Large Synoptic Survey Telescope, present an opportunity to find many thousands of strong lenses, far more than have ever been discovered. By and large, searches have heretofore relied on the time-consuming effort of human scanners. Deep machine learning frameworks, like convolutional neural nets, have revolutionized the task of image recognition, and have a natural place in the processing of astronomical images, including the search for strong lenses.Over five observing seasons, which started in August 2013, DES will carry out a wide-field survey of 5000 square degrees of the Southern Galactic Cap. DES has identified nearly 200 strong lensing candidates in the first two seasons of data. We have performed spectroscopic follow-up on a subsample of these candidates at Gemini South, confirming over a dozen new strong lenses. I will present this DES discovery program, including searches and spectroscopic follow-up of galaxy-scale, cluster-scale and time-delay lensing systems.I will focus, however, on a discussion of the successful search for strong lenses using deep learning methods. In particular, we show that convolutional neural nets present a new set of tools for efficiently finding lenses, and accelerating advancements in strong lensing science.

  17. Accelerated evolution of the Lyα luminosity function at z ≳ 7 revealed by the Subaru ultra-deep survey for Lyα emitters at z = 7.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konno, Akira; Ouchi, Masami; Ono, Yoshiaki

    2014-12-10

    We present the ultra-deep Subaru narrowband imaging survey for Lyα emitters (LAEs) at z = 7.3 in the Subaru/XMM-Newton Deep Survey (SXDS) and Cosmic Evolution Survey (COSMOS) fields (∼0.5 deg{sup 2}) with a total integration time of 106 hr. Exploiting our new sharp bandwidth filter, NB101, installed on the Suprime-Cam, we have reached L(Lyα) = 2.4 × 10{sup 42} erg s{sup –1} (5σ) for z = 7.3 LAEs, about four times deeper than previous Subaru z ≳ 7 studies, which allows us to reliably investigate the evolution of the Lyα luminosity function (LF) for the first time down to themore » luminosity limit same as those of Subaru z = 3.1-6.6 LAE samples. Surprisingly, we only find three and four LAEs in the SXDS and COSMOS fields, respectively, while one expects a total of ∼65 LAEs by our survey in the case of no Lyα LF evolution from z = 6.6 to 7.3. We identify a decrease of the Lyα LF from z = 6.6 to 7.3 at the >90% confidence level from our z = 7.3 Lyα LF with the best-fit Schechter parameters of L{sub Lyα}{sup ∗}=2.7{sub −1.2}{sup +8.0}×10{sup 42} erg s{sup −1} and ϕ{sup ∗}=3.7{sub −3.3}{sup +17.6}×10{sup −4} Mpc{sup −3} for a fixed α = –1.5. Moreover, the evolution of the Lyα LF is clearly accelerated at z > 6.6 beyond the measurement uncertainties including cosmic variance. Because no such accelerated evolution of the UV-continuum LF or the cosmic star formation rate (SFR) is found at z ∼ 7, but suggested only at z > 8, this accelerated Lyα LF evolution is explained by physical mechanisms different from a pure SFR decrease but related to the Lyα production and escape in the process of cosmic reionization. Because a simple accelerating increase of intergalactic medium neutral hydrogen absorbing Lyα cannot be reconciled with Thomson scattering of optical depth measurements from WMAP and Planck, our findings may support new physical pictures suggested by recent theoretical studies, such as the existence of HI clumpy clouds

  18. CANDELS: The Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey

    NASA Technical Reports Server (NTRS)

    Grogin, Norman A.; Koekemoer, anton M.; Faber, S. M.; Ferguson, Henry C.; Kocevski, Dale D.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; hide

    2011-01-01

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, from z approx. 8 - 1.5. It will image > 250,000 distant galaxies using three separate cameras on the Hubble Space Tele8cope, from the mid-UV to near-IR, and will find and measure Type Ia supernovae beyond z > 1.5 to test their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10(exp 9) solar mass to z approx. 2, reaching the knee of the UV luminosity function of galaxies to z approx. 8. The survey covers approximately 800 square arc minutes and is divided into two parts. The CANDELS/Deep survey (5(sigma) point-source limit H =27.7mag) covers approx. 125 square arcminutes within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 50(sigma) point-source limit of H ? or approx. = 27.0 mag. Together with the Hubble Ultradeep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are non-proprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design.

  19. The Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey

    NASA Astrophysics Data System (ADS)

    Squires, Gordon K.; Lubin, L. M.; Gal, R. R.

    2007-05-01

    We present the motivation, design, and latest results from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 Mpc around 20 known galaxy clusters at z > 0.6. When complete, the survey will cover nearly 5 square degrees, all targeted at high-density regions, making it complementary and comparable to field surveys such as DEEP2, GOODS, and COSMOS. For the survey, we are using the Large Format Camera on the Palomar 5-m and SuPRIME-Cam on the Subaru 8-m to obtain optical/near-infrared imaging of an approximately 30 arcmin region around previously studied high-redshift clusters. Colors are used to identify likely member galaxies which are targeted for follow-up spectroscopy with the DEep Imaging Multi-Object Spectrograph on the Keck 10-m. This technique has been used to identify successfully the Cl 1604 supercluster at z = 0.9, a large scale structure containing at least eight clusters (Gal & Lubin 2004; Gal, Lubin & Squires 2005). We present the most recent structures to be photometrically and spectroscopically confirmed through this program, discuss the properties of the member galaxies as a function of environment, and describe our planned multi-wavelength (radio, mid-IR, and X-ray) observations of these systems. The goal of this survey is to identify and examine a statistical sample of large scale structures during an active period in the assembly history of the most massive clusters. With such a sample, we can begin to constrain large scale cluster dynamics and determine the effect of the larger environment on galaxy evolution.

  20. Observing the Birth and evolution of Galaxies - the ATCA-AKARI-ASTE/AzTEC deep South Ecliptic Pole Field

    NASA Astrophysics Data System (ADS)

    White, Glenn; Kohno, Kotaro; Matsuhara, Hideo; Matsuura, Shuji; Hanami, Hitoshi; Lee, Hyung Mok; Pearson, Chris; Takagi, Toshi; Serjeant, Stephen; Jeong, Woongseob; Oyabu, Shinki; Shirahata, Mai; Nakanishi, Kouichiro; Figueredo, Elysandra; Etxaluze, Mireya

    2007-04-01

    We propose deep 20 cm observations supporting the AKARI (3-160 micron)/ASTE/AzTEC (1.1 mm) SEP ultra deep ('Oyabu Field') survey of an extremely low cirrus region at the South Ecliptic Pole. Our combined IR/mm/Radio survey addresses the questions: How do protogalaxies and protospheroids form and evolve? How do AGN link with ULIRGs in their birth and evolution? What is the nature of the mm/submm extragalactic source population? We will address these by sampling the star formation history in the early universe to at least z~2. Compared to other Deep Surveys, a) AKARI multi-band IR measurements allow precision photo-z estimates of optically obscured objects, b) our multi-waveband contiguous area will mitigate effects of cosmic variance, c) the low cirrus noise at the SEP (< 0.08 MJy/sr) rivals that of the Lockman Hole "Astronomy's other ultra-deep 'cosmological window'", and d) our coverage of four FIR bands will characterise the far-IR dust emission hump of our starburst galaxies better than SPITZER's two MIPS bands allow. The ATCA data are crucial to galaxy identification, and determining the star formation rates and intrinsic luminosities through this unique Southern cosmological window.

  1. Galaxy evolution at high-redshift: Millimeter-wavelength surveys with the AzTEC camera

    NASA Astrophysics Data System (ADS)

    Scott, Kimberly S.

    Galaxies detected by their thermal dust emission at submillimeter (submm) and millimeter (mm) wavelengths comprise a population of massive, intensely star-forming systems in the early Universe. These "submm/mm- galaxies", or SMGs, likely represent an important phase in the assembly and/or evolution of massive galaxies and are thought to be the progenitors of massive elliptical galaxies. While their projected number density as a function of source brightness provides key constraints on models of galaxy evolution, SMG surveys carried out over the past twelve years with the first generation of submm/mm-wavelength cameras have not imaged a large enough area to sufficient depths to provide the statistical power needed to discriminate between competing galaxy evolution scenarios. In this dissertation, we present the results from SMG surveys carried out over the past four years using the new sensitive mm-wavelength camera AzTEC. With the improved mapping speed of the AzTEC camera combined with dedicated telescope time devoted to deep, large-area extragalactic surveys, we have tripled both the area surveyed towards blank- fields (that is, regions with no known galaxy over-densities) at submm/mm wavelengths and the total number of detected SMGs. Here, we describe the properties and performance of the AzTEC instrument while operating on the James Clerk Maxwell Telescope (JCMT) and the Atacama Submillimeter Telescope Experiment (ASTE). We then present the results from two of the blank-field regions imaged with AzTEC: the JCMT/COSMOS field, which we discovered is over- dense in the number of very bright SMGs, and the ASTE survey of the Great Observatories Origins Deep-South field, which represents one of the deepest surveys ever carried out at submm/mm wavelengths. Finally, we combine the results from all of the blank-fields imaged with AzTEC while operating on the JCMT and the ASTE to calculate the most accurate measurements to date of the SMG number counts.

  2. South China Sea Tectonics and Magnetics: Constraints from IODP Expedition 349 and Deep-tow Magnetic Surveys

    NASA Astrophysics Data System (ADS)

    Lin, J.; Li, C. F.; Kulhanek, D. K.; Zhao, X.; Liu, Q.; Xu, X.; Sun, Z.; Zhu, J.

    2014-12-01

    The South China Sea (SCS) is the largest low-latitude marginal sea in the world. Its formation and evolution are linked to the complex continental-oceanic tectonic interaction of the Eurasian, Pacific, and Indo-Australian plates. Despite its relatively small size and short history, the SCS has undergone nearly a complete Wilson cycle from continental break-up to seafloor spreading to subduction. In January-March 2014, Expedition 349 of the International Ocean Discovery Program (IODP) drilled five sites in the deep basin of the SCS. Three sites (U1431, U1433, and U1434) cored into oceanic basement near the fossil spreading center on the East and Southwest Subbasins, whereas Sites U1432 and U1435 are located near the northern continent/ocean boundary of the East Subbasin. Shipboard biostratigraphy based on microfossils preserved in sediment directly above or within basement suggests that the preliminary cessation age of spreading in both the East and Southwest Subbasins is around early Miocene (16-20 Ma); however, post-cruise radiometric dating is being conducted to directly date the basement basalt in these subbasins. Prior to the IODP drilling, high-resolution near-seafloor magnetic surveys were conducted in 2012 and 2013 in the SCS with survey lines passing near the five IODP drilling sites. The deep-tow surveys revealed detailed patterns of the SCS magnetic anomalies with amplitude and spatial resolutions several times better than that of traditional sea surface measurements. Preliminary results reveal several episodes of magnetic reversal events that were not recognized by sea surface measurements. Together the IODP drilling and deep-tow magnetic surveys provide critical constraints for investigating the processes of seafloor spreading in the SCS and evolution of a mid-ocean ridge from active spreading to termination.

  3. Deep X-ray and UV Surveys of Galaxies with Chandra, XMM-Newton, and GALEX

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2006-01-01

    Only with the deepest Chandra surveys has X-ray emission from normal and star forming galaxies (as opposed to AGN, which dominate the X-ray sky) been accessible at cosmologically interesting distances. The X-ray emission from accreting binaries provide a critical glimpse into the binary phase of stellar evolution and studies of the hot gas reservoir constrain past star formation. UV studies provide important, sensitive diagnostics of the young star forming populations and provide the most mature means for studying galaxies at 2 < zeta < 4. This talk will review current progress on studying X-ray emission in concert with UV emission from normal/star-forming galaxies at higher redshift. We will also report on our new, deep surveys with GALEX and XMM-Newton in the nearby Coma cluster. These studies are relevant to DEEP06 as Coma is the nearest rich cluster of galaxies and provides an important benchmark for high-redshift studies in the X-ray and UV wavebands. The 30 ks GALEX (note: similar depth to the GALEX Deep Imaging Survey) and the 110 ks XMM observations provide extremely deep coverage of a Coma outskirts field, allowing the construction of the UV and X-ray luminosity function of galaxies and important constraints on star formation scaling relations such as the X-ray-Star Formation Rate correlation and the X-ray/Stellar Mass correlation. We will discuss what we learn from these deep observations of Coma, including the recently established suppression of the X-ray emission from galaxies in the Coma outskirts that is likely associated with lower levels of past star formation and/or the results of tidal gas stripping.

  4. Overview of North Ecliptic Pole Deep Multi-Wavelength Survey Nep-Deep

    NASA Astrophysics Data System (ADS)

    Matsuhara, H.; Wada, T.; Oi, N.; Takagi, T.; Nakagawa, T.; Murata, K.; Goto, T.; Oyabu, S.; Takeuchi, T. T.; Malek, K.; Solarz, A.; Ohyama, Y.; Miyaji, T.; Krumpe, M.; Lee, H. M.; Im, M.; Serjeant, S.; Pearson, C. P.; White, G. J.; Malkan, M. A.; Hanami, H.; Ishigaki, T.; Burgarella, D.; Buat, V.; Pollo, A.

    2017-03-01

    The recent updates of the North Ecliptic Pole deep (0.5~deg$^2$, NEP-Deep) multi-wavelength survey covering from X-ray to radio-wave is presented. The NEP-Deep provides us with several thousands of 15~$\\mu$m or 18~$\\mu$m selected sample of galaxies, which is the largest sample ever made at this wavelengths. A continuous filter coverage in the mid-infrared wavelength (7, 9, 11, 15, 18, and 24~$\\mu$m) is unique and vital to diagnose the contributions from starbursts and AGNs in the galaxies out to $z$=2.The new goal of the project is to resolve the nature of the cosmic star formation history at the violent epoch (e.g. $z$=1--2), and to find a clue to understand its decline from $z$=1 to present universe by utilizing the unique power of the multi-wavelength survey. The progress in this context is briefly mentioned.

  5. Collective Landmarks for Deep Time: A New Tool for Evolution Education

    ERIC Educational Resources Information Center

    Delgado, Cesar

    2014-01-01

    Evolution is a fundamental, organising concept in biology, yet there is widespread resistance to evolution among US students and there are rising creationist challenges in Europe. Resistance to evolution is linked to lack of understanding of the age of the Earth. An understanding of deep time is thus essential for effective biology education.…

  6. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: CO Luminosity Functions and the Evolution of the Cosmic Density of Molecular Gas

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Popping, Gergö; Riechers, Dominik; Smail, Ian R.; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto J.; Bauer, Franz E.; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff

    2016-12-01

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ˜ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 109 K km s-1 pc2). We find clear evidence of an evolution in the CO luminosity function with respect to z ˜ 0, with more CO-luminous galaxies present at z ˜ 2. The observed galaxies at z ˜ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3-10 from z ˜ 2 to z ˜ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation (z ˜ 2).

  7. Size evolution of star-forming galaxies with 2 Deep Survey

    NASA Astrophysics Data System (ADS)

    Ribeiro, B.; Le Fèvre, O.; Tasca, L. A. M.; Lemaux, B. C.; Cassata, P.; Garilli, B.; Maccagni, D.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Fontana, A.; Giavalisco, M.; Hathi, N. P.; Koekemoer, A.; Pforr, J.; Tresse, L.; Dunlop, J.

    2016-08-01

    Context. The size of a galaxy encapsulates the signature of the different physical processes driving its evolution. The distribution of galaxy sizes in the Universe as a function of cosmic time is therefore a key to understand galaxy evolution. Aims: We aim to measure the average sizes and size distributions of galaxies as they are assembling before the peak in the comoving star formation rate density of the Universe to better understand the evolution of galaxies across cosmic time. Methods: We used a sample of ~1200 galaxies in the COSMOS and ECDFS fields with confirmed spectroscopic redshifts 2 ≤ zspec ≤ 4.5 in the VIMOS Ultra Deep Survey (VUDS), representative of star-forming galaxies with IAB ≤ 25. We first derived galaxy sizes by applying a classical parametric profile-fitting method using GALFIT. We then measured the total pixel area covered by a galaxy above a given surface brightness threshold, which overcomes the difficulty of measuring sizes of galaxies with irregular shapes. We then compared the results obtained for the equivalent circularized radius enclosing 100% of the measured galaxy light r100T ~2.2 to those obtained with the effective radius re,circ measured with GALFIT. Results: We find that the sizes of galaxies computed with our non-parametric approach span a wide range but remain roughly constant on average with a median value r100T ~2.2 kpc for galaxies with 2 evolution of re with increasing redshift, down to sizes of <1 kpc at z ~ 4.5. We analyze the difference and find that parametric fitting of complex, asymmetric, multicomponent galaxies is severely underestimating their sizes. By comparing r100T with physical parameters obtained through fitting the spectral energy distribution we find that the star-forming galaxies that are the largest at any redshift are, on average, more massive and form more stars. We discover that galaxies present more concentrated light profiles with

  8. The UKIRT Infrared Deep Sky Survey (UKIDSS)

    NASA Astrophysics Data System (ADS)

    Lawrence, A.; Warren, S. J.; Almaini, O.; Edge, A. C.; Hambly, N. C.; Jameson, R. F.; Lucas, P.; Casali, M.; Adamson, A.; Dye, S.; Emerson, J. P.; Foucaud, S.; Hewett, P.; Hirst, P.; Hodgkin, S. T.; Irwin, M. J.; Lodieu, N.; McMahon, R. G.; Simpson, C.; Smail, I.; Mortlock, D.; Folger, M.

    2007-08-01

    We describe the goals, design, implementation, and initial progress of the UKIRT Infrared Deep Sky Survey (UKIDSS), a seven-year sky survey which began in 2005 May. UKIDSS is being carried out using the UKIRT Wide Field Camera (WFCAM), which has the largest étendue of any infrared astronomical instrument to date. It is a portfolio of five survey components covering various combinations of the filter set ZYJHK and H2. The Large Area Survey, the Galactic Clusters Survey, and the Galactic Plane Survey cover approximately 7000deg2 to a depth of K ~ 18; the Deep Extragalactic Survey covers 35deg2 to K ~ 21, and the Ultra Deep Survey covers 0.77deg2 to K ~ 23. Summed together UKIDSS is 12 times larger in effective volume than the 2MASS survey. The prime aim of UKIDSS is to provide a long-term astronomical legacy data base; the design is, however, driven by a series of specific goals - for example, to find the nearest and faintest substellar objects, to discover Population II brown dwarfs, if they exist, to determine the substellar mass function, to break the z = 7 quasar barrier; to determine the epoch of re-ionization, to measure the growth of structure from z = 3 to the present day, to determine the epoch of spheroid formation, and to map the Milky Way through the dust, to several kpc. The survey data are being uniformly processed. Images and catalogues are being made available through a fully queryable user interface - the WFCAM Science Archive (http://surveys.roe.ac.uk/wsa). The data are being released in stages. The data are immediately public to astronomers in all ESO member states, and available to the world after 18 months. Before the formal survey began, UKIRT and the UKIDSS consortia collaborated in obtaining and analysing a series of small science verification (SV) projects to complete the commissioning of the camera. We show some results from these SV projects in order to demonstrate the likely power of the eventual complete survey. Finally, using the data

  9. The MUSE Hubble Ultra Deep Field Survey. IX. Evolution of galaxy merger fraction since z ≈ 6

    NASA Astrophysics Data System (ADS)

    Ventou, E.; Contini, T.; Bouché, N.; Epinat, B.; Brinchmann, J.; Bacon, R.; Inami, H.; Lam, D.; Drake, A.; Garel, T.; Michel-Dansac, L.; Pello, R.; Steinmetz, M.; Weilbacher, P. M.; Wisotzki, L.; Carollo, M.

    2017-11-01

    We provide, for the first time, robust observational constraints on the galaxy major merger fraction up to z ≈ 6 using spectroscopic close pair counts. Deep Multi Unit Spectroscopic Explorer (MUSE) observations in the Hubble Ultra Deep Field (HUDF) and Hubble Deep Field South (HDF-S) are used to identify 113 secure close pairs of galaxies among a parent sample of 1801 galaxies spread over a large redshift range (0.2 < z < 6) and stellar masses (107-1011 M⊙), thus probing about 12 Gyr of galaxy evolution. Stellar masses are estimated from spectral energy distribution (SED) fitting over the extensive UV-to-NIR HST photometry available in these deep Hubble fields, adding Spitzer IRAC bands to better constrain masses for high-redshift (z ⩾ 3) galaxies. These stellar masses are used to isolate a sample of 54 major close pairs with a galaxy mass ratio limit of 1:6. Among this sample, 23 pairs are identified at high redshift (z ⩾ 3) through their Lyα emission. The sample of major close pairs is divided into five redshift intervals in order to probe the evolution of the merger fraction with cosmic time. Our estimates are in very good agreement with previous close pair counts with a constant increase of the merger fraction up to z ≈ 3 where it reaches a maximum of 20%. At higher redshift, we show that the fraction slowly decreases down to about 10% at z ≈ 6. The sample is further divided into two ranges of stellar masses using either a constant separation limit of 109.5 M⊙ or the median value of stellar mass computed in each redshift bin. Overall, the major close pair fraction for low-mass and massive galaxies follows the same trend. These new, homogeneous, and robust estimates of the major merger fraction since z ≈ 6 are in good agreement with recent predictions of cosmological numerical simulations. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045

  10. Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue

    NASA Astrophysics Data System (ADS)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.

    2018-06-01

    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.

  11. ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel

    2016-12-10

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z  ∼ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 10{sup 9} K km s{sup −1} pc{sup 2}). We find clear evidence ofmore » an evolution in the CO luminosity function with respect to z  ∼ 0, with more CO-luminous galaxies present at z  ∼ 2. The observed galaxies at z  ∼ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z  ∼ 2 to z  ∼ 0 (with significant error bars), and possibly a decline at z  > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation ( z  ∼ 2).« less

  12. The Chandra Deep Wide-Field Survey: Completing the new generation of Chandra extragalactic surveys

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan

    2016-09-01

    Chandra X-ray surveys have revolutionized our view of the growth of black holes across cosmic time. Recently, fundamental questions have emerged about the connection of AGN to their host large scale structures that clearly demand a wide, deep survey over a large area, comparable to the recent extensive Chandra surveys in smaller fields. We propose the Chandra Deep Wide-Field Survey (CDWFS) covering the central 6 sq. deg in the Bootes field, totaling 1.025 Ms (building on 550 ks from the HRC GTO program). CDWFS will efficiently probe a large cosmic volume, allowing us to carry out accurate new investigations of the connections between black holes and their large-scale structures, and will complete the next generation surveys that comprise a key part of Chandra's legacy.

  13. Reconstructing the evolution of first-row transition metal minerals by GeoDeepDive

    NASA Astrophysics Data System (ADS)

    Liu, C.; Peters, S. E.; Ross, I.; Golden, J. J.; Downs, R. T.; Hazen, R. M.

    2016-12-01

    Terrestrial mineralogy evolves as a consequence of a range of physical, chemical, and biological processes [1]. Evolution of the first-row transition metal minerals could mirror the evolution of Earth's oxidation state and life, since these elements mostly are redox-sensitive and/or play critical roles in biology. The fundamental building blocks to reconstruct mineral evolution are the mineral species, locality, and age data, which are typically dispersed in sentences in scientific and technical publications. These data can be tracked down in a brute-force way, i.e., human retrieval, reading, and recording all relevant literature. Alternatively, they can be extracted automatically by GeoDeepDive. In GeoDeepDive, scientific and technical articles from publishers, including Elsevier, Wiley, USGS, SEPM, GSA and Canada Science Publishing, have been parsed into a Javascript database with NLP tags. Sentences containing data of mineral names, locations, and ages can be recognized and extracted by user-developed applications. In a preliminary search for cobalt mineral ages, we successfully extracted 678 citations with >1000 mentions of cobalt minerals, their locations, and ages. The extracted results are in agreement with brute-force search results. What is more, GeoDeepDive provides 40 additional data points that were not recovered by the brute-force approach. The extracted mineral locality-age data suggest that the evolution of Co minerals is controlled by global supercontinent cycles, i.e., more Co minerals form during episodes of supercontinent assembly. Mineral evolution of other first-row transition elements is being investigated through GeoDeepDive. References: [1] Hazen et al. (2008) Mineral evolution. American Mineralogist, 93, 1693-1720

  14. DeepSurveyCam--A Deep Ocean Optical Mapping System.

    PubMed

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-28

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor.

  15. DeepSurveyCam—A Deep Ocean Optical Mapping System

    PubMed Central

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-01

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor. PMID:26828495

  16. The VIRMOS deep imaging survey. I. Overview, survey strategy, and CFH12K observations

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Mellier, Y.; McCracken, H. J.; Foucaud, S.; Gwyn, S.; Radovich, M.; Dantel-Fort, M.; Bertin, E.; Moreau, C.; Cuillandre, J.-C.; Pierre, M.; Le Brun, V.; Mazure, A.; Tresse, L.

    2004-04-01

    This paper describes the CFH12K-VIRMOS survey: a deep BVRI imaging survey in four fields totalling more than 17 deg2, conducted with the 40×30 arcmin2 field CFH-12K camera. The survey is intended to be a multi-purpose survey used for a variety of science goals, including surveys of very high redshift galaxies and weak lensing studies. Four high galactic latitude fields, each 2×2 deg2, have been selected along the celestial equator: 0226-04, 1003+01, 1400+05, and 2217+00. The 16 deg2 of the ``wide'' survey are covered with exposure times of 2 hr, 1.5 hr, 1 hr, 1 hr, respectively while the 1.3×1 deg2 area of the ``deep'' survey at the center of the 0226-04 field is covered with exposure times of 7 h, 4.5 h, 3 h, 3 h, in BVRI respectively. An additional area ˜2 deg2 has been imaged in the 0226-04 field corresponding to the area surveyed by the XMM-LSS program \\citep{pierre03}. The data is pipeline processed at the Terapix facility at the Institut d'Astrophysique de Paris to produce large mosaic images. The catalogs produced contain the positions, shapes, total and aperture magnitudes for 2.175 million objects measured in the four areas. The limiting magnitudes, measured as a 5σ measurement in a 3 arcsec diameter aperture is IAB=24.8 in the ``Wide'' areas, and IAB=25.3 in the deep area. Careful quality control has been applied on the data to ensure internal consistency and assess the photometric and astrometric accuracy as described in a joint paper \\citep{mccracken03}. These catalogs are used to select targets for the VIRMOS-VLT Deep Survey, a large spectroscopic survey of the distant universe (Le Fèvre et al. 2003). First results from the CFH12K-VIRMOS survey have been published on weak lensing (e.g. van Waerbeke & Mellier 2003). Catalogs and images are available through the VIRMOS database environment under Oracle (http://www.oamp.fr/cencos). They are open for general use since July 1st, 2003. Appendix A is only available in electronic form at http://www.edpsciences.org

  17. A very deep IRAS survey at the north ecliptic pole

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Hacking, P. B.; Condon, J. J.

    1987-01-01

    The data from approximately 20 hours observation of the 4- to 6-square degree field surrounding the north ecliptic pole have been combined to produce a very deep IR survey at the four IRAS bands. Scans from both pointed and survey observations were included in the data analysis. At 12 and 25 microns the deep survey is limited by detector noise and is approximately 50 times deeper than the IRAS Point Source Catalog (PSC). At 60 microns the problems of source confusion and Galactic cirrus combine to limit the deep survey to approximately 12 times deeper than the PSC. These problems are so severe at 100 microns that flux values are only given for locations corresponding to sources selected at 60 microns. In all, 47 sources were detected at 12 microns, 37 at 25 microns, and 99 at 60 microns. The data-analysis procedures and the significance of the 12- and 60-micron source-count results are discussed.

  18. MIPS AGN and Galaxy Evolution Survey

    NASA Astrophysics Data System (ADS)

    Jannuzi, Buell; Armus, Lee; Borys, Colin; Brand, Kate; Brodwin, Mark; Brown, Michael; Cool, Richard; Desai, Vandana; Dey, Arjun; Dickinson, Mark; Dole, Herve; Eisenstein, Daniel; Kochanek, Christopher; Le Floc'h, Emeric; Morrison, Jane; Papovich, Casey; Perez-Gonzalez, Pablo; Rieke, George; Rieke, Marcia; Stern, Daniel; Weiner, Ben; Zehavi, Idit

    2008-03-01

    We propose a far-IR survey of the 9 square degree Bootes field of the NOAO Deep Wide-Field Survey (NDWFS) to 5-sigma flux limits of 0.2, 12.8 and 120 mJy to detect approximately 60000, 3000, and 400 sources at 24, 70 and 160 microns respectively. By combining observations at different roll angles, our maps will have excellent control of detector drifts, enabling precise fluctuation analyses in all three maps. In combination with the matching X-ray, UV, optical, near-IR, and mid-IR photometry, variability data, and the 22,000 spectroscopic redshifts for the field, we have three primary goals. First, we will survey the evolution of LIRGS/ULIRGS to redshifts of 0.6/1.3 at 24 microns and 0.4/0.8 at 70 microns. Over 500 0.6survey will provide a long term resource for studying the sources of FIR emission with an excellent balance between depth (for source detection) and area (for correlation analysis and minimizing cosmic variance).

  19. AGES: THE AGN AND GALAXY EVOLUTION SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochanek, C. S.; Eisenstein, D. J.; Caldwell, N.

    2012-05-01

    The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg{sup 2} of the Booetes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B{sub W} , R, I, J, K, IRAC 3.6, 4.5, 5.8, and 8.0 {mu}m, and MIPS 24 {mu}m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples inmore » all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 {mu}m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples.« less

  20. The Great Observatories Origins Deep Survey (GOODS) Spitzer Legacy Science Program

    NASA Astrophysics Data System (ADS)

    Dickinson, M.; GOODS Team

    2004-12-01

    The Great Observatories Origins Deep Survey (GOODS) is an anthology of observing programs that are creating a rich, public, multiwavelength data set for studying galaxy formation and evolution. GOODS is observing two fields, one in each hemisphere, with extremely deep imaging and spectroscopy using the most powerful telescopes in space and on the ground. The GOODS Spitzer Legacy Science Program completes the trio of observations from NASA's Great Observatories, joining already-completed GOODS data from Chandra and Hubble. Barring unforeseen difficulties, the GOODS Spitzer observing program will have been completed by the end of 2004, and the first data products will have been released to the astronomical community. In this Special Oral Session, and in an accompanying poster session, the GOODS team presents early scientific results from this Spitzer Legacy program, as well as new research based on other GOODS data sets. I will introduce the session with a brief description of the Legacy observations and data set. Support for this work, part of the Spitzer Space Telescope Legacy Science Program, was provided by NASA through Contract Number 1224666 issued by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  1. CHILES Con Pol: An ultra-deep JVLA survey probing galaxy evolution and cosmic magnetism

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Momjian, Emmanuel; van Gorkom, Jacqueline; Rupen, Michael P.; Greiner, Maksim; Ensslin, Torsten A.; Bonzini, Margherita; Padovani, Paolo; Harrison, Ian; Brown, Michael L.; Gim, Hansung; Yun, Min S.; Maddox, Natasha; Stewart, Adam; Fender, Rob P.; Tremou, Evangelia; Chomiuk, Laura; Peters, Charee; Wilcots, Eric M.; Lazio, Joseph

    2015-08-01

    We are undertaking a 1000 hour campaign with the Karl G. Jansky VLA to survey 0.2 square degrees of the COSMOS field in full polarization continuum at 1.4 GHz. Our observations are part of a joint program with the spectral line COSMOS HI Large Extragalactic Survey (CHILES). When complete, we expect our CHILES Continuum Polarization (CHILES Con Pol) survey to reach an SKA-era sensitivity of 500 nJy per 4 arcsecond resolving beam, the deepest view of the radio sky yet. CHILES Con Pol will open new and fertile parameter space, with sensitivity to star formation rates of 10 Msun per year out to an unprecedented redshift of z=2, and ultra-luminous infrared galaxies and sub-millimeter galaxies out to redshifts of z=8 and beyond. This rich resource will extend the utility of radio band studies beyond the usual radio quasar and radio galaxy populations, opening sensitivity to the starforming and radio-quiet AGN populations that form the bulk of extragalactic sources detected in the optical, X-ray, and infrared bands. In this talk I will outline the key science of CHILES Con Pol, including galaxy evolution and novel measurements of intergalactic magnetic fields. I will present initial results from the first 180 hours of the survey and describe our forthcoming Data Release 1. I invite the astronomical community to consider unique science that can be pursued with CHILES Con Pol radio data.

  2. Deep, Broadband Spectral Line Surveys of Molecule-rich Interstellar Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widicus Weaver, Susanna L.; Laas, Jacob C.; Zou, Luyao

    2017-09-01

    Spectral line surveys are an indispensable tool for exploring the physical and chemical evolution of astrophysical environments due to the vast amount of data that can be obtained in a relatively short amount of time. We present deep, broadband spectral line surveys of 30 interstellar clouds using two broadband λ  = 1.3 mm receivers at the Caltech Submillimeter Observatory. This information can be used to probe the influence of physical environment on molecular complexity. We observed a wide variety of sources to examine the relative abundances of organic molecules as they relate to the physical properties of the source (i.e., temperature,more » density, dynamics, etc.). The spectra are highly sensitive, with noise levels ≤25 mK at a velocity resolution of ∼0.35 km s{sup −1}. In the initial analysis presented here, column densities and rotational temperatures have been determined for the molecular species that contribute significantly to the spectral line density in this wavelength regime. We present these results and discuss their implications for complex molecule formation in the interstellar medium.« less

  3. Cosmological parameter constraints with the Deep Lens Survey using galaxy-shear correlations and galaxy clustering properties

    NASA Astrophysics Data System (ADS)

    Yoon, Mijin; Jee, Myungkook James; Tyson, Tony

    2018-01-01

    The Deep Lens Survey (DLS), a precursor to the Large Synoptic Survey Telescope (LSST), is a 20 sq. deg survey carried out with NOAO’s Blanco and Mayall telescopes. The strength of the survey lies in its depth reaching down to ~27th mag in BVRz bands. This enables a broad redshift baseline study and allows us to investigate cosmological evolution of the large-scale structure. In this poster, we present the first cosmological analysis from the DLS using galaxy-shear correlations and galaxy clustering signals. Our DLS shear calibration accuracy has been validated through the most recent public weak-lensing data challenge. Photometric redshift systematic errors are tested by performing lens-source flip tests. Instead of real-space correlations, we reconstruct band-limited power spectra for cosmological parameter constraints. Our analysis puts a tight constraint on the matter density and the power spectrum normalization parameters. Our results are highly consistent with our previous cosmic shear analysis and also with the Planck CMB results.

  4. The Secret Lives Of Galaxies Unveiled In Deep Survey

    NASA Astrophysics Data System (ADS)

    2003-06-01

    Two of NASA's Great Observatories, bolstered by the largest ground-based telescopes around the world, are beginning to harvest new clues to the origin and evolution of galaxies. It's a bit like finding a family scrapbook containing snapshots that capture the lives of family members from infancy through adolescence to adulthood. "This is the first time the cosmic tale of how galaxies build themselves has been traced reliably to such early times in the universe's life," said Mauro Giavalisco, head of the Hubble Space Telescope (HST) portion of the survey, and research astronomer at the Space Telescope Science Institute (STScI) in Baltimore. The HST has joined forces with the Chandra X-ray Observatory to survey a relatively broad swath of sky encompassing tens of thousands of galaxies stretching far back into time. The Space Infrared Telescope Facility (SIRTF), scheduled for launch in August, will soon join this unprecedented survey. Called the Great Observatories Origins Deep Survey (GOODS), astronomers are studying galaxy formation and evolution over a wide range of distances and ages. The project is tracing the assembly history of galaxies, the evolution of their stellar populations, and the gusher of energy from star formation and active nuclei powered by immense black holes. HST astronomers report the sizes of galaxies clearly increase continuously from the time the universe was about 1 billion years old to an age of 6 billion years. This is approximately half the current age of the universe, 13.7 billion years. GOODS astronomers also find the star birth rate rose mildly, by about a factor of three, between the time the universe was about one billion years old and 1.5 billion years old, and remained high until about 7 billion years ago, when it quickly dropped to one-tenth the earlier "baby boomer" rate. This is further evidence major galaxy building trailed off when the universe was about half its current age. GOODS Chandra Deep Fields South Chandra Deep Field

  5. The Evolution of Deep Space Navigation: 1989-1999

    NASA Technical Reports Server (NTRS)

    Wood, Lincoln J.

    2008-01-01

    The exploration of the planets of the solar system using robotic vehicles has been underway since the early 1960s. During this time the navigational capabilities employed have increased greatly in accuracy, as required by the scientific objectives of the missions and as enabled by improvements in technology. This paper is the second in a chronological sequence dealing with the evolution of deep space navigation. The time interval covered extends from the 1989 launch of the Magellan spacecraft to Venus through a multiplicity of planetary exploration activities in 1999. The paper focuses on the observational techniques that have been used to obtain navigational information, propellant-efficient means for modifying spacecraft trajectories, and the computational methods that have been employed, tracing their evolution through a dozen planetary missions.

  6. The Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu

    A key question in astrophysics is to constrain the evolution of the largest gravitationally bound structures in the universe. The serendipitous observations of Swift-XRT form an excellent medium-deep and wide soft X-ray survey, with a sky area of 160 square degrees at the flux limit of 5e-15 erg/s/cm^2. This survey is about an order of magnitude deeper than previous surveys of similar areas, and an order of magnitude wider than previous surveys of similar depth. It is comparable to the planned eROSITA deep survey, but already with the data several years ahead. The unique combination of the survey area and depth enables it to fill in the gap between the deep, pencil beam surveys (such as the Chandra Deep Fields) and the shallow, wide area surveys measured with ROSAT. With it, we will place independent and complementary measurements on the number counts and luminosity functions of X-ray sources. It has been proved that this survey is excellent for X-ray selected galaxy cluster surveys, based on our initial analysis of 1/4 of the fields and other independent studies. The highest priority goal is to produce the largest, uniformly selected catalog of X-ray selected clusters and increase the sample of intermediate to high redshift clusters (z > 0.5) by an order of magnitude. From this catalog, we will study the evolution of cluster number counts, luminosity function, scaling relations, and eventually the mass function. For example, various smaller scale surveys concluded divergently on the evolution of a key scaling relation, between temperature and luminosity of clusters. With the statistical power from this large sample, we will resolve the debate whether clusters evolve self-similarly. This is a crucial step in mapping cluster evolution and constraining cosmological models. First, we propose to extract the complete serendipitous extended source list for all Swift-XRT data to 2015. Second, we will use optical/IR observations to further identify galaxy clusters. These

  7. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  8. Prospects for the study of evolution in the deep biosphere.

    PubMed

    Biddle, Jennifer F; Sylvan, Jason B; Brazelton, William J; Tully, Benjamin J; Edwards, Katrina J; Moyer, Craig L; Heidelberg, John F; Nelson, William C

    2011-01-01

    Since the days of Darwin, scientists have used the framework of the theory of evolution to explore the interconnectedness of life on Earth and adaptation of organisms to the ever-changing environment. The advent of molecular biology has advanced and accelerated the study of evolution by allowing direct examination of the genetic material that ultimately determines the phenotypes upon which selection acts. The study of evolution has been furthered through examination of microbial evolution, with large population numbers, short generation times, and easily extractable DNA. Such work has spawned the study of microbial biogeography, with the realization that concepts developed in population genetics may be applicable to microbial genomes (Martiny et al., 2006; Manhes and Velicer, 2011). Microbial biogeography and adaptation has been examined in many different environments. Here we argue that the deep biosphere is a unique environment for the study of evolution and list specific factors that can be considered and where the studies may be performed. This publication is the result of the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) theme team on Evolution (www.darkenergybiosphere.org).

  9. Testing Lithospheric versus Deep-Mantle Dynamics on Post-100 Ma Evolution of Western U.S. using Landscape Evolution Modeling

    NASA Astrophysics Data System (ADS)

    Chang, C.; Liu, L.

    2017-12-01

    Driving mechanisms of the topographic evolution of central-western North America from the Cretaceous Western Interior Seaway (WIS) to its present-day high elevation remain ellusive. Quantifying the effects of lithospheric deformation versus deep-mantle induced topography on the landscape evolution of the region is a key to better constraining the history of North American tectonics and mantle dynamics. One way to tackle this problem is through running landscape evolution simulation coupled with uplift histories characteristic to these tectonic processes. We then use available surface observations, e.g., sedimentation records, land erosion, and drainage evolution, to infer the likely lithospheric and mantle processes that formed the WIS, the subsequent Laramide orogeny, and the present-day high topography of central-western North America. In practice, we use BadLands to simulate the evolution of surface process. To validate a given uplift history, we quantitatively compare model predictions with onshore and offshore stratigraphy data from the literature. Furthermore, critical forcings of landscape evolution, such as climate, lithology and sea level, will also be examined to better attest the effects of different uplift scenarios. Preliminary results demonstrate that only with geographically migratory subsidence, as predicted by an inverse mantle convection model, can we re-produce large scale tilted strata and shifting sediment deposition observed in the WIS basins. Ongoing work will also look into styles of Cenozoic uplift events that ended the WIS and produced the landscape features today. Eventually, we hope to place new constraints on the evolution and properties of lithospheric and deep-mantle dynamics of North American and to locate the best-fit scenario of its coresponding surface evolution since 100 Ma.

  10. Prospects for the Study of Evolution in the Deep Biosphere

    PubMed Central

    Biddle, Jennifer F.; Sylvan, Jason B.; Brazelton, William J.; Tully, Benjamin J.; Edwards, Katrina J.; Moyer, Craig L.; Heidelberg, John F.; Nelson, William C.

    2012-01-01

    Since the days of Darwin, scientists have used the framework of the theory of evolution to explore the interconnectedness of life on Earth and adaptation of organisms to the ever-changing environment. The advent of molecular biology has advanced and accelerated the study of evolution by allowing direct examination of the genetic material that ultimately determines the phenotypes upon which selection acts. The study of evolution has been furthered through examination of microbial evolution, with large population numbers, short generation times, and easily extractable DNA. Such work has spawned the study of microbial biogeography, with the realization that concepts developed in population genetics may be applicable to microbial genomes (Martiny et al., 2006; Manhes and Velicer, 2011). Microbial biogeography and adaptation has been examined in many different environments. Here we argue that the deep biosphere is a unique environment for the study of evolution and list specific factors that can be considered and where the studies may be performed. This publication is the result of the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) theme team on Evolution (www.darkenergybiosphere.org). PMID:22319515

  11. Microbial Evolution at High Pressure: Deep Sea and Laboratory Studies

    NASA Astrophysics Data System (ADS)

    Bartlett, D. H.

    2011-12-01

    Elevated hydrostatic pressures are present in deep-sea and deep-Earth environments where this physical parameter has influenced the evolution and characteristics of life. Piezophilic (high-pressure-adapted) microbes have been isolated from diverse deep-sea settings, and would appear likely to occur in deep-subsurface habitats as well. In order to discern the factors enabling life at high pressure my research group has explored these adaptations at various levels, most recently including molecular analyses of deep-sea trench communities, and through the selective evolution of the model microbe Escherichia coli in the laboratory to progressively higher pressures. Much of the field work has focused on the microbes present in the deeper portions of the Puerto Rico Trench (PRT)and in the Peru-Chile Trench (PCT), from 6-8.5 km below the sea surface (~60-85 megapascals pressure). Culture-independent phylogenetic data on the Bacteria and Archaea present on particles or free-living, along with data on the microeukarya present was complemented with genomic analyses and the isolation and characterization of microbes in culture. Metagenomic analyses of the PRT revealed increased genome sizes and an overrepresentation at depth of sulfatases for the breakdown of sulfated polysaccharides and specific categories of transporters, including those associated with the transport of diverse cations or carboxylate ions, or associated with heavy metal resistance. Single-cell genomic studies revealed several linneages which recruited to the PRT metagenome far better than existing marine microbial genome sequences. analyses. Novel high pressure culture approaches have yielded new piezophiles including species preferring very low nutrient levels, those living off of hydrocarbons, and those adapted to various electron donor/electron acceptor combinations. In order to more specifically focus on functions enabling life at increased pressure selective evolution experiments were performed with

  12. X-UDS: The Chandra Legacy Survey of the UKIDSS Ultra Deep Survey Field

    NASA Astrophysics Data System (ADS)

    Kocevski, Dale D.; Hasinger, Guenther; Brightman, Murray; Nandra, Kirpal; Georgakakis, Antonis; Cappelluti, Nico; Civano, Francesca; Li, Yuxuan; Li, Yanxia; Aird, James; Alexander, David M.; Almaini, Omar; Brusa, Marcella; Buchner, Johannes; Comastri, Andrea; Conselice, Christopher J.; Dickinson, Mark A.; Finoguenov, Alexis; Gilli, Roberto; Koekemoer, Anton M.; Miyaji, Takamitsu; Mullaney, James R.; Papovich, Casey; Rosario, David; Salvato, Mara; Silverman, John D.; Somerville, Rachel S.; Ueda, Yoshihiro

    2018-06-01

    We present the X-UDS survey, a set of wide and deep Chandra observations of the Subaru-XMM Deep/UKIDSS Ultra Deep Survey (SXDS/UDS) field. The survey consists of 25 observations that cover a total area of 0.33 deg2. The observations are combined to provide a nominal depth of ∼600 ks in the central 100 arcmin2 region of the field that has been imaged with Hubble/WFC3 by the CANDELS survey and ∼200 ks in the remainder of the field. In this paper, we outline the survey’s scientific goals, describe our observing strategy, and detail our data reduction and point source detection algorithms. Our analysis has resulted in a total of 868 band-merged point sources detected with a false-positive Poisson probability of <1 × 10‑4. In addition, we present the results of an X-ray spectral analysis and provide best-fitting neutral hydrogen column densities, N H, as well as a sample of 51 Compton-thick active galactic nucleus candidates. Using this sample, we find the intrinsic Compton-thick fraction to be 30%–35% over a wide range in redshift (z = 0.1–3), suggesting the obscured fraction does not evolve very strongly with epoch. However, if we assume that the Compton-thick fraction is dependent on luminosity, as is seen for Compton-thin sources, then our results are consistent with a rise in the obscured fraction out to z ∼ 3. Finally, an examination of the host morphologies of our Compton-thick candidates shows a high fraction of morphological disturbances, in agreement with our previous results. All data products described in this paper are made available via a public website.

  13. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Technical Reports Server (NTRS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L; Guhathakurta, Puraga; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; hide

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. < 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp -1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other

  14. ESO imaging survey: optical deep public survey

    NASA Astrophysics Data System (ADS)

    Mignano, A.; Miralles, J.-M.; da Costa, L.; Olsen, L. F.; Prandoni, I.; Arnouts, S.; Benoist, C.; Madejsky, R.; Slijkhuis, R.; Zaggia, S.

    2007-02-01

    This paper presents new five passbands (UBVRI) optical wide-field imaging data accumulated as part of the DEEP Public Survey (DPS) carried out as a public survey by the ESO Imaging Survey (EIS) project. Out of the 3 square degrees originally proposed, the survey covers 2.75 square degrees, in at least one band (normally R), and 1.00 square degrees in five passbands. The median seeing, as measured in the final stacked images, is 0.97 arcsec, ranging from 0.75 arcsec to 2.0 arcsec. The median limiting magnitudes (AB system, 2´´ aperture, 5σ detection limit) are UAB=25.65, BAB=25.54, VAB=25.18, RAB = 24.8 and IAB =24.12 mag, consistent with those proposed in the original survey design. The paper describes the observations and data reduction using the EIS Data Reduction System and its associated EIS/MVM library. The quality of the individual images were inspected, bad images discarded and the remaining used to produce final image stacks in each passband, from which sources have been extracted. Finally, the scientific quality of these final images and associated catalogs was assessed qualitatively by visual inspection and quantitatively by comparison of statistical measures derived from these data with those of other authors as well as model predictions, and from direct comparison with the results obtained from the reduction of the same dataset using an independent (hands-on) software system. Finally to illustrate one application of this survey, the results of a preliminary effort to identify sub-mJy radio sources are reported. To the limiting magnitude reached in the R and I passbands the success rate ranges from 66 to 81% (depending on the fields). These data are publicly available at CDS. Based on observations carried out at the European Southern Observatory, La Silla, Chile under program Nos. 164.O-0561, 169.A-0725, and 267.A-5729. Appendices A, B and C are only available in electronic form at http://www.aanda.org

  15. A survey on deep learning in medical image analysis.

    PubMed

    Litjens, Geert; Kooi, Thijs; Bejnordi, Babak Ehteshami; Setio, Arnaud Arindra Adiyoso; Ciompi, Francesco; Ghafoorian, Mohsen; van der Laak, Jeroen A W M; van Ginneken, Bram; Sánchez, Clara I

    2017-12-01

    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms

    PubMed Central

    Werner, Gijsbert D. A.; Cornwell, William K.; Sprent, Janet I.; Kattge, Jens; Kiers, E. Toby

    2014-01-01

    Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis’ evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of ‘stable fixers’ (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships. PMID:24912610

  17. Large-scale transportation network congestion evolution prediction using deep learning theory.

    PubMed

    Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai

    2015-01-01

    Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation.

  18. Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory

    PubMed Central

    Ma, Xiaolei; Yu, Haiyang; Wang, Yunpeng; Wang, Yinhai

    2015-01-01

    Understanding how congestion at one location can cause ripples throughout large-scale transportation network is vital for transportation researchers and practitioners to pinpoint traffic bottlenecks for congestion mitigation. Traditional studies rely on either mathematical equations or simulation techniques to model traffic congestion dynamics. However, most of the approaches have limitations, largely due to unrealistic assumptions and cumbersome parameter calibration process. With the development of Intelligent Transportation Systems (ITS) and Internet of Things (IoT), transportation data become more and more ubiquitous. This triggers a series of data-driven research to investigate transportation phenomena. Among them, deep learning theory is considered one of the most promising techniques to tackle tremendous high-dimensional data. This study attempts to extend deep learning theory into large-scale transportation network analysis. A deep Restricted Boltzmann Machine and Recurrent Neural Network architecture is utilized to model and predict traffic congestion evolution based on Global Positioning System (GPS) data from taxi. A numerical study in Ningbo, China is conducted to validate the effectiveness and efficiency of the proposed method. Results show that the prediction accuracy can achieve as high as 88% within less than 6 minutes when the model is implemented in a Graphic Processing Unit (GPU)-based parallel computing environment. The predicted congestion evolution patterns can be visualized temporally and spatially through a map-based platform to identify the vulnerable links for proactive congestion mitigation. PMID:25780910

  19. Deep Near-Infrared Surveys and Young Brown Dwarf Populations in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Tamura, M.; Naoi, T.; Oasa, Y.; Nakajima, Y.; Nagashima, C.; Nagayama, T.; Baba, D.; Nagata, T.; Sato, S.; Kato, D.; Kurita, M.; Sugitani, K.; Itoh, Y.; Nakaya, H.; Pickles, A.

    2003-06-01

    We are currently conducting three kinds of IR surveys of star forming regions (SFRs) in order to seek for very low-mass young stellar populations. First is a deep JHKs-bands (simultaneous) survey with the SIRIUS camera on the IRSF 1.4m or the UH 2.2m telescopes. Second is a very deep JHKs survey with the CISCO IR camera on the Subaru 8.2m telescope. Third is a high resolution companion search around nearby YSOs with the CIAO adaptive optics coronagraph IR camera on the Subaru. In this contribution, we describe our SIRIUS camera and present preliminary results of the ongoing surveys with this new instrument.

  20. Deep CFHT Y-band Imaging of VVDS-F22 Field. II. Quasar Selection and Quasar Luminosity Function

    NASA Astrophysics Data System (ADS)

    Yang, Jinyi; Wu, Xue-Bing; Liu, Dezi; Fan, Xiaohui; Yang, Qian; Wang, Feige; McGreer, Ian D.; Fan, Zuhui; Yuan, Shuo; Shan, Huanyuan

    2018-03-01

    We report the results of a faint quasar survey in a one-square-degree field. The aim is to test the Y-K/g-z and J-K/i-Y color selection criteria for quasars at faint magnitudes to obtain a complete sample of quasars based on deep optical and near-infrared color–color selection and to measure the faint end of the quasar luminosity function (QLF) over a wide redshift range. We carried out a quasar survey based on the Y-K/g-z and J-K/i-Y quasar selection criteria, using the deep Y-band data obtained from our CFHT/WIRCam Y-band images in a two-degree field within the F22 field of the VIMOS VLT deep survey, optical co-added data from Sloan Digital Sky Survey Stripe 82 and deep near-infrared data from the UKIDSS Deep Extragalactic Survey in the same field. We discovered 25 new quasars at 0.5< z< 4.5 and i< 22.5 mag within one-square-degree field. The survey significantly increases the number of faint quasars in this field, especially at z∼ 2{--}3. It confirms that our color selections are highly complete in a wide redshift range (z< 4.5), especially over the quasar number density peak at z∼ 2{--}3, even for faint quasars. Combining all previous known quasars and new discoveries, we construct a sample with 109 quasars and measure the binned QLF and parametric QLF. Although the sample is small, our results agree with a pure luminosity evolution at lower redshift and luminosity evolution and density evolution model at redshift z> 2.5.

  1. Radio variability in the Phoenix Deep Survey at 1.4 GHz

    NASA Astrophysics Data System (ADS)

    Hancock, P. J.; Drury, J. A.; Bell, M. E.; Murphy, T.; Gaensler, B. M.

    2016-09-01

    We use archival data from the Phoenix Deep Survey to investigate the variable radio source population above 1 mJy beam-1 at 1.4 GHz. Given the similarity of this survey to other such surveys we take the opportunity to investigate the conflicting results which have appeared in the literature. Two previous surveys for variability conducted with the Very Large Array (VLA) achieved a sensitivity of 1 mJy beam-1. However, one survey found an areal density of radio variables on time-scales of decades that is a factor of ˜4 times greater than a second survey which was conducted on time-scales of less than a few years. In the Phoenix deep field we measure the density of variable radio sources to be ρ = 0.98 deg-2 on time-scales of 6 months to 8 yr. We make use of Wide-field Infrared Survey Explorer infrared cross-ids, and identify all variable sources as an active galactic nucleus of some description. We suggest that the discrepancy between previous VLA results is due to the different time-scales probed by each of the surveys, and that radio variability at 1.4 GHz is greatest on time-scales of 2-5 yr.

  2. Tracing Evolution of Starbursts and AGNs using Ultra-deep Radio and mm/smm Surveys

    NASA Astrophysics Data System (ADS)

    Yun, Min S.; Gim, Hansung; Morrison, Glenn; Hales, Christopher A.; Momjian, Emmanuel; Owen, Frazer; Kellermann, Ken; Aretxaga, Itziar; Giavalisco, Mauro; Hughes, David; Lowenthal, James; Miller, Neal; Kawabe, Ryohei; Kohno, Kotaro

    2015-08-01

    There is growing evidence supporting a rapid build up of metals among massive galaxies during their rapid growth via an intense starburst in the early epochs. These star formation activities may be largely obscured in the UV and optical light, as in the local universe. If the growth of supermassive blackholes occurs at or nearly the same time, the accompanying AGN activity may also be heavily obscured. Ultra-deep surveys in the radio and far-infrared can offer extinction-free view of these systems, and the advent of new facilities such as the Jansky VLA, ALMA, and LMT now allows us to probe directly the population of starburst galaxies that are responsible for the bulk of the stellar mass build-up during the epoch of galaxy growth (SFR > 10-100 M⊙/yr at z≈2 or earlier). We will present our analysis of the properties of the micro-Jansky radio sources identified by new Jansky VLA surveys of the GOODS and COSMOS fields using the rich archival data already available (Herschel, Spitzer, Chandra, ALMA, LMT, etc.). Specifically, we find evidence for two populations of microJy radio sources with distinct spectral index distribution. We explore whether this reflects differences in the underlying powering mechanisms by examining their radio-FIR correlation and X-ray properties. We also find the previously reported apparent systematic change in the "q-value" with increasing redshift, and we examine the reality of this trend in some detail. Finally, we will also examine the spatial extent of activities for a subset of the sample where high angular resolution (better than 1") information is available.

  3. The properties and evolution of a K-band selected sample of massive galaxies at z ~ 0.4-2 in the Palomar/DEEP2 survey

    NASA Astrophysics Data System (ADS)

    Conselice, C. J.; Bundy, K.; Trujillo, I.; Coil, A.; Eisenhardt, P.; Ellis, R. S.; Georgakakis, A.; Huang, J.; Lotz, J.; Nandra, K.; Newman, J.; Papovich, C.; Weiner, B.; Willmer, C.

    2007-11-01

    We present the results of a study on the properties and evolution of massive (M* > 1011Msolar) galaxies at z ~ 0.4-2 utilizing Keck spectroscopy, near-infrared Palomar imaging, and Hubble, Chandra and Spitzer data covering fields targeted by the DEEP2 galaxy spectroscopic survey. Our sample is K-band selected and stellar mass limited, based on wide-area near-infrared imaging from the Palomar Observatory Wide-Field Infrared Survey, which covers 1.53 deg2 to a 5σ depth of Ks,vega ~ 20.5. Our primary goal is to obtain a broad census of massive galaxies through measuring how their number and mass densities, morphology, as well as their star formation and active galactic nucleus content evolve from z ~ 0.4-2. Our major findings include: (i) statistically the mass and number densities of M* > 1011Msolar galaxies show little evolution between z = 0 and 1 and from z ~ 0 to 2 for M* > 1011.5Msolar galaxies. We however find significant evolution within 1 < z < 1.5 for 1011 Msolar < M* < 1011.5Msolar galaxies. (ii) After examining the structures of our galaxies using Hubble ACS imaging, we find that M* > 1011Msolar selected galaxies show a nearly constant elliptical fraction of ~70-90 per cent at all redshifts. The remaining objects tend to be peculiars possibly undergoing mergers at z > 0.8, while spirals dominate the remainder at lower redshifts. A significant fraction (~25 per cent) of these early-types contain minor structural anomalies. (iii) We find that only a fraction (~60 per cent) of massive galaxies with M* > 1011Msolar are on the red sequence at z ~ 1.4, while nearly 100 per cent evolve on to it by z ~ 0.4. (iv) By utilizing Spitzer MIPS imaging and [OII] line fluxes we argue that M* > 1011.5Msolar galaxies have a steeply declining star formation rate (SFR) density ~ (1 + z)6. By examining the contribution of star formation to the evolution of the mass function, as well as the merger history through the CAS parameters, we determine that M* > 1011Msolar galaxies

  4. Short and long term evolution of deep giant submarine dunes in continental shelf environment: the example of the 'Banc du Four' (Western Brittany, France)

    NASA Astrophysics Data System (ADS)

    Franzetti, M.; Le Roy, P.; Garlan, T.; Delacourt, C.; Thibaud, R.; Cancouet, R.; Graindorge, D.; Prunier, C.; Sukhovich, A.; Deschamps, A.

    2013-12-01

    The deep sandwave dynamics is still in debate. Understanding the migration processes and the resulting evolution of their 3D internal architecture are scientifically challenging. To address these questions we realized two swath bathymetry surveys complemented with seismic reflection across the large sandwaves field named 'Banc du Four'. It is located offshore the Western Brittany and is composed of more 500 dunes. Some of the dunes' wavelengths and heights exceed 1000m and 30m respectively placing them among the largest dunes ever described. Equilibrium laws obtained from our morphological analysis are not completely in agreement with those described in previous studies of similar structures in shallow waters. Relatively high migration velocities on deep continental shelves (from 3 to 20m.yr-1) attest of their still present dynamical equilibrium. Internal-external morphological and kinematical analyses show the existence of two different dynamic regimes. Interpretation of the seismic reflection data allowed reconstructing long-term evolution of the sandbank and the establishment of progressive connections between stepped submarine channels and tidal dynamics during the last sea-level rise.

  5. Surveying Galaxy Evolution in the Far-Infrared: A Far-Infrared All-Sky Survey Concept

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Amato, M. J.; Dwek, E.; Freund, M. M.; Gardner, J. P.; Kashlinsky, A.; Leisawitz, D. T.; Mather, J. C.; Moseley, S. H.; Shafer, R. A.

    2004-01-01

    Half of the total luminosity in the Universe is emitted at rest wavelengths approximately 80-100 microns. At the highest known galaxy redshifts (z greater than or equal to 6) this energy is redshifted to approximately 600 microns. Quantifying the evolution of galaxies at these wavelengths is crucial to our understanding of the formation of structure in the Universe following the big bang. Surveying the whole sky will find the rare and unique objects, enabling follow-up observations. SIRCE, the Survey of Infrared Cosmic Evolution, is such a mission concept under study at NASA's Goddard Space Flight Center. A helium-cooled telescope with ultrasensitive detectors can image the whole sky to the confusion limit in 6 months. Multiple wavelength bands permit the extraction of photometric redshifts, while a large telescope yields a low confusion limit. We discuss the implications of such a survey for galaxy formation and evolution, large-scale structure, star formation, and the structure of interstellar dust.

  6. Limits on transverse momentum dependent evolution from semi-inclusive deep inelastic scattering at moderate Q

    NASA Astrophysics Data System (ADS)

    Aidala, C. A.; Field, B.; Gamberg, L. P.; Rogers, T. C.

    2014-05-01

    In the QCD evolution of transverse momentum dependent parton distribution and fragmentation functions, the Collins-Soper evolution kernel includes both a perturbative short-distance contribution and a large-distance nonperturbative, but strongly universal, contribution. In the past, global fits, based mainly on larger Q Drell-Yan-like processes, have found substantial contributions from nonperturbative regions in the Collins-Soper evolution kernel. In this article, we investigate semi-inclusive deep inelastic scattering measurements in the region of relatively small Q, of the order of a few GeV, where sensitivity to nonperturbative transverse momentum dependence may become more important or even dominate the evolution. Using recently available deep inelastic scattering data from the COMPASS experiment, we provide estimates of the regions of coordinate space that dominate in transverse momentum dependent (TMD) processes when the hard scale is of the order of only a few GeV. We find that distance scales that are much larger than those commonly probed in large Q measurements become important, suggesting that the details of nonperturbative effects in TMD evolution are especially significant in the region of intermediate Q. We highlight the strongly universal nature of the nonperturbative component of evolution and its potential to be tightly constrained by fits from a wide variety of observables that include both large and moderate Q. On this basis, we recommend detailed treatments of the nonperturbative component of the Collins-Soper evolution kernel for future TMD studies.

  7. Deep-towed CSEM survey of gas hydrates in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Kannberg, P.; Constable, S.

    2017-12-01

    Controlled source electromagnetic (CSEM) surveys are increasingly being used to remotely detect hydrate deposits in seafloor sediments. CSEM methods are sensitive to sediment pore space resistivity, such as when electrically resistive hydrate displaces the electrically conductive pore fluid, increasing the bulk resistivity of the sediment. In July 2017, a two-week research cruise using an upgraded and expanded "Vulcan" towed receiver system collected over 250 line km of data at four sites in the Gulf of Mexico (GoM) thought to have hydrate bearing sediments. Hydrate bearing horizons at the survey sites ranged from 400-700 m below seafloor. Modeling suggested an array with source receiver offsets of up to 1600 m would be needed to properly image the deep hydrate. A deep towed electromagnetic transmitter outputting 270 Amps was towed 100 m above seafloor. Six Vulcan receivers, each recording three-axis electric field data, were towed at 200 m intervals from 600-1600 m behind the transmitter. The four sites surveyed, Walker Ridge 313, Orca Basin, Mad Dog, and Green Canyon 955, are associated with the upcoming GOM^2 coring operation scheduled for 2020. Wells at WR313 and GC955 were logged as part of a joint industry drilling project in 2009 and will be used to ground truth our inversion results. In 2008, WR313 and GC955 were surveyed using traditional CSEM seafloor receivers, accompanied by a single prototype Vulcan towed receiver. This prior survey will allow comparison of results from a seafloor receiver survey with those from a towed receiver survey. Seismic data has been collected at all the sites, which will be used to constrain inversions. In addition to the four hydrate sites surveyed, two lines were towed over Green Knoll, a deep-water salt dome located between Mad Dog and GC955. Presented here are initial results from our recent cruise.

  8. Deep drilling; Probing beneath the earth's surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, J.250

    1991-06-01

    This paper reports on boreholes from 4.5 to greater than 10 kilometers deep that are pushing back the boundaries of earth science as they yield information that is used to refine seismic surveys, chart the evolution of sedimentary basins and shield volcanos, and uncover important clues on the origin and migration of mantle-derived water and gas.

  9. Deep 20-GHz survey of the Chandra Deep Field South and SDSS Stripe 82: source catalogue and spectral properties

    NASA Astrophysics Data System (ADS)

    Franzen, Thomas M. O.; Sadler, Elaine M.; Chhetri, Rajan; Ekers, Ronald D.; Mahony, Elizabeth K.; Murphy, Tara; Norris, Ray P.; Waldram, Elizabeth M.; Whittam, Imogen H.

    2014-04-01

    We present a source catalogue and first results from a deep, blind radio survey carried out at 20 GHz with the Australia Telescope Compact Array, with follow-up observations at 5.5, 9 and 18 GHz. The Australia Telescope 20 GHz (AT20G) deep pilot survey covers a total area of 5 deg2 in the Chandra Deep Field South and in Stripe 82 of the Sloan Digital Sky Survey. We estimate the survey to be 90 per cent complete above 2.5 mJy. Of the 85 sources detected, 55 per cent have steep spectra (α _{1.4}^{20} < -0.5) and 45 per cent have flat or inverted spectra (α _{1.4}^{20} ≥ -0.5). The steep-spectrum sources tend to have single power-law spectra between 1.4 and 18 GHz, while the spectral indices of the flat- or inverted-spectrum sources tend to steepen with frequency. Among the 18 inverted-spectrum (α _{1.4}^{20} ≥ 0.0) sources, 10 have clearly defined peaks in their spectra with α _{1.4}^{5.5} > 0.15 and α 9^{18} < -0.15. On a 3-yr time-scale, at least 10 sources varied by more than 15 per cent at 20 GHz, showing that variability is still common at the low flux densities probed by the AT20G-deep pilot survey. We find a strong and puzzling shift in the typical spectral index of the 15-20-GHz source population when combining data from the AT20G, Ninth Cambridge and Tenth Cambridge surveys: there is a shift towards a steeper-spectrum population when going from ˜1 Jy to ˜5 mJy, which is followed by a shift back towards a flatter-spectrum population below ˜5 mJy. The 5-GHz source-count model by Jackson & Wall, which only includes contributions from FRI and FRII sources, and star-forming galaxies, does not reproduce the observed flattening of the flat-spectrum counts below ˜5 mJy. It is therefore possible that another population of sources is contributing to this effect.

  10. The future of stellar occultations by distant solar system bodies: Perspectives from the Gaia astrometry and the deep sky surveys

    NASA Astrophysics Data System (ADS)

    Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Vieira-Martins, R.; Assafin, M.; Sicardy, B.; Bérard, D.; Benedetti-Rossi, G.

    2018-05-01

    Distant objects in the solar system are crucial to better understand the history and evolution of its outskirts. The stellar occultation technique allows the determination of their sizes and shapes with kilometric accuracy, a detailed investigation of their immediate vicinities, as well as the detection of tenuous atmospheres. The prediction of such events is a key point in this study, and yet accurate enough predictions are available to a handful of objects only. In this work, we briefly discuss the dramatic impact that both the astrometry from the Gaia space mission and the deep sky surveys - the Large Synoptic Survey Telescope in particular - will have on the prediction of stellar occultations and how they may influence the future of the study of distant small solar system bodies through this technique.

  11. The Origin of Stellar Species: constraining stellar evolution scenarios with Local Group galaxy surveys

    NASA Astrophysics Data System (ADS)

    Sarbadhicary, Sumit; Badenes, Carles; Chomiuk, Laura; Maldonado, Jessica; Caprioli, Damiano; Heger, Mairead; Huizenga, Daniel

    2018-01-01

    Our understanding of the progenitors of many stellar species, such as supernovae, massive and low-mass He-burning stars, is limited because of many poorly constrained aspects of stellar evolution theory. For my dissertation, I have focused on using Local Group galaxy surveys to constrain stellar evolution scenarios by measuring delay-time distributions (DTD). The DTD is the hypothetical occurrence rate of a stellar object per elapsed time after a brief burst of star formation. It is the measured distribution of timescales on which stars evolve, and therefore serves as a powerful observational constraint on theoretical progenitor models. The DTD can be measured from a survey of stellar objects and a set of star-formation histories of the host galaxy, and is particularly effective in the Local Group, where high-quality star-formation histories are available from resolved stellar populations. I am currently calculating a SN DTD with supernova remnants (SNRs) in order to provide the strongest constraints on the progenitors of thermonuclear and core-collapse supernovae. However, most SNRs do not have reliable age measurements and their evolution depends on the ambient environment. For this reason, I wrote a radio light curve model of an SNR population to extract the visibility times and rates of supernovae - crucial ingredients for the DTD - from an SNR survey. The model uses observational constraints on the local environments from multi-wavelength surveys, accounts for missing SNRs and employs the latest models of shock-driven particle acceleration. The final calculation of the SN DTD in the Local Group is awaiting completion of a systematic SNR catalog from deep radio-continuum images, now in preparation by a group led by Dr. Laura Chomiuk. I have also calculated DTDs for the LMC population of RR Lyrae and Cepheid variables, which serve as important distance calibrators and stellar population tracers. We find that Cepheids can have delay-times between 10 Myrs - 1 Gyr

  12. LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT z Almost-Equal-To 8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Haojing; Finkelstein, Steven L.; Huang, Kuang-Han

    One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z Almost-Equal-To 8. Its two-tiered ''wide and deep'' strategy bridges significant gaps in existing near-infrared surveys. Here we report on z Almost-Equal-To 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin{sup 2} to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J < 26.2 mag, and are >1 mag brighter than any previously known F105W-dropouts.more » We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z Almost-Equal-To 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z Almost-Equal-To 8. Their derived stellar masses are on the order of a few Multiplication-Sign 10{sup 9} M{sub Sun }, from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z Almost-Equal-To 8. The high number density of very luminous and very massive galaxies at z Almost-Equal-To 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.« less

  13. Post-Palaeozoic evolution of weathered landsurfaces in Uganda by tectonically controlled deep weathering and stripping

    NASA Astrophysics Data System (ADS)

    Taylor, R. G.; Howard, K. W. F.

    1998-11-01

    A model for the evolution of weathered landsurfaces in Uganda is developed using available geotectonic, climatic, sedimentological and chronological data. The model demonstrates the pivotal role of tectonic uplift in inducing cycles of stripping, and tectonic quiescence for cycles of deep weathering. It is able to account for the development of key landforms, such as inselbergs and duricrust-capped plateaux, which previous hypotheses of landscape evolution that are based on climatic or eustatic controls are unable to explain. Development of the Ugandan landscape is traced back to the Permian. Following late Palaeozoic glaciation, a trend towards warmer and more humid climates through the Mesozoic enabled deep weathering of the Jurassic/mid-Cretaceous surface in Uganda during a period of prolonged tectonic quiescence. Uplift associated with the opening South Atlantic Ocean terminated this cycle and instigated a cycle of stripping between the mid-Cretaceous and early Miocene. Deep weathering on the succeeding Miocene to recent (African) surface has occurred from Miocene to present but has been interrupted in the areas adjacent to the western rift where development of a new drainage base level has prompted cycles of stripping in the Miocene and Pleistocene.

  14. Did shifting seawater sulfate concentrations drive the evolution of deep-sea methane-seep ecosystems?

    PubMed

    Kiel, Steffen

    2015-04-07

    The origin and evolution of the faunas inhabiting deep-sea hydrothermal vents and methane seeps have been debated for decades. These faunas rely on a local source of sulfide and other reduced chemicals for nutrition, which spawned the hypothesis that their evolutionary history is independent from that of photosynthesis-based food chains and instead driven by extinction events caused by deep-sea anoxia. Here I use the fossil record of seep molluscs to show that trends in body size, relative abundance and epifaunal/infaunal ratios track current estimates of seawater sulfate concentrations through the last 150 Myr. Furthermore, the two main faunal turnovers during this time interval coincide with major changes in seawater sulfate concentrations. Because sulfide at seeps originates mostly from seawater sulfate, variations in sulfate concentrations should directly affect the base of the food chain of this ecosystem and are thus the likely driver of the observed macroecologic and evolutionary patterns. The results imply that the methane-seep fauna evolved largely independently from developments and mass extinctions affecting the photosynthesis-based biosphere and add to the growing body of evidence that the chemical evolution of the oceans had a major impact on the evolution of marine life. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Deep phylogeny and evolution of sponges (phylum Porifera).

    PubMed

    Wörheide, G; Dohrmann, M; Erpenbeck, D; Larroux, C; Maldonado, M; Voigt, O; Borchiellini, C; Lavrov, D V

    2012-01-01

    Sponges (phylum Porifera) are a diverse taxon of benthic aquatic animals of great ecological, commercial, and biopharmaceutical importance. They are arguably the earliest-branching metazoan taxon, and therefore, they have great significance in the reconstruction of early metazoan evolution. Yet, the phylogeny and systematics of sponges are to some extent still unresolved, and there is an on-going debate about the exact branching pattern of their main clades and their relationships to the other non-bilaterian animals. Here, we review the current state of the deep phylogeny of sponges. Several studies have suggested that sponges are paraphyletic. However, based on recent phylogenomic analyses, we suggest that the phylum Porifera could well be monophyletic, in accordance with cladistic analyses based on morphology. This finding has many implications for the evolutionary interpretation of early animal traits and sponge development. We further review the contribution that mitochondrial genes and genomes have made to sponge phylogenetics and explore the current state of the molecular phylogenies of the four main sponge lineages (Classes), that is, Demospongiae, Hexactinellida, Calcarea, and Homoscleromorpha, in detail. While classical systematic systems are largely congruent with molecular phylogenies in the class Hexactinellida and in certain parts of Demospongiae and Homoscleromorpha, the high degree of incongruence in the class Calcarea still represents a challenge. We highlight future areas of research to fill existing gaps in our knowledge. By reviewing sponge development in an evolutionary and phylogenetic context, we support previous suggestions that sponge larvae share traits and complexity with eumetazoans and that the simple sedentary adult lifestyle of sponges probably reflects some degree of secondary simplification. In summary, while deep sponge phylogenetics has made many advances in the past years, considerable efforts are still required to achieve a

  16. White Dwarfs in the UKIRT Infrared Deep Sky Survey Data Release 9

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Leggett, S. K.; Lodieu, N.; Freytag, B.; Bergeron, P.; Kalirai, J. S.; Ludwig, H.-G.

    2014-06-01

    We have identified 8 to 10 new cool white dwarfs from the Large Area Survey (LAS) Data Release 9 of the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS). The data set was paired with the Sloan Digital Sky Survey to obtain proper motions and a broad ugrizYJHK wavelength coverage. Optical spectroscopic observations were secured at Gemini Observatory and confirm the degenerate status for eight of our targets. The final sample includes two additional white dwarf candidates with no spectroscopic observations. We rely on improved one-dimensional model atmospheres and new multi-dimensional simulations with CO5BOLD to review the stellar parameters of the published LAS white dwarf sample along with our additional discoveries. Most of the new objects possess very cool atmospheres with effective temperatures below 5000 K, including two pure-hydrogen remnants with a cooling age between 8.5 and 9.0 Gyr, and tangential velocities in the range 40 km s-1 <=v tan <= 60 km s-1. They are likely thick disk 10-11 Gyr old objects. In addition, we find a resolved double degenerate system with v tan ~ 155 km s-1 and a cooling age between 3.0 and 5.0 Gyr. These white dwarfs could be disk remnants with a very high velocity or former halo G stars. We also compare the LAS sample with earlier studies of very cool degenerates and observe a similar deficit of helium-dominated atmospheres in the range 5000 < T eff (K) < 6000. We review the possible explanations for the spectral evolution from helium-dominated toward hydrogen-rich atmospheres at low temperatures.

  17. MOIRCS Deep Survey. I: DRG Number Counts

    NASA Astrophysics Data System (ADS)

    Kajisawa, Masaru; Konishi, Masahiro; Suzuki, Ryuji; Tokoku, Chihiro; Uchimoto, Yuka; Katsuno; Yoshikawa, Tomohiro; Akiyama, Masayuki; Ichikawa, Takashi; Ouchi, Masami; Omata, Koji; Tanaka, Ichi; Nishimura, Tetsuo; Yamada, Toru

    2006-12-01

    We use very deep near-infrared imaging data taken with Multi-Object InfraRed Camera and Spectrograph (MOIRCS) on the Subaru Telescope to investigate the number counts of Distant Red Galaxies (DRGs). We have observed a 4x7 arcmin^2 field in the Great Observatories Origins Deep Survey North (GOODS-N), and our data reach J=24.6 and K=23.2 (5sigma, Vega magnitude). The surface density of DRGs selected by J-K>2.3 is 2.35+-0.31 arcmin^-2 at K<22 and 3.54+-0.38 arcmin^-2 at K<23, respectively. These values are consistent with those in the GOODS-South and FIRES. Our deep and wide data suggest that the number counts of DRGs turn over at K~22, and the surface density of the faint DRGs with K>22 is smaller than that expected from the number counts at the brighter magnitude. The result indicates that while there are many bright galaxies at 222 suggest that the mass-dependent color distribution, where most of low-mass galaxies are blue while more massive galaxies tend to have redder colors, had already been established at that epoch.

  18. The new galaxy evolution paradigm revealed by the Herschel surveys

    NASA Astrophysics Data System (ADS)

    Eales, Stephen; Smith, Dan; Bourne, Nathan; Loveday, Jon; Rowlands, Kate; van der Werf, Paul; Driver, Simon; Dunne, Loretta; Dye, Simon; Furlanetto, Cristina; Ivison, R. J.; Maddox, Steve; Robotham, Aaron; Smith, Matthew W. L.; Taylor, Edward N.; Valiante, Elisabetta; Wright, Angus; Cigan, Philip; De Zotti, Gianfranco; Jarvis, Matt J.; Marchetti, Lucia; Michałowski, Michał J.; Phillipps, Steven; Viaene, Sebastien; Vlahakis, Catherine

    2018-01-01

    The Herschel Space Observatory has revealed a very different galaxyscape from that shown by optical surveys which presents a challenge for galaxy-evolution models. The Herschel surveys reveal (1) that there was rapid galaxy evolution in the very recent past and (2) that galaxies lie on a single Galaxy Sequence (GS) rather than a star-forming 'main sequence' and a separate region of 'passive' or 'red-and-dead' galaxies. The form of the GS is now clearer because far-infrared surveys such as the Herschel ATLAS pick up a population of optically red star-forming galaxies that would have been classified as passive using most optical criteria. The space-density of this population is at least as high as the traditional star-forming population. By stacking spectra of H-ATLAS galaxies over the redshift range 0.001 < z < 0.4, we show that the galaxies responsible for the rapid low-redshift evolution have high stellar masses, high star-formation rates but, even several billion years in the past, old stellar populations - they are thus likely to be relatively recent ancestors of early-type galaxies in the Universe today. The form of the GS is inconsistent with rapid quenching models and neither the analytic bathtub model nor the hydrodynamical EAGLE simulation can reproduce the rapid cosmic evolution. We propose a new gentler model of galaxy evolution that can explain the new Herschel results and other key properties of the galaxy population.

  19. The Great Observatories Origins Deep Survey (GOODS): Overview and Status

    NASA Astrophysics Data System (ADS)

    Hook, R. N.; GOODS Team

    2002-12-01

    GOODS is a very large project to gather deep imaging data and spectroscopic followup of two fields, the Hubble Deep Field North (HDF-N) and the Chandra Deep Field South (CDF-S), with both space and ground-based instruments to create an extensive multiwavelength public data set for community research on the distant Universe. GOODS includes a SIRTF Legacy Program (PI: Mark Dickinson) and a Hubble Treasury Program of ACS imaging (PI: Mauro Giavalisco). The ACS imaging was also optimized for the detection of high-z supernovae which are being followed up by a further target of opportunity Hubble GO Program (PI: Adam Riess). The bulk of the CDF-S ground-based data presently available comes from an ESO Large Programme (PI: Catherine Cesarsky) which includes both deep imaging and multi-object followup spectroscopy. This is currently complemented in the South by additional CTIO imaging. Currently available HDF-N ground-based data forming part of GOODS includes NOAO imaging. Although the SIRTF part of the survey will not begin until later in the year the ACS imaging is well advanced and there is also a huge body of complementary ground-based imaging and some follow-up spectroscopy which is already publicly available. We summarize the current status of GOODS and give an overview of the data products currently available and present the timescales for the future. Many early science results from the survey are presented in other GOODS papers at this meeting. Support for the HST GOODS program presented here and in companion abstracts was provided by NASA thorugh grant number GO-9425 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  20. Convective scale interaction: Arc cloud lines and the development and evolution of deep convection

    NASA Technical Reports Server (NTRS)

    Purdom, James Francis Whitehurst

    1986-01-01

    Information is used from satellite data and research aircraft data to provide new insights concerning the mesoscale development and evolution of deep convection in an atmosphere typified by weak synoptic-scale forcing. The importance of convective scale interaction in the development and evolution of deep convection is examined. This interaction is shown to manifest itself as the merger and intersection of thunderstorm outflow boundaries (arc cloud lines) with other convective lines, areas or boundaries. Using geostationary satellite visible and infrared data convective scale interaction is shown to be responsible for over 85 percent of the intense convection over the southeast U.S. by late afternoon, and a majority of that area's afternoon rainfall. The aircraft observations provided valuable information concerning critically important regions of the arc cloud line: (1) the cool outflow region, (2) the density surge line interface region; and (3) the sub-cloud region above the surge line. The observations when analyzed with rapid scan satellite data, helped in defining the arc cloud line's life cycle as 3 evolving stages.

  1. The CfA Einstein Observatory extended deep X-ray survey

    NASA Technical Reports Server (NTRS)

    Primini, F. A.; Murray, S. S.; Huchra, J.; Schild, R.; Burg, R.

    1991-01-01

    All IPC exposures in the Einstein Extended Deep X-ray Survey program have been reanalyzed. The current survey covers about 2.3 sq deg with a typical limiting sensitivity of about 5 x 10 to the -14th ergs/sq cm/s in the energy range from 0.8-3.5 keV. A total of 25 IPC sources are detected above a threshold of 4.5 sigma. A total of 18 are detected independently in the HRI, leading to the identification of six with stars and 11 with extragalactic objects. The remaining sources are classified as extragalactic. The population of identified extragalactic objects is dominated by QSOs, with one or two possible clusters. The basic conclusions of the original survey remain unchanged.

  2. Experimental palaeobiomechanics: What can engineering tell us about evolution in deep time?

    NASA Astrophysics Data System (ADS)

    Anderson, Philip

    2016-04-01

    What did Tyrannosaurus rex eat? This is the sort of question that immediately bombards any palaeontologist when interacting with the general public. Even among scientists, how extinct animals moved or fed is a major objective of the palaeobiological research agenda. The last decade has seen a sharp increase in the technology and experimental methods available for collecting biomechanical data, which has greatly improved out ability to examine the function of both live and extinct animals. With new technologies and methods come new pitfalls and opportunities. In this review, I address three aspects of experimental biomechanics that exemplify the challenges and opportunities it provides for addressing deep-time problems in palaeontology. 1) Interpretation: It has never been easier to acquire large amounts of high-quality biomechanical data on extinct animals. However, the lack of behavioural information means that interpreting this data can be problematic. We will never know precisely what a dinosaur ate, but we can explore what constraints there might have been on the mechanical function of its jaws. Palaeobiomechanics defines potential function and becomes especially effective when dealing with multiple examples. 2) Comparison: Understanding the potential function of one extinct animal is interesting; however, examining mechanical features across multiple taxa allows for a greater understanding of biomechanical variation. Comparative studies help identify common trends and underlying mechanical principles which can have long reaching influences on morphological evolution. 3) Evolution: The physical principles established through comparative biomechanical studies can be utilized in phylogenetic comparative methods in order to explore evolutionary morphology across clades. Comparative evolutionary biomechanics offers potential for exploring the evolution of functional systems in deep time utilizing experimental biomechanical data.

  3. CHILES Con Pol: Probing galaxy evolution, the dark Universe, and cosmic magnetism with a deep 1000 hour Jansky VLA survey

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.; Chiles Con Pol Collaboration

    2014-04-01

    We recently started a 1000 hour campaign to observe 0.2 square degrees of the COSMOS field in full polarization continuum at 1.4 GHz with the Jansky VLA, as part of a joint program with the spectral line COSMOS HI Large Extragalactic Survey (CHILES). When complete, we expect our CHILES Continuum Polarization (CHILES Con Pol) survey to reach an unprecedented SKA-era sensitivity of 0.7 uJy per 4 arcsecond FWHM beam. Here we present the key goals of CHILES Con Pol, which are to (i) produce a source catalog of legacy value to the astronomical community, (ii) measure differential source counts in total intensity, linear polarization, and circular polarization in order to constrain the redshift and luminosity distributions of source populations, (iii) perform a novel weak lensing study using radio polarization as an indicator of intrinsic alignment to better study dark energy and dark matter, and (iv) probe the unknown origin of cosmic magnetism by measuring the strength and structure of intergalactic magnetic fields in the filaments of large scale structure. The CHILES Con Pol source catalog will be a useful resource for upcoming wide-field surveys by acting as a training set for machine learning algorithms, which can then be used to identify and classify radio sources in regions lacking deep multiwavelength coverage.

  4. The spatial-temporal evolution law of microseismic activities in the failure process of deep rock masses

    NASA Astrophysics Data System (ADS)

    Yuan-hui, Li; Gang, Lei; Shi-da, Xu; Da-wei, Wu

    2018-07-01

    Under high stress and blasting disturbance, the failure of deep rock masses is a complex, dynamic evolutionary process. To reveal the relation between macroscopic failure of deep rock masses and spatial-temporal evolution law of micro-cracking within, the initiation, extension, and connection of micro-cracks under blasting disturbance and the deformation and failure mechanism of deep rock masses were studied. The investigation was carried out using the microseismic (MS) monitoring system established in the deep mining area of Ashele Copper Mine (Xinjiang Uygur Autonomous Region, China). The results showed that the failure of the deep rock masses is a dynamic process accompanied with stress release and stress adjustment. It is not only related to the blasting-based mining, but also associated with zones of stress concentration formed due to the mining. In that space, the concentrated area in the cloud chart for the distribution of MS event density before failure of the rocks shows the basically same pattern with the damaged rocks obtained through scanning of mined-out areas, which indicates that the cloud chart can be used to determine potential risk areas of rocks in the spatial domain. In the time domain, relevant parameters of MS events presented different changes before the failure of the rocks: the energy index decreased while the cumulative apparent volume gradually increased, the magnitude distribution of microseismic events decreased rapidly, and the fractal dimension decreased at first and then remained stable. This demonstrates that the different changes in relevant MS parameters allow researchers to predict the failure time of the rocks. By analysing the dynamic evolution process of the failure of the deep rock masses, areas at potential risk can be predicted spatially and temporally. The result provides guidance for those involved in the safe production and management of underground engineering and establishes a theoretical basis for the study on the

  5. Numerical Simulation of Rock Mass Damage Evolution During Deep-Buried Tunnel Excavation by Drill and Blast

    NASA Astrophysics Data System (ADS)

    Yang, Jianhua; Lu, Wenbo; Hu, Yingguo; Chen, Ming; Yan, Peng

    2015-09-01

    Presence of an excavation damage zone (EDZ) around a tunnel perimeter is of significant concern with regard to safety, stability, costs and overall performance of the tunnel. For deep-buried tunnel excavation by drill and blast, it is generally accepted that a combination of effects of stress redistribution and blasting is mainly responsible for development of the EDZ. However, few open literatures can be found to use numerical methods to investigate the behavior of rock damage induced by the combined effects, and it is still far from full understanding how, when and to what degree the blasting affects the behavior of the EDZ during excavation. By implementing a statistical damage evolution law based on stress criterion into the commercial software LS-DYNA through its user-subroutines, this paper presents a 3D numerical simulation of the rock damage evolution of a deep-buried tunnel excavation, with a special emphasis on the combined effects of the stress redistribution of surrounding rock masses and the blasting-induced damage. Influence of repeated blast loadings on the damage extension for practical millisecond delay blasting is investigated in the present analysis. Accompanying explosive detonation and secession of rock fragments from their initial locations, in situ stress in the immediate vicinity of the excavation face is suddenly released. The transient characteristics of the in situ stress release and induced dynamic responses in the surrounding rock masses are also highlighted. From the simulation results, some instructive conclusions are drawn with respect to the rock damage mechanism and evolution during deep-buried tunnel excavation by drill and blast.

  6. The KMOS Deep Survey: Dynamical Measurements of Star-Forming Galaxies at z 3.5

    NASA Astrophysics Data System (ADS)

    Turner, Owen; Cirasuolo, Michele; Harrison, Chris; McLure, Ross; Dunlop, James; Swinbank, Mark; Johnson, Helen; Sobral, David; Matthee, Jorryt; Sharples, Ray

    2017-07-01

    This poster present dynamical measurements from the KMOS (K-band Multi-Object Spectrograph) Deep Survey (KDS), which is comprised of 78 typical star-forming galaxies at z = 3.5 in the mass range 9.0 < log(M*) < 10.5. We fit spatially and spectrally convolved mock datacubes to the observed data, in order to make beam-smearing corrected measurements of the intrinsic velocity dispersions and rotation velocities of 33 galaxies in the sample classed as spatially resolved and isolated. The results suggest that the rotation-dominated galaxies in the sample are offset to lower velocities at fixed stellar mass and have higher velocity dispersions than star-forming galaxies in the local and intermediate redshift universe. Only 1/3 of the galaxies in the sample are dominated by rotation, which hints that random motions are playing an increasingly significant role in supporting the dynamical mass in the systems. When searching for evolution in scaling relations, such as the stellar mass Tully-Fisher relation, it is important to take these random motions into account.

  7. Understanding the complex evolution of rapidly mutating viruses with deep sequencing: Beyond the analysis of viral diversity.

    PubMed

    Leung, Preston; Eltahla, Auda A; Lloyd, Andrew R; Bull, Rowena A; Luciani, Fabio

    2017-07-15

    With the advent of affordable deep sequencing technologies, detection of low frequency variants within genetically diverse viral populations can now be achieved with unprecedented depth and efficiency. The high-resolution data provided by next generation sequencing technologies is currently recognised as the gold standard in estimation of viral diversity. In the analysis of rapidly mutating viruses, longitudinal deep sequencing datasets from viral genomes during individual infection episodes, as well as at the epidemiological level during outbreaks, now allow for more sophisticated analyses such as statistical estimates of the impact of complex mutation patterns on the evolution of the viral populations both within and between hosts. These analyses are revealing more accurate descriptions of the evolutionary dynamics that underpin the rapid adaptation of these viruses to the host response, and to drug therapies. This review assesses recent developments in methods and provide informative research examples using deep sequencing data generated from rapidly mutating viruses infecting humans, particularly hepatitis C virus (HCV), human immunodeficiency virus (HIV), Ebola virus and influenza virus, to understand the evolution of viral genomes and to explore the relationship between viral mutations and the host adaptive immune response. Finally, we discuss limitations in current technologies, and future directions that take advantage of publically available large deep sequencing datasets. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A very deep IRAS survey. III - VLA observations

    NASA Astrophysics Data System (ADS)

    Hacking, Perry; Condon, J. J.; Houck, J. R.; Beichman, C. A.

    1989-04-01

    The 60-micron fluxes and positions of sources (primarily starburst galaxies) found in a deep IRAS survey by Hacking and Houck (1987) are compared with 1.49 HGz maps made by the Very Large Array. The radio results are consistent with radio measurements of brighter IRAS galaxies and provide evidence that infrared cirrus does not contaminate the 60-micron sample. The flux-independent ratio of infrared to radio flux densities implies that the 1.4 GHz luminosity function for spiral galaxies is evolving at less than (1 + z) to the power of 4 relative to the 60-micron luminosity function.

  9. Evolution of clustering length, large-scale bias, and host halo mass at 2 < z < 5 in the VIMOS Ultra Deep Survey (VUDS)⋆

    NASA Astrophysics Data System (ADS)

    Durkalec, A.; Le Fèvre, O.; Pollo, A.; de la Torre, S.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Tasca, L. A. M.; Thomas, R.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Pforr, J.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2015-11-01

    We investigate the evolution of galaxy clustering for galaxies in the redshift range 2.0 Deep Survey (VUDS). We present the projected (real-space) two-point correlation function wp(rp) measured by using 3022 galaxies with robust spectroscopic redshifts in two independent fields (COSMOS and VVDS-02h) covering in total 0.8deg2. We quantify how the scale dependent clustering amplitude r0 changes with redshift making use of mock samples to evaluate and correct the survey selection function. Using a power-law model ξ(r) = (r/r0)- γ we find that the correlation function for the general population is best fit by a model with a clustering length r0 = 3.95+0.48-0.54 h-1 Mpc and slope γ = 1.8+0.02-0.06 at z ~ 2.5, r0 = 4.35 ± 0.60 h-1 Mpc and γ = 1.6+0.12-0.13 at z ~ 3.5. We use these clustering parameters to derive the large-scale linear galaxy bias bLPL, between galaxies and dark matter. We find bLPL = 2.68 ± 0.22 at redshift z ~ 3 (assuming σ8 = 0.8), significantly higher than found at intermediate and low redshifts for the similarly general galaxy populations. We fit a halo occupation distribution (HOD) model to the data and we obtain that the average halo mass at redshift z ~ 3 is Mh = 1011.75 ± 0.23 h-1M⊙. From this fit we confirm that the large-scale linear galaxy bias is relatively high at bLHOD = 2.82 ± 0.27. Comparing these measurements with similar measurements at lower redshifts we infer that the star-forming population of galaxies at z ~ 3 should evolve into the massive and bright (Mr< -21.5)galaxy population, which typically occupy haloes of mass ⟨ Mh ⟩ = 1013.9 h-1M⊙ at redshift z = 0. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.Appendices are available in electronic form at http://www.aanda.org

  10. Large-scale fluctuations in the number density of galaxies in independent surveys of deep fields

    NASA Astrophysics Data System (ADS)

    Shirokov, S. I.; Lovyagin, N. Yu.; Baryshev, Yu. V.; Gorokhov, V. L.

    2016-06-01

    New arguments supporting the reality of large-scale fluctuations in the density of the visible matter in deep galaxy surveys are presented. A statistical analysis of the radial distributions of galaxies in the COSMOS and HDF-N deep fields is presented. Independent spectral and photometric surveys exist for each field, carried out in different wavelength ranges and using different observing methods. Catalogs of photometric redshifts in the optical (COSMOS-Zphot) and infrared (UltraVISTA) were used for the COSMOS field in the redshift interval 0.1 < z < 3.5, as well as the zCOSMOS (10kZ) spectroscopic survey and the XMM-COSMOS and ALHAMBRA-F4 photometric redshift surveys. The HDFN-Zphot and ALHAMBRA-F5 catalogs of photometric redshifts were used for the HDF-N field. The Pearson correlation coefficient for the fluctuations in the numbers of galaxies obtained for independent surveys of the same deep field reaches R = 0.70 ± 0.16. The presence of this positive correlation supports the reality of fluctuations in the density of visible matter with sizes of up to 1000 Mpc and amplitudes of up to 20% at redshifts z ~ 2. The absence of correlations between the fluctuations in different fields (the correlation coefficient between COSMOS and HDF-N is R = -0.20 ± 0.31) testifies to the independence of structures visible in different directions on the celestial sphere. This also indicates an absence of any influence from universal systematic errors (such as "spectral voids"), which could imitate the detection of correlated structures.

  11. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Survey Description

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Decarli, Roberto; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Inami, Hanae; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff

    2016-12-01

    We present the rationale for and the observational description of ASPECS: the ALMA SPECtroscopic Survey in the Hubble Ultra-Deep Field (UDF), the cosmological deep field that has the deepest multi-wavelength data available. Our overarching goal is to obtain an unbiased census of molecular gas and dust continuum emission in high-redshift (z > 0.5) galaxies. The ˜1‧ region covered within the UDF was chosen to overlap with the deepest available imaging from the Hubble Space Telescope. Our ALMA observations consist of full frequency scans in band 3 (84-115 GHz) and band 6 (212-272 GHz) at approximately uniform line sensitivity ({L}{CO}\\prime ˜ 2 × 109 K km s-1 pc2), and continuum noise levels of 3.8 μJy beam-1 and 12.7 μJy beam-1, respectively. The molecular surveys cover the different rotational transitions of the CO molecule, leading to essentially full redshift coverage. The [C II] emission line is also covered at redshifts 6.0\\lt z\\lt 8.0. We present a customized algorithm to identify line candidates in the molecular line scans and quantify our ability to recover artificial sources from our data. Based on whether multiple CO lines are detected, and whether optical spectroscopic redshifts as well as optical counterparts exist, we constrain the most likely line identification. We report 10 (11) CO line candidates in the 3 mm (1 mm) band, and our statistical analysis shows that <4 of these (in each band) are likely spurious. Less than one-third of the total CO flux in the low-J CO line candidates are from sources that are not associated with an optical/NIR counterpart. We also present continuum maps of both the band 3 and band 6 observations. The data presented here form the basis of a number of dedicated studies that are presented in subsequent papers.

  12. Using environmental isotopes along with major hydro-geochemical compositions to assess deep groundwater formation and evolution in eastern coastal China

    NASA Astrophysics Data System (ADS)

    Xu, Naizheng; Gong, Jianshi; Yang, Guoqiang

    2018-01-01

    Hydrochemical analysis and environmental isotopic tracing are successfully applied to study groundwater evolution processes. Located in eastern China, the Jiangsu Coastal Plain is characterized by an extensively exploited deep groundwater system, and groundwater salinization has become the primary water environmental problem. This paper provides a case study on the use of a hydrochemical and environmental isotopic approach to assess possible mixing and evolution processes at Yoco Port, Jiangsu Province, China. Hydrochemical and isotopic patterns of deep groundwater allow one to distinguish different origins in deep water systems. HCO3- is the dominant anion in the freshwater samples, whereas Na+ and Cl- are the dominant major ions in the saline samples. According to δ18O, δ2H and 14C dating, the fresh water is derived from precipitation under a colder climate during the Glacial Maximum (Dali Glacial), while the saline groundwater is influenced by glacial-interglacial cycles during the Holocene Hypsithermal. The δ18O, δ2H and 3H data confirm that deep groundwater in some boreholes is mixed with overlying saline water. The deep groundwater reservoir can be divided into a saline water sector and a fresh water sector, and each show distinct hydrochemical and isotopic compositions. The saline groundwater found in the deep aquifer cannot be associated with present seawater intrusion. Since the Last Glacial Maximum in the Late Pleistocene, the deep groundwater flow system has evolved to its current status with the decrease in ice cover and the rising of sea level. However, the hydraulic connection is strengthened by continuous overexploitation, and deep groundwater is mixed with shallow groundwater at some points.

  13. Using environmental isotopes along with major hydro-geochemical compositions to assess deep groundwater formation and evolution in eastern coastal China.

    PubMed

    Xu, Naizheng; Gong, Jianshi; Yang, Guoqiang

    2018-01-01

    Hydrochemical analysis and environmental isotopic tracing are successfully applied to study groundwater evolution processes. Located in eastern China, the Jiangsu Coastal Plain is characterized by an extensively exploited deep groundwater system, and groundwater salinization has become the primary water environmental problem. This paper provides a case study on the use of a hydrochemical and environmental isotopic approach to assess possible mixing and evolution processes at Yoco Port, Jiangsu Province, China. Hydrochemical and isotopic patterns of deep groundwater allow one to distinguish different origins in deep water systems. HCO 3 - is the dominant anion in the freshwater samples, whereas Na + and Cl - are the dominant major ions in the saline samples. According to δ 18 O, δ 2 H and 14 C dating, the fresh water is derived from precipitation under a colder climate during the Glacial Maximum (Dali Glacial), while the saline groundwater is influenced by glacial-interglacial cycles during the Holocene Hypsithermal. The δ 18 O, δ 2 H and 3 H data confirm that deep groundwater in some boreholes is mixed with overlying saline water. The deep groundwater reservoir can be divided into a saline water sector and a fresh water sector, and each show distinct hydrochemical and isotopic compositions. The saline groundwater found in the deep aquifer cannot be associated with present seawater intrusion. Since the Last Glacial Maximum in the Late Pleistocene, the deep groundwater flow system has evolved to its current status with the decrease in ice cover and the rising of sea level. However, the hydraulic connection is strengthened by continuous overexploitation, and deep groundwater is mixed with shallow groundwater at some points. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. ZFOURGE/CANDELS: On the Evolution of M* Galaxy Progenitors from z = 3 to 0.5

    NASA Astrophysics Data System (ADS)

    Papovich, C.; Labbé, I.; Quadri, R.; Tilvi, V.; Behroozi, P.; Bell, E. F.; Glazebrook, K.; Spitler, L.; Straatman, C. M. S.; Tran, K.-V.; Cowley, M.; Davé, R.; Dekel, A.; Dickinson, M.; Ferguson, H. C.; Finkelstein, S. L.; Gawiser, E.; Inami, H.; Faber, S. M.; Kacprzak, G. G.; Kawinwanichakij, L.; Kocevski, D.; Koekemoer, A.; Koo, D. C.; Kurczynski, P.; Lotz, J. M.; Lu, Y.; Lucas, R. A.; McIntosh, D.; Mehrtens, N.; Mobasher, B.; Monson, A.; Morrison, G.; Nanayakkara, T.; Persson, S. E.; Salmon, B.; Simons, R.; Tomczak, A.; van Dokkum, P.; Weiner, B.; Willner, S. P.

    2015-04-01

    Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present-day stellar masses near M*, at 5 × 1010 M ⊙ (defined here to be MW-mass) and 1011 M ⊙ (defined to be M31-mass). We study the typical progenitors of these galaxies using the FOURSTAR Galaxy Evolution Survey (ZFOURGE). ZFOURGE is a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z ~ 3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star formation rates, combining our deep multiwavelength imaging with near-IR Hubble Space Telescope imaging from Cosmic Near-IR Deep Extragalactic Legacy Survey (CANDELS), and Spitzer and Herschel far-IR imaging from Great Observatories Origins Deep Survey-Herschel and CANDELS-Herschel. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages to redder dust-obscured IR-luminous galaxies in intermediate stages and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of two to three lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star formation in present-day M* galaxies, requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and SFRs imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z ~ 0 and are strongly anticorrelated with an increase in the Sérsic index. Therefore, the growth

  15. Near-UV Sources in the Hubble Ultra Deep Field: The Catalog

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.; Voyrer, Elysse; de Mello, Duilia F.; Siana, Brian; Quirk, Cori; Teplitz, Harry I.

    2009-01-01

    The catalog from the first high resolution U-band image of the Hubble Ultra Deep Field, taken with Hubble s Wide Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey (GOODS) B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained Far-Ultraviolet (FUV, 1614 Angstroms) data with Hubble s Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with Galaxy Evolution Explorer (GALEX). We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented.

  16. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  17. The Chajnantor Sub/Millimeter Survey Telescope

    NASA Astrophysics Data System (ADS)

    Golwala, Sunil

    2018-01-01

    We are developing the Chajnantor Sub/millimeter Survey Telescope, a project to build a 30-m telescope operating at wavelengths as short as 850 µm with 1 degree field of view for imaging and multi-object spectroscopic surveys. This project will provide massive new data sets for studying star formation at high redshift and in the local universe, feedback mechanisms in galaxy evolution, the structure of galaxy clusters, and the cosmological peculiar velocity field. We will highlight CSST's capabilities for studying galaxy evolution, where it will: trace the evolution of dusty, star-forming galaxies from high redshift to the z ≍ 1-3 epoch when they dominate the cosmic star formation rate; connect this population to the high-redshift rest-frame UV/optical galaxy population; use these dusty galaxies, the most biased overdensities, to guide ultra-deep followup at z > 3.5 and possibly z > 7; measure the brightness of important submm/FIR spectral lines like [CII]; search for molecular and atomic outflows; and do calorimetry of the CGM via the thermal SZ effect. We will describe the expected surveys addressing these science goals, the novel telescope design, and the planned survey instrumentation.

  18. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection.

    PubMed

    Stock, Alexandra; Edgcomb, Virginia; Orsi, William; Filker, Sabine; Breiner, Hans-Werner; Yakimov, Michail M; Stoeck, Thorsten

    2013-07-08

    Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines

  19. THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannella, Maurilio; Gabasch, Armin; Drory, Niv

    2009-08-10

    The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars

  20. The Far Ultraviolet M-dwarf Evolution Survey (FUMES): Overview and Initial Results

    NASA Astrophysics Data System (ADS)

    Pineda, J. Sebastian; France, Kevin; Youngblood, Allison

    2018-01-01

    M-dwarf stars are prime targets for exoplanet searches because of their close proximity and favorable properties for both planet detection and characterization, with current searches around these targets having already discovered several Earth-sized planets within their star’s habitable zones. However, the atmospheric characterization and potential habitability of these exoplanetary systems depends critically on the high-energy stellar radiation environment from X-rays to NUV. Strong radiation at these energies can lead to atmospheric mass loss and is a strong driver of photochemistry in planetary atmospheres. Recently, the MUSCLES Treasury Survey provided the first comprehensive assessment of the high-energy radiation field around old, planet hosting M-dwarfs. However, the habitability and potential for such exoplanetary atmospheres to develop life also depends on the evolution of the atmosphere and hence the evolution of the incident radiation field. The strong high-energy spectrum of young M-dwarfs can have devastating consequences for the potential habitability of a given system. We, thus, introduce the Far Ultraviolet M-dwarf Evolution Survey (FUMES), a new HST-STIS observing campaign targeting 10 early-mid M dwarfs with known rotation periods, including 6 targets with known ages, to assess the evolution of the FUV radiation, including Lyα, of M-dwarf stars with stellar rotation period. We present the initial results of our survey characterizing the FUV emission features of our targets and the implications of our measurements for the evolution of the entire high-energy radiation environment around M-dwarfs from youth to old age.

  1. The luminosity function for different morphological types in the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.

    1994-01-01

    We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.

  2. First hyperspectral survey of the deep seafloor: DISCOL area, Peru Basin

    NASA Astrophysics Data System (ADS)

    Dumke, Ines; Nornes, Stein M.; Ludvigsen, Martin

    2017-04-01

    Conventional hyperspectral seafloor surveys using airborne or satellite platforms are typically limited to shallow coastal areas. This limitation is due to the requirement for illumination by sunlight, which does not penetrate into deeper waters. For hyperspectral studies in deeper marine environments, such as the deep sea, a close-range, sunlight-independent survey approach is therefore required. Here, we present the first hyperspectral data from the deep seafloor. The data were acquired in 4200 m water depth in the DISCOL (disturbance-recolonization) area in the Peru Basin (SW Pacific). This area is characterized by seafloor manganese nodules and recolonization by benthic fauna after a seafloor disturbance experiment conducted in 1989, and was revisited in 2015 by the JPI Oceans cruise SO-242. The acquisition setup consisted of a new Underwater Hyperspectral Imager (UHI) mounted on a remotely operated vehicle (ROV), which provided illumination of the seafloor. High spatial and spectral resolution were achieved by an ROV altitude of 1 m and recording of 112 spectral bands between 380 nm and 800 nm (4 nm resolution). Spectral classification was performed to classify manganese nodules and benthic fauna and map their distribution in the study area. The results demonstrate the high potential of underwater hyperspectral imaging in mapping and classifying seafloor deposits and habitats.

  3. Science Highlights from the First Year of Advanced Camera for Surveys

    NASA Technical Reports Server (NTRS)

    Clampin, M.; Ford, H. C.; Illingworth, G. D.; Hartig, G.; Ardila, D. R.; Blakeslee, J. P.; Bouwens, R. J.; Cross, N. J. G.; Feldman, P. D.; Golimowski, D. A.

    2003-01-01

    The Advanced Camera for Surveys (ACS) is a deep imaging camera installed on the Hubble Space Telescope during the fourth HST servicing mission. ACS recently entered its second year of science operations and continues to perform beyond pre-launch expectations. We present science highlights from the ACS Science Team's GTO program. These highlights include the evolution of Z approx. 6 galaxies from deep imaging observations; deep imaging of strongly lensed clusters which have been used to determine cluster mass, and independently constraint the geometry of the Universe; and coronagraphic observations of debris disks.

  4. ALMA deep field in SSA22: Survey design and source catalog of a 20 arcmin2 survey at 1.1 mm

    NASA Astrophysics Data System (ADS)

    Umehata, Hideki; Hatsukade, Bunyo; Smail, Ian; Alexander, David M.; Ivison, Rob J.; Matsuda, Yuichi; Tamura, Yoichi; Kohno, Kotaro; Kato, Yuta; Hayatsu, Natsuki H.; Kubo, Mariko; Ikarashi, Soh

    2018-06-01

    To search for dust-obscured star-formation activity in the early Universe, it is essential to obtain a deep and wide submillimeter/millimeter map. The advent of the Atacama Large Millimeter/submillimeter Array (ALMA) has enabled us to obtain such maps with sufficiently high spatial resolution to be free from source confusion. We present a new 1.1 mm-wave map obtained by ALMA in the SSA22 field. The field contains a remarkable proto-cluster at z = 3.09; therefore, it is an ideal region to investigate the role of a large-scale cosmic web on dust-obscured star formation. The typical 1σ depth of our map is 73 μJy beam-1 with a {0^{^''.}5} resolution. Combining the present survey with earlier, archived observations, we map an area of 20 arcmin2 (71 comoving Mpc2 at z = 3.09). Within the combined survey area we have detected 35 sources at a signal-to-noise ratio (S/N) >5, with flux densities of S1.1mm = 0.43-5.6 mJy, equivalent to star-formation rates of ≳100-1000 M⊙ yr-1 at z = 3.09, for a Chabrier initial mass function: 17 sources out of 35 are new detections. The cumulative number counts show an excess by a factor of three to five compared to blank fields. The excess suggests enhanced, dust-enshrouded star-formation activity in the proto-cluster on a 10 comoving Mpc scale, indicating accelerated galaxy evolution in this overdense region.

  5. AzTEC/ASTE 1.1 mm Deep Surveys: Number Counts and Clustering of Millimeter-bright Galaxies

    NASA Astrophysics Data System (ADS)

    Hatsukade, B.

    2011-11-01

    We present results of a 1.1 mm deep survey of the AKARI Deep Field South (ADF-S) with AzTEC mounted on the Atacama Submillimetre Telescope Experiment (ASTE). We obtained a map of 0.25 deg2 area with an rms noise level of 0.32-0.71 mJy. This is one of the deepest and widest maps thus far at millimetre and submillimetre wavelengths. We uncovered 198 sources with a significance of 3.5-15.6σ, providing the largest catalog of 1.1 mm sources in a contiguous region. Most of the sources are not detected in the far-infrared bands of the AKARI satellite, suggesting that they are mostly at z ≥ 1.5 given the detection limits. We construct differential and cumulative number counts of the ADF-S, the Subaru/XMM Newton Deep Field (SXDF), and the SSA 22 field surveyed by AzTEC/ASTE, which provide currently the tightest constraints on the faint end. The integration of the differential number counts of the ADF-S find that the contribution of 1.1 mm sources with ≥1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with ≥1 mJy using the differential number counts and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z ~ 2-3. Clustering analyses of AzTEC sources in the ADF-S and the SXDF find that bright (>3 mJy) AzTEC sources are more strongly clustered than faint (< 3 mJy) AzTEC sources and the average mass of dark halos hosting bright AzTEC sources was calculated to be 1013-1014M⊙. Comparison of correlation length of AzTEC sources with other populations and with a bias evolution model suggests that dark halos hosting bright AzTEC sources evolve into systems of clusters at present universe and the AzTEC sources residing the dark halos evolve into massive elliptical galaxies located in the center of

  6. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; Oppo, Delia W.; Clark, Peter U.; Jahn, Alexandra; Marcott, Shaun A.; Lindsay, Keith

    2017-10-01

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ˜1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.

  7. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Liu, Z.; Brady, E. C.; Oppo, D.; Clark, P. U.; Jahn, A.; Marcott, S. A.; Lindsay, K. T.

    2017-12-01

    The large-scale reorganization of deep-ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties due to freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by 1.4°C while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong mid-depth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way ocean circulation affects heat, a dynamic tracer, is considerably different than how it affects passive tracers like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.

  8. The Hubble Space Telescope Medium Deep Survey with the Wide Field and Planetary Camera. 1: Methodology and results on the field near 3C 273

    NASA Technical Reports Server (NTRS)

    Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Casertano, S.; Im, M.; Wyckoff, E. W.; Ellis, R. S.; Gilmore, G. F.; Elson, R. A. W.; Glazebrook, K.

    1994-01-01

    We present results from the Medium Deep Survey (MDS), a Key Project using the Hubble Space Telescope (HST). Wide Field Camera (WFC) images of random fields have been taken in 'parallel mode' with an effective resolution of 0.2 sec full width at half maximum (FWHM) in the V(F555W) and I(F785LP) filters. The exposures presented here were targeted on a field away from 3C 273, and resulted in approximately 5 hr integration time in each filter. Detailed morphological structure is seen in galaxy images with total integrated magnitudes down to V approximately = 22.5 and I approximately = 21.5. Parameters are estimated that best fit the observed galaxy images, and 143 objects are identified (including 23 stars) in the field to a fainter limiting magnitude of I approximately = 23.5. We outline the extragalactic goals of the HST Medium Deep Survey, summarize our basic data reduction procedures, and present number (magnitude) counts, a color-magnitude diagram for the field, surface brightness profiles for the brighter galaxies, and best-fit half-light radii for the fainter galaxies as a function of apparent magnitude. A median galaxy half-light radius of 0.4 sec is measured, and the distribution of galaxy sizes versus magnitude is presented. We observe an apparent deficit of galaxies with half-light radii between approximately 0.6 sec and 1.5 sec, with respect to standard no-evolution or mild evolution cosmological models. An apparent excess of compact objects (half-light radii approximately 0.1 sec) is also observed with respect to those models. Finally, we find a small excess in the number of faint galaxy pairs and groups with respect to a random low-redshift field sample.

  9. Photometric redshifts for the next generation of deep radio continuum surveys - I. Template fitting

    NASA Astrophysics Data System (ADS)

    Duncan, Kenneth J.; Brown, Michael J. I.; Williams, Wendy L.; Best, Philip N.; Buat, Veronique; Burgarella, Denis; Jarvis, Matt J.; Małek, Katarzyna; Oliver, S. J.; Röttgering, Huub J. A.; Smith, Daniel J. B.

    2018-01-01

    We present a study of photometric redshift performance for galaxies and active galactic nuclei detected in deep radio continuum surveys. Using two multiwavelength data sets, over the NOAO Deep Wide Field Survey Boötes and COSMOS fields, we assess photometric redshift (photo-z) performance for a sample of ∼4500 radio continuum sources with spectroscopic redshifts relative to those of ∼63 000 non-radio-detected sources in the same fields. We investigate the performance of three photometric redshift template sets as a function of redshift, radio luminosity and infrared/X-ray properties. We find that no single template library is able to provide the best performance across all subsets of the radio-detected population, with variation in the optimum template set both between subsets and between fields. Through a hierarchical Bayesian combination of the photo-z estimates from all three template sets, we are able to produce a consensus photo-z estimate that equals or improves upon the performance of any individual template set.

  10. The Chandra Deep Field-North Survey and the cosmic X-ray background.

    PubMed

    Brandt, W Nielsen; Alexander, David M; Bauer, Franz E; Hornschemeier, Ann E

    2002-09-15

    Chandra has performed a 1.4 Ms survey centred on the Hubble Deep Field-North (HDF-N), probing the X-ray Universe 55-550 times deeper than was possible with pre-Chandra missions. We describe the detected point and extended X-ray sources and discuss their overall multi-wavelength (optical, infrared, submillimetre and radio) properties. Special attention is paid to the HDF-N X-ray sources, luminous infrared starburst galaxies, optically faint X-ray sources and high-to-extreme redshift active galactic nuclei. We also describe how stacking analyses have been used to probe the average X-ray-emission properties of normal and starburst galaxies at cosmologically interesting distances. Finally, we discuss plans to extend the survey and argue that a 5-10 Ms Chandra survey would lay key groundwork for future missions such as XEUS and Generation-X.

  11. Deep Generative Models of Galaxy Images for the Calibration of the Next Generation of Weak Lensing Surveys

    NASA Astrophysics Data System (ADS)

    Lanusse, Francois; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Schneider, Jeff; Poczos, Barnabas

    2017-01-01

    Weak gravitational lensing has long been identified as one of the most powerful probes to investigate the nature of dark energy. As such, weak lensing is at the heart of the next generation of cosmological surveys such as LSST, Euclid or WFIRST.One particularly crititcal source of systematic errors in these surveys comes from the shape measurement algorithms tasked with estimating galaxy shapes. GREAT3, the last community challenge to assess the quality of state-of-the-art shape measurement algorithms has in particular demonstrated that all current methods are biased to various degrees and, more importantly, that these biases depend on the details of the galaxy morphologies. These biases can be measured and calibrated by generating mock observations where a known lensing signal has been introduced and comparing the resulting measurements to the ground-truth. Producing these mock observations however requires input galaxy images of higher resolution and S/N than the simulated survey, which typically implies acquiring extremely expensive space-based observations.The goal of this work is to train a deep generative model on already available Hubble Space Telescope data which can then be used to sample new galaxy images conditioned on parameters such as magnitude, size or redshift and exhibiting complex morphologies. Such model can allow us to inexpensively produce large set of realistic realistic images for calibration purposes.We implement a conditional generative model based on state-of-the-art deep learning methods and fit it to deep galaxy images from the COSMOS survey. The quality of the model is assessed by computing an extensive set of galaxy morphology statistics on the generated images. Beyond simple second moment statistics such as size and ellipticity, we apply more complex statistics specifically designed to be sensitive to disturbed galaxy morphologies. We find excellent agreement between the morphologies of real and model generated galaxies.Our results

  12. VizieR Online Data Catalog: VANDELS High-Redshift Galaxy Evolution (McLure+, 2017)

    NASA Astrophysics Data System (ADS)

    McLure, R.; Pentericci, L.; Vandels Team

    2017-11-01

    This is the first data release (DR1) of the VANDELS survey, an ESO public spectroscopy survey targeting the high-redshift Universe. The VANDELS survey uses the VIMOS spectrograph on ESO's VLT to obtain ultra-deep, medium resolution, optical spectra of galaxies within the UKIDSS Ultra Deep Survey (UDS) and Chandra Deep Field South (CDFS) survey fields (0.2 sq. degree total area). Using robust photometric redshift pre-selection, VANDELS is targeting ~2100 galaxies in the redshift interval 1.0=3. In addition, VANDELS is targeting a substantial number of passive galaxies in the redshift interval 1.0survey is obtaining ultra-deep optical spectroscopy with the VIMOS MR grism and GG475 order-sorting filter, which covers the wavelength range 4800-10000Å at a dispersion of 2.5Å/pix and a spectral resolution of R~600. Each galaxy receives between a minimum of 20-hours and a maximum of 80-hours of on-source integration time. The fundamental aim of the survey is to provide the high signal-to-noise spectra necessary to measure key physical properties such as stellar population ages, metallicities and outflow velocities from detailed absorption-line studies. By targeting two extra-galactic survey fields with superb multi-wavelength imaging data, VANDELS is designed to produce a unique legacy dataset for exploring the physics underpinning high-redshift galaxy evolution. (2 data files).

  13. Asynchronous warming and δ 18O evolution of deep Atlantic water masses during the last deglaciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18O of benthic foraminiferal calcite (δ 18Oc). Here in this study, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18O evolution. Model results suggest that, in response tomore » North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18O c likely reflects early warming of the deep northern North Atlantic by ~1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18O, and call for caution when inferring water mass changes from δ 18O c records while assuming uniform changes in deep temperatures.« less

  14. Asynchronous warming and δ18O evolution of deep Atlantic water masses during the last deglaciation.

    PubMed

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C; Oppo, Delia W; Clark, Peter U; Jahn, Alexandra; Marcott, Shaun A; Lindsay, Keith

    2017-10-17

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18 O of benthic foraminiferal calcite (δ 18 O c ). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18 O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18 O c likely reflects early warming of the deep northern North Atlantic by ∼1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18 O, and call for caution when inferring water mass changes from δ 18 O c records while assuming uniform changes in deep temperatures.

  15. Asynchronous warming and δ 18O evolution of deep Atlantic water masses during the last deglaciation

    DOE PAGES

    Zhang, Jiaxu; Liu, Zhengyu; Brady, Esther C.; ...

    2017-10-02

    The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ 18O of benthic foraminiferal calcite (δ 18Oc). Here in this study, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ 18O evolution. Model results suggest that, in response tomore » North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ 18O c likely reflects early warming of the deep northern North Atlantic by ~1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ 18O, and call for caution when inferring water mass changes from δ 18O c records while assuming uniform changes in deep temperatures.« less

  16. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M. Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-04-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.).

  17. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    PubMed Central

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M.Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-01-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.). PMID:28397791

  18. Survey on deep learning for radiotherapy.

    PubMed

    Meyer, Philippe; Noblet, Vincent; Mazzara, Christophe; Lallement, Alex

    2018-07-01

    More than 50% of cancer patients are treated with radiotherapy, either exclusively or in combination with other methods. The planning and delivery of radiotherapy treatment is a complex process, but can now be greatly facilitated by artificial intelligence technology. Deep learning is the fastest-growing field in artificial intelligence and has been successfully used in recent years in many domains, including medicine. In this article, we first explain the concept of deep learning, addressing it in the broader context of machine learning. The most common network architectures are presented, with a more specific focus on convolutional neural networks. We then present a review of the published works on deep learning methods that can be applied to radiotherapy, which are classified into seven categories related to the patient workflow, and can provide some insights of potential future applications. We have attempted to make this paper accessible to both radiotherapy and deep learning communities, and hope that it will inspire new collaborations between these two communities to develop dedicated radiotherapy applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The ALHAMBRA survey: evolution of galaxy clustering since z ˜ 1

    NASA Astrophysics Data System (ADS)

    Arnalte-Mur, P.; Martínez, V. J.; Norberg, P.; Fernández-Soto, A.; Ascaso, B.; Merson, A. I.; Aguerri, J. A. L.; Castander, F. J.; Hurtado-Gil, L.; López-Sanjuan, C.; Molino, A.; Montero-Dorta, A. D.; Stefanon, M.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Márquez, I.; Masegosa, J.; Moles, M.; Perea, J.; Pović, M.; Prada, F.; Quintana, J. M.

    2014-06-01

    We study the clustering of galaxies as function of luminosity and redshift in the range 0.35 < z < 1.25 using data from the Advanced Large Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cover 2.38 deg2 in seven independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, σz ≲ 0.014(1 + z), down to IAB < 24. Given the depth of the survey, we select samples in B-band luminosity down to Lth ≃ 0.16L* at z = 0.9. We measure the real-space clustering using the projected correlation function, accounting for photometric redshifts uncertainties. We infer the galaxy bias, and study its evolution with luminosity. We study the effect of sample variance, and confirm earlier results that the Cosmic Evolution Survey (COSMOS) and European Large Area ISO Survey North 1 (ELAIS-N1) fields are dominated by the presence of large structures. For the intermediate and bright samples, Lmed ≳ 0.6L*, we obtain a strong dependence of bias on luminosity, in agreement with previous results at similar redshift. We are able to extend this study to fainter luminosities, where we obtain an almost flat relation, similar to that observed at low redshift. Regarding the evolution of bias with redshift, our results suggest that the different galaxy populations studied reside in haloes covering a range in mass between log10[Mh/( h-1 M⊙)] ≳ 11.5 for samples with Lmed ≃ 0.3L* and log10[Mh/( h-1 M⊙)] ≳ 13.0 for samples with Lmed ≃ 2L*, with typical occupation numbers in the range of ˜1-3 galaxies per halo.

  20. Ultracool Dwarfs in the Ukirt Infrared Deep Sky Survey (UKIDSS)

    NASA Astrophysics Data System (ADS)

    Burningham, Ben; Pinfield, D.; Leggett, S. K.; Lodieu, N.; Warren, S. J.; Lucas, P. W.; Tamura, M.; Mortlock, D.; Kendall, T. R.; Jones, H. R.; Jameson, R. F.; Richard, M.; Martin, E. L.; UKIDSS Cool Dwarf Science Working Group

    2007-05-01

    The UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) presents an unparallelled resource for the study of field brown dwarfs. The UKIDSS Cool Dwarf Science Working Group (CDSWG) is carrying out a search for the lowest temperature brown dwarfs ever discovered, with the possibility of identifying a new spectral class of ultracool dwarf: the Y dwarf. CDSWG members identified 10 new T dwarfs in the early and first data releases of the LAS, including 2 objects with spectral types later than T7.5. One of these is thought to be the coolest T dwarf ever found with a spectral type of T8.5, and an estimated temperature of 650K. Data release 2 (DR2) took place on 1st March 2007, and already the most promising objects have been selected and followed-up photometrically and spectroscopically. In this contribution I will discuss the capabilities of UKIDSS for identifying ultracool dwarfs and summarise our latest results.

  1. A Socratic Method for Surveying Students' Readiness to Study Evolution

    ERIC Educational Resources Information Center

    Stansfield, William D.

    2013-01-01

    Before beginning a series of presentations on evolution, it would be prudent to survey the general level of students' understanding of prerequisite basic concepts of reproduction, heredity, ontology, and phenotypic diversity so that teachers can avoid devoting time to well-known subjects of general knowledge and can spend more time on subjects…

  2. Origin and evolution of the deep thermochemical structure beneath Eurasia.

    PubMed

    Flament, N; Williams, S; Müller, R D; Gurnis, M; Bower, D J

    2017-01-18

    A unique structure in the Earth's lowermost mantle, the Perm Anomaly, was recently identified beneath Eurasia. It seismologically resembles the large low-shear velocity provinces (LLSVPs) under Africa and the Pacific, but is much smaller. This challenges the current understanding of the evolution of the plate-mantle system in which plumes rise from the edges of the two LLSVPs, spatially fixed in time. New models of mantle flow over the last 230 million years reproduce the present-day structure of the lower mantle, and show a Perm-like anomaly. The anomaly formed in isolation within a closed subduction network ∼22,000 km in circumference prior to 150 million years ago before migrating ∼1,500 km westward at an average rate of 1 cm year -1 , indicating a greater mobility of deep mantle structures than previously recognized. We hypothesize that the mobile Perm Anomaly could be linked to the Emeishan volcanics, in contrast to the previously proposed Siberian Traps.

  3. AzTEC/ASTE 1.1 mm Deep Surveys: Number Counts and Clustering of Millimeter-bright Galaxies

    NASA Astrophysics Data System (ADS)

    Hatsukade, B.; Kohno, K.; Aretxaga, I.; Austermann, J. E.; Ezawa, H.; Hughes, D. H.; Ikarashi, S.; Iono, D.; Kawabe, R.; Matsuo, H.; Matsuura, S.; Nakanishi, K.; Oshima, T.; Perera, T.; Scott, K. S.; Shirahata, M.; Takeuchi, T. T.; Tamura, Y.; Tanaka, K.; Tosaki, T.; Wilson, G. W.; Yun, M. S.

    2010-10-01

    We present number counts and clustering properties of millimeter-bright galaxies uncovered by the AzTEC camera mounted on the Atacama Submillimeter Telescope Experiment (ASTE). We surveyed the AKARI Deep Field South (ADF-S), the Subaru/XMM Newton Deep Field (SXDF), and the SSA22 fields with an area of ~0.25 deg2 each with an rms noise level of ~0.4-1.0 mJy. We constructed differential and cumulative number counts, which provide currently the tightest constraints on the faint end. The integration of the best-fit number counts in the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which the number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with >=1 mJy using the best-fit number counts in the ADF-S and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z~2-3. The average mass of dark halos hosting bright 1.1 mm sources was calculated to be 1013-1014 Msolar. Comparison of correlation lengths of 1.1 mm sources with other populations and with a bias evolution model suggests that dark halos hosting bright 1.1 mm sources evolve into systems of clusters at present universe and the 1.1 mm sources residing the dark halos evolve into massive elliptical galaxies located in the center of clusters.

  4. Eco-Philosophy and Deep Ecology.

    ERIC Educational Resources Information Center

    Skolimowski, Henryk

    1988-01-01

    Criticizes the Deep Ecology Movement as a new ecological world view. Discusses the limits of this philosophy including its views of destiny, evolution and cosmology. Concludes that although its intentions are admirable, Deep Ecology leaves too much unanswered. (CW)

  5. The Hubble Space Telescope Medium Deep Survey Cluster Sample: Methodology and Data

    NASA Astrophysics Data System (ADS)

    Ostrander, E. J.; Nichol, R. C.; Ratnatunga, K. U.; Griffiths, R. E.

    1998-12-01

    We present a new, objectively selected, sample of galaxy overdensities detected in the Hubble Space Telescope Medium Deep Survey (MDS). These clusters/groups were found using an automated procedure that involved searching for statistically significant galaxy overdensities. The contrast of the clusters against the field galaxy population is increased when morphological data are used to search around bulge-dominated galaxies. In total, we present 92 overdensities above a probability threshold of 99.5%. We show, via extensive Monte Carlo simulations, that at least 60% of these overdensities are likely to be real clusters and groups and not random line-of-sight superpositions of galaxies. For each overdensity in the MDS cluster sample, we provide a richness and the average of the bulge-to-total ratio of galaxies within each system. This MDS cluster sample potentially contains some of the most distant clusters/groups ever detected, with about 25% of the overdensities having estimated redshifts z > ~0.9. We have made this sample publicly available to facilitate spectroscopic confirmation of these clusters and help more detailed studies of cluster and galaxy evolution. We also report the serendipitous discovery of a new cluster close on the sky to the rich optical cluster Cl l0016+16 at z = 0.546. This new overdensity, HST 001831+16208, may be coincident with both an X-ray source and a radio source. HST 001831+16208 is the third cluster/group discovered near to Cl 0016+16 and appears to strengthen the claims of Connolly et al. of superclustering at high redshift.

  6. Euclid: Superluminous supernovae in the Deep Survey

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Nichol, R. C.; Scovacricchi, D.; Amiaux, J.; Brescia, M.; Burigana, C.; Cappellaro, E.; Carvalho, C. S.; Cavuoti, S.; Conforti, V.; Cuillandre, J.-C.; da Silva, A.; De Rosa, A.; Della Valle, M.; Dinis, J.; Franceschi, E.; Hook, I.; Hudelot, P.; Jahnke, K.; Kitching, T.; Kurki-Suonio, H.; Lloro, I.; Longo, G.; Maiorano, E.; Maris, M.; Rhodes, J. D.; Scaramella, R.; Smartt, S. J.; Sullivan, M.; Tao, C.; Toledo-Moreo, R.; Tereno, I.; Trifoglio, M.; Valenziano, L.

    2018-01-01

    Context. In the last decade, astronomers have found a new type of supernova called superluminous supernovae (SLSNe) due to their high peak luminosity and long light-curves. These hydrogen-free explosions (SLSNe-I) can be seen to z 4 and therefore, offer the possibility of probing the distant Universe. Aims: We aim to investigate the possibility of detecting SLSNe-I using ESA's Euclid satellite, scheduled for launch in 2020. In particular, we study the Euclid Deep Survey (EDS) which will provide a unique combination of area, depth and cadence over the mission. Methods: We estimated the redshift distribution of Euclid SLSNe-I using the latest information on their rates and spectral energy distribution, as well as known Euclid instrument and survey parameters, including the cadence and depth of the EDS. To estimate the uncertainties, we calculated their distribution with two different set-ups, namely optimistic and pessimistic, adopting different star formation densities and rates. We also applied a standardization method to the peak magnitudes to create a simulated Hubble diagram to explore possible cosmological constraints. Results: We show that Euclid should detect approximately 140 high-quality SLSNe-I to z 3.5 over the first five years of the mission (with an additional 70 if we lower our photometric classification criteria). This sample could revolutionize the study of SLSNe-I at z > 1 and open up their use as probes of star-formation rates, galaxy populations, the interstellar and intergalactic medium. In addition, a sample of such SLSNe-I could improve constraints on a time-dependent dark energy equation-of-state, namely w(a), when combined with local SLSNe-I and the expected SN Ia sample from the Dark Energy Survey. Conclusions: We show that Euclid will observe hundreds of SLSNe-I for free. These luminous transients will be in the Euclid data-stream and we should prepare now to identify them as they offer a new probe of the high-redshift Universe for both

  7. The missing links of neutron star evolution in the eROSITA all-sky X-ray survey

    NASA Astrophysics Data System (ADS)

    Pires, A. M.

    2017-12-01

    The observational manifestation of a neutron star is strongly connected with the properties of its magnetic field. During the star’s lifetime, the field strength and its changes dominate the thermo-rotational evolution and the source phenomenology across the electromagnetic spectrum. Signatures of magnetic field evolution are best traced among elusive groups of X-ray emitting isolated neutron stars (INSs), which are mostly quiet in the radio and γ-ray wavelengths. It is thus important to investigate and survey INSs in X-rays in the hope of discovering peculiar sources and the long-sought missing links that will help us to advance our understanding of neutron star evolution. The Extended Röntgen Survey with an Imaging Telescope Array (eROSITA), the primary instrument on the forthcoming Spectrum-RG mission, will scan the X-ray sky with unprecedented sensitivity and resolution. The survey has thus the unique potential to unveil the X-ray faint end of the neutron star population and probe sources that cannot be assessed by standard pulsar surveys.

  8. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Khan, A.; Connolly, J. A.; Pommier, A.

    2013-12-01

    Analysis of lunar seismic and lunar laser ranging data has yielded evidence that has been interpreted to indicate a molten zone in the lower-most mantle and/or the outer core of the Moon. Such a zone would provide strong constraints on models of the thermal evolution of the Moon. Here we invert lunar geophysical data in combination with phase-equilibrium modeling to derive information about the thermo-chemical and physical structure of the deep lunar interior. Specifically, we assess whether a molten layer is required by the geophysical data and, if so, its likely composition and physical properties (e.g., density and seismic wave speeds). The data considered are mean mass and moment of inertia, second-degree tidal Love number, and frequency-dependent electromagnetic sounding data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is indeed required to explain the geophysical data. If this dissipative region is located within the mantle, then the solidus is crossed at a depth of ~1200 km (>1600 deg C). The apparent absence of far-side deep moonquakes (DMQs) is supporting evidence for a highly dissipative layer. Inverted compositions for the partially molten layer (typically 100--200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. While the melt phase in >95 % of inverted models is neutrally buoyant at pressures of ~4.5--4.6 GPa, the melt contains less TiO2 (>~4 wt %) than the Ti-rich (~16 wt % TiO2) melts that produced a set of high-density primitive lunar magmas (~3.4 g/ccm). Melt densities computed here range from 3.3 to 3.4 g/ccm bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.

  9. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution

    NASA Astrophysics Data System (ADS)

    Khan, A.; Connolly, J. A. D.; Pommier, A.; Noir, J.

    2014-10-01

    Analysis of lunar laser ranging and seismic data has yielded evidence that has been interpreted to indicate a molten zone in the lowermost mantle overlying a fluid core. Such a zone provides strong constraints on models of lunar thermal evolution. Here we determine thermochemical and physical structure of the deep Moon by inverting lunar geophysical data (mean mass and moment of inertia, tidal Love number, and electromagnetic sounding data) in combination with phase-equilibrium computations. Specifically, we assess whether a molten layer is required by the geophysical data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is required to explain the geophysical data. This region is located within the mantle where the solidus is crossed at a depth of ˜1200 km (≥1600°C). Inverted compositions for the partially molten layer (150-200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. The melt phase is neutrally buoyant at pressures of ˜4.5-4.6 GPa but contains less TiO2 (<15 wt %) than the Ti-rich (˜16 wt %) melts that produced a set of high-density primitive lunar magmas (density of 3.4 g/cm3). Melt densities computed here range from 3.25 to 3.45 g/cm3 bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.

  10. Probing Galaxy Formation and Evolution with Space Born Sub-Millimeter Telescopes

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Arendt, Richard G.; Moseley, Harvey; Benford, Dominic; Shafer, Richard; Mather, John; Oegerle, William (Technical Monitor)

    2002-01-01

    A major unresolved question in cosmology is how the complex system of galaxies we see in the present universe evolved from an almost perfectly smooth beginning. Multiwavelength observations of galaxies have revealed that a significant fraction of their UV-visible starlight is absorbed and reradiated by dust at infrared JR) and submillimeter wavelengths. The cumulative IR-submm. emission from galaxies since the epoch of recombination, the cosmic IR background, has recently been recorded by the COBE satellite. The COBE observations in combination with recent submm surveys conducted with the SCUBA on the 15 m JCMT have shown that most of the radiation from star formation that has taken place in the early stages of galaxy evolution is reradiated by dust at submm wavelengths. Therefore, submm telescopes offer a unique probe of the early stages of galaxy formation and evolution. This talk will: (1) consider the impact of telescope diameter on the depth of the survey (what redshift can be probed) at different wavelengths; (2) discuss the relative scientific merits of high-resolution narrow-field surveys versus lower resolution deep surveys; and (3) show how both strategies offer complementary information crucial to our understanding of the structure and evolution of galaxies in the universe.

  11. International Deep Planet Survey, 317 stars to determine the wide-separated planet frequency

    NASA Astrophysics Data System (ADS)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Song, I.; Barman, T.; Patience, J.

    2013-09-01

    Since 2000, more than 300 nearby young stars were observed for the International Deep Planet Survey with adaptive optics systems at Gemini (NIRI/NICI), Keck (Nirc2), and VLT (Naco). Massive young AF stars were included in our sample whereas they have generally been neglected in first generation surveys because the contrast and target distances are less favorable to image substellar companions. The most significant discovery of the campaign is the now well-known HR 8799 multi-planet system. This remarkable finding allows, for the first time, an estimate of the Jovians planet population at large separations (further than a few AUs) instead of deriving upper limits. During my presentation, I will present the survey showing images of multiple stars and planets. I will then propose a statistic study of the observed stars deriving constraints on the Jupiter-like planet frequency at large separations.

  12. Optimal surveys for weak-lensing tomography

    NASA Astrophysics Data System (ADS)

    Amara, Adam; Réfrégier, Alexandre

    2007-11-01

    Weak-lensing surveys provide a powerful probe of dark energy through the measurement of the mass distribution of the local Universe. A number of ground-based and space-based surveys are being planned for this purpose. Here, we study the optimal strategy for these future surveys using the joint constraints on the equation-of-state parameter wn and its evolution wa as a figure of merit by considering power spectrum tomography. For this purpose, we first consider an `ideal' survey which is both wide and deep and exempt from systematics. We find that such a survey has great potential for dark energy studies, reaching 1σ precisions of 1 and 10 per cent on the two parameters, respectively. We then study the relative impact of various limitations by degrading this ideal survey. In particular, we consider the effect of sky coverage, survey depth, shape measurement systematics, photometric redshift systematics and uncertainties in the non-linear power spectrum predictions. We find that, for a given observing time, it is always advantageous to choose a wide rather than a deep survey geometry. We also find that the dark energy constraints from power spectrum tomography are robust to photometric redshift errors and catastrophic failures, if a spectroscopic calibration sample of 104-105 galaxies are available. The impact of these systematics is small compared to the limitations that come from potential uncertainties in the power spectrum, due to shear measurement and theoretical errors. To help the planning of future surveys, we summarize our results with comprehensive scaling relations which avoid the need for full Fisher matrix calculations.

  13. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc

    2012-05-20

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it hasmore » been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above {approx}300 km s{sup -1} to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for

  14. The light up and early evolution of high redshift Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  15. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerke, Brian F.; /UC, Berkeley; Newman, Jeffrey A.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-findingmore » success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.« less

  16. Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts

    NASA Astrophysics Data System (ADS)

    Richards, Mark; Ridley, Victoria

    2010-05-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marqueses, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better

  17. Variability-selected active galactic nuclei from supernova search in the Chandra deep field south

    NASA Astrophysics Data System (ADS)

    Trevese, D.; Boutsia, K.; Vagnetti, F.; Cappellaro, E.; Puccetti, S.

    2008-09-01

    Context: Variability is a property shared by virtually all active galactic nuclei (AGNs), and was adopted as a criterion for their selection using data from multi epoch surveys. Low Luminosity AGNs (LLAGNs) are contaminated by the light of their host galaxies, and cannot therefore be detected by the usual colour techniques. For this reason, their evolution in cosmic time is poorly known. Consistency with the evolution derived from X-ray detected samples has not been clearly established so far, also because the low luminosity population consists of a mixture of different object types. LLAGNs can be detected by the nuclear optical variability of extended objects. Aims: Several variability surveys have been, or are being, conducted for the detection of supernovae (SNe). We propose to re-analyse these SNe data using a variability criterion optimised for AGN detection, to select a new AGN sample and study its properties. Methods: We analysed images acquired with the wide field imager at the 2.2 m ESO/MPI telescope, in the framework of the STRESS supernova survey. We selected the AXAF field centred on the Chandra Deep Field South where, besides the deep X-ray survey, various optical data exist, originating in the EIS and COMBO-17 photometric surveys and the spectroscopic database of GOODS. Results: We obtained a catalogue of 132 variable AGN candidates. Several of the candidates are X-ray sources. We compare our results with an HST variability study of X-ray and IR detected AGNs, finding consistent results. The relatively high fraction of confirmed AGNs in our sample (60%) allowed us to extract a list of reliable AGN candidates for spectroscopic follow-up observations. Table [see full text] is only available in electronic form at http://www.aanda.org

  18. Adding the missing piece: Spitzer imaging of the HSC-Deep/PFS fields

    NASA Astrophysics Data System (ADS)

    Sajina, Anna; Bezanson, Rachel; Capak, Peter; Egami, Eiichi; Fan, Xiaohui; Farrah, Duncan; Greene, Jenny; Goulding, Andy; Lacy, Mark; Lin, Yen-Ting; Liu, Xin; Marchesini, Danilo; Moutard, Thibaud; Ono, Yoshiaki; Ouchi, Masami; Sawicki, Marcin; Strauss, Michael; Surace, Jason; Whitaker, Katherine

    2018-05-01

    We propose to observe a total of 7sq.deg. to complete the Spitzer-IRAC coverage of the HSC-Deep survey fields. These fields are the sites of the PrimeFocusSpectrograph (PFS) galaxy evolution survey which will provide spectra of wide wavelength range and resolution for almost all M* galaxies at z 0.7-1.7, and extend out to z 7 for targeted samples. Our fields already have deep broadband and narrowband photometry in 12 bands spanning from u through K and a wealth of other ancillary data. We propose completing the matching depth IRAC observations in the extended COSMOS, ELAIS-N1 and Deep2-3 fields. By complementing existing Spitzer coverage, this program will lead to an unprecedended in spectro-photometric coverage dataset across a total of 15 sq.deg. This dataset will have significant legacy value as it samples a large enough cosmic volume to be representative of the full range of environments, but also doing so with sufficient information content per galaxy to confidently derive stellar population characteristics. This enables detailed studies of the growth and quenching of galaxies and their supermassive black holes in the context of a galaxy's local and large scale environment.

  19. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combinemore » TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.« less

  20. The VANDELS ESO spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Le Fèvre, O.; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  1. Using Gaia as an Astrometric Tool for Deep Ground-based Surveys

    NASA Astrophysics Data System (ADS)

    Casetti-Dinescu, Dana I.; Girard, Terrence M.; Schriefer, Michael

    2018-04-01

    Gaia DR1 positions are used to astrometrically calibrate three epochs' worth of Subaru SuprimeCam images in the fields of globular cluster NGC 2419 and the Sextans dwarf spheroidal galaxy. Distortion-correction ``maps'' are constructed from a combination of offset dithers and reference to Gaia DR1. These are used to derive absolute proper motions in the field of NGC 2419. Notably, we identify the photometrically-detected Monoceros structure in the foreground of NGC 2419 as a kinematically-cold population of stars, distinct from Galactic-field stars. This project demonstrates the feasibility of combining Gaia with deep, ground-based surveys, thus extending high-quality astrometry to magnitudes beyond the limits of Gaia.

  2. Too Little, Too Late: How the Tidal Evolution of Hot Jupiters Affects Transit Surveys of Clusters

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Jackson, Brian

    2010-01-01

    The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense HST search for transits. We find that in older clusters one expects to detect fewer transiting planets by a factor of two for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of semi-major axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.

  3. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less

  4. VizieR Online Data Catalog: Fornax Deep Survey with VST. III. LSB galaxies (Venhola+, 2017)

    NASA Astrophysics Data System (ADS)

    Venhola, A.; Peletier, R.; Laurikainen, E.; Salo, H.; Lisker, T.; Iodice, E.; Capaccioli, M.; Verdoes Kleijn, G.; Valentijn, E.; Mieske, S.; Hilker, M.; Wittmann, C.; van de Ven, G.; Grado, A.; Spavone, M.; Cantiello, M.; Napolitano, N.; Paolillo, M.; Falcon-Barroso, J.

    2018-02-01

    We use the ongoing Fornax Deep Survey (FDS), which consists of the combined data of the Guaranteed Time Observation Surveys FOCUS (P.I. R. Peletier) and VEGAS (P.I. E. Iodice), dedicated to the Fornax cluster. Both surveys are performed with the ESO VLT Survey Telescope (VST), which is a 2.6-m diameter optical telescope located at Cerro Paranal, Chile. The imaging is done with the OmegaCAM instrument, using the u', g', r' and i'-bands, and 1°x1° field of view. The observations used in this work were gathered in visitor mode runs during November 2013, 2014 and 2015 (ESO P92, P94 and P96, respectively). All the observations were performed in clear (photometric variations <10%) or photometric conditions. The observations in u' and g'-bands were obtained in dark time, and those of the other bands in gray or dark time. (1 data file).

  5. Calculating Proper Motions in the WFCAM Science Archive for the UKIRT Infrared Deep Sky Surveys

    NASA Astrophysics Data System (ADS)

    Collins, R.; Hambly, N.

    2012-09-01

    The ninth data release from the UKIRT Infrared Deep Sky Surveys (hereafter UKIDSS DR9), represents five years worth of observations by its wide-field camera (WFCAM) and will be the first to include proper motion values in its source catalogues for the shallow, wide-area surveys; the Large Area Survey (LAS), Galactic Clusters Survey (GCS) and (ultimately) Galactic Plane Survey (GPS). We, the Wide Field Astronomy Unit (WFAU) at the University of Edinburgh who prepare these regular data releases in the WFCAM Science Archive (WSA), describe in this paper how we make optimal use of the individual detection catalogues from each observation to derive high-quality astrometric fits for the positions of each detection enabling us to calculate a proper motion solution across multiple epochs and passbands when constructing a merged source catalogue. We also describe how the proper motion solutions affect the calculation of the various attributes provided in the database source catalogue tables, what measures of data quality we provide and a demonstration of the results for observations of the Pleiades cluster.

  6. The SCUBA-2 Cosmology Legacy Survey: galaxies in the deep 850 μm survey, and the star-forming `main sequence'

    NASA Astrophysics Data System (ADS)

    Koprowski, M. P.; Dunlop, J. S.; Michałowski, M. J.; Roseboom, I.; Geach, J. E.; Cirasuolo, M.; Aretxaga, I.; Bowler, R. A. A.; Banerji, M.; Bourne, N.; Coppin, K. E. K.; Chapman, S.; Hughes, D. H.; Jenness, T.; McLure, R. J.; Symeonidis, M.; Werf, P. van der

    2016-06-01

    We investigate the properties of the galaxies selected from the deepest 850-μm survey undertaken to date with (Submillimetre Common-User Bolometer Array 2) SCUBA-2 on the James Clerk Maxwell Telescope as part of the SCUBA-2 Cosmology Legacy Survey. A total of 106 sources (>5σ) were uncovered at 850 μm from an area of ≃150 arcmin2 in the centre of the COSMOS/UltraVISTA/Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) field, imaged to a typical depth of σ850 ≃ 0.25 mJy. We utilize the available multifrequency data to identify galaxy counterparts for 80 of these sources (75 per cent), and to establish the complete redshift distribution for this sample, yielding bar{z} = 2.38± 0.09. We have also been able to determine the stellar masses of the majority of the galaxy identifications, enabling us to explore their location on the star formation rate:stellar mass (SFR:M*) plane. Crucially, our new deep 850-μm-selected sample reaches flux densities equivalent to SFR ≃ 100 M⊙ yr-1, enabling us to confirm that sub-mm galaxies form the high-mass end of the `main sequence' (MS) of star-forming galaxies at z > 1.5 (with a mean specific SFR of sSFR = 2.25 ± 0.19 Gyr-1 at z ≃ 2.5). Our results are consistent with no significant flattening of the MS towards high masses at these redshifts. However, our results add to the growing evidence that average sSFR rises only slowly at high redshift, resulting in log10sSFR being an apparently simple linear function of the age of the Universe.

  7. Transverse momentum dependent evolution: Matching semi-inclusive deep inelastic scattering processes to Drell-Yan and W/Z boson production

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Yuan, Feng

    2013-12-01

    We examine the QCD evolution for the transverse momentum dependent observables in hard processes of semi-inclusive hadron production in deep inelastic scattering and Drell-Yan lepton pair production in pp collisions, including the spin-average cross sections and Sivers single transverse spin asymmetries. We show that the evolution equations derived by a direct integral of the Collins-Soper-Sterman evolution kernel from low to high Q can describe well the transverse momentum distributions of the unpolarized cross sections in the Q2 range from 2 to 100GeV2. In addition, the matching is established between our evolution and the Collins-Soper-Sterman resummation with b* prescription and Konychev-Nodalsky parametrization of the nonperturbative form factors, which are formulated to describe the Drell-Yan lepton pair and W/Z boson production in hadronic collisions. With these results, we present the predictions for the Sivers single transverse spin asymmetries in Drell-Yan lepton pair production and W± boson production in polarized pp and π-p collisions for several proposed experiments. We emphasize that these experiments will not only provide crucial test of the sign change of the Sivers asymmetry but also provide important opportunities to study the QCD evolution effects.

  8. Deep near-infrared survey of the Southern Sky (DENIS)

    NASA Technical Reports Server (NTRS)

    Deul, E.

    1992-01-01

    DENIS (Deep Near-Infrared Survey of the Southern Sky) will be the first complete census of astronomical sources in the near-infrared spectral range. The challenges of this novel survey are both scientific and technical. Phenomena radiating in the near-infrared range from brown dwarfs to galaxies in the early stages of cosmological evolution, the scientific exploitation of data relevant over such a wide range requires pooling expertise from several of the leading European astronomical centers. The technical challenges of a project which will provide an order of magnitude more sources than given by the IRAS space mission, and which will involve advanced data-handling and image-processing techniques, likewise require pooling of hardware and software resources, as well as of human expertise. The DENIS project team is composed of some 40 scientists, computer specialists, and engineers located in 5 European Community countries (France, Germany, Italy, The Netherlands, and Spain), with important contributions from specialists in Australia, Brazil, Chile, and Hungary. DENIS will survey the entire southern sky in 3 colors, namely in the I band at a wavelength of 0.8 micron, in the 1.25 micron J band, and in the 2.15 micron K' band. The sensitivity limits will be 18th magnitude in the I band, 16th in the J band, and 14.5th in the K' band. The angular resolution achieved will be 1 arcsecond in the I band, and 3.0 arcseconds in the J and K' bands. The European Southern Observatory 1 m telescope on La Silla will be dedicated to survey use during operations expected to last four years, commencing in late 1993. DENIS aims to provide the astronomical community with complete digitized infrared images of the full southern sky and a catalogue of extracted objects, both of the best quality and in readily accessible form. This will be achieved through dedicated software packages and specialized catalogues, and with assistance from the Leiden and Paris Data Analysis Centers. The data

  9. Evolution in the Continuum Morphological Properties of Ly alpha-Emitting Galaxies from Z=3.1 to Z=2.1

    NASA Technical Reports Server (NTRS)

    Bond, Nicholas A.; Gawiser, Eric; Guaita, Lucia; Padilla, Nelson; Gronwall, Chile Caryl; Ciardullo, Robin; Lai, Kamson

    2011-01-01

    We present a rest-frame ultraviolet morphological analysis of 108 z = 2.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South (ECDF-S) and compare it to a similar sample of 171 LAEs at z = 3.1 . Using Hubble Space Telescope (HST) images taken as part of the Galaxy Evolution From Morphology and SEDs survey, Great Observatories Origins Deep Survey, and Hubble Ultradeep Field surveys, we measure the size and photometric component distributions, where photo- metric components are defined as distinct clumps of UV-continuum emission. At both redshifts, the majority of LAEs have observed half-light radii < 2 kpc, but the median half-light radius rises from 0.97 kpc at z = 3.1 to 1.41 kpc at z = 2.1. A similar evolution is seen in the sizes of individual rest-UV components, but there is no evidence for evolution in the number of mUlti-component systems. In the z = 2.1 LAE sample, we see clear correlations between the LAE size and other physical properties derived from its SED. LAEs are found to be larger for galaxies with larger stellar mass, larger star formation rate, and larger dust obscuration, but there is no evidence for a trend between equivalent width and half-light radius at either redshift. The presence of these correlations suggests that a wide range of objects are being selected by LAE surveys at that redshift, including a significant fraction of objects for which a massive and moderately extended population of old stars underlies the young starburst giving rise to the Lya emission.

  10. Deep crustal structure beneath large igneous provinces and the petrologic evolution of flood basalts

    NASA Astrophysics Data System (ADS)

    Ridley, Victoria A.; Richards, Mark A.

    2010-09-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ˜ 6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ˜5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp ˜ 7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hot spots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ˜6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ˜15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby

  11. Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts

    NASA Astrophysics Data System (ADS)

    Richards, M. A.; Ridley, V. A.

    2010-12-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as “underplating,” are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better

  12. Topographic signatures of deep-seated landslides and a general landscape evolution model

    NASA Astrophysics Data System (ADS)

    Booth, A. M.; Roering, J. J.; Rempel, A. W.

    2012-12-01

    A fundamental goal of studying earth surface processes is to disentangle the complex web of interactions among baselevel, climate, and rock properties that generate characteristic landforms. Mechanistic geomorphic transport laws can quantitatively address this goal, but no widely accepted law for landslides exists. Here, we propose a transport law for deep-seated landslides and demonstrate its utility using a two-dimensional numerical landscape evolution model informed by study areas in the Waipaoa catchment, New Zealand and the Eel River catchment, California. We define a non-dimensional landslide number, which is the ratio of uplift to landslide flow time scales, that predicts three distinct landscape types. The first is dominated by stochastic landsliding, whereby discrete landslide events episodically erode material at rates far exceeding the long term uplift rate. The second is characterized by steady landsliding, in which the landslide flux at any location remains constant through time and is largest at the steepest locations in the catchment. The third is not significantly affected by landsliding. In both the "stochastic landsliding" and "steady landsliding" regimes, increases in the non-dimensional landslide number systematically reduce catchment relief and widen valley spacing, producing long, quasi-planar, low angle hillslopes despite high uplift rates. The stochastic landsliding regime best captures the frequent observation that deep-seated landslides produce a large sediment flux from a small aerial extent while being active only a fraction of the time. We suggest that this model is adaptable to a wide range of geologic settings and may be useful for interpreting climate-driven changes in landslide behavior.

  13. The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass

    NASA Astrophysics Data System (ADS)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafrenière, D.; Doyon, R.; Nielsen, E. L.

    2016-10-01

    Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims: We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods: We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results: The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05+2.80-0.70% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30+5.95-1.55%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions: The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works. Tables 11-15 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  14. The forearc crustal evolution of Izu-Bonin (Ogasawara) region obtained by seismic reflection and refraction surveys

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Kodaira, S.; Takahashi, N.; Tatsumi, Y.; Kaneda, Y.

    2009-12-01

    The Izu-Bonin (Ogasawara)-Mariana (IBM) arc is known to the typical oceanic island arc, and it is the most suitable area to understand the growth process of island arc. By previous seismic survey and deep sea drilling, convex basements are distributed along North-South direction in present forearc region. The convex basements are reported to be formed during Oligocene and Eocene (Taylor, 1992). In IBM forearc region, the middle crust with 6 km/s is recognized by seismic survey using OBSs. In IBM region, four IODP drilling sites are proposed in order to understand comprehensive growth process of arc and continental crust evolution. Two of them are located in forearc region. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection survey using 7,800/12,000 cu.in. air gun and 5-6 km streamer with 444/204 ch hydrophones in the IBM region since 2004. We investigate the crustal structure beneath the Izu-Bonin forearc region for contribution of IBM drilling site along five long survey lines, which are across from present volcanic front to forearc basin. Seismic refraction survey is also conducted across forearc region using 84 OBSs every 1 km interval. Shallow crustal structure can be classified four units including basement which compared between previous drilling results and obtained seismic profiles. In IBM forearc region, thick sedimentary basin distribute from east side of volcanic front. Two convex basement peaks are indicated in across profile of forearc region. These peaks are estimated the top of paleoarc (Oligocene and Eocene) by previous ODP drilling. The half graben structure with major displacement is identified from west side of present volcanic front to the top of Oligocene arc. On the other hand, there is no displacement of sediments between the Oligocene arc and Eocene arc. This result shows the same origin of basement between the present volcanic front and Oligocene arc. There is long time difference of

  15. The VANDELS ESO public spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Fèvre, O. Le; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  16. The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Rauch, L. L.

    1994-01-01

    The Deep Space Network (DSN) of 1995 might be described as the evolutionary result of 45 years of deep space communication and navigation, together with the synergistic activities of radio science and radar and radio astronomy. But the evolution of the DSN did not just happen - it was carefully planned and created. The evolution of the DSN has been an ongoing engineering activity, and engineering is a process of problem solving under constraints, one of which is technology. In turn, technology is the knowledge base providing the capability and experience for practical application of various areas of science, when needed. The best engineering solutions result from optimization under the fewest constraints, and if technology needs are well anticipated (ready when needed), then the most effective engineering solution is possible. Throughout the history of the DSN it has been the goal and function of DSN advanced technology development (designated the DSN Advanced Systems Program from 1963 through 1994) to supply the technology needs of the DSN when needed, and thus to minimize this constraint on DSN engineering. Technology often takes considerable time to develop, and when that happens, it is important to have anticipated engineering needs; at times, this anticipation has been by as much as 15 years. Also, on a number of occasions, mission malfunctions or emergencies have resulted in unplanned needs for technology that has, in fact, been available from the reservoir of advanced technology provided by the DSN Advanced Systems Program. Sometimes, even DSN engineering personnel fail to realize that the organization of JPL permits an overlap of DSN advanced technology activities with subsequent engineering activities. This can result in the flow of advanced technology into DSN engineering in a natural and sometimes almost unnoticed way. In the following pages, we will explore some of the many contributions of the DSN Advanced Systems Program that were provided to DSN

  17. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution

    NASA Astrophysics Data System (ADS)

    Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing

    2016-12-01

    The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3+/- 4.5 , yielding a mean Dice similarity coefficient of 97.25+/- 0.65 % , and an average symmetric surface distance of 0.84+/- 0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.

  18. International Conference: Milky Way Surveys: The Structure and Evolution of Our Galaxy

    NASA Technical Reports Server (NTRS)

    Clemens, Dan

    2004-01-01

    We were granted NASA support for partial sponsorship of an international conference on Galactic science, held June 15-17, 2003 and hosted by the Institute for Astrophysical Research at Boston University. This conference, entitled 'Milky Way Surveys: The Structure and Evolution of Our Galaxy' drew some 125 scientific experts, researchers, and graduate students to Boston to: (1) Present large area survey plans and findings; (2) Discuss important remaining questions and puzzles in Galactic science; and (3) To inform and excite students and researchers about the potential for using large area survey databases to address key Galactic science questions. An international Scientific Organizing Committee for this conference crafted a tightly packed two-day conference designed to highlight many recent and upcoming large area surveys (including 2MASS, SDSS, MSX, VLA-HI, GRS, and SIRTF/GLIMPSE) and current theoretical understandings and questions. By bringing together experts in the conduct of Galactic surveys and leading theorists, new ways of attacking long-standing scientific questions were encouraged. The titles of most of the talks and posters presented are attached to the end of this report.

  19. UAV survey of a Thyrrenian micro-tidal beach for shoreline evolution update

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Pugliano, Giovanni; Di Paola, Gianluigi; Mucerino, Luigi

    2015-04-01

    Coastal geomorphology requires increasingly accurate topographic information of the beach systems to perform reliable simulation of coastal erosion, flooding phenomena, and coastal vulnerability assessment. Among the range of terrestrial and aerial methods available to produce such a dataset, this study tests the utility of low-altitude aerial imageries collected by Unmanned Aerial Vehicle (UAV). The image-based approach was selected whilst searching for a rapid, inexpensive, and highly automated method, able to produce 3D information from unstructured aerial images. In particular, it was used to generate a high-resolution Digital Surface Model (DSM) of the micro-tidal beach of Serapo - Gaeta (LT) in order to obtain recent update of erosional/accretional trends already established through historical shoreline evolution. A UAV exacopter (fig. 1a) was used, weighing about 2500g, carrying on board a GPS and multi-directional accelerometer to ensure a recovery of the beach features (fig. 1b) through a sweep with constant speed, direction and altitude. The on-board camera was a Canon 16M pixels, with fixed and constant focal takeoff in order to perform the 3D cloud points. Six adjacent strips were performed for the survey realization with pictures taken every second in sequence, in order to allow a minimum 80% overlap. A direct on site survey was also carried out with a DGPS for the placement of GPS markers and the geo-referencing of the final product (fig. 1c). Each flight with constant speed, direction and altitude recorded from 500 to 800 shots. The height of flight was dictated by the scale of the final report, an altitude of 100m was used for the beach survey. The topographic survey on the ground for the placement of the control points was performed with the Trimble R6 DGPS in RTK mode. The long-term shoreline evolution was obtained by a sixty-year historical shoreline time-series, through the analysis of a number of aerial photographs dating from 1954 to 2013. The

  20. The biodiversity of the deep Southern Ocean benthos.

    PubMed

    Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K E; Gooday, A J; Hilbig, B; Linse, K; Thomson, M R A; Tyler, P A

    2007-01-29

    Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae.

  1. The biodiversity of the deep Southern Ocean benthos

    PubMed Central

    Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K.E; Gooday, A.J; Hilbig, B; Linse, K; Thomson, M.R.A; Tyler, P.A

    2006-01-01

    Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae. PMID:17405207

  2. The SIX survey: evolution and properties of AGN in the local universe

    NASA Astrophysics Data System (ADS)

    Bottacini, Eugenio

    2014-07-01

    Current most sensitive surveys at soft X-ray (~ 0.5-10 keV) energies by Chandra and XMM-Newton preferably sample AGN at high-redshift (z > 0.5). At low-redshift (z < 0.5), where AGN are supposed to be in their evolution end-stage, these sources are very sparsely sampled. The low-redshift universe is best fathomed at hard X-ray energies (> 15 keV) by the INTEGRAL and the Swift missions with their coded-mask telescopes IBIS/ISGRI and BAT respectively. These instruments have two major advantages: 1) they have a huge field of view, hence allowing to sample a large number of AGN at low-redshift; 2) they operate at energies above 15 keV, hence allowing detecting photons with enough power to efficiently pierce even through the Compton-thick torus of AGN. Estimates based on observations with PDS on board the BeppoSAX satellite predict that Compton-thick AGN should dominate over unabsorbed AGN in the local universe playing an important role in reproducing the shape and intensity of the cosmic X-ray background (CXB). However coded-mask detectors suffer from heavy systematic effects preventing them from reaching their theoretical limiting sensitivity. We overcome this limit with a new and alternative approach, which has been designed ad hoc to improve the sensitivity of hard X-ray surveys by using IBIS/ISGRI and BAT. Both telescopes are so close in design that their observations can be combined to obtain a more sensitive survey. The observations are combined with resampling, merging, and cross-calibration techniques. We are able to sample limiting fluxes of the order of ~3.3 times 10-12 erg cm-2 s-1 in the 18-55 keV energy range. This is called the SIX survey, that stands for Swift-INTEGRAL X-ray survey. The SIX survey extends over a wide sky area of 6200 deg2 and it is used to obtain a persistent sample of faint AGN. The source number density (log N - log S) is a factor of 3 better than current parent surveys of BAT and IBIS/ISGRI alone. I will present a study of the

  3. A Survey of z ~ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. I. A Flux-Limited Sample at zAB < 21

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; Fan, Xiaohui; Annis, James; Becker, Robert H.; White, Richard L.; Chiu, Kuenley; Lin, Huan; Lupton, Robert H.; Richards, Gordon T.; Strauss, Michael A.; Jester, Sebastian; Schneider, Donald P.

    2008-03-01

    We present the discovery of five quasars at z ~ 6 selected from 260 deg2 of the Sloan Digital Sky Survey (SDSS) southern survey, a deep imaging survey obtained by repeatedly scanning a stripe along the celestial equator. The five quasars with 20 < zAB < 21 are 1-2 magnitudes fainter than the luminous z ~ 6 quasars discovered in the SDSS main survey. One of them was independently discovered by the UKIRT Infrared Deep Sky Survey. These quasars, combined with another z ~ 6 quasar known in this region, make a complete flux-limited quasar sample at zAB < 21. The sample spans the redshift range 5.85 <= z <= 6.12 and the luminosity range -26.5 <= M 1450 <= -25.4 (H 0 = 70 km s-1 Mpc-1, Ω m = 0.3, and ΩΛ = 0.7). We use the 1/Va method to determine that the comoving quasar spatial density at langzrang = 6.0 and langM 1450rang = -25.8 is (5.0 ± 2.1) × 10-9 Mpc-3 mag-1. We model the bright-end quasar luminosity function (QLF) at z ~ 6 as a power law Φ(L 1450) vprop L β 1450. The slope β calculated from a combination of our sample and the luminous SDSS quasar sample is -3.1 ± 0.4, significantly steeper than the slope of the QLF at z ~ 4. Based on the derived QLF, we find that the quasar/active galactic nucleus (AGN) population cannot provide enough photons to ionize the intergalactic medium (IGM) at z ~ 6 unless the IGM is very homogeneous and the luminosity (L*1450) at which the QLF power law breaks is very low. Based on observations obtained with the Sloan Digital Sky Survey, which is owned and operated by the Astrophysical Research Consortium; the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution; the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration, and was made possible by the generous financial

  4. Deep learning for studies of galaxy morphology

    NASA Astrophysics Data System (ADS)

    Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.

    2017-06-01

    Establishing accurate morphological measurements of galaxies in a reasonable amount of time for future big-data surveys such as EUCLID, the Large Synoptic Survey Telescope or the Wide Field Infrared Survey Telescope is a challenge. Because of its high level of abstraction with little human intervention, deep learning appears to be a promising approach. Deep learning is a rapidly growing discipline that models high-level patterns in data as complex multilayered networks. In this work we test the ability of deep convolutional networks to provide parametric properties of Hubble Space Telescope like galaxies (half-light radii, Sérsic indices, total flux etc..). We simulate a set of galaxies including point spread function and realistic noise from the CANDELS survey and try to recover the main galaxy parameters using deep-learning. We compare the results with the ones obtained with the commonly used profile fitting based software GALFIT. This way showing that with our method we obtain results at least equally good as the ones obtained with GALFIT but, once trained, with a factor 5 hundred time faster.

  5. A Deep Extragalactic Survey with the ART-XC Telescope of the Spectrum-RG Observatory: Simulations and Expected Results

    NASA Astrophysics Data System (ADS)

    Mereminskiy, I. A.; Filippova, E. V.; Burenin, R. A.; Sazonov, S. Yu.; Pavlinsky, M. N.; Tkachenko, A. Yu.; Lapshov, I. Yu.; Shtykovskiy, A. E.; Krivonos, R. A.

    2018-02-01

    To choose the best strategy for conducting a deep extragalactic survey with the ART-XC X-ray telescope onboard the Spectrum-Röntgen-Gamma (SRG) observatory and to estimate the expected results, we have simulated the observations of a 1.1° × 1.1° field in the 5-11 and 8-24 keV energy bands. For this purpose, we have constructed a model of the active galactic nuclei (AGN) population that reflects the properties of the X-ray emission from such objects. The photons that "arrived" from these sources were passed through a numerical model of the telescope, while the resulting data were processed with the standard ART-XC data processing pipeline. We show that several hundred AGNs at redshifts up to z ≈ 3 will be detected in such a survey over 1.2 Ms of observations with the expected charged particle background levels. Among them there will be heavily obscured AGNs, which will allow a more accurate estimate of the fraction of such objects in the total population to be made. Source confusion is expected at fluxes below 2 × 10-14 erg s-1 cm-2 (5-11 keV). Since this value can exceed the source detection threshold in a deep survey at low particle background levels, it may turn out to be more interesting to conduct a survey of larger area (several square degrees) but smaller depth, obtaining a sample of approximately four hundred bright AGNs as a result.

  6. Morphology of Florida escarpment chemosynthetic brine seep community sites: deep-tow, seabeam, and GLORIA surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paull, C.K.; Spiess, F.N.; Curray, J.R.

    1988-02-01

    The Florida Escarpment near 26/degree/N was surveyed with Deep-Tow, Seabeam, and GLORIA in the area where chemosynthetic communities were discovered via ALVIN in the abyssal Gulf of Mexico. Seabeam bathymetry and GLORIA images indicate that the escarpment is a generally straight cliff with average slopes of about 45/degree/ from 2200 to more than 3250 m. The escarpment's face is cut by 2-km wide box canyons whose head walls are as steep as the intervening escarpment's face. The shapes of these canyons are difficult to explain with the traditional models of canyon formation. Sidescan sonar images and bottom photographs reveal thatmore » the escarpment's face is composed of a series of long, straight bedding-plain terraces which are truncated along nearly vertical orthogonal joints. Exposure of these truncated strata indicate the face of the escarpment is eroded. The contact between the basal escarpment and the flat-lying abyssal hemipelagic sediments is abrupt. Basal talus is uncommon because the abyssal floor is part of the distal Mississippi fan which is rapidly burying the escarpment. However, where talus occurs, it is in tongues of angular megabreccia of meter- and larger-sized blocks which indicate periodic catastrophic collapse. Sidescan images reveal bands of contrast in the reflective texture of the sea floor that extends 10-20 m from the base along more than 10% of the surveyed area. Photographic surveys show that these areas are associated with communities of abundant organisms. Apparently chemosynthetic communities line extensive sections of the escarpment base where reduced brines seep out into the sea floor. The morphology suggests joints and deep seeps are controlling factors in scarp retreat.« less

  7. THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchesini, Danilo; Van Dokkum, Pieter G.; Foerster Schreiber, Natascha M.

    2009-08-20

    We present the evolution of the stellar mass function (SMF) of galaxies from z = 4.0 to z = 1.3 measured from a sample constructed from the deep near-infrared Multi-wavelength Survey by Yale-Chile, the Faint Infrared Extragalactic Survey, and the Great Observatories Origins Deep Survey-Chandra Deep Field South surveys, all having very high-quality optical to mid-infrared data. This sample, unique in that it combines data from surveys with a large range of depths and areas in a self-consistent way, allowed us to (1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget;more » (2) simultaneously probe the high-mass end and the low-mass end (down to {approx}0.05 times the characteristic stellar mass) of the SMF with good statistics; and (3) empirically derive the redshift-dependent completeness limits in stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs, including the effect of metallicity, extinction law, stellar population synthesis model, and initial mass function. We find that the mass density evolves by a factor of {approx}17{sup +7}{sub -10} since z = 4.0, mostly driven by a change in the normalization {phi}*. If only random errors are taken into account, we find evidence for mass-dependent evolution, with the low-mass end evolving more rapidly than the high-mass end. However, we show that this result is no longer robust when systematic uncertainties due to the SED-modeling assumptions are taken into account. Another significant uncertainty is the contribution to the overall stellar mass density of galaxies below our mass limit; future studies with WFC3 will provide better constraints on the SMF at masses below 10{sup 10} M{sub sun} at z>2. Taking our results at face value, we find that they are in conflict with semianalytic models of galaxy formation. The models predict SMFs that are in general too steep, with

  8. ALFAZOA Deep HI Survey to Identify Galaxies in the ZOA 37° ≦ l ≦ 43° and -2.5° ≦ b ≦ 3°

    NASA Astrophysics Data System (ADS)

    Palencia, Kelby; Robert Minchin, Monica Sanchez, Patricia Henning , Rhys Taylor

    2018-01-01

    The area where the galaxy lies, as viewed from the solar system, is called the Zone of Avoidance (ZOA). Due to extinction and confusion in the ZOA sources behind it appear to be blocked. This project is working with data from the Arecibo ALFAZOA Deep survey to identify galaxies in the ZOA amid 37° ≦ l ≦ 43° and -2.5° ≦ b ≦ 3° . The ALFAZOA Deep surveyed a part of the inner galaxy for the first time in the ZOA. The ALFAZOA Deep survey is a more sensitive survey than the previous survey the ALFAZOA Shallow. FRELLED and Miriad were used to identify and analyze the data in this region. With the data 57 sources where identified. Within these 57 sources, 51 were galaxies, which 3 were previously discovered galaxies; leaving 48 as new galaxies. The other 6 remaining sources from the 57, were follow-up sources. Two groups of galaxies were also identified, one lies around 1,500-3,200 km/s and the other between 10,600-11,700 km/s in redshift. The sources from the group in 10,600-11,700 km/s in redshift also need a follow up as they lie near the spectrum where the receiver signal starts to weaken.

  9. The Metal Abundances across Cosmic Time (MACT) Survey. I. Optical Spectroscopy in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malhotra, Sangeeta; Malkan, Matthew A.; Rigby, Jane R.; Kashikawa, Nobunari; de los Reyes, Mithi A.; Rhoads, James E.

    2016-09-01

    Deep rest-frame optical spectroscopy is critical for characterizing and understanding the physical conditions and properties of the ionized gas in galaxies. Here, we present a new spectroscopic survey called “Metal Abundances across Cosmic Time” or { M }{ A }{ C }{ T }, which will obtain rest-frame optical spectra for ˜3000 emission-line galaxies. This paper describes the optical spectroscopy that has been conducted with MMT/Hectospec and Keck/DEIMOS for ≈1900 z = 0.1-1 emission-line galaxies selected from our narrowband and intermediate-band imaging in the Subaru Deep Field. In addition, we present a sample of 164 galaxies for which we have measured the weak [O III]λ4363 line (66 with at least 3σ detections and 98 with significant upper limits). This nebular emission line determines the gas-phase metallicity by measuring the electron temperature of the ionized gas. This paper presents the optical spectra, emission-line measurements, interstellar properties (e.g., metallicity, gas density), and stellar properties (e.g., star formation rates, stellar mass). Paper II of the { M }{ A }{ C }{ T } survey (Ly et al.) presents the first results on the stellar mass-gas metallicity relation at z ≲ 1 using the sample with [O III]λ4363 measurements.

  10. The Evolution of Normal Galaxy X-Ray Emission Through Cosmic History: Constraints from the 6 MS Chandra Deep Field-South

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Basu-Zych, A. R.; Mineo, S.; Brandt, W. N.; Eurfrasio, R. T.; Fragos, T.; Hornschemeier, A. E.; Lou, B.; Xue, Y. Q.; Bauer, F. E.; hide

    2016-01-01

    We present measurements of the evolution of normal-galaxy X-ray emission from z (is) approx. 0-7 using local galaxies and galaxy samples in the approx. 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed-frame (is) less than 1 keV emission at z (is) less than 1. We show that a single scaling relation between X-ray luminosity (L(sub x)) and star-formation rate (SFR) literature, is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at z (is) approx. 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) and high-mass XRB (HMXB) populations and their scalings with stellar mass and SFR, respectively. We find L2 -10 keV(LMXB)/stellar mass alpha (1+z)(sub 2-3) and L2 -10 keV(HMXB)/SFR alpha (1+z), and show that these relations are consistent with XRB population-synthesis model predictions, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. We discuss how emission from XRBs could provide an important source of heating to the intergalactic medium in the early universe, exceeding that of active galactic nuclei.

  11. Cool White Dwarfs Found in the UKIRT Infrared Deep Sky Survey

    NASA Astrophysics Data System (ADS)

    Leggett, S. K.; Lodieu, N.; Tremblay, P.-E.; Bergeron, P.; Nitta, A.

    2011-07-01

    We present the results of a search for cool white dwarfs in the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The UKIDSS LAS photometry was paired with the Sloan Digital Sky Survey to identify cool hydrogen-rich white dwarf candidates by their neutral optical colors and blue near-infrared colors, as well as faint reduced proper motion magnitudes. Optical spectroscopy was obtained at Gemini Observatory and showed the majority of the candidates to be newly identified cool degenerates, with a small number of G- to K-type (sub)dwarf contaminants. Our initial search of 280 deg2 of sky resulted in seven new white dwarfs with effective temperature T eff ≈ 6000 K. The current follow-up of 1400 deg2 of sky has produced 13 new white dwarfs. Model fits to the photometry show that seven of the newly identified white dwarfs have 4120 K <=T eff <= 4480 K, and cooling ages between 7.3 Gyr and 8.7 Gyr; they have 40 km s-1 <= v tan <= 85 km s-1 and are likely to be thick disk 10-11 Gyr-old objects. The other half of the sample has 4610 K <=T eff <= 5260 K, cooling ages between 4.3 Gyr and 6.9 Gyr, and 60 km s-1 <= v tan <= 100 km s-1. These are either thin disk remnants with unusually high velocities, or lower-mass remnants of thick disk or halo late-F or G stars.

  12. Joint US-Japan Observations with the Infrared Space Observatory (ISO): Deep Surveys and Observations of High-Z Objects

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    1997-01-01

    Several important milestones were passed during the past year of our ISO observing program: (1) Our first ISO data were successfully obtained. ISOCAM data were taken for our primary deep field target in the 'Lockman Hole'. Thirteen hours of integration (taken over 4 contiguous orbits) were obtained in the LW2 filter of a 3 ft x 3 ft region centered on the position of minimum HI column density in the Lockman Hole. The data were obtained in microscanning mode. This is the deepest integration attempted to date (by almost a factor of 4 in time) with ISOCAM. (2) The deep survey data obtained for the Lockman Hole were received by the Japanese P.I. (Yoshi Taniguchi) in early December, 1996 (following release of the improved pipeline formatted data from Vilspa), and a copy was forwarded to Hawaii shortly thereafter. These data were processed independently by the Japan and Hawaii groups during the latter part of December 1996, and early January, 1997. The Hawaii group made use of the U.S. ISO data center at IPAC/Caltech in Pasadena to carry out their data reduction, while the Japanese group used a copy of the ISOCAM data analysis package made available to them through an agreement with the head of the ISOCAM team, Catherine Cesarsky. (3) Results of our LW2 Deep Survey in the Lockman Hole were first reported at the ISO Workshop "Taking ISO to the Limits: Exploring the Faintest Sources in the Infrared" held at the ISO Science Operations Center in Villafranca, Spain (VILSPA) on 3-4 February, 1997. Yoshi Taniguchi gave an invited presentation summarizing the results of the U.S.-Japan team, and Dave Sanders gave an invited talk summarizing the results of the Workshop at the conclusion of the two day meeting. The text of the talks by Taniguchi and Sanders are included in the printed Workshop Proceedings, and are published in full on the Web. By several independent accounts, the U.S.-Japan Deep Survey results were one of the highlights of the Workshop; these data showed

  13. Near-bottom Multibeam Survey Capabilities in the US National Deep Submergence Facility (Invited)

    NASA Astrophysics Data System (ADS)

    Yoerger, D. R.; McCue, S. J.; Jason; Sentry Operations Groups

    2010-12-01

    The US National Deep Submergence Facility (NDSF) provides near-bottom multibeam mapping capabilities from the autonomous underwater vehicle Sentry and the remotely operated vehicle Jason. These vehicles can be used to depths of 4500 and 6500m respectively. Both vehicles are equipped with Reson 7125 400khz multibeam sonars as well as compatible navigation equipment (inertial navigation systems, doppler velocity logs, and acoustic navigation systems). These vehicles have produced maps of rugged Mid-Ocean Ridge terrain in the Galapagos Rift, natural oil and gas seeps off the coast of Southern California, deep coral sites in the Gulf of Mexico, and sites for the Ocean Observing Initiative off the coast of Oregon. Multibeam surveys are conducted from heights between 20 and 80 meters, allowing the scientific user to select the tradeoff between resolution and coverage rate. In addition to conventional bathymetric mapping, the systems have used to image methane bubble plumes from natural seeps. This talk will provide summaries of these mapping efforts and describe the data processing pipeline used to produce maps shortly after each dive. Development efforts to reduce navigational errors and reconcile discrepancies between adjacent swaths will also be described.

  14. Evolution and immunity.

    PubMed

    Kaufman, Jim

    2010-08-01

    This report describes a meeting organized by Ken Smith and Jim Kaufman, entitled Evolution and Immunity, which took place at the University of Cambridge on 24 September 2009 to honour the anniversaries of the birth of Darwin and the first publication of The Origin of Species. Ten internationally-known speakers described the effects of evolution on immunity, ranging in timescales from the deep-time evolution of adaptive immune systems in vertebrates and invertebrates to the evolution of pathogens and lymphocytes within a single individual. The final talk explored the application of phylogenetic analysis to non-biological systems.

  15. Evolution and immunity

    PubMed Central

    Kaufman, Jim

    2010-01-01

    This report describes a meeting organized by Ken Smith and Jim Kaufman, entitled Evolution and Immunity, which took place at the University of Cambridge on 24 September 2009 to honour the anniversaries of the birth of Darwin and the first publication of The Origin of Species. Ten internationally-known speakers described the effects of evolution on immunity, ranging in timescales from the deep-time evolution of adaptive immune systems in vertebrates and invertebrates to the evolution of pathogens and lymphocytes within a single individual. The final talk explored the application of phylogenetic analysis to non-biological systems. PMID:20465576

  16. Implications of a reservoir model for the evolution of deep carbon

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Weisfeiler, M.; Turcotte, D. L.

    2016-12-01

    We consider a reservoir model for the evolution of carbon in Earth's deep interior. We begin with the assumption that the mantle reservoir that interacts with the surface is well mixed. We hypothesize that the loss of carbon from the mantle reservoir occurs primarily at mid-ocean ridges and we take the flux of carbon to be 36 ± 24 GtC yr-1 (Dasgupta and Hirschmann, 2010). We infer that the mass concentration of carbon is 5.3 ± 1.8 × 10-5. Assuming that the mass of the mantle reservoir is 4.043×1024 kg, the mass of carbon in that reservoir is 2.1±0.7×108 GtC. We further hypothesize that the addition of carbon to the mantle reservoir occurs primarily at subduction zones and take the flux of carbon to be 36 ± 12 GtC yr-1 (Dasgupta and Hirschmann, 2010). Thus within estimated uncertainties there is a steady state balance between the fluxes into and out of the mantle reservoir. A basic question is where this carbon came from. The present mass of carbon in the atmosphere of Venus is 1.28 × 108 GtC, which scales to be equivalent to 1.57 × 108 GtC in the Earth's atmosphere. This is much greater than the current mass of cabron in Earth's atmosphere but is close to the mass of carbon in the mantle reservoir given above. One explanation for the loss of carbon from Earth's atmosphere to its mantle has been given by Sleep and Zahnle (2001), who suggest that after the moon-forming giant impact at about 4.4 Ga, the carbon in the Earth's atmosphere was transferred into the mantle reservoir. We further suggest that the volcanic flux of carbon out of the mantle was responsible for the carbon concentrations in the surficial reservoirs today. In this scenario, carbon accumulated in the deep ocean until the carbon flux into the mantle due to subduction balanced the carbon flux out of the mantle due to volcanism.

  17. A deep survey of the X-ray binary populations in the SMC

    NASA Astrophysics Data System (ADS)

    Zezas, A.; Antoniou, V.

    2017-10-01

    The Small Magellanic Cloud (SMC) has been the subject of systematic X-ray surveys over the past two decades, which have yielded a rich population of high-mass X-ray binaries consisting predominantly of Be/X-ray binaries. We present results from our deep Chandra survey of the SMC which targeted regions with stellar populations ranging between ˜10-100 Myr. X-ray luminosities down to ˜3×10^{32} erg/s were reached, probing all active accreting binaries and extending well into the regime of quiescent accreting binaries and X-ray emitting normal stars. We measure the dependence of the formation efficiency of X-ray binaries on age. We also detect pulsations from 19 known and one new candidate pulsar. We construct the X-ray luminosity function in different regions of the SMC, which shows clear evidence for the propeller effect the centrifugal inhibition of accretion due to the interaction of the accretion flow with the pulsar's magnetic field. Finally we compare these results with predictions for the formation efficiency of X-ray binaries as a function of age from X-ray binary population synthesis models.

  18. The Deep Lens Survey : Real--time Optical Transient and Moving Object Detection

    NASA Astrophysics Data System (ADS)

    Becker, Andy; Wittman, David; Stubbs, Chris; Dell'Antonio, Ian; Loomba, Dinesh; Schommer, Robert; Tyson, J. Anthony; Margoniner, Vera; DLS Collaboration

    2001-12-01

    We report on the real-time optical transient program of the Deep Lens Survey (DLS). Meeting the DLS core science weak-lensing objective requires repeated visits to the same part of the sky, 20 visits for 63 sub-fields in 4 filters, on a 4-m telescope. These data are reduced in real-time, and differenced against each other on all available timescales. Our observing strategy is optimized to allow sensitivity to transients on several minute, one day, one month, and one year timescales. The depth of the survey allows us to detect and classify both moving and stationary transients down to ~ 25th magnitude, a relatively unconstrained region of astronomical variability space. All transients and moving objects, including asteroids, Kuiper belt (or trans-Neptunian) objects, variable stars, supernovae, 'unknown' bursts with no apparent host, orphan gamma-ray burst afterglows, as well as airplanes, are posted on the web in real-time for use by the community. We emphasize our sensitivity to detect and respond in real-time to orphan afterglows of gamma-ray bursts, and present one candidate orphan in the field of Abell 1836. See http://dls.bell-labs.com/transients.html.

  19. A New Constraint on Reionization from the Evolution of the Lyα Luminosity Function at z ˜ 6-7 Probed by a Deep Census of z = 7.0 Lyα Emitter Candidates to 0.3L *

    NASA Astrophysics Data System (ADS)

    Ota, Kazuaki; Iye, Masanori; Kashikawa, Nobunari; Konno, Akira; Nakata, Fumiaki; Totani, Tomonori; Kobayashi, Masakazu A. R.; Fudamoto, Yoshinobu; Seko, Akifumi; Toshikawa, Jun; Ichikawa, Akie; Shibuya, Takatoshi; Onoue, Masafusa

    2017-07-01

    We detect 20 z = 7.0 Lyα emitter (LAE) candidates to L(Lyα) ˜ 2 × 1042 erg s-1 or 0.3 {L}z=7* and in a volume of 6.1 × 105 Mpc3 in the Subaru Deep Field and the Subaru/XMM-Newton Deep Survey field by 82 hr and 37 hr of Subaru Suprime-Cam narrowband NB973 and reddest optical y-band imaging. We compare their Lyα and UV luminosity functions (LFs) and densities and Lyα equivalent widths (EWs) to those of z = 5.7, 6.6, and 7.3 LAEs from previous Suprime-Cam surveys. The Lyα LF (density) rapidly declines by a factor of ×1.5 (1.9) in L(Lyα) at z = 5.7-6.6 (160 Myr), ×1.5 (1.6) at z = 6.6-7.0 (60 Myr) at the faint end, and ×2.0 (3.8) at z = 7.0-7.3 (40 Myr). Also, in addition to the systematic decrease in EW at z = 5.7-6.6 previously found, two-thirds of the z = 7.0 LAEs detected in the UV continuum exhibit lower EWs than the z = 6.6 ones. Moreover, while the UV LF and density do not evolve at z = 5.7-6.6, they modestly decline at z = 6.6-7.0, implying galaxy evolution contributing to the decline of the Lyα LF. Comparison of the z = 7.0 Lyα LF to the one predicted by an LAE evolution model further reveals that galaxy evolution alone cannot explain all of the decline of the Lyα LF. If we attribute the discrepancy to Lyα attenuation by neutral hydrogen, the intergalactic medium transmission of Lyα photons at z = 7.0 would be {T}{Lyα }{IGM}≤slant 0.6{--}0.7. It is lower (higher) than the {T}{Lyα }{IGM} at z = 6.6 (7.3) derived by previous studies, suggesting rapid increase in neutral fraction at z > 6. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  20. A very deep IRAS survey at l(II) = 97 deg, b(II) = +30 deg

    NASA Technical Reports Server (NTRS)

    Hacking, Perry; Houck, James R.

    1987-01-01

    A deep far-infrared survey is presented using over 1000 scans made of a 4 to 6 sq. deg. field at the north ecliptic pole by the IRAS. Point sources from this survey are up to 100 times fainter than the IRAS point source catalog at 12 and 25 micrometers, and up to 10 times fainter at 60 and 100 micrometers. The 12 and 25 micrometer maps are instrumental noise-limited, and the 60 and 100 micrometer maps are confusion noise-limited. The majority of the 12 micrometer point sources are stars within the Milky Way. The 25 micrometer sources are composed almost equally of stars and galaxies. About 80% of the 60 micrometer sources correspond to galaxies on Palomar Observatory Sky Survey (POSS) enlargements. The remaining 20% are probably galaxies below the POSS detection limit. The differential source counts are presented and compared with what is predicted by the Bahcall and Soneira Standard Galaxy Model using the B-V-12 micrometer colors of stars without circumstellar dust shells given by Waters, Cote and Aumann. The 60 micrometer source counts are inconsistent with those predicted for a uniformly distributed, nonevolving universe. The implications are briefly discussed.

  1. Groth Deep Image

    NASA Image and Video Library

    2003-07-25

    This ultraviolet color blowup of the Groth Deep Image was taken by NASA Galaxy Evolution Explorer on June 22 and June 23, 2003. Many hundreds of galaxies are detected in this portion of the image. NASA astronomers believe the faint red galaxies are 6 billion light years away. http://photojournal.jpl.nasa.gov/catalog/PIA04625

  2. Asteroid Size-Frequency Distribution (The ISO Deep Asteroid Survey)

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    2001-01-01

    A total of six deep exposures (using AOT CAM01 with a 6" PFOV) through the ISOCAM LW10 filter (IRAS Band 1, i.e., 12 micro-m) were obtained on an approximately 15 arcminute square field centered on the ecliptic plane. Point sources were extracted using the technique described by Desert, et al. Two known asteroids appear in these frames and 20 sources moving with velocities appropriate for main belt asteroids are present. Most of the asteroids detected have flux densities less than 1 mJy, i.e., between 150 and 350 times fainter than any of the asteroids observed by Infrared Astronomy Satellite (IRAS). These data provide the first direct measurement of the 12 micro-m sky-plane density for asteroids on the ecliptic equator. The median zodiacal foreground, as measured by ISOCAM during this survey, is found to be 22.1 +/- 1.5 mJy per pixel, i.e., 26.2 +/- 1.7 MJy/sr. The results presented here imply that the actual number of kilometer-sized asteroids is significantly greater than previously believed and in reasonable agreement with the Statistical Asteroid Model.

  3. The HELLAS2XMM survey. IV. Optical identifications and the evolution of the accretion luminosity in the Universe

    NASA Astrophysics Data System (ADS)

    Fiore, F.; Brusa, M.; Cocchia, F.; Baldi, A.; Carangelo, N.; Ciliegi, P.; Comastri, A.; La Franca, F.; Maiolino, R.; Matt, G.; Molendi, S.; Mignoli, M.; Perola, G. C.; Severgnini, P.; Vignali, C.

    2003-10-01

    We present results from the photometric and spectroscopic identification of 122 X-ray sources recently discovered by XMM-Newton in the 2-10 keV band (the HELLAS2XMM 1dF sample). Their flux cover the range 8*E-15-4*E-13 erg cm-2 s-1 and the total area surveyed is 0.9 square degrees. One of the most interesting results (which is found also in deeper sourveys) is that about 20% of the hard X-ray selected sources have an X-ray to optical flux ratio (X/O) ten times or more higher than that of optically selected AGN. Unlike the faint sources found in the ultra-deep Chandra and XMM-Newton surveys, which reach X-ray (and optical) fluxes more than one order of magnitude lower than the HELLAS2XMM survey sources, many of the extreme X/O sources in our sample have Rprotect la25 and are therefore accessible to optical spectroscopy. We report the identification of 13 sources with X/Oprotect ga10 (to be compared with 9 sources known from the deeper, pencil-beam surveys). Eight of them are narrow line QSO (seemingly the extension to very high luminosity of the type 2 Seyfert galaxies), four are broad line QSO. The results from our survey are also used to make reliable predictions about the luminosity of the sources not yet spectroscopically identified, both in our sample and in deeper Chandra and XMM-Newton samples. We then use a combined sample of 317 hard X-ray selected sources (HELLAS2XMM 1dF, Chandra Deep Field North 1Msec, Chandra SSA13 and XMM-Newton Lockman Hole flux limited samples), 221 with measured redshifts, to evaluate the cosmological evolution of the hard X-ray source's number and luminosity densities. Looking backward in time, the low luminosity sources (log L2-10 keV=43-44 erg s-1) increase in number at a much slower rate than the very high luminosity sources (log L2-10 keV >44.5 erg s-1), reaching a maximum around z=1 and then levelling off beyond z=2. This translates into an accretion driven luminosity density which is dominated by sources with log L2-10 keV <44

  4. Supermassive Black Hole Binary Candidates from the Pan-STARRS1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gezari, Suvi

    2018-01-01

    Supermassive black hole binaries (SMBHBs) should be a common product of the hierarchal growth of galaxies and gravitational wave sources at nano-Hz frequencies. We have performed a systematic search in the Pan-STARRS1 Medium Deep Survey for periodically varying quasars, which are predicted manifestations of SMBHBs, and identified 26 candidates that are periodically varying on the timescale of ~300-1000 days over the 4-year baseline of MDS. We continue to monitor them with the Discovery Channel Telescope and the LCO network telescopes and thus are able to extend the baseline to 3-8 cycles and break false positive signals due to stochastic, normal quasar variability. From our imaging campaign, five candidates show persistent periodic variability and remain strong SMBHB candidates for follow-up observations. We calculate the cumulative number rate of SMBHBs and compare with previous work. We also compare the gravitational wave strain amplitudes of the candidates with the capability of pulsar timing arrays and discuss the future capabilities to detect periodic quasar and SMBHB candidates with the Large Synoptic Survey Telescope.

  5. Local Luminosity Function at 15 micro m and Galaxy Evolution Seen by ISOCAM 15 micro m Surveys

    NASA Technical Reports Server (NTRS)

    Xu, C.

    2000-01-01

    A local luminosity function at 15 micro m is derived using the bivariate (15 micro m vs. 60 micro m luminosities) method, based on the newly published ISOCAM LW3-band (15 micro m) survey of the very deep IRAS 60 micro m sample in the north ecliptic pole region (NEPR).

  6. Bent-tailed radio sources in the australia telescope large area survey of the Chandra deep field south

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehghan, S.; Johnston-Hollitt, M.; Franzen, T. M. O.

    2014-11-01

    Using the 1.4 GHz Australia Telescope Large Area Survey, supplemented by the 1.4 GHz Very Large Array images, we undertook a search for bent-tailed (BT) radio galaxies in the Chandra Deep Field South. Here we present a catalog of 56 detections, which include 45 BT sources, 4 diffuse low-surface-brightness objects (1 relic, 2 halos, and 1 unclassified object), and a further 7 complex, multi-component sources. We report BT sources with rest-frame powers in the range 10{sup 22} ≤ P {sub 1.4} {sub GHz} ≤ 10{sup 26} W Hz{sup –1}, with redshifts up to 2 and linear extents from tens ofmore » kiloparsecs up to about 1 Mpc. This is the first systematic study of such sources down to such low powers and high redshifts and demonstrates the complementary nature of searches in deep, limited area surveys as compared to shallower, large surveys. Of the sources presented here, one is the most distant BT source yet detected at a redshift of 2.1688. Two of the sources are found to be associated with known clusters: a wide-angle tail source in A3141 and a putative radio relic which appears at the infall region between the galaxy group MZ 00108 and the galaxy cluster AMPCC 40. Further observations are required to confirm the relic detection, which, if successful, would demonstrate this to be the least powerful relic yet seen with P {sub 1.4} {sub GHz} = 9 × 10{sup 22} W Hz{sup –1}. Using these data, we predict future 1.4 GHz all-sky surveys with a resolution of ∼10 arcsec and a sensitivity of 10 μJy will detect of the order of 560,000 extended low-surface-brightness radio sources of which 440,000 will have a BT morphology.« less

  7. Probing BL Lac and Cluster Evolution via a Wide-angle, Deep X-ray Selected Sample

    NASA Astrophysics Data System (ADS)

    Perlman, E.; Jones, L.; White, N.; Angelini, L.; Giommi, P.; McHardy, I.; Wegner, G.

    1994-12-01

    The WARPS survey (Wide-Angle ROSAT Pointed Survey) has been constructed from the archive of all public ROSAT PSPC observations, and is a subset of the WGACAT catalog. WARPS will include a complete sample of >= 100 BL Lacs at F_x >= 10(-13) erg s(-1) cm(-2) . A second selection technique will identify ~ 100 clusters at 0.15evolution, with = 0.304 +/- 0.062 for XBLs but = 0.60 +/- 0.05 for RBLs. Models of the X-ray luminosity function (XLF) are also poorly constrained. WARPS will allow us to compute an accurate XLF, decreasing the error bars above by over a factor of two. We will also test for low-luminosity BL Lacs, whose non-thermal nuclear sources are dim compared to the host galaxy. Browne and Marcha (1993) claim the EMSS missed most of these objects and is incomplete. If their predictions are correct, 20-40% of the BL Lacs we find will fall in this category, enabling us to probe the evolution and internal workings of BL Lacs at lower luminosities than ever before. By removing likely QSOs before optical spectroscopy, WARPS requires only modest amounts of telescope time. It will extend measurement of the cluster XLF both to higher redshifts (z>0.5) and lower luminosities (LX<1x10(44) erg s(-1) ) than previous measurements, confirming or rejecting the 3sigma detection of negative evolution found in the EMSS, and constraining Cold Dark Matter cosmologies. Faint NELGs are a recently discovered major contributor to the X-ray background. They are a mixture of Sy2s, starbursts and galaxies of unknown type. Detailed classification and evolution of their XLF will be determined for the first time.

  8. The XXL Survey: First Results and Future

    NASA Technical Reports Server (NTRS)

    Pierre, M.; Adami, C.; Birkinshaw, M.; Chiappetti, L.; Ettori, S.; Evrard, A.; Faccioli, L.; Gastaldello, F.; Giles, P.; Horellou, C.; hide

    2017-01-01

    The XXL survey currently covers two 25 deg2 patches with XMM observations of approximately 10 ks. We summarize the scientific results associated with the first release of the XXL dataset, which occurred in mid-2016.We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray(zeta less than 2) cluster, (zeta less than 4) active galactic nuclei (AGN), and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-lambda observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters, and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the zeta greater than1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.

  9. Biophysics of protein evolution and evolutionary protein biophysics

    PubMed Central

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  10. Radio Identification of Millimeter-Bright Galaxies Detected in the AzTEC/ASTE Blank Field Survey

    NASA Astrophysics Data System (ADS)

    Hatsukade, Bunyo; Kohno, Kotaro; White, Glenn; Matsuura, Shuji; Hanami, Hitoshi; Shirahata, Mai; Nakanishi, Kouichiro; Hughes, David; Tamura, Yoichi; Iono, Daisuke; Wilson, Grant; Yun, Min

    2008-10-01

    We propose a deep 1.4-GHz imaging of millimeter-bright sources in the AzTEC/ASTE 1.1-mm blank field survey of AKARI Deep Field-South. The AzTEC/ASTE uncovered 37 sources, which are possibly at z > 2. We have obtained multi-wavelength data in this field, but the large beam size of AzTEC/ASTE (30 arcsec) prevents us from identifying counterparts. The aim of this proposal is to identify radio counterparts with higher-angular resolution. This enables us (i) To identifying optical/IR counterparts. It enables optical spectroscopy to determine precise redshifts, allowing us to derive SFRs, luminosity functions, clustering properties, mass of dark matter halos, etc. (ii) To constrain luminosity evolutions of SMGs by comparing of 1.4-GHz number counts (and luminosity functions) with luminosity evolution models. (iii) To estimate photometric redshifts from 1.4-GHz and 1.1-mm data using the radio-FIR flux correlation. In case of non-detection, we can put deep lower limits (3 sigma limit of z > 3). These information lead to the study of evolutionary history of SMGs, their relationship with other galaxy populations, contribution to the cosmic star formation history and the infrared background.

  11. A nationwide survey of deep fungal infections and fungal prophylaxis after hematopoietic stem cell transplantation in Japan.

    PubMed

    Imataki, O; Kami, M; Kim, S-W; Gotoh, M; Komaba, S; Kasai, M; Hashino, S; Naito, K; Masuda, M; Anan, K; Teshima, H; Togitani, K; Inoue, T; Nishimura, M; Adachi, Y; Fukuhara, T; Yamashita, T; Uike, N; Kobayashi, Y; Hamaguchi, M; Higuchi, M; Kawakami, K; Takaue, Y

    2004-06-01

    We conducted a nationwide survey to define incidence of deep fungal infections and fungal prophylaxis practices after HSCT. In all, 63 institutions responded. Total number of in-patient transplantations was 935: 367 autologous, 414 allogeneic myeloablative, and 154 allogeneic reduced-intensity (RIST) (n=154). Number of patients who were cared for in a clean room at transplant was 261 (71%) in autologous, 409 (99%) in conventional and 93 (66%) in RIST, respectively. All patients received prophylactic antifungal agents; 89% fluconazole. Number of patients who received the dosage recommended in the CDC guidelines (400 mg/day) was 135 (42%) in conventional transplant and 34 (30%) in RIST (P=0.037). Number of patients who received fluconazole until engraftment and beyond day 75 in conventional transplant vs RIST was, respectively, 324 (100%) vs 109 (97%), and 39 (12%) vs 18 (16%), with no significant difference between the two groups. A total of 37 patients (4.0%) were diagnosed with deep fungal infections; autologous transplantation (0.03%), conventional transplantation (6.0%) and RIST (7.1%). Wide variations in antifungal prophylaxis practice according to the type of transplant and the institutions, and deep fungal infection remain significant problems in RIST.

  12. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language

    PubMed Central

    Scharff, Constance; Petri, Jana

    2011-01-01

    The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the ‘evo-devo’ conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this ‘deep homology’. Recently, ‘evo-devo’ has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can ‘descend with modification’. PMID:21690130

  13. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language.

    PubMed

    Scharff, Constance; Petri, Jana

    2011-07-27

    The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the 'evo-devo' conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this 'deep homology'. Recently, 'evo-devo' has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can 'descend with modification'.

  14. The evolution of volcano-hosted geothermal systems based on deep wells from Karaha-Telaga Bodas, Indonesia

    USGS Publications Warehouse

    Moore, J.N.; Allis, R.G.; Nemcok, M.; Powell, T.S.; Bruton, C.J.; Wannamaker, P.E.; Raharjo, I.B.; Norman, D.I.

    2008-01-01

    Temperature and pressure surveys, fluid samples, and petrologic analyses of rock samples from deep drill holes at the Karaha - Telaga Bodas geothermal field on the volcanic ridge extending northward from Galunggung Volcano, West Java, have provided a unique opportunity to characterize the evolution of an active volcano-hosted geothermal system. Wells up to 3 km in depth have encountered temperatures as high as 353??C and a weakly altered granodiorite that intruded to within 2 to 3 km of the surface. The intrusion is shallowest beneath the southern end of the field where an acid lake overlies a nearly vertical low resistivity structure (<10 ohm-m) defined by magnetotelluric measurements. This structure is interpreted to represent a vapor-dominated chimney that provides a pathway to the surface for magmatic gases. Four distinct hydrothermal mineral assemblages document the evolution of the geothermal system and the transition from liquid- to vapor-dominated conditions. The earliest assemblage represents the initial liquid-dominated system generated during emplacement of the granodiorite between 5910 ?? 76 and 4200 ?? 150 y BP. Tourmaline, biotite, actinolite, epidote and clay minerals were deposited contemporaneously at progressively greater distances from the intrusive contact (assemblage 1). At 4200 ?? 150 y BP, flank collapse and the formation of the volcano's crater, Kawah Galunggung, resulted in catastrophic decompression and boiling of the hydrothermal fluids. This event initiated development of the modern vapor-dominated regime. Chalcedony and then quartz were deposited as the early low salinity liquids boiled (assemblage 2). Both vapor- and liquid-rich fluid inclusions were trapped in the quartz crystals. Liquid-rich fluid inclusions from the southern part of the field record salinities ranging from 0 to 26 weight percent NaCl- CaCl2 equivalent and locally contain fluorite daughter crystals. We suggest, based on temperature-salinity relationships and evidence

  15. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coil, Alison L.; Moustakas, John; Aird, James

    2011-11-01

    We present the PRIsm MUlti-object Survey (PRIMUS), a spectroscopic faint galaxy redshift survey to z {approx} 1. PRIMUS uses a low-dispersion prism and slitmasks to observe {approx}2500 objects at once in a 0.18 deg{sup 2} field of view, using the Inamori Magellan Areal Camera and Spectrograph camera on the Magellan I Baade 6.5 m telescope at Las Campanas Observatory. PRIMUS covers a total of 9.1 deg{sup 2} of sky to a depth of i{sub AB} {approx} 23.5 in seven different deep, multi-wavelength fields that have coverage from the Galaxy Evolution Explorer, Spitzer, and either XMM or Chandra, as well asmore » multiple-band optical and near-IR coverage. PRIMUS includes {approx}130,000 robust redshifts of unique objects with a redshift precision of {sigma}{sub z}/(1 + z) {approx} 0.005. The redshift distribution peaks at z {approx} 0.6 and extends to z = 1.2 for galaxies and z = 5 for broad-line active galactic nuclei. The motivation, observational techniques, fields, target selection, slitmask design, and observations are presented here, with a brief summary of the redshift precision; a forthcoming paper presents the data reduction, redshift fitting, redshift confidence, and survey completeness. PRIMUS is the largest faint galaxy survey undertaken to date. The high targeting fraction ({approx}80%) and large survey size will allow for precise measures of galaxy properties and large-scale structure to z {approx} 1.« less

  16. The Galaxy–Halo Connection for 1.5\\lesssim z\\lesssim 5 as Revealed by the Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Cowley, William I.; Caputi, Karina I.; Deshmukh, Smaran; Ashby, Matthew L. N.; Fazio, Giovanni G.; Le Fèvre, Olivier; Fynbo, Johan P. U.; Ilbert, Olivier; McCracken, Henry J.; Milvang-Jensen, Bo; Somerville, Rachel S.

    2018-01-01

    The Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) provides unparalleled depth at 3.6 and 4.5 μm over ∼0.66 deg2 of the COSMOS field, allowing precise photometric determinations of redshift and stellar mass. From this unique data set we can connect galaxy samples, selected by stellar mass, to their host dark matter halos for 1.5< z< 5.0, filling in a large hitherto unexplored region of the parameter space. To interpret the observed galaxy clustering, we use a phenomenological halo model, combined with a novel method to account for uncertainties arising from the use of photometric redshifts. We find that the satellite fraction decreases with increasing redshift and that the clustering amplitude (e.g., comoving correlation length/large-scale bias) displays monotonic trends with redshift and stellar mass. Applying ΛCDM halo mass accretion histories and cumulative abundance arguments for the evolution of stellar mass content, we propose pathways for the coevolution of dark matter and stellar mass assembly. Additionally, we are able to estimate that the halo mass at which the ratio of stellar-to-halo mass is maximized is {10}{12.5-0.08+0.10} {M}ȯ at z∼ 2.5. This peak halo mass is here inferred for the first time from stellar mass-selected clustering measurements at z≳ 2, and it implies a mild evolution of this quantity for z≲ 3, consistent with constraints from abundance-matching techniques.

  17. Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Bae, Jae Wung; Moon, Jongun; Jang, Min Ji; Ahn, Dong-Hyun; Joo, Soo-Hyun; Jung, Jaimyun; Yim, Dami; Kim, Hyoung Seop

    2017-09-01

    Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.

  18. Photometric redshifts for the next generation of deep radio continuum surveys - II. Gaussian processes and hybrid estimates

    NASA Astrophysics Data System (ADS)

    Duncan, Kenneth J.; Jarvis, Matt J.; Brown, Michael J. I.; Röttgering, Huub J. A.

    2018-07-01

    Building on the first paper in this series (Duncan et al. 2018), we present a study investigating the performance of Gaussian process photometric redshift (photo-z) estimates for galaxies and active galactic nuclei (AGNs) detected in deep radio continuum surveys. A Gaussian process redshift code is used to produce photo-z estimates targeting specific subsets of both the AGN population - infrared (IR), X-ray, and optically selected AGNs - and the general galaxy population. The new estimates for the AGN population are found to perform significantly better at z > 1 than the template-based photo-z estimates presented in our previous study. Our new photo-z estimates are then combined with template estimates through hierarchical Bayesian combination to produce a hybrid consensus estimate that outperforms both of the individual methods across all source types. Photo-z estimates for radio sources that are X-ray sources or optical/IR AGNs are significantly improved in comparison to previous template-only estimates - with outlier fractions and robust scatter reduced by up to a factor of ˜4. The ability of our method to combine the strengths of the two input photo-z techniques and the large improvements we observe illustrate its potential for enabling future exploitation of deep radio continuum surveys for both the study of galaxy and black hole coevolution and for cosmological studies.

  19. The bulge-disc decomposed evolution of massive galaxies at 1 < z < 3 in CANDELS

    NASA Astrophysics Data System (ADS)

    Bruce, V. A.; Dunlop, J. S.; McLure, R. J.; Cirasuolo, M.; Buitrago, F.; Bowler, R. A. A.; Targett, T. A.; Bell, E. F.; McIntosh, D. H.; Dekel, A.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Hartley, W.; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; McGrath, E. J.

    2014-10-01

    We present the results of a new and improved study of the morphological and spectral evolution of massive galaxies over the redshift range 1 < z < 3. Our analysis is based on a bulge-disc decomposition of 396 galaxies with M* > 1011 M⊙ uncovered from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) Wide Field Camera 3 (WFC3)/IR imaging within the Cosmological Evolution Survey (COSMOS) and UKIRT Infrared Deep Sky Survey (UKIDSS) UDS survey fields. We find that, by modelling the H160 image of each galaxy with a combination of a de Vaucouleurs bulge (Sérsic index n = 4) and an exponential disc (n = 1), we can then lock all derived morphological parameters for the bulge and disc components, and successfully reproduce the shorter-wavelength J125, i814, v606 HST images simply by floating the magnitudes of the two components. This then yields sub-divided four-band HST photometry for the bulge and disc components which, with no additional priors, is well described by spectrophotometric models of galaxy evolution. Armed with this information, we are able to properly determine the masses and star formation rates for the bulge and disc components, and find that: (i) from z = 3 to 1 the galaxies move from disc dominated to increasingly bulge dominated, but very few galaxies are pure bulges/ellipticals by z = 1; (ii) while most passive galaxies are bulge dominated, and most star-forming galaxies disc dominated, 18 ± 5 per cent of passive galaxies are disc dominated, and 11 ± 3 per cent of star-forming galaxies are bulge dominated, a result which needs to be explained by any model purporting to connect star formation quenching with morphological transformations; (iii) there exists a small but significant population of pure passive discs, which are generally flatter than their star-forming counterparts (whose axial ratio distribution peaks at b/a ≃ 0.7); (iv) flatter/larger discs re-emerge at the highest star formation rates, consistent with

  20. The Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS): survey design, data catalogue and GAMA/WiggleZ spectroscopy

    NASA Astrophysics Data System (ADS)

    Ching, John H. Y.; Sadler, Elaine M.; Croom, Scott M.; Johnston, Helen M.; Pracy, Michael B.; Couch, Warrick J.; Hopkins, A. M.; Jurek, Russell J.; Pimbblet, K. A.

    2017-01-01

    We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z ˜ 0.8. The catalogue covers ˜800 deg2 of sky, and provides optical identifications for 19 179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of Imod < 20.5 in Sloan Digital Sky Survey (SDSS) images. Both galaxies and point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12 329 radio sources in the survey area, of which 10 856 have reliable redshifts. 85 per cent of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15 per cent are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83 per cent) of LARGESS radio AGN at z < 0.8, with 12 per cent being high-excitation radio galaxies (HERGs) and 5 per cent radio-loud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disc.

  1. JAMSTEC multibeam surveys and submersible dives around the Hawaiian Islands: a collaborative Japan-USA exploration of Hawaii's deep seafloor

    USGS Publications Warehouse

    Robinson, Joel E.; Eakins, Barry W.; Kanamatsu, Toshiya; Naka, Jiro; Takahashi, Eiichi; Satake, Kenji; Smith, John R.; Clague, David A.; Yokose, Hisayoshi

    2006-01-01

    This database release, USGS Data Series 171, contains data collected during four Japan-USA collaborative cruises that characterize the seafloor around the Hawaiian Islands. The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) sponsored cruises in 1998, 1999, 2001, and 2002, to build a greater understanding of the deep marine geology around the Hawaiian Islands. During these cruises, scientists surveyed over 600,000 square kilometers of the seafloor with a hull-mounted multibeam seafloor-mapping sonar system (SEA BEAM® 2112), observed the seafloor and collected samples using robotic and manned submersible dives, collected dredge and piston-core samples, and performed single-channel seismic surveys.

  2. L'Evolution des Galaxies Infrarouges: des observations cosmologiques avec ISO à une modélisation de l'infrarouge moyen au submillimétrique

    NASA Astrophysics Data System (ADS)

    Dole, H.

    2000-10-01

    This thesis deals with the analysis of the FIRBACK deep survey performed in the far infrared at 170 microns with the Infrared Space Observatory, whose aim is the study of the galaxies contributing to the Cosmic Infrared Background, and with the modellisation of galaxy evolution in the mid-infrared to submillimeter range. The FIRBACK survey covers 3.89 square degrees in 3 high galactic latitude and low foreground emission fields (2 of which are in the northern sky). I first present the techniques of reduction, processing and calibration of the ISOPHOT cosmological data. I show that there is a good agreement between PHOT and DIRBE on extended emission, thanks to the derivation of the PHOT footprint. Final maps are created, and the survey is confusion limited at (sigma = 45 mJy). I present then the techniques of source extraction and the simulations for photometry needed to build the final catalog of 106 sources between 180 mJy (4 sigma) and 2.4 Jy. The complementary catalog is made of 90 sources between 135 and 180 mJy. Galaxy counts show a large excess with respect to local counts or models (with and without evolution), only compatible with strong evolution scenarios. The Cosmic Infrared Background (CIB) is resolved at 4% at 170 microns. The identifications of the sources at other wavelengths suggest that most of the sources are local, but a non negligible part lies above redshift 1. I have developped a phenomenological model of galaxy evolution in order to constrain galaxy evolution in the infrared and to have a better understanding of what the FIRBACK sources are. Using the local Luminosity Function (LF), and template spectra of starburst galaxies, it is possible to constrain the evolution of the LF using all the available data: deep source counts at 15, 170 and 850 microns and the CIB spectrum. I show that galaxy evolution is dominated by a high infrared luminosity population, peaking at 2.0 1011 solar luminosities. Redshift distributions are in agreement with

  3. Constraints in cancer evolution.

    PubMed

    Venkatesan, Subramanian; Birkbak, Nicolai J; Swanton, Charles

    2017-02-08

    Next-generation deep genome sequencing has only recently allowed us to quantitatively dissect the extent of heterogeneity within a tumour, resolving patterns of cancer evolution. Intratumour heterogeneity and natural selection contribute to resistance to anticancer therapies in the advanced setting. Recent evidence has also revealed that cancer evolution might be constrained. In this review, we discuss the origins of intratumour heterogeneity and subsequently focus on constraints imposed upon cancer evolution. The presence of (1) parallel evolution, (2) convergent evolution and (3) the biological impact of acquiring mutations in specific orders suggest that cancer evolution may be exploitable. These constraints on cancer evolution may help us identify cancer evolutionary rule books, which could eventually inform both diagnostic and therapeutic approaches to improve survival outcomes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  4. Four faint T dwarfs from the UKIRT Infrared Deep Sky Survey (UKIDSS) Southern Stripe

    NASA Astrophysics Data System (ADS)

    Chiu, Kuenley; Liu, Michael C.; Jiang, Linhua; Allers, Katelyn N.; Stark, Daniel P.; Bunker, Andrew; Fan, Xiaohui; Glazebrook, Karl; Dupuy, Trent J.

    2008-03-01

    We present the optical and near-infrared photometry and spectroscopy of four faint T dwarfs newly discovered from the UKIDSS first data release. The sample, drawn from an imaged area of ~136 deg2 to a depth of Y = 19.9 (5σ, Vega), is located in the Sloan Digital Sky Survey (SDSS) Southern Equatorial Stripe, a region of significant future deep imaging potential. We detail the selection and followup of these objects, three of which are spectroscopically confirmed brown dwarfs ranging from type T2.5 to T7.5, and one is photometrically identified as early T. Their magnitudes range from Y = 19.01 to 19.88 with derived distances from 34 to 98 pc, making these among the coldest and faintest brown dwarfs known. The T7.5 dwarf appears to be single based on 0.05-arcsec images from Keck laser guide star adaptive optics. The sample brings the total number of T dwarfs found or confirmed by UKIDSS data in this region to nine, and we discuss the projected numbers of dwarfs in the future survey data. We estimate that ~240 early and late T dwarfs are discoverable in the UKIDSS Large Area Survey (LAS) data, falling significantly short of published model projections and suggesting that initial mass functions and/or birth rates may be at the low end of possible models. Thus, deeper optical data have good potential to exploit the UKIDSS survey depth more fully, but may still find the potential Y dwarf sample to be extremely rare.

  5. Evolution of evaluation criteria in the College of American Pathologists Surveys.

    PubMed

    Ross, J W

    1988-04-01

    This review of the evolution of evaluation criteria in the College of American Pathologists Survey and of theoretical grounds proposed for evaluation criteria explores the complex nature of the evaluation process. Survey professionals balance multiple variables to seek relevant and meaningful evaluations. These include the state of the art, the reliability of target values, the nature of available control materials, the perceived medical "nonusefulness" of the extremes of performance (good or poor), this extent of laboratory services provided, and the availability of scientific data and theory by which clinically relevant criteria of medical usefulness may be established. The evaluation process has consistently sought peer concensus, to stimulate improvement in state of the art, to increase medical usefulness, and to monitor the state of the art. Recent factors that are likely to promote change from peer group evaluation to fixed criteria evaluation are the high degree of proficiency in the state of the art for many analytes, accurate target values, increased knowledge of biologic variation, and the availability of statistical modeling techniques simulating biologic and diagnostic processes as well as analytic processes.

  6. A Chandra Survey of high-redshift (0.7 < z < 0.8) clusters selected in the 100 deg^2 SPT-Pol Deep Field

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2016-09-01

    We propose to observe a complete sample of 10 galaxy clusters at 1e14 < M500 < 5e14 and 0.7 < z < 0.8. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.

  7. The case for a deep-atmospheric in situ mission to address the highest priority Decadal Survey questions for Venus (Invited)

    NASA Astrophysics Data System (ADS)

    Atreya, S. K.; Garvin, J. B.; Glaze, L. S.; Campbell, B. A.; Fisher, M. E.; Flores, A.; Gilmore, M. S.; Johnson, N.; Kiefer, W. S.; Lorenz, R. D.; Mahaffy, P. R.; Ravine, M. A.; Webster, C. R.; Zolotov, M. Y.

    2013-12-01

    Current understanding of Venus lags behind that for Mars, with a major disparity of information concerning noble and trace gases and the small scale surface processes needed for comparative studies of terrestrial planet evolution. Despite global surface mapping by Magellan, discoveries by Venera landers, and ongoing atmospheric observations by the Venus Express (VEx) orbiter, significant questions about Venus remain unanswered. To place Venus into its proper context with respect to Mars and Earth, it is necessary to obtain new measurements that address top issues identified in the National Research Council (NRC) Solar System Decadal Survey: (1) evolution of the atmosphere, history of climate, and evidence of past hydrologic cycles; (2) history of volatiles and sedimentary cycles; and (3) planetary surface evolution. To answer these questions, new measurements are needed. First and foremost, in situ noble gas measurements are needed to constrain solar system formation and Venus evolution. In particular, the isotopic ratios of Xe and Kr can provide unique insights into planetary accretion. Isotopic measurements of nitrogen (15N/14N) will place important constraints on atmospheric loss processes. Current knowledge of this ratio has a substantial uncertainty of ×20%. VEx observations of hydrogen isotopes indicate the D/H ratio above the clouds is substantially greater than measured by Pioneer Venus, and varies with height. High precision measurements of the vertical distribution of the D/H isotopic ratio below the cloud layers will provide constraints on models of the climate history of water on Venus. The majority of atmospheric mass is located below the clouds. Current data suggest intense interaction among atmospheric gases down to the surface. The haze within the cloud region of unknown composition plays a central role in the radiative balance. Photochemically-derived species (H2SO4, OCS, CO, Sn) are subjected to thermochemical reactions below the clouds

  8. The deep-sea under global change.

    PubMed

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Snelgrove, Paul V R

    2017-06-05

    The deep ocean encompasses 95% of the oceans' volume and is the largest and least explored biome of Earth's Biosphere. New life forms are continuously being discovered. The physiological mechanisms allowing organisms to adapt to extreme conditions of the deep ocean (high pressures, from very low to very high temperatures, food shortage, lack of solar light) are still largely unknown. Some deep-sea species have very long life-spans, whereas others can tolerate toxic compounds at high concentrations; these characteristics offer an opportunity to explore the specialized biochemical and physiological mechanisms associated with these responses. Widespread symbiotic relationships play fundamental roles in driving host functions, nutrition, health, and evolution. Deep-sea organisms communicate and interact through sound emissions, chemical signals and bioluminescence. Several giants of the oceans hunt exclusively at depth, and new studies reveal a tight connection between processes in the shallow water and some deep-sea species. Limited biological knowledge of the deep-sea limits our capacity to predict future response of deep-sea organisms subject to increasing human pressure and changing global environmental conditions. Molecular tools, sensor-tagged animals, in situ and laboratory experiments, and new technologies can enable unprecedented advancement of deep-sea biology, and facilitate the sustainable management of deep ocean use under global change. Copyright © 2017. Published by Elsevier Ltd.

  9. X-Ray Luminosity Functions of Normal Galaxies in the Great Observatories Origins Deep Survey

    NASA Astrophysics Data System (ADS)

    Ptak, Andrew; Mobasher, Bahram; Hornschemeier, Ann; Bauer, Franz; Norman, Colin

    2007-10-01

    We present soft (0.5-2 keV) X-ray luminosity functions (XLFs) in the Great Observatories Origins Deep Survey (GOODS) fields derived for galaxies at z~0.25 and 0.75. SED fitting was used to estimate photometric redshifts and separate galaxy types, resulting in a sample of 40 early-type galaxies and 46 late-type galaxies. We estimate k-corrections for both the X-ray/optical and X-ray/NIR flux ratios, which facilitates the separation of AGNs from the normal/starburst galaxies. We fit the XLFs with a power-law model using both traditional and Markov-Chain Monte Carlo (MCMC) procedures. A key advantage of the MCMC approach is that it explicitly takes into account upper limits and allows errors on ``derived'' quantities, such as luminosity densities, to be computed directly (i.e., without potentially questionable assumptions concerning the propagation of errors). The slopes of the early-type galaxy XLFs tend to be slightly flatter than the late-type galaxy XLFs, although the effect is significant at only the 90% and 97% levels for z~0.25 and 0.75. The XLFs differ between z<0.5 and z>0.5 at >99% significance levels for early-type, late-type, and all (early- and late-type) galaxies. We also fit Schechter and lognormal models to the XLFs, fitting the low- and high-redshift XLFs for a given sample simultaneously assuming only pure luminosity evolution. In the case of lognormal fits, the results of MCMC fitting of the local FIR luminosity function were used as priors for the faint- and bright-end slopes (similar to ``fixing'' these parameters at the FIR values, except here the FIR uncertainty is included). The best-fit values of the change in logL* with redshift were ΔlogL*=0.23+/-0.16 dex (for early-type galaxies) and 0.34+/-0.12 dex (for late-type galaxies), corresponding to (1+z)1.6 and (1+z)2.3. These results were insensitive to whether the Schechter or lognormal function was adopted.

  10. Identification of nitrogen- and host-related deep-level traps in n-type GaNAs and their evolution upon annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelczuk, Ł., E-mail: lukasz.gelczuk@pwr.edu.pl; Kudrawiec, R., E-mail: robert.kudrawiec@pwr.edu.pl; Henini, M.

    2014-07-07

    Deep level traps in as-grown and annealed n-GaNAs layers (doped with Si) of various nitrogen concentrations (N=0.2%, 0.4%, 0.8%, and 1.2%) were investigated by deep level transient spectroscopy. In addition, optical properties of GaNAs layers were studied by photoluminescence and contactless electroreflectance. The identification of N- and host-related traps has been performed on the basis of band gap diagram [Kudrawiec, Appl. Phys. Lett. 101, 082109 (2012)], which assumes that the activation energy of electron traps of the same microscopic nature decreases with the rise of nitrogen concentration in accordance with the N-related shift of the conduction band towards trap levels.more » The application of this diagram has allowed to investigate the evolution of donor traps in GaNAs upon annealing. In general, it was observed that the concentration of N- and host-related traps decreases after annealing and PL improves very significantly. However, it was also observed that some traps are generated due to annealing. It explains why the annealing conditions have to be carefully optimized for this material system.« less

  11. Porosity evolution at the brittle-ductile transition in the continental crust: Implications for deep hydro-geothermal circulation.

    PubMed

    Violay, M; Heap, M J; Acosta, M; Madonna, C

    2017-08-09

    Recently, projects have been proposed to engineer deep geothermal reservoirs in the ductile crust. To examine their feasibility, we performed high-temperature (up to 1000 °C), high-pressure (130 MPa) triaxial experiments on granite (initially-intact and shock-cooled samples) in which we measured the evolution of porosity during deformation. Mechanical data and post-mortem microstuctural characterisation (X-ray computed tomography and scanning electron microscopy) indicate that (1) the failure mode was brittle up to 900 °C (shear fracture formation) but ductile at 1000 °C (no strain localisation); (2) only deformation up to 800 °C was dilatant; (3) deformation at 900 °C was brittle but associated with net compaction due to an increase in the efficiency of crystal plastic processes; (4) ductile deformation at 1000 °C was compactant; (5) thermally-shocking the granite did not influence strength or failure mode. Our data show that, while brittle behaviour increases porosity, porosity loss is associated with both ductile behaviour and transitional behaviour as the failure mode evolves from brittle to ductile. Extrapolating our data to geological strain rates suggests that the brittle-ductile transition occurs at a temperature of 400 ± 100 °C, and is associated with the limit of fluid circulation in the deep continental crust.

  12. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys.

    PubMed

    Quattrini, Andrea M; Demopoulos, Amanda W J

    2016-12-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013-2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494-4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities, our

  13. The Vimos VLT deep survey. Global properties of 20,000 galaxies in the IAB < 22.5 WIDE survey

    NASA Astrophysics Data System (ADS)

    Garilli, B.; Le Fèvre, O.; Guzzo, L.; Maccagni, D.; Le Brun, V.; de la Torre, S.; Meneux, B.; Tresse, L.; Franzetti, P.; Zamorani, G.; Zanichelli, A.; Gregorini, L.; Vergani, D.; Bottini, D.; Scaramella, R.; Scodeggio, M.; Vettolani, G.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Gavignaud, I.; Ilbert, O.; Iovino, A.; Lamareille, F.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Zucca, E.; Blaizot, J.; Bongiorno, A.; Cucciati, O.; Mellier, Y.; Moreau, C.; Paioro, L.

    2008-08-01

    .1 deg2 for a sample limited in magnitude to IAB = 22.5. Comparing galaxy densities from the four fields shows that in a redshift bin Δz = 0.1 at z ~ 1 one still has factor-of-two variations over areas as large as ~ 0.25 deg2. This level of cosmic variance agrees with that obtained by integrating the galaxy two-point correlation function estimated from the F22 field alone. It is also in fairly good statistical agreement with that predicted by the Millennium simulations. The VVDS WIDE survey currently provides the largest area coverage among redshift surveys reaching z ~ 1. The variance estimated over the survey fields shows explicitly how clustering results from deep surveys of even 1 deg2 size should be interpreted with caution. The survey data represent a rich data base to select complete sub-samples of high-quality spectra and to study galaxy ensemble properties and galaxy clustering over unprecedented scales at these redshifts. The redshift catalog of the 4 deg2 F22 field is publicly available at http://cencosw.oamp.fr.

  14. The ROSAT Deep Survey. 2; Optical Identification, Photometry and Spectra of X-Ray Sources in the Lockman Field

    NASA Technical Reports Server (NTRS)

    Schmidt, M.; Hasinger, G.; Gunn, J.; Schneider, D.; Burg, R.; Giacconi, R.; Lehmann, I.; MacKenty, J.; Truemper, J.; Zamorani, G.

    1998-01-01

    The ROSAT Deep Survey includes a complete sample of 50 X-ray sources with fluxes in the 0.5 - 2 keV band larger than 5.5 x 10(exp -15)erg/sq cm/s in the Lockman field (Hasinger et al., Paper 1). We have obtained deep broad-band CCD images of the field and spectra of many optical objects near the positions of the X-ray sources. We define systematically the process leading to the optical identifications of the X-ray sources. For this purpose, we introduce five identification (ID) classes that characterize the process in each case. Among the 50 X-ray sources, we identify 39 AGNs, 3 groups of galaxies, 1 galaxy and 3 galactic stars. Four X-ray sources remain unidentified so far; two of these objects may have an unusually large ratio of X-ray to optical flux.

  15. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-07-01

    This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [1-]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria) in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic. In order to evaluate seismicity and to assess the impact of seismic effects at depths of hypothetical deep geological repository for the next time period, the neo-deterministic method was selected as an extension of the probabilistic method. Each one out of the seven survey areas were assessed by the neo-deterministic evaluation of the seismic wave-field excited by selected individual events and determining the maximum loading. Results of seismological databases studies and neo-deterministic analysis of Čihadlo locality are presented.

  16. Resources for Teaching About Evolution from the U.S. Geological Survey

    NASA Astrophysics Data System (ADS)

    Gordon, L. C.

    2001-12-01

    As a scientific research agency, the U.S. Geological Survey (USGS) is in an ideal position to provide scientific information and resources to educators. The USGS is not a curriculum developer, nor an expert in pedagogy, yet the USGS does have a wealth of scientific information on subjects such as fossils, geologic time, biological resources and plate tectonics that naturally come in to play in the teaching of evolution. Among USGS resources are the general interest pamphlets Geologic Time, Dinosaurs: Facts And Fiction, Our Changing Continent, and Fossils Rocks, and Time, and its accompanying poster, Fossils Through Time. In addition to printed versions, the pamphlets are available at no cost on the Internet at http://pubs.usgs.gov/gip/. The popular booklet, This Dynamic Earth: The Story of Plate Tectonics, available at http://pubs.usgs.gov/publications/text/dynamic.html, touches on evolution-related subjects such as Alfred Wegener's use of fossils to develop his theory of continental drift, "polar" dinosaur fossils found in Australia, marine fossils in the rocks of the Himalayas, and the use of fossil ages to determine rates of plate motions. Paleontological research at the USGS is highlighted on the Internet at http://geology.er.usgs.gov/paleo/. The web site includes links to technical publications, profiles of scientists, a geologic time scale, a glossary, information on important fossil groups, and a list of non-USGS references on fossils: all very useful to educators. A wealth of biological information and data can be found in the National Biological Information Infrastructure (NBII), a multi-agency collaborative program led by the USGS. In addition to data on the Nation's biological resources, the NBII web site http://www.nbii.gov/ includes a section on systematics and scientific names (helpful for illustrating the evolutionary relationships among living organisms), and links to non-USGS curriculum materials. A fact sheet, Unveiling the NBII as a Teaching

  17. Deep-tow geophysical survey above large exhumed mantle domains of the eastern Southwest Indian ridge

    NASA Astrophysics Data System (ADS)

    Bronner, A.; Munschy, M.; Sauter, D.; Carlut, J.; Searle, R.; Cannat, M.

    2012-04-01

    The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the easternmost part of the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining multibeam bathymetric data, magnetic data, geology mapping from sidescan sonar (TOBI) images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the sidescan sonar images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. We investigate the possibility that magnetic anomalies are either caused by serpentinized peridotites and/or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may result from fluid-rock interactions along the detachment faults as well as from the occurrence of small sized and thin volcanic patches and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in

  18. Deep-tow magnetic survey above large exhumed mantle domains of the eastern Southwest Indian ridge

    NASA Astrophysics Data System (ADS)

    Bronner, A.; Munschy, M.; Carlut, J. H.; Searle, R. C.; Sauter, D.; Cannat, M.

    2011-12-01

    The recent discovery of a new type of seafloor, the "smooth seafloor", formed with no or very little volcanic activity along the ultra-slow spreading Southwest Indian ridge (SWIR) shows an unexpected complexity in processes of generation of the oceanic lithosphere. There, detachment faulting is thought to be a mechanism for efficient exhumation of deep-seated mantle rocks. We present here a deep-tow geological-geophysical survey over smooth seafloor at the eastern SWIR (62-64°N) combining magnetic data, geology mapping from side-scan sonar images and results from dredge sampling. We introduce a new type of calibration approach for deep-tow fluxgate magnetometer. We show that magnetic data can be corrected from the magnetic effect of the vehicle with no recourse to its attitude (pitch, roll and heading) but only using the 3 components recorded by the magnetometer and an approximation of the scalar intensity of the Earth magnetic field. The collected dredge samples as well as the side-scan images confirm the presence of large areas of exhumed mantle-derived peridodites surrounded by a few volcanic constructions. This allows us to hypothesis that magnetic anomalies are caused by serpentinized peridotites or magmatic intrusions. We show that the magnetic signature of the smooth seafloor is clearly weaker than the surrounding volcanic areas. Moreover, the calculated magnetization of a source layer as well as the comparison between deep-tow and sea-surface magnetic data argue for strong East-West variability in the distribution of the magnetized sources. This variability may results from fluid-rocks interaction along the detachment faults as well as from the repartition of the volcanic material and thus questions the seafloor spreading origin of the corresponding magnetic anomalies. Finally, we provide magnetic arguments, as calculation of block rotation or spreading asymmetry in order to better constrain tectonic mechanisms that occur during the formation of this

  19. From SYNOP to AMOC: Stirring by deep cyclones and the evolution of Denmark Strait Overflow Water observed at Line W

    NASA Astrophysics Data System (ADS)

    Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M., Jr.; Joyce, T. M.; Curry, R. G.

    2016-02-01

    Shipboard velocity and property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40˚N are analyzed to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and its mixing with the interior. The transects were made between 1994 and 2014 and lie along Line W, which reaches from the continental shelf south of New England to Bermuda. Measurements comprise velocity from lowered acoustic Doppler current profilers (LADCPs), CTD profiles, and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths at 26 regular stations or a subset of these stations. In each transect, DSOW exhibits a distinct CFC concentration maximum in the abyssal ocean (> 3000 m depth) along the sloped western boundary. Sea surface height (SSH) maps from satellite altimetry indicate that quasi-stationary meander troughs of the Gulf Stream path in the upper ocean were present at Line W during 5 of the 18 sections. For these 5 sections, the LADCP velocity sections suggest the upper ocean trough is accompanied by a large cyclone in the deep ocean in the DSOW density layer. The occurrence of deep cyclones in conjunction with Gulf Stream troughs as inferred from the LADCP sections along Line W is consistent with previous observations (from 1988 to 1990) in the region from a moored array in the Synoptic Ocean Prediction (SYNOP) experiment. The SYNOP array suggested deep cyclones are present here about 35% of the time. The composite velocity section produced from the 5 Line W transects sampling through a Gulf Stream trough suggests that a typical cyclone reaches swirl speeds of greater than 30 cm/s at 3400 m depth and has a radius (distance between the center and the maximum velocity) of 75 km. The tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC and the interior.

  20. Differential evolution of the UV luminosity function of Lyman break galaxies from z ~ 5 to 3

    NASA Astrophysics Data System (ADS)

    Iwata, I.; Ohta, K.; Tamura, N.; Akiyama, M.; Aoki, K.; Ando, M.; Kiuchi, G.; Sawicki, M.

    2007-04-01

    We report the ultraviolet luminosity function (UVLF) of Lyman break galaxies at z ~ 5 derived from a deep and wide survey using the prime focus camera of the 8.2 m Subaru telescope (Suprime-Cam). Target fields consist of two blank regions of the sky, namely, the region including the Hubble Deep Field-North and the J0053+1234 region, and the total effective surveyed area is 1290 arcmin2. Applications of carefully determined colour selection criteria in V - Ic and Ic - z' yield a detection of 853 z ~ 5 candidates with z'AB < 26.5 mag. The UVLF at z ~ 5 based on this sample shows no significant change in the number density of bright (L >~ L*z=3) LBGs from that at z ~ 3, while there is a significant decline in the LF's faint end with increasing look-back time. This result means that the evolution of the number densities is differential with UV luminosity: the number density of UV luminous objects remains almost constant from z ~ 5 to 3 (the cosmic age is about 1.2 to 2.1 Gyr) while the number density of fainter objects gradually increases with cosmic time. This trend becomes apparent thanks to the small uncertainties in number densities both in the bright and faint parts of LFs at different epochs that are made possible by the deep and wide surveys we use. We discuss the origins of this differential evolution of the UVLF along the cosmic time and suggest that our observational findings are consistent with the biased galaxy evolution scenario: a galaxy population hosted by massive dark haloes starts active star formation preferentially at early cosmic time, while less massive galaxies increase their number density later. We also calculated the UV luminosity density by integrating the UVLF and at z ~ 5 found it to be 38.8+6.7-4.1 per cent of that at z ~ 3 for the luminosity range L > 0.1L*z=3. By combining our results with those from the literature, we find that the cosmic UV luminosity density marks its peak at and then slowly declines towards higher redshift. Based on

  1. Cosmic Star Formation History and Evolution of the Galaxy UV Luminosity Function for z < 1

    NASA Astrophysics Data System (ADS)

    Zhang, Keming; Schiminovich, David

    2018-01-01

    We present the latest constraints on the evolution of the far-ultraviolet luminosity function of galaxies (1500 Å, UVLF hereafter) for 0 < z < 1 based on GALEX photometry, with redshift measurements from four spectroscopic and photometric-redshift catalogs: NSA, GAMA, VIPERS, and COSMOS photo-z. Our final sample consists of ~170000 galaxies, which represents the largest sample used in such studies. By integrating wide NSA and GAMA data and deep VIPERS and COSMOS photo-z data, we have been able to constrain both the bright end and the faint end of the luminosity function with high accuracy over the entire redshift range. We fit a Schechter function to our measurements of the UVLF, both to parameterize its evolution, and to integrate for SFR densities. From z~1 to z~0, the characteristic absolute magnitude of the UVLF increases linearly by ~1.5 magnitudes, while the faint end slope remains shallow (alpha < 1.5). However, the Schechter function fit exhibits an excess of galaxies at the bright end, which is accounted for by contributions from AGN. We also describe our methodology, which can be applied more generally to any combination of wide-shallow and deep-narrow surveys.

  2. Deepest View of AGN X-Ray Variability with the 7 Ms Chandra Deep Field-South Survey

    NASA Astrophysics Data System (ADS)

    Zheng, X. C.; Xue, Y. Q.; Brandt, W. N.; Li, J. Y.; Paolillo, M.; Yang, G.; Zhu, S. F.; Luo, B.; Sun, M. Y.; Hughes, T. M.; Bauer, F. E.; Vito, F.; Wang, J. X.; Liu, T.; Vignali, C.; Shu, X. W.

    2017-11-01

    We systematically analyze the X-ray variability of active galactic nuclei (AGNs) in the 7 Ms Chandra Deep Field-South survey. On the longest timescale (≈17 years), we find only a weak (if any) dependence of X-ray variability amplitudes on energy bands or obscuration. We use four different power spectral density (PSD) models to fit the anticorrelation between normalized excess variance ({σ }{nxv}2) and luminosity, and obtain a best-fit power-law index β ={1.16}-0.05+0.05 for the low-frequency part of the AGN PSD. We also divide the whole light curves into four epochs in order to inspect the dependence of {σ }{nxv}2 on these timescales, finding an overall increasing trend. The analysis of these shorter light curves also infers a β of ˜1.3 that is consistent with the above-derived β, which is larger than the frequently assumed value of β =1. We then investigate the evolution of {σ }{nxv}2. No definitive conclusion is reached because of limited source statistics, but if present, the observed trend goes in the direction of decreasing AGN variability at fixed luminosity toward high redshifts. We also search for transient events and find six notable candidate events with our considered criteria. Two of them may be a new type of fast transient events, one of which is reported here for the first time. We therefore estimate a rate of fast outbursts < \\dot{N}> ={1.0}-0.7+1.1× {10}-3 {{galaxy}}-1 {{yr}}-1 and a tidal disruption event (TDE) rate < {\\dot{N}}{TDE}> ={8.6}-4.9+8.5× {10}-5 {{galaxy}}-1 {{yr}}-1 assuming the other four long outbursts to be TDEs.

  3. The Fornax Deep Survey with VST. I. The Extended and Diffuse Stellar Halo of NGC 1399 out to 192 kpc

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Capaccioli, M.; Grado, A.; Limatola, L.; Spavone, M.; Napolitano, N. R.; Paolillo, M.; Peletier, R. F.; Cantiello, M.; Lisker, T.; Wittmann, C.; Venhola, A.; Hilker, M.; D'Abrusco, R.; Pota, V.; Schipani, P.

    2016-03-01

    We have started a new, deep multi-imaging survey of the Fornax cluster, dubbed the Fornax Deep Survey (FDS), at the VLT Survey Telescope (VST). In this paper we present the deep photometry inside two square degrees around the bright galaxy NGC 1399 in the core of the cluster. We found that the core of the Fornax cluster is characterized by a very extended and diffuse envelope surrounding the luminous galaxy NGC 1399: we map the surface brightness out to 33 arcmin (˜192 kpc) from the galaxy center and down to μg ˜ 31 mag arcsec-2 in the g band. The deep photometry allows us to detect a faint stellar bridge in the intracluster region on the west side of NGC 1399 and toward NGC 1387. By analyzing the integrated colors of this feature, we argue that it could be due to the ongoing interaction between the two galaxies, where the outer envelope of NGC 1387 on its east side is stripped away. By fitting the light profile, we found that there exists a physical break radius in the total light distribution at R = 10 arcmin (˜58 kpc) that sets the transition region between the bright central galaxy and the outer exponential halo, and that the stellar halo contributes 60% of the total light of the galaxy (Section 3.5). We discuss the main implications of this work on the build-up of the stellar halo at the center of the Fornax cluster. By comparing with the numerical simulations of the stellar halo formation for the most massive bright cluster galaxies (I.e., 13\\lt {log}{M}200/{M}⊙ \\lt 14), we find that the observed stellar halo mass fraction is consistent with a halo formed through the multiple accretion of progenitors with stellar mass in the range 108-1011 M⊙. This might suggest that the halo of NGC 1399 has also gone through a major merging event. The absence of a significant number of luminous stellar streams and tidal tails out to 192 kpc suggests that the epoch of this strong interaction goes back to an early formation epoch. Therefore, different from the Virgo

  4. Investigating the FUV Emission of Young M dwarfs with FUMES: the Far Ultraviolet M-dwarf Evolution Survey

    NASA Astrophysics Data System (ADS)

    Pineda, John

    2016-10-01

    M dwarf stars have become attractive candidates for exoplanet searches and will be a main focus of the upcoming TESS mission, with the continued search for nearby potentially habitable worlds. However, the atmospheric characterization of these exoplanetary systems depends critically on the high energy stellar radiation environment from X-ray to NUV. Strong radiation at these energies can lead to atmospheric mass loss and is a strong driver of photochemistry in planetary atmospheres. Recently, the MUSCLES Treasury Survey (Cycles 19, 22) provided the first comprehensive assessment of the high energy radiation field around old, planet hosting M dwarfs. However, the habitability and potential for such exoplanetary atmospheres to develop life also depends on the evolution of the atmosphere and hence the evolution of the incident radiation field. The strong high energy spectrum of young M dwarfs can have devastating consequences for the potential habitability of a given system. We, thus, propose the Far Ultraviolet M-dwarf Evolution Survey (FUMES) to measure the strong FUV coronal/chromospheric emission features of young M dwarfs (12 - 650 Myr), e.g. He II, C IV, and S IV. FUMES will observe objects with a wide range of rotation rates to directly connect the emission features to the evolution of coronal heating and upper atmospheric structure, and provide observational benchmarks at young ages for models of M dwarf upper atmospheres. Building on results from MUSCLES, we will be able to estimate the whole high energy radiation field and establish the evolutionary picture of the incident radiation throughout the lifetime of exoplanetary systems around early-mid M dwarf hosts.

  5. Identifying Luminous AGN in Deep Surveys: Revised IRAC Selection Criteria

    NASA Astrophysics Data System (ADS)

    Donley, Jennifer; Koekemoer, A. M.; Brusa, M.; Capak, P.; Cardamone, C. N.; Civano, F.; Ilbert, O.; Impey, C. D.; Kartaltepe, J.; Miyaji, T.; Salvato, M.; Sanders, D. B.; Trump, J. R.; Zamorani, G.

    2012-01-01

    Spitzer IRAC selection is a powerful tool for identifying luminous AGN. The AGN selection wedges currently in use, however, are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGN and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high redshift star-forming galaxies selected via the BzK, DRG, LBG, and SMG criteria. At QSO-luminosities of log L(2-10 keV)>44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 37% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 51% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log NH >= 23.7). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGN, it is incomplete to low-luminosity and host-dominated AGN.

  6. A Global Survey and Interactive Map Suite of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges: (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D)

    NASA Astrophysics Data System (ADS)

    Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.

    2017-12-01

    This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  7. Analysis of the geological structure and tectonic evolution of Xingning-Jinghai sag in deep water area, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Han, Xiaoying; Ren, Jianye; Lin, Zi; Yang, Linlong

    2015-04-01

    Recent years, oil and gas exploration of the Pearl River Mouth Basin in the northern margin of South China Sea continuously achieved historic breakthroughs. The Xingning-Jinghai sag, which is located in southeast of the Pearl River Mouth Basin, is a deep-water sag with a great exploration potential. Its tectonic evolution is extremely complex. It experienced Mesozoic subduction to Cenozoic intra-continental rifting background, and finally evolved into a deep-water sag of the northern continental margin of South China Sea. The geological characteristics and the tectonic evolution of Xingning-Jinghai sag was closely related to the process of formation and evolution of the passive continental margin of the northern South China Sea. It is confirmed by many geophysical data that compared with adjacent Chaoshan depression, the crustal thickness of Xingning-Jinghai sag was rapidly thinning, and it developed detachment faults with later magmatic intrusion. The development of detachment faults have dynamic significance for the spreading of the South China Sea. Based on the seismic geological interpretation of 2D seismic data in the study area, the characteristics of detachment fault and supra-detachment basin have been proposed in this study. The characteristics of the detachment fault are low angle and high ratio between heave and throw. The geometry of the detachment fault is a typical lisric shape, with the dip of fault decreasing generally from the seismic profile. The detachment basin where sediments are not deposited over a tilting hanging-wall block but onto a tectonically exhumed footwall which is different from the typical half graben basin. Seismic profiles indicate two different structural styles in the east and west part of Xingning-Jinghai sag. In the west of the sag, there developed two large detachment faults, which control their detachment basin systems and the typical H block, and the two detachment faults are dipping landward and seaward, respectively. In

  8. IODP workshop: developing scientific drilling proposals for the Argentina Passive Volcanic Continental Margin (APVCM) - basin evolution, deep biosphere, hydrates, sediment dynamics and ocean evolution

    NASA Astrophysics Data System (ADS)

    Flood, Roger D.; Violante, Roberto A.; Gorgas, Thomas; Schwarz, Ernesto; Grützner, Jens; Uenzelmann-Neben, Gabriele; Hernández-Molina, F. Javier; Biddle, Jennifer; St-Onge, Guillaume; Workshop Participants, Apvcm

    2017-05-01

    The Argentine margin contains important sedimentological, paleontological and chemical records of regional and local tectonic evolution, sea level, climate evolution and ocean circulation since the opening of the South Atlantic in the Late Jurassic-Early Cretaceous as well as the present-day results of post-depositional chemical and biological alteration. Despite its important location, which underlies the exchange of southern- and northern-sourced water masses, the Argentine margin has not been investigated in detail using scientific drilling techniques, perhaps because the margin has the reputation of being erosional. However, a number of papers published since 2009 have reported new high-resolution and/or multichannel seismic surveys, often combined with multi-beam bathymetric data, which show the common occurrence of layered sediments and prominent sediment drifts on the Argentine and adjacent Uruguayan margins. There has also been significant progress in studying the climatic records in surficial and near-surface sediments recovered in sediment cores from the Argentine margin. Encouraged by these recent results, our 3.5-day IODP (International Ocean Discovery Program) workshop in Buenos Aires (8-11 September 2015) focused on opportunities for scientific drilling on the Atlantic margin of Argentina, which lies beneath a key portion of the global ocean conveyor belt of thermohaline circulation. Significant opportunities exist to study the tectonic evolution, paleoceanography and stratigraphy, sedimentology, and biosphere and geochemistry of this margin.

  9. A Deep Chandra ACIS Survey of M83

    NASA Astrophysics Data System (ADS)

    Long, Knox S.; Kuntz, Kip D.; Blair, William P.; Godfrey, Leith; Plucinsky, Paul P.; Soria, Roberto; Stockdale, Christopher; Winkler, P. Frank

    2014-06-01

    We have obtained a series of deep X-ray images of the nearby galaxy M83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, we find 378 point sources within the D25 contour of the galaxy. We find 80 more sources, mostly background active galactic nuclei (AGNs), outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M83 obtained using the Australia Telescope Compact Array. Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. We attempt to classify the point source population of M83 through a combination of spectral and temporal analysis. As part of this effort, we carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of which are SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGNs, foreground stars, and identified SNRs from the sample, we construct the cumulative luminosity function (CLF) of XRBs brighter than 8 × 1035 erg s-1. Despite M83's relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass XRBs. Based on observations made with NASA's Chandra X-Ray Observatory. NASA's Chandra Observatory is operated by Smithsonian Astrophysical Observatory under contract NAS83060 and the data were obtained through program GO1-12115.

  10. Strategies for restoration of deep-water coral ecosystems based on a global survey of oil and gas regulations

    NASA Astrophysics Data System (ADS)

    Cordes, E. E.; Jones, D.; Levin, L. A.

    2016-02-01

    The oil and gas industry is one of the most active agents of the global industrialization of the deep sea. The wide array of impacts following the Deepwater Horizon oil spill highlighted the need for a systematic review of existing regulations both in US waters and internationally. Within different exclusive economic zones, there are a wide variety of regulations regarding the survey of deep-water areas prior to leasing and the acceptable set-back distances from vulnerable marine ecosystems once they are discovered. There are also varying mitigation strategies for accidental release of oil and gas, including active monitoring systems, temporary closings of oil and gas production, and marine protected areas. The majority of these regulations are based on previous studies of typical impacts from oil and gas drilling, rather than accidental releases. However, the probability of an accident from standard operations increases significantly with depth. The Oil & Gas working group of the Deep Ocean Stewardship Initiative is an international partnership of scientists, managers, non-governmental organizations, and industry professionals whose goal is to review existing regulations for the oil & gas industry and produce a best practices document to advise both developed and developing nations on their regulatory structure as energy development moves into deeper waters.

  11. Selections from 2017: Hubble Survey Explores Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.CANDELS Multi-Wavelength Catalogs: Source Identification and Photometry in the CANDELS COSMOSSurvey FieldPublished January2017Main takeaway:A publication led byHooshang Nayyeri(UC Irvine and UC Riverside) early this year details acatalog of sources built using the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey(CANDELS), a survey carried out by cameras on board the Hubble Space Telescope. The catalogliststhe properties of 38,000 distant galaxies visiblewithin the COSMOS field, a two-square-degree equatorial field explored in depthto answer cosmological questions.Why its interesting:Illustration showing the three-dimensional map of the dark matter distribution in theCOSMOS field. [Adapted from NASA/ESA/R. Massey(California Institute of Technology)]The depth and resolution of the CANDELS observations areuseful for addressingseveral major science goals, including the following:Studying the most distant objects in the universe at the epoch of reionization in the cosmic dawn.Understanding galaxy formation and evolution during the peak epoch of star formation in the cosmic high noon.Studying star formation from deep ultravioletobservations and studying cosmology from supernova observations.Why CANDELS is a major endeavor:CANDELS isthe largest multi-cycle treasury program ever approved on the Hubble Space Telescope using over 900 orbits between 2010 and 2013 withtwo cameras on board the spacecraftto study galaxy formation and evolution throughout cosmic time. The CANDELS images are all publicly available, and the new catalogrepresents an enormous source of information about distant objectsin our universe.CitationH. Nayyeri et al 2017 ApJS 228 7. doi:10.3847/1538-4365/228/1/7

  12. NLO evolution of color dipole

    DOE PAGES

    Balitsky, Ian; Chirilli, Giovanni A.

    2008-09-01

    The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-line operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the next-to-leading order the BK equation gets contributions from quark and gluon loops as well as from the tree gluon diagrams with quadratic and cubic nonlinearities.

  13. Dust Measurements Onboard the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Kempf, S.; Malaspina, D.; Poppe, A.; Srama, R.; Sternovsky, Z.; Szalay, J.

    2018-02-01

    A dust instrument onboard the Deep Space Gateway will revolutionize our understanding of the dust environment at 1 AU, help our understanding of the evolution of the solar system, and improve dust hazard models for the safety of crewed and robotic missions.

  14. From Romanticism to Deep Ecology: The Continuing Evolution in American Environmental Thought.

    ERIC Educational Resources Information Center

    Ackerson, David

    2000-01-01

    Describes the contributions to deep ecology of Henry Thoreau, who advocated acting upon strongly held convictions; John Muir, who adopted a biocentric view of nature; and Aldo Leopold, who formulated an egalitarian ecosystem ethic. While deep ecology is moving toward a new vision of humankind's relation to nature, it has yet to coalesce into a…

  15. A Chandra Survey of low-mass clusters at 0.8 < z < 0.9 selected in the 100 deg^2 SPT-Pol Deep Field

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph

    2016-09-01

    We propose to observe a complete sample of 4 galaxy clusters at 1e14 < M500 < 3e14 and 0.8 < z < 0.9. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.

  16. A Chandra Survey of low-mass clusters at 0.7 < z < 0.8 selected in the 100 deg^2 SPT-Pol Deep Field

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph

    2016-09-01

    We propose to observe a complete sample of 4 galaxy clusters at 1e14 < M500 < 3e14 and 0.7 < z < 0.8. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.

  17. Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy

    2017-12-11

    The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.

  18. Topographic signatures and a general transport law for deep-seated landslides in a landscape evolution model

    NASA Astrophysics Data System (ADS)

    Booth, Adam M.; Roering, Josh J.; Rempel, Alan W.

    2013-06-01

    A fundamental goal of studying earth surface processes is to disentangle the complex web of interactions among baselevel, tectonics, climate, and rock properties that generate characteristic landforms. Mechanistic geomorphic transport laws can quantitatively address this goal, but no widely accepted law for landslides exists. Here we propose a transport law for deep-seated landslides in weathered bedrock and demonstrate its utility using a two-dimensional numerical landscape evolution model informed by study areas in the Waipaoa catchment, New Zealand, and the Eel River catchment, California. We define a non-dimensional landslide number, which is the ratio of the horizontal landslide flux to the vertical tectonic flux, that characterizes three distinct landscape types. One is dominated by stochastic landsliding, whereby discrete landslide events episodically erode material at rates exceeding the long-term uplift rate. Another is characterized by steady landsliding, in which the landslide flux at any location remains constant through time and is greatest at the steepest locations in the catchment. The third is not significantly affected by landsliding. In both the "stochastic landsliding" and "steady landsliding" regimes, increases in the non-dimensional landslide number systematically reduce catchment relief and widen valley spacing, producing long, low angle hillslopes despite high uplift rates. The stochastic landsliding regime captures the frequent observation that deep-seated landslides produce large sediment fluxes from small areal extents while being active only a fraction of the time. We suggest that this model is adaptable to a wide range of geologic settings and is useful for interpreting climate-driven changes in landslide behavior.

  19. The evolution of inner disk winds from a large survey of high-resolution [OI] spectra

    NASA Astrophysics Data System (ADS)

    Banzatti, Andrea; Pascucci, Illaria; Edwards, Suzan

    2018-01-01

    Current theoretical work suggests that protoplanetary disk evolution and dispersal could be driven by radially extended disk winds. I will present new observational results on the evolution of inner disk winds as linked to jets and to the dispersal of disks. The analysis is based on a large survey of forbidden emission from oxygen ([OI]) as observed in the optical (5577 and 6300 ang) at the spectral resolution of ~7 km/s, and it is part of a large recent effort (Rigliaco et al. 2013, Simon et al. 2016) to study winds at higher resolution than in the past. Past work identified two largely distinct components in [OI] emission: a high-velocity-component (HVC) that has been related to collimated jets, and a low-velocity-component (LVC) that has been attributed to slow disk winds (MHD and/or photoevaporative). The larger sample, high resolution, and improved correction for photospheric absorption now allow us to find new important clues, in particular in terms of the evolution of line blue-shifts and of 5577/6300 line flux ratios in the LVC. I will discuss these findings in the context of the properties and evolution of wind process(es) that are proposed to produce them.

  20. On the evolution of clustering of 24-μm-selected galaxies

    NASA Astrophysics Data System (ADS)

    Magliocchetti, M.; Cirasuolo, M.; McLure, R. J.; Dunlop, J. S.; Almaini, O.; Foucaud, S.; de Zotti, G.; Simpson, C.; Sekiguchi, K.

    2008-01-01

    This paper investigates the clustering properties of a complete sample of 1041 24-μm-selected sources brighter than F24μm = 400μJy in the overlapping region between the Spitzer Wide-Area Infrared Extragalactic (SWIRE) and UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra Deep Survey (UDS) surveys. With the help of photometric redshift determinations we have concentrated on the two interval ranges z = [0.6-1.2] (low-z sample) and z >= 1.6 (high-z sample) as it is in these regions were we expect the mid-infrared (IR) population to be dominated by intense dust-enshrouded activity such as star formation and black hole accretion. Investigations of the angular correlation function produce an amplitude A ~ 0.010 for the high-z sample and A ~ 0.0055 for the low-z one. The corresponding correlation lengths are r0 = 15.9+2.9-3.4 and 8.5+1.5-1.8Mpc, showing that the high-z population is more strongly clustered. Comparisons with physical models for the formation and evolution of large-scale structure reveal that the high-z sources are exclusively associated with very massive (M >~ 1013Msolar) haloes, comparable to those which locally host groups-to-clusters of galaxies and are very common within such (rare) structures. Conversely, lower z galaxies are found to reside in smaller haloes (Mmin ~ 1012Msolar) and to be very rare in such systems. On the other hand, mid-IR photometry shows that the low-z and high-z samples include similar objects and probe a similar mixture of active galactic nucleus (AGN) and star-forming galaxies. While recent studies have determined a strong evolution of the 24-μm luminosity function between z ~ 2 and 0, they cannot provide information on the physical nature of such an evolution. Our clustering results instead indicate that this is due to the presence of different populations of objects inhabiting different structures, as active systems at z <~ 1.5 are found to be exclusively associated with low-mass galaxies, while very massive sources appear to

  1. The evolution of obscured AGN

    NASA Astrophysics Data System (ADS)

    Brightman, Murray

    2012-09-01

    We present results on the evolution of Compton thick AGN with redshift, and the nature of this obscuration, important for understanding the accretion history of the universe and for AGN unification schemes. We use lessons learned from spectral complexity of local AGN (Brightman & Nandra 2012) and up to date spectral models of heavily absorbed AGN, which take into account Compton scattering, self consistent Fe Ka modeling and the geometry of the circumnuclear material (Brightman & Nandra 2011), to optimise our identification of Compton thick AGN and understanding of the obscuring material. Results from the Chandra Deep Field South are presented (Brightman & Ueda, 2012), which show an increasing fraction of CTAGN with redshift and that most heavily obscured AGN are geometrically deeply buried in material, as well as new results from and extension of this study to AEGIS-XD and Chandra-COSMOS survey, which aim to fully characterise the dependence of heavy AGN obscuration on redshift and luminosity.

  2. Aerogeophysical survey over Sør Rondane Mountains and its implications for revealing the tectonic evolution of East Antarctica

    NASA Astrophysics Data System (ADS)

    Mieth, Matthias; Steinhage, Daniel; Ruppel, Antonia; Damaske, Detlef; Jokat, Wilfried

    2013-04-01

    We are presenting new magnetic and gravity data of a high-resolution aerogephysical survey over the area of the Sør Rondane Mountains in the eastern Dronning Maud Land (DML). The aircraft survey is part of the joint geological and geophysical GEA campaign (Geodynamic Evolution of East Antarctica) of the Federal Agency for Geosciences and Natural Resources (BGR) and Alfred-Wegener-Institute for Polar and Marine Research (AWI), in cooperation with the Universities of Ghent, Bremen and Bergen. It was completed during the Antarctic summer season 2012/13, covering an area of more than 100000 square kilometer with a line spacing of 5 km. The data will be correlated with geological structures exposed in the mountain range as well as matched and merged with the data sets of the eastern and southern DML (acquired by AWI during the last decade) for comparison and discussion in the greater context of the tectonic evolution of East Antarctica. Preliminary results show that the magnetic anomaly pattern over the Sør Rondane Mountains differs from the pattern found over the central DML mountains as well as from the low amplitude pattern in between both regions, indicating a significant difference in the evolution of this region, which is in accordance with latest geological findings in this region.

  3. Answers from deep inside the Earth; Continental Scientific Drilling at Cajon Pass, California

    USGS Publications Warehouse

    Russ, D.P.

    1989-01-01

    Drilling of a 12,000-foot-deep scientific well has been completed at Cajon Pass in southern California to measure crustal properties, to determine crustal structure, and to better understanding the generation of earthquakes along the San Andreas fault. A joint effort of the National Science Foundation (NFS) and the U.S Geological Survey (USGS), the well was begun in November 1986, and is one of the first projects to be undertaken in the new national Continental Scientific Drilling Program. This program aims to enchance our knowledge of the compostiion, sturcture, dynamics, and evolution of the continental crust and of how these factors affect the origin and distribution of mineral and energy resources and natural phenomena such as volcanic eruptions and earthquakes. 

  4. Galaxy Assembly and the Evolution of Structure over the First Third of Cosmic Time - III

    NASA Astrophysics Data System (ADS)

    Faber, Sandra

    2011-10-01

    This survey will document the first third of galactic evolution fromz=8 to 1.5 andtest for evolution in the properties of Type Ia supernovae to z 2 byimaging more than 250,000 galaxies with WFC3/IR and ACS. Five premiermulti-wavelength regions are selected from within the Spitzer SEDSsurvey, providing complementaryIRAC data down to 26.5 AB mag, a unique resource forstellar masses at high redshifts. The use of five widely separatedfields mitigates cosmic variance and yields statistically robustsamples of galaxies down to 10^9 M_Sun out to z 8.We adopt a two-tiered strategy with a "Wide" component {roughly 2orbits deep over 0.2 sq. degrees} and a "Deep" component {roughly 12orbits deep over 0.04 sq. degrees}. Combining these with ultra-deepimaging from the Cycle 17 HUDF09 program yields a three-tieredstrategy for efficient sampling of both rare/bright and faint/commonobjects.Three of the Wide-survey fields are located in COSMOS, EGS, andUKIDSS/UDS. Each of these consists of roughly 3x15 WFC3/IR tiles.Each WFC3 tile will be observed for 2 orbits, with single orbitsseparated in time to allow a search for high-redshift Type Ia SNe.The co-added exposure times will be approximately 2/3 orbit in J{F125W} and 4/3 orbit in H {F160W}. ACS parallels overlap most of theWFC3 area and will consist of roughly 2/3 orbits in V {F606W} and4/3 orbit in I {F814W}. Because of the larger area of ACS,this results in effective exposures that are twice as long {4/3 in V,8/3 in I}, making a very significant improvement to existing ACSmosaics in COSMOS and EGS and creating a new ACS mosaic in UDS/UKIDSSwhere none now exists. Other Wide-survey components are located inthe GOODS fields {North and South} surrounding the Deep-survey areas.The Deep-survey fields cover roughly half of each GOODS field, withexact areas and placements to be determined as part of the Phase-2process. Each WFC3/IR tile within the Deep regions will receiveapproximately 12 orbits of exposure time split between Y{F105W}, J

  5. DeepVel: Deep learning for the estimation of horizontal velocities at the solar surface

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.; Requerey, I. S.; Vitas, N.

    2017-07-01

    Many phenomena taking place in the solar photosphere are controlled by plasma motions. Although the line-of-sight component of the velocity can be estimated using the Doppler effect, we do not have direct spectroscopic access to the components that are perpendicular to the line of sight. These components are typically estimated using methods based on local correlation tracking. We have designed DeepVel, an end-to-end deep neural network that produces an estimation of the velocity at every single pixel, every time step, and at three different heights in the atmosphere from just two consecutive continuum images. We confront DeepVel with local correlation tracking, pointing out that they give very similar results in the time and spatially averaged cases. We use the network to study the evolution in height of the horizontal velocity field in fragmenting granules, supporting the buoyancy-braking mechanism for the formation of integranular lanes in these granules. We also show that DeepVel can capture very small vortices, so that we can potentially expand the scaling cascade of vortices to very small sizes and durations. The movie attached to Fig. 3 is available at http://www.aanda.org

  6. Climate processes shape the evolution of populations and species leading to the assembly of modern biotas - examples along a continuum from shallow to deep time

    NASA Astrophysics Data System (ADS)

    Jacobs, D. K.

    2014-12-01

    California experiences droughts, so lets begin with the effects of streamflow variation on population evolution in a coastal lagoon-specialist endangered fish, the tidewater goby. Streamflow controls the closing and opening of lagoons to the sea determining genetic isolation or gene flow. Here evolution is a function of habitat preference for closing lagoons. Other estuarine fishes, with different habitat preferences, differentiate at larger spatial scales in response to longer glacio-eustatic control of estuarine habitat. Species of giraffes in Africa are a puzzle. Why do the ranges of large motile, potentially interbreeding, species occur in contact each other without hybridization? The answer resides in the timing of seasonal precipitation. Although the degree of seaonality of climate does not vary much between species, the timing of precipitation and seasonal "greenup" does. This provides a selective advantage to reproductive isolation, as reproductive timing can be coordinated in each region with seasonal browse availability for lactating females. Convective rainfall in Africa follows the sun and solar intensity is influenced by the precession cycle such that more extensive summer rains fell across the Sahara and South Asia early in the Holocene, this may also contribute to the genetic isolation and speciation of giraffes and others savanna species. But there also appears to be a correlation with rarity (CITES designation) of modern wetland birds, as the dramatic drying of the late Holocene landscape contributes to this conservation concern. Turning back to the West Coast we find the most diverse temperate coastal fauna in the world, yet this diversity evolved and is a relict of diversity accumulation during the apex of upwelling in the late Miocene, driven by the reglaciation of Antarctica. Lastly we can see that the deep-sea evolution is broadly constrained by the transitions from greenhouse to icehouse worlds over the last 90 mya as broad periods of warm

  7. A medium-deep Chandra and Subaru survey of the 13-h XMM/ROSAT deep survey area

    NASA Astrophysics Data System (ADS)

    McHardy, I. M.; Gunn, K. F.; Newsam, A. M.; Mason, K. O.; Page, M. J.; Takata, T.; Sekiguchi, K.; Sasseen, T.; Cordova, F.; Jones, L. R.; Loaring, N.

    2003-07-01

    We present the results of a Chandra ACIS-I survey of a high-latitude region at 13 h +38° which was earlier observed with ROSAT and which has recently been observed by XMM-Newton for 200 ks. XMM-Newton will provide good-quality X-ray spectra for over 200 sources with fluxes around the knee of the log N/ log S, which are responsible for the bulk of the X-ray background. The main aim of the Chandra observations is to provide arcsecond, or better, positions, and hence reliable identifications, for the XMM-Newton sources. The ACIS-I observations were arranged in a mosaic of four 30-ks pointings, covering almost all of the 15-arcmin radius XMM-Newton/ROSAT field. We detect 214 Chandra sources above a Cash likelihood statistic of 25, which approximates to 5σ significance, to a limiting flux of ~1.3 × 10-15 erg cm-2 s-1 (0.5-7 keV). Optical counterparts are derived from a Subaru SuprimeCam image reaching to R~ 27. The very large majority of the Chandra sources have an optical counterpart, with the distribution peaking at 23 < R < 24, although 14 have no counterpart to R= 27. The fraction of X-ray sources with no identification brighter than R= 27 is similar to that found in deeper Chandra surveys. The majority of the identifications are with galaxies. As found in other Chandra surveys, there is a very wide range of optical magnitudes for a given X-ray flux, implying a range of emission mechanisms, and many sources have high LX/Lopt ratios, implying absorption at moderate redshift. Comparison with the earlier ROSAT survey shows that the accuracy of the ROSAT positions agrees very well with the predictions from simulations by McHardy et al. and that the large majority of the identifications were correct.

  8. JAMSTEC E-library of Deep-sea Images (J-EDI) Realizes a Virtual Journey to the Earth's Unexplored Deep Ocean

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive

  9. The First Pan-Starrs Medium Deep Field Variable Star Catalog

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather

    2013-01-01

    We present the first Pan-Starrs 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-Starrs 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, and is located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter. We have located and classified several hundred periodic variable stars within the Medium Deep fields, and we present the first catalog listing the properties of these variable stars.

  10. Evolution and functional characterisation of melanopsins in a deep-sea chimaera (elephant shark, Callorhinchus milii).

    PubMed

    Davies, Wayne I L; Tay, Boon-Hui; Zheng, Lei; Danks, Janine A; Brenner, Sydney; Foster, Russell G; Collin, Shaun P; Hankins, Mark W; Venkatesh, Byrappa; Hunt, David M

    2012-01-01

    Non-visual photoreception in mammals is primarily mediated by two splice variants that derive from a single melanopsin (OPN4M) gene, whose expression is restricted to a subset of retinal ganglion cells. Physiologically, this sensory system regulates the photoentrainment of many biological rhythms, such as sleep via the melatonin endocrine system and pupil constriction. By contrast, melanopsin exists as two distinct lineages in non-mammals, opn4m and opn4x, and is broadly expressed in a wide range of tissue types, including the eye, brain, pineal gland and skin. Despite these findings, the evolution and function of melanopsin in early vertebrates are largely unknown. We, therefore, investigated the complement of opn4 classes present in the genome of a model deep-sea cartilaginous species, the elephant shark (Callorhinchus milii), as a representative vertebrate that resides at the base of the gnathostome (jawed vertebrate) lineage. We reveal that three melanopsin genes, opn4m1, opn4m2 and opn4x, are expressed in multiple tissues of the elephant shark. The two opn4m genes are likely to have arisen as a result of a lineage-specific duplication, whereas "long" and "short" splice variants are generated from a single opn4x gene. By using a heterologous expression system, we suggest that these genes encode functional photopigments that exhibit both "invertebrate-like" bistable and classical "vertebrate-like" monostable biochemical characteristics. We discuss the evolution and function of these melanopsin pigments within the context of the diverse photic and ecological environments inhabited by this chimaerid holocephalan, as well as the origin of non-visual sensory systems in early vertebrates.

  11. Evolution and Functional Characterisation of Melanopsins in a Deep-Sea Chimaera (Elephant Shark, Callorhinchus milii)

    PubMed Central

    Davies, Wayne I. L.; Tay, Boon-Hui; Zheng, Lei; Danks, Janine A.; Brenner, Sydney; Foster, Russell G.; Collin, Shaun P.; Hankins, Mark W.; Venkatesh, Byrappa; Hunt, David M.

    2012-01-01

    Non-visual photoreception in mammals is primarily mediated by two splice variants that derive from a single melanopsin (OPN4M) gene, whose expression is restricted to a subset of retinal ganglion cells. Physiologically, this sensory system regulates the photoentrainment of many biological rhythms, such as sleep via the melatonin endocrine system and pupil constriction. By contrast, melanopsin exists as two distinct lineages in non-mammals, opn4m and opn4x, and is broadly expressed in a wide range of tissue types, including the eye, brain, pineal gland and skin. Despite these findings, the evolution and function of melanopsin in early vertebrates are largely unknown. We, therefore, investigated the complement of opn4 classes present in the genome of a model deep-sea cartilaginous species, the elephant shark (Callorhinchus milii), as a representative vertebrate that resides at the base of the gnathostome (jawed vertebrate) lineage. We reveal that three melanopsin genes, opn4m1, opn4m2 and opn4x, are expressed in multiple tissues of the elephant shark. The two opn4m genes are likely to have arisen as a result of a lineage-specific duplication, whereas “long” and “short” splice variants are generated from a single opn4x gene. By using a heterologous expression system, we suggest that these genes encode functional photopigments that exhibit both “invertebrate-like” bistable and classical “vertebrate-like” monostable biochemical characteristics. We discuss the evolution and function of these melanopsin pigments within the context of the diverse photic and ecological environments inhabited by this chimaerid holocephalan, as well as the origin of non-visual sensory systems in early vertebrates. PMID:23251480

  12. The Swift GRB Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel

    2015-08-01

    I will describe the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population and its redshift evolution from z=0 to z=7. Using unbiased selection criteria we have designated a subset of 119 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, Gemini, VLT, and Magellan to obtain complementary optical/NIR photometry and spectroscopy to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass distributions and their evolution with redshift, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to serve as tools for measuring and studying cosmic star-formation in the distant universe.

  13. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys

    USGS Publications Warehouse

    Quattrini, Andrea; Demopoulos, Amanda W.J.

    2016-01-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013–2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494–4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities

  14. XMM-Newton 13H deep field - I. X-ray sources

    NASA Astrophysics Data System (ADS)

    Loaring, N. S.; Dwelly, T.; Page, M. J.; Mason, K.; McHardy, I.; Gunn, K.; Moss, D.; Seymour, N.; Newsam, A. M.; Takata, T.; Sekguchi, K.; Sasseen, T.; Cordova, F.

    2005-10-01

    We present the results of a deep X-ray survey conducted with XMM-Newton, centred on the UK ROSAT13H deep field area. This region covers 0.18 deg2, and is the first of the two areas covered with XMM-Newton as part of an extensive multiwavelength survey designed to study the nature and evolution of the faint X-ray source population. We have produced detailed Monte Carlo simulations to obtain a quantitative characterization of the source detection procedure and to assess the reliability of the resultant sourcelist. We use the simulations to establish a likelihood threshold, above which we expect less than seven (3 per cent) of our sources to be spurious. We present the final catalogue of 225 sources. Within the central 9 arcmin, 68 per cent of source positions are accurate to 2 arcsec, making optical follow-up relatively straightforward. We construct the N(>S) relation in four energy bands: 0.2-0.5, 0.5-2, 2-5 and 5-10 keV. In all but our highest energy band we find that the source counts can be represented by a double power law with a bright-end slope consistent with the Euclidean case and a break around 10-14yergcm-2s-1. Below this flux, the counts exhibit a flattening. Our source counts reach densities of 700, 1300, 900 and 300 deg-2 at fluxes of 4.1 × 10-16,4.5 × 10-16,1.1 × 10-15 and 5.3 × 10-15ergcm-2s-1 in the 0.2-0.5, 0.5-2, 2-5 and 5-10 keV energy bands, respectively. We have compared our source counts with those in the two Chandra deep fields and Lockman hole, and found our source counts to be amongst the highest of these fields in all energy bands. We resolve >51 per cent (>50 per cent) of the X-ray background emission in the 1-2 keV (2-5 keV) energy bands.

  15. The XMM deep survey in the CDF-S. X. X-ray variability of bright sources

    NASA Astrophysics Data System (ADS)

    Falocco, S.; Paolillo, M.; Comastri, A.; Carrera, F. J.; Ranalli, P.; Iwasawa, K.; Georgantopoulos, I.; Vignali, C.; Gilli, R.

    2017-12-01

    Aims: We aim to study the variability properties of bright hard X-ray selected active galactic nuclei (AGN) in the redshift range between 0.3 and 1.6 detected in the Chandra Deep Field South (XMM-CDFS) by a long ( 3 Ms) XMM observation. Methods: Taking advantage of the good count statistics in the XMM CDFS, we search for flux and spectral variability using the hardness ratio (HR) techniques. We also investigate the spectral variability of different spectral components (photon index of the power law, column density of the local absorber, and reflection intensity). The spectra were merged in six epochs (defined as adjacent observations) and in high and low flux states to understand whether the flux transitions are accompanied by spectral changes. Results: The flux variability is significant in all the sources investigated. The HRs in general are not as variable as the fluxes, in line with previous results on deep fields. Only one source displays a variable HR, anti-correlated with the flux (source 337). The spectral analysis in the available epochs confirms the steeper when brighter trend consistent with Comptonisation models only in this source at 99% confidence level. Finding this trend in one out of seven unabsorbed sources is consistent, within the statistical limits, with the 15% of unabsorbed AGN in previous deep surveys. No significant variability in the column densities, nor in the Compton reflection component, has been detected across the epochs considered. The high and low states display in general different normalisations but consistent spectral properties. Conclusions: X-ray flux fluctuations are ubiquitous in AGN, though in some cases the data quality does not allow for their detection. In general, the significant flux variations are not associated with spectral variability: photon index and column densities are not significantly variable in nine out of the ten AGN over long timescales (from three to six and a half years). Photon index variability is

  16. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Implications for Spectral Line Intensity Mapping at Millimeter Wavelengths and CMB Spectral Distortions

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Chluba, J.; Decarli, R.; Walter, F.; Aravena, M.; Wagg, J.; Popping, G.; Cortes, P.; Hodge, J.; Weiss, A.; Bertoldi, F.; Riechers, D.

    2016-12-01

    We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C II] 158 μm line emission from very high redshift galaxies (z ˜ 6-7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T B = 0.94 ± 0.09 μK. In the 242 GHz band, the mean brightness is: T B = 0.55 ± 0.033 μK. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.

  17. VLA observations of unidentified Leiden-Berkeley Deep-Survey sources - Luminosity and redshift dependence of spectral properties

    NASA Technical Reports Server (NTRS)

    Kapahi, Vijay K.; Kulkarni, Vasant K.

    1990-01-01

    VLA observations of a complete subset of the Leiden-Berkeley Deep Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at high redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys.

  18. Warming trend in the western Mediterranean deep water

    NASA Astrophysics Data System (ADS)

    Bethoux, J. P.; Gentili, B.; Raunet, J.; Tailliez, D.

    1990-10-01

    THE western Mediterranean Sea comprises three water masses: a surface layer (from 0 to ~150 m depth), an intermediate layer (~150-400 m) issuing from the eastern basin, and a deep water mass at depths below 400 m. The deep water is homogeneous and has maintained a more or less constant temperature and salinity from the start of the century until recently1. Here we report measurements from the Medatlante cruises of December 1988 and August 1989, which show the deep layer to be 0.12 °C warmer and ~0.03 p.s.u. more saline than in 1959. Taking these data together with those from earlier cruises, we find a trend of continuously increasing temperatures over the past three decades. These deep-water records reflect the averaged evolution of climate conditions at the surface during the winter, when the deep water is formed. Consideration of the heat budget and water flux in the Mediterranean2,3 leads to the possibility that the deep-water temperature trend may be the result of greenhouse-gas-induced local warming.

  19. The Evolution of the Stellar Mass Function of Galaxies from z = 4.0 and the First Comprehensive Analysis of its Uncertainties: Evidence for Mass-Dependent Evolution

    NASA Astrophysics Data System (ADS)

    Marchesini, Danilo; van Dokkum, Pieter G.; Förster Schreiber, Natascha M.; Franx, Marijn; Labbé, Ivo; Wuyts, Stijn

    2009-08-01

    We present the evolution of the stellar mass function (SMF) of galaxies from z = 4.0 to z = 1.3 measured from a sample constructed from the deep near-infrared Multi-wavelength Survey by Yale-Chile, the Faint Infrared Extragalactic Survey, and the Great Observatories Origins Deep Survey-Chandra Deep Field South surveys, all having very high-quality optical to mid-infrared data. This sample, unique in that it combines data from surveys with a large range of depths and areas in a self-consistent way, allowed us to (1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget; (2) simultaneously probe the high-mass end and the low-mass end (down to ~0.05 times the characteristic stellar mass) of the SMF with good statistics; and (3) empirically derive the redshift-dependent completeness limits in stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs, including the effect of metallicity, extinction law, stellar population synthesis model, and initial mass function. We find that the mass density evolves by a factor of ~17+7 -10 since z = 4.0, mostly driven by a change in the normalization Φsstarf. If only random errors are taken into account, we find evidence for mass-dependent evolution, with the low-mass end evolving more rapidly than the high-mass end. However, we show that this result is no longer robust when systematic uncertainties due to the SED-modeling assumptions are taken into account. Another significant uncertainty is the contribution to the overall stellar mass density of galaxies below our mass limit; future studies with WFC3 will provide better constraints on the SMF at masses below 1010 M sun at z>2. Taking our results at face value, we find that they are in conflict with semianalytic models of galaxy formation. The models predict SMFs that are in general too steep, with too many low-mass galaxies and too few high

  20. Development and applications of an acoustic package for deep-sea sub-bottom profiling and detailed seafloor imaging

    NASA Astrophysics Data System (ADS)

    Nishimura, Kiyokazu; Kisimoto, Kiyoyuki; Joshima, Masato; Arai, Kohsaku

    In the deep-sea geological survey, good survey results are difficult to obtain by a conventional surface-towed acoustic survey system, because the horizontal resolution is limited due to the long distance between the sensor and the target (seafloor). In order to improve the horizontal resolution, a deep-tow system, which tows the sensor in the vicinity of seafloor, is most practical, and many such systems have been developed and used until today. It is not easy, however, to carry out a high-density survey in a small area by maneuvering the towing body altitude sufficiently close to the seafloor with rugged topography. A ROV (Remotely Operated Vehicle) can be used to solve this problem. The ROV makes a high-density 2D survey feasible because of its maneuverability, although a long-distance survey is difficult with it. Accordingly, we have developed an acoustic survey system installed on a ROV. The system named DAIPACK (Deep-sea Acoustic Imaging Package) consists of (1) a deep-sea sub-bottom profiler and (2) a deep-sea sidescan sonar. (1) Deep-sea sub-bottom profiler A light-weight and compact sub-bottom profiler for shallow water was chosen to improve and repackage for the deep sea usage. The system is composed of three units; a transducer, an electronic unit and a notebook computer for system control and data acquisition. The source frequency is 10kHz. To convert the system for the deep sea, the transducer was exchanged for the deep sea model, and the electronic unit was improved accordingly. The electronic unit and the notebook computer were installed in a spherical pressure vessel. (2) Deep-sea sidescan sonar We remodeled a compact shallow sea sidescan sonar(water depth limitation is 30m ) into a deep sea one. This sidescan sonar is composed of a sonar towfish (transducers and an electronic unit ), a cable and a notebook computer (data processor). To accommodate in the deep water, the transducers were remodeled into a high pressure resistance type, and the

  1. Stirring by deep cyclones and the evolution of Denmark strait overflow water observed at line W

    NASA Astrophysics Data System (ADS)

    Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M.; Joyce, T. M.; Curry, R. G.

    2016-03-01

    Shipboard velocity and water property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40 °N are examined to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and mixing between DSOW and the interior. The examined transects along Line W - which stretches from the continental shelf south of New England to Bermuda - were made between 1994 and 2014. The shipboard data comprise measurements at regular stations of velocity from lowered acoustic Doppler current profilers, CTD profiles and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths. Comparison of the Line W velocity sections with concurrent sea surface height maps from satellite altimetry indicates that large cyclones in the deep ocean accompany intermittent quasi-stationary meander troughs in the Gulf Stream path at Line W. A composite of 5 velocity sections along Line W suggests that a typical cyclone reaches swirl speeds of greater than 30 cm s-1 at 3400-m depth and has a radius (distance between the center and the maximum velocity) of 75 km. Tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC's DSOW and the interior. Vigorous exchange is corroborated by a mismatch in the CFC-11:CFC-12 and CFC-113:CFC-12 ratio ages calculated for DSOW at Line W. During the most recent 5-year period (2010-2014), a decrease in DSOW density has been driven by warming (increasing by almost 0.1 °C) as salinity has increased only slightly (by 0.003, which is close to the 0.002 uncertainty of the measurements). The abyssal ocean offshore of the DWBC and Gulf Stream and deeper than 3000-m depth has freshened at a rate of 6×10-4 yr-1 since at least 2003. Density here remains nearly unchanged over this period, due to temperature compensation, though a linear cooling trend in the abyssal ocean (to compensate the

  2. Evolution of simeprevir-resistant variants over time by ultra-deep sequencing in HCV genotype 1b.

    PubMed

    Akuta, Norio; Suzuki, Fumitaka; Sezaki, Hitomi; Suzuki, Yoshiyuki; Hosaka, Tetsuya; Kobayashi, Masahiro; Kobayashi, Mariko; Saitoh, Satoshi; Ikeda, Kenji; Kumada, Hiromitsu

    2014-08-01

    Using ultra-deep sequencing technology, the present study was designed to investigate the evolution of simeprevir-resistant variants (amino acid substitutions of aa80, aa155, aa156, and aa168 positions in HCV NS3 region) over time. In Toranomon Hospital, 18 Japanese patients infected with HCV genotype 1b, received triple therapy of simeprevir/PEG-IFN/ribavirin (DRAGON or CONCERT study). Sustained virological response rate was 67%, and that was significantly higher in patients with IL28B rs8099917 TT than in those with non-TT. Six patients, who did not achieve sustained virological response, were tested for resistant variants by ultra-deep sequencing, at the baseline, at the time of re-elevation of viral loads, and at 96 weeks after the completion of treatment. Twelve of 18 resistant variants, detected at re-elevation of viral load, were de novo resistant variants. Ten of 12 de novo resistant variants become undetectable over time, and that five of seven resistant variants, detected at baseline, persisted over time. In one patient, variants of Q80R at baseline (0.3%) increased at 96-week after the cessation of treatment (10.2%), and de novo resistant variants of D168E (0.3%) also increased at 96-week after the cessation of treatment (9.7%). In conclusion, the present study indicates that the emergence of simeprevir-resistant variants after the start of treatment could not be predicted at baseline, and the majority of de novo resistant variants become undetectable over time. Further large-scale prospective studies should be performed to investigate the clinical utility in detecting simeprevir-resistant variants. © 2014 Wiley Periodicals, Inc.

  3. Deep Photometry of Galaxies in the VEGAS Survey: The Case of NGC 4472

    NASA Astrophysics Data System (ADS)

    Spavone, M.

    The VST-VEGAS project is aimed at observing and studying a rich sample of nearby early-type galaxies in order to systematically characterize their properties over a wide baseline of sizes and out to the faint outskirts where data are rather scarce so far. The external regions of galaxies more easily retain signatures about the formation and evolution mechanisms which shaped them, as their relaxation time are longer, and they are more weakly influenced by processes such as mergers, secular evolution, central black hole activity, and supernova feedback on the ISM, which tend to level age and metallicity gradients. The collection of a wide photometric dataset of a large number of galaxies in various environmental conditions, may help to shed light on these questions. To this end VEGAS exploits the potential of the VLT Survey Telescope (VST) which provides high quality images of 1 deg2 field of view in order to satisfy both the requirement of high resolution data and the need of studying nearby, and thus large, objects. We present a detailed study of the surface photometry of the elliptical galaxy NGC4472 and of smaller ETGs in its field, performed by using new g and i bands images to constrain the formation history of this nearby giant galaxy, and to investigate the presence of very faint substructures in its surroundings.

  4. Surveying for architectural students: as simple as possible - as much as necessary

    NASA Astrophysics Data System (ADS)

    Mayer, I.; Mitterecker, T.

    2017-08-01

    More and more, existing buildings - and particularly historic buildings - are becoming part of the daily business of every architect. Planning and designing in the field of architectural heritage requires not only knowledge of contemporary building techniques, design processes and national and international guidelines, but also a deep understanding of architectural heritage, its evolution and genesis, the building techniques that have been applied, materials used, traditions, etc. In many cases, it is indispensable to perform a detailed building survey and building research to achieve an adequate design concept. The Department of History of Architecture and Building Archaeology of TU Wien has an extensive tradition of building research and over the course of the past 10 years, has developed a teaching workflow to introduce architectural students to building archaeology und surveying methods for building research. A sophisticated, temporally interwoven combination of courses and lectures on different topics related to building archaeology and surveying rapidly gives the architectural students the right tools for this important but often neglected task.

  5. The morphology of faint galaxies in Medium Deep Survey images using WFPC2

    NASA Technical Reports Server (NTRS)

    Griffiths, R. E.; Casertano, S.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G. F.; Glazebrook, K.; Santiago, B.; Huchra, J. P.; Windhorst, R. A.

    1994-01-01

    First results from Hubble Space Telescope (HST) Medium Deep Survey images taken with Wide Field/Planetary Camera-2 (WFPC2) demonstrate that galaxy classifications can be reliably performed to magnitudes I814 approximately less than 22.0 in the F815W band. Published spectroscopic surveys to this depth indicate a mean redshift of bar-z approximately 0.5. We have classified over 200 galaxies in nine WFPC2 fields according to a basic morphological scheme. The majority of these faint galaxies appear to be similar to regular Hubble-sequence examples observed at low redshift. To the precision of our classification scheme, the relative proportion of spheroidal and disk systems of normal appearance is as expected from nearby samples, indicating that the bulk of the local galaxy population was in place at half the Hubble time. However, the most intriguing result is the relatively high proportion (approximately 40%) of objects which are in some way anomalous, and which may be of relevance in understanding the origin of the familiar excess population of faint galaxies established by others. These diverse objects include apparently interacting pairs whose multiple structure is only revealed with HST's angular resolution, galaxies with superluminous star-forming regions, diffuse low surface brightness galaxies of various forms, and compact galaxies. These anomalous galaxies contribute a substantial fraction of the excess counts at our limiting magnitude, and may provide insights into the 'faint blue galaxy' problem.

  6. Looking Deep with Infrared Eyes

    NASA Astrophysics Data System (ADS)

    2006-07-01

    Today, British astronomers are releasing the first data from the largest and most sensitive survey of the heavens in infrared light to the ESO user community. The UKIRT Infrared Deep Sky Survey (UKIDSS) has completed the first of seven years of data collection, studying objects that are too faint to see at visible wavelengths, such as very distant or very cool objects. New data on young galaxies is already challenging current thinking on galaxy formation, revealing galaxies that are massive at a much earlier stage of development than expected. These first science results already show how powerful the full survey will be at finding rare objects that hold vital clues to how stars and galaxies in our Universe formed. UKIDSS will make an atlas of large areas of the sky in the infrared. The data become available to the entire ESO user community immediately after they are entered into the archive [2]. Release to the world follows 18 months after each release to ESO. "Astronomers across Europe will jump on these exciting new data. We are moving into new territory - our survey is both wide and deep, so we are mapping huge volumes of space. That's how we will locate rare objects - the very nearest and smallest stars, and young galaxies at the edge of the universe," said Andy Lawrence from the University of Edinburgh, UKIDSS Principal Investigator. The UKIDSS data are collected by the United Kingdom Infrared Telescope [3] situated near the summit of Mauna Kea in Hawaii using the Wide Field Camera (WFCAM) built by the United Kingdom Astronomy Technology Centre (UKATC) in Edinburgh. WFCAM is the most powerful infrared imager in the world, generating enormous amounts of data - 150 gigabytes per night (equivalent to more than 200 CDs) - and approximately 10.5 Terabytes in total so far (or 15,000 CDs). Mark Casali, now at ESO, was the Project Scientist in charge of the WFCAM instrument construction at the UKATC. "WFCAM was a bold technological undertaking," said Mark Casali

  7. HerMES: Redshift Evolution of the Cosmic Infrared Background from Herschel/SPIRE

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin; HerMES

    2013-01-01

    We report on the redshift evolution of the cosmic infrared background (CIB) at wavelengths of 70-1100 microns. Using data from the Herschel Multi-tiered Extragalactic Survey (HerMES) of the GOODS-N field, we statistically correlate fluctuations in the CIB with external catalogs. We use a deep Spitzer-MIPS 24 micron flux-limited catalog complete with redshifts and stack on MIPS 70 and 160 micron, Herschel-SPIRE 250, 350, and 500 micron, and JCMT-AzTEC 1100 micron maps. We measure the co-moving infrared luminosity density at 0.1evolution of the intensity of the CIB across the entire peak of the CIB spectrum, demonstrating a clear peak intensity at 1 and resolve the majority of the CIB. We divide our sample into populations dominated by star formation or black hole accretion and find that the far infrared luminosity density traced by 24 microns is more heavily weighted towards black hole accretion at higher redshifts. This is the first work to directly probe the luminosity density at z>4 and provides important constraints for models of galaxy formation and evolution.

  8. The Hyper Suprime-Cam SSP Survey: Overview and survey design

    NASA Astrophysics Data System (ADS)

    Aihara, Hiroaki; Arimoto, Nobuo; Armstrong, Robert; Arnouts, Stéphane; Bahcall, Neta A.; Bickerton, Steven; Bosch, James; Bundy, Kevin; Capak, Peter L.; Chan, James H. H.; Chiba, Masashi; Coupon, Jean; Egami, Eiichi; Enoki, Motohiro; Finet, Francois; Fujimori, Hiroki; Fujimoto, Seiji; Furusawa, Hisanori; Furusawa, Junko; Goto, Tomotsugu; Goulding, Andy; Greco, Johnny P.; Greene, Jenny E.; Gunn, James E.; Hamana, Takashi; Harikane, Yuichi; Hashimoto, Yasuhiro; Hattori, Takashi; Hayashi, Masao; Hayashi, Yusuke; Hełminiak, Krzysztof G.; Higuchi, Ryo; Hikage, Chiaki; Ho, Paul T. P.; Hsieh, Bau-Ching; Huang, Kuiyun; Huang, Song; Ikeda, Hiroyuki; Imanishi, Masatoshi; Inoue, Akio K.; Iwasawa, Kazushi; Iwata, Ikuru; Jaelani, Anton T.; Jian, Hung-Yu; Kamata, Yukiko; Karoji, Hiroshi; Kashikawa, Nobunari; Katayama, Nobuhiko; Kawanomoto, Satoshi; Kayo, Issha; Koda, Jin; Koike, Michitaro; Kojima, Takashi; Komiyama, Yutaka; Konno, Akira; Koshida, Shintaro; Koyama, Yusei; Kusakabe, Haruka; Leauthaud, Alexie; Lee, Chien-Hsiu; Lin, Lihwai; Lin, Yen-Ting; Lupton, Robert H.; Mandelbaum, Rachel; Matsuoka, Yoshiki; Medezinski, Elinor; Mineo, Sogo; Miyama, Shoken; Miyatake, Hironao; Miyazaki, Satoshi; Momose, Rieko; More, Anupreeta; More, Surhud; Moritani, Yuki; Moriya, Takashi J.; Morokuma, Tomoki; Mukae, Shiro; Murata, Ryoma; Murayama, Hitoshi; Nagao, Tohru; Nakata, Fumiaki; Niida, Mana; Niikura, Hiroko; Nishizawa, Atsushi J.; Obuchi, Yoshiyuki; Oguri, Masamune; Oishi, Yukie; Okabe, Nobuhiro; Okamoto, Sakurako; Okura, Yuki; Ono, Yoshiaki; Onodera, Masato; Onoue, Masafusa; Osato, Ken; Ouchi, Masami; Price, Paul A.; Pyo, Tae-Soo; Sako, Masao; Sawicki, Marcin; Shibuya, Takatoshi; Shimasaku, Kazuhiro; Shimono, Atsushi; Shirasaki, Masato; Silverman, John D.; Simet, Melanie; Speagle, Joshua; Spergel, David N.; Strauss, Michael A.; Sugahara, Yuma; Sugiyama, Naoshi; Suto, Yasushi; Suyu, Sherry H.; Suzuki, Nao; Tait, Philip J.; Takada, Masahiro; Takata, Tadafumi; Tamura, Naoyuki; Tanaka, Manobu M.; Tanaka, Masaomi; Tanaka, Masayuki; Tanaka, Yoko; Terai, Tsuyoshi; Terashima, Yuichi; Toba, Yoshiki; Tominaga, Nozomu; Toshikawa, Jun; Turner, Edwin L.; Uchida, Tomohisa; Uchiyama, Hisakazu; Umetsu, Keiichi; Uraguchi, Fumihiro; Urata, Yuji; Usuda, Tomonori; Utsumi, Yousuke; Wang, Shiang-Yu; Wang, Wei-Hao; Wong, Kenneth C.; Yabe, Kiyoto; Yamada, Yoshihiko; Yamanoi, Hitomi; Yasuda, Naoki; Yeh, Sherry; Yonehara, Atsunori; Yuma, Suraphong

    2018-01-01

    Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2-m Subaru telescope on the summit of Mauna Kea in Hawaii. A team of scientists from Japan, Taiwan, and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. The survey includes three layers: the Wide layer will cover 1400 deg2 in five broad bands (grizy), with a 5 σ point-source depth of r ≈ 26. The Deep layer covers a total of 26 deg2 in four fields, going roughly a magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter still in two pointings of HSC (a total of 3.5 deg2). Here we describe the instrument, the science goals of the survey, and the survey strategy and data processing. This paper serves as an introduction to a special issue of the Publications of the Astronomical Society of Japan, which includes a large number of technical and scientific papers describing results from the early phases of this survey.

  9. The Las Campanas Infrared Survey - II. Photometric redshifts, comparison with models and clustering evolution

    NASA Astrophysics Data System (ADS)

    Firth, A. E.; Somerville, R. S.; McMahon, R. G.; Lahav, O.; Ellis, R. S.; Sabbey, C. N.; McCarthy, P. J.; Chen, H.-W.; Marzke, R. O.; Wilson, J.; Abraham, R. G.; Beckett, M. G.; Carlberg, R. G.; Lewis, J. R.; Mackay, C. D.; Murphy, D. C.; Oemler, A. E.; Persson, S. E.

    2002-05-01

    The Las Campanas Infrared (LCIR) Survey, using the Cambridge Infra-Red Survey Instrument (CIRSI), reaches H ~21 over nearly 1deg2 . In this paper we present results from 744arcmin2 centred on the Hubble Deep Field South for which UBVRI optical data are publicly available. Making conservative magnitude cuts to ensure spatial uniformity, we detect 3177 galaxies to H =20.0 in 744arcmin2 and a further 842 to H =20.5 in a deeper subregion of 407arcmin2 . We compare the observed optical-infrared (IR) colour distributions with the predictions of semi-analytic hierarchical models and find reasonable agreement. We also determine photometric redshifts, finding a median redshift of ~0.55. We compare the redshift distributions N (z ) of E, Sbc, Scd and Im spectral types with models, showing that the observations are inconsistent with simple passive-evolution models while semi-analytic models provide a reasonable fit to the total N (z ) but underestimate the number of z ~1 red spectral types relative to bluer spectral types. We also present N (z ) for samples of extremely red objects (EROs) defined by optical-IR colours. We find that EROs with R -H >4 and H <20.5 have a median redshift z m ~1 while redder colour cuts have slightly higher z m . In the magnitude range 194 comprise ~18 per cent of the observed galaxy population, while in semi-analytic models they contribute only ~4 per cent. We also determine the angular correlation function w (θ ) for magnitude, colour, spectral type and photometric redshift-selected subsamples of the data and use the photometric redshift distributions to derive the spatial clustering statistic ξ (r ) as a function of spectral type and redshift out to z ~1.2. Parametrizing ξ (r ) by ξ (r c ,z )=[r c /r *(z )]-1.8 , where r c is in comoving coordinates, we find that r *(z ) increases by a factor of 1.5-2 from z =0 to z ~1.2. We interpret this as a selection effect - the galaxies selected at z ~1.2 are

  10. The variable sky of deep synoptic surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridgway, Stephen T.; Matheson, Thomas; Mighell, Kenneth J.

    2014-11-20

    The discovery of variable and transient sources is an essential product of synoptic surveys. The alert stream will require filtering for personalized criteria—a process managed by a functionality commonly described as a Broker. In order to understand quantitatively the magnitude of the alert generation and Broker tasks, we have undertaken an analysis of the most numerous types of variable targets in the sky—Galactic stars, quasi-stellar objects (QSOs), active galactic nuclei (AGNs), and asteroids. It is found that the Large Synoptic Survey Telescope (LSST) will be capable of discovering ∼10{sup 5} high latitude (|b| > 20°) variable stars per night atmore » the beginning of the survey. (The corresponding number for |b| < 20° is orders of magnitude larger, but subject to caveats concerning extinction and crowding.) However, the number of new discoveries may well drop below 100 per night within less than one year. The same analysis applied to GAIA clarifies the complementarity of the GAIA and LSST surveys. Discovery of AGNs and QSOs are each predicted to begin at ∼3000 per night and decrease by 50 times over four years. Supernovae are expected at ∼1100 per night, and after several survey years will dominate the new variable discovery rate. LSST asteroid discoveries will start at >10{sup 5} per night, and if orbital determination has a 50% success rate per epoch, they will drop below 1000 per night within two years.« less

  11. The sub-mJy radio population in the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Bonzini, M.

    2014-06-01

    Deep radio observations provide a dust unbiased view of both black hole (BH) and star formation (SF) activity and therefore represent a powerful tool to investigate their evolution and their possible mutual influence across cosmic time. Radio astronomy is therefore becoming increasingly important for galaxy evolution studies thanks also to the many new radio facilities under construction or being planned. To maximise the potentiality of these new instruments it is crucial to make predictions on what they will observe and to see how best to complement the radio data with multi-wavelength information. These are the motivations of my Thesis in which I studied a sample of 900 sources detected in one of the deepest radio surveys ever made. The observations have been performed at 1.4 GHz with the Very Large Array on the Extended Chandra Deep Field South. I developed a multi-wavelength method to identify the optical-infrared counterparts of the radio sources and to classify them as radio-loud active galactic nuclei (RL AGNs), radio-quiet (RQ) AGNs, and star forming galaxies (SFGs). I was able for the first time to quantify the relative contribution of these different classes of sources down to a radio flux density limit of ∼30 μJy. I characterized the host galaxy properties (stellar masses, optical colors, and morphology) of the radio sources; RQ AGN hosts and SFGs have similar properties with disk morphology and blue colors while radio-loud AGN hosts are more massive, redder and mostly ellipticals. This suggests that the RQ and RL activity occurs at two different evolutionary stages of the BH-host galaxy co-evolution. The RQ phase occurs at earlier times when the galaxy is still gas rich and actively forming stars while the radio activity of the BH appears when the galaxy has already formed the bulk of its stellar population, the gas supply is lower, and the SF is considerably reduced. I quantified the star formation rate (SFR) of the radio sources using two

  12. THE VLA-COSMOS SURVEY. IV. DEEP DATA AND JOINT CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schinnerer, E.; Sargent, M. T.; Bondi, M.

    2010-06-15

    In the context of the VLA-COSMOS Deep project, additional VLA A array observations at 1.4 GHz were obtained for the central degree of the COSMOS field and combined with the existing data from the VLA-COSMOS Large project. A newly constructed Deep mosaic with a resolution of 2.''5 was used to search for sources down to 4{sigma} with 1{sigma} {approx} 12 {mu}Jy beam{sup -1} in the central 50' x 50'. This new catalog is combined with the catalog from the Large project (obtained at 1.''5 x 1.''4 resolution) to construct a new Joint catalog. All sources listed in the new Jointmore » catalog have peak flux densities of {>=}5{sigma} at 1.''5 and/or 2.''5 resolution to account for the fact that a significant fraction of sources at these low flux levels are expected to be slightly resolved at 1.''5 resolution. All properties listed in the Joint catalog, such as peak flux density, integrated flux density, and source size, are determined in the 2.''5 resolution Deep image. In addition, the Joint catalog contains 43 newly identified multi-component sources.« less

  13. THE ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: IMPLICATIONS FOR SPECTRAL LINE INTENSITY MAPPING AT MILLIMETER WAVELENGTHS AND CMB SPECTRAL DISTORTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, C. L.; Walter, F.; Chluba, J.

    We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C ii]more » 158 μ m line emission from very high redshift galaxies ( z  ∼ 6–7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T{sub B}  = 0.94 ± 0.09 μ K. In the 242 GHz band, the mean brightness is: T{sub B}  = 0.55 ± 0.033 μ K. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.« less

  14. Cosmic shear results from the deep lens survey. II. Full cosmological parameter constraints from tomography

    DOE PAGES

    Jee, M. James; Tyson, J. Anthony; Hilbert, Stefan; ...

    2016-06-15

    Here, we present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitudemore » $${r}_{\\mathrm{lim}}\\sim 27$$ ($$5\\sigma $$), is designed as a precursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing $$\\gt 10$$ deg2 cosmic shear surveys. Combining the DLS tomography with the 9 yr results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives $${{\\rm{\\Omega }}}_{m}={0.293}_{-0.014}^{+0.012}$$, $${\\sigma }_{8}={0.833}_{-0.018}^{+0.011}$$, $${H}_{0}={68.6}_{-1.2}^{+1.4}\\;{\\text{km s}}^{-1}\\;{{\\rm{Mpc}}}^{-1}$$, and $${{\\rm{\\Omega }}}_{b}=0.0475\\pm 0.0012$$ for ΛCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for ΛCDM, we obtain the curvature constraint $${{\\rm{\\Omega }}}_{k}=-{0.010}_{-0.015}^{+0.013}$$ from the DLS+WMAP9 combination, which, however, is not well constrained when WMAP9 is used alone. The dark energy equation-of-state parameter w is tightly constrained when baryonic acoustic oscillation (BAO) data are added, yielding $$w=-{1.02}_{-0.09}^{+0.10}$$ with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to $$w=-1.03\\pm 0.03$$. Our joint constraints are fully consistent with the final Planck results and also with the predictions of a ΛCDM universe.« less

  15. AKARI Deep Observations of the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Burgarella, D.; Buat, V.; Takeuchi, T. T.; Wada, T.; Pearson, C.

    2009-12-01

    The Chandra Deep Field South is one of the deep fields that has been observed over almost all the electromagnetic spectrum. It contains a wealth of data very useful to study and better understand distant galaxies and their evolution. However, one piece of information was missing in the Mid Infrared and that is why we have obtained 15 μm observations with AKARI/IRC infrared space telescope. From these observations, we have defined a sample of mid infrared-selected galaxies at 15 μm and 15 μm flux densities for a sample of Lyman Break Galaxies at z ˜ 1 already observed at 24 μm with Spitzer/MIPS and identified in the ultraviolet with GALEX. Of the two above samples at z ˜ 1 we have tested the validity of the conversions from luminosities νfν at 8 μm to total dust luminosities by comparing with luminosities estimated from 12 μm data used as a reference. Some calibrations seem better when compared to Ldust evaluated from longer wavelength luminosities. We also have found that the rest-frame 8 μm luminosities provide good estimates of Ldust. By comparing our data to several libraries of spectral energy distributions, we have found that models can explain the diversity of the observed f24 / f15 ratio quite reasonably. Finally, we have revisited the evolution of Ldust / LUV ratio with the redshift z by re-calibrating previous Ldust at z ˜ 2 based on our results and added new data points at higher redshifts. The decreasing trend is amplified as compared to the previous estimate.

  16. Conservation of deep pelagic biodiversity.

    PubMed

    Robison, Bruce H

    2009-08-01

    The deep ocean is home to the largest ecosystems on our planet. This vast realm contains what may be the greatest number of animal species, the greatest biomass, and the greatest number of individual organisms in the living world. Humans have explored the deep ocean for about 150 years, and most of what is known is based on studies of the deep seafloor. In contrast, the water column above the deep seabed comprises more than 90% of the living space, yet less than 1% of this biome has been explored. The deep pelagic biota is the largest and least-known major faunal group on Earth despite its obvious importance at the global scale. Pelagic species represent an incomparable reservoir of biodiversity. Although we have yet to discover and describe the majority of these species, the threats to their continued existence are numerous and growing. Conserving deep pelagic biodiversity is a problem of global proportions that has never been addressed comprehensively. The potential effects of these threats include the extensive restructuring of entire ecosystems, changes in the geographical ranges of many species, large-scale elimination of taxa, and a decline in biodiversity at all scales. This review provides an initial framework of threat assessment for confronting the challenge of conserving deep pelagic biodiversity; and it outlines the need for baseline surveys and protected areas as preliminary policy goals.

  17. Brain organization and specialization in deep-sea chondrichthyans.

    PubMed

    Yopak, Kara E; Montgomery, John C

    2008-01-01

    Chondrichthyans occupy a basal place in vertebrate evolution and offer a relatively unexplored opportunity to study the evolution of vertebrate brains. This study examines the brain morphology of 22 species of deep-sea sharks and holocephalans, in relation to both phylogeny and ecology. Both relative brain size (expressed as residuals) and the relative development of the five major brain areas (telencephalon, diencephalon, mesencephalon, cerebellum, and medulla) were assessed. The cerebellar-like structures, which receive projections from the electroreceptive and lateral line organs, were also examined as a discrete part of the medulla. Although the species examined spanned three major chondrichthyan groupings (Squalomorphii, Galeomorphii, Holocephali), brain size and the relative development of the major brain areas did not track phylogenetic groupings. Rather, a hierarchical cluster analysis performed on the deep-sea sharks and holocephalans shows that these species all share the common characteristics of a relatively reduced telencephalon and smooth cerebellar corpus, as well as extreme relative enlargement of the medulla, specifically the cerebellar-like lobes. Although this study was not a functional analysis, it provides evidence that brain variation in deep-sea chondichthyans shows adaptive patterns in addition to underlying phylogenetic patterns, and that particular brain patterns might be interpreted as 'cerebrotypes'. (c) 2008 S. Karger AG, Basel

  18. Long-Term Research in Ecology and Evolution (LTREE): 2015 survey data.

    PubMed

    Bradford, Mark A; Leiserowitz, Anthony; Feinberg, Geoffrey; Rosenthal, Seth A; Lau, Jennifer A

    2017-11-01

    To systematically assess views on contributions and future activities for long-term research in ecology and evolution (LTREE), we conducted and here provide data responses and associated metadata for a survey of ecological and evolutionary scientists. The survey objectives were to: (1) Identify and prioritize research questions that are important to address through long-term, ecological field experiments; and (2) understand the role that these experiments might play in generating and applying ecological and evolutionary knowledge. The survey was developed adhering to the standards of the American Association for Public Opinion Research. It was administered online using Qualtrics Survey Software. Survey creation was a multi-step process, with questions and format developed and then revised with, for example, input from an external advisory committee comprising senior and junior ecological and evolutionary researchers. The final questionnaire was released to ~100 colleagues to ensure functionality and then fielded 2 d later (January 7 th , 2015). Two professional societies distributed it to their membership, including the Ecological Society of America, and it was posted to three list serves. The questionnaire was available through February 8th 2015 and completed by 1,179 respondents. The distribution approach targeted practicing ecologists and evolutionary biologists in the U.S. Quantitative (both ordinal and categorical) closed-ended questions used a predefined set of response categories, facilitating direct comparison across all respondents. Qualitative, open-ended questions, provided respondents the opportunity to develop their own answers. We employed quantitative questions to score views on the extent to which long-term experimental research has contributed to understanding in ecology and evolutionary biology; its role compared to other approaches (e.g., short-term experiments); justifications for and caveats to long-term experiments; and the relative importance

  19. Compton thick active galactic nuclei in Chandra surveys

    NASA Astrophysics Data System (ADS)

    Brightman, Murray; Nandra, Kirpal; Salvato, Mara; Hsu, Li-Ting; Aird, James; Rangel, Cyprian

    2014-09-01

    We present the results from an X-ray spectral analysis of active galactic nuclei (AGN) in the ChandraDeep Field-South, All-wavelength Extended Groth-strip International Survey (AEGIS)-Deep X-ray survey (XD) and Chandra-Cosmic Evolution Surveys (COSMOS), focusing on the identification and characterization of the most heavily obscured, Compton thick (CT, NH > 1024 cm-2) sources. Our sample is comprised of 3184 X-ray selected extragalactic sources, which has a high rate of redshift completeness (96.6 per cent), and includes additional spectroscopic redshifts and improved photometric redshifts over previous studies. We use spectral models designed for heavily obscured AGN which self-consistently include all major spectral signatures of heavy absorption. We validate our spectral fitting method through simulations, identify CT sources not selected through this method using X-ray colours and take considerations for the constraints on NH given the low count nature of many of our sources. After these considerations, we identify a total of 100 CT AGN with best-fitting NH > 1024 cm-2 and NH constrained to be above 1023.5 cm-2 at 90 per cent confidence. These sources cover an intrinsic 2-10 keV X-ray luminosity range of 1042-3 × 1045 erg s-1 and a redshift range of z = 0.1-4. This sample will enable characterization of these heavily obscured AGN across cosmic time and to ascertain their cosmological significance. These survey fields are sites of extensive multiwavelength coverage, including near-infrared Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data and far-infrared Herschel data, enabling forthcoming investigations into the host properties of CT AGN. Furthermore, by using the torus models to test different covering factor scenarios, and by investigating the inclusion of the soft scattered emission, we find evidence that the covering factor of the obscuring material decreases with LX for all redshifts, consistent with the receding torus model

  20. Measuring M Dwarf Rotation in the Pan-STARRS 1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Fong, Erin R.; Williams, Peter K. G.; Berger, Edo

    2016-01-01

    The rise of large-format CCDs and automated detection methods has greatly increased the tractability of large-scale studies of stellar rotation. Studies of the relationship between stellar rotation and magnetic activity show a strong correlation, supporting the concept of a rotationally-driven dynamo. However, the number of confirmed rotation periods for stars in the fully convective regime, whose magnetic dynamos are less well understood, remains low. Here we report on ongoing work to measure rotation periods for the M dwarf stellar population observed by the Pan-STARRS 1 Medium Deep Survey (PS1/MDS). We refine an initial sample of around 4.3 million sources using color cuts in each of the five Pan-STARRS 1 filters. Of these sources, we estimate there to be around 135,000 sources which are candidate M dwarfs with a spectral type of M1 or higher. We discuss the outcomes of various rotation period detection methods and present preliminary results. This work is supported in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.

  1. Evolution through cold and deep waters: the molecular phylogeny of the Lithodidae (Crustacea: Decapoda).

    PubMed

    Hall, Sally; Thatje, Sven

    2018-02-27

    The objectives of this work are to use gene sequence data to assess the hypothesis that the Lithodinae arose from ancestors with uncalcified abdomens in shallow waters of the North-East Pacific, investigate the monophyly and interrelationships of genera within the Lithodinae and to estimate the scale and minimum number of biogeographic transitions from the shallow environment to the deep sea and vice versa. To do this, phylogenetic analysis from three mitochondrial and three nuclear markers was conducted using minimum evolution, maximum likelihood and Bayesian methods. The Lithodinae as defined to include North Pacific genus Cryptolithodes may be paraphyletic, with the Hapalogastrinae and Cryptolithodes as sister taxa. This implies that the soft-bodied abdomen of the Hapalogastrinae might not be plesiomorphic for the Lithodidae. Paralomis, Lopholithodes, Phyllolithodes, Lithodes and Neolithodes share a common ancestor, from which the North Pacific Hapalogastrinae did not descend. Lithodid ancestors are likely to have had a north Pacific, shallow water distribution and to have had planktotrophic larvae. North Pacific genus Paralithodes is paraphyletic; P. brevipes is the most basal member of the genus (as sampled) while P. camtschaticus and P. platypus are more closely related to the genera Lithodes and Neolithodes. Genera Lithodes, Neolithodes and Paralomis (as sampled) are monophyletic if Glyptolithodes is included within Paralomis. Lopholithodes is closely related to, but not included within, the Paralomis genus. Paralomis is divided into at least two major lineages: one containing South Atlantic, West African, and Indian Ocean species, and the other containing Pacific and South American species. Several species of Paralomis do not resolve consistently with any other groups sampled, implying a complex and possibly rapid global evolution early in the history of the genus. Relationships within the Lithodes genus vary between analytical methods, suggesting that

  2. Evolution through cold and deep waters: the molecular phylogeny of the Lithodidae (Crustacea: Decapoda)

    NASA Astrophysics Data System (ADS)

    Hall, Sally; Thatje, Sven

    2018-04-01

    The objectives of this work are to use gene sequence data to assess the hypothesis that the Lithodinae arose from ancestors with uncalcified abdomens in shallow waters of the North-East Pacific, investigate the monophyly and interrelationships of genera within the Lithodinae and to estimate the scale and minimum number of biogeographic transitions from the shallow environment to the deep sea and vice versa. To do this, phylogenetic analysis from three mitochondrial and three nuclear markers was conducted using minimum evolution, maximum likelihood and Bayesian methods. The Lithodinae as defined to include North Pacific genus Cryptolithodes may be paraphyletic, with the Hapalogastrinae and Cryptolithodes as sister taxa. This implies that the soft-bodied abdomen of the Hapalogastrinae might not be plesiomorphic for the Lithodidae. Paralomis, Lopholithodes, Phyllolithodes, Lithodes and Neolithodes share a common ancestor, from which the North Pacific Hapalogastrinae did not descend. Lithodid ancestors are likely to have had a north Pacific, shallow water distribution and to have had planktotrophic larvae. North Pacific genus Paralithodes is paraphyletic; P. brevipes is the most basal member of the genus (as sampled) while P. camtschaticus and P. platypus are more closely related to the genera Lithodes and Neolithodes. Genera Lithodes, Neolithodes and Paralomis (as sampled) are monophyletic if Glyptolithodes is included within Paralomis. Lopholithodes is closely related to, but not included within, the Paralomis genus. Paralomis is divided into at least two major lineages: one containing South Atlantic, West African, and Indian Ocean species, and the other containing Pacific and South American species. Several species of Paralomis do not resolve consistently with any other groups sampled, implying a complex and possibly rapid global evolution early in the history of the genus. Relationships within the Lithodes genus vary between analytical methods, suggesting that

  3. The "Abyssal Society". François-Alphonse Forel and the Case of Deep Fauna in Late 19th Century.

    PubMed

    Campanella, Sara

    2016-01-01

    Ichthyological investigations and technological advancements, such as the laying of submarine telegraph cables, promoted new dredging methods in the second half of the 19th century. In contrast to the idea of a lifeless deep ocean (Edward Forbes' azoic hypothesis), the discovery of deep water fauna and the challenge of defining its systematics opened up new theoretical perspectives. In this frame, which was already marked by the impact of Darwin's theory, naturalistic surveys in freshwater environments in western Switzerland intertwined with those of oceanographic expeditions. The study of the fauna in the depths of subalpine lakes by the Swiss savant François-Alphonse Forel was one of the most striking examples of this turning point, because the relatively recently evolution of its freshwater fauna allowed him to investigate: (a) the role of isolation, (b) the progressive differentiation of species from a common ancestor, and (c) the constitution of a species-specific category in form transition, from a genealogical viewpoint to an ecological one.

  4. Understanding the Formation and Evolution of Galaxies in the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven

    2015-08-01

    The past decade has resulted in a dramatic proliferation of our knowledge of galaxy formation and evolution at redshifts greater than six, less than one billion years after the Big Bang. In this review talk, I will discuss the progress made via a combination of deep space and wide ground-based imaging surveys, as well as spectroscopic followup. The combination of the Hubble Space Telescope CANDELS, HUDF and HFF surveys has resulted in the discovery of more than 1000 galaxies at z > 6. By studying the rest-frame ultraviolet (UV) luminosity functions of these galaxies, we have found that the slope of the faint-end steepens with increasing redshift, to a value of -2 by z=7. Assuming that this steep slopes extends well beyond our detection limit, galaxies can produce enough ionizing photons to complete reionization by z=6. However, there are hints, both theoretical and observational, that the slope may flatten out, creating a problem for the reionization budget. At the bright end, surprises were also in store, as rather than the expected luminosity evolution, the characteristic UV luminosity L* is strangely constant from z=4-8, with some evidence from ground-based surveys that the fall off at brighter magnitudes is less severe than exponential. Although the dust (and presumably metal) content of faint galaxies has been found to decrease from z=4 to 7, the attenuation in the brightest galaxies is roughly constant across this redshift range, thus decreasing dust is likely not the culprit for the non-evolving L*. Rather, it appears as if the physics of star-formation is changing, with a likely combination of factors increasing the efficiency with which distant galaxies convert their gas into stars. Finally, while the spectroscopic followup of these galaxies has been difficult, via deep near-infrared exposures we now have 2-3 robust Lyman-alpha redshifts at z > 7.5. More troubling is the growing list of non-detections. While samples are still small, this may indicate a

  5. Consistent nonlinear deterministic and stochastic evolution equations for deep to shallow water wave shoaling

    NASA Astrophysics Data System (ADS)

    Vrecica, Teodor; Toledo, Yaron

    2015-04-01

    oscillating terms, but as the water depth becomes shallow they change to an exponential growth (or decay) behavior. Hence, the formerly used localization technique cannot be justified for the shallow water region. A new formulation is devised for the localization in shallow water, it approximates the nonlinear non-local shoaling coefficient in shallow water and matches it to the one fitting to the intermediate water region. This allows the model behavior to be consistent from deep water to intermediate depths and up to the shallow water regime. Various simulations of the model were performed for the cases of intermediate, and shallow water, overall the model was found to give good results in both shallow and intermediate water depths. The essential difference between the shallow and intermediate nonlinear shoaling physics is explained via the dominating class III Bragg resonances phenomenon. By inspecting the resonance conditions and the nature of the dispersion relation, it is shown that unlike in the intermediate water regime, in shallow water depths the formation of resonant interactions is possible without taking into account bottom components. References Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79-99. Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves. Proc. R. Soc. Lond. A 289, 301-321. Bredmose, H., Agnon, Y., Madsen, P.A. & Schaffer, H.A. 2005 Wave transformation models with exact second-order transfer. European J. of Mech. - B/Fluids 24 (6), 659-682. Eldeberky, Y. & Madsen, P. A. 1999 Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering 38, 1-24. Kaihatu, J. M. & Kirby, J. T. 1995 Nonlinear transformation of waves in infinite water depth. Phys. Fluids 8, 175-188. Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10, 906-914. Stiassnie, M. & Drimer, N. 2006 Prediction of long forcing waves

  6. VLA observations of unidentified Leiden-Berkeley Deep-Survey sources - Luminosity and redshift dependence of spectral properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapahi, V.K.; Kulkarni, V.K.

    1990-05-01

    VLA observations of a complete subset of the Leiden-Berkeley Deep Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at highmore » redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys. 54 refs.« less

  7. The Top 10 List of Gravitational Lens Candidates from the HUBBLE SPACE TELESCOPE Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Ratnatunga, Kavan U.; Griffiths, Richard E.; Ostrander, Eric J.

    1999-05-01

    A total of 10 good candidates for gravitational lensing have been discovered in the WFPC2 images from the Hubble Space Telescope (HST) Medium Deep Survey (MDS) and archival primary observations. These candidate lenses are unique HST discoveries, i.e., they are faint systems with subarcsecond separations between the lensing objects and the lensed source images. Most of them are difficult objects for ground-based spectroscopic confirmation or for measurement of the lens and source redshifts. Seven are ``strong lens'' candidates that appear to have multiple images of the source. Three are cases in which the single image of the source galaxy has been significantly distorted into an arc. The first two quadruply lensed candidates were reported by Ratnatunga et al. We report on the subsequent eight candidates and describe them with simple models based on the assumption of singular isothermal potentials. Residuals from the simple models for some of the candidates indicate that a more complex model for the potential will probably be required to explain the full structural detail of the observations once they are confirmed to be lenses. We also discuss the effective survey area that was searched for these candidate lens objects.

  8. Physics and evolution of obscured X-ray sources: a multiwavelength approach

    NASA Astrophysics Data System (ADS)

    Brusa, Marcella

    2004-06-01

    Observations at high energies yield important information on the structure and nature of AGN; when coupled with deep optical and near-infrared (photometric and spectroscopic) follow-up, they provide constraints on the mass of the growing black holes and, therefore, are essential to better understand the nature of the various components of the X-ray background light and can be used as test for the accretion paradigm. Conversely, optical and near-infrared surveys of galaxies are crucial to discriminate between different cosmological scenarios (e.g. hierarchical or monolithic growth of the structures) and, thus, to recover the galaxy evolution path. In this framework, in the first part of the thesis, I will discuss the main results from an extensive program of multiwavelength observations of hard X-ray selected sources serendipitously discovered in XMM-Newton fields over ~1 deg^2 (the HELLAS2XMM survey). With a complementary approach to that of hard X-ray surveys, in order to investigate the link between nuclear activity and the galaxy formation, in the second part of the thesis I will present XMM-Newton and Chandra observations of photometric and spectroscopically selected Extremely Red Objects (EROs).

  9. Early Results from Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu; Griffin, Rhiannon; Nugent, Jenna; Kochanek, Christopher S.; Bregman, Joel N.

    2016-04-01

    The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. SACS provides excellent constraints on the AGN and cluster number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z > 1 for massive clusters. In the second paper, we use SDSS DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. These analysis results suggest that our Swift cluster selection algorithm presented in our first paper has yielded a statistically well-defined cluster sample for further studying cluster evolution and cosmology. In the end, we will discuss our ongoing optical identification of z>0.5 cluster

  10. Diversity of deep-sea fishes of the Easter Island Ecoregion

    NASA Astrophysics Data System (ADS)

    Easton, Erin E.; Sellanes, Javier; Gaymer, Carlos F.; Morales, Naiti; Gorny, Matthias; Berkenpas, Eric

    2017-03-01

    The Easter Island Ecoregion is in the center of the South Pacific gyre and experiences ultra-oligotrophic conditions that could make it highly susceptible to global change and anthropogenic activities, so it is imperative that these regions are characterized and studied so that conservation and sustainable management strategies can be developed. From the few studies from the region, we know that the coastal areas are relatively depauperate and have relatively high rates of endemism. Here, we present a brief report from the first video observations from this region of the deep-dwelling fishes from ROV exploration of benthic communities from 157 to 281 m and baited drop-camera videos from 150 to 1850 m. We observed a total of 55 fish species from the ROV and Drop-Cam surveys; nine could not be assigned family level or lower, 26 were observed in the ROV surveys, 29 were observed in the Drop-Cam surveys, nine were observed with both survey methods, at least six species are potentially new to science, and nine species were observed at deeper depths than previously reported. These new reports may be indicative of the unique oceanographic conditions in the area and the relative isolation of the communities that have provided opportunity for the evolution of new species and favorable conditions for range expansion. In contrast, these new reports may be indicative of the severe undersampling in the south Pacific at mesopelagic depths. The prevalence of potentially new species suggests that the region likely harbors a wealth of undiscovered biodiversity.

  11. Mainstreaming Caenorhabditis elegans in experimental evolution.

    PubMed

    Gray, Jeremy C; Cutter, Asher D

    2014-03-07

    Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.

  12. Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description

    NASA Astrophysics Data System (ADS)

    Balogh, Michael L.; Gilbank, David G.; Muzzin, Adam; Rudnick, Gregory; Cooper, Michael C.; Lidman, Chris; Biviano, Andrea; Demarco, Ricardo; McGee, Sean L.; Nantais, Julie B.; Noble, Allison; Old, Lyndsay; Wilson, Gillian; Yee, Howard K. C.; Bellhouse, Callum; Cerulo, Pierluigi; Chan, Jeffrey; Pintos-Castro, Irene; Simpson, Rane; van der Burg, Remco F. J.; Zaritsky, Dennis; Ziparo, Felicia; Alonso, María Victoria; Bower, Richard G.; De Lucia, Gabriella; Finoguenov, Alexis; Lambas, Diego Garcia; Muriel, Hernan; Parker, Laura C.; Rettura, Alessandro; Valotto, Carlos; Wetzel, Andrew

    2017-10-01

    We describe a new Large Program in progress on the Gemini North and South telescopes: Gemini Observations of Galaxies in Rich Early Environments (GOGREEN). This is an imaging and deep spectroscopic survey of 21 galaxy systems at 1 < z < 1.5, selected to span a factor >10 in halo mass. The scientific objectives include measuring the role of environment in the evolution of low-mass galaxies, and measuring the dynamics and stellar contents of their host haloes. The targets are selected from the SpARCS, SPT, COSMOS, and SXDS surveys, to be the evolutionary counterparts of today's clusters and groups. The new red-sensitive Hamamatsu detectors on GMOS, coupled with the nod-and-shuffle sky subtraction, allow simultaneous wavelength coverage over λ ˜ 0.6-1.05 μm, and this enables a homogeneous and statistically complete redshift survey of galaxies of all types. The spectroscopic sample targets galaxies with AB magnitudes z΄ < 24.25 and [3.6] μm < 22.5, and is therefore statistically complete for stellar masses M* ≳ 1010.3 M⊙, for all galaxy types and over the entire redshift range. Deep, multiwavelength imaging has been acquired over larger fields for most systems, spanning u through K, in addition to deep IRAC imaging at 3.6 μm. The spectroscopy is ˜50 per cent complete as of semester 17A, and we anticipate a final sample of ˜500 new cluster members. Combined with existing spectroscopy on the brighter galaxies from GCLASS, SPT, and other sources, GOGREEN will be a large legacy cluster and field galaxy sample at this redshift that spectroscopically covers a wide range in stellar mass, halo mass, and clustercentric radius.

  13. Inferring the photometric and size evolution of galaxies from image simulations. I. Method

    NASA Astrophysics Data System (ADS)

    Carassou, Sébastien; de Lapparent, Valérie; Bertin, Emmanuel; Le Borgne, Damien

    2017-09-01

    Context. Current constraints on models of galaxy evolution rely on morphometric catalogs extracted from multi-band photometric surveys. However, these catalogs are altered by selection effects that are difficult to model, that correlate in non trivial ways, and that can lead to contradictory predictions if not taken into account carefully. Aims: To address this issue, we have developed a new approach combining parametric Bayesian indirect likelihood (pBIL) techniques and empirical modeling with realistic image simulations that reproduce a large fraction of these selection effects. This allows us to perform a direct comparison between observed and simulated images and to infer robust constraints on model parameters. Methods: We use a semi-empirical forward model to generate a distribution of mock galaxies from a set of physical parameters. These galaxies are passed through an image simulator reproducing the instrumental characteristics of any survey and are then extracted in the same way as the observed data. The discrepancy between the simulated and observed data is quantified, and minimized with a custom sampling process based on adaptive Markov chain Monte Carlo methods. Results: Using synthetic data matching most of the properties of a Canada-France-Hawaii Telescope Legacy Survey Deep field, we demonstrate the robustness and internal consistency of our approach by inferring the parameters governing the size and luminosity functions and their evolutions for different realistic populations of galaxies. We also compare the results of our approach with those obtained from the classical spectral energy distribution fitting and photometric redshift approach. Conclusions: Our pipeline infers efficiently the luminosity and size distribution and evolution parameters with a very limited number of observables (three photometric bands). When compared to SED fitting based on the same set of observables, our method yields results that are more accurate and free from

  14. A SYSTEMATIC SEARCH FOR PERIODICALLY VARYING QUASARS IN PAN-STARRS1: AN EXTENDED BASELINE TEST IN MEDIUM DEEP SURVEY FIELD MD09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T.; Gezari, S.; Burgett, W.

    We present a systematic search for periodically varying quasars and supermassive black hole binary (SMBHB) candidates in the Pan-STARRS1 (PS1) Medium Deep Survey’s MD09 field. From a color-selected sample of 670 quasars extracted from a multi-band deep-stack catalog of point sources, we locally select variable quasars and look for coherent periods with the Lomb–Scargle periodogram. Three candidates from our sample demonstrate strong variability for more than ∼3 cycles, and their PS1 light curves are well fitted to sinusoidal functions. We test the persistence of the candidates’ apparent periodic variations detected during the 4.2 years of the PS1 survey with archivalmore » photometric data from the SDSS Stripe 82 survey or new monitoring with the Large Monolithic Imager at the Discovery Channel Telescope. None of the three periodic candidates (including PSO J334.2028+1.4075) remain persistent over the extended baseline of 7–14 years, corresponding to a detection rate of <1 in 670 quasars in a search area of ≈5 deg{sup 2}. Even though SMBHBs should be a common product of the hierarchal growth of galaxies, and periodic variability in SMBHBs has been theoretically predicted, a systematic search for such signatures in a large optical survey is strongly limited by its temporal baseline and the “red noise” associated with normal quasar variability. We show that follow-up long-term monitoring (≳5 cycles) is crucial to our search for these systems.« less

  15. Geochronology and geochemistry of deep-seated crustal xenoliths in the northern North China Craton: Implications for the evolution and structure of the lower crust

    NASA Astrophysics Data System (ADS)

    Su, Yuping; Zheng, Jianping; Griffin, William L.; Huang, Yan; Wei, Ying; Ping, Xianquan

    2017-11-01

    The age and composition of the lower crust are critical in understanding the processes of continental formation and evolution, and deep-seated granulite xenoliths can offer direct information on the lower crust. Here, we report mineral chemistry, whole-rock major and trace elements, Sr-Nd isotopes and zircon U-Pb-Hf results for a suite of deep-seated crustal xenoliths, recently discovered in the Cenozoic basalts of the Nangaoya area in the northern part of the North China Craton (NCC). Based on the P-T estimates, these xenoliths including mafic, intermediate and felsic granulites and hornblendites were sampled from different levels of the lower crust. While a hornblendite has a flat REE pattern, all other xenoliths display LREE enrichment and depletion of Nb, Ta, Th and Ti. The mafic granulite xenolith has relatively high whole-rock εNd(t) value of - 13.37, and yields Mesozoic (188-59 Ma) zircons ages with high εHf(t) values from - 15.3 to - 9.2. The garnet-bearing intermediate granulite-facies rocks show low εNd(t) values from - 16.92 to - 17.48, and reveal both Paleoproterozoic (1948 Ma) and Mesozoic (222-63 Ma) zircon U-Pb ages. Their Mesozoic zircons have lower εHf(t) values (from - 18.4 to - 13.8) than those from the mafic xenolith. The remaining intermediate to felsic xenoliths show Paleoproterozoic zircon ages, and the lowest εNd(t) values (from - 20.78 to - 24.03). The mafic-intermediate granulites with Mesozoic zircons originated from the interaction of lower crust-derived magmas with mantle melts, with higher proportions of mantle magmas involved in the generation of mafic granulite, whereas intermediate to felsic xenoliths without Mesozoic zircons represent ancient Paleoproterozoic to Neoarchean deep crust. These deep-seated xenoliths reveal complicated crustal evolution processes, including crustal growth during Neoarchean (2.5-2.7 Ga), middle Paleoproterozoic (2.2-2.1 Ga) and Mesozoic, and reworking during early Paleoproterozoic, late

  16. Decompression syndrome and the evolution of deep diving physiology in the Cetacea

    NASA Astrophysics Data System (ADS)

    Beatty, Brian Lee; Rothschild, Bruce M.

    2008-09-01

    Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early “experiments” in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.

  17. Decompression syndrome and the evolution of deep diving physiology in the Cetacea.

    PubMed

    Beatty, Brian Lee; Rothschild, Bruce M

    2008-09-01

    Whales repetitively dive deep to feed and should be susceptible to decompression syndrome, though they are not known to suffer the associated pathologies. Avascular osteonecrosis has been recognized as an indicator of diving habits of extinct marine amniotes. Vertebrae of 331 individual modern and 996 fossil whales were subjected to macroscopic and radiographic examination. Avascular osteonecrosis was found in the Oligocene basal odontocetes (Xenorophoidea) and in geologically younger mysticetes, such as Aglaocetus [a sister taxon to Balaenopteridae + (Balaenidae + Eschrichtiidae) clade]. These are considered as early "experiments" in repetitive deep diving, indicating that they independently converged on their similar specialized diving physiologies.

  18. Deep Hydrothermal Circulation and Implications for the Early Crustal Compositional and Thermal Evolution of Mars

    NASA Astrophysics Data System (ADS)

    Parmentier, E. M.; Mustard, J. F.; Ehlmann, B. L.; Roach, L. H.

    2007-12-01

    Both orbital remote sensing and geophysical observations indicate an important role for hydrothermal crustal cooling during the Noachian epoch. Orbital remote sensing shows that phyllosilicate minerals are common in Noachian-aged terrains but have not been observed in younger terrains (<3.8 Ga). Throughout the Noachian highlands, phyllosilicates are observed in deeply eroded terrains as well as in association with impact craters, in their walls, rims, ejecta, and in central peaks of craters as large as 45 km, corresponding to excavation depths of 4-5 km. CRISM and OMEGA mapping typically show phyllosilicate-bearing rocks occupy the lowest observable stratigraphic unit, and the most common alteration minerals are iron magnesium smectites which typically form at low pressures and temperatures <200°C. Widespread occurrences of phyllosilicates to depths of at least 4-5 km may provide evidence for deep crustal hydrothermal circulation during the Noachian. Geophysical evidence from surface deformation associated with faulting and from the analysis of the relationship of gravity and topography suggest elastic lithosphere thicknesses a large as ~30 km near the end of the Noachian, corresponding to surface heatflux of 20-40 mW/m2. Relaxation of elastic stresses due to thermally activated creep results in elastic lithosphere thicknesses sensitive to crustal temperatures. Plausible planetary thermal evolution models with chondritic abundances of heat producing elements predict a surface heat flux of 50-60 mW/m2 near the end of the Noachian. The difference in the heat flux required for planetary cooling and that inferred from elastic lithospheric thickness, suggests that a significant fraction of heatflow reaching the surface may be transported by hydrothermal convection rather than by conduction alone. Relaxation of crustal thickness variations due to lower crustal flow is sensitive to both the temperature and geothermal gradient at the crust-mantle boundary. In the presence

  19. Survey report of NOAA Ship McArthur II cruises AR-04-04, AR-05-05 and AR-06-03: habitat classification of side scan sonar imagery in support of deep-sea coral/sponge explorations at the Olympic Coast National Marine Sanctuary

    USGS Publications Warehouse

    Intelmann, Steven S.; Cochrane, Guy R.; Bowlby, C. Edward; Brancato, Mary Sue; Hyland, Jeffrey

    2007-01-01

    Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral-sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises, Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed.

  20. AzTEC half square degree survey of the SHADES fields - I. Maps, catalogues and source counts

    NASA Astrophysics Data System (ADS)

    Austermann, J. E.; Dunlop, J. S.; Perera, T. A.; Scott, K. S.; Wilson, G. W.; Aretxaga, I.; Hughes, D. H.; Almaini, O.; Chapin, E. L.; Chapman, S. C.; Cirasuolo, M.; Clements, D. L.; Coppin, K. E. K.; Dunne, L.; Dye, S.; Eales, S. A.; Egami, E.; Farrah, D.; Ferrusca, D.; Flynn, S.; Haig, D.; Halpern, M.; Ibar, E.; Ivison, R. J.; van Kampen, E.; Kang, Y.; Kim, S.; Lacey, C.; Lowenthal, J. D.; Mauskopf, P. D.; McLure, R. J.; Mortier, A. M. J.; Negrello, M.; Oliver, S.; Peacock, J. A.; Pope, A.; Rawlings, S.; Rieke, G.; Roseboom, I.; Rowan-Robinson, M.; Scott, D.; Serjeant, S.; Smail, I.; Swinbank, A. M.; Stevens, J. A.; Velazquez, M.; Wagg, J.; Yun, M. S.

    2010-01-01

    We present the first results from the largest deep extragalactic mm-wavelength survey undertaken to date. These results are derived from maps covering over 0.7deg2, made at λ = 1.1mm, using the AzTEC continuum camera mounted on the James Clerk Maxwell Telescope. The maps were made in the two fields originally targeted at λ = 850μm with the Submillimetre Common-User Bolometer Array (SCUBA) in the SCUBA Half-Degree Extragalactic Survey (SHADES) project, namely the Lockman Hole East (mapped to a depth of 0.9-1.3 mJy rms) and the Subaru/XMM-Newton Deep Field (mapped to a depth of 1.0-1.7 mJy rms). The wealth of existing and forthcoming deep multifrequency data in these two fields will allow the bright mm source population revealed by these new wide-area 1.1mm images to be explored in detail in subsequent papers. Here, we present the maps themselves, a catalogue of 114 high-significance submillimetre galaxy detections, and a thorough statistical analysis leading to the most robust determination to date of the 1.1mm source number counts. These new maps, covering an area nearly three times greater than the SCUBA SHADES maps, currently provide the largest sample of cosmological volumes of the high-redshift Universe in the mm or sub-mm. Through careful comparison, we find that both the Cosmic Evolution Survey (COSMOS) and the Great Observatories Origins Deep Survey (GOODS) North fields, also imaged with AzTEC, contain an excess of mm sources over the new 1.1mm source-count baseline established here. In particular, our new AzTEC/SHADES results indicate that very luminous high-redshift dust enshrouded starbursts (S1.1mm > 3mJy) are 25-50 per cent less common than would have been inferred from these smaller surveys, thus highlighting the potential roles of cosmic variance and clustering in such measurements. We compare number count predictions from recent models of the evolving mm/sub-mm source population to these sub-mm bright galaxy surveys, which provide important

  1. Future Mission Trends and their Implications for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Abraham, Douglas S.

    2006-01-01

    This viewgraph presentation discusses the direction of future missions and it's significance to the Deep Space Network. The topics include: 1) The Deep Space Network (DSN); 2) Past Missions Driving DSN Evolution; 3) The Changing Mission Paradigm; 4) Assessing Future Mission Needs; 5) Link Support Trends; 6) Downlink Rate Trends; 7) Uplink Rate Trends; 8) End-to-End Link Difficulty Trends; 9) Summary: Future Mission Trend Drivers; and 10) Conclusion: Implications for the DSN.

  2. Tidal evolution of the Galilean satellites - A linearized theory

    NASA Technical Reports Server (NTRS)

    Greenberg, R.

    1981-01-01

    The Laplace resonance among the Galilean satellites Io, Europa, and Ganymede is traditionally reduced to a pendulum-like dynamical problem by neglecting short-period variations of several orbital elements. However, some of these variations that can now be neglected may once have had longer periods, comparable to the 'pendulum' period, if the system was formerly in deep resonance (pairs of periods even closer to the ratio 2:1 than they are now). In that case, the dynamical system cannot be reduced to fewer than nine dimensions. The nine-dimensional system is linearized here in order to study small variations about equilibrium. When tidal effects are included, the resulting evolution is substantially the same as was indicated by the pendulum approach, except that evolution out of deep resonance is found to be somewhat slower than suggested by extrapolation of the pendulum results. This slower rate helps support the hypothesis that the system may have evolved from deep resonance.

  3. Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution

    PubMed Central

    Kender, Sev; McClymont, Erin L.; Elmore, Aurora C.; Emanuele, Dario; Leng, Melanie J.; Elderfield, Henry

    2016-01-01

    Understanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor. Here we test extinction hypotheses (temperature, corrosiveness and productivity) in the Tasman Sea, using geochemistry and micropalaeontology, and find evidence from several globally distributed sites that the extinction was caused by a change in phytoplankton food source. Coccolithophore evolution may have enhanced the seasonal ‘bloom' nature of primary productivity and fundamentally shifted it towards a more intra-annually variable state at ∼0.8 Ma. Our results highlight intra-annual variability as a potential new consideration for Mid Pleistocene global biogeochemical climate models, and imply that deep-sea biota may be sensitive to future changes in productivity. PMID:27311937

  4. Evolution of Temperature and Carbon Storage Within the Deep Southeast Atlantic Ocean Across the Last Glacial/Interglacial Cycle Inferred from a Highly-Resolved Sedimentary Depth Transect

    NASA Astrophysics Data System (ADS)

    Foreman, A. D.; Charles, C. D.; Rae, J. W. B.; Adkins, J. F.; Slowey, N. C.

    2015-12-01

    Many models show that the relative intensity of stratification is a primary variable governing the sequestration and release of carbon from the ocean over ice ages. The wide-scale observations necessary to test these model-derived hypotheses are not yet sufficient, but sedimentary depth transects represent a promising approach for making progress. Here we present paired stable isotopic (d18O, d13C) and trace metal data (Mg/Ca, B/Ca) from benthic foraminifera collected from a highly vertically-resolved depth transect from the mid-depth and deep SE Atlantic. These observations, which cover Marine Isotope Stages 5e, 5d, 5a, 4, and the Last Glacial Maximum, document the evolution of glacial conditions from the previous interglacial, and provide detailed observations regarding the magnitude and timing of changes in temperature and salinity within the deep ocean at key time points over the last glacial/interglacial cycle. Furthermore, the comparison between purely 'physical' tracers (i.e. Mg/Ca, d18O) and tracers sensitive to the carbon cycle (i.e. d13C and B/Ca) provides critical insight into the relationship between deep/mid-depth stratification and global carbon dynamics. Notably among our observations, the paired stable isotope and trace metal results strongly suggest that much of the ice-age cooling of deep South Atlantic occurred at the MIS 5e/5d transition, while the onset of salinity stratification in the mid-depth South Atlantic occurred at the MIS 5/4 transition.

  5. Deep sequencing of evolving pathogen populations: applications, errors, and bioinformatic solutions

    PubMed Central

    2014-01-01

    Deep sequencing harnesses the high throughput nature of next generation sequencing technologies to generate population samples, treating information contained in individual reads as meaningful. Here, we review applications of deep sequencing to pathogen evolution. Pioneering deep sequencing studies from the virology literature are discussed, such as whole genome Roche-454 sequencing analyses of the dynamics of the rapidly mutating pathogens hepatitis C virus and HIV. Extension of the deep sequencing approach to bacterial populations is then discussed, including the impacts of emerging sequencing technologies. While it is clear that deep sequencing has unprecedented potential for assessing the genetic structure and evolutionary history of pathogen populations, bioinformatic challenges remain. We summarise current approaches to overcoming these challenges, in particular methods for detecting low frequency variants in the context of sequencing error and reconstructing individual haplotypes from short reads. PMID:24428920

  6. Within-Host Evolution of Human Influenza Virus.

    PubMed

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release

    NASA Astrophysics Data System (ADS)

    Shimwell, T. W.; Röttgering, H. J. A.; Best, P. N.; Williams, W. L.; Dijkema, T. J.; de Gasperin, F.; Hardcastle, M. J.; Heald, G. H.; Hoang, D. N.; Horneffer, A.; Intema, H.; Mahony, E. K.; Mandal, S.; Mechev, A. P.; Morabito, L.; Oonk, J. B. R.; Rafferty, D.; Retana-Montenegro, E.; Sabater, J.; Tasse, C.; van Weeren, R. J.; Brüggen, M.; Brunetti, G.; Chyży, K. T.; Conway, J. E.; Haverkorn, M.; Jackson, N.; Jarvis, M. J.; McKean, J. P.; Miley, G. K.; Morganti, R.; White, G. J.; Wise, M. W.; van Bemmel, I. M.; Beck, R.; Brienza, M.; Bonafede, A.; Calistro Rivera, G.; Cassano, R.; Clarke, A. O.; Cseh, D.; Deller, A.; Drabent, A.; van Driel, W.; Engels, D.; Falcke, H.; Ferrari, C.; Fröhlich, S.; Garrett, M. A.; Harwood, J. J.; Heesen, V.; Hoeft, M.; Horellou, C.; Israel, F. P.; Kapińska, A. D.; Kunert-Bajraszewska, M.; McKay, D. J.; Mohan, N. R.; Orrú, E.; Pizzo, R. F.; Prandoni, I.; Schwarz, D. J.; Shulevski, A.; Sipior, M.; Smith, D. J. B.; Sridhar, S. S.; Steinmetz, M.; Stroe, A.; Varenius, E.; van der Werf, P. P.; Zensus, J. A.; Zwart, J. T. L.

    2017-02-01

    The LOFAR Two-metre Sky Survey (LoTSS) is a deep 120-168 MHz imaging survey that will eventually cover the entire northern sky. Each of the 3170 pointings will be observed for 8 h, which, at most declinations, is sufficient to produce 5″ resolution images with a sensitivity of 100 μJy/beam and accomplish the main scientific aims of the survey, which are to explore the formation and evolution of massive black holes, galaxies, clusters of galaxies and large-scale structure. Owing to the compact core and long baselines of LOFAR, the images provide excellent sensitivity to both highly extended and compact emission. For legacy value, the data are archived at high spectral and time resolution to facilitate subarcsecond imaging and spectral line studies. In this paper we provide an overview of the LoTSS. We outline the survey strategy, the observational status, the current calibration techniques, a preliminary data release, and the anticipated scientific impact. The preliminary images that we have released were created using a fully automated but direction-independent calibration strategy and are significantly more sensitive than those produced by any existing large-area low-frequency survey. In excess of 44 000 sources are detected in the images that have a resolution of 25″, typical noise levels of less than 0.5 mJy/beam, and cover an area of over 350 square degrees in the region of the HETDEX Spring Field (right ascension 10h45m00s to 15h30m00s and declination 45°00'00″ to 57°00'00″). The catalogue (full Table 3) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A104

  8. Deep learning for galaxy surface brightness profile fitting

    NASA Astrophysics Data System (ADS)

    Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.; Domínguez Sánchez, H.; Dimauro, P.

    2018-03-01

    Numerous ongoing and future large area surveys (e.g. Dark Energy Survey, EUCLID, Large Synoptic Survey Telescope, Wide Field Infrared Survey Telescope) will increase by several orders of magnitude the volume of data that can be exploited for galaxy morphology studies. The full potential of these surveys can be unlocked only with the development of automated, fast, and reliable analysis methods. In this paper, we present DeepLeGATo, a new method for 2-D photometric galaxy profile modelling, based on convolutional neural networks. Our code is trained and validated on analytic profiles (HST/CANDELS F160W filter) and it is able to retrieve the full set of parameters of one-component Sérsic models: total magnitude, effective radius, Sérsic index, and axis ratio. We show detailed comparisons between our code and GALFIT. On simulated data, our method is more accurate than GALFIT and ˜3000 time faster on GPU (˜50 times when running on the same CPU). On real data, DeepLeGATo trained on simulations behaves similarly to GALFIT on isolated galaxies. With a fast domain adaptation step made with the 0.1-0.8 per cent the size of the training set, our code is easily capable to reproduce the results obtained with GALFIT even on crowded regions. DeepLeGATo does not require any human intervention beyond the training step, rendering it much automated than traditional profiling methods. The development of this method for more complex models (two-component galaxies, variable point spread function, dense sky regions) could constitute a fundamental tool in the era of big data in astronomy.

  9. Florida Teachers' Attitudes about Teaching Evolution

    ERIC Educational Resources Information Center

    Fowler, Samantha R.; Meisels, Gerry G.

    2010-01-01

    A survey of Florida teachers reveals many differences in comfort level with teaching evolution according to the state's science teaching standards, general attitudes and beliefs about evolution, and the extent to which teachers are criticized, censured, disparaged, or reprehended for their beliefs about the teaching of evolution.

  10. Evolution of Galaxy Luminosity and Stellar-Mass Functions since $z=1$ with the Dark Energy Survey Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozzi, D.; et al.

    We present the first study of the evolution of the galaxy luminosity and stellar-mass functions (GLF and GSMF) carried out by the Dark Energy Survey (DES). We describe the COMMODORE galaxy catalogue selected from Science Verification images. This catalogue is made ofmore » $$\\sim 4\\times 10^{6}$$ galaxies at $$0« less

  11. The Mass-Size Relation of Quenched, Quiescent Galaxies in the WISP Survey

    NASA Astrophysics Data System (ADS)

    Pahl, Anthony; Scarlata, Claudia; Rutkowski, Michael J.; Zanella, Anita; Bagley, Micaela B.; Colbert, James W.; Baronchelli, Ivano; Henry, Alaina L.; Hathi, Nimish P.; Teplitz, Harry I.; Rafelski, Marc; Dai, Yu Sophia; Malkan, Matthew Arnold; Mehta, Vihang; Beck, Melanie

    2016-01-01

    The relation between the stellar mass and size, if measured for galaxies of similar types, can be a useful tool for studying galactic evolution. We study the mass-size relation of quenched, quiescent galaxies to determine the effect of star-formation history on the growth of these objects over time. The WFC3 Infrared Spectroscopic Parallels (WISP) survey is a large HST IR grism survey of over 385 fields of ~4 arcmin2 each, and it is ideal for studying the star-formation rate with its broad spectral coverage. Using a subset of these fields with deep IR data and measurements across both filters (28 fields), we perform a color selection and identify 83 quenched galaxies with a median z~1.6. With GALFIT, we measure their effective radius and sersic index on the 2-D surface brightness distribution in the F110W band. We perform fitting of grism spectra of the observed galaxies to derive redshift, stellar mass and age for all galaxies. We combine the size, stellar mass, and stellar age determinations to investigate whether the evolution of the mass-size relation over time is primarily driven by the entrance of newly quenched galaxies or by processes affecting the individual quenched galaxies.

  12. Measuring Low Mass Galaxies In The WFC3 Infrared Spectroscopic Parallels Survey

    NASA Astrophysics Data System (ADS)

    Colbert, James; Teplitz, Harry; Scarlata, Claudia; Siana, Brian; Malkan, Matt; McCarthy, Patrick; Henry, Alaina; Atek, Hakim; Fosbury, Robert; Ross, Nathanial; Hathi, Nimish; Bridge, Carrie; Bunker, Andrew; Dressler, Alan; Shim, Hyunjin; Bedregal, Alejandro; Dominguez, Alberto; Rafelski, Marc; Masters, Dan; Martin, Crystal; Dai, Sophia

    2015-10-01

    The WFC3 Infrared Spectroscopic Parallel (WISP) Survey uses over 1800 HST orbits to study galaxy evolution over a majority of cosmic history. Its slitless grism spectroscopy over a wide, continuous spectral range (0.8-1.7 micron) provides an unbiased selection of thousands of emission line galaxies over 0.5 < z < 2.5. Hundreds of these galaxies are detected in multiple emission lines, allowing for important diagnostics of metallicity and dust extinction. We propose deep 3.6 micron imaging (5 sigma, 0.9 micro-Jy) of 60 of the deepest WISP fields observed with the combination of G102+G141 grisms, in order to detect emission-line galaxies down to 0.1 L* and masses below 10^8 Mo. Combined with our HST optical and near-IR photometry, these IRAC data will be critical to determining accurate stellar masses for both passive and active galaxies in our survey. We will determine the evolution of the faint end slope of the stellar mass function and the mass-metallicity relation down to low-mass galaxies. The addition of the IRAC photometry will also provide much stronger constraints on dust extinction and star formation history, especially when combined with information available from the emission lines themselves.

  13. Exploring the Web : The Active Galaxy Population in the ORELSE Survey

    NASA Astrophysics Data System (ADS)

    Lubin, Lori

    What are the physical processes that trigger starburst and nuclear activity in galaxies and drive galaxy evolution? Studies aimed at understanding this complex issue have largely focused on the cores of galaxy clusters or on field surveys, leaving underexplored intermediate-density regimes where rapid evolution occurs. As a result, we are conducting the ORELSE survey, a search for structure on scales > 10 Mpc around 18 clusters at 0.6 < z < 1.3. The survey covers 5 sq. deg., all targeted at high-density regions, making it comparable to field surveys such as DEEP2 and COSMOS. ORELSE is unmatched, with no other cluster survey having comparable breadth, depth, precision, and multi-band coverage. As such, ORELSE overcomes critical problems with previous high-redshift studies, including cosmic variance, restricted environmental ranges, sparse cluster samples, inconsistent star formation rate measures, and limited spectroscopy. From its initial spectral and photometric components, ORELSE already contains wellmeasured properties such as redshift, color, stellar mass, and star formation rate for a statistical sample of 7000 field+cluster galaxies. Because X-ray and mid-IR observations are crucial for a complete census of the active galaxy population, we propose to use the wealth of archival Chandra, Spitzer, and Herschel data in the ORELSE fields to map AGN and starburst galaxies over large scales. When complete, our sample will exceed by more than an order of magnitude the current samples of spectroscopically-confirmed active galaxies in high-redshift clusters and their environs. Combined with our numerical simulations plus galaxy formation models, we will provide a robust census of the active galaxy population in intermediate and high-density environments at z = 1, constrain the physical processes (e.g., merging, intracluster gas interactions, AGN feedback) responsible for triggering/quenching starburst and nuclear activity, and estimate their associated timescales.

  14. Survey of methods used to determine if a patient has a deep vein thrombosis: An exploratory research report.

    PubMed

    Heick, John D; Farris, James W

    2017-09-01

    The use of evidence-based practice (EBP) is encouraged in the physical therapy profession, but integrating evidence into practice can be difficult for clinicians because of lack of time and other constraints. To survey physical therapy clinical instructors and determine the methods they use for screening for deep vein thrombosis (DVT), a type of venous thromboembolism (VTE) in the lower extremities. Exploratory survey. Twelve survey questions written specifically for this study were sent to a convenience sample of clinical instructors associated with seven universities across 43 states. Eight hundred fifty clinical instructors (22.4% response rate) completed the survey. Of those who responded, 80.5% were taught to use Homans sign to screen for a possible DVT in their entry-level education and 67.9% continued to use Homans sign in clinical practice. Regardless of post-graduate education, respondents were more likely to choose Homans sign than a clinical decision rule (CDR) to screen for a suspected DVT. Additionally, nearly two-thirds of respondents failed to correctly identify one or more of the major risk factors for developing a DVT/VTE. The response rate was 22.4% and therefore may not fully represent the population of physical therapy clinical instructors in the United States. Results from this exploratory survey indicated that approximately two-thirds of physical therapy clinical instructors used outdated DVT/VTE screening methods that they were taught in their entry-level education and nearly two-thirds did not identify the major risk factors associated with DVT/VTE. These results suggest that change is necessary in physical therapy education, clinical practice, and continuing professional development to ensure a more evidenced-based identification of DVT and VTE.

  15. An Extension of the EDGES Survey: Stellar Populations in Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    van Zee, Liese

    The formation and evolution of galactic disks is one of the key questions in extragalactic astronomy today. We plan to use archival data from GALEX, Spitzer, and WISE to investigate the growth and evolution of the stellar component in a statistical sample of nearby galaxies. Data covering a broad wavelength range are critical for measurement of current star formation activity, stellar populations, and stellar distributions in nearby galaxies. In order to investigate the timescales associated with the growth of galactic disks, we will (1) investigate the structure of the underlying stellar distribution, (2) measure the ratio of current-to-past star formation activity as a function of radius, and (3) investigate the growth of the stellar disk as a function of baryon fraction and total dynamical mass. The proposed projects leverage the existing deep wide field-of-view near infrared imaging observations obtained with the Spitzer Space Telescope as part of the EDGES Survey, a Cycle 8 Exploration Science Program. The proposed analysis of multiwavelength imaging observations of a well-defined statistical sample will place strong constraints on hierarchical models of galaxy formation and evolution and will further our understanding of the stellar component of nearby galaxies.

  16. The VIMOS Ultra Deep Survey: Lyα emission and stellar populations of star-forming galaxies at 2 < z < 2.5

    NASA Astrophysics Data System (ADS)

    Hathi, N. P.; Le Fèvre, O.; Ilbert, O.; Cassata, P.; Tasca, L. A. M.; Lemaux, B. C.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Guaita, L.; Koekemoer, A.; Paltani, S.; Pforr, J.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2016-04-01

    The aim of this paper is to investigate spectral and photometric properties of 854 faint (IAB ≲ 25 mag) star-forming galaxies (SFGs) at 2 < z < 2.5 using the VIMOS Ultra-Deep Survey (VUDS) spectroscopic data and deep multi-wavelength photometric data in three extensively studied extragalactic fields (ECDFS, VVDS, COSMOS). These SFGs were targeted for spectroscopy as a result of their photometric redshifts. The VUDS spectra are used to measure the UV spectral slopes (β) as well as Lyα equivalent widths (EW). On average, the spectroscopically measured β (-1.36 ± 0.02), is comparable to the photometrically measured β (-1.32 ± 0.02), and has smaller measurement uncertainties. The positive correlation of β with the spectral energy distribution (SED)-based measurement of dust extinction Es(B-V) emphasizes the importance of β as an alternative dust indicator at high redshifts. To make a proper comparison, we divide these SFGs into three subgroups based on their rest-frame Lyα EW: SFGs with no Lyα emission (SFGN; EW ≤ 0 Å), SFGs with Lyα emission (SFGL; EW > 0 Å), and Lyα emitters (LAEs; EW ≥ 20 Å). The fraction of LAEs at these redshifts is ~10%, which is consistent with previous observations. We compared best-fitSED-estimated stellar parameters of the SFGN, SFGL and LAE samples. For the luminosities probed here (~ L∗), we find that galaxies with and without Lyα in emission have small but significant differences in their SED-based properties. We find that LAEs have less dust, and lower star-formation rates (SFR) compared to non-LAEs. We also find that LAEs are less massive compared to non-LAEs, though the difference is smaller and less significant compared to the SFR and Es(B-V). When we divide the LAEs according to their Spitzer/IRAC 3.6 μm fluxes, we find that the fraction of IRAC-detected (m3.6 ≲ 25 mag) LAEs is much higher than the fraction of IRAC-detected narrow band (NB)-selected LAEs at z ≃ 2-3. This could imply that UV-selected LAEs

  17. Development of Deep-tow Autonomous Cable Seismic (ACS) for Seafloor Massive Sulfides (SMSs) Exploration.

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hitoshi; Saito, Shutaro; Lee, Sangkyun; Tara, Kenji; Kato, Masafumi; Jamali Hondori, Ehsan; Sumi, Tomonori; Kadoshima, Kazuyuki; Kose, Masami

    2017-04-01

    Within the EEZ of Japan, numerous surveys exploring ocean floor resources have been conducted. The exploration targets are gas hydrates, mineral resources (manganese, cobalt or rare earth) and especially seafloor massive sulphide (SMS) deposits. These resources exist in shallow subsurface areas in deep waters (>1500m). For seismic explorations very high resolution images are required. These cannot be effectively obtained with conventional marine seismic techniques. Therefore we have been developing autonomous seismic survey systems which record the data close to the seafloor to preserve high frequency seismic energy. Very high sampling rate (10kHz) and high accurate synchronization between recording systems and shot time are necessary. We adopted Cs-base atomic clock considering its power consumption. At first, we developed a Vertical Cable Seismic (VCS) system that uses hydrophone arrays moored vertically from the ocean bottom to record close to the target area. This system has been successfully applied to SMS exploration. Specifically it fixed over known sites to assess the amount of reserves with the resultant 3D volume. Based on the success of VCS, we modified the VCS system to use as a more efficient deep-tow seismic survey system. Although there are other examples of deep-tow seismic systems, signal transmission cables present challenges in deep waters. We use our autonomous recording system to avoid these problems. Combining a high frequency piezoelectric source (Sub Bottom Profiler:SBP) that automatically shots with a constant interval, we achieve the high resolution deep-tow seismic without data transmission/power cable to the board. Although the data cannot be monitored in real-time, the towing system becomes very simple. We have carried out survey trial, which showed the systems utility as a high-resolution deep-tow seismic survey system. Furthermore, the frequency ranges of deep-towed source (SBP) and surface towed sparker are 700-2300Hz and 10-200Hz

  18. The thermal evolution of Mercury's Fe-Si core

    NASA Astrophysics Data System (ADS)

    Knibbe, Jurriën Sebastiaan; van Westrenen, Wim

    2018-01-01

    We have studied the thermal and magnetic field evolution of planet Mercury with a core of Fe-Si alloy to assess whether an Fe-Si core matches its present-day partially molten state, Mercury's magnetic field strength, and the observed ancient crustal magnetization. The main advantages of an Fe-Si core, opposed to a previously assumed Fe-S core, are that a Si-bearing core is consistent with the highly reduced nature of Mercury and that no compositional convection is generated upon core solidification, in agreement with magnetic field indications of a stable layer at the top of Mercury's core. This study also present the first implementation of a conductive temperature profile in the core where heat fluxes are sub-adiabatic in a global thermal evolution model. We show that heat migrates from the deep core to the outer part of the core as soon as heat fluxes at the outer core become sub-adiabatic. As a result, the deep core cools throughout Mercury's evolution independent of the temperature evolution at the core-mantle boundary, causing an early start of inner core solidification and magnetic field generation. The conductive layer at the outer core suppresses the rate of core growth after temperature differences between the deep and shallow core are relaxed, such that a magnetic field can be generated until the present. Also, the outer core and mantle operate at higher temperatures than previously thought, which prolongs mantle melting and mantle convection. The results indicate that S is not a necessary ingredient of Mercury's core, bringing bulk compositional models of Mercury more in line with reduced meteorite analogues.

  19. Resolving the detailed spatiotemporal slip evolution of deep tremor in western Japan

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Ide, S.

    2017-12-01

    A quantitative evaluation of the slip evolution of tremor is essential to understand the generation mechanism of slow earthquakes. The recent studies have revealed the most part of tremor signals can be expressed as the superposition of low frequency earthquakes (LFE). However, it is still challenging to explain the entire waveforms of tremor, because a conventional slip inversion analysis is not available for tremor due to insufficient knowledge of source locations and Green's functions. Here we investigate the detailed spatiotemporal behavior of deep tremor in western Japan through the development and application of a new slip inversion method. We introduce synthetic template waveforms, which are typical tremor waveforms obtained by stacking LFE seismograms at arranged points along the plate interface. Using these synthetic template waveforms as substitutes for Green's functions, we invert the continuous tremor waveforms using an iterative deconvolution approach with Bayesian constraints. We apply this method to two tremor burst episodes in western and central Shikoku, Japan. The estimated slip distribution from a 12-day tremor burst episode in western Shikoku is heterogeneous, with several patchy areas of slip along the plate interface where rapid moment releases with durations of <100 s regularly occur. We attribute these heterogeneous spatiotemporal slip patterns to heterogeneous material properties along the plate interface. For central Shikoku, where we focus on a tremor burst episode that occurred coincidentally with a very low frequency earthquake (VLF), we observe that the source size of the VLF is much larger than that estimated from tremor activity in western Shikoku. These differences in the size of the slip region may dictate the visibility of VLF signals in observed seismograms, which has implications for the mechanics of slow earthquakes and subduction zone processes.

  20. Holocene history of deep-seated landsliding in the North Fork Stillaguamish River valley from surface roughness analysis, radiocarbon dating, and numerical landscape evolution modeling

    NASA Astrophysics Data System (ADS)

    Booth, Adam M.; LaHusen, Sean R.; Duvall, Alison R.; Montgomery, David R.

    2017-02-01

    Documenting spatial and temporal patterns of past landsliding is a challenging step in quantifying the effect of landslides on landscape evolution. While landslide inventories can map spatial distributions, lack of dateable material, landslide reactivations, or time, access, and cost constraints generally limit dating large numbers of landslides to analyze temporal patterns. Here we quantify the record of the Holocene history of deep-seated landsliding along a 25 km stretch of the North Fork Stillaguamish River valley, Washington State, USA, including the 2014 Oso landslide, which killed 43 people. We estimate the ages of more than 200 deep-seated landslides in glacial sediment by defining an empirical relationship between landslide deposit age from radiocarbon dating and landslide deposit surface roughness. We show that roughness systematically decreases with age as a function of topographic wavelength, consistent with models of disturbance-driven soil transport. The age-roughness model predicts a peak in landslide frequency at 1000 calibrated (cal) years B.P., with very few landslide deposits older than 7000 cal years B.P. or younger than 100 cal years B.P., likely reflecting a combination of preservation bias and a complex history of changing climate, base level, and seismic shaking in the study area. Most recent landslides have occurred where channels actively interact with the toes of hillslopes composed of glacial sediments, suggesting that lateral channel migration is a primary control on the location of large deep-seated landslides in the valley.

  1. Hα Equivalent Widths from the 3D-HST survey: evolution with redshift and dependence on stellar mass†

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B.; Skelton, Rosalind E.; Whitaker, Katherine E.; Labbe, Ivo; Nelson, Erica

    2013-07-01

    We investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the HST-WFC3. Combining our Hα measurements of 854 galaxies at 0.8surveys at lower and higher redshift, we can consistently determine the evolution of the EW(Hα) distribution from z=0 to z=2.2. We find that at all masses the characteristic EW(Hα) is decreasing towards the present epoch, and that at each redshift the EW(Hα) is lower for high-mass galaxies. We find EW(Hα) ~ (1+z)1.8 with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star forming galaxies with redshift. A quantitative conversion of EW(Hα) to sSFR (specific star-formation rate) is model dependent, because of differential reddening corrections between the continuum and the Balmer lines. The observed EW(Hα) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z ~ 2.5 and then decreases to z = 0. This implies that EW(Hα) rises to 400 Å at z = 8. The sSFR evolves faster than EW(Hα), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1+z)3.2, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence.

  2. A Legacy Imaging Survey of M33.

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne

    2016-10-01

    We propose a panoramic imaging survey of M33 to extend the M31 PHAT survey to regions with 10x higher star formation intensity and markedly lower metallicity. Deep six-filter UV/optical/IR stellar photometry will provide (1) precision measurement of the high-mass IMF slope; (2) spatially-resolved maps of the recent star formation history (SFH) with 5-10 Myr resolution; (3) maps of the cool, dusty ISM with 25 pc resolution; (4) temperatures and luminosities for 15 million stars; (5) maps of extinction law variations; and (6) 1000 star clusters with well-measured ages and masses. We will combine these products with archival multi-wavelength data to elucidate the astrophysics of the interstellar medium (ISM). We will constrain the energetics of the ISM by linking the history of stellar energy input to the observed properties of the ISM; reconcile widely-used, but discrepant, dust emission models; disentangle the drivers that control dust composition; and measure lifetimes of molecular clouds. We will survey nearly all the molecular clouds and high extinction (A_V>1) regions in M33, as well as regimes of star formation rate intensity, spiral arm strength, metallicity, and ISM pressure that are distinct from those in comparable surveys of M31 and the Magellanic Clouds. This survey adds M33 to the Milky Way, M31, and Magellanic Clouds as the fundamental calibrators of ISM physics, star-formation processes, and stellar evolution. The resulting data set will be comprehensive, highly versatile, and have tremendous legacy value. This program can only be accomplished with HST.

  3. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey

    PubMed Central

    Xue, Yong; Chen, Shihui; Liu, Yong

    2017-01-01

    Molecular imaging enables the visualization and quantitative analysis of the alterations of biological procedures at molecular and/or cellular level, which is of great significance for early detection of cancer. In recent years, deep leaning has been widely used in medical imaging analysis, as it overcomes the limitations of visual assessment and traditional machine learning techniques by extracting hierarchical features with powerful representation capability. Research on cancer molecular images using deep learning techniques is also increasing dynamically. Hence, in this paper, we review the applications of deep learning in molecular imaging in terms of tumor lesion segmentation, tumor classification, and survival prediction. We also outline some future directions in which researchers may develop more powerful deep learning models for better performance in the applications in cancer molecular imaging. PMID:29114182

  4. The XXL Survey. VI. The 1000 brightest X-ray point sources

    NASA Astrophysics Data System (ADS)

    Fotopoulou, S.; Pacaud, F.; Paltani, S.; Ranalli, P.; Ramos-Ceja, M. E.; Faccioli, L.; Plionis, M.; Adami, C.; Bongiorno, A.; Brusa, M.; Chiappetti, L.; Desai, S.; Elyiv, A.; Lidman, C.; Melnyk, O.; Pierre, M.; Piconcelli, E.; Vignali, C.; Alis, S.; Ardila, F.; Arnouts, S.; Baldry, I.; Bremer, M.; Eckert, D.; Guennou, L.; Horellou, C.; Iovino, A.; Koulouridis, E.; Liske, J.; Maurogordato, S.; Menanteau, F.; Mohr, J. J.; Owers, M.; Poggianti, B.; Pompei, E.; Sadibekova, T.; Stanford, A.; Tuffs, R.; Willis, J.

    2016-06-01

    Context. X-ray extragalactic surveys are ideal laboratories for the study of the evolution and clustering of active galactic nuclei (AGN). Usually, a combination of deep and wide surveys is necessary to create a complete picture of the population. Deep X-ray surveys provide the faint population at high redshift, while wide surveys provide the rare bright sources. Nevertheless, very wide area surveys often lack the ancillary information available for modern deep surveys. The XXL survey spans two fields of a combined 50 deg2 observed for more than 6Ms with XMM-Newton, occupying the parameter space that lies between deep surveys and very wide area surveys; at the same time it benefits from a wealth of ancillary data. Aims: This paper marks the first release of the XXL point source catalogue including four optical photometry bands and redshift estimates. Our sample is selected in the 2 - 10 keV energy band with the goal of providing a sizable sample useful for AGN studies. The limiting flux is F2 - 10 keV = 4.8 × 10-14 erg s-1 cm-2. Methods: We use both public and proprietary data sets to identify the counterparts of the X-ray point-like sources by means of a likelihood ratio test. We improve upon the photometric redshift determination for AGN by applying a Random Forest classification trained to identify for each object the optimal photometric redshift category (passive, star forming, starburst, AGN, quasi-stellar objects (QSO)). Additionally, we assign a probability to each source that indicates whether it might be a star or an outlier. We apply Bayesian analysis to model the X-ray spectra assuming a power-law model with the presence of an absorbing medium. Results: We find that the average unabsorbed photon index is ⟨Γ⟩ = 1.85 ± 0.40 while the average hydrogen column density is log ⟨NH⟩ = 21.07 ± 1.2 cm-2. We find no trend of Γ or NH with redshift and a fraction of 26% absorbed sources (log NH> 22) consistent with the literature on bright sources (log

  5. The End of Protoplanetary Disk Evolution: An ALMA Survey of Upper Scorpius

    NASA Astrophysics Data System (ADS)

    Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Ricci, Luca; Isella, Andrea

    2017-01-01

    The evolution of the mass of solids in circumstellar disks is a key factor in determining how planets form. Infrared observations have established that the dust in primordial disks vanishes around the majority of stars by an age of 5-10 Myr. However, how this disappearance proceeds is poorly constrained. Only with longer wavelength observations, where the dust emission is optically thin, is it possible to measure disk dust mass and how it varies as a function of age. To this end, we have obtained ALMA 0.88 mm observations of over 100 sources with suspected circumstellar disks in the Upper Scorpius OB Association (Upper Sco). The 5-11 Myr age of Upper Sco suggests that any such disks will be quite evolved, making this association an ideal target to compare to systems of younger disks in order to study evolution. With ALMA, we achieve an order of magnitude improvement in sensitivity over previous (sub)millimeter surveys of Upper Sco and detect 58 disks in the continuum. We calculate the total dust masses of these disks and compare their masses to those of younger disks in Taurus, Lupus, and Chamaeleon. We find strong evidence for a decline in disk dust mass between these 1-3 Myr old systems and the 5-11 Myr old Upper Sco. Our results represent the first definitive measurement of a decline in disk dust mass with age.

  6. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg{sup 2} region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity ( L {sub X} ) of the pulsars ranges from 10{sup 34} to 10{sup 37} ergmore » s{sup −1} at 60 kpc. All of the Chandra sources with L {sub X} ≳ 4 × 10{sup 35} erg s{sup −1} exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).« less

  7. A Preliminary Analysis of Correlated Evolution in Mammalian Chewing Motor Patterns

    PubMed Central

    Williams, Susan H.; Vinyard, Christopher J.; Wall, Christine E.; Doherty, Alison H.; Crompton, Alfred W.; Hylander, William L.

    2011-01-01

    Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs’ Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and

  8. A preliminary analysis of correlated evolution in Mammalian chewing motor patterns.

    PubMed

    Williams, Susan H; Vinyard, Christopher J; Wall, Christine E; Doherty, Alison H; Crompton, Alfred W; Hylander, William L

    2011-08-01

    Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs' Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and the

  9. Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides.

    PubMed

    Gaither, Michelle R; Violi, Biagio; Gray, Howard W I; Neat, Francis; Drazen, Jeffrey C; Grubbs, R Dean; Roa-Varón, Adela; Sutton, Tracey; Hoelzel, A Rus

    2016-11-01

    Here we consider the role of depth as a driver of evolution in a genus of deep-sea fishes. We provide a phylogeny for the genus Coryphaenoides (Gadiformes: Macrouridae) that represents the breadth of habitat use and distributions for these species. In our consensus phylogeny species found at abyssal depths (>4000m) form a well-supported lineage, which interestingly also includes two non-abyssal species, C. striaturus and C. murrayi, diverging from the basal node of that lineage. Biogeographic analyses suggest the genus may have originated in the Southern and Pacific Oceans where contemporary species diversity is highest. The abyssal lineage seems to have arisen secondarily and likely originated in the Southern/Pacific Oceans but diversification of this lineage occurred in the Northern Atlantic Ocean. All abyssal species are found in the North Atlantic with the exception of C. yaquinae in the North Pacific and C. filicauda in the Southern Ocean. Abyssal species tend to have broad depth ranges and wide distributions, indicating that the stability of the deep oceans and the ability to live across wide depths may promote population connectivity and facilitate large ranges. We also confirm that morphologically defined subgenera do not agree with our phylogeny and that the Giant grenadier (formerly Albatrossia pectoralis) belongs to Coryphaenoides, indicating that a taxonomic revision of the genus is needed. We discuss the implications of our findings for understanding the radiation and diversification of this genus, and the likely role of adaptation to the abyss. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Documentation for the machine-readable version of a deep objective-prism survey for large Magellanic cloud members

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1982-01-01

    This catalog contains 1273 proven or probable Large Magellanic Cloud (LMC) members, as found on deep objective-prism plates taken with the Curtis Schmidt telescope at Cerro Tololo Inter-American Observatory in Chile. The stars are generally brighter than about photographic magnitude 14. Approximate spectral types were determined by examination of the 580 A/mm objective-prism spectra; approximate 1975 positions were obtained by measuring relative to the 1975 coordinate grids on the Uppsala-Mount Stromlo Atlas of the LMC (Gascoigne and Westerlund 1961), and approximate photographic magnitudes were determined by averaging image density measures from the plates and image-diameter measures on the 'B' charts. The machine-readable version of the LMC survey catalog is described to enable users to read and process the tape file without problems or guesswork.

  11. "Whoa! We're Going Deep in the Trees!": Patterns of Collaboration around an Interactive Information Visualization Exhibit

    ERIC Educational Resources Information Center

    Davis, Pryce; Horn, Michael; Block, Florian; Phillips, Brenda; Evans, E. Margaret; Diamond, Judy; Shen, Chia

    2015-01-01

    In this paper we present a qualitative analysis of natural history museum visitor interaction around a multi-touch tabletop exhibit called "DeepTree" that we designed around concepts of evolution and common descent. DeepTree combines several large scientific datasets and an innovative visualization technique to display a phylogenetic…

  12. Evolution education in Canada's museums: Where is human evolution?

    NASA Astrophysics Data System (ADS)

    Bean, Sarah

    While an interest in the origin of human beings may be a cultural universal, there are various views and beliefs about how this event took place. In Canada, a recent (2010) Angus Reid survey revealed that only 61% of Canadians accepted that humans evolved over millions of years; 39% of the population either believed in creationism or did not accept evolution as a scientific fact. These statistics suggest that human evolution education is a topic that needs to be addressed. This thesis investigates the role of museums in public education about human evolution. Prior to this study, the number of Canadian museums with exhibits about this topic was unknown. Sixteen Canadian museums participated in this study, and the results demonstrated that only two had permanent exhibits on human evolution, and one creationist museum presented a biblically-based account of human origins. Here, it is argued that more of Canada's museums should consider incorporating human evolution education into their mandates.

  13. Groth Deep Locations Image

    NASA Image and Video Library

    2003-07-25

    NASA's Galaxy Evolution Explorer photographed this ultraviolet color blowup of the Groth Deep Image on June 22 and June 23, 2003. Hundreds of galaxies are detected in this portion of the image, and the faint red galaxies are believed to be 6 billion light years away. The white boxes show the location of these distant galaxies, of which more than a 100 can be detected in this image. NASA astronomers expect to detect 10,000 such galaxies after extrapolating to the full image at a deeper exposure level. http://photojournal.jpl.nasa.gov/catalog/PIA04626

  14. The NASA SETI sky survey - Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, Michael J.; Gulkis, Samuel; Olsen, Edward T.; Renzetti, Nicholas A.

    1988-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complimentary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory have primary responsibility to develop and carry out the sky survey part of the Microwave Observing Project. The paper describes progress that has been made to develop the major elements of the survey including a two-million channel wideband spectrum analyzer system that is being developed and constructed by JPL for the Deep Space Network. The new system will be a multiuser instrument that will serve as a prototype for the SETI Sky Survey processor. This system will be used to test the signal detection and observational strategies on deep-space network antennas in the near future.

  15. Preface to "Insights into the Earth's Deep Lithosphere"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasyanos, M E

    Dear Readers: I am pleased to present a special issue of Tectonophysics entitled 'Insights into the Earth's Deep Lithosphere.' This compilation sought to capture the flavor of the increasing number of studies that are emerging to investigate the complex lithospheric structure of the earth. This issue evolved out of a Fall 2007 AGU special session entitled 'Understanding the Earth's Deep Lithosphere' that I organized with Irina Artemieva from the University of Copenhagen. For that session, we solicited talks that discussed the increasing number of methods that have surfaced to study various aspects of the earth's deep lithosphere. These methods includemore » seismic, gravity, thermal, geochemical, and various combinations of these methods. The quality of the presentations (2 oral sessions with 16 talks and 23 associated poster presentations) was such that we felt that the emerging topic deserved a dedicated forum to address these questions in greater detail. The availability of new data sets has also improved the number and quality of lithospheric studies. With many new studies and methodologies, a better understanding of both continental and oceanic lithospheres is starting to emerge. Questions remain about the thickness and evolution of the lithosphere, the presence of lithospheric keels, the density and anisotropy of lithospheric roots, mechanisms of lithospheric thinning, and differences between mechanical, thermal and chemical boundary layers. While we did not get contributions on the full gamut of methods and regions, a lot of ground was covered in this issue's manuscripts. Like any collection of papers on the deep lithosphere, the topics are quite varied in methodology, geographic location, and what aspect of the lithosphere being studied. Still, the results highlight the rewarding aspects of earth structure, history, and evolution that can be gleaned. A brief synopsis of the papers contained in this issue is given.« less

  16. Galaxy evolution in clusters since z~1

    NASA Astrophysics Data System (ADS)

    Aragon-Salamanca, Alfonso

    2010-09-01

    Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  17. Galaxy Evolution in Clusters Since z ~ 1

    NASA Astrophysics Data System (ADS)

    Aragón-Salamanca, A.

    Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the Universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  18. Combining bathymetry, latitude, and phylogeny to understand the distribution of deep Atlantic hydroids (Cnidaria)

    NASA Astrophysics Data System (ADS)

    Fernandez, Marina O.; Marques, Antonio C.

    2018-03-01

    Water depth is associated with significant environmental changes and gradients that, together with biotic, geological, and evolutionary processes, define bathymetric ranges of individuals, populations, species, and even communities. However, inferences on bathymetric ranges of marine invertebrates are usually based on a few taxa or on restricted regional scales. In this study, we present a comprehensive literature survey of hydroids for the Atlantic Ocean and adjacent Arctic and Antarctic seas for records deeper than 50 m. We used these records in bathymetrical analyses along latitude and compared major patterns under an evolutionary framework. Our results show that hydroids are frequent inhabitants of the deep sea with mainly eurybathic species that extend their distributions from shallower to deeper waters, being rarely exclusively bathyal or abyssal. We also found increasing bathymetric ranges with mean depths of occurrence of the species for both families and regions. Moreover, vertical distribution proved to be taxonomically and regionally dependent, with reduced eurybathy in "Antarctic" species but increased eurybathy in "Tropical" and "Subtropical North" regions. Data also support early colonization of the deep sea in the evolution of the group. Finally, the unequal number of records across latitudes, scant at Equatorial and southern Tropical latitudes, provides evidence to the historically uneven sampling effort in the different regions of the Atlantic.

  19. The Subaru/XMM-Newton Deep Survey (SXDS). V. Optically Faint Variable Object Survey

    NASA Astrophysics Data System (ADS)

    Morokuma, Tomoki; Doi, Mamoru; Yasuda, Naoki; Akiyama, Masayuki; Sekiguchi, Kazuhiro; Furusawa, Hisanori; Ueda, Yoshihiro; Totani, Tomonori; Oda, Takeshi; Nagao, Tohru; Kashikawa, Nobunari; Murayama, Takashi; Ouchi, Masami; Watson, Mike G.; Richmond, Michael W.; Lidman, Christopher; Perlmutter, Saul; Spadafora, Anthony L.; Aldering, Greg; Wang, Lifan; Hook, Isobel M.; Knop, Rob A.

    2008-03-01

    We present our survey for optically faint variable objects using multiepoch (8-10 epochs over 2-4 years) i'-band imaging data obtained with Subaru Suprime-Cam over 0.918 deg2 in the Subaru/XMM-Newton Deep Field (SXDF). We found 1040 optically variable objects by image subtraction for all the combinations of images at different epochs. This is the first statistical sample of variable objects at depths achieved with 8-10 m class telescopes or the Hubble Space Telescope. The detection limit for variable components is i'vari ~ 25.5 mag. These variable objects were classified into variable stars, supernovae (SNe), and active galactic nuclei (AGNs), based on the optical morphologies, magnitudes, colors, and optical-mid-infrared colors of the host objects, spatial offsets of variable components from the host objects, and light curves. Detection completeness was examined by simulating light curves for periodic and irregular variability. We detected optical variability for 36% +/- 2% (51% +/- 3% for a bright sample with i' < 24.4 mag) of X-ray sources in the field. Number densities of variable objects as functions of time intervals Δ t and variable component magnitudes i'vari are obtained. Number densities of variable stars, SNe, and AGNs are 120, 489, and 579 objects deg-2, respectively. Bimodal distributions of variable stars in the color-magnitude diagrams indicate that the variable star sample consists of bright (V ~ 22 mag) blue variable stars of the halo population and faint (V ~ 23.5 mag) red variable stars of the disk population. There are a few candidates of RR Lyrae providing a possible number density of ~10-2 kpc-3 at a distance of >150 kpc from the Galactic center. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations (program GN-2002B-Q-30) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a

  20. The MUSE Hubble Ultra Deep Field Survey. II. Spectroscopic redshifts and comparisons to color selections of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Inami, H.; Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Conseil, S.; Hamer, S.; Akhlaghi, M.; Bouché, N.; Clément, B.; Desprez, G.; Drake, A. B.; Hashimoto, T.; Leclercq, F.; Maseda, M.; Michel-Dansac, L.; Paalvast, M.; Tresse, L.; Ventou, E.; Kollatschny, W.; Boogaard, L. A.; Finley, H.; Marino, R. A.; Schaye, J.; Wisotzki, L.

    2017-11-01

    We have conducted a two-layered spectroscopic survey (1' × 1' ultra deep and 3' × 3' deep regions) in the Hubble Ultra Deep Field (HUDF) with the Multi Unit Spectroscopic Explorer (MUSE). The combination of a large field of view, high sensitivity, and wide wavelength coverage provides an order of magnitude improvement in spectroscopically confirmed redshifts in the HUDF; i.e., 1206 secure spectroscopic redshifts for Hubble Space Telescope (HST) continuum selected objects, which corresponds to 15% of the total (7904). The redshift distribution extends well beyond z> 3 and to HST/F775W magnitudes as faint as ≈ 30 mag (AB, 1σ). In addition, 132 secure redshifts were obtained for sources with no HST counterparts that were discovered in the MUSE data cubes by a blind search for emission-line features. In total, we present 1338 high quality redshifts, which is a factor of eight increase compared with the previously known spectroscopic redshifts in the same field. We assessed redshifts mainly with the spectral features [O II] at z< 1.5 (473 objects) and Lyα at 2.9 deep and 25.5 mag for deep fields, and the completeness remains ≳ 20% up to 28-29 mag and ≈ 27 mag, respectively. We used the determined redshifts to test continuum color selection (dropout) diagrams of high-z galaxies. The selection condition for F336W dropouts successfully captures ≈ 80% of the targeted z 2.7 galaxies. However, for higher redshift selections (F435W, F606W, and F775W dropouts), the success rates decrease to ≈ 20-40%. We empirically redefine the selection boundaries to make an attempt to improve them to ≈ 60%. The revised boundaries allow bluer colors that capture Lyα emitters with high Lyα equivalent widths falling in the broadbands used for the color-color selection. Along with this paper, we release the redshift and line flux catalog. Based on observations made with

  1. Processes governing transient responses of the deep ocean buoyancy budget to a doubling of CO2

    NASA Astrophysics Data System (ADS)

    Palter, J. B.; Griffies, S. M.; Hunter Samuels, B. L.; Galbraith, E. D.; Gnanadesikan, A.

    2012-12-01

    Recent observational analyses suggest there is a temporal trend and high-frequency variability in deep ocean buoyancy in the last twenty years, a phenomenon reproduced even in low-mixing models. Here we use an earth system model (GFDL's ESM2M) to evaluate physical processes that influence buoyancy (and thus steric sea level) budget of the deep ocean in quasi-steady state and under a doubling of CO2. A new suite of model diagnostics allows us to quantitatively assess every process that influences the buoyancy budget and its temporal evolution, revealing surprising dynamics governing both the equilibrium budget and its transient response to climate change. The results suggest that the temporal evolution of the deep ocean contribution to sea level rise is due to a diversity of processes at high latitudes, whose net effect is then advected in the Eulerian mean flow to mid and low latitudes. In the Southern Ocean, a slowdown in convection and spin up of the residual mean advection are approximately equal players in the deep steric sea level rise. In the North Atlantic, the region of greatest deep steric sea level variability in our simulations, a decrease in mixing of cold, dense waters from the marginal seas and a reduction in open ocean convection causes an accumulation of buoyancy in the deep subpolar gyre, which is then advected equatorward.

  2. The XMM-SERVS Survey: first results in the 5 deg^2 XMM-LSS region

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Ting; Brandt, William; Luo, Bin; X-SERVS team

    2018-01-01

    We present an X-ray source catalog obtained with XMM-Newton in the XMM-LSS region as part of the X-SERVS survey (XMM-SERVS-LSS), which aims to expand the parameter space of current X-ray surveys with medium-deep X-ray observations in multiple large fields with superb multiwavelength coverage. Within the 5 deg$^2$ XMM-SERVS-LSS field, we combine the 1.3 Ms XMM observations allocated at XMM AO-15 with archival data, and identified 5218 X-ray sources of which 2400 are new sources. We reach $1.2\\times10^{-15}$ erg s$^{-1} cm$^{-1}$ for 50\\% of the area, which is comparable to the XMM-COSMOS survey but with 2.5 times more sources. We also present multiwavelength identifications, basic photometric properties, and spectroscopic redshifts obtained from the literature. These data, combined with the existing data from COSMOS, will enable a wide range of science on AGN evolution, including studying SMBH growth across the full range of cosmic environments and minimizing cosmic variance.

  3. Protective Benefits of Deep Tube Wells Against Childhood Diarrhea in Matlab, Bangladesh

    PubMed Central

    Winston, Jennifer Jane; Escamilla, Veronica; Perez-Heydrich, Carolina; Carrel, Margaret; Yunus, Mohammad; Streatfield, Peter Kim

    2013-01-01

    Objectives. We investigated whether deep tube wells installed to provide arsenic-free groundwater in rural Bangladesh have the added benefit of reducing childhood diarrheal disease incidence. Methods. We recorded cases of diarrhea in children younger than 5 years in 142 villages of Matlab, Bangladesh, during monthly community health surveys in 2005 and 2006. We surveyed the location and depth of 12 018 tube wells and integrated these data with diarrhea data and other data in a geographic information system. We fit a longitudinal logistic regression model to measure the relationship between childhood diarrhea and deep tube well use. We controlled for maternal education, family wealth, year, and distance to a deep tube well. Results. Household clusters assumed to be using deep tube wells were 48.7% (95% confidence interval = 27.8%, 63.5%) less likely to have a case of childhood diarrhea than were other household clusters. Conclusions. Increased access to deep tube wells may provide dual benefits to vulnerable populations in Matlab, Bangladesh, by reducing the risk of childhood diarrheal disease and decreasing exposure to naturally occurring arsenic in groundwater. PMID:23409905

  4. Deep-Sea Coral Image Catalog: Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Freed, J. C.

    2016-02-01

    In recent years, deep-sea exploration in the Northeast Pacific ocean has been on the rise using submersibles and remotely operated vehicles (ROVs), acquiring a plethora of underwater videos and photographs. Analysis of deep-sea fauna revealed by this research has been hampered by the lack of catalogs or guides that allow identification of species in the field. Deep-sea corals are of particular conservation concern, but currently, there are few catalogs which describe and provide detailed information on deep-sea corals from the Northeast Pacific and those that exist are focused on small, specific areas. This project, in collaboration with NOAA's Deep-Sea Coral Ecology Laboratory at the Center for Coastal Environmental Health and Biomolecular Research (CCEHBR) and the Southwest Fisheries Science Center (SWFSC), developed pages for a deep-sea coral identification guide that provides photos and information on the visual identification, distributions, and habitats of species found in the Northeast Pacific. Using online databases, photo galleries, and literature, this catalog has been developed to be a living document open to future additions. This project produced 12 entries for the catalog on a variety of different deep-sea corals. The catalog is intended to be used during underwater surveys in the Northeast Pacific, but will also assist in identification of deep-sea coral by-catch by fishing vessels, and for general educational use. These uses will advance NOAA's ability to identify and protect sensitive deep-sea habitats that act as biological hotspots. The catalog is intended to be further developed into an online resource with greater interactive features with links to other resources and featured on NOAA's Deep-Sea Coral Data Portal.

  5. Transcriptome sequences resolve deep relationships of the grape family.

    PubMed

    Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M; Gerrath, Jean; Zimmer, Elizabeth A; Fang, Xiao-Dong

    2013-01-01

    Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.

  6. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padovani, P.; Mainieri, V.; Rosati, P.

    2011-10-10

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 {mu}Jy at the field center and redshift {approx}5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijanskymore » radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P {approx}> 3 x 10{sup 24} W Hz{sup -1}) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for {approx}30% of the sample and {approx}60% of all AGNs, and outnumbering radio-loud AGNs at {approx}< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.« less

  7. Cancer in Light of Experimental Evolution

    PubMed Central

    Sprouffske, Kathleen; Merlo, Lauren M.F.; Gerrish, Philip J.; Maley, Carlo C.; Sniegowski, Paul D.

    2012-01-01

    Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas. PMID:22975007

  8. Deep Drawing Simulations With Different Polycrystalline Models

    NASA Astrophysics Data System (ADS)

    Duchêne, Laurent; de Montleau, Pierre; Bouvier, Salima; Habraken, Anne Marie

    2004-06-01

    The goal of this research is to study the anisotropic material behavior during forming processes, represented by both complex yield loci and kinematic-isotropic hardening models. A first part of this paper describes the main concepts of the `Stress-strain interpolation' model that has been implemented in the non-linear finite element code Lagamine. This model consists of a local description of the yield locus based on the texture of the material through the full constraints Taylor's model. The texture evolution due to plastic deformations is computed throughout the FEM simulations. This `local yield locus' approach was initially linked to the classical isotropic Swift hardening law. Recently, a more complex hardening model was implemented: the physically-based microstructural model of Teodosiu. It takes into account intergranular heterogeneity due to the evolution of dislocation structures, that affects isotropic and kinematic hardening. The influence of the hardening model is compared to the influence of the texture evolution thanks to deep drawing simulations.

  9. Research and Teaching About the Deep Earth

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Mogk, David W.; McDaris, John

    2010-08-01

    Understanding the Deep Earth: Slabs, Drips, Plumes and More; Virtual Workshop, 17-19 February and 24-26 February 2010; Images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring new excitement about deep-Earth processes and connections between Earth's internal systems and plate tectonics. The new results and the steady progress of Earthscope's USArray across the country are also providing a special opportunity to reach students and the general public. The pace of discoveries about the deep Earth is accelerating due to advances in experimental, modeling, and sensing technologies; new data processing capabilities; and installation of new networks, especially the EarthScope facility. EarthScope is an interdisciplinary program that combines geology and geophysics to study the structure and evolution of the North American continent. To explore the current state of deep-Earth science and ways in which it can be brought into the undergraduate classroom, 40 professors attended a virtual workshop given by On the Cutting Edge, a program that strives to improve undergraduate geoscience education through an integrated cooperative series of workshops and Web-based resources. The 6-day two-part workshop consisted of plenary talks, large and small group discussions, and development and review of new classroom and laboratory activities.

  10. SXDF-UDS-CANDELS-ALMA 1.5 arcmin2 deep survey

    NASA Astrophysics Data System (ADS)

    Kohno, Kotaro; Tamura, Yoichi; Yamaguchi, Yuki; Umehata, Hideki; Rujopakarn, Wiphu; Lee, Minju; Motohara, Kentaro; Makiya, Ryu; Izumi, Takuma; Ivison, Rob; Ikarashi, Soh; Tadaki, Ken-ichi; Kodama, Tadayuki; Hatsukade, Bunyo; Yabe, Kiyoto; Hayashi, Masao; Iono, Daisuke; Matsuda, Yuichi; Nakanishi, Kouichiro; Kawabe, Ryohei; Wilson, Grant; Yun, Min S.; Hughes, David; Caputi, Karina; Dunlop, James

    2015-08-01

    We have conducted 1.1 mm ALMA observations of a contiguous 105″ × 50″ or 1.5 arcmin2 window (achieved by 19 point mosaic) in the SXDF-UDS-CANDELS. We achieved a 5σ sensitivity of 0.28 mJy, giving a flat sensus of dusty star-forming galaxies with LIR ~6 × 1011 L⊙ (if Tdust = 40 K) or SFR ~100 M⊙ yr-1 up to z~10 thanks to the negative K-correction at this wavelength. We detect 5 brightest sources (S/N>6) and 18 low-significant sources (5 > S/N > 4; they may contain spurious detections, though) in the field. We find that these discrete sources are responsible for a faint filamentary emission seen in low-resolution (~30″) heavily confused AzTEC 1.1mm and SPIRE 0.5mm images. One of the 5 brightest ALMA sources is very dark in deep WFC3 and HAWK-I NIR images as well as VLA 1.4 GHz images, demonstrating that deep ALMA imaging can unveil new obscured star-forming galaxy population.

  11. Comparative studies of placentation and immunology in non-human primates suggest a scenario for the evolution of deep trophoblast invasion and an explanation for human pregnancy disorders.

    PubMed

    Carter, Anthony M

    2011-04-01

    Deep trophoblast invasion in the placental bed has been considered the hallmark of human pregnancy. It occurs by two routes, interstitial and endovascular, and results in transformation of the walls of the spiral arteries as they traverse the decidua and the inner third of the myometrium. Disturbances in this process are associated with reproductive disorders such preeclampsia. In contrast, trophoblast invasion in Old World monkeys occurs only by the endovascular route and seldom reaches the myometrium. Recently, it was shown that this pattern is maintained in gibbons, but that the human arrangement also occurs in chimpanzee and gorilla. There is an interesting parallel with results from placental immunology regarding the evolution of the major histocompatability complex class I antigen HLA-C and its cognate receptors. HLA-C is not present in Old World monkeys or gibbons. It emerged in the orangutan and became polymorphic in the lineage leading to gorilla, bonobo, chimpanzee, and human. Interaction between HLA-C1 and HLA-C2 on the surface of trophoblast and killer immunoglobulin-like receptors (KIRs) expressed by uterine natural killer cells are important regulators of trophoblast invasion. Evolution of this system in great apes may have been one prerequisite for deep trophoblast invasion but seems to have come at a price. The evidence now suggests that certain combinations of maternal genotype for KIRs and fetal genotype for HLA-C imply an increased risk of preeclampsia, fetal growth restriction, and recurrent abortion. The fetal genotype is in part derived from the father providing an explanation for the paternal contribution to reproductive disorders.

  12. Constraining the inferred paleohydrologic evolution of a deep unsaturated zone in the Amargosa Desert

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Stonestrom, David A.; Andraski, Brian J.; Striegl, Robert G.

    2004-01-01

    Natural flow regimes in deep unsaturated zones of arid interfluvial environments are rarely in hydraulic equilibrium with near-surface boundary conditions imposed by present-day plant–soil–atmosphere dynamics. Nevertheless, assessments of water resources and contaminant transport require realistic estimates of gas, water, and solute fluxes under past, present, and projected conditions. Multimillennial transients that are captured in current hydraulic, chemical, and isotopic profiles can be interpreted to constrain alternative scenarios of paleohydrologic evolution following climatic and vegetational shifts from pluvial to arid conditions. However, interpreting profile data with numerical models presents formidable challenges in that boundary conditions must be prescribed throughout the entire Holocene, when we have at most a few decades of actual records. Models of profile development at the Amargosa Desert Research Site include substantial uncertainties from imperfectly known initial and boundary conditions when simulating flow and solute transport over millennial timescales. We show how multiple types of profile data, including matric potentials and porewater concentrations of Cl−, δD, δ18O, can be used in multiphase heat, flow, and transport models to expose and reduce uncertainty in paleohydrologic reconstructions. Results indicate that a dramatic shift in the near-surface water balance occurred approximately 16000 yr ago, but that transitions in precipitation, temperature, and vegetation were not necessarily synchronous. The timing of the hydraulic transition imparts the largest uncertainty to model-predicted contemporary fluxes. In contrast, the uncertainties associated with initial (late Pleistocene) conditions and boundary conditions during the Holocene impart only small uncertainties to model-predicted contemporaneous fluxes.

  13. Deep Spitzer/IRAC Imaging of the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; Egami, Eiichi; Cohen, Seth; Fan, Xiaohui; Ly, Chun; Mechtley, Matthew; Windhorst, Rogier

    2013-10-01

    The last decade saw great progress in our understanding of the distant Universe as a number of objects at z > 6 were discovered. The Subaru Deep Field (SDF) project has played an important role on study of high-z galaxies. The SDF is unique: it covers a large area of 850 sq arcmin; it has extremely deep optical images in a series of broad and narrow bands; it has the largest sample of spectroscopically-confirmed galaxies known at z >= 6, including ~100 Lyman alpha emitters (LAEs) and ~50 Lyman break galaxies (LBGs). Here we propose to carry out deep IRAC imaging observations of the central 75% of the SDF. The proposed observations together with those from our previous Spitzer programs will reach a depth of ~10 hours, and enable the first complete census of physical properties and stellar populations of spectroscopically-confirmed galaxies at the end of cosmic reionization. IRAC data is the key to measure stellar masses and constrain stellar populations in high-z galaxies. From SED modeling with secure redshifts, we will characterize the physical properties of these galaxies, and trace their mass assembly and star formation history. In particular, it allows us, for the first time, to study stellar populations in a large sample of z >=6 LAEs. We will also address some critical questions, such as whether LAEs and LBGs represent physically different galaxy populations. All these will help us to understand the earliest galaxy formation and evolution, and better constrain the galaxy contribution to reionization. The IRAC data will also cover 10,000 emission-line selected galaxies at z < 1.5, 50,000 UV and mass selected LBGs at 1.5 < z < 3, and more than 5,000 LBGs at 3 < z < 6. It will have a legacy value for SDF-related programs.

  14. Evolutionary process of deep-sea bathymodiolus mussels.

    PubMed

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular

  15. M Dwarf Activity in the Pan-STARRS1 Medium-Deep Survey: First Catalog and Rotation Periods

    NASA Astrophysics Data System (ADS)

    Kado-Fong, E.; Williams, P. K. G.; Mann, A. W.; Berger, E.; Burgett, W. S.; Chambers, K. C.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Rest, A.; Wainscoat, R. J.; Waters, C.

    2016-12-01

    We report on an ongoing project to investigate activity in the M dwarf stellar population observed by the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). Using a custom-built pipeline, we refine an initial sample of ˜4 million sources in PS1-MDS to a sample of 184,148 candidate cool stars using color cuts. Motivated by the well-known relationship between rotation and stellar activity, we use a multiband periodogram analysis and visual vetting to identify 270 sources that are likely rotating M dwarfs. We derive a new set of polynomials relating M dwarf PS1 colors to fundamental stellar parameters and use them to estimate the masses, distances, effective temperatures, and bolometric luminosities of our sample. We present a catalog containing these values, our measured rotation periods, and cross-matches to other surveys. Our final sample spans periods of ≲1-130 days in stars with estimated effective temperatures of ˜2700-4000 K. Twenty-two of our sources have X-ray cross-matches, and they are found to be relatively X-ray bright as would be expected from selection effects. Our data set provides evidence that Kepler-based searches have not been sensitive to very slowly rotating stars (P rot ≳ 70 day), implying that the observed emergence of very slow rotators in studies of low-mass stars may be a systematic effect. We also see a lack of low-amplitude (<2%) variability in objects with intermediate (10-40 day) rotation periods, which, considered in conjunction with other observational results, may be a signpost of a loss of magnetic complexity associated with a phase of rapid spin-down in intermediate-age M dwarfs. This work represents just a first step in exploring stellar variability in data from the PS1-MDS and, in the farther future, Large Synoptic Survey Telescope.

  16. The first complete mitogenome of the South China deep-sea giant isopod Bathynomus sp. (Crustacea: Isopoda: Cirolanidae) allows insights into the early mitogenomic evolution of isopods.

    PubMed

    Shen, Yanjun; Kou, Qi; Zhong, Zaixuan; Li, Xinzheng; He, Lisheng; He, Shunping; Gan, Xiaoni

    2017-03-01

    In this study, the complete mitochondrial (mt) genome sequence of the South China deep-sea giant isopod Bathynomus sp. was determined, and this study is the first to explore in detail the mt genome of a deep-sea member of the order Isopoda. This species belongs to the genus Bathynomus , the members of which are saprophagous residents of the deep-sea benthic environment; based on their large size, Bathynomus is included in the "supergiant group" of isopods. The mt genome of Bathynomus sp. is 14,965 bp in length and consists of 13 protein-coding genes, two ribosomal RNA genes, only 18 transfer RNA genes, and a noncoding control region 362 bp in length, which is the smallest control region discovered in Isopoda to date. Although the overall genome organization is typical for metazoans, the mt genome of Bathynomus sp. shows a number of derived characters, such as an inversion of 10 genes when compared to the pancrustacean ground pattern. Rearrangements in some genes (e.g., cob , trnT , nad5, and trnF ) are shared by nearly all isopod mt genomes analyzed thus far, and when compared to the putative isopod ground pattern, five rearrangements were found in Bathynomus sp. Two tRNAs exhibit modified secondary structures: The TΨC arm is absent from trnQ , and trnC lacks the DHU. Within the class Malacostraca, trnC arm loss is only found in other isopods. Phylogenetic analysis revealed that Bathynomus sp. (Cymothoida) and Sphaeroma serratum (Sphaeromatidea) form a single clade, although it is unclear whether Cymothoida is monophyletic or paraphyletic. Moreover, the evolutionary rate of Bathynomus sp. (dN/dS [nonsynonymous mutational rate/synonymous mutational rate] = 0.0705) is the slowest measured to date among Cymothoida, which may be associated with its relatively constant deep-sea environment. Overall, our results may provide useful information for understanding the evolution of deep-sea Isopoda species.

  17. The Swift GRB Host Galaxy Legacy Survey

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.

    2015-01-01

    I introduce the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelength program to characterize the demographics of the GRB host population across its entire redshift range. Using unbiased selection criteria we have designated a subset of 130 Swift gamma-ray bursts which are now being targeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained and analyzed, with major programs ongoing at Keck, GTC, and Gemini to obtain complementary optical/NIR photometry to enable full SED modeling and derivation of fundamental physical parameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiased measurement of the GRB host-galaxy luminosity and mass functions and their evolution with redshift between z=0 and z=5, compare GRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor and the ability of GRBs to probe cosmic star-formation.

  18. Supernova Remnants in the UWIFE and UWISH2 Surveys

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Hyun; Koo, Bon-Chul; Lee, Jae-Joon

    2016-06-01

    We have searched for near-infrared [Fe II] (1.644 µm) and H2 1-0 S(1) (2.122 µm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE/ UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2). Both surveys cover about 180 square degrees of the first Galactic quadrant (7° < l < 62°; -1.5° < b < +1.5°), and a total of 79 SNRs are falling in the survey area among the currently known 294 Galactic SNRs. The images show diffuse structures as deep as the surface brightness limit of 10-19 W m-2 arcsec-2 which is comparable with a 5σ detection limit of point sources of 18 mag. In order to inspect the narrow-band features, we subtracted H and K-band continuum images obtained from the UKIDSS GPS (UKIRT Infrared Deep Sky Survey of the Galactic Plane) from the [Fe II] and H2 narrow-band images, respectively. By this time, we have found 19 [Fe II]- and 18 H2-emitting SNRs, and these are likely to increase in future as we inspect the images in more detail. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. Since [Fe II] and H2 lines trace dense atomic and molecular gases associated with SNR shocks, our results can help us understand the environment and evolution of individual SNRs. Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. This is opposite to the standard picture: If the shocks are driven by the same blast wave, we expect the H2 filaments to be closer to the explosion center than the [Fe II] filaments. In this presentation, we show several examples of such SNRs detected in our study, and present high resolution (R ˜ 40,000) H and K-band spectra of H2 emission features obtained by using IGRINS (Immersion Grating Infrared Spectrograph).

  19. Supernova Remnants in the UWIFE and UWISH2 Surveys

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Hyun

    2016-06-01

    We have searched for near-infrared [Fe II] (1.644 μm) and H2 1-0 S(1) (2.122 μm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE/ UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2 ). Both surveys cover about 180 square degrees of the first Galactic quadrant (7 {circ} < l < 62 {circ} ; -1.5 {circ} < b < +1.5 {circ} ), and a total of 79 SNRs are falling in the survey area among the currently known 294 Galactic SNRs. The images show diffuse structures as deep as the surface brightness limit of 10^(-19) W m^(-2) arcsec^(-2) which is comparable with a 5σ detection limit of point sources of 18 mag. In order to inspect the narrow-band features, we subtracted H and K-band continuum images obtained from the UKIDSS GPS (UKIRT Infrared Deep Sky Survey of the Galactic Plane) from the [Fe II] and H2 narrow-band images, respectively. By this time, we have found 19 [Fe II]- and 18 H2 -emitting SNRs, and these are likely to increase in future as we inspect the images in more detail. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. Since [Fe II] and H2 lines trace dense atomic and molecular gases associated with SNR shocks, our results can help us understand the environment and evolution of individual SNRs. Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. This is opposite to the standard picture: If the shocks are driven by the same blast wave, we expect the H2 filaments to be closer to the explosion center than the [Fe II] filaments. In this presentation, we show several examples of such SNRs detected in our study, and present high resolution (R 40,000) H and K-band spectra of H2 emission features obtained by using IGRINS (Immersion Grating Infrared Spectrograph).

  20. Ecohydrology of Deep Fractured Rocks at Homestake DUSEL

    NASA Astrophysics Data System (ADS)

    Kieft, T. L.; Boutt, D. F.; Murdoch, L. C.; Wang, H. F.

    2009-12-01

    The Deep Underground Science and Engineering Laboratory (DUSEL) at Homestake in SD will provide an unprecedented opportunity to study the terrestrial subsurface. Such a study could fundamentally change the way we view the origin and early evolution of life on Earth, the search for novel materials, and the generation of energy. Knowledge of subsurface life has come from only a few boreholes and deep mines. DUSEL will enable the first detailed study of a deep ecosystem in the context of the hydrology, geochemistry, and rock system state that sustain it. We are guided by the over-arching question: What controls the distribution and evolution of subsurface life? Our hypothesis is that these controls are dominated by processes related to geology, geochemistry, geomechanics, and hydrology. Themes of scaling and the development of facies, or zones of similar characteristics cut across all the processes. The ecohydrologic setting of DUSEL Homestake is characterized by a vast expanse of fractured metamorphic rock cut by 100s of km of tunnels and boreholes. Many km3 of the region have been highly affected by mining activities; adjacent regions are partially desaturated; and more distal regions are pristine and presumed to harbor indigenous microbial ecosystems. Simulations along with descriptions of the mine suggest division into zones, or ecohydrologic facies, where essential characteristics related to the requirements for life are expected to be similar. These ecohydrologic facies are a primary organizing principle for our investigation. The Deep EcoHydrology Experiment will consist of field studies supported by numerical simulations. The experimental activities include a particularly exciting opportunity to probe the lower limits of the biosphere using deep drilling technology deployed from the lowest reaches of the facility (2440 m below the surface). The use of the flooding/dewatering event as a tracer combined with hydrologic and mechanical stressors form a theme that

  1. Hα Equivalent Widths from the 3D-HST Survey: Evolution with Redshift and Dependence on Stellar Mass

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B.; Skelton, Rosalind E.; Whitaker, Katherine E.; Labbe, Ivo; Nelson, Erica

    2012-10-01

    We investigate the evolution of the Hα equivalent width, EW(Hα), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the Hubble Space Telescope Wide Field Camera 3. Combining our Hα measurements of 854 galaxies at 0.8 < z < 1.5 with those of ground-based surveys at lower and higher redshift, we can consistently determine the evolution of the EW(Hα) distribution from z = 0 to z = 2.2. We find that at all masses the characteristic EW(Hα) is decreasing toward the present epoch, and that at each redshift the EW(Hα) is lower for high-mass galaxies. We find EW(Hα) ~(1 + z)1.8 with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star-forming galaxies with redshift. A quantitative conversion of EW(Hα) to specific star formation rate (sSFR) is model dependent because of differential reddening corrections between the continuum and the Balmer lines. The observed EW(Hα) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z ~ 2.5 and then decreases to z = 0. This implies that EW(Hα) rises to 400 Å at z = 8. The sSFR evolves faster than EW(Hα), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1 + z)3.2, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 12177, 12328.

  2. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    NASA Technical Reports Server (NTRS)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  3. Long-term conditioning of deep-seated rockslides in deglaciated valleys: the Spriana case study

    NASA Astrophysics Data System (ADS)

    Agliardi, Federico; Crosta, Giovanni B.

    2015-04-01

    Deep-seated rockslides in alpine valleys evolve over long time under the action of multiple triggers. Early Warning based on monitoring is often the only effective approach to cope with these landslides, but it requires an improved understanding of mechanisms interplaying over long time. Deep-seated rockslides are often characterized by long-term 'creep' and seasonal displacement components, contributing to measured displacement patterns which are often modelled as rockslide responses to hydrologic perturbations. Although this hydro-mechanical modelling approach fits the behaviour of disrupted rockslide masses with well-developed shear zones, it is often insufficient to explain the initial onset and the long-term components of creep movements of deep-seated rockslides. This outlines the need to link long-term evolution of rock slopes and their sensitivity to triggers. We discuss the Spriana rockslide, affecting the steep left-hand flank of Val Malenco (italian Central Alps). Documented instabilities date back to 1912, whereas the rockslide underwent major acceleration stages in 1960 and 1977-78 and later minor reactivations. We reviewed a large amount of data collected since 1978 by extensive geotechnical site investigation (borehole drilling, exploratory adits, and seismic refraction) and monitoring activities (ground surface and deep displacements, pore pressures) motivated by potential catastrophic collapse threatening the city of Sondrio area. We performed rock mass characterization based on laboratory studies on intact rock samples, field surveys and drillcore logging. These data allowed re-evaluating the geological model of the Spriana rockslide, which is a compound slide of up to 50 Mm3 of slope debris and fractured gneiss, with multiple shear failure zones up to 90 m deep. Two main scarps developed in different stages, suggesting progressive failure processes. The rockslide creeps at slow rates of 0.4-3 cm/a, and undergoes acceleration stages (weeks to

  4. The SCUBA-2 Cosmology Legacy Survey: the EGS deep field - I. Deep number counts and the redshift distribution of the recovered cosmic infrared background at 450 and 850 μ m

    NASA Astrophysics Data System (ADS)

    Zavala, J. A.; Aretxaga, I.; Geach, J. E.; Hughes, D. H.; Birkinshaw, M.; Chapin, E.; Chapman, S.; Chen, Chian-Chou; Clements, D. L.; Dunlop, J. S.; Farrah, D.; Ivison, R. J.; Jenness, T.; Michałowski, M. J.; Robson, E. I.; Scott, Douglas; Simpson, J.; Spaans, M.; van der Werf, P.

    2017-01-01

    We present deep observations at 450 and 850 μm in the Extended Groth Strip field taken with the SCUBA-2 camera mounted on the James Clerk Maxwell Telescope as part of the deep SCUBA-2 Cosmology Legacy Survey (S2CLS), achieving a central instrumental depth of σ450 = 1.2 mJy beam-1 and σ850 = 0.2 mJy beam-1. We detect 57 sources at 450 μm and 90 at 850 μm with signal-to-noise ratio >3.5 over ˜70 arcmin2. From these detections, we derive the number counts at flux densities S450 > 4.0 mJy and S850 > 0.9 mJy, which represent the deepest number counts at these wavelengths derived using directly extracted sources from only blank-field observations with a single-dish telescope. Our measurements smoothly connect the gap between previous shallower blank-field single-dish observations and deep interferometric ALMA results. We estimate the contribution of our SCUBA-2 detected galaxies to the cosmic infrared background (CIB), as well as the contribution of 24 μm-selected galaxies through a stacking technique, which add a total of 0.26 ± 0.03 and 0.07 ± 0.01 MJy sr-1, at 450 and 850 μm, respectively. These surface brightnesses correspond to 60 ± 20 and 50 ± 20 per cent of the total CIB measurements, where the errors are dominated by those of the total CIB. Using the photometric redshifts of the 24 μm-selected sample and the redshift distributions of the submillimetre galaxies, we find that the redshift distribution of the recovered CIB is different at each wavelength, with a peak at z ˜ 1 for 450 μm and at z ˜ 2 for 850 μm, consistent with previous observations and theoretical models.

  5. 1986 Great Lakes Seismic refraction survey (GLIMPCE): Line A - refraction mode

    USGS Publications Warehouse

    Morel-a-l'Huissier, Patrick; Karl, John H.; Tréhu, Anne M.; Hajnal, Zoltan; Mereu, Robert F.; Meyer, Robert P.; Sexton, John L.; Ervin, C. Patrick; Green, Alan G.; Hutchinson, Deborah

    1990-01-01

    In the fall of 1986, the Geological Survey of Canada (GSC), the United States Geological Survey (USGS), two Canadian universities -- University of Western Ontario and University of Saskatchewan, and four American universities -- Northern Illinois University, Southern Illinois University, University of Wisconsin-Madison and University of Wisconsin-Oshkosh participated in a major deep seismic experiment in Lake Superior under the GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) umbrella. This Open-File Report presents the seismic sections for line A, which was shot specifically for refraction recording. The main target for study by this line was the Mid-Continent Rift System. All recording stations, 31 in total (26 land stations and 5 OBSs), recorded energy from shots fired every two minutes (333 m spacing) by a tuned airgun array towed by a contracted ship along line A in Lake Superior. These data are the densest such data ever recorded in the continental North America over such distances. It is also unique since coincident seismic reflection and refraction are available.

  6. CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding

    NASA Astrophysics Data System (ADS)

    Lanusse, François; Ma, Quanbin; Li, Nan; Collett, Thomas E.; Li, Chun-Liang; Ravanbakhsh, Siamak; Mandelbaum, Rachel; Póczos, Barnabás

    2018-01-01

    Galaxy-scale strong gravitational lensing can not only provide a valuable probe of the dark matter distribution of massive galaxies, but also provide valuable cosmological constraints, either by studying the population of strong lenses or by measuring time delays in lensed quasars. Due to the rarity of galaxy-scale strongly lensed systems, fast and reliable automated lens finding methods will be essential in the era of large surveys such as Large Synoptic Survey Telescope, Euclid and Wide-Field Infrared Survey Telescope. To tackle this challenge, we introduce CMU DeepLens, a new fully automated galaxy-galaxy lens finding method based on deep learning. This supervised machine learning approach does not require any tuning after the training step which only requires realistic image simulations of strongly lensed systems. We train and validate our model on a set of 20 000 LSST-like mock observations including a range of lensed systems of various sizes and signal-to-noise ratios (S/N). We find on our simulated data set that for a rejection rate of non-lenses of 99 per cent, a completeness of 90 per cent can be achieved for lenses with Einstein radii larger than 1.4 arcsec and S/N larger than 20 on individual g-band LSST exposures. Finally, we emphasize the importance of realistically complex simulations for training such machine learning methods by demonstrating that the performance of models of significantly different complexities cannot be distinguished on simpler simulations. We make our code publicly available at https://github.com/McWilliamsCenter/CMUDeepLens.

  7. Cancer in light of experimental evolution.

    PubMed

    Sprouffske, Kathleen; Merlo, Lauren M F; Gerrish, Philip J; Maley, Carlo C; Sniegowski, Paul D

    2012-09-11

    Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Delving into the Deep Biosphere

    NASA Astrophysics Data System (ADS)

    Grim, S. L.; Sogin, M. L.; Boetius, A.; Briggs, B. R.; Brazelton, W. J.; D'Hondt, S. L.; Edwards, K. J.; Fisk, M. R.; Gaidos, E.; Gralnick, J.; Hinrichs, K.; Lazar, C.; Lavalleur, H.; Lever, M. A.; Marteinsson, V.; Moser, D. P.; Orcutt, B.; Pedersen, K.; Popa, R.; Ramette, A.; Schrenk, M. O.; Sylvan, J. B.; Smith, A. R.; Teske, A.; Walsh, E. A.; Colwell, F. S.

    2013-12-01

    The Census of Deep Life organized an international survey of microbial community diversity in terrestrial and marine deep subsurface environments. Habitats included subsurface continental fractured rock aquifers, volcanic and metamorphic subseafloor sedimentary units from the open ocean, subsurface oxic and anoxic sediments and underlying basaltic oceanic crust, and their overlying water columns. Our survey employed high-throughput pyrosequencing of the hypervariable V4-V6 16S rRNA gene of bacteria and archaea. We detected 1292 bacterial genera representing 40 phyla, and 99 archaeal genera from 30 phyla. Of these, a core group of thirteen bacterial genera occurred in every environment. A genus of the South African Goldmine Group (Euryarchaeota) was always present whenever archaea were detected. Members of the rare biosphere in one system often represented highly abundant taxa in other environments. Dispersal could account for this observation but mechanisms of transport remain elusive. Ralstonia (Betaproteobacteria) represented highly abundant taxa in marine communities and terrestrial rock, but generally low abundance organisms in groundwater. Some of these taxa could represent sample contamination, and their extensive distribution in several systems requires further assessment. An unknown Sphingobacteriales (Bacteroidetes) genus, Stenotrophomonas (Gammaproteobacteria), Acidovorax and Aquabacterium (both Betaproteobacteria), a Chlorobiales genus, and a TM7 genus were in the core group as well but more prevalent in terrestrial environments. Similarly, Bacillus (Firmicutes), a new cyanobacterial genus, Bradyrhizobium and Sphingomonas (both Alphaproteobacteria), a novel Acidobacteriaceae genus, and Variovorax (Betaproteobacteria) frequently occurred in marine systems but represented low abundance taxa in other environments. Communities tended to cluster by biome and material, and many genera were unique to systems. For example, certain Rhizobiales

  9. Tracing the Evolution of Passive Galaxies in Clusters at 1.4

    NASA Astrophysics Data System (ADS)

    Beifiori, Alessandra

    2017-08-01

    In this talk I will discuss recent progress studying the rest-frame optical properties of quiescent galaxies at this critical epoch using KMOS, the K-band Multi-Object Spectrograph on the ESO/VLT. I will highlight recent results form the KMOS Custer Survey (KCS), whose aim is to provide a census of quiescent galaxy kinematics at 1.4 ≤ z ≤ 1.8 in know overdensities. The combination of kinematic measurements from KMOS and structural parameters measured from deep HST imaging allowed us to place constraints on the formation ages of passive galaxies at 1.4evolution of galaxy properties and scaling relations at high redshift.

  10. The KMOS3D Survey: Design, First Results, and the Evolution of Galaxy Kinematics from 0.7 <= z <= 2.7

    NASA Astrophysics Data System (ADS)

    Wisnioski, E.; Förster Schreiber, N. M.; Wuyts, S.; Wuyts, E.; Bandara, K.; Wilman, D.; Genzel, R.; Bender, R.; Davies, R.; Fossati, M.; Lang, P.; Mendel, J. T.; Beifiori, A.; Brammer, G.; Chan, J.; Fabricius, M.; Fudamoto, Y.; Kulkarni, S.; Kurk, J.; Lutz, D.; Nelson, E. J.; Momcheva, I.; Rosario, D.; Saglia, R.; Seitz, S.; Tacconi, L. J.; van Dokkum, P. G.

    2015-02-01

    We present the KMOS3D survey, a new integral field survey of over 600 galaxies at 0.7 < z < 2.7 using KMOS at the Very Large Telescope. The KMOS3D survey utilizes synergies with multi-wavelength ground- and space-based surveys to trace the evolution of spatially resolved kinematics and star formation from a homogeneous sample over 5 Gyr of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M *) and rest-frame (U - V) - M * planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first-year of data we detect Hα emission in 191 M * = 3 × 109-7 × 1011 M ⊙ galaxies at z = 0.7-1.1 and z = 1.9-2.7. In the current sample 83% of the resolved galaxies are rotation dominated, determined from a continuous velocity gradient and v rot/σ0 > 1, implying that the star-forming "main sequence" is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ~70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z >~ 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s-1at z ~ 2.3 to 25 km s-1at z ~ 0.9. Combined with existing results spanning z ~ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDS 092A-0091, 093.A-0079).

  11. Galaxy evolution in clusters since z=1

    NASA Astrophysics Data System (ADS)

    Aragón-Salamanca, A.

    2011-11-01

    It is now 30 years since Alan Dressler published his seminal paper onthe morphology-density relation. Although there is still much to learnon the effect of the environment on galaxy evolution, extensive progress has been made since then both observationally and theoretically.Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature'' vs. "nurture'' in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age.Many of the results presented here have been obtainedwithin the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  12. Evolution of foraging behaviour: Deep intra-generic genetic divergence between territorial and non-territorial southern African patellid limpets.

    PubMed

    Mmonwa, Kolobe L; Teske, Peter R; McQuaid, Christopher D; Barker, Nigel P

    2017-12-01

    Southern Africa is a biodiversity hotspot of patellid limpets, with three genera (Helcion, Cymbula and Scutellastra) identified and described in the region. Scutellastra is the most diverse and most frequently studied of these and, along with Cymbula, includes species with territorial and non-territorial foraging behaviours. We used three mitochondrial markers (12S rRNA, 16S rRNA and COI) and one nuclear marker (ATPSβ intron) to assess evolutionary relationships among species of Cymbula and Scutellastra with these two foraging behaviours and to identify which foraging mode is the more ancient. Maximum Likelihood and Bayesian Inference phylogenetic analyses revealed that the species sharing a foraging type are monophyletic in both genera. Territoriality is a derived character, as the clades with this foraging type are nested within a tree that otherwise comprises non-territorial taxa. These include Helcion, which was recovered as sister to the Cymbula/Scutellastra clade, and the next basal genus, Patella, which is ancestral to all southern African patellogastropods. Deep genetic divergence between the two foraging traits reflects strong adaptive effects of resource partitioning in the evolution of southern African patellid limpets. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Transcriptome Sequences Resolve Deep Relationships of the Grape Family

    PubMed Central

    Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M.; Gerrath, Jean; Zimmer, Elizabeth A.; Fang, Xiao-Dong

    2013-01-01

    Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated. PMID:24069307

  14. A Systematic Survey of Protoclusters at z ~ 3-6 in the CFHTLS Deep Fields

    NASA Astrophysics Data System (ADS)

    Toshikawa, Jun; Kashikawa, Nobunari; Overzier, Roderik; Malkan, Matthew A.; Furusawa, Hisanori; Ishikawa, Shogo; Onoue, Masafusa; Ota, Kazuaki; Tanaka, Masayuki; Niino, Yuu; Uchiyama, Hisakazu

    2016-08-01

    We present the discovery of three protoclusters at z ˜ 3-4 with spectroscopic confirmation in the Canada-France-Hawaii Telescope Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of z ˜ 3-6 Lyman-break galaxies and identify 21 protocluster candidates from regions that are overdense at more than 4σ overdensity significance. Based on cosmological simulations, it is expected that more than 76% of these candidates will evolve into a galaxy cluster of at least a halo mass of 1014 M ⊙ at z = 0. We perform follow-up spectroscopy for eight of the candidates using Subaru/FOCAS, Keck II/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at z = 3-4 with more than five members spectroscopically identified and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at z ˜ 5-6 require more spectroscopic follow-up in order to be conclusive. A z = 3.67 protocluster, which has 11 spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region (<0.5 physical Mpc) and an outskirts region (˜1.0 physical Mpc). The Lyα equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift, while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at z ˜ 4 along with the growth of the protocluster structure. This study provides an important benchmark for our analysis of protoclusters in the upcoming Subaru/HSC imaging survey and its spectroscopic follow-up with the Subaru/PFS that will detect thousands of protoclusters up to z ˜ 6.

  15. The Causality of Evolution on Different Fitness Landscapes

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh; Austin, Robert; Zhang, Qiucen; Kim, Hyunsung; Bestoso, John

    2013-03-01

    Evolution of antibiotic resistance is a growing problem. One major reason why most antibiotics fail is because of mutations on drug targets (e.g. essential enzymes). Sequencing of clinically resistant isolates have shown that multiple mutational-hotspots exist in coding regions, which could potentially prohibit the binding of drugs. However, it is not clear whether the appearance of each mutation is random or influenced by other factors. In this paper, we compare evolution of resistance to ciprofloxacin from two distinct but well characterized genetic backgrounds. By combining our recently developed evolution reactor and deep whole-genome sequencing, we show different alleles of σs factor lead to fixation of different mutations in gyrA gene that confer ciprofloxacin resistance to bacteria Escherichia coli. Such causality of evolution in different genes provides an opportunity to control the evolution of antibiotic resistance. Sponsored by the NCI/NIH Physical Sciences Oncology Centers

  16. Advances for studying clonal evolution in cancer.

    PubMed

    Ding, Li; Raphael, Benjamin J; Chen, Feng; Wendl, Michael C

    2013-11-01

    The "clonal evolution" model of cancer emerged and "evolved" amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other's survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. De-blending deep Herschel surveys: A multi-wavelength approach

    NASA Astrophysics Data System (ADS)

    Pearson, W. J.; Wang, L.; van der Tak, F. F. S.; Hurley, P. D.; Burgarella, D.; Oliver, S. J.

    2017-07-01

    Aims: Cosmological surveys in the far-infrared are known to suffer from confusion. The Bayesian de-blending tool, XID+, currently provides one of the best ways to de-confuse deep Herschel SPIRE images, using a flat flux density prior. This work is to demonstrate that existing multi-wavelength data sets can be exploited to improve XID+ by providing an informed prior, resulting in more accurate and precise extracted flux densities. Methods: Photometric data for galaxies in the COSMOS field were used to constrain spectral energy distributions (SEDs) using the fitting tool CIGALE. These SEDs were used to create Gaussian prior estimates in the SPIRE bands for XID+. The multi-wavelength photometry and the extracted SPIRE flux densities were run through CIGALE again to allow us to compare the performance of the two priors. Inferred ALMA flux densities (FinferALMA), at 870 μm and 1250 μm, from the best fitting SEDs from the second CIGALE run were compared with measured ALMA flux densities (FmeasALMA) as an independent performance validation. Similar validations were conducted with the SED modelling and fitting tool MAGPHYS and modified black-body functions to test for model dependency. Results: We demonstrate a clear improvement in agreement between the flux densities extracted with XID+ and existing data at other wavelengths when using the new informed Gaussian prior over the original uninformed prior. The residuals between FmeasALMA and FinferALMA were calculated. For the Gaussian priors these residuals, expressed as a multiple of the ALMA error (σ), have a smaller standard deviation, 7.95σ for the Gaussian prior compared to 12.21σ for the flat prior; reduced mean, 1.83σ compared to 3.44σ; and have reduced skew to positive values, 7.97 compared to 11.50. These results were determined to not be significantly model dependent. This results in statistically more reliable SPIRE flux densities and hence statistically more reliable infrared luminosity estimates. Herschel

  18. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    USGS Publications Warehouse

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  19. Stakeholder perspectives on the importance of rare-species research for deep-sea environmental management

    NASA Astrophysics Data System (ADS)

    Turner, Phillip J.; Campbell, Lisa M.; Van Dover, Cindy L.

    2017-07-01

    The apparent prevalence of rare species (rarity) in the deep sea is a concern for environmental management and conservation of biodiversity. Rare species are often considered at risk of extinction and, in terrestrial and shallow water environments, have been shown to play key roles within an ecosystem. In the deep-sea environment, current research focuses primarily on abundant species and deep-sea stakeholders are questioning the importance of rare species in ecosystem functioning. This study asks whether deep-sea stakeholders (primarily scientists) view rare-species research as a priority in guiding environmental management. Delphi methodology (i.e., an iterative survey approach) was used to understand views about whether or not 'deep-sea scientists should allocate more resources to research on rare species in the deep sea, even if this means less resources might be available for abundant-species research.' Results suggest little consensus regarding the prioritization of resources for rare-species research. From Survey 1 to Survey 3, the average participant response shifted toward a view that rare-species research is not a priority if it comes at a cost to research on abundant species. Participants pointed to the need for a balanced approach and highlighted knowledge gaps about even the most fundamental questions, including whether rare species are truly 'rare' or simply under-sampled. Participants emphasized the lack of basic biological knowledge for rare and abundant species, particularly abundant meio- and microscopic species, as well as uncertainty in the roles rare and abundant species play in ecosystem processes. Approaches that jointly consider the role of rare and abundant species in ecosystem functioning (e.g., biological trait analysis) may help to clarify the extent to which rare species need to be incorporated into deep-sea environment management in order to maintain ecosystem functioning.

  20. A Physical Parameterization of the Evolution of X-ray Binary Emission

    NASA Astrophysics Data System (ADS)

    Gilbertson, Woodrow; Lehmer, Bret; Eufrasio, Rafael

    2018-01-01

    The Chandra Deep Field-South (CDF-S) and North (CDF-N) surveys, 7 Ms and 2 Ms respectively, contain measurements spanning a large redshift range of z = 0 to 7. These data-rich fields provide a unique window into the cosmic history of X-ray emission from normal galaxies (i.e., not dominated by AGN). Scaling relations between normal-galaxy X-ray luminosity and quantities, such as star formation rate (SFR) and stellar mass (M*), have been used to constrain the redshift evolution of the formation rates of low-mass X-ray binaries (LMXB) and high-mass X-ray binaries (HMXB). However, these measurements do not directly reveal the driving forces behind the redshift evolution of X-ray binaries (XRBs). We hypothesize that changes in the mean stellar age and metallicity of the Universe drive the evolution of LMXB and HMXB emission, respectively. We use star-formation histories, derived through fitting broad-band UV-to-far-IR spectra, to estimate the masses of stellar populations in various age bins for each galaxy. We then divide our galaxy samples into bins of metallicity, and use our star-formation history information and measured X-ray luminosities to determine for each metallicity bin a best model LX/M*(tage). We show that this physical model provides a more useful parameterization of the evolution of X-ray binary emission, as it can be extrapolated out to high redshifts with more sensible predictions. This meaningful relation can be used to better estimate the emission of XRBs in the early Universe, where XRBs are predicted to play an important role in heating the intergalactic medium.

  1. The study of deep-sea cephalopods.

    PubMed

    Hoving, Henk-Jan T; Perez, Jose Angel A; Bolstad, Kathrin S R; Braid, Heather E; Evans, Aaron B; Fuchs, Dirk; Judkins, Heather; Kelly, Jesse T; Marian, José E A R; Nakajima, Ryuta; Piatkowski, Uwe; Reid, Amanda; Vecchione, Michael; Xavier, José C C

    2014-01-01

    "Deep-sea" cephalopods are here defined as cephalopods that spend a significant part of their life cycles outside the euphotic zone. In this chapter, the state of knowledge in several aspects of deep-sea cephalopod research are summarized, including information sources for these animals, diversity and general biogeography and life cycles, including reproduction. Recommendations are made for addressing some of the remaining knowledge deficiencies using a variety of traditional and more recently developed methods. The types of oceanic gear that are suitable for collecting cephalopod specimens and images are reviewed. Many groups of deep-sea cephalopods require taxonomic reviews, ideally based on both morphological and molecular characters. Museum collections play a vital role in these revisions, and novel (molecular) techniques may facilitate new use of old museum specimens. Fundamental life-cycle parameters remain unknown for many species; techniques developed for neritic species that could potentially be applied to deep-sea cephalopods are discussed. Reproductive tactics and strategies in deep-sea cephalopods are very diverse and call for comparative evolutionary and experimental studies, but even in the twenty-first century, mature individuals are still unknown for many species. New insights into diet and trophic position have begun to reveal a more diverse range of feeding strategies than the typically voracious predatory lifestyle known for many cephalopods. Regular standardized deep-sea cephalopod surveys are necessary to provide insight into temporal changes in oceanic cephalopod populations and to forecast, verify and monitor the impacts of global marine changes and human impacts on these populations. © 2014 Elsevier Ltd All rights reserved.

  2. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool

    PubMed Central

    Ronge, T. A.; Tiedemann, R.; Lamy, F.; Köhler, P.; Alloway, B. V.; De Pol-Holz, R.; Pahnke, K.; Southon, J.; Wacker, L.

    2016-01-01

    During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (Δ14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of Δ14C over the last 30,000 years. In ∼2,500–3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (ΔΔ14C=−1,000‰). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific. PMID:27157845

  3. Origins and Evolution of Life

    NASA Astrophysics Data System (ADS)

    Gargaud, Muriel; López-García, Purificación; Martin, Hervé

    2011-01-01

    radiations on DNA J. Cadet and T. Douki; 24. Molecular adaptations to life at high salt: lessons from Haloarcula marismortui G. Zaccai; Part VII. Traces of Life and Biosignatures: 25. Early life: nature, distribution and evolution F. Westall; 26. Early eukaryotes in precambrian oceans E. Javaux; 27. Biomineralisation mechanisms K. Benzerara and J. Miot; 28. Limits of life and biosphere: lesson from detection of microorganisms in deep sea and deep subsurface in the Earth K. Takai; Part VIII. Life Elsewhere?: 29. Titan and the Cassini-Huygens mission J. Lunine and F. Raulin; 30. The role of terrestrial analogue environments in astrobiology R. Léveillé; Index.

  4. Deep Crustal Melting and the Survival of Continental Crust

    NASA Astrophysics Data System (ADS)

    Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.

    2017-12-01

    Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in <10 million years. This cycle of burial, partial melting, rapid ascent, and crystallization/cooling preserves the continents from being recycled into the mantle by convergent tectonic processes over geologic time. Migmatite domes commonly preserve a record of high-T - low-P metamorphism. Domes may also contain rocks or minerals that record high-T - high-P conditions, including high-P metamorphism broadly coeval with host migmatite, evidence for the deep crustal origin of migmatite. There exists a spectrum of domes, from entirely deep-sourced to mixtures of deep and shallow sources. Controlling factors in deep vs. shallow sources are relative densities of crustal layers and rate of extension: fast extension (cm/yr) promotes efficient

  5. Identifying QCD Transition Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Pang, Long-gang; Su, Nan; Petersen, Hannah; Stoecker, Horst; Wang, Xin-Nian

    2018-02-01

    In this proceeding we review our recent work using supervised learning with a deep convolutional neural network (CNN) to identify the QCD equation of state (EoS) employed in hydrodynamic modeling of heavy-ion collisions given only final-state particle spectra ρ(pT, V). We showed that there is a traceable encoder of the dynamical information from phase structure (EoS) that survives the evolution and exists in the final snapshot, which enables the trained CNN to act as an effective "EoS-meter" in detecting the nature of the QCD transition.

  6. STELLAR X-RAY SOURCES IN THE CHANDRA COSMOS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, N. J.; Drake, J. J.; Civano, F., E-mail: nwright@cfa.harvard.ed

    2010-12-10

    We present an analysis of the X-ray properties of a sample of solar- and late-type field stars identified in the Chandra Cosmic Evolution Survey (COSMOS), a deep (160 ks) and wide ({approx}0.9 deg{sup 2}) extragalactic survey. The sample of 60 sources was identified using both morphological and photometric star/galaxy separation methods. We determine X-ray count rates, extract spectra and light curves, and perform spectral fits to determine fluxes and plasma temperatures. Complementary optical and near-IR photometry is also presented and combined with spectroscopy for 48 of the sources to determine spectral types and distances for the sample. We find distancesmore » ranging from 30 pc to {approx}12 kpc, including a number of the most distant and highly active stellar X-ray sources ever detected. This stellar sample extends the known coverage of the L{sub X}-distance plane to greater distances and higher luminosities, but we do not detect as many intrinsically faint X-ray sources compared to previous surveys. Overall the sample is typically more luminous than the active Sun, representing the high-luminosity end of the disk and halo X-ray luminosity functions. The halo population appears to include both low-activity spectrally hard sources that may be emitting through thermal bremsstrahlung, as well as a number of highly active sources in close binaries.« less

  7. Fluids of the Lower Crust: Deep Is Different

    NASA Astrophysics Data System (ADS)

    Manning, Craig E.

    2018-05-01

    Deep fluids are important for the evolution and properties of the lower continental and arc crust in tectonically active settings. They comprise four components: H2O, nonpolar gases, salts, and rock-derived solutes. Contrasting behavior of H2O-gas and H2O-salt mixtures yields immiscibility and potential separation of phases with different chemical properties. Equilibrium thermodynamic modeling of fluid-rock interaction using simple ionic species known from shallow-crustal systems yields solutions too dilute to be consistent with experiments and resistivity surveys, especially if CO2 is added. Therefore, additional species must be present, and H2O-salt solutions likely explain much of the evidence for fluid action in high-pressure settings. At low salinity, H2O-rich fluids are powerful solvents for aluminosilicate rock components that are dissolved as polymerized clusters. Addition of salts changes solubility patterns, but aluminosilicate contents may remain high. Fluids with Xsalt = 0.05 to 0.4 in equilibrium with model crustal rocks have bulk conductivities of 10‑1.5 to 100 S/m at porosity of 0.001. Such fluids are consistent with observed conductivity anomalies and are capable of the mass transfer seen in metamorphic rocks exhumed from the lower crust.

  8. Digitally Inspired Thinking: Can Social Media Lead to Deep Learning in Higher Education?

    ERIC Educational Resources Information Center

    Samuels-Peretz, Debbie; Dvorkin Camiel, Lana; Teeley, Karen; Banerjee, Gouri

    2017-01-01

    In this study, students from a variety of disciplines, who were enrolled in six courses that incorporate the use of social media, were surveyed to evaluate their perception of how the integration of social-media tools supports deep approaches to learning. Students reported that social media supports deep learning both directly and indirectly,…

  9. In Situ Observation of Hard Surrounding Rock Displacement at 2400-m-Deep Tunnels

    NASA Astrophysics Data System (ADS)

    Feng, Xia-Ting; Yao, Zhi-Bin; Li, Shao-Jun; Wu, Shi-Yong; Yang, Cheng-Xiang; Guo, Hao-Sen; Zhong, Shan

    2018-03-01

    This paper presents the results of in situ investigation of the internal displacement of hard surrounding rock masses within deep tunnels at China's Jinping Underground Laboratory Phase II. The displacement evolution of the surrounding rock during the entire excavation processes was monitored continuously using pre-installed continuous-recording multi-point extensometers. The evolution of excavation-damaged zones and fractures in rock masses were also observed using acoustic velocity testing and digital borehole cameras, respectively. The results show four kinds of displacement behaviours of the hard surrounding rock masses during the excavation process. The displacement in the inner region of the surrounding rock was found to be greater than that of the rock masses near the tunnel's side walls in some excavation stages. This leads to a multi-modal distribution characteristic of internal displacement for hard surrounding rock masses within deep tunnels. A further analysis of the evolution information on the damages and fractures inside the surrounding rock masses reveals the effects of excavation disturbances and local geological conditions. This recognition can be used as the reference for excavation and supporting design and stability evaluations of hard-rock tunnels under high-stress conditions.

  10. A Large-Scale Super-Structure at z=0.65 in the UKIDSS Ultra-Deep Survey Field

    NASA Astrophysics Data System (ADS)

    Galametz, Audrey; Candels Clustering Working Group

    2017-07-01

    In hierarchical structure formation scenarios, galaxies accrete along high density filaments. Superclusters represent the largest density enhancements in the cosmic web with scales of 100 to 200 Mpc. As they represent the largest components of LSS, they are very powerful tools to constrain cosmological models. Since they also offer a wide range of density, from infalling group to high density cluster core, they are also the perfect laboratory to study the influence of environment on galaxy evolution. I will present a newly discovered large scale structure at z=0.65 in the UKIDSS UDS field. Although statistically predicted, the presence of such structure in UKIDSS, one of the most extensively covered and studied extragalactic field, remains a serendipity. Our follow-up confirmed more than 15 group members including at least three galaxy clusters with M200 10^14Msol . Deep spectroscopy of the quiescent core galaxies reveals that the most massive structure knots are at very different formation stage with a range of red sequence properties. Statistics allow us to map formation age across the structure denser knots and identify where quenching is most probably occurring across the LSS. Spectral diagnostics analysis also reveals an interesting population of transition galaxies we suspect are transforming from star-forming to quiescent galaxies.

  11. Expanded U.S. mid-Atlantic Margin Deep-Water Allostratigraphy; Bottom-Current Controls on Margin Evolution

    NASA Astrophysics Data System (ADS)

    Gibson, J. C.; Miller, N. C.; Hutchinson, D. R.; Ten Brink, U. S.; Mountain, G. S.; Chaytor, J. D.; Shillington, D. J.

    2017-12-01

    There is a long history of seismic stratigraphic interpretation/analysis of the sedimentary sequence along the U.S. mid-Atlantic Margin (MAM). Here we expand the allostratigraphic (unconformity-bound) framework from the outer continental shelf to the Hatteras Abyssal Plain by correlating recently acquired 2D multi-channel seismic reflection data with existing drill sites and legacy 2D seismic data collected over the past 42 yrs. The new 2D post-stack Kirchhoff time migrated seismic data were acquired using R/V Marcus G. Langseth in 2014-2015 during USGS ECS surveys MGL1407 & MGL1506 and NSF-funded ENAM-CSE survey MGL1408. We map six seismic horizons along 1.5x104 km of 2D data and tie each to stratigraphic unconformities sampled at DSDP site 603 (lower rise). From shallow to deep they are: (1) M2, latest Miocene; (2) X, middle Miocene; (3) Au, late Oligocene; (4) A*, Late Cretaceous; (5) Km, early Late Cretaceous; and (6) Beta, middle Early Cretaceous. The horizons were converted to depth (mbsl) using high-resolution interval velocity models generated for each 2D survey line and isopachs were produced using the depth-converted stratigraphic framework for each allostratigraphic unit. The time-to-depth function was confirmed to be within 5% of drilling results at DSDP Sites 603 and nearby 105. Additionally, we tie horizon Au to upper-slope ODP Sites 902 & 1073, and trace it to the outer shelf. Interpretation of the framework and resulting isopachs show total sediment thickness uniformly decreasing seaward from the shelf edge, and overall thickening to the south. Regional depositional trends display a combination of both down slope and along slope processes (e.g. mass wasting, submarine fan formation, contourite and sediment drift deposits). The unit bound by horizons Au & Beta confirms pervasive excavation from the mid-slope to the continental rise and across the central and southern MAM (from New Jersey to North Carolina). How the excavated sediments were

  12. [Survey of nurses about compression therapy of acute deep venous thrombosis. Field study in Saxony-Anhalt].

    PubMed

    Thieme, Dorothea; Langer, Gero; Behrens, Johann

    2010-03-01

    In clinical practice, the compression therapy is an established method for the treatment of acute deep vein thrombosis (DVT). The aim of this study was to clarify the extent to which current guidelines and results of studies done in the field for the treatment of acute DVT--particularly compression therapy--are implemented in clinical practice. All hospitals in Saxony-Anhalt using primary diagnosis and therapy for DVT (n = 34) were informed about a survey in 2007 and the nursing staff of angiology and internistical wards in these hospitals was asked to take part. The collection of data was done with the help of a questionnaire that had been designed and tested for its validity in a specialised hospital. 510 questionnaires were distributed. The response rate of questionnaires was 69 percent. 79 percent of the nursing staff of internistical wards in Saxony-Anhalt and 94 percent of the nursing staff of angiology wards said that patients with acute DVT have initially received a compression bandage. Significant deficits were visible in transferring the knowledge of evidence-based medicine and nursing regarding techniques of compression bandage. The recommended Fischer-Bandage was only put on in exceptional cases in internistical wards (3 percent) and Angiology (2 percent). Compression stockings were not a suitable method into the treatment of acute deep vein thrombosis of Angiology. 21 percent of the nursing staff of internistical wards said that they have initially applied compression stockings. The treatment of acute DVT is important in clinical practice. The compression bandage should be effectively put on the leg. The quality of care and long-term compliance of the patients could be increased this way, leading to prevention of post thrombotic syndrome (PTS) and reduction the duration of patients stay in the clinics.

  13. Single cell genomic study of dehalogenating Chloroflexi from deep sea sediments of Peruvian Margin

    NASA Astrophysics Data System (ADS)

    Spormann, A.; Kaster, A.; Meyer-Blackwell, K.; Biddle, J.

    2012-12-01

    Dehalogenating Chloroflexi, such as Dehalococcoidites (Dhc), are members of the rare biosphere of deep sea sediments but were originally discovered as the key microbes mediating reductive dehalogenation of the prevalent groundwater contaminants tetrachloroethene and trichloroethene to ethene. Dhc are slow growing, highly niche adapted microbes that are specialized to organohalide respiration as the sole mode of energy conservation. These strictly anaerobic microbes depend on a supporting microbial community to mitigate electron donor and cofactor requirements among other factors. Molecular and genomic studies on the key enzymes for energy conservation, reductive dehalogenases, have provided evidence for rapid adaptive evolution in terrestrial environments. However, the metabolic life style of Dhc in the absence of anthropogenic contaminants, such as in pristine deep sea sediments, is still unknown. In order to provide fundamental insights into life style, genomic population structure and evolution of Dhc, we analyzed a non-contaminated deep sea sediment sample of the Peru Margin 1230 site collected 6 mbf by a metagenomic and single cell genomic. We present for the first time single cell genomic data on dehalogenating Chloroflexi, a significant microbial population in the poorly understood oligotrophic marine sub-surface environments.

  14. AEGIS-X: Deep Chandra Imaging of the Central Groth Strip

    NASA Astrophysics Data System (ADS)

    Nandra, K.; Laird, E. S.; Aird, J. A.; Salvato, M.; Georgakakis, A.; Barro, G.; Perez-Gonzalez, P. G.; Barmby, P.; Chary, R.-R.; Coil, A.; Cooper, M. C.; Davis, M.; Dickinson, M.; Faber, S. M.; Fazio, G. G.; Guhathakurta, P.; Gwyn, S.; Hsu, L.-T.; Huang, J.-S.; Ivison, R. J.; Koo, D. C.; Newman, J. A.; Rangel, C.; Yamada, T.; Willmer, C.

    2015-09-01

    We present the results of deep Chandra imaging of the central region of the Extended Groth Strip, the AEGIS-X Deep (AEGIS-XD) survey. When combined with previous Chandra observations of a wider area of the strip, AEGIS-X Wide (AEGIS-XW), these provide data to a nominal exposure depth of 800 ks in the three central ACIS-I fields, a region of approximately 0.29 deg2. This is currently the third deepest X-ray survey in existence; a factor ∼ 2-3 shallower than the Chandra Deep Fields (CDFs), but over an area ∼3 times greater than each CDF. We present a catalog of 937 point sources detected in the deep Chandra observations, along with identifications of our X-ray sources from deep ground-based, Spitzer, GALEX, and Hubble Space Telescope imaging. Using a likelihood ratio analysis, we associate multiband counterparts for 929/937 of our X-ray sources, with an estimated 95% reliability, making the identification completeness approximately 94% in a statistical sense. Reliable spectroscopic redshifts for 353 of our X-ray sources are available predominantly from Keck (DEEP2/3) and MMT Hectospec, so the current spectroscopic completeness is ∼38%. For the remainder of the X-ray sources, we compute photometric redshifts based on multiband photometry in up to 35 bands from the UV to mid-IR. Particular attention is given to the fact that the vast majority the X-ray sources are active galactic nuclei and require hybrid templates. Our photometric redshifts have mean accuracy of σ =0.04 and an outlier fraction of approximately 5%, reaching σ =0.03 with less than 4% outliers in the area covered by CANDELS . The X-ray, multiwavelength photometry, and redshift catalogs are made publicly available.

  15. Advances for Studying Clonal Evolution in Cancer

    PubMed Central

    Raphael, Benjamin J.; Chen, Feng; Wendl, Michael C.

    2013-01-01

    The “clonal evolution” model of cancer emerged and “evolved” amid ongoing advances in technology, especially in recent years during which next generation sequencing instruments have provided ever higher resolution pictures of the genetic changes in cancer cells and heterogeneity in tumors. It has become increasingly clear that clonal evolution is not a single sequential process, but instead frequently involves simultaneous evolution of multiple subclones that co-exist because they are of similar fitness or are spatially separated. Co-evolution of subclones also occurs when they complement each other’s survival advantages. Recent studies have also shown that clonal evolution is highly heterogeneous: different individual tumors of the same type may undergo very different paths of clonal evolution. New methodological advancements, including deep digital sequencing of a mixed tumor population, single cell sequencing, and the development of more sophisticated computational tools, will continue to shape and reshape the models of clonal evolution. In turn, these will provide both an improved framework for the understanding of cancer progression and a guide for treatment strategies aimed at the elimination of all, rather than just some, of the cancer cells within a patient. PMID:23353056

  16. Draft Genome Sequence of Deep-Sea Alteromonas sp. Strain V450 Isolated from the Marine Sponge Leiodermatium sp.

    PubMed Central

    Barrett, Nolan H.; McCarthy, Peter J.

    2017-01-01

    ABSTRACT The proteobacterium Alteromonas sp. strain V450 was isolated from the Atlantic deep-sea sponge Leiodermatium sp. Here, we report the draft genome sequence of this strain, with a genome size of approx. 4.39 Mb and a G+C content of 44.01%. The results will aid deep-sea microbial ecology, evolution, and sponge-microbe association studies. PMID:28153886

  17. Neural network based satellite tracking for deep space applications

    NASA Technical Reports Server (NTRS)

    Amoozegar, F.; Ruggier, C.

    2003-01-01

    The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions and examine the trade-off between tracing accuracy and communication link performance.

  18. Galaxy evolution by color-log(n) type since redshift unity in the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Cameron, E.; Driver, S. P.

    2009-01-01

    Aims: We explore the use of the color-log(n) (where n is the global Sérsic index) plane as a tool for subdividing the galaxy population in a physically-motivated manner out to redshift unity. We thereby aim to quantify surface brightness evolution by color-log(n) type, accounting separately for the specific selection and measurement biases against each. Methods: We construct (u-r) color-log(n) diagrams for distant galaxies in the Hubble Ultra Deep Field (UDF) within a series of volume-limited samples to z=1.5. The color-log(n) distributions of these high redshift galaxies are compared against that measured for nearby galaxies in the Millennium Galaxy Catalogue (MGC), as well as to the results of visual morphological classification. Based on this analysis we divide our sample into three color-structure classes. Namely, “red, compact”, “blue, diffuse” and “blue, compact”. Luminosity-size diagrams are constructed for members of the two largest classes (“red, compact” and “blue, diffuse”), both in the UDF and the MGC. Artificial galaxy simulations (for systems with exponential and de Vaucouleurs profile shapes alternately) are used to identify “bias-free” regions of the luminosity-size plane in which galaxies are detected with high completeness, and their fluxes and sizes recovered with minimal surface brightness-dependent biases. Galaxy evolution is quantified via comparison of the low and high redshift luminosity-size relations within these “bias-free” regions. Results: We confirm the correlation between color-log(n) plane position and visual morphological type observed locally and in other high redshift studies in the color and/or structure domain. The combined effects of observational uncertainties, the morphological K-correction and cosmic variance preclude a robust statistical comparison of the shape of the MGC and UDF color-log(n) distributions. However, in the interval 0.75 < z <1.0 where the UDF i-band samples close to rest-frame B

  19. Microbial ecology of deep-water mid-Atlantic canyons

    USGS Publications Warehouse

    Kellogg, Christina A.

    2011-01-01

    The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.

  20. Thousands of Stellar SiO masers in the Galactic center: The Bulge Asymmetries and Dynamic Evolution (BAaDE) survey

    NASA Astrophysics Data System (ADS)

    Sjouwerman, Loránt O.; Pihlström, Ylva M.; Rich, R. Michael; Morris, Mark R.; Claussen, Mark J.

    2017-01-01

    A radio survey of red giant SiO sources in the inner Galaxy and bulge is not hindered by extinction. Accurate stellar velocities (<1 km/s) are obtained with minimal observing time (<1 min) per source. Detecting over 20,000 SiO maser sources yields data comparable to optical surveys with the additional strength of a much more thorough coverage of the highly obscured inner Galaxy. Modeling of such a large sample would reveal dynamical structures and minority populations; the velocity structure can be compared to kinematic structures seen in molecular gas, complex orbit structure in the bar, or stellar streams resulting from recently infallen systems. Our Bulge Asymmetries and Dynamic Evolution (BAaDE) survey yields bright SiO masers suitable for follow-up Galactic orbit and parallax determination using VLBI. Here we outline our early VLA observations at 43 GHz in the northern bulge and Galactic plane (0

  1. A VLT Large Programme to Study Galaxies at z ~ 2: GMASS — the Galaxy Mass Assembly Ultra-deep Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Kurk, Jaron; Cimatti, Andrea; Daddi, Emanuele; Mignoli, Marco; Bolzonella, Micol; Pozzetti, Lucia; Cassata, Paolo; Halliday, Claire; Zamorani, Gianni; Berta, Stefano; Brusa, Marcella; Dickinson, Mark; Franceschini, Alberto; Rodighiero, Guilia; Rosati, Piero; Renzini, Alvio

    2009-03-01

    We report on the motivation, sample selection and first results of our VLT FORS2 Large Programme (173.A-0687), which has obtained the longest targeted spectra of distant galaxies obtained so far with the VLT. These long exposures, up to 77 hours for objects included in three masks, were required to detect spectral features of extremely faint galaxies, such as absorption lines of passive galaxies at z > 1.4, a population that had previously escaped attention due to its faintness in the optical wavelength regime, but which represents a critical phase in the evolution of massive galaxies. The ultra-deep spectroscopy allowed us to estimate the stellar metallicity of star-forming galaxies at z ~ 2, to trace colour bimodality up to z = 2 and to characterise a galaxy cluster progenitor at z = 1.6. The approximately 200 spectra produced by GMASS constitute a lasting legacy, populating the “redshift desert” in GOODS-S.

  2. New Insights into Passive Margin Development from a Global Deep Seismic Reflection Dataset

    NASA Astrophysics Data System (ADS)

    Bellingham, Paul; Pindell, James; Graham, Rod; Horn, Brian

    2014-05-01

    The kinematic and dynamic evolution of the world's passive margins is still poorly understood. Yet the need to replace reserves, a high oil price and advances in drilling technology have pushed the international oil and gas industry to explore in the deep and ultra-deep waters of the continental margins. To support this exploration and help understand these margins, ION-GXT has acquired, processed and interpreted BasinSPAN surveys across many of the world's passive margins. Observations from these data lead us to consider the modes of subsidence and uplift at both volcanic and non-volcanic margins. At non-volcanic margins, it appears that frequently much of the subsidence post-dates major rifting and is not thermal in origin. Rather the subsidence is associated with extensional displacement on a major fault or shear zone running at least as deep as the continental Moho. We believe that the subsidence is structural and is probably associated with the pinching out (boudinage) of the Lower Crust so that the Upper crust effectively collapses onto the mantle. Eventually this will lead to the exhumation of the sub-continental mantle at the sea bed. Volcanic margins present more complex challenges both in terms of imaging and interpretation. The addition of volcanic and plutonic material into the system and dynamic effects all impact subsidence and uplift. However, we will show some fundamental observations regarding the kinematic development of volcanic margins and especially SDRs which demonstate that the process of collapse and the development of shear zones within and below the crust are also in existence at this type of margin. A model is presented of 'magma welds' whereby packages of SDRs collapse onto an emerging sub-crustal shear zone and it is this collapse which creates the commonly observed SDR geometry. Examples will be shown from East India, Newfoundland, Brazil, Argentina and the Gulf of Mexico.

  3. Generative Models in Deep Learning: Constraints for Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Turp, Maximilian Dennis; Schawinski, Kevin; Zhang, Ce; Weigel, Anna K.

    2018-01-01

    New techniques are essential to make advances in the field of galaxy evolution. Recent developments in the field of artificial intelligence and machine learning have proven that these tools can be applied to problems far more complex than simple image recognition. We use these purely data driven approaches to investigate the process of star formation quenching. We show that Variational Autoencoders provide a powerful method to forward model the process of galaxy quenching. Our results imply that simple changes in specific star formation rate and bulge to disk ratio cannot fully describe the properties of the quenched population.

  4. Cluster galaxy population evolution from the Subaru Hyper Suprime-Cam survey: brightest cluster galaxies, stellar mass distribution, and active galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi; HSC Collaboration

    2018-01-01

    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z~1 to date. In this exploratory study of cluster galaxy evolution from z=1 to z=0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), and evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Our stellar mass is derived from a machine-learning algorithm, which we show to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs, and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. The clusters are found to contain more red galaxies compared to the expectations from the field, even after the differences in density between the two environments have been taken into account. We also present the first measurement of the radio luminosity distribution in clusters out to z~1.

  5. M DWARF ACTIVITY IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY: FIRST CATALOG AND ROTATION PERIODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kado-Fong, E.; Williams, P. K. G.; Berger, E.

    2016-12-20

    We report on an ongoing project to investigate activity in the M dwarf stellar population observed by the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). Using a custom-built pipeline, we refine an initial sample of ∼4 million sources in PS1-MDS to a sample of 184,148 candidate cool stars using color cuts. Motivated by the well-known relationship between rotation and stellar activity, we use a multiband periodogram analysis and visual vetting to identify 270 sources that are likely rotating M dwarfs. We derive a new set of polynomials relating M dwarf PS1 colors to fundamental stellar parameters and use them to estimate the masses, distances, effective temperatures, andmore » bolometric luminosities of our sample. We present a catalog containing these values, our measured rotation periods, and cross-matches to other surveys. Our final sample spans periods of ≲1–130 days in stars with estimated effective temperatures of ∼2700–4000 K. Twenty-two of our sources have X-ray cross-matches, and they are found to be relatively X-ray bright as would be expected from selection effects. Our data set provides evidence that Kepler -based searches have not been sensitive to very slowly rotating stars ( P {sub rot} ≳ 70 day), implying that the observed emergence of very slow rotators in studies of low-mass stars may be a systematic effect. We also see a lack of low-amplitude (<2%) variability in objects with intermediate (10–40 day) rotation periods, which, considered in conjunction with other observational results, may be a signpost of a loss of magnetic complexity associated with a phase of rapid spin-down in intermediate-age M dwarfs. This work represents just a first step in exploring stellar variability in data from the PS1-MDS and, in the farther future, Large Synoptic Survey Telescope.« less

  6. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.:more » access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less

  7. The Chemical Evolution of QSO Absorbers

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.

    2000-06-01

    The chemical evolution of the high redshift intergalactic and interstellar media of galaxies is studied using QSO absorption lines. The redshift evolution of damped Lyman alpha (DLA) system metallicity is studied down to z=0.5, and no significant increase in metals is found. The CIV/HI ratio in the Lyman alpha forest is investigated at z approximately 3 and traces of are metals found in the low density HI gas with optical depth of around 1. Finally, a new survey for DLAs in a radio-selected sample of QSOs is presented, with the aim of determining whether a significant dust bias may have affected previous surveys.

  8. Extreme longevity in a deep-sea vestimentiferan tubeworm and its implications for the evolution of life history strategies

    NASA Astrophysics Data System (ADS)

    Durkin, Alanna; Fisher, Charles R.; Cordes, Erik E.

    2017-08-01

    The deep sea is home to many species that have longer life spans than their shallow-water counterparts. This trend is primarily related to the decline in metabolic rates with temperature as depth increases. However, at bathyal depths, the cold-seep vestimentiferan tubeworm species Lamellibrachia luymesi and Seepiophila jonesi reach extremely old ages beyond what is predicted by the simple scaling of life span with body size and temperature. Here, we use individual-based models based on in situ growth rates to show that another species of cold-seep tubeworm found in the Gulf of Mexico, Escarpia laminata, also has an extraordinarily long life span, regularly achieving ages of 100-200 years with some individuals older than 300 years. The distribution of results from individual simulations as well as whole population simulations involving mortality and recruitment rates support these age estimates. The low 0.67% mortality rate measurements from collected populations of E. laminata are similar to mortality rates in L. luymesi and S. jonesi and play a role in evolution of the long life span of cold-seep tubeworms. These results support longevity theory, which states that in the absence of extrinsic mortality threats, natural selection will select for individuals that senesce slower and reproduce continually into their old age.

  9. Modelling language evolution: Examples and predictions

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Shuai, Lan; Zhang, Menghan

    2014-06-01

    We survey recent computer modelling research of language evolution, focusing on a rule-based model simulating the lexicon-syntax coevolution and an equation-based model quantifying the language competition dynamics. We discuss four predictions of these models: (a) correlation between domain-general abilities (e.g. sequential learning) and language-specific mechanisms (e.g. word order processing); (b) coevolution of language and relevant competences (e.g. joint attention); (c) effects of cultural transmission and social structure on linguistic understandability; and (d) commonalities between linguistic, biological, and physical phenomena. All these contribute significantly to our understanding of the evolutions of language structures, individual learning mechanisms, and relevant biological and socio-cultural factors. We conclude the survey by highlighting three future directions of modelling studies of language evolution: (a) adopting experimental approaches for model evaluation; (b) consolidating empirical foundations of models; and (c) multi-disciplinary collaboration among modelling, linguistics, and other relevant disciplines.

  10. Formation and Evolution of X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Fragkos, Anastasios

    X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in

  11. Potential pitfalls of reconstructing deep time evolutionary history with only extant data, a case study using the canidae (mammalia, carnivora).

    PubMed

    Finarelli, John A; Goswami, Anjali

    2013-12-01

    Reconstructing evolutionary patterns and their underlying processes is a central goal in biology. Yet many analyses of deep evolutionary histories assume that data from the fossil record is too incomplete to include, and rely solely on databases of extant taxa. Excluding fossil taxa assumes that character state distributions across living taxa are faithful representations of a clade's entire evolutionary history. Many factors can make this assumption problematic. Fossil taxa do not simply lead-up to extant taxa; they represent now-extinct lineages that can substantially impact interpretations of character evolution for extant groups. Here, we analyze body mass data for extant and fossil canids (dogs, foxes, and relatives) for changes in mean and variance through time. AIC-based model selection recovered distinct models for each of eight canid subgroups. We compared model fit of parameter estimates for (1) extant data alone and (2) extant and fossil data, demonstrating that the latter performs significantly better. Moreover, extant-only analyses result in unrealistically low estimates of ancestral mass. Although fossil data are not always available, reconstructions of deep-time organismal evolution in the absence of deep-time data can be highly inaccurate, and we argue that every effort should be made to include fossil data in macroevolutionary studies. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  12. Relationship between deep structure and oil-gas in the eastern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Yu, Changqing; Qu, Chen; Han, Jianguang

    2017-04-01

    The Tarim Basin is a large composite superimposed basin which developed in the Presinian continental basement. It is an important area for oil and gas replacement in China. In the eastern part of Tarim Basin, the exploration and research degree is very low and less system, especially in the study of tectonic evolution and physical property change. Basing on the study of geophysics, drilling and regional geological data in this area, analysis of comprehensive geophysical, geological and geophysical analysis comparison are lunched by new methods and new technology of geophysical exploration. Fault, tectonic evolution and change of deep character in the eastern Tarim Basin are analyzed in system. Through in-depth study and understanding of the deep structure and physical changes of the eastern region, we obtain the fault characteristics in the study area and the deep structure and physical change maps to better guide the oil and gas exploration in this area. The east area is located in the eastern Tarim Basin, west from the Garr Man depression, Well Kunan 1 - Well Gucheng 4 line to the East, north to Kuruketage uplift group near Qunke 1 wells, south to Cherchen fault zone, east to Lop Nor depression, an area of about 9 * 104 square kilometres, Including the East of Garr Man sag, Yingjisu depression, Kongquehe slope, Tadong low uplift and the Lop Nor uplift, five two grade tectonic units. The east area of Tarim is belonging to Tarim plate. It changes with the evolution of the Tarim plate. The Tarim plate is closely related to the collision between the Yining - the Junggar plate, the Siberia plate and the southern Qiangtang - the central Kunlun plate. Therefore, it creates a complex tectonic pattern in the eastern Tarim basin. Earth electromagnetic, gravity, deep seismic and other geophysical data are processed by a new generation of geophysical information theory and method, including multi-scale inversion of potential field inversion (Hou and Yang, 2011), 3D

  13. Deep Time Ecosystem Engineers: The Correlation between Palaeozoic Vegetation, Evolution of Physical Riverine Habitats, and Plant and Animal Terrestrialization

    NASA Astrophysics Data System (ADS)

    Davies, N. S.; Gibling, M. R.

    2012-04-01

    corridors narrowed throughout the Ordovician and Silurian, the potential importance of riparian zones as a global biome would have increased as they became more extensive in continental environments. Furthermore, the move towards climatic controls on the ephemeral or perennial nature of streams would have boosted the diversity of temporally diverse hydrodynamic regimes. As single-thread meandering channels and extensive muddy floodplains, stabilised by vegetation, became significant components of the global suite of alluvial geomorphic components throughout the Siluro-Devonian, further diversification of the extent and diversity of physical habitats within the global riparian biome occurred. Into the Carboniferous, the evolution of the anabranching habit within alluvial systems created further new physical landforms for colonization and would have promoted increasingly complex hyporheic flow regimes. Furthermore the associated advent of arborescent vegetation and, specifically, the large woody debris supplied by this, would have created a wealth of new microhabitats for continental organisms. The expanding extent and diversity of physical alluvial niches during the Palaeozoic can be argued to be an underappreciated driver of the terrestrialization of early continental life. The study of the deep time fossil and stratigraphic record also illustrates that vegetation is a fundamental prerequisite for the creation of biogeomorphic alluvial landforms and physical habitats and microhabitats.

  14. Is the genetic landscape of the deep subsurface biosphere affected by viruses?

    PubMed

    Anderson, Rika E; Brazelton, William J; Baross, John A

    2011-01-01

    Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.

  15. Is the Genetic Landscape of the Deep Subsurface Biosphere Affected by Viruses?

    PubMed Central

    Anderson, Rika E.; Brazelton, William J.; Baross, John A.

    2011-01-01

    Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host–virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus–host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems. PMID:22084639

  16. Draft Genome Sequence of Deep-Sea Alteromonas sp. Strain V450 Isolated from the Marine Sponge Leiodermatium sp.

    PubMed

    Wang, Guojun; Barrett, Nolan H; McCarthy, Peter J

    2017-02-02

    The proteobacterium Alteromonas sp. strain V450 was isolated from the Atlantic deep-sea sponge Leiodermatium sp. Here, we report the draft genome sequence of this strain, with a genome size of approx. 4.39 Mb and a G+C content of 44.01%. The results will aid deep-sea microbial ecology, evolution, and sponge-microbe association studies. Copyright © 2017 Wang et al.

  17. Molecular Evolution in Historical Perspective.

    PubMed

    Suárez-Díaz, Edna

    2016-12-01

    In the 1960s, advances in protein chemistry and molecular genetics provided new means for the study of biological evolution. Amino acid sequencing, nucleic acid hybridization, zone gel electrophoresis, and immunochemistry were some of the experimental techniques that brought about new perspectives to the study of the patterns and mechanisms of evolution. New concepts, such as the molecular evolutionary clock, and the discovery of unexpected molecular phenomena, like the presence of repetitive sequences in eukaryotic genomes, eventually led to the realization that evolution might occur at a different pace at the organismic and the molecular levels, and according to different mechanisms. These developments sparked important debates between defendants of the molecular and organismic approaches. The most vocal confrontations focused on the relation between primates and humans, and the neutral theory of molecular evolution. By the 1980s and 1990s, the construction of large protein and DNA sequences databases, and the development of computer-based statistical tools, facilitated the coming together of molecular and evolutionary biology. Although in its contemporary form the field of molecular evolution can be traced back to the last five decades, the field has deep roots in twentieth century experimental life sciences. For historians of science, the origins and consolidation of molecular evolution provide a privileged field for the study of scientific debates, the relation between technological advances and scientific knowledge, and the connection between science and broader social concerns.

  18. Measuring and Understanding Public Opinion on Human Evolution

    NASA Astrophysics Data System (ADS)

    Gwon, Misook

    The theory of evolution has long generated controversy in American society, but Americans' attitudes about human evolution are often neglected in studies of "culture wars" and the nature of mass belief systems more generally (Berkman and Plutzer 2010; Freeland and Houston 2009). Gallup and other survey organizations have polled about evolution, but offered limited response categories that mask complexity in public opinion (Bishop 2006; Moore 2008). The main problems concerning the leading survey questions about evolution are: first, questions measure only a single dimension, thus they ignore the potential for multidimensionality in people's attitudes. Second, depending on question wording and response options, the results of public opinion surveys vary by polling groups. This is an example of measurement error which misleads the interpretation and impression of American public opinion on the origin of humankind. A number of studies have analyzed Americans' beliefs about evolution and hypothesized about the influential effects of several factors (Deckman 2002; Mazur 2005; Mooney 2005; Miller et al. 2006; Newport 2006; Forrest 2007;Nisbet and Goidel 2007;Scott 2009). However, there remains a lack of complete understanding of what Americans know and believe about human evolution. Given the salience of this issue and the significant influence of public opinion on policy-making in America (Page and Shapiro 1992; Stimson 2004; Newport 2004), the measurement error and explanation of polling results on controversial issues related to this topic are in need of clarification. In this study, I address these deficiencies with analyses of data from a 2008 national survey by Harris Interactive (n= 4,626) that included numerous measures of factual knowledge and beliefs about evolution. The items offer more nuanced response options than the standard three-category question asked for decades by the Gallup poll. The Harris survey also had multiple measures of religiosity and the

  19. From Offshore to Onshore: Multiple Origins of Shallow-Water Corals from Deep-Sea Ancestors

    PubMed Central

    Lindner, Alberto; Cairns, Stephen D.; Cunningham, Clifford W.

    2008-01-01

    Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)—the second most diverse group of hard corals—originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors. PMID:18560569

  20. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng

    2016-01-01

    We study the transverse-momentum-dependent (TMD) evolution of the Collins azimuthal asymmetries in e+e- annihilations and semi-inclusive hadron production in deep inelastic scattering processes. All the relevant coefficients are calculated up to the next-to-leading-logarithmic-order accuracy. By applying the TMD evolution at the approximate next-to-leading-logarithmic order in the Collins-Soper-Sterman formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back dihadron productions in e+e- annihilations measured by BELLE and BABAR collaborations and semi-inclusive hadron production in deep inelastic scattering data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation, and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. We make detailed predictions for future experiments and discuss their impact.

  1. Trends in Continuous Deep Sedation until Death between 2007 and 2013: A Repeated Nationwide Survey

    PubMed Central

    Cohen, Joachim; Rietjens, Judith

    2016-01-01

    Background Continuous deep sedation until death is a highly debated medical practice, particularly regarding its potential to hasten death and its proper use in end-of-life care. A thorough analysis of important trends in this practice is needed to identify potentially problematic developments. This study aims to examine trends in the prevalence and practice characteristics of continuous deep sedation until death in Flanders, Belgium between 2007 and 2013, and to study variation on physicians’ degree of palliative training. Methods Population-based death certificate study in 2007 and 2013 in Flanders, Belgium. Reporting physicians received questionnaires about medical practices preceding the patient’s death. Patient characteristics, clinical characteristics (drugs used, duration, artificial nutrition/hydration, intention and consent), and palliative care training of attending physician were recorded. We posed the following question regarding continuous deep sedation: ‘Was the patient continuously and deeply sedated or kept in a coma until death by the use of one or more drugs’. Results After the initial rise of continuous deep sedation to 14.5% in 2007 (95%CI 13.1%-15.9%), its use decreased to 12.0% in 2013 (95%CI 10.9%-13.2%). Compared with 2007, in 2013 opioids were less often used as sole drug and the decision to use continuous deep sedation was more often preceded by patient request. Compared to non-experts, palliative care experts more often used benzodiazepines and less often opioids, withheld artificial nutrition/hydration more often and performed sedation more often after a request from or with the consent of the patient or family. Conclusion Worldwide, this study is the first to show a decrease in the prevalence of continuous deep sedation. Despite positive changes in performance and decision-making towards more compliance with due care requirements, there is still room for improvement in the use of recommended drugs and in the involvement of

  2. Single cell genomic study of dehalogenating Chloroflexi in deep sea sediments of Peru Margin 1230

    NASA Astrophysics Data System (ADS)

    Kaster, A.; Meyer-Blackwell, K.; Biddle, J.; Spormann, A.

    2012-12-01

    Dehalogenating Chloroflexi, such as Dehalococcoidites (Dhc), are members of the rare biosphere of deep sea sediments but were originally discovered as the key microbes mediating reductive dehalogenation of the prevalent groundwater contaminants tetrachloroethene and trichloroethene to ethene. Dhc are slow growing, highly niche adapted microbes that are specialized to organohalide respiration as the sole mode of energy conservation. They are strictly anaerobic microbes that depend on a supporting microbial community for electron donor and cofactor requirements among other factors. Molecular and genomic studies on the key enzymes for energy conservation, reductive dehalogenases, have provided evidence for rapid adaptive evolution in terrestrial environments. However, the metabolic life style of Dhc in the absence of anthropogenic contaminants, such as in pristine deep sea sediments, is still unknown. In order to provide fundamental insights into life style, genomic population structure and evolution of Dhc, we analyzed a non-contaminated deep sea sediment sample of the Peru Margin 1230 site collected 6 mbsf by a metagenomic and single cell genomic approach. We present for the first time single cell genomic data on dehalogenating Chloroflexi, a significant microbial population in the poorly understood oligotrophic marine sub-surface environment.

  3. On evolutionary climate tracks in deep mantle volatile cycle computed from numerical mantle convection simulations and its impact on the habitability of the Earth-like planets

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.; Tajika, E.; Kadoya, S.

    2017-12-01

    Discussing an impact of evolution and dynamics in the Earth's deep interior on the surface climate change for the last few decades (see review by Ehlmann et al., 2016), the mantle volatile (particularly carbon) degassing in the mid-oceanic ridges seems to play a key role in understanding the evolutionary climate track for Earth-like planets (e.g. Kadoya and Tajika, 2015). However, since the mantle degassing occurs not only in the mid-oceanic ridges but also in the wedge mantle (island arc volcanism) and hotspots, to incorporate more accurate estimate of mantle degassing flux into the climate evolution framework, we developed a coupled model of surface climate-deep Earth evolution in numerical mantle convection simulations, including more accurate deep water and carbon cycle (e.g. Nakagawa and Spiegelman, 2017) with an energy balance theory of climate change. Modeling results suggest that the evolution of planetary climate computed from a developed model is basically consistent with an evolutionary climate track in simplified mantle degassing model (Kadoya and Tajika, 2015), but an occurrence timing of global (snowball) glaciation is strongly dependent on mantle degassing rate occurred with activities of surface plate motions. With this implication, the surface plate motion driven by deep mantle dynamics would play an important role in the planetary habitability of such as the Earth and Earth-like planets over geologic time-scale.

  4. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity

    PubMed Central

    Bartlett, Madelaine E.; Whipple, Clinton J.

    2013-01-01

    Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein–protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution. PMID:24124420

  5. The Experience of Deep Learning by Accounting Students

    ERIC Educational Resources Information Center

    Turner, Martin; Baskerville, Rachel

    2013-01-01

    This study examines how to support accounting students to experience deep learning. A sample of 81 students in a third-year undergraduate accounting course was studied employing a phenomenographic research approach, using ten assessed learning tasks for each student (as well as a focus group and student surveys) to measure their experience of how…

  6. The Burrell Schmidt Deep Virgo Survey: Tidal Debris, Galaxy Halos, and Diffuse Intracluster Light in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.; Rudick, Craig; Janowiecki, Steven; Morrison, Heather; Slater, Colin; Watkins, Aaron

    2017-01-01

    We present the results of a deep imaging survey of the Virgo cluster of galaxies, concentrated around the cores of Virgo subclusters A and B. The goal of this survey was to detect and study very low surface brightness features present in Virgo, including discrete tidal features, the faint halos of luminous galaxies, and the diffuse intracluster light (ICL). Our observations span roughly 16 degrees2 in two filters, reaching a 3σ limiting depth of {μ }B = 29.5 and {μ }V = 28.5 mag arcsec-2. At these depths, our limiting systematic uncertainties are astrophysical: variations in faint background sources as well as scattered light from galactic dust. We show that this dust-scattered light is well traced by deep far-infrared imaging, making it possible to separate it from true diffuse light in Virgo. We use our imaging to trace and measure the color of the diffuse tidal streams and ICL in the Virgo core near M87, in fields adjacent to the core including the M86/M84 region, and to the south of the core around M49 and subcluster B, along with the more distant W{}\\prime cloud around NGC 4365. Overall, the bulk of the projected ICL is found in the Virgo core and within the W{}\\prime cloud; we find little evidence for an extensive ICL component in the field around M49. The bulk of the ICL we detect is fairly red in color (B - V = 0.7-0.9), indicative of old, evolved stellar populations. Based on the luminosity of the observed ICL features in the cluster, we estimate a total Virgo ICL fraction of 7%-15%. This value is somewhat smaller than that expected for massive, evolved clusters, suggesting that Virgo is still in the process of growing its extended ICL component. We also trace the shape of M87's extremely boxy outer halo out to ˜150 kpc, and show that the current tidal stripping rate from low luminosity galaxies is insufficient to have built M87's outer halo over a Hubble time. We identify a number of previously unknown low surface brightness structures around

  7. Evolution in the deep sea: biological traits, ecology and phylogenetics of pelagic copepods.

    PubMed

    Laakmann, Silke; Auel, Holger; Kochzius, Marc

    2012-11-01

    Deep-sea biodiversity has received increasing interest in the last decade, mainly focusing on benthic communities. In contrast, studies of zooplankton in the meso- to bathypelagic zones are relatively scarce. In order to explore evolutionary processes in the pelagic deep sea, the present study focuses on copepods of two clausocalanoid families, Euchaetidae and Aetideidae, which are abundant and species-rich in the deep-sea pelagic realm. Molecular phylogenies based on concatenated-portioned data on 18S, 28S and internal transcribed spacer 2 (ITS2), as well as mitochondrial cytochrome c oxidase subunit I (COI), were examined on 13 species, mainly from Arctic and Antarctic regions, together with species-specific biological traits (i.e. vertical occurrence, feeding behaviour, dietary preferences, energy storage, and reproductive strategy). Relationships were resolved on genus, species and even sub-species levels, the latter two established by COI with maximum average genetic distances ranging from ≤5.3% at the intra-specific, and 20.6% at the inter-specific level. There is no resolution at a family level, emphasising the state of Euchaetidae and Aetideidae as sister families and suggesting a fast radiation of these lineages, a hypothesis which is further supported by biological parameters. Euchaetidae were similar in lipid-specific energy storage, reproductive strategy, as well as feeding behaviour and dietary preference. In contrast, Aetideidae were more diverse, comprising a variety of characteristics ranging from similar adaptations within Paraeuchaeta, to genera consisting of species with completely different reproductive and feeding ecologies. Reproductive strategies were generally similar within each aetideid genus, but differed between genera. Closely related species (congeners), which were similar in the aforementioned biological and ecological traits, generally occurred in different depth layers, suggesting that vertical partitioning of the water column

  8. ISO deep far-infrared survey in the Lockman Hole

    NASA Astrophysics Data System (ADS)

    Kawara, K.; Sato, Y.; Matsuhara, H.; Taniguchi, Y.; Okuda, H.; Sofue, Y.; Matsumoto, T.; Wakamatsu, K.; Cowie, L. L.; Joseph, R. D.; Sanders, D. B.

    1999-03-01

    Two 44 arcmin x 44 arcmin fields in the Lockman Hole were mapped at 95 and 175 μm using ISOPHOT. A simple program code combined with PIA works well to correct for the drift in the detector responsivity. The number density of 175 μm sources is 3 - 10 times higher than expected from the no-evolution model. The source counts at 95 and 175 μm are consistent with the cosmic infrared background.

  9. On-site inspections of pavement damages evolution using GPR

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; D'Amico, Fabrizio; Calvi, Alessandro; Benedetto, Andrea

    2014-05-01

    Ground-penetrating radar (GPR) is being increasingly used for pavements maintenance due to the wide range of applications spanning from physical to geometrical inspections, thereby allowing for a reliable diagnosis of the main causes of road structural damages. In this work, an off-ground GPR system was used to investigate a large-scale rural road network. Two sets of surveys were carried out in different time periods, with the main goals to i) localize the most critical sections; ii) monitor the evolution of previous damages and localize newborn deep faults, although not revealed at the pavement surface level; iii) analyze the causes of both evolution and emergence of faults by considering environmental and human factors. A 1-GHz GPR air-launched antenna was linked to an instrumented van for collecting data at traffic speed. Other support techniques (e.g. GPS data logger, odometer, HD video camera) were used for cross-checking,. Such centre frequency of investigation along with a 25-ns time window allow for a signal penetration of 900 mm, consistent with the deepest layer interfaces. The bottom of the array was 400 mm over the surface, with a minimum distance of 1200 mm from the van body. Scan length of maximum 10 km were provided for avoiding heavy computational loads. The rural road network was located in the District of Rieti, 100 km north from Rome, Italy, and mostly develops in a hilly and mountainous landscape. In most of the investigated roads, the carriageway consists in two lanes of 3.75 meters wide and two shoulders of 0.50 meters wide. A typical road section includes a HMA layer (65 mm average thickness), a base layer (100 mm average thickness), and a subbase layer (300 mm average thickness), as described by pavement design charts. The first set of surveys was carried out in two days at the beginning of spring in moderately dry conditions. Overall, 320-km-long inspections were performed in both travel directions, thereby showing a productivity of

  10. Discovery of bright z ≃ 7 galaxies in the UltraVISTA survey

    NASA Astrophysics Data System (ADS)

    Bowler, R. A. A.; Dunlop, J. S.; McLure, R. J.; McCracken, H. J.; Milvang-Jensen, B.; Furusawa, H.; Fynbo, J. P. U.; Le Fèvre, O.; Holt, J.; Ideue, Y.; Ihara, Y.; Rogers, A. B.; Taniguchi, Y.

    2012-11-01

    We have exploited the new, deep, near-infrared UltraVISTA imaging of the Cosmological Evolution Survey (COSMOS) field, in tandem with deep optical and mid-infrared imaging, to conduct a new search for luminous galaxies at redshifts z ≃ 7. The year-one UltraVISTA data provide contiguous Y, J, H, Ks imaging over 1.5 deg2, reaching a 5σ detection limit of Y + J ≃ 25 (AB mag, 2-arcsec-diameter aperture). The central ≃1 deg2 of this imaging coincides with the final deep optical (u*, g, r, i) data provided by the Canada-France-Hawaii Telescope (CFHT) Legacy Survey and new deep Subaru/Suprime-Cam z'-band imaging obtained specifically to enable full exploitation of UltraVISTA. It also lies within the Hubble Space Telescope (HST) I814 band and Spitzer/Infrared Array Camera imaging obtained as part of the COSMOS survey. We have utilized this unique multiwavelength dataset to select galaxy candidates at redshifts z > 6.5 by searching first for Y + J-detected objects which are undetected in the CFHT and HST optical data. This sample was then refined using a photometric redshift fitting code, enabling the rejection of lower redshift galaxy contaminants and cool galactic M, L, T dwarf stars. The final result of this process is a small sample of (at most) 10 credible galaxy candidates at z > 6.5 (from over 200 000 galaxies detected in the year-one UltraVISTA data) which we present in this paper. The first four of these appear to be robust galaxies at z > 6.5, and fitting to their stacked spectral energy distribution yields zphot = 6.98 ± 0.05 with a stellar mass M* ≃ 5 × 109 M⊙ and rest-frame ultraviolet (UV) spectral slope β ≃ -2.0 ± 0.2 (where fλ ∝ λβ). The next three are also good candidates for z > 6.5 galaxies, but the possibility that they are dwarf stars cannot be completely excluded. Our final subset of three additional candidates is afflicted not only by potential dwarf star contamination, but also contains objects likely to lie at redshifts just

  11. The Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Danae Griffin, Rhiannon; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.; Nugent, Jenna

    2016-01-01

    The Swift active galactic nucleus (AGN) and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding X-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. We examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z ˜ 1 for massive clusters. In the second paper, we use Sloan Digital Sky Survey (SDSS) DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 2 and 1 matches in optical, X-ray and SZ catalogs, respectively, so the majority of these

  12. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-Ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of red shift using an approach based on observational data obtained at in different wavelength bands from local to deep galaxy surveys. Our empirically based approach allows us, for the firs.t time, to obtain a completely model independent determination of the IBL and to quantify its uncertainties. Using our results on the IBL, we then place upper and lower limits on the opacity of the universe to gamma-rays, independent of previous constraints.

  13. Fluorescence characteristics in the deep waters of South Gulf of México.

    PubMed

    Schifter, I; Sánchez-Reyna, G; González-Macías, C; Salazar-Coria, L; González-Lozano, C

    2017-10-15

    Vertical profiles of deep-water fluorescence determined by the chlorophyll sensor, polycyclic aromatic hydrocarbons, biomarkers, and other miscellaneous parameters measured in the southern Gulf of Mexico are reported. In the course of the survey, unexpected deep fluorescences were recorded (>1100m depth) in half of the 40 stations studied, a novel finding in this area of the Gulf. Currently, the deep-water fluorescence phenomenon is not completely understood, however we observe linear correlation between the fluorescence intensity and chlorophyll-α concentrations and coincidence of higher number of hydrocarbonoclastic bacteria in samples collected precisely in the deep-water fluorescence. This information is particularly interesting in relation to the Deepwater Horizon oil spill in 2010, in view that the aftermaths of the spill can be observed till today as oil plumes trapped in deep water layers that may disturb the natural water ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community

    NASA Astrophysics Data System (ADS)

    Ball, John E.; Anderson, Derek T.; Chan, Chee Seng

    2017-10-01

    In recent years, deep learning (DL), a rebranding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, and natural language processing. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV, e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should not only be aware of advancements such as DL, but also be leading researchers in this area. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools, and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as they relate to (i) inadequate data sets, (ii) human-understandable solutions for modeling physical phenomena, (iii) big data, (iv) nontraditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial, and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.

  15. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway.

    PubMed

    Bell, David B; Jung, Simon J A; Kroon, Dick; Hodell, David A; Lourens, Lucas J; Raymo, Maureen E

    2015-07-20

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7-4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ(13)C) and oxygen (δ(18)O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ(13)C and δ(18)O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate.

  16. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway

    PubMed Central

    Bell, David B.; Jung, Simon J. A.; Kroon, Dick; Hodell, David A.; Lourens, Lucas J.; Raymo, Maureen E.

    2015-01-01

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7–4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ13C) and oxygen (δ18O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ13C and δ18O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate. PMID:26193070

  17. The Capodimonte Deep Field

    NASA Astrophysics Data System (ADS)

    2001-04-01

    A Window towards the Distant Universe Summary The Osservatorio Astronomico Capodimonte Deep Field (OACDF) is a multi-colour imaging survey project that is opening a new window towards the distant universe. It is conducted with the ESO Wide Field Imager (WFI) , a 67-million pixel advanced camera attached to the MPG/ESO 2.2-m telescope at the La Silla Observatory (Chile). As a pilot project at the Osservatorio Astronomico di Capodimonte (OAC) [1], the OACDF aims at providing a large photometric database for deep extragalactic studies, with important by-products for galactic and planetary research. Moreover, it also serves to gather experience in the proper and efficient handling of very large data sets, preparing for the arrival of the VLT Survey Telescope (VST) with the 1 x 1 degree 2 OmegaCam facility. PR Photo 15a/01 : Colour composite of the OACDF2 field . PR Photo 15b/01 : Interacting galaxies in the OACDF2 field. PR Photo 15c/01 : Spiral galaxy and nebulous object in the OACDF2 field. PR Photo 15d/01 : A galaxy cluster in the OACDF2 field. PR Photo 15e/01 : Another galaxy cluster in the OACDF2 field. PR Photo 15f/01 : An elliptical galaxy in the OACDF2 field. The Capodimonte Deep Field ESO PR Photo 15a/01 ESO PR Photo 15a/01 [Preview - JPEG: 400 x 426 pix - 73k] [Normal - JPEG: 800 x 851 pix - 736k] [Hi-Res - JPEG: 3000 x 3190 pix - 7.3M] Caption : This three-colour image of about 1/4 of the Capodimonte Deep Field (OACDF) was obtained with the Wide-Field Imager (WFI) on the MPG/ESO 2.2-m telescope at the la Silla Observatory. It covers "OACDF Subfield no. 2 (OACDF2)" with an area of about 35 x 32 arcmin 2 (about the size of the full moon), and it is one of the "deepest" wide-field images ever obtained. Technical information about this photo is available below. With the comparatively few large telescopes available in the world, it is not possible to study the Universe to its outmost limits in all directions. Instead, astronomers try to obtain the most detailed

  18. The KMOS Cluster Survey - KCS: Timing the Formation of Passive Galaxies in Clusters at 1.4

    NASA Astrophysics Data System (ADS)

    Beifiori, Alessandra

    2017-07-01

    In this talk I will discuss recent progress studying the rest-frame optical properties of quiescent galaxies at this critical epoch using KMOS, the K-band Multi-Object Spectrograph on the ESO/VLT. I will highlight recent results form the KMOS Custer Survey (KCS), whose aim is to provide a census of quiescent galaxy kinematics at 1.4 ≤ z ≤ 1.8 in know overdensities. The combination of kinematic measurements from KMOS and structural parameters measured from deep HST imaging allowed us to place constraints on the formation ages of passive galaxies at 1.4evolution of galaxy properties and scaling relations at high redshift.

  19. Deep structure of the Texas Gulf passive margin and its Ouachita-Precambrian basement: Results of the COCORP San Marcos arch survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culotta, R.; Latham, T.; Oliver, J.

    1992-02-01

    This COCORP deep seismic survey provides a comprehensive image of the southeast-Texas part of the Gulf passive margin and its accreted Ouachita arc foundation. Beneath the updip limit of the Cenozoic sediment wedge, a prominent antiformal structure is imaged within the interior zone of the buried late Paleozoic Ouachita orogen. The structure appears to involve Precambrian Grenville basement. The crest of the antiform is coincident with the Cretaceous-Tertiary Luling-Mexia-Talco fault zone. Some of these faults dip to the northwest, counter to the general regional pattern of down-to-the-basin faulting, and appear to sole into the top of the antiform, suggesting thatmore » the Ouachita structure has been reactivated as a hingeline to the subsiding passive margin. The antiform may be tied via this fault system and the Ouachita gravity gradient to the similar Devils River, Waco, and Benton uplifts, interpreted as Precambrian basement-cored massifs. Above the Paleozoic sequence, a possible rift-related graben is imaged near the updip limit of Jurassic salt. Paleoshelf edges of the major Tertiary depositional sequences are marked by expanded sections disrupted by growth faults and shale diapirs. Within the Wilcox Formation, the transect crosses the mouth of the 900-m-deep Yoakum Canyon, a principal pathway of sediment delivery from the Laramide belt to the Gulf. Beneath the Wilcox, the Comanchean (Lower Cretaceous) shelf edge, capped by the Stuart City reef, is imaged as a pronounced topographic break onlapped by several moundy sediment packages. Because this segment of the line parallels strike, the topographic break may be interpreted as a 2,000-m-deep embayment in the Cretaceous shelf-edge, and possibly a major submarine canyon older and deeper than the Yoakum Canyon.« less

  20. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: The Infrared Excess of UV-Selected z = 2-10 Galaxies as a Function of UV-Continuum Slope and Stellar Mass

    NASA Astrophysics Data System (ADS)

    Bouwens, Rychard J.; Aravena, Manuel; Decarli, Roberto; Walter, Fabian; da Cunha, Elisabete; Labbé, Ivo; Bauer, Franz E.; Bertoldi, Frank; Carilli, Chris; Chapman, Scott; Daddi, Emanuele; Hodge, Jacqueline; Ivison, Rob J.; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Ota, Kazuaki; Riechers, Dominik; Smail, Ian R.; van der Werf, Paul; Weiss, Axel; Cox, Pierre; Elbaz, David; Gonzalez-Lopez, Jorge; Infante, Leopoldo; Oesch, Pascal; Wagg, Jeff; Wilkins, Steve

    2016-12-01

    We make use of deep 1.2 mm continuum observations (12.7 μJy beam-1 rms) of a 1 arcmin2 region in the Hubble Ultra Deep Field to probe dust-enshrouded star formation from 330 Lyman-break galaxies spanning the redshift range z = 2-10 (to ˜2-3 M ⊙ yr-1 at 1σ over the entire range). Given the depth and area of ASPECS, we would expect to tentatively detect 35 galaxies, extrapolating the Meurer z ˜ 0 IRX-β relation to z ≥ 2 (assuming dust temperature T d ˜ 35 K). However, only six tentative detections are found at z ≳ 2 in ASPECS, with just three at >3σ. Subdividing our z = 2-10 galaxy samples according to stellar mass, UV luminosity, and UV-continuum slope and stacking the results, we find a significant detection only in the most massive (>109.75 M ⊙) subsample, with an infrared excess (IRX = L IR/L UV) consistent with previous z ˜ 2 results. However, the infrared excess we measure from our large selection of sub-L ∗ (<109.75 M ⊙) galaxies is {0.11}-0.42+0.32 ± 0.34 (bootstrap and formal uncertainties) and {0.14}-0.14+0.15 ± 0.18 at z = 2-3 and z = 4-10, respectively, lying below even an IRX-β relation for the Small Magellanic Cloud (95% confidence). These results demonstrate the relevance of stellar mass for predicting the IR luminosity of z ≳ 2 galaxies. We find that the evolution of the IRX-stellar mass relationship depends on the evolution of the dust temperature. If the dust temperature increases monotonically with redshift (\\propto {(1+z)}0.32) such that T d ˜ 44-50 K at z ≥ 4, current results are suggestive of little evolution in this relationship to z ˜ 6. We use these results to revisit recent estimates of the z ≥ 3 star formation rate density.

  1. Tension zones of deep-seated rockslides revealed by thermal anomalies and airborne laser scan data

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Bečkovský, David; Gajdošík, Juraj; Opálka, Filip; Plan, Lukas; Winkler, Gerhard

    2015-04-01

    Open cracks, tension fractures and crevice caves are important diagnostic features of gravitationally deformed slopes. When the cracks on the upper part of the slope open to the ground surface, they transfer relatively warm and buoyant air from the underground in cold seasons and thus could be detected by the infrared thermography (IRT) as warmer anomalies. Here we present two IRT surveys of deep-seated rockslides in Austria and the Czech Republic. We used thermal imaging cameras Flir and Optris, manipulated manually from the ground surface and also from unmanned aerial vehicle and piloted ultralight-plane platforms. The surveys were conducted during cold days of winter 2014/2015 and early in the morning to avoid the negative effect of direct sunshine. The first study site is the Bad Fischau rockslide in the southern part of the Vienna Basin (Austria). It was firstly identified by the morphostructural analysis of 1-m digital terrain model from the airborne laser scan data. The rockslide is superimposed on, and closely related to the active marginal faults of the Vienna basin, which is a pull apart structure. There is the 80-m-deep Eisenstein Show Cave situated in the southern lateral margin of the rockslide. The cave was originally considered to be purely of hydrothermal (hypogene) karstification; however its specific morphology and position within the detachment zone of the rockslide suggests its relation to gravitational slope-failure. The IRT survey revealed the Eisenstein Cave at the ground surface and also several other open cracks and possible cleft caves along the margins, headscarp, and also within the body of the rockslide. The second surveyed site was the Kněhyně rockslide in the flysch belt of the Outer Western Carpathians in the eastern Czech Republic. This deep-seated translational rockslide formed about eight known pseudokarst crevice caves, which reach up to 57 m in depth. The IRT survey recognized several warm anomalies indicating very deep

  2. Deep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detection

    NASA Astrophysics Data System (ADS)

    Cabrera-Vives, Guillermo; Reyes, Ignacio; Förster, Francisco; Estévez, Pablo A.; Maureira, Juan-Carlos

    2017-02-01

    We introduce Deep-HiTS, a rotation-invariant convolutional neural network (CNN) model for classifying images of transient candidates into artifacts or real sources for the High cadence Transient Survey (HiTS). CNNs have the advantage of learning the features automatically from the data while achieving high performance. We compare our CNN model against a feature engineering approach using random forests (RFs). We show that our CNN significantly outperforms the RF model, reducing the error by almost half. Furthermore, for a fixed number of approximately 2000 allowed false transient candidates per night, we are able to reduce the misclassified real transients by approximately one-fifth. To the best of our knowledge, this is the first time CNNs have been used to detect astronomical transient events. Our approach will be very useful when processing images from next generation instruments such as the Large Synoptic Survey Telescope. We have made all our code and data available to the community for the sake of allowing further developments and comparisons at https://github.com/guille-c/Deep-HiTS. Deep-HiTS is licensed under the terms of the GNU General Public License v3.0.

  3. ALMACAL I: FIRST DUAL-BAND NUMBER COUNTS FROM A DEEP AND WIDE ALMA SUBMILLIMETER SURVEY, FREE FROM COSMIC VARIANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oteo, I.; Ivison, R. J.; Zwaan, M. A.

    We have exploited ALMA calibration observations to carry out a novel, wide, and deep submillimeter (submm) survey, almacal. These calibration data comprise a large number of observations of calibrator fields in a variety of frequency bands and array configurations. By gathering together data acquired during multiple visits to many ALMA calibrators, it is possible to reach noise levels which allow the detection of faint, dusty, star-forming galaxies (DSFGs) over a significant area. In this paper, we outline our survey strategy and report the first results. We have analyzed data for 69 calibrators, reaching depths of ∼25 μ Jy beam{sup −1}more » at sub-arcsec resolution. Adopting a conservative approach based on ≥5 σ detections, we have found 8 and 11 DSFGs in ALMA bands 6 and 7, respectively, with flux densities S {sub 1.2} m {sub m} ≥ 0.2 mJy. The faintest galaxies would have been missed by even the deepest Herschel surveys. Our cumulative number counts have been determined independently at 870 μ m and 1.2 mm from a sparse sampling of the astronomical sky, and are thus relatively free of cosmic variance. The counts are lower than reported previously by a factor of at least 2×. Future analyses will yield large, secure samples of DSFGs with redshifts determined via the detection of submm spectral lines. Uniquely, our strategy then allows for morphological studies of very faint DSFGs—representative of more normal star-forming galaxies than conventional submm galaxies—in fields where self-calibration is feasible, yielding milliarcsecond spatial resolution.« less

  4. Fundamental Study on the Dynamics of Heterogeneity-Enhanced CO2 Gas Evolution in the Shallow Subsurface During Possible Leakage from Deep Geologic Storage Sites

    NASA Astrophysics Data System (ADS)

    Plampin, M. R.; Lassen, R. N.; Sakaki, T.; Pawar, R.; Jensen, K.; Illangasekare, T. H.

    2013-12-01

    A concern for geologic carbon sequestration is the potential for CO2 stored in deep geologic formations to leak upward into shallow freshwater aquifers where it can have potentially detrimental impacts to the environment and human health. Understanding the mechanisms of CO2 exsolution, migration and accumulation (collectively referred to as 'gas evolution') in the shallow subsurface is critical to predict and mitigate the environmental impacts. During leakage, CO2 can move either as free-phase or as a dissolved component of formation brine. CO2 dissolved in brine may travel upward into shallow freshwater systems, and the gas may be released from solution. In the shallow aquifer, the exsolved gas may accumulate near interfaces between soil types, and/or create flow paths that allow the gas to escape through the vadose zone to the atmosphere. The process of gas evolution in the shallow subsurface is controlled by various factors, including temperature, dissolved CO2 concentration, water pressure, background water flow rate, and geologic heterogeneity. However, the conditions under which heterogeneity controls gas phase evolution have not yet been precisely defined and can therefore not yet be incorporated into models used for environmental risk assessment. The primary goal of this study is to conduct controlled laboratory experiments to help fill this knowledge gap. With this as a goal, a series of intermediate-scale laboratory experiments were conducted to observe CO2 gas evolution in porous media at multiple scales. Deionized water was saturated with dissolved CO2 gas under a specified pressure (the saturation pressure) before being injected at a constant volumetric flow rate into the bottom of a 1.7 meter-tall by 5.7 centimeter-diameter column or a 2.4 meter-tall by 40 centimeter-wide column that were both filled with sand in various heterogeneous packing configurations. Both test systems were initially saturated with fresh water and instrumented with soil

  5. THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardamone, Carolin N.; Van Dokkum, Pieter G.; Urry, C. Megan

    2010-08-15

    We present deep optical 18-medium-band photometry from the Subaru telescope over the {approx}30' x 30' Extended Chandra Deep Field-South, as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC 'BVR' image we find {approx}40,000 galaxies with R {sub AB} < 25.3, the median 5{sigma} limit of the 18 medium bands. Photometric redshifts are determined using the EAzYmore » code and compared to {approx}2000 spectroscopic redshifts in this field. The medium-band filters provide very accurate redshifts for the (bright) subset of galaxies with spectroscopic redshifts, particularly at 0.1 < z < 1.2 and at z {approx}> 3.5. For 0.1 < z < 1.2, we find a 1{sigma} scatter in {Delta}z/(1 + z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that {approx}20% of the red sequence galaxies show evidence of dust emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric redshifts are provided through the public MUSYC Web site.« less

  6. Crustal evolution of Eocene paleo arc around Ogasawara region obtained by seismic reflection survey

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Takahashi, N.; Kodaira, S.; Miura, S.; Ishizuka, O.; Tatsumi, Y.

    2011-12-01

    The Izu-Bonin (Ogasawara)-Mariana (IBM) arc is known to the typical oceanic island arc, and it is the most suitable area to understand the growth process of island arc. The existence of two paleo arc which consists of Oligocene and Eocene paleo age is known in IBM forearc region by geological and geophysical studies. The Ogasawara ridge is also known to locate the initial structure of arc evolution from geologic sampling of research submersible. In this region, IODP drilling site: IBM-2 is proposed in order to understand the temporal and spatial change in arc crust composition from 50 to 40Ma magmatism. Site IBM-2 consists of two offset drilling holes (BON-1, BON-2). BON-1 designed to first encounter forearc basalt and will reach the sheeted dykes. BON-2 will start in boninites and finish in fore arc basalts. The purpose of these drilling is sampling the full volcanic stratigraphy from gabbro to boninite. There is no seismic data around BON-1 and BON-2, therefore it is need to conduct the multi-channel seismic reflection survey. Japan Agency for Marine-Earth Science and Technology carried out multi-channel seismic reflection survey and wide-angle reflection survey using 7,800 cu.in. air gun, 5 km streamer with 444 ch hydrophones and 40 OBSs in March 2011. We obtained two seismic reflection profiles of lines KT06 and KT07 along the paleo arc around Ogasawara ridge. Line KT06 located the north side of Ogasawara ridge. Line KT07 located the trench side of Ogasawara ridge. Lines KT06 is also deployed the OBSs every 5 km interval. Thin sediments are covered with basement in both survey lines. There are some sediment filled in depression topography. The low-frequency reflection from the top of subducting Pacific plate is recognized in line KT06. The continuity of this reflection is not clear due to the complicated bathymetry. The displacement of basement in northern side of Ogasawara ridge is identified along the lineament of bathymetry in Line 06. This structure is

  7. Science Highlights from the Spitzer Survey of Stellar Structure in Galaxies (S4G) & Public Release of S4G Data

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik

    2013-01-01

    The Spitzer Survey of Stellar Structure in Galaxies (S4G) is the largest and the most homogenous survey of the distribution of mass and stellar structure in over 2,300 nearby galaxies. With an integration time of four minutes per pixel at 3.6 and 4.5 microns, the S4G maps are extremely deep, tracing the stellar surface densities of < 1 solar mass per square parsec! S4G is the ultimate survey of the endoskeleton of nearby galaxies from dwarfs to ellipticals and affords an incredible treasury of data which we can address a host of outstanding questions in galaxy evolution. At this special session we will present details on the public release of this survey which will include science ready images, masks for the foreground and background stars, globally integrated properties and radial profiles of all galaxies. In addition we will release the results from a GALFIT decomposition of 200 galaxies which will be supplemented with the remainder of the survey within six months. The data are being released through the NASA/IPAC Infrared Science Archive (IRSA). I will present an overview of the survey, the data we are releasing, introduce the speakers and present science highlights from the team.

  8. Combined MR direct thrombus imaging and non-contrast magnetic resonance venography reveal the evolution of deep vein thrombosis: a feasibility study.

    PubMed

    Mendichovszky, I A; Priest, A N; Bowden, D J; Hunter, S; Joubert, I; Hilborne, S; Graves, M J; Baglin, T; Lomas, D J

    2017-06-01

    Lower limb deep venous thrombosis (DVT) is a common condition with high morbidity and mortality. The aim of the study was to investigate the temporal evolution of the acute thrombus by magnetic resonance imaging (MRI) and its relationship to venous recanalization in patients with recurrent DVTs. Thirteen patients with newly diagnosed lower limb DVTs underwent MRI with non-contrast MR venography (NC-MRV) and MR direct thrombus imaging (MR-DTI), an inversion-recovery water-selective fast gradient-echo acquisition. Imaging was performed within 7 days of the acute thrombotic event, then at 3 and 6 months. By 3 months from the thrombotic event a third of the thrombi had resolved and by 6 months about half of the cases had resolved on the basis of vein recanalisation using NC-MRV. On the initial MR-DTI acute thrombus was clearly depicted by hyperintense signal, while the remaining thrombi were predominantly low signal at 3 and 6 months. Some residual thrombi contained small and fragmented persisting hyperintense areas at 3 months, clearing almost completely by 6 months. Our study suggests that synergistic venous assessment with combined NC-MRV and MR-DTI is able to distinguish acute venous thrombosis from the established (old) or evolving DVT detected by ultrasound. • MRI can distinguish between acute and evolving or chronic lower limb DVT • Two advanced MRI techniques can follow the evolution of lower limb DVT • MRI could be used to avoid an incorrect diagnosis of recurrent DVT • MRI could help avoid the risks and complications of lifelong anticoagulation therapy.

  9. QCDNUM: Fast QCD evolution and convolution

    NASA Astrophysics Data System (ADS)

    Botje, M.

    2011-02-01

    The QCDNUM program numerically solves the evolution equations for parton densities and fragmentation functions in perturbative QCD. Un-polarised parton densities can be evolved up to next-to-next-to-leading order in powers of the strong coupling constant, while polarised densities or fragmentation functions can be evolved up to next-to-leading order. Other types of evolution can be accessed by feeding alternative sets of evolution kernels into the program. A versatile convolution engine provides tools to compute parton luminosities, cross-sections in hadron-hadron scattering, and deep inelastic structure functions in the zero-mass scheme or in generalised mass schemes. Input to these calculations are either the QCDNUM evolved densities, or those read in from an external parton density repository. Included in the software distribution are packages to calculate zero-mass structure functions in un-polarised deep inelastic scattering, and heavy flavour contributions to these structure functions in the fixed flavour number scheme. Program summaryProgram title: QCDNUM version: 17.00 Catalogue identifier: AEHV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public Licence No. of lines in distributed program, including test data, etc.: 45 736 No. of bytes in distributed program, including test data, etc.: 911 569 Distribution format: tar.gz Programming language: Fortran-77 Computer: All Operating system: All RAM: Typically 3 Mbytes Classification: 11.5 Nature of problem: Evolution of the strong coupling constant and parton densities, up to next-to-next-to-leading order in perturbative QCD. Computation of observable quantities by Mellin convolution of the evolved densities with partonic cross-sections. Solution method: Parametrisation of the parton densities as linear or quadratic splines on a discrete grid, and evolution of the spline

  10. The evolution of dorsal-ventral patterning mechanisms in insects.

    PubMed

    Lynch, Jeremy A; Roth, Siegfried

    2011-01-15

    The gene regulatory network (GRN) underpinning dorsal-ventral (DV) patterning of the Drosophila embryo is among the most thoroughly understood GRNs, making it an ideal system for comparative studies seeking to understand the evolution of development. With the emergence of widely applicable techniques for testing gene function, species with sequenced genomes, and multiple tractable species with diverse developmental modes, a phylogenetically broad and molecularly deep understanding of the evolution of DV axis formation in insects is feasible. Here, we review recent progress made in this field, compare our emerging molecular understanding to classical embryological experiments, and suggest future directions of inquiry.

  11. Bacteria as part of bioluminescence emission at the deep ANTARES station (North-Western Mediterranean Sea) during a one-year survey

    NASA Astrophysics Data System (ADS)

    Martini, S.; Michotey, V.; Casalot, L.; Bonin, P.; Guasco, S.; Garel, M.; Tamburini, C.

    2016-10-01

    Bioluminescent bacteria have been studied during a one-year survey in 2011 at the deep ANTARES site (Northwestern Mediterranean Sea, 2000 m depth). The neutrino underwater telescope ANTARES, located at this station, has been used to record the bioluminescence at the same depth. Together with these data, environmental variables (potential temperature, salinity, nutrients, dissolved organic carbon and oxygen) have been characterized in water samples. The year 2011 was characterized by relatively stable conditions, as revealed by minor variability in the monitored oceanographic variables, by low bioluminescence and low current speed. This suggests weak eukaryote participation and mainly non-stimulated light emission. Hence, no processes of dense water have affected the ANTARES station during this survey. Abundance of bioluminescent bacteria belonging to Photobacterium genus, measured by qPCR of the luxF gene, ranged from 1.4×102 to 7.2×102 genes mL-1. Their effective activity was confirmed through mRNA luxF quantification. Our results reveal that bioluminescent bacteria appeared more active than the total counterpart of bacteria, suggesting an ecological benefit of this feature such as favoring interaction with macro-organisms. Moreover, these results show that part of the bioluminescence, recorded at 2000 m depth over one year, could be due to bioluminescent bacteria in stable hydrological conditions.

  12. Deep inelastic scattering as a probe of entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharzeev, Dmitri E.; Levin, Eugene M.

    Using nonlinear evolution equations of QCD, we compute the von Neumann entropy of the system of partons resolved by deep inelastic scattering at a given Bjorken x and momentum transfer q 2 = - Q 2 . We interpret the result as the entropy of entanglement between the spatial region probed by deep inelastic scattering and the rest of the proton. At small x the relation between the entanglement entropy S ( x ) and the parton distribution x G ( x ) becomes very simple: S ( x ) = ln [ x G ( x ) ] .more » In this small x , large rapidity Y regime, all partonic microstates have equal probabilities—the proton is composed by an exponentially large number exp ( Δ Y ) of microstates that occur with equal and exponentially small probabilities exp ( - Δ Y ) , where Δ is defined by x G ( x ) ~ 1 / x Δ . For this equipartitioned state, the entanglement entropy is maximal—so at small x , deep inelastic scattering probes a maximally entangled state. Here, we propose the entanglement entropy as an observable that can be studied in deep inelastic scattering. This will then require event-by-event measurements of hadronic final states, and would allow to study the transformation of entanglement entropy into the Boltzmann one. We estimate that the proton is represented by the maximally entangled state at x ≤ 10 -3 ; this kinematic region will be amenable to studies at the Electron Ion Collider.« less

  13. Deep inelastic scattering as a probe of entanglement

    DOE PAGES

    Kharzeev, Dmitri E.; Levin, Eugene M.

    2017-06-03

    Using nonlinear evolution equations of QCD, we compute the von Neumann entropy of the system of partons resolved by deep inelastic scattering at a given Bjorken x and momentum transfer q 2 = - Q 2 . We interpret the result as the entropy of entanglement between the spatial region probed by deep inelastic scattering and the rest of the proton. At small x the relation between the entanglement entropy S ( x ) and the parton distribution x G ( x ) becomes very simple: S ( x ) = ln [ x G ( x ) ] .more » In this small x , large rapidity Y regime, all partonic microstates have equal probabilities—the proton is composed by an exponentially large number exp ( Δ Y ) of microstates that occur with equal and exponentially small probabilities exp ( - Δ Y ) , where Δ is defined by x G ( x ) ~ 1 / x Δ . For this equipartitioned state, the entanglement entropy is maximal—so at small x , deep inelastic scattering probes a maximally entangled state. Here, we propose the entanglement entropy as an observable that can be studied in deep inelastic scattering. This will then require event-by-event measurements of hadronic final states, and would allow to study the transformation of entanglement entropy into the Boltzmann one. We estimate that the proton is represented by the maximally entangled state at x ≤ 10 -3 ; this kinematic region will be amenable to studies at the Electron Ion Collider.« less

  14. Measuring and Understanding Public Opinion on Human Evolution

    ERIC Educational Resources Information Center

    Gwon, Misook

    2012-01-01

    The theory of evolution has long generated controversy in American society, but Americans' attitudes about human evolution are often neglected in studies of "culture wars" and the nature of mass belief systems more generally (Berkman and Plutzer 2010; Freeland and Houston 2009). Gallup and other survey organizations have polled…

  15. A deep imaging survey of the Pleiades with ROSAT

    NASA Technical Reports Server (NTRS)

    Stauffer, J. R.; Caillault, J.-P.; Gagne, M.; Prosser, C. F.; Hartmann, L. W.

    1994-01-01

    We have obtained deep ROSAT images of three regions within the Pleiades open cluster. We have detected 317 X-ray sources in these ROSAT Position Sensitive Proportional Counter (PSPC) images, 171 of which we associate with certain or probable members of the Pleiades cluster. We detect nearly all Pleiades members with spectral types later than G0 and within 25 arcminutes of our three field centers where our sensitivity is highest. This has allowed us to derive for the first time the luminosity function for the G, K, amd M dwarfs of an open cluster without the need to use statistical techniques to account for the presence of upper limits in the data sample. Because of our high X-ray detection frequency down to the faint limit of the optical catalog, we suspect that some of our unidentified X-ray sources are previously unknown, very low-mass members of Pleiades. A large fraction of the Pleiades members detected with ROSAT have published rotational velocities. Plots of L(sub X)/L(sub Bol) versus spectroscopic rotational velocity show tightly correlated `saturation' type relations for stars with ((B - V)(sub 0)) greater than or equal to 0.60. For each of several color ranges, X-ray luminosities rise rapidly with increasing rotation rate until c sin i approximately equal to 15 km/sec, and then remains essentially flat for rotation rates up to at least v sin i approximately equal to 100 km/sec. The dispersion in rotation among low-mass stars in the Pleiades is by far the dominant contributor to the dispersion in L(sub X) at a given mass. Only about 35% of the B, A, and early F stars in the Pleiades are detected as X-ray sources in our survey. There is no correlation between X-ray flux and rotation for these stars. The X-ray luminosity function for the early-type Pleiades stars appears to be bimodal -- with only a few exceptions, we either detect these stars at fluxes in the range found for low-mass stars or we derive X-ray limits below the level found for most Pleiades

  16. The Evolution of Deep Ocean Chemistry and Respired Carbon in the Eastern Equatorial Pacific Over the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    de la Fuente, Maria; Calvo, Eva; Skinner, Luke; Pelejero, Carles; Evans, David; Müller, Wolfgang; Povea, Patricia; Cacho, Isabel

    2017-12-01

    It has been shown that the deep Eastern Equatorial Pacific (EEP) region was poorly ventilated during the Last Glacial Maximum (LGM) relative to Holocene values. This finding suggests a more efficient biological pump, which indirectly supports the idea of increased carbon storage in the deep ocean contributing to lower atmospheric CO2 during the last glacial. However, proxies related to respired carbon are needed in order to directly test this proposition. Here we present Cibicides wuellerstorfi B/Ca ratios from Ocean Drilling Program Site 1240 measured by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) as a proxy for deep water carbonate saturation state (Δ[CO32-], and therefore [CO32-]), along with δ13C measurements. In addition, the U/Ca ratio in foraminiferal coatings has been analyzed as an indicator of oxygenation changes. Our results show lower [CO32-], δ13C, and [O2] values during the LGM, which would be consistent with higher respired carbon levels in the deep EEP driven, at least in part, by reduced deep water ventilation. However, the difference between LGM and Holocene [CO32-] observed at our site is relatively small, in accordance with other records from across the Pacific, suggesting that a "counteracting" mechanism, such as seafloor carbonate dissolution, also played a role. If so, this mechanism would have increased average ocean alkalinity, allowing even more atmospheric CO2 to be "sequestered" by the ocean. Therefore, the deep Pacific Ocean very likely stored a significant amount of atmospheric CO2 during the LGM, specifically due to a more efficient biological carbon pump and also an increase in average ocean alkalinity.

  17. Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys

    DTIC Science & Technology

    2012-09-30

    Ice Cover in the Beaufort and Chukchi Seas Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys Axel...temperatures. These changes in turn will affect the evolution of the SIZ. An appropriate representation of this feedback loop in models is critical if we... modeling experiments as part of the atmospheric component of the Seasonal Ice Zone Reconnaissance Survey project (SIZRS). We will • Determine the role

  18. DEEP-South: Preliminary Photometric Results from the KMTNet-CTIO

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Jin; Moon, Hong-Kyu; Choi, Young-Jun; Yim, Hong-Suh; Bae, Young-Ho; Roh, Dong-Goo; Park, Jin Tae; Moon, Bora

    2016-01-01

    Korea Astronomy and Space Science Institute (KASI) successfully completed the development of Korea Microlensing Telescope Network (KMTNet, Park et al. 2012) in mid-2015, following which it conducted test runs for several months. `DEep Ecliptic Patrol of the Southern sky' (DEEP-South, Moon et al. 2015), which will be used for asteroid and comet studies, will not only characterize targeted asteroids, carrying out blind surveys toward the sweet spots, but will also mine the data of such bodies using the KMTNet archive. We report preliminary lightcurves of four Potentially Hazardous Asteroids (PHAs) from test runs at KMTNet-CTIO in the February - May 2015 period.

  19. THE KMOS{sup 3D} SURVEY: DESIGN, FIRST RESULTS, AND THE EVOLUTION OF GALAXY KINEMATICS FROM 0.7 ≤ z ≤ 2.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisnioski, E.; Förster Schreiber, N. M.; Wuyts, S.

    2015-02-01

    We present the KMOS{sup 3D} survey, a new integral field survey of over 600 galaxies at 0.7 < z < 2.7 using KMOS at the Very Large Telescope. The KMOS{sup 3D} survey utilizes synergies with multi-wavelength ground- and space-based surveys to trace the evolution of spatially resolved kinematics and star formation from a homogeneous sample over 5 Gyr of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M {sub *}) and rest-frame (U – V) – M {sub *} planes uniformly. We describe the selection of targets, the observations, and themore » data reduction. In the first-year of data we detect Hα emission in 191 M {sub *} = 3 × 10{sup 9}-7 × 10{sup 11} M {sub ☉} galaxies at z = 0.7-1.1 and z = 1.9-2.7. In the current sample 83% of the resolved galaxies are rotation dominated, determined from a continuous velocity gradient and v {sub rot}/σ{sub 0} > 1, implying that the star-forming ''main sequence'' is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ∼70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z ≳ 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s{sup –1}at z ∼ 2.3 to 25 km s{sup –1}at z ∼ 0.9. Combined with existing results spanning z ∼ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory.« less

  20. The deep, hot biosphere: Twenty-five years of retrospection.

    PubMed

    Colman, Daniel R; Poudel, Saroj; Stamps, Blake W; Boyd, Eric S; Spear, John R

    2017-07-03

    Twenty-five years ago this month, Thomas Gold published a seminal manuscript suggesting the presence of a "deep, hot biosphere" in the Earth's crust. Since this publication, a considerable amount of attention has been given to the study of deep biospheres, their role in geochemical cycles, and their potential to inform on the origin of life and its potential outside of Earth. Overwhelming evidence now supports the presence of a deep biosphere ubiquitously distributed on Earth in both terrestrial and marine settings. Furthermore, it has become apparent that much of this life is dependent on lithogenically sourced high-energy compounds to sustain productivity. A vast diversity of uncultivated microorganisms has been detected in subsurface environments, and we show that H 2 , CH 4 , and CO feature prominently in many of their predicted metabolisms. Despite 25 years of intense study, key questions remain on life in the deep subsurface, including whether it is endemic and the extent of its involvement in the anaerobic formation and degradation of hydrocarbons. Emergent data from cultivation and next-generation sequencing approaches continue to provide promising new hints to answer these questions. As Gold suggested, and as has become increasingly evident, to better understand the subsurface is critical to further understanding the Earth, life, the evolution of life, and the potential for life elsewhere. To this end, we suggest the need to develop a robust network of interdisciplinary scientists and accessible field sites for long-term monitoring of the Earth's subsurface in the form of a deep subsurface microbiome initiative.

  1. The deep, hot biosphere: Twenty-five years of retrospection

    PubMed Central

    Colman, Daniel R.; Poudel, Saroj; Stamps, Blake W.; Boyd, Eric S.; Spear, John R.

    2017-01-01

    Twenty-five years ago this month, Thomas Gold published a seminal manuscript suggesting the presence of a “deep, hot biosphere” in the Earth’s crust. Since this publication, a considerable amount of attention has been given to the study of deep biospheres, their role in geochemical cycles, and their potential to inform on the origin of life and its potential outside of Earth. Overwhelming evidence now supports the presence of a deep biosphere ubiquitously distributed on Earth in both terrestrial and marine settings. Furthermore, it has become apparent that much of this life is dependent on lithogenically sourced high-energy compounds to sustain productivity. A vast diversity of uncultivated microorganisms has been detected in subsurface environments, and we show that H2, CH4, and CO feature prominently in many of their predicted metabolisms. Despite 25 years of intense study, key questions remain on life in the deep subsurface, including whether it is endemic and the extent of its involvement in the anaerobic formation and degradation of hydrocarbons. Emergent data from cultivation and next-generation sequencing approaches continue to provide promising new hints to answer these questions. As Gold suggested, and as has become increasingly evident, to better understand the subsurface is critical to further understanding the Earth, life, the evolution of life, and the potential for life elsewhere. To this end, we suggest the need to develop a robust network of interdisciplinary scientists and accessible field sites for long-term monitoring of the Earth’s subsurface in the form of a deep subsurface microbiome initiative. PMID:28674200

  2. Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John

    2015-12-01

    Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially

  3. Cosmic Accretion and Galaxy Co-Evolution: Lessons from the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Urry, C. Megan

    2011-05-01

    The Chandra deep fields reveal that most cosmic accretion onto supermassive black holes is obscured by gas and dust. The GOODS and MUSYC multiwavelength data show that many X-ray-detected AGN are faint and red (or even undetectable) in the optical but bright in the infrared, as is characteristic of obscured sources. (N.B. The ECDFS is most sensitive to the AGN that constitute the X-ray background, namely, moderate luminosity AGN, with log Lx=43-44, at moderate redshifts, 0.5deep medium-band optical imaging in 18 filters with Subaru's Suprime-Cam, we can derive the color-mass distributions out to z<1.2. (With deep near-IR HST imaging and spectroscopy we can extend this to z 2.5.) After correcting for dust reddening, we find that AGN host galaxies at z 1 are either newly arrived on the red sequence or still forming stars in the blue cloud, while at z 0 most AGN hosts are in the green valley, avoiding the blue cloud. These results suggest two modes of black hole growth: a vigorous initial phase that may be strong enough to turn off star formation, and a later moderate phase, on the red sequence, sufficient to keep gas too hot for star formation. At lower redshifts, this activity has mostly died down, presumably because there is less gas available for star formation or accretion.

  4. 1. Historic American Buildings Survey, George W. Phillips, Photographer GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey, George W. Phillips, Photographer GENERAL VIEW, PESTLE IN RAISED POSITION (PHOTOGRAPHED IN ITS ORIGINAL LOCATION ON THE CINDY BAUMGARTNER PLACE, DEEP CREEK, N.C. BEFORE BEING REMOVED TO ITS PRESENT LOCATION). - Pounding Mill, Pioneer Museum, Route 441 (moved from Deep Creek), Cherokee, Swain County, NC

  5. 2. Historic American Buildings Survey, George W. Phillips, Photographer GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey, George W. Phillips, Photographer GENERAL VIEW, PESTLE IN LOWERED POSITION (PHOTOGRAPHED IN ITS ORIGINAL LOCATION ON THE CINDY BAUMGARTNER PLACE, DEEP CREEK, N.C. BEFORE BEING REMOVED TO ITS PRESENT LOCATION). - Pounding Mill, Pioneer Museum, Route 441 (moved from Deep Creek), Cherokee, Swain County, NC

  6. Anomalies of rupture velocity in deep earthquakes

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Yagi, Y.

    2010-12-01

    Explaining deep seismicity is a long-standing challenge in earth science. Deeper than 300 km, the occurrence rate of earthquakes with depth remains at a low level until ~530 km depth, then rises until ~600 km, finally terminate near 700 km. Given the difficulty of estimating fracture properties and observing the stress field in the mantle transition zone (410-660 km), the seismic source processes of deep earthquakes are the most important information for understanding the distribution of deep seismicity. However, in a compilation of seismic source models of deep earthquakes, the source parameters for individual deep earthquakes are quite varied [Frohlich, 2006]. Rupture velocities for deep earthquakes estimated using seismic waveforms range from 0.3 to 0.9Vs, where Vs is the shear wave velocity, a considerably wider range than the velocities for shallow earthquakes. The uncertainty of seismic source models prevents us from determining the main characteristics of the rupture process and understanding the physical mechanisms of deep earthquakes. Recently, the back projection method has been used to derive a detailed and stable seismic source image from dense seismic network observations [e.g., Ishii et al., 2005; Walker et al., 2005]. Using this method, we can obtain an image of the seismic source process from the observed data without a priori constraints or discarding parameters. We applied the back projection method to teleseismic P-waveforms of 24 large, deep earthquakes (moment magnitude Mw ≥ 7.0, depth ≥ 300 km) recorded since 1994 by the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS-DMC) and reported in the U.S. Geological Survey (USGS) catalog, and constructed seismic source models of deep earthquakes. By imaging the seismic rupture process for a set of recent deep earthquakes, we found that the rupture velocities are less than about 0.6Vs except in the depth range of 530 to 600 km. This is consistent with the depth

  7. SOUTHERN COSMOLOGY SURVEY. III. QSOs FROM COMBINED GALEX AND OPTICAL PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Raul; Verde, Licia; Spergel, David N.

    2009-04-15

    We present catalogs of QSO candidates selected using photometry from Galaxy Evolution Explorer (GALEX) combined with the Sloan Digital Sky Survey (SDSS) in the Stripe 82 region and Blanco Cosmology Survey (BCS) near declination -55 deg. The SDSS region contains {approx_equal}700 objects with magnitude i < 20 and {approx_equal}3600 objects with i < 21.5 in a {approx_equal}60 deg{sup 2} sky region, while the BCS region contains {approx_equal}280 objects with magnitude i < 20 and {approx}2000 objects with i < 21.5 for a 11 deg{sup 2} sky region that is being observed by three current microwave Sunyaev-Zeldovich surveys. Our QSO catalogmore » is the first one in the BCS region. Deep GALEX exposures ({approx}>2000 s in F {sub UV} and N {sub UV}, except in three fields) provide high signal-to-noise photometry in the GALEX bands (F {sub UV}, N {sub UV} < 24.5 mag). From this data, we select QSO candidates using only GALEX and optical r-band photometry, using the method given by Atlee and Gould. In the Stripe 82 field, 60% (30%) of the GALEX-selected QSOs with optical magnitude i < 20 (i < 21.5) also appear in the Richards et al. QSO catalog constructed using five-band optical SDSS photometry. Comparison with the same catalog by Richards et al. shows that the completeness of the sample is approximately 40% (25%). However, for regions of the sky with very low dust extinction, like the BCS 23-hr field and the Stripe 82 between 0{sup 0} and 10{sup 0} in R.A., our completeness is close to 95%, demonstrating that deep GALEX observations are almost as efficient as multiwavelength observations at finding QSOs. GALEX observations thus provide a viable alternate route to QSO catalogs in sky regions where u-band optical photometry is not available. The full catalog is available at http://www.ice.csic.es/personal/jimenez/PHOTOZ.« less

  8. X-ray Properties of Deep Radio-Selected Quasars

    NASA Technical Reports Server (NTRS)

    Becker, Robert

    2002-01-01

    This report summarizes the research supported by the ADP grant entitled 'X-ray Properties of Deep Radio-Selected Quasars'. The primary effort consisted of correlating the ROSAT All-Sky Survey catalog with the April 1997 release of the FIRST (Faint Images of the Radio Sky at Twenty centimeters) radio catalog. We found that a matching radius of 60 sec excluded most false matches while retaining most of the true radio-X-ray sources. The correlation of the approx. 80,000 source RASS and approx. 268,000 FIRST catalogs matched 2,588 FIRST sources with 1,649 RASS sources out of a possible 5,520 RASS sources residing in the FIRST survey area. This number is much higher than expected from our previous experience of correlating the RASS with radio surveys and indicates we detected new classes of objects not seen in the correlations with less sensitive radio surveys.

  9. Chandra survey in the AKARI North Ecliptic Pole Deep Field - I. X-ray data, point-like source catalogue, sensitivity maps, and number counts

    NASA Astrophysics Data System (ADS)

    Krumpe, M.; Miyaji, T.; Brunner, H.; Hanami, H.; Ishigaki, T.; Takagi, T.; Markowitz, A. G.; Goto, T.; Malkan, M. A.; Matsuhara, H.; Pearson, C.; Ueda, Y.; Wada, T.

    2015-01-01

    We present data products from the 300 ks Chandra survey in the AKARI North Ecliptic Pole Deep Field. This field has a unique set of nine-band infrared photometry covering 2-24 μm from the AKARI Infrared Camera, including mid-infrared (MIR) bands not covered by Spitzer. The survey is one of the deepest ever achieved at ˜15 μm, and is by far the widest among those with similar depths in the MIR. This makes this field unique for the MIR-selection of AGN at z ˜ 1. We design a source detection procedure, which performs joint maximum likelihood PSF (point spread function) fits on all of our 15 mosaicked Chandra pointings covering an area of 0.34 deg2. The procedure has been highly optimized and tested by simulations. We provide a point source catalogue with photometry and Bayesian-based 90 per cent confidence upper limits in the 0.5-7, 0.5-2, 2-7, 2-4, and 4-7 keV bands. The catalogue contains 457 X-ray sources and the spurious fraction is estimated to be ˜1.7 per cent. Sensitivity and 90 per cent confidence upper flux limits maps in all bands are provided as well. We search for optical-MIR counterparts in the central 0.25 deg2, where deep Subaru Suprime-Cam multiband images exist. Among the 377 X-ray sources detected there, ˜80 per cent have optical counterparts and ˜60 per cent also have AKARI MIR counterparts. We cross-match our X-ray sources with MIR-selected AGN from Hanami et al. Around 30 per cent of all AGN that have MIR SEDs purely explainable by AGN activity are strong Compton-thick AGN candidates.

  10. Mapping the deep: The past and future promise of transneptunian surveys

    NASA Astrophysics Data System (ADS)

    Bannister, M.

    2014-07-01

    Exploring the populations and structure of the outer Solar System requires us to examine the sky. The improving sophistication of astronomical techniques have brought us in the last century from painstaking naked-eye examination of photographic plates to identify moving sources, to supercomputer-powered image subtraction that can pull moving sources from the depths of the Galactic plane. Such advances in our ability to discover new objects have allowed us to build an understanding of the Solar System's distant populations. The continued effort to survey the sky for new discoveries has explored the phase space of much of the transneptunian (TNO) size distribution. At the largest end, from wide-field surveys with small-to-medium optical telescopes in both North and Southern Hemispheres, the dwarf planets are now complete to m˜19.5 (Schwamb et al. 2014) and nearing completion to m˜21.5. Infrared surveys such as WISE have constrained the absence of a brown dwarf or large gas giant planet such that there can be no Saturn out to 28,000 au and no Jupiter out to 82,000 au (Luhman 2014). Similarly, pulsar timing measurements exclude line-of-sight shifts of the Solar System's barycentre due to any lurking giant planet (Verbiest et al. 2008); such timing measurements will only be improved by the Square Kilometre Array's all-sky decadal measurements of pulsars (Seto & Cooray 2007). The smaller, more abundant TNOs have been slowly constrained by surveys on larger facilities (as listed in Kavelaars et al and Petit et al. 2008): their part of the size distribution has a clear change in slope near H of 7 (Fraser et al. 2014). Characterisation of objects for their size, albedo, thermal properties and density has followed more slowly: Spitzer and Herschel have given us thermal properties; broad-band photometric surveys have shown that the colours of TNOs present distinct surface classes, ranging from the reddest in the Solar System to fully neutral reflectors; while large

  11. An Enhanced Multiwavelength Photometric Catalog for the Spitzer Extragalactic Representative Volume Survey

    NASA Astrophysics Data System (ADS)

    Nyland, Kristina

    2017-01-01

    Although our knowledge of the physics of galaxy evolution has made great strides over the past few decades, we still lack a complete understanding of the formation and growth of galaxies at high redshift. The Spitzer Extragalactic Representative Volume Survey (SERVS) aims to address this issue through deep Spitzer observations at [3.6] and [4.5] microns of 4 million sources distributed over five well-studied “deep fields” with abundant ancillary data from ground-based near-infrared surveys. The large SERVS footprint covers 18 square degrees and will provide a census of the multiwavelength properties of massive galaxies in the redshift range z = 1-6. A critical aspect of the scientific success and legacy value of SERVS is the construction of a robust source catalog. While multiwavelength source catalogs of the SERVS fields have been generated using traditional techniques, the photometric accuracy of these catalogs is limited by their inability to correctly measure fluxes of individual sources that are blended and/or inherently faint in the IRAC bands. To improve upon this shortfall and maximize the scientific impact of SERVS, we are using The Tractor image modeling code to produce a more accurate and complete multiwavelength source catalog. The Tractor optimizes a likelihood for the source properties given an image cut-out, light profile model, and the PSF information. Thus, The Tractor uses the source properties at the fiducial, highest-resolution band as a prior to more accurately measure the source properties in the lower-resolution images at longer wavelengths. We provide an overview of our parallelized implementation of The Tractor, discuss the subsequent improvements to the SERVS photometry, and suggest future applications.

  12. Structure and Evolution of Hawaii's Loihi Seamount from High-resolution Mapping

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Paduan, J. B.; Moyer, C. L.; Glazer, B. T.; Caress, D. W.; Yoerger, D.; Kaiser, C. L.

    2016-12-01

    Loihi Seamount has been mapped repeatedly using shipboard multibeam sonars with improving resolution over time. Simrad EM302 data with 25m resolution at the 950m summit and 90m at the 5000m base of the volcano were collected from Schmidt Ocean Institute's R/V Falkor in 2014. A contracted multibeam survey in 1997 employing a deep-towed vehicle has 7m resolution for the summit and upper north and south rift zones, but suffered from poor navigation. Woods Hole Oceanographic Institution's AUV Sentry surveyed most of the summit and low-T hydrothermal vents on the base of the south rift in 2013 and 2014. The 2m resolution of most data is more precise than the navigation. The 6 summit surveys were reprocessed using MB-System to remove abundant bad bottom picks and adjust the navigation to produce a spatially accurate map. The 3 summit pits, including Pele's Pit that formed in 1996, are complex collapse structures and nested inside a larger caldera that was modified by large landslides on the east and west summit flanks. The pits cut low shields that once formed a complex of overlapping summit shields, similar to Kilauea before the current caldera formed 1500 to 1790 CE. An 11m section of ash deposits crops out on the east rim of the summit along a caldera-bounding fault and is analogous to Kilauea where the caldera-bounding faults expose ash erupted as the present caldera formed. Most of the Loihi ash section is 3300 to 5880 yr BP, indicating that the larger caldera structure at Loihi is younger than 3300 yr BP. The landslides on the east and west edges of the summit are therefore younger 3300 yr BP. The uppermost south rift has several small pit craters between cones and pillow ridges, also analogous to Kilauea. Two cones near the deep low-T vents are steep pillow mounds with slopes of talus. High-resolution mapping reveals, for the first time, the many similarities between the structure and evolution of submarine Loihi Seamount and subaerial Kilauea Volcano.

  13. Interaction of deep and shallow processes in the evolution of the Kenya rift

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    1994-09-01

    The start of volcanism before rifting in the northern Kenya rift suggests that an asthenospheric thermal anomaly was responsible, not decompression melting due to lithosphere stretching. This volcanism may be partly related to the Ethiopian rift, or even the Anza graben, not the Kenya rift. In the northern Kenya rift the first stage of deformation was the formation of isolated sediment-filled half-graben basins during the Late Oligocene-Early Miocene, perhaps superimposed on lower Tertiary basins. During the Miocene, the location of basins shifted eastwards. This shift is interpreted as being due to strain hardening of the lithosphere during extension caused by a relatively slow strain rate. Relocation of the zone of extension progressively eastwards was possibly caused by migration of the asthenospheric thermal anomaly to the east (which lowered the strength of the crust above the thermal anomaly). The simple McKenzie model of uniform lithosphere stretching does not apparently fit the Kenya rift. Uniform extension may have affected the entire lithosphere but uniform stretching can only be demonstrated for the continental crust. The shape of the geophysically defined base lithosphere under the rift shows much more thinning of the mantle lithosphere than the crust. Consequently, thermal thinning of the mantle lithosphere has to be invoked to explain the discrepancy. Where the asthenosphere lies almost at the base of the crust the surface rift above displays swarms of minor faults and a linear array of Pliocene recent volcanoes. Thus the deep thermal history and the shallow brittle structures of the Kenya rift appear to be closely linked and each has influenced the evolution of the other. Extension estimates for the upper crust and the lower crust are similar, indicating that addition of magma to the crust has not caused an underestimate of lower crust extension. This suggests that either the ratios of magma emplaced within the crust to surface volcanism are much

  14. Multiagent cooperation and competition with deep reinforcement learning.

    PubMed

    Tampuu, Ardi; Matiisen, Tambet; Kodelja, Dorian; Kuzovkin, Ilya; Korjus, Kristjan; Aru, Juhan; Aru, Jaan; Vicente, Raul

    2017-01-01

    Evolution of cooperation and competition can appear when multiple adaptive agents share a biological, social, or technological niche. In the present work we study how cooperation and competition emerge between autonomous agents that learn by reinforcement while using only their raw visual input as the state representation. In particular, we extend the Deep Q-Learning framework to multiagent environments to investigate the interaction between two learning agents in the well-known video game Pong. By manipulating the classical rewarding scheme of Pong we show how competitive and collaborative behaviors emerge. We also describe the progression from competitive to collaborative behavior when the incentive to cooperate is increased. Finally we show how learning by playing against another adaptive agent, instead of against a hard-wired algorithm, results in more robust strategies. The present work shows that Deep Q-Networks can become a useful tool for studying decentralized learning of multiagent systems coping with high-dimensional environments.

  15. Multiagent cooperation and competition with deep reinforcement learning

    PubMed Central

    Kodelja, Dorian; Kuzovkin, Ilya; Korjus, Kristjan; Aru, Juhan; Aru, Jaan; Vicente, Raul

    2017-01-01

    Evolution of cooperation and competition can appear when multiple adaptive agents share a biological, social, or technological niche. In the present work we study how cooperation and competition emerge between autonomous agents that learn by reinforcement while using only their raw visual input as the state representation. In particular, we extend the Deep Q-Learning framework to multiagent environments to investigate the interaction between two learning agents in the well-known video game Pong. By manipulating the classical rewarding scheme of Pong we show how competitive and collaborative behaviors emerge. We also describe the progression from competitive to collaborative behavior when the incentive to cooperate is increased. Finally we show how learning by playing against another adaptive agent, instead of against a hard-wired algorithm, results in more robust strategies. The present work shows that Deep Q-Networks can become a useful tool for studying decentralized learning of multiagent systems coping with high-dimensional environments. PMID:28380078

  16. Interplay between solid Earth and biological evolution

    NASA Astrophysics Data System (ADS)

    Höning, Dennis; Spohn, Tilman

    2017-04-01

    Major shifts in Earth's evolution led to progressive adaptations of the biosphere. Particularly the emergence of continents permitted efficient use of solar energy. However, the widespread evolution of the biosphere fed back to the Earth system, often argued as a cause for the great oxidation event or as an important component in stabilizing Earth's climate. Furthermore, biologically enhanced weathering rates alter the flux of sediments in subduction zones, establishing a potential link to the deep interior. Stably bound water within subducting sediments not only enhances partial melting but further affects the mantle rheology. The mantle responds by enhancing its rates of convection, water outgassing, and subduction. How crucial is the emergence and evolution of life on Earth to these processes, and how would Earth have been evolved without the emergence of life? We here discuss concepts and present models addressing these questions and discuss the biosphere as a major component in evolving Earth system feedback cycles.

  17. LUNA: Nuclear Astrophysics Deep Underground

    NASA Astrophysics Data System (ADS)

    Broggini, Carlo; Bemmerer, Daniel; Guglielmetti, Alessandra; Menegazzo, Roberto

    2010-11-01

    Nuclear astrophysics strives for a comprehensive picture of the nuclear reactions responsible for synthesizing chemical elements and for powering the stellar evolution engine. Deep underground in the Gran Sasso National Laboratory, the cross sections of the key reactions of the proton-proton chain and of the carbon-nitrogen-oxygen cycle have been measured right down to the energies of astrophysical interest. The salient features of underground nuclear astrophysics are summarized here. We review the main results obtained by LUNA during the past 20 years and discuss their influence on our understanding of the properties of the neutrino, the Sun, and the universe itself. Future directions of underground nuclear astrophysics toward the study both of helium and carbon burning and of stellar neutron sources in stars are outlined.

  18. The fossil record of evolution: Data on diversification and extinction

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J., Jr.

    1991-01-01

    Understanding of the evolution of complex life, and of the roles that changing terrestrial and extraterrestrial environments played in life's history, is dependent upon synthetic knowledge of the fossil record. Paleontologists have been describing fossils for more that two centuries. However, much of this information is dispersed in monographs and journal articles published throughout the world. Over the past several years, this literature was surveyed, and a data base on times of origination and extinction of fossil genera was compiled. The data base, which now holds approximately 32,000 genera, covers all taxonomic groups of marine animals, incorporates the most recent taxonomic assignments, and uses a detailed global time framework that can resolve originations and extinctions to intervals averaging three million years in duration. These data can be used to compile patterns of global biodiversity, measure rates of taxic evolution, and test hypotheses concerning adaptive radiations, mass extinctions, etc. Thus far, considerable effort was devoted to using the data to test the hypothesis of periodicity of mass extinction. Rates of extinction measured from the data base have also been used to calibrate models of evolutionary radiations in marine environments. It was observed that new groups, or clades of animals (i.e., orders and classes) tend to reach appreciable diversity first in nearshore environments and then to radiate in more offshore environments; during decline, these clades may disappear from the nearshore while persisting in offshore, deep water habitats. These observations have led to suggestions that there is something special about stressful or perturbed environments that promotes the evolution of novel kinds of animals that can rapidly replace their predecessors. The numerical model that is being investigated to study this phenomenon treats environments along onshore-offshore gradients as if they were discrete habitats. Other aspects of this

  19. Can Minor Merging Account for the Size Growth of Quiescent Galaxies? New Results from the CANDELS Survey

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.; Ellis, Richard S.; Bundy, Kevin; Treu, Tommaso

    2012-02-01

    The presence of extremely compact galaxies at z ~ 2 and their subsequent growth in physical size has been the cause of much puzzlement. We revisit the question using deep infrared Wide Field Camera 3 data to probe the rest-frame optical structure of 935 galaxies selected with 0.4 < z < 2.5 and stellar masses M * > 1010.7 M ⊙ in the UKIRT Ultra Deep Survey and GOODS-South fields of the CANDELS survey. At each redshift, the most compact sources are those with little or no star formation, and the mean size of these systems at fixed stellar mass grows by a factor of 3.5 ± 0.3 over this redshift interval. The data are sufficiently deep to identify companions to these hosts whose stellar masses are ten times smaller. By searching for these around 404 quiescent hosts within a physical annulus 10 h -1 kpc < R < 30 h -1 kpc, we estimate the minor merger rate over 0.4 < z < 2. We find that 13%-18% of quiescent hosts have likely physical companions with stellar mass ratios of 0.1 or greater. Mergers of these companions will typically increase the host mass by 6% ± 2% per merger timescale. We estimate the minimum growth rate necessary to explain the declining abundance of compact galaxies. Using a simple model motivated by recent numerical simulations, we then assess whether mergers of the faint companions with their hosts are sufficient to explain this minimal rate. We find that mergers may explain most of the size evolution observed at z <~ 1 if a relatively short merger timescale is assumed, but the rapid growth seen at higher redshift likely requires additional physical processes.

  20. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  1. Deep Space Network information system architecture study

    NASA Technical Reports Server (NTRS)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  2. The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to zspec 6 in CANDELS

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Le Fèvre, O.; Ribeiro, B.; Thomas, R.; Moreau, C.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Schaerer, D.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2017-04-01

    This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The VUDS-DR1 is the release of all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECDFS survey areas, including accurate spectroscopic redshifts zspec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN, and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have zspec > 2, 48of which have zspec > 4; the highest reliable redshifts reach beyond zspec = 6. This data set approximately doubles the number of galaxies with spectroscopic redshifts at z > 3 in these fields. We discuss the general properties of the VUDS-DR1 sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-α equivalent widths, and physical properties including stellar masses M⋆ and star formation rates derived from spectral energy distribution fitting with the knowledge of zspec. We highlight the properties of the most massive star-forming galaxies, noting the wide range in spectral properties, with Lyman-α in emission or in absorption, and in imaging properties with compact, multi-component, or pair morphologies. We present the catalogue database and data products. All VUDS-DR1 data are publicly available and can be retrieved from a dedicated query-based database. Future VUDS data releases will follow this VUDS-DR1 to give access to the spectra and associated measurement of 8000 objects in the full 1 square degree of the VUDS survey. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791. http://cesam.lam.fr/vuds

  3. Do Galaxies Follow Darwinian Evolution?

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Using VIMOS on ESO's Very Large Telescope, a team of French and Italian astronomers have shown the strong influence the environment exerts on the way galaxies form and evolve. The scientists have for the first time charted remote parts of the Universe, showing that the distribution of galaxies has considerably evolved with time, depending on the galaxies' immediate surroundings. This surprising discovery poses new challenges for theories of the formation and evolution of galaxies. The 'nature versus nurture' debate is a hot topic in human psychology. But astronomers too face similar conundrums, in particular when trying to solve a problem that goes to the very heart of cosmological theories: are the galaxies we see today simply the product of the primordial conditions in which they formed, or did experiences in the past change the path of their evolution? ESO PR Photo 17/06 ESO PR Photo 45/06 Galaxy Distribution in Space In a large, three-year long survey carried out with VIMOS [1], the Visible Imager and Multi-Object Spectrograph on ESO's VLT, astronomers studied more than 6,500 galaxies over a wide range of distances to investigate how their properties vary over different timescales, in different environments and for varying galaxy luminosities [2]. They were able to build an atlas of the Universe in three dimensions, going back more than 9 billion years. This new census reveals a surprising result. The colour-density relation, that describes the relationship between the properties of a galaxy and its environment, was markedly different 7 billion years ago. The astronomers thus found that the galaxies' luminosity, their initial genetic properties, and the environments they reside in have a profound impact on their evolution. "Our results indicate that environment is a key player in galaxy evolution, but there's no simple answer to the 'nature versus nurture' problem in galaxy evolution," said Olivier Le Fèvre from the Laboratoire d'Astrophysique de Marseille

  4. Biology Teachers' Professional Development Needs for Teaching Evolution

    ERIC Educational Resources Information Center

    Friedrichsen, Patricia J.; Linke, Nicholas; Barnett, Ellen

    2016-01-01

    The social controversy surrounding the teaching of evolution puts pressure on secondary biology teachers to deemphasize or omit evolution from their curriculum. In this growing pressure, professional development can offer support to biology teachers. In this study, we surveyed secondary biology teachers in Missouri and report the data from…

  5. Gulf of Mexico Deep-Sea Coral Ecosystem Studies, 2008-2011

    USGS Publications Warehouse

    Kellogg, Christina A.

    2009-01-01

    Most people are familiar with tropical coral reefs, located in warm, well-illuminated, shallow waters. However, corals also exist hundreds and even thousands of meters below the ocean surface, where it is cold and completely dark. These deep-sea corals, also known as cold-water corals, have become a topic of interest due to conservation concerns over the impacts of trawling, exploration for oil and gas, and climate change. Although the existence of these corals has been known since the 1800s, our understanding of their distribution, ecology, and biology is limited due to the technical difficulties of conducting deep-sea research. DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) is a new U.S. Geological Survey (USGS) program focused on deep-water coral ecosystems in the Gulf of Mexico. This integrated, multidisciplinary, international effort investigates a variety of topics related to unique and fragile deep-sea coral ecosystems from the microscopic level to the ecosystem level, including components of microbiology, population genetics, paleoecology, food webs, taxonomy, community ecology, physical oceanography, and mapping.

  6. Student Deep Learning in Bachelor English Programs within Pakistani Universities

    ERIC Educational Resources Information Center

    Tahir, Khazima

    2015-01-01

    The purpose of this study was to contrast undergraduate students' descriptions about transformational teaching practices, and student deep learning in bachelor English programs in selected universities within Pakistan. This study utilized a survey to gather responses from five hundred and twenty three students. A paired sample t test was utilized…

  7. Fast rise times and the physical mechanism of deep earthquakes

    NASA Technical Reports Server (NTRS)

    Houston, H.; Williams, Q.

    1991-01-01

    A systematic global survey of the rise times and stress drops of deep and intermediate earthquakes is reported. When the rise times are scaled to the seismic moment release of the events, their average is nearly twice as fast for events deeper than about 450 km as for shallower events.

  8. A Deep Near-Infrared Survey of the N 49 Region around the Soft Gamma-Ray Repeater 0526-66

    NASA Technical Reports Server (NTRS)

    Klose, S.; Henden, A. A.; Geppert, U.; Greiner, J.; Guetter, H. H.; Hartmann, D. H.; Kouveliotou, C.; Luginbuhl, C. B.; Stecklurn, B.; Vrba, F. J.

    2004-01-01

    We report the results of a deep near-infrared survey of the vicinity of supernova remnant N49 in the Large Magellanic Cloud (LMC), which contains the soft gamma-ray repeater (SGR) 0526-66. Two of the four confirmed SGRs are potentially associated with compact stellar clusters. We thus searched for a similar association of SGR0526-66, and find the unexplored young stellar cluster SL 463 at a projected distance of approx. 30 pc from the SGR. This constitutes the third cluster-SGR link, and lends support to scenarios in which SGR progenitors originate in young, embedded clusters. If real, the cluster-SGR association constrains the age and thus the initial mass of these stars. In addition, our high-resolution images of the super- nova remnant N49 reveal an area of excess K-band flux in the southeastern part of the SNR. This feature coincides with the maximum flux area at 8.28 microns as detected by the Midcourse Space Experiment (MSX satellite), which we identify with IRAS 052594607.

  9. Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-10-01

    We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  10. Vertical Cable Seismic Survey for SMS exploration

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hotoshi; Mizohata, Shigeharu

    2014-05-01

    The Vertical Cable Seismic (VCS) survey is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by sea-surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because the VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed it for the SMS survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We have been developing the VCS survey system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of these surveys are from 100m up to 2100 m. Through these experiments, our VCS data acquisition system has been also completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system is available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed a new approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In 2013, we have carried out the second VCS survey using the surface-towed high-voltage sparker and ocean bottom source in the Izena Cauldron, which is one of the most promising SMS areas around Japan. The positions of ocean bottom source estimated by this method are consistent with the VCS field records. The VCS data with the sparker have been processed with 3D PSTM. It gives the very high resolution 3D volume deeper than two

  11. THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinis, S.; Gezari, S.; Kumar, S.

    2016-07-20

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massivemore » hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.« less

  12. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Hacking, Perry B.

    1989-04-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.

  13. Galaxy evolution and large-scale structure in the far-infrared. I. IRAS pointed observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonsdale, C.J.; Hacking, P.B.

    1989-04-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained inmore » terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution. 81 refs.« less

  14. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations

    NASA Technical Reports Server (NTRS)

    Lonsdale, Carol J.; Hacking, Perry B.

    1989-01-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.

  15. Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    McCrum, M.; Smartt, S. J.; Rest, A.; Smith, K.; Kotak, R.; Rodney, S. A.; Young, D. R.; Chornock, R.; Berger, E.; Foley, R. J.; Fraser, M.; Wright, D.; Scolnic, D.; Tonry, J. L.; Urata, Y.; Huang, K.; Pastorello, A.; Botticella, M. T.; Valenti, S.; Mattila, S.; Kankare, E.; Farrow, D. J.; Huber, M. E.; Stubbs, C. W.; Kirshner, R. P.; Bresolin, F.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Jedicke, R.; Kaiser, N.; Magnier, E. A.; Metcalfe, N.; Morgan, J. S.; Price, P. A.; Sweeney, W.; Wainscoat, R. J.; Waters, C.

    2015-04-01

    The Pan-STARRS1 (PS1) survey has obtained imaging in five bands (griz yP1) over 10 Medium Deep Survey (MDS) fields covering a total of 70 square degrees. This paper describes the search for apparently hostless supernovae (SNe) within the first year of PS1 MDS data with an aim of discovering superluminous supernovae (SLSNe). A total of 249 hostless transients were discovered down to a limiting magnitude of MAB ˜ 23.5, of which 76 were classified as Type Ia supernovae (SNe Ia). There were 57 SNe with complete light curves that are likely core-collapse SNe (CCSNe) or type Ic SLSNe and 12 of these have had spectra taken. Of these 12 hostless, non-Type Ia SNe, 7 were SLSNe of type Ic at redshifts between 0.5 and 1.4. This illustrates that the discovery rate of type Ic SLSNe can be maximized by concentrating on hostless transients and removing normal SNe Ia. We present data for two possible SLSNe; PS1-10pm (z = 1.206) and PS1-10ahf (z = 1.1), and estimate the rate of type Ic SLSNe to be between 3^{+3}_{-2}× 10^{-5} and 8^{+2}_{-1}× 10^{-5} that of the CCSN rate within 0.3 ≤ z ≤ 1.4 by applying a Monte Carlo technique. The rate of slowly evolving, type Ic SLSNe (such as SN2007bi) is estimated as a factor of 10 lower than this range.

  16. Deep under the sea: unraveling the evolutionary history of the deep-sea squat lobster Paramunida (Decapoda, Munididae).

    PubMed

    Cabezas, Patricia; Sanmartín, Isabel; Paulay, Gustav; Macpherson, Enrique; Machordom, Annie

    2012-06-01

    The diversification of Indo-Pacific marine fauna has long captivated the attention of evolutionary biologists. Previous studies have mainly focused on coral reef or shallow water-associated taxa. Here, we present the first attempt to reconstruct the evolutionary history--phylogeny, diversification, and biogeography--of a deep-water lineage. We sequenced the molecular markers 16S, COI, ND1, 18S, and 28S for nearly 80% of the nominal species of the squat lobster genus Paramunida. Analyses of the molecular phylogeny revealed an accelerated diversification in the late Oligocene-Miocene followed by a slowdown in the rate of lineage accumulation over time. A parametric biogeographical reconstruction showed the importance of the southwest Pacific area, specifically the island arc of Fiji, Tonga, Vanuatu, Wallis, and Futuna, for diversification of squat lobsters, probably associated with the global warming, high tectonic activity, and changes in oceanic currents that took place in this region during the Oligocene-Miocene period. These results add strong evidence to the hypothesis that the Neogene was a period of major diversification for marine organisms in both shallow and deep waters. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.

  17. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; Bergemann, M.; Nordlander, T.; Morel, T.; Pancino, E.; Tautvaišienė, G.; Adibekyan, V.; Tosi, M.; Vallenari, A.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M⊙. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. Aims: We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: I) more than 600 dwarfs of the solar neighborhood and of open clusters and II) low- and intermediate-mass clump giants in six open clusters. Methods: Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models. Results: Abundances of Na in stars with mass below ~2.0 M⊙, and of Al in stars below ~3.0 M⊙, seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M⊙, NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs

  18. The VIMOS Ultra-Deep Survey: A major merger origin for the high fraction of galaxies at 2 < z < 6 with two bright clumps

    NASA Astrophysics Data System (ADS)

    Ribeiro, B.; Le Fèvre, O.; Cassata, P.; Garilli, B.; Lemaux, B. C.; Maccagni, D.; Schaerer, D.; Tasca, L. A. M.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Hathi, N. P.; Koekemoer, A.; Pforr, J.

    2017-11-01

    The properties of stellar clumps in star-forming galaxies and their evolution over the redshift range 2 ≲ z ≲ 6 are presented and discussed in the context of the build-up of massive galaxies at early cosmic times. We focused on galaxies with spectroscopic redshifts from the VIMOS Ultra Deep Survey (VUDS) and stellar masses log 10(M⋆/M⊙) > -0.204 × (z-4.5) + 9.35. We analyzed HST-ACS images to identify clumps within a 20 kpc radius using a method taking into account differential surface brightness dimming and luminosity evolution with redshift. We find that the population of galaxies with more than one clump is dominated by galaxies with two clumps, representing 21-25% of the population, while the fraction of galaxies with three, or four and more, clumps is 8-11% and 7-9%, respectively. The fraction of clumpy galaxies is in the range 35-55% over 2 < z < 6, increasing at higher redshifts, indicating that the fraction of irregular galaxies remains high up to the highest redshifts. The large and bright clumps (M⋆ 109 up to 1010 M⊙) are found to reside predominantly in galaxies with two clumps. Smaller and lower luminosity clumps (M⋆ < 109 M⊙) are found in galaxies with three clumps or more. We interpret these results as evidence for two different modes of clump formation working in parallel. The small low luminosity clumps are likely the result of disk fragmentation, with violent disk instabilities (VDI) forming several long-lived clumps in-situ as suggested from simulations. A fraction of these clumps is also likely coming from minor mergers as confirmed from spectroscopy in several cases. The clumps in the dominating population of galaxies with two clumps are significantly more massive and have properties akin to those in galaxy pairs undergoing massive merging observed at similar redshifts; they appear as more massive than the most massive clumps observed in numerical simulations of disks with VDI. We infer from these properties that the bright and

  19. [Taxonomic composition and zoogeographical aspects of deep sea fishes (90-540m) from the Gulf of California, Mexico].

    PubMed

    López-Martínez, Juana; Acevedo-Cervantes, Alejandro; Herrera-Valdivia, Eloisa; Rodríguez-Romero, Jesús; Palacios-Salgado, Deivis S

    2012-03-01

    The Gulf of California has a high variety of ecosystems that allow different services and the fishery resources play a prominent role in its ecology, evolution and economics. Fish coastal species have been previously reported for most coastal areas, especially those species that are subject to fishing, however, little is known on the species from deep sea zones, due to sampling difficulties. We studied the deep sea fishes collected with trawl nets during three research surveys in the Gulf of California, Mexico in 2004-2005. We provide a systematic checklist and some notes on biogeographical aspects. For this, 74 fishing hauls were done, and a total of 9 898 fishes were captured, belonging to two classes, 15 orders, 35 families, 53 genera and 70 species. The best represented families in number of species were: Paralichthyidae (eight), Serranidae (six), and Scorpaenidae and Triglidae with five species each one. The typical families from deep waters were: Ophidiidae, Moridae, Lophiidae, Scorpaenidae, Triglidae, Paralichthydae, Pleuronectidae and Cynoglossidae. Size range varied from 13cm for the Splinose searobin (Bellator xenisma) to 234cm in the Pacific Cutlassfish (Trichiurus nitens). The biogeographical affinity showed that species with affinity to the East Tropical Pacific (ETP) dominated, followed by species from San Diego-Panamic, San Diego-Panamic-Peruvian-Chilean and Oregonian-Cortes provinces, respectively. A biogeographic overlap was found in the fauna, which reflects the Gulf of California's geographical position, with distribution limits of species from temperate, tropical and warm-temperature transition affinities, divisions that characterize the Gulf of California. Taxonomic status of fish with a focus on composition, location, characterization and zoogeography are fundamental to any subject of biodiversity and fisheries management actions.

  20. Deep Optical Spectroscopy of Planetary Nebulae: The Search for Neutron-Capture Elements

    NASA Astrophysics Data System (ADS)

    Sterling, Nicholas C.; Garofali, K.; Dinerstein, H. L.; Hwang, S.; Redfield, S.

    2013-01-01

    We present deep, high-resolution (R=36,700) optical spectra of five planetary nebulae (PNe), taken with the 2D-coude echelle spectrograph on the 2.7-m Harlan J. Smith Telescope at McDonald Observatory. These observations are part of a larger optical survey of PNe, designed to unambiguously detect emission lines from neutron(n)-capture elements (atomic number Z>30). The abundances of these elements are of particular interest in PNe, since they can be produced by slow n-capture nucleosynthesis (the ``s-process'') during the asymptotic giant branch (AGB) stage of evolution of PN progenitor stars. The first large-scale investigation of n-capture element abundances in PNe (Sterling & Dinerstein 2008, ApJS, 174, 157) surveyed [Kr III] and [Se IV] transitions in the K band spectra of more than 80 PNe. However, the abundances derived from these data relied on ionization corrections that were often large and uncertain due to the detection of only one ion per element. Transitions of other Se and Kr ions, as well as many other trans-iron species, reside at optical wavelengths. High-resolution spectra are essential to unequivocally identify these lines and resolve potential blends with other species. The spectra we present are rich in emission features, with between 125 and 600 distinct lines detected in each PN. Emission from at least one Kr ion is detected in all five objects, and two (Hb 12 and J 900) exhibit emission from multiple Kr ions. We detected multiple Xe ions in J 900, as well as Se, Br, and Rb lines. Hb 12 also exhibits Xe emission, and the first detection of [Se II] in a PN to our knowledge. The spectra display a wealth of other emission lines, including permitted features of second-row elements and forbidden transitions of several iron-peak elements (e.g., Cr, Mn, Fe, Co, Ni, and Cu). Our survey makes it possible to derive more accurate Se and Kr abundances in PNe, and reveals the enrichment of other trans-iron elements. This enables more accurate s