Science.gov

Sample records for deep water construction

  1. Computational fracture mechanics estimation of the strength of deep-water welded constructions

    NASA Astrophysics Data System (ADS)

    Il'in, A. V.; Filin, V. Yu.

    2013-04-01

    The principles of estimating the strength of deep-water engineering constructions using the brittle fracture prevention criterion are presented. They are based on the experimental results and theoretical developments accumulated in our works.

  2. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect

    Carter, E.E.; Carter, P.E.; Cooper, D.C.

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  3. Deep water recycling through time

    PubMed Central

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2014-01-01

    We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity (vs), slab age (a) and mantle temperature (Tm). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×105 kg/m2), as a function of vs (cm/yr), a (Myrs), and Tm (°C):. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×105 kg/m2 of H2O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×108 Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5–3.7 × 108 Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga. Key Points Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H2O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern PMID:26321881

  4. Drilling, Construction, Water-Level, and Water-Quality Information for the Kualapuu Deep Monitor Well, 4-0800-01, Molokai, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Bauer, Glenn R.

    2001-01-01

    A monitor well was completed in January 2001 by the U.S. Geological Survey in the Kualapuu area of central Molokai, Hawaii that allows for monitoring the thicknesses of the freshwater body and the upper part of the underlying freshwater-saltwater transition zone. The well was drilled in cooperation with the State Department of Hawaiian Home Lands and the Maui County Department of Water Supply, and is located near the area that supplies much of the drinking water on Molokai. The well is at a ground-surface elevation of about 982 feet and penetrated a 1,585-foot section of soil and volcanic rock to a depth of 603 feet below sea level. Prior to casing, a cave-in caused the bottom 55 feet of the well to be filled with rocks originating from a zone above. Thus, the final well depth reported by the driller was 1,530 feet. Measured water levels in the well during the period from February 1 to July 13, 2001 range from 8.68 to 9.05 feet above sea level. The most recent available water-conductivity profile from July 13, 2001 indicates that the lowest salinity water in the well is in the upper zone from the water table to a depth of about 220 feet below sea level. Below this upper zone, water salinity increases with depth. The water-temperature profile from July 13, 2001 indicates that the lowest temperature water (20.2 degrees Celsius) in the well is located in the upper zone from the water table to a depth of about 200 feet below sea level. Water temperature increases to 24.5 degrees Celsius near the bottom of the measured profile, 507 feet below sea level.

  5. Pipelaying in deep water uses novel techniques

    SciTech Connect

    Not Available

    1992-10-01

    This paper reports that laying crude oil pipelines in the deep waters off the coast of California required the use of a number of innovative construction techniques. From December 1991 to February 1992, Allseas Engineering BV, Delft, the Netherlands, installed a number of 12-, 14-, and 20-in. pipelines off the coast of California. The extreme water depth of more than 1,000 ft precluded the use of divers and required the use of a number of innovative installation techniques. The work was part of the Exxon-Santa Ynez project off the coast of Santa Barbara, Calif. The field is located in depths to 1,200 ft. Novel installation techniques used in the pipelaying project included: Three diverless connection made in 1,155-ft of water using the deflect-to-connect method; Single-point lift made to allow connection of a flexible line; New type of I-tube was installed; An extensive testing program was conducted to prove the construction methods.

  6. Deep water ventilation traced by Synechococcus cyanobacteria

    NASA Astrophysics Data System (ADS)

    Vilibić, Ivica; Šantić, Danijela

    2008-07-01

    The paper describes a finding of photoautotroph cyanobacteria Synechococcus in deep Adriatic waters during the spring of 2006. The maximum abundance in early May was positioned at 800 m, being of order of the values referred for the surface waters in the Adriatic Sea. The deep abundance maximum has been associated to the fast ventilation of deep Adriatic waters, usually occurring during wintertime strong cooling events. Two processes were detected: (1) deep convection in the South Adriatic Pit (SAP) and (2) density current going downslope. The first process was responsible for bringing the cyanobacteria down to 600-m depth in the area of convection, and the second one triggered the downslope transport of the cyanobacteria to the SAP very bottom. The depletion rate of Synechoccocus cyanobacteria in an extremely hostile environment has been computed to equal about 1 month.

  7. Biology of deep-water chondrichthyans: Introduction

    NASA Astrophysics Data System (ADS)

    Cotton, C. F.; Grubbs, R. D.

    2015-05-01

    Approximately half of the known chondrichthyans (sharks, skates, rays, and chimaeras), 575 of 1207 species (47.6%, Table 1), live in the deep ocean (below 200 m), yet little is known of the biology or life histories of most of these fishes (Kyne and Simpfendorfer, 2007). The limited information available for deep-water chondrichthyans is compounded by their rarity, as well as the prevalent uncertainty in the alpha taxonomy of deep-water species. Many species are known only from the type materials, which are generally limited to nondestructive sampling, e.g., morphometrics, imaging (X-ray, MRI, CT scanning). Thus, research has been hindered by a lack of specimens available for investigation that requires destructive sampling or live specimens (e.g., life history, diet, telemetry). The need for more research and dissemination of information about deep-water chondrichthyans has become imperative as fisheries worldwide continue to expand into deeper waters and exploit deep-water stocks, usually in the absence of data required for appropriate management (Morato et al., 2006; Kyne and Simpfendorfer, 2010).

  8. Controlling Deep Water Renewal in Lake Baikal

    NASA Astrophysics Data System (ADS)

    Tsimitri, C.; Schmid, M.; Wuest, A.

    2012-12-01

    Lake Baikal is the most voluminous and deepest fresh water body on earth. Despite its great depth, about 1.6 Km and its permanent stratification below ~300 m, the lake supports a remarkable biodiversity with a major deep-water fauna composed almost entirely of endemic species. A key element contributing to this unique ecosystem is the high oxygen concentration observed throughout the water column. This extraordinary feature is sustained by regular deep water renewal. The South Basin of the lake has been monitored with moored thermistors for more than a decade. By analyzing the obtained data series we investigate the importance of coastal downwelling and of the subsequent thermobaric instability to the renewal. We study how the local wind field, the ice coverage and the stratification of the upper water layers can control the deep water state. Understanding the deep water renewal mechanism is an important prerequisite for studying biochemical cycles, for predicting the effects of climate change on this unique ecosystem and for evaluating the local climate history from the extraordinary sedimentary record of Lake Baikal.

  9. ROV drilling support for deep water

    SciTech Connect

    Shatto, H.L.

    1984-05-01

    A neutrally buoyant, cage deployed, remotely operated vehicle (ROV) was selected to provide drilling support for Shell's deep water exploration program with the Discoverer Seven Seas. This dual vehicle system, designed for severe currents, rough seas and more than twice the water depth of previous such systems, was in operation one year after the request for quote. The basis for its selection and its performance and evaluation for the first seven months of operation are covered here.

  10. Deep Water, Shallow Water: Marine Animal Homes.

    ERIC Educational Resources Information Center

    Soltow, Willow

    1984-01-01

    Examines the diversity of life in the oceans and ways in which teachers can explore ocean habitats with their students without leaving the classroom. Topic areas considered include: restricted habitats, people and marine habitats, pollution, incidental kills, and the commercial and recreational uses of marine waters. (JN)

  11. Hawaii Deep Water Cable Program: Executive Summary

    SciTech Connect

    1990-09-01

    The Hawaii Deep Water Cable Program has succeeded unequivocally in determining the feasibility of deploying a submarine power cable system between the islands of Hawaii and Oahu. Major accomplishments of the program include designing, fabricating and testing an appropriate power cable, developing an integrated system to control all aspects of the cable laying operation, and testing all deployment systems at sea in the most challenging sections of the route.

  12. Incremental Knowledge Base Construction Using DeepDive

    PubMed Central

    Shin, Jaeho; Wu, Sen; Wang, Feiran; De Sa, Christopher; Zhang, Ce; Ré, Christopher

    2016-01-01

    Populating a database with unstructured information is a long-standing problem in industry and research that encompasses problems of extraction, cleaning, and integration. Recent names used for this problem include dealing with dark data and knowledge base construction (KBC). In this work, we describe DeepDive, a system that combines database and machine learning ideas to help develop KBC systems, and we present techniques to make the KBC process more efficient. We observe that the KBC process is iterative, and we develop techniques to incrementally produce inference results for KBC systems. We propose two methods for incremental inference, based respectively on sampling and variational techniques. We also study the tradeoff space of these methods and develop a simple rule-based optimizer. DeepDive includes all of these contributions, and we evaluate Deep-Dive on five KBC systems, showing that it can speed up KBC inference tasks by up to two orders of magnitude with negligible impact on quality. PMID:27144081

  13. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  14. Deep water riser system for offshore drilling

    SciTech Connect

    Potts, H.L.

    1984-05-15

    A buoyant riser system for use in a deep water offshore drilling environment is anchored by a system of compliant guys below the active weather zone of the sea. A controllably buoyant housing of the system is submerged at a depth that is readily accessible to divers and includes a blow-out preventer (BOP) from which a suspended sub-riser leads to a well bore to which the sub-riser is coupled. Above the housing, a riser suspended from a floating drill rig is coupled to the BOP thereby communicating the drill rig directly with the well bore for drilling and well completion operations.

  15. Early Neanderthal constructions deep in Bruniquel Cave in southwestern France.

    PubMed

    Jaubert, Jacques; Verheyden, Sophie; Genty, Dominique; Soulier, Michel; Cheng, Hai; Blamart, Dominique; Burlet, Christian; Camus, Hubert; Delaby, Serge; Deldicque, Damien; Edwards, R Lawrence; Ferrier, Catherine; Lacrampe-Cuyaubère, François; Lévêque, François; Maksud, Frédéric; Mora, Pascal; Muth, Xavier; Régnier, Édouard; Rouzaud, Jean-Noël; Santos, Frédéric

    2016-06-01

    Very little is known about Neanderthal cultures, particularly early ones. Other than lithic implements and exceptional bone tools, very few artefacts have been preserved. While those that do remain include red and black pigments and burial sites, these indications of modernity are extremely sparse and few have been precisely dated, thus greatly limiting our knowledge of these predecessors of modern humans. Here we report the dating of annular constructions made of broken stalagmites found deep in Bruniquel Cave in southwest France. The regular geometry of the stalagmite circles, the arrangement of broken stalagmites and several traces of fire demonstrate the anthropogenic origin of these constructions. Uranium-series dating of stalagmite regrowths on the structures and on burnt bone, combined with the dating of stalagmite tips in the structures, give a reliable and replicated age of 176.5 thousand years (±2.1 thousand years), making these edifices among the oldest known well-dated constructions made by humans. Their presence at 336 metres from the entrance of the cave indicates that humans from this period had already mastered the underground environment, which can be considered a major step in human modernity. PMID:27251286

  16. Power, fresh water, and food from cold, deep sea water.

    PubMed

    Othmer, D F; Roels, O A

    1973-10-12

    Many times more solar heat energy accumulates in the vast volume of warm tropic seas than that produced by all of our power plants. The looming energy crisis causes a renewal of interest in utilizing this stored solar heat to give, in addition to electric power, vast quantities of fresh water. Warm surface water, when evaporated, generates steam, to power a turbine, then fresh water when the steam is condensed by the cold water. A great increase in revenues over that from power and fresh water is shown by a substantial mariculture pilot plant. Deep sea water contains large quantities of nutrients. These feed algae which feed shellfish, ultimately shrimps and lobsters, in shallow ponds. Wastes grow seaweed of value; and combined revenues from desalination, power generation, and mariculture will give substantial profit. PMID:17777883

  17. Advances in technology for the construction of deep-underground facilities

    SciTech Connect

    Not Available

    1987-12-31

    The workshop was organized in order to address technological issues important to decisions regarding the feasibility of strategic options. The objectives of the workshop were to establish the current technological capabilities for deep-underground construction, to project those capabilities through the compressed schedule proposed for construction, and to identify promising directions for timely allocation of existing research and development resources. The earth has been used as a means of protection and safekeeping for many centuries. Recently, the thickness of the earth cover required for this purpose has been extended to the 2,000- to 3,000-ft range in structures contemplated for nuclear-waste disposal, energy storage, and strategic systems. For defensive missile basing, it is now perceived that the magnitude of the threat has increased through better delivery systems, larger payloads, and variable tactics of attack. Thus, depths of 3,000 to 8,000 ft are being considered seriously for such facilities. Moreover, it appears desirable that the facilities be operational (if not totally complete) for defensive purposes within a five-year construction schedule. Deep excavations such as mines are similar in many respects to nearsurface tunnels and caverns for transit, rail, sewer, water, hydroelectric, and highway projects. But the differences that do exist are significant. Major distinctions between shallow and deep construction derive from the stress fields and behavior of earth materials around the openings. Different methodologies are required to accommodate other variations resulting from increased depth, such as elevated temperatures, reduced capability for site exploration, and limited access during project execution. This report addresses these and other questions devoted to geotechnical characterization, design, construction, and excavation equipment.

  18. North Atlantic Deep Water Production during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-06-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters.

  19. North Atlantic Deep Water Production during the Last Glacial Maximum.

    PubMed

    Howe, Jacob N W; Piotrowski, Alexander M; Noble, Taryn L; Mulitza, Stefan; Chiessi, Cristiano M; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ(13)C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  20. North Atlantic Deep Water Production during the Last Glacial Maximum

    PubMed Central

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  1. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    PubMed

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. PMID:26914787

  2. Insulated flowline technology for deep water

    SciTech Connect

    Tucker, R.N.; Hays, P.R.; Antani, J.K.

    1996-12-31

    Deepwater fields are economically developed using subsea completions, with hydrocarbon fluids typically conveyed via multiphase pipelines and flowlines to an existing shallow water host facility. These flowlines operate in a low ambient temperature, high external pressure environment, conducive to the formation of paraffin deposits or hydrates. The leading strategy to circumvent these deleterious effects is to minimize heat loss from the system using insulation. Since the experience base for such deepwater insulated flowlines is limited, the DeepStar 600 Committee on Pipelines, Flowlines, and Umbilicals initiated several studies during 1994--95, addressing three major categories of insulation systems: pipe-in-pipe systems, integrated towed flowline bundles, and non-jacketed systems. This paper helps to identify potentially viable systems, design techniques, emerging technologies, feasible materials, and technical limitations. The proper design of flowline insulation requires a balance among the high cost of the insulation, the intended operability of the system, and the acceptable risk level. The following information is presented to aid development planners and subsea flowline engineers interested in the development, applicability, and availability of this technology.

  3. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation

    NASA Astrophysics Data System (ADS)

    Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Menviel, Laurie; Zhang, Fei; Ryerson, Fredrick J.; Rohling, Eelco J.

    2014-04-01

    Carbon release from the deep ocean at glacial terminations is a critical component of past climate change, but the underlying mechanisms remain poorly understood. We present a 28,000-year high-resolution record of carbonate ion concentration, a key parameter of the global carbon cycle, at 5-km water depth in the South Atlantic. We observe similar carbonate ion concentrations between the Last Glacial Maximum and the late Holocene, despite elevated concentrations in the glacial surface ocean. This strongly supports the importance of respiratory carbon accumulation in a stratified deep ocean for atmospheric CO2 reduction during the last ice age. After ˜9 μmol/kg decline during Heinrich Stadial 1, deep South Atlantic carbonate ion concentration rose by ˜24 μmol/kg from the onset of Bølling to Pre-boreal, likely caused by strengthening North Atlantic Deep Water formation (Bølling) or increased ventilation in the Southern Ocean (Younger Drays) or both (Pre-boreal). The ˜15 μmol/kg decline in deep water carbonate ion since ˜10 ka is consistent with extraction of alkalinity from seawater by deep-sea CaCO3 compensation and coral reef growth on continental shelves during the Holocene. Between 16,600 and 15,000 years ago, deep South Atlantic carbonate ion values converged with those at 3.4-km water depth in the western equatorial Pacific, as did carbon isotope and radiocarbon values. These observations suggest a period of enhanced lateral exchange of carbon between the deep South Atlantic and Pacific Oceans, probably due to an increased transfer of momentum from southern westerlies to the Southern Ocean. By spreading carbon-rich deep Pacific waters around Antarctica for upwelling, invigorated interocean deep water exchange would lead to more efficient CO2 degassing from the Southern Ocean, and thus to an atmospheric CO2 rise, during the early deglaciation.

  4. DEEP CREEK, LATAH COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1988

    EPA Science Inventory

    Deep Creek, Idaho (17060108) had been identified as a first priority stream segment in the Nonpoint Source Pollution Abatement program. Current designated uses for Deep Creek are as a domestic and agricultural water supply, primary and secondary contact recreation, as well as co...

  5. DEEP-South: Network Construction, Test Runs and Early Results

    NASA Astrophysics Data System (ADS)

    Moon, Hong-Kyu; Kim, Myung-Jin; Yim, Hong-Suh; Choi, Young-Jun; Bae, Young-Ho; Roh, Dong-Goo; Park, Jintae; Moon, Bora

    2016-01-01

    Korea Microlensing Telescope Network (KMTNet) which consists of three identical 1.6 m wide-field telescopes with 18k × 18k CCDs, is the first optical survey system of its kind. The combination of fast optics and the mosaic CCD delivers seeing limited images over a 4 square degrees field of view. The main science goal of KMTNet is the discovery and characterization of exoplanets, yet it also offers various other science applications including DEep Ecliptic Patrol of SOUTHern sky (DEEP-South). The aim of DEEP-South is to discover and characterize asteroids and comets, including Near Earth Objects (NEOs). We started test runs last February after commissioning, and will return to normal operations in October 2015. A summary of early results from the test runs will be presented.

  6. Archaeal Diversity in Waters from Deep South African Gold Mines

    PubMed Central

    Takai, Ken; Moser, Duane P.; DeFlaun, Mary; Onstott, Tullis C.; Fredrickson, James K.

    2001-01-01

    A culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold mines was performed by performing a PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with a sequencing analysis of archaeal rDNA clone libraries. The water samples used represented various environments, including deep fissure water, mine service water, and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied with the source of water. The archaeal communities in the deep gold mine environments exhibited great phylogenetic diversity; the majority of the members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to environmental rDNA clones from surface soil (soil clones) and marine environments (marine group I [MGI]). Other clones exhibited intermediate phylogenetic affiliation between soil clones and MGI in the Crenarchaeota. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences that exhibited novel phylogeny, including a novel lineage of Euryarchaeota. These results suggest that deep South African gold mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including the newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea are reevaluated. PMID:11722932

  7. Archaeal Diversity in Waters from Deep South African Gold Mines

    SciTech Connect

    Takai, Ken; Moser, Duane P.; Deflaun, Mary; Onstott, Tullis C.; Fredrickson, Jim K.

    2001-12-01

    Culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold (Au) mines was performed by PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with sequencing analysis of archaeal rDNA clone libraries. Water samples represented various environments including: deep fissure water; mine service water; and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied directly with the source of the water. The archaeal communities in the deep Au mine environments revealed a large phylogenetic diversity; the majority of members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to the environmental rDNA clones from surface soil (Soil clones) and marine environments (Marine Group I; MGI). Other clones possessed an intermediate phylogenetic affiliation between soil clones and MGI within the Crenarchaea. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences of novel phylogeny including a novel lineage of Euryarchaeota. These results suggest that deep South African Au mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including these newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea is reevaluated.

  8. The Circulation of Newly Formed Deep Water in the Atlantic

    NASA Astrophysics Data System (ADS)

    Rhein, M.; Kieke, D.; Steinfeldt, R.

    2012-04-01

    The circulation of newly formed deep water masses (Labrador Sea Water, LSW, and Denmark Strait Overflow Water, DSOW) is examined by discussing the distribution of two parameters (age τ and fraction F of young water) calculated from the chlorofluorocarbon data measured between 1980 and 2005 in the Atlantic. Compared to previous studies, a much larger data set was used with an improved gridding procedure, allowing to resolve the distributions in more detail.

  9. Carbon Sequestration through Sustainably Sourced Algal Fertilizer: Deep Ocean Water.

    NASA Astrophysics Data System (ADS)

    Sherman, M. T.

    2014-12-01

    Drawing down carbon from the atmosphere happens in the oceans when marine plants are growing due to the use of carbon dioxide for biological processes and by raising the pH of the water. Macro- and microscopic marine photosynthesizers are limited in their growth by the availability of light and nutrients (nitrogen, phosphorous, iron, etc.) Deep ocean water (DOW), oceanic water from bellow about 1000m, is a natural medium for marine algae, which contains all (except in rare circumstances) necessary components for algal growth and represents over 90% of the volume of the ocean. The introduction of DOW to a tropical or summer sea can increase chlorophyll from near zero to 60 mg per M3 or more. The form of the utilization infrastructure for DOW can roughly be divided into two effective types; the unconstrained release and the open pond system. Unconstrained release has the advantage of having relatively low infrastructure investment and is available to any area of the ocean. The open pond system has high infrastructure costs but enables intensive use of DOW for harvesting macro- and microalgae and sustainable mariculture. It also enables greater concomitant production of DOW's other potential products such as electricity or potable water. However, unlike an unconstrained release the open pond system can capture much of the biomaterial from the water and limits the impact to the surrounding ecosystem. The Tidal Irrigation and Electrical System (TIESystem), is an open pond that is to be constructed on a continental shelf. It harnesses the tidal flux to pump DOW into the pond on the rising tide and then uses the falling tide to pump biologically rich material out of the pond. This biomaterial represents fixed CO2 and can be used for biofuel or fertilizers. The TIESystem benefits from an economy of scale that increases at a rate that is roughly equal to the relationship of the circumference of a circle (the barrier that creates the open pond) to the area of the pond

  10. The DEEP-South: Network Construction and Test Operations

    NASA Astrophysics Data System (ADS)

    Moon, Hong-Kyu; Kim, Myung-Jin; Yim, Hong-Suh; Choi, Young-Jun; Bae, Youngho; Roh, Dong-Goo; the DEEP-South Team

    2015-08-01

    Korea Astronomy and Space Science Institute achieved completion of a network of optical telescopes called the KMTNet (Korea Micro-lensing Telescope Network) in the end of 2014. The KMTNet is comprised of three 1.6-m prime focus wide-field optics and 18K×18K mosaic CCDs, each providing 2×2 degrees field of view. This network facilities located at CTIO (Chile), SAAO (South Africa), and SSO (Australia) are expected to be on line in mid-2015 with their CCDs fully functional. While its primary objective is discovery and characterization of extrasolar planets, it is also being used for “Deep Ecliptic Patrol of the Southern Sky (DEEP-South)” aiming at asteroid and comet studies as one of its secondary science projects. The KMTNet telescopes are almost equally separated in longitude, and hence enable a 24-hour uninterrupted monitoring of the southern sky. The DEEP-South will thus provide a prompt solution to a demand from the scientific community to bridge the gaps in global sky coverage with a coordinated use of a network of ground-based telescopes in the southern hemisphere. Thanks to round-the-clock capability orbits, spin states and three dimensional shape of an object will be systematically investigated and archived for the first time. Based on SDSS and BVRI colors, we will also constrain their surface mineralogy, with an emphasis on targeted photometry of km-sized Potentially Hazardous Asteroids (PHAs) in the first stage (2015-2019). In the end of 2015, we plan to complete implementing dedicated software subsystem made of an automated observation scheduler and data pipeline for the sake of an increased discovery rate, rapid follow-up, timely phase coverage, and more efficient data reduction and analysis. We will give a brief introduction to a series of test operations conducted at the KMTNet-CTIO in February, March and April in 2015 with experimental data processing. Preliminary scientific results will also be presented.

  11. Radiocarbon age of waters in the deep Atlantic revisited

    SciTech Connect

    Broecker, W.S.; Virgilio, A. ); Peng, T.H. )

    1991-01-01

    The authors use a simple box model to evaluate the impact of temporal changes of the atmosphere's {sup 14}C/C on ventilation fluxes for the deep Atlantic calculated from radiocarbon measurements. The conclusion is that despite the fact that over the 300 year period from 1650 to 1950 the atmosphere's radiocarbon content declined at the same rate as radiocarbon decays, this temporal change has a relatively small impact (10-15%) on radiocarbon-based estimates of the ventilation rate of the deep Atlantic. The reason is that the radiocarbon content of the source waters for deep Atlantic are reasonably well buffered against changes in atmospheric {sup 14}C/C.

  12. Geology of Sarawak deep water and its surroundings

    SciTech Connect

    Ismail, M.I.; Mohamad, A.M.; Ganesan, M.S.; Aziz, S.A. )

    1994-07-01

    A geological and geophysical investigation based primarily on seismic data indicates that four tectonostratigraphic zonations are recognizable in the Sarawak deep water and its surroundings. Zone A is a 7-8-km-thick Tertiary sedimentary basin in Sarawak deep water characterized by north-south-trending buried hills, extensional fault-bounded features, and local occurrences of compressional structures, and is separated from the northwest Sabah platform (zone B) by a major north-south-trending basin margin fault. This margin fault is distinct from the northwest-southeast transform fault known as Baram-Tinjar Line. The northwest Sabah platform, an attenuated continental crust that underwent late Mesozoic-Tertiary crystal stretching and rifting, is characterized by northeast-southwest-tending rift systems and generally up to 4 km-thick sedimentary cover. The leading edge of the northwest Sabah platform that was subducted beneath the northwest Borneo crust is marked by the Sabah trough (zone C). The western Sarawak deep water is occupied by a 13-km-thick, north-south-trending basin, the west Luconia delta province (zone D), demonstrating post mid-Miocene deltaic growth faults and toe-thrusts. Crustal offsets of the South China Sea Basin, north-south-trending basin margin fault between zones A and B, and extensional and compressional structures in zone A are evidence for north-south-directed transform motions leading to the development of the Sarawak deep-water Tertiary basin. Four main sedimentation phases describe the sedimentation history in Sarawak deep water and its surroundings. Oligocene-Miocene coastal plain sediments form the main hydrocarbon plays in the Sarawak deep water, and the numerous occurrences of amplitude anomalies clearly suggest a working hydrocarbon charge system.

  13. Sense Things in the Big Deep Water Bring the Big Deep Water to Computers so People can understand the Deep Water all the Time without getting wet

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Heesemann, M.; Scherwath, M.; Owens, D.; Hoeberechts, M.; Moran, K.

    2015-12-01

    Senses help us learn stuff about the world. We put sense things in, over, and under the water to help people understand water, ice, rocks, life and changes over time out there in the big water. Sense things are like our eyes and ears. We can use them to look up and down, right and left all of the time. We can also use them on top of or near the water to see wind and waves. As the water gets deep, we can use our sense things to see many a layer of different water that make up the big water. On the big water we watch ice grow and then go away again. We think our sense things will help us know if this is different from normal, because it could be bad for people soon if it is not normal. Our sense things let us hear big water animals talking low (but sometimes high). We can also see animals that live at the bottom of the big water and we take lots of pictures of them. Lots of the animals we see are soft and small or hard and small, but sometimes the really big ones are seen too. We also use our sense things on the bottom and sometimes feel the ground shaking. Sometimes, we get little pockets of bad smelling air going up, too. In other areas of the bottom, we feel hot hot water coming out of the rock making new rocks and we watch some animals even make houses and food out of the hot hot water that turns to rock as it cools. To take care of the sense things we use and control water cars and smaller water cars that can dive deep in the water away from the bigger water car. We like to put new things in the water and take things out of the water that need to be fixed at least once a year. Sense things are very cool because you can use the sense things with your computer too. We share everything for free on our computers, which your computer talks to and gets pictures and sounds for you. Sharing the facts from the sense things is the best part about having the sense things because we can get many new ideas about understanding the big water from anyone with a computer!

  14. North Atlantic Deep Water and the World Ocean

    NASA Technical Reports Server (NTRS)

    Gordon, A. L.

    1984-01-01

    North Atlantic Deep Water (NADW) by being warmer and more saline than the average abyssal water parcel introduces heat and salt into the abyssal ocean. The source of these properties is upper layer or thermocline water considered to occupy the ocean less dense than sigma-theta of 27.6. That NADW convects even though it's warmer than the abyssal ocean is obviously due to the high salinity. In this way, NADW formation may be viewed as saline convection. The counter force removing heat and salinity (or introducing fresh water) is usually considered to to take place in the Southern Ocean where upwelling deep water is converted to cold fresher Antarctic water masses. The Southern ocean convective process is driven by low temperatures and hence may be considered as thermal convection. A significant fresh water source may also occur in the North Pacific where the northward flowing of abyssal water from the Southern circumpolar belt is saltier and denser than the southward flowing, return abyssal water. The source of the low salinity input may be vertical mixing of the low salinity surface water or the low salinity intermediate water.

  15. Deep water source cooling: An un-tapped resource

    SciTech Connect

    Burford, H.E.; Wiedemann, L.; Joyce, W.S.; McCabe, R.E.

    1995-12-31

    Deep water source cooling (DWSC) refers to the renewable use of a large body of naturally cold water as a heat sink for process and comfort space cooling. Water at a constant 40-50{degrees}F or less is withdrawn from deep areas within lakes, oceans, aquifers and rivers and is pumped through the primary side of a heat exchanger. On the secondary side, clean chilled water is produced with one tenth the average energy required by conventional, chiller based systems. Coincident with significant energy and operating cost savings, DWSC offers reductions in air-borne pollutants and the release of environmentally harmful refrigerants. This paper discusses the basic design concepts, environmental considerations and performance related to the application of lake and ocean DWSC systems.

  16. Composition and ecology of deep-water coral associations

    NASA Astrophysics Data System (ADS)

    Kühlmann, D. H. H.

    1983-06-01

    Between 1966 and 1978 SCUBA investigations were carried out in French Polynesia, the Red Sea, and the Caribbean, at depths down to 70 m. Although there are fewer coral species in the Caribbean, the abundance of Scleractinia in deep-water associations below 20 m almost equals that in the Indian and Pacific Oceans. The assemblages of corals living there are described and defined as deep-water coral associations. They are characterized by large, flattened growth forms. Only 6 to 7 % of the species occur exclusively below 20 m. More than 90 % of the corals recorded in deep waters also live in shallow regions. Depth-related illumination is not responsible for depth differentiations of coral associations, but very likely, a complex of mechanical factors, such as hydrodynamic conditions, substrate conditions, sedimentation etc. However, light intensity determines the general distribution of hermatypic Scleractinia in their bathymetric range as well as the platelike shape of coral colonies characteristic for deep water associations. Depending on mechanical factors, Leptoseris, Montipora, Porites and Pachyseris dominate as characteristic genera in the Central Pacific Ocean, Podabacia, Leptoseris, Pachyseris and Coscinarea in the Red Sea, Agaricia and Leptoseris in the tropical western Atlantic Ocean.

  17. A system of automated processing of deep water hydrological information

    NASA Technical Reports Server (NTRS)

    Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.

    1974-01-01

    An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.

  18. Versatile repair vessel tested in deep water

    SciTech Connect

    Not Available

    1985-07-01

    Testing of a new subsea pipeline repair system in up to 1640 ft of water has been completed. The versatile system, integrated into a catamaran-type vessel, was to be operational by the end of 1985. The main characteristic of the Submersible Underwater Pipeline Repair and Work Apparatus (Supra) is its stable floating capability on the sea surface. Supra can be towed by a supply tug or diving support vessel at five knots in 13-ft waves. The system can be operated without the assistance of heavy-lift cranes or large barges. The developers claim Supra is highly independent of bad weather and sea conditions and can work 90% of the year. Since Supra is pressure-proof similar to a submarine, it can be submerged at sea by means of an integrated propulsion and ballast system and then maneuvered to the desired working location and positioned on the seabed by means of an underwater tracking and navigation system.

  19. Seismic Evaluation of Hydorcarbon Saturation in Deep-Water Reservoirs

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-10-31

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can be applied to offset this effect. Tuning will also disturb the location of extracted amplitudes on AVO intercept and gradient (A-B) plots. Many deep water reservoirs fall this tuning thickness range. Our goal for the remaining project period is to systematically combine and document these various effects for use in deep water exploration.

  20. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-01-22

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can be applied to offset this effect. Tuning will also disturb the location of extracted amplitudes on AVO intercept and gradient (A-B) plots. Many deep water reservoirs fall this tuning thickness range. Our goal for the remaining project period is to systematically combine and document these various effects for use in deep water exploration.

  1. Deep-sea floor instability to cause of deep-water cable fault, off East Taiwan

    NASA Astrophysics Data System (ADS)

    Soh, W.; Machiyama, H.; Shiraishi, Y.; Kasahara, J.

    2007-12-01

    In 2002 to 2003 years, many deep-water cable faults were taken place in the sites deeper than 4,700 m of water depth, off east Taiwan to the Okinawa Trench. Many commercial base cables were seriousely brocken in the events. To investgate the cause of the cable fault in the deep water environment we examined the location and timing of the cable faults and compared them with data/records of the bathymetry, sesimic records and precipitation of the coast range of Taiwan. Because the events were most likely to be caused by turbidite flows that run and developed along the submarine channels such as Taitung and Hualien Channels. Velocity of the turbidites reached 10 to 12 m/s on an average in the setting. The turbidtes were not hyperpicnal flow being caused by onland food event but seismoturbidite. The events were taken place just after earthqaukes ranging from 5.0 to 6.0, and the depths of the EQ sources were shallower than 23 km in and around the coast range of Taiwan. What we learn from this case is that the cable fault may be happened if the condition (or rule) is satisfied. If it is true, the cable fault in the deep water environment in the region can be predicted.

  2. Effect of quality of phreatic aquifer water and water upwelling on constructions. A case study of Ouargla

    NASA Astrophysics Data System (ADS)

    Saggaï, Sofiane; Bachi, Oum Elkheir; Saggaï, Ali

    2016-07-01

    In Ouargla's oasis, which is one of urban conglomerations of Algerian Sahara, the exploitation and/or the overexploitation of the deep aquifers of continental intercalary and of complex terminal that contain waters of mediocre quality (salty and hot), and the rejection of waters of drainage, urban residual waters and non-treated industrial waters are responsible, at the same time, of the degradation of the quality of waters of the groundwater and its upwelling. This situation has led to: (i) the deterioration of the environment and (ii) the deterioration of constructions (houses, roads, etc…). The present paper consists in giving in detail the causes of the water upwelling of phreatic aquifers in our regions, the quality of water of this aquifer and the influence of the quality of phreatic aquifer water on environment and constructions in Ouargla city by analyzing water samples of 10 points of this town.

  3. Development of study on the dynamic characteristics of deep water mooring system

    NASA Astrophysics Data System (ADS)

    Tang, You-Gang; Zhang, Su-Xia; Zhang, Ruo-Yu; Liu, Hai-Xiao

    2007-09-01

    To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design of mooring systems is a key issue for deep water platforms. Environmental loads in deep water effect the physical characteristics of mooring line materials. The configuration and analysis of mooring systems involve nonlinearity due to this fluid-solid coupling, nonlinear hydrodynamic forces, and their effects on stability of motion. In this paper, some pivotal theories and technical questions are presented, including modeling of mooring lines, the theory and method of coupled dynamics analysis on the mooring system, and the development of methodologies for the study of nonlinear dynamics of mooring systems. Further study on mooring systems in deep water are recommended based on current knowledge, particularly dynamic parameters of different materials and cable configuration, interactions between seabed and cable, mechanisms of mooring system response induced by taut/slack mooring cables, discontinuous stiffness due to system materials, mooring construction, and motion instability, etc.

  4. Countermeasures Planned for Reducing Water Inflow into Deep Shafts at the Mizunami Underground Research Laboratory

    NASA Astrophysics Data System (ADS)

    Kuji, Masayoshi; Sato, Toshinori; Mikake, Shinichiro; Hara, Nasato; Minamide, Masashi; Sugihara, Kozo

    The Mizunami Underground Research Laboratory (MIU) is currently being constructed. The MIU design consists of two 1,000 m-deep shafts with several research galleries. The goals of the MIU project are to establish techniques for investigation, analysis and assessment of deep geological environments, and to develop a range of engineering expertise for application in deep underground excavations in crystalline rocks such as granite. The diameter of the Main and the Ventilation Shafts are 6.5 m and 4.5 m, respectively. Horizontal tunnels to connect the shafts will be excavated at 100 m depth intervals. The Middle Stage, at about 500 m in depth, and the Main Stage, at about 1,000 m in depth, will be the main locations for scientific investigations. The Main and the Ventilation Shafts were 180 m and 191 m deep, respectively, in November 2006. During construction, water inflow into the shafts has been increasing and affecting the project progress. In order to reduce the water inflow into the shafts, pre- and post-excavation grouting has been planned. A post-excavation grouting test has been undertaken in the Ventilation Shaft and the applicability of several techniques has been evaluated. This paper describes an outline of the MIU project, its work plan and the results of the post-excavation grouting test.

  5. Deep oxygenated ground water: Anomaly or common occurrence?

    USGS Publications Warehouse

    Winograd, I.J.; Robertson, F.N.

    1982-01-01

    Contrary to the prevailing notion that oxygen-depleting reactions in the soil zone and in the aquifer rapidly reduce the dissolved oxygen content of recharge water to detection limits, 2 to 8 milligrams per liter of dissolved oxygen is present in water from a variety of deep (100 to 1000 meters) aquifers in Nevada, Arizona, and the hot springs of the folded Appalachians and Arkansas. Most of the waters sampled are several thousand to more than 10,000 years old, and some are 80 kilometers from their point of recharge. Copyright ?? 1982 AAAS.

  6. Effects of Constructing versus Playing an Educational Game on Student Motivation and Deep Learning Strategy Use

    ERIC Educational Resources Information Center

    Vos, Nienke; van der Meijden, Henny; Denessen, Eddie

    2011-01-01

    In this study the effects of two different interactive learning tasks, in which simple games were included were described with respect to student motivation and deep strategy use. The research involved 235 students from four elementary schools in The Netherlands. One group of students (N = 128) constructed their own memory "drag and drop" game,…

  7. Deep ocean mineral water accelerates recovery from physical fatigue

    PubMed Central

    2013-01-01

    Background Deep oceans have been suggested as a possible site where the origin of life occurred. Along with this theoretical lineage, experiments using components from deep ocean water to recreate life is underway. Here, we propose that if terrestrial organisms indeed evolved from deep oceans, supply of deep ocean mineral water (DOM) to humans, as a land creature, may replenish loss of molecular complexity associated with evolutionary sea-to-land migration. Methods We conducted a randomized, double-blind, placebo-controlled crossover human study to evaluate the effect of DOM, taken from a depth of 662 meters off the coast of Hualien, Taiwan, on time of recovery from a fatiguing exercise conducted at 30°C. Results The fatiguing exercise protocol caused a protracted reduction in aerobic power (reduced VO2max) for 48 h. However, DOM supplementation resulted in complete recovery of aerobic power within 4 h (P < 0.05). Muscle power was also elevated above placebo levels within 24 h of recovery (P < 0.05). Increased circulating creatine kinase (CK) and myoglobin, indicatives of exercise-induced muscle damage, were completely eliminated by DOM (P < 0.05) in parallel with attenuated oxidative damage (P < 0.05). Conclusion Our results provide compelling evidence that DOM contains soluble elements, which can increase human recovery following an exhaustive physical challenge. PMID:23402436

  8. Early Oligocene initiation of North Atlantic Deep Water formation

    NASA Astrophysics Data System (ADS)

    Davies, Richard; Cartwright, Joseph; Pike, Jennifer; Line, Charles

    2001-04-01

    Dating the onset of deep-water flow between the Arctic and North Atlantic oceans is critical for modelling climate change in the Northern Hemisphere and for explaining changes in global ocean circulation throughout the Cenozoic era (from about 65 million years ago to the present). In the early Cenozoic era, exchange between these two ocean basins was inhibited by the Greenland-Scotland ridge, but a gateway through the Faeroe-Shetland basin has been hypothesized. Previous estimates of the date marking the onset of deep-water circulation through this basin-on the basis of circumstantial evidence from neighbouring basins-have been contradictory, ranging from about 35 to 15 million years ago. Here we describe the newly discovered Southeast Faeroes drift, which extends for 120km parallel to the basin axis. The onset of deposition in this drift has been dated to the early Oligocene epoch (~35 million years ago) from a petroleum exploration borehole. We show that the drift was deposited under a southerly flow regime, and conclude that the initiation of deep-water circulation from the Norwegian Sea into the North Atlantic Ocean took place much earlier than is currently assumed in most numerical models of ancient ocean circulation.

  9. Early Oligocene initiation of North Atlantic Deep Water formation.

    PubMed

    Davies, R; Cartwright, J; Pike, J; Line, C

    2001-04-19

    Dating the onset of deep-water flow between the Arctic and North Atlantic oceans is critical for modelling climate change in the Northern Hemisphere and for explaining changes in global ocean circulation throughout the Cenozoic era (from about 65 million years ago to the present). In the early Cenozoic era, exchange between these two ocean basins was inhibited by the Greenland-Scotland ridge, but a gateway through the Faeroe-Shetland basin has been hypothesized. Previous estimates of the date marking the onset of deep-water circulation through this basin-on the basis of circumstantial evidence from neighbouring basins-have been contradictory, ranging from about 35 to 15 million years ago. Here we describe the newly discovered Southeast Faeroes drift, which extends for 120 km parallel to the basin axis. The onset of deposition in this drift has been dated to the early Oligocene epoch ( approximately 35 million years ago) from a petroleum exploration borehole. We show that the drift was deposited under a southerly flow regime, and conclude that the initiation of deep-water circulation from the Norwegian Sea into the North Atlantic Ocean took place much earlier than is currently assumed in most numerical models of ancient ocean circulation. PMID:11309613

  10. Laminated rubber articulated joint for the Deep Water Gravity Tower

    SciTech Connect

    Sedillot, F.; Stevenson, A.

    1983-12-01

    The Deep Water Gravity Tower is an articulated structure resting on a fixed base through an articulated joint which is composed of curved laminated rubber pads, made from alternate layers of rubber and metallic shims. The paper first outlines the main design concept with the articulated joint. Some analysis is then provided of the response to imposed rotation and vertical load. This includes a brief description of the results of a finite element analysis. The paper then reviews the test performed on laminated rubber during 1980 and 1981 to assess the feasibility of the articulation: fatigue tests; environmental tests (effect of sea water, temperature, pressure).

  11. Influence of Reservoir Infill on Coastal Deep Water Hypoxia.

    PubMed

    Linker, Lewis C; Batiuk, Richard A; Cerco, Carl F; Shenk, Gary W; Tian, Richard; Wang, Ping; Yactayo, Guido

    2016-05-01

    Ecological restoration of the Chesapeake through the Chesapeake Bay total maximum daily load (TMDL) requires the reduction of nitrogen, phosphorus, and sediment loads in the Chesapeake watershed because of the tidal water quality impairments and damage to living resources they cause. Within the Chesapeake watershed, the Conowingo Reservoir has been filling in with sediment for almost a century and is now in a state of near-full capacity called . The development of the Chesapeake TMDL in 2010 was with the assumption that the Conowingo Reservoir was still effectively trapping sediment and nutrients. This is now known not to be the case. In a TMDL, pollutant loads beyond the TMDL allocation, which are brought about by growth or other conditions, must be offset. Using the analysis tools of the Chesapeake TMDL for assessing the degree of water quality standard attainment, the estimated nutrient and sediment loads from a simulated dynamic equilibrium infill condition of the Conowingo Reservoir were determined. The influence on Chesapeake water quality by a large storm and scour event of January 1996 on the Susquehanna River was estimated, and the same storm and scour events were also evaluated in the more critical living resource period of June. An analysis was also made on the estimated influence of more moderate high flow events. The infill of the Conowingo reservoir had estimated impairments of water quality, primarily on deep-water and deep-channel dissolved oxygen, because of increased discharge and transport of organic and particulate inorganic nutrients from the Conowingo Reservoir. PMID:27136155

  12. Exploring deep potential aquifer in water scarce crystalline rocks

    NASA Astrophysics Data System (ADS)

    Chandra, Subash; Nagaiah, E.; Reddy, D. V.; Rao, V. Ananda; Ahmed, Shakeel

    2012-12-01

    Characterization of the shear zone with pole-pole electrical resistivity tomography (ERT) was carried out to explore deep groundwater potential zone in a water scarce granitic area. As existing field conditions does not always allow to plant the remote electrodes at sufficiently far of distance, the effect of insufficient distance of remote electrodes on apparent resistivity measurement was studied and shown that the transverse pole-pole array affects less compared to the collinear pole-pole array. Correction factor have been computed for transverse pole-pole array for various positions of the remote electrodes. The above results helped in exploring deep aquifer site, where a 270 m deep well was drilled. Temporal hydro-chemical samples collected during the pumping indicated the hydraulic connectivity between the demarcated groundwater potential fractures. Incorporating all the information derived from different investigations, a subsurface model was synthetically simulated and generated 2D electrical resistivity response for different arrays and compared with the field responses to further validate the geoelectrical response of deep aquifer set-up associated with lineament.

  13. Is Centrophorus squamosus a highly migratory deep-water shark?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cabello, Cristina; Sánchez, Francisco

    2014-10-01

    Deep-water sharks are considered highly vulnerable species due to their life characteristics and very low recovery capacity against overfishing. However, there is still limited information on the ecology or population connectivity of these species. The aim of this study was to investigate if the species Centrophorus squamosus could make long displacements and thus confirm the existence of connectivity between different deep-water areas. In addition, the study was the first attempt to use tagging techniques on deep-water sharks, since it has never been undertaken before. Five C. squamosus were tagged with satellite tags (PAT) in the El Cachucho Marine Protected Area (Le Danois Bank) located in waters of the North of Spain, Cantabrian Sea (NE Atlantic). Data from four of these tags were recovered. One of the sharks travelled approximately 287 nm toward the north east (French continental shelf) hypothetically following the continental slope at a mean depth of 901±109 m for 45 days. Two other sharks spent almost 4 months traveling, in which time they moved 143 and 168 nm, respectively, to the west (Galician coast). Finally, another leafscale gulper shark travelled to the NW (Porcupine Bank) during a period of 3 months at a mean depth of 940±132 m. Depth and temperature preferences for all the sharks are discussed. Minimum and maximum depths recorded were 496 and 1848 m, respectively. The temperature range was between 6.2 and 11.4 °C, but the mean temperature was approximately 9.9±0.7 °C. The sharks made large vertical displacements throughout the water column with a mean daily depth range of 345±27 m. These preliminary results support the suggestion of a whole population in the NE Atlantic and confirm the capacity of this species to travel long distances.

  14. Flexible riser configuration for a FPSO in deep waters

    SciTech Connect

    Karunakaran, D.; Leira, B.J.; Olufsen, A.; Nordsve, N.T.

    1995-12-31

    Throughout the world development of oil and gas fields in deep and ultra deep waters is being considered. Floating systems offer an efficient alternative for development of such fields. Flexible risers will in general form an important part of such floating production system. Presently, the flexible risers are designed by application of factor of safety, which is based on experience from laboratory tests, theoretical pipe mechanics and engineering know-how. Generally, it is not based on reliability calculations and risk assessment. Hence it is very important to assess the safety level in current design practice and to aim at a rational and safe design procedure. In this paper, a reliability analysis procedure for flexible riser systems based on a response surface methodology and FORM/SORM methods is outlined. It is applied to a deep water riser system. In this case only a failure criterion at the top end is considered. This location is critical for this riser with respect to Ultimate Limit State (ULS). The results indicate a sufficient safety level for the top end of the riser. However, it is emphasized that this is not a conclusive result with respect to riser safety in general. A more comprehensive study is required to assess the overall safety level for flexible riser systems. Such a study should include a number of different riser configurations and limit states, specifically FLS criteria, to arrive at more general conclusions.

  15. Slab dehydration and deep water recycling through time

    NASA Astrophysics Data System (ADS)

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2015-04-01

    The fate of water in subduction zones is a key feature that influences the magmatism of the arcs, the rheology of the mantle, and the recycling of volatiles. We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity, slab age, and mantle potential temperature. Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. A hotter mantle (i.e., early Earth setting) drives the onset of crustal dehydration slightly shallower, but, mostly, dehydration reactions are very similar to those occurring in present-day setting. However, for very fast slabs and very hot mantle epidote is involved as a dehydrating crustal phase. Moreover, we provide a scaling law to estimate the amount of water that can be carried deep into the mantle. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ~15 Myr decrease of plate age, or 3) decrease in subduction velocity of ~2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ~2.2x105 kg/m2 of H2O. We estimate that for present-day conditions ~26% of the global influx water, or 7x108 Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5-3.7x108 Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga.

  16. Deep water drilling risers in calm and harsh environments

    SciTech Connect

    Olufsen, A.; Nordsve, N.T.

    1994-12-31

    The overall objective of the work presented in this paper is to increase the knowledge regarding application of deep water drilling risers in different environmental conditions. Identification of key parameters and their impact on design and operation of deep water drilling risers are emphasized. Riser systems for two different cases are evaluated. These are: drilling offshore Nigeria in 1,200 m water depth; drilling at the Voering Plateau offshore Northern Norway in 1,500 m water depth. The case studies are mainly referring to requirements related to normal drilling operation of the riser. They are not complete with respect to describe of total riser system design. The objectives of the case studies have been to quantify the important of various parameters and to establish limiting criteria for drilling. Dynamic riser analyses are also performed. For the Nigeria case, results for a design wave with 100 years return period show that the influence of dynamic response is only marginal (but it may of course be significant for fatigue damage/life time estimation). The regularity of the drilling operation is given as the probability that jointly occurring wave heights and current velocities are within the limiting curve.

  17. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water

    PubMed Central

    Frank, Alexander H.; Garcia, Juan A. L.; Herndl, Gerhard J.

    2016-01-01

    Summary To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep‐water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. PMID:26914787

  18. Analytical calculation of muon intensities under deep sea-water

    NASA Technical Reports Server (NTRS)

    Inazawa, H.; Kobayakawa, K.

    1985-01-01

    The study of the energy loss of high energy muons through different materials, such as rock and sea-water can cast light on characteristics of lepton interactions. There are less ambiguities for the values of atomic number (Z) and mass number (A) in sea-water than in rock. Muon intensities should be measured as fundamental data and as background data for searching the fluxes of neutrino. The average range energy relation in sea-water is derived. The correction factors due to the range fluctuation is also computed. By applying these results, the intensities deep under sea are converted from a given muon energy spectra at sea-level. The spectra of conventional muons from eta, K decays have sec theta enhancement. The spectrum of prompt muons from charmed particles is almost isotropic. The effect of prompt muons is examined.

  19. Perception vs. reality in deep-water exploration

    SciTech Connect

    Shanmugam, G. )

    1996-01-01

    The common perception in exploration is that deep-water sands are predominantly a product of low- and high-density turbidity currents, and that submarine-fan models with channel/levee and lobe elements are the norm. The reality, however, is that deep-water systems are extremely complex and variable in terms of depositional processes and sand-body geometries. For example, the Bourna Sequence, composed of T[sub a], T[sub b], T[sub c], T[sub d], and T[sub e] divisions, is believed to be the product of a turbidity current. However, recent core and outcrop studies show that the complete and partial Bouma sequences also can be explained by processes other than turbidity currents, such as sandy debris flows (i.e., [open quotes]T[sub a][close quotes]) and bottom-current reworking (i.e., [open quotes]T[sub b], T[sub c] and T[sub d][close quotes]). Massive sands are interpreted routinely as high-density turbidites, but the reality is that the term [open quotes]high-density turbidity current[close quotes] commonly refers to sandy debris flow in terms of flow theology and sediment-support mechanism. Deep-water sequences in the North Sea, Norwegian Sea, Offshore Gabon, Offshore Nigeria, Gulf of Mexico, and the Ouachita Mountains are generally considered to be turbidite-rich submarine fans. However, the reality is that these sequences are composed predominantly of sandy slumps and debris flows, not turbidites. Fan models are attractive to explorationists because of their predictable sheet-like geometries; however, these simplistic conceptual models are obsolete because they defy reality. Although the turbidite paradigm is alive and well for now in the minds of many sedimentologists and sequence stratigraphers, the turbidites themselves that form the foundation for fan models are becoming an endangered facies

  20. Perception vs. reality in deep-water exploration

    SciTech Connect

    Shanmugam, G.

    1996-12-31

    The common perception in exploration is that deep-water sands are predominantly a product of low- and high-density turbidity currents, and that submarine-fan models with channel/levee and lobe elements are the norm. The reality, however, is that deep-water systems are extremely complex and variable in terms of depositional processes and sand-body geometries. For example, the Bourna Sequence, composed of T{sub a}, T{sub b}, T{sub c}, T{sub d}, and T{sub e} divisions, is believed to be the product of a turbidity current. However, recent core and outcrop studies show that the complete and partial Bouma sequences also can be explained by processes other than turbidity currents, such as sandy debris flows (i.e., {open_quotes}T{sub a}{close_quotes}) and bottom-current reworking (i.e., {open_quotes}T{sub b}, T{sub c} and T{sub d}{close_quotes}). Massive sands are interpreted routinely as high-density turbidites, but the reality is that the term {open_quotes}high-density turbidity current{close_quotes} commonly refers to sandy debris flow in terms of flow theology and sediment-support mechanism. Deep-water sequences in the North Sea, Norwegian Sea, Offshore Gabon, Offshore Nigeria, Gulf of Mexico, and the Ouachita Mountains are generally considered to be turbidite-rich submarine fans. However, the reality is that these sequences are composed predominantly of sandy slumps and debris flows, not turbidites. Fan models are attractive to explorationists because of their predictable sheet-like geometries; however, these simplistic conceptual models are obsolete because they defy reality. Although the turbidite paradigm is alive and well for now in the minds of many sedimentologists and sequence stratigraphers, the turbidites themselves that form the foundation for fan models are becoming an endangered facies!

  1. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our

  2. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2006-01-30

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), our efforts have become focused on technology transfer. To this end, we completing our theoretical developments, generating recommended processing flows, and perfecting our rock and fluid properties interpretation techniques. Some minor additional data analysis and modeling will complete our case studies. During this quarter we have: Presented findings for the year at the DHI/FLUIDS meeting at UH in Houston; Presented and published eight papers to promote technology transfer; Shown how Rock and fluid properties are systematic and can be predicted; Shown Correct values must be used to properly calibrate deep-water seismic data; Quantified and examined the influence of deep water geometries in outcrop; Compared and evaluated hydrocarbon indicators for fluid sensitivity; Identified and documented inappropriate processing procedures; Developed inversion techniques to better distinguish hydrocarbons; Developed new processing work flows for frequency-dependent anomalies; and Evaluated and applied the effects of attenuation as an indicator. We have demonstrated that with careful calibration, direct hydrocarbon indicators can better distinguish between uneconomic ''Fizz'' gas and economic hydrocarbon reservoirs. Some of this progress comes from better characterization of fluid and rock properties. Other aspects include alternative techniques to invert surface seismic data for fluid types and saturations. We have also developed improved work flows for accurately measuring frequency dependent changes in seismic data that are predicted by seismic models, procedures that will help to more reliably identify anomalies associated with hydrocarbons. We have been prolific in publishing expanded abstracts and presenting results, particularly at the SEG. This year, we had eight such papers to promote technology transfer

  3. A new approach to pipelaying in deep water

    SciTech Connect

    Vermeulen, E.

    1994-12-31

    The last two decades the pipelaying industry has been moving into ever deeper waters. In the beginning of the Seventies the Norwegian trench with a depth of more than 300 m was considered a technical challenge. Now that trench has been crossed a number of times, and pipelines have been installed in a water depth of 600 m while plans are being made to lay in even deeper waters. Platforms have been installed in a depth of 350 m, and the pull-in of pipelines into the J-tubes of such platforms has almost become routine. Previous studies into the laying of pipelines indicated that the J-lay method would be the most suitable for the installation of pipelines in deep water. However, by using more realistic limits on the bending strain than have been customary until now, the S-lay method can be extended to much greater depths, especially with the advent of dynamically positioned lay vessels with long fixed stingers. This method has the advantage that higher laying speeds can be achieved and that conventional welding and NDE methods can be applied. This paper gives a review of the effect of higher strain levels on the laying capabilities of S-lay vessels and describes work that is being done to come to the verification of actual strain levels in pipelines during the laying process. It further presents a discussion of experience gained with the connection of pipelines by the Deflect-to-Connect (DTC) method and the diverless installation of Small PipeLine End Manifolds (PLEMS) in deep water. Finally, a description is given of a diverless method of repairing pipelines.

  4. Deep-sea channel/submarine-yazoo system of the Labrador Sea: A new deep-water facies model

    SciTech Connect

    Hesse, R.; Rakofsky, A. )

    1992-05-01

    The deep-sea channel/submarine-yazoo system is a newly recognized deep-water depositional environment that is significantly different from previously documented turbidite environments. The new system is in many ways the antithesis of classical deep-sea fans. The purpose of this paper is to present the characteristics and elements of the system, develop a facies model for it, establish the system variables, and discuss its possible significance in the geologic record and in subsurface exploration. Previous investigators of deepwater turbidite sediments often faced difficulties in trying to fit their sequences into traditional single-source, deep-sea fan models. The present model fills part of an obvious gap in interpretation schemes for deep-water clastic sediments.

  5. Deep Water Compositions From the Los Angeles Basin and the Origin of Formation Water Salinity

    NASA Astrophysics Data System (ADS)

    Boles, J.; Giles, G.; Lockman, D.

    2005-12-01

    Deep basin formation waters represent original depositional waters that have been modified by diagenetic processes at elevated temperatures and pressures. In addition, they may be diluted by meteoric incursion from elevated structural blocks along basin flanks. It has long been thought that deep basin formation waters have salinities greater than sea water due to various processes like clay membrane filtration or other types of water-rock interaction. However, our work and similar studies in the San Joaquin basin show that formation waters in deep basins are more likely to become diluted rather than concentrated in the absence of soluble evaporite deposits that might underlie the basin. The idea of increased salinity with depth arose from studies in which the underpinning of the basin consisted of soluble evaporate deposits such as the Texas Gulf Coast, Illinois, Michigan, and some North Sea areas. There are very few deep formation water analyses from the Los Angeles Basin. Furthermore, very few of the current produced waters from any depth can be considered pristine because of the widespread formation water injection programs and commingling of fluids from different levels. Here, we describe the first analyses from a deep, previously untouched part of the basin that is currently being developed in the Inglewood Oil Field. We have analyzed a suite of formation waters from the mid-Miocene marine Sentous sandstone from sub-sea level depths of 2250 m to 2625 m at temperatures of about 110 to 126°C and pressures of about 27 MPa. The original depositional waters in the Sentous Formation were sea water whereas the sampled waters are diluted by about 20% from sea water and some show as much as 50% dilution. Based on comparison of oxygen and deuterium isotopes between the meteoric water trend and these waters, we conclude that the smectite to illite dehydration reaction is the major cause of dilution to the original formation water. Other notable differences include

  6. Adaptation to deep-sea methane seeps from Cretaceous shallow-water black shale environments?

    NASA Astrophysics Data System (ADS)

    Kiel, Steffen; Wiese, Frank; Titus, Alan

    2013-04-01

    Sulfide-enriched environments in shallow water were considered as sites where animals acquire pre-adaptations enabling them to colonize deep-sea hydrothermal vents and seeps or where they survived extinction events in their deep-sea habitats. Here we present upper Cenomanian (early Late Cretaceous) shallow-water seep communities from the Tropic Shale in the Western Interior Seaway, USA, that lived during a time of extremely warm deep-water temperatures, which supposedly facilitates adaptations to the deep sea, and time-equivalent with a period of widespread oceanic and photic zone anoxia (OAE 2) that supposedly extinguished deep-water vent and seep faunas. Contrary to the expectation, the taxa inhabiting the Tropic Shale seeps were not found at any coeval or younger deep-water seep or vent deposit. This suggests that (i) pre-adaptations for living at deep-sea vents and seeps do not evolve at shallow-water methane seeps, and probably also not in sulfide-rich shallow-water environments in general; (ii) a low temperature gradient from shallow to deep water does not facilitate onshore-offshore adaptations to deep-sea vents and seeps; and (iii) shallow-water seeps did not act as refuges for deep-sea vent and seep animals. We hypothesize that the vast majority of adaptations to successfully colonize deep-sea vents and seeps are acquired below the photic zone.

  7. Evidence for primordial water in Earth's deep mantle.

    PubMed

    Hallis, Lydia J; Huss, Gary R; Nagashima, Kazuhide; Taylor, G Jeffrey; Halldórsson, Sæmundur A; Hilton, David R; Mottl, Michael J; Meech, Karen J

    2015-11-13

    The hydrogen-isotope [deuterium/hydrogen (D/H)] ratio of Earth can be used to constrain the origin of its water. However, the most accessible reservoir, Earth's oceans, may no longer represent the original (primordial) D/H ratio, owing to changes caused by water cycling between the surface and the interior. Thus, a reservoir completely isolated from surface processes is required to define Earth's original D/H signature. Here we present data for Baffin Island and Icelandic lavas, which suggest that the deep mantle has a low D/H ratio (δD more negative than -218 per mil). Such strongly negative values indicate the existence of a component within Earth's interior that inherited its D/H ratio directly from the protosolar nebula. PMID:26564850

  8. Evidence for primordial water in Earth’s deep mantle

    NASA Astrophysics Data System (ADS)

    Hallis, Lydia J.; Huss, Gary R.; Nagashima, Kazuhide; Taylor, G. Jeffrey; Halldórsson, Sæmundur A.; Hilton, David R.; Mottl, Michael J.; Meech, Karen J.

    2015-11-01

    The hydrogen-isotope [deuterium/hydrogen (D/H)] ratio of Earth can be used to constrain the origin of its water. However, the most accessible reservoir, Earth’s oceans, may no longer represent the original (primordial) D/H ratio, owing to changes caused by water cycling between the surface and the interior. Thus, a reservoir completely isolated from surface processes is required to define Earth’s original D/H signature. Here we present data for Baffin Island and Icelandic lavas, which suggest that the deep mantle has a low D/H ratio (δD more negative than -218 per mil). Such strongly negative values indicate the existence of a component within Earth’s interior that inherited its D/H ratio directly from the protosolar nebula.

  9. Offshore oil & gas: Deep waters dominate in 1997

    SciTech Connect

    Pagano, S.S.

    1997-01-01

    Deep water exploration and field development dominate the energy market as 1997 begins. All indicators point that a turnaround in the oil and gas industry is in full swing. Strong market fundamentals are in place: the worldwide offshore mobile rig fleet is approaching full utilization of marketed rigs, which has tightened the supply/demand balance and boosted day rates for all types of drilling units. The exploration and production niche is in its healthiest shape in more than 15 years with a growth spurt in progress. The excess rig supply has disappeared and some market observers believe the present supply of deep water rigs needs to triple just to meet demand in the Gulf of Mexico market alone. There is evidence that some energy companies are delaying drilling programs because suitable rigs simply are not available. Floating rigs generally are working longer-term contracts with some units under contract until late in the decade. Analysts forecast a heated market over the next 12 to 18 months. Gas prices are expected to remain strong through 1997 and crude prices should hold steady.

  10. Implementation and testing of a Deep Water Correlation Velocity Sonar

    SciTech Connect

    Dickey, F.R.; Bookheimer, W.C.; Rhoades, K.W.

    1983-05-01

    The paper describes a new sonar designated the Magnavox MX 810 Deep Water Correlation Sonar which is under development by the General Electric Company and the Magnavox Advanced Products and Systems Company. The sonar measures ship's velocity relative to the bottom but instead of using the conventional doppler effect, it uses the correlation method described by Dickey and Edward in 1978. In this method, the narrow beams required for doppler are not needed and a low frequency that penetrates to the bottom in deep water is used. The sonar was designed with the constraint that it use a transducer that mounts through a single 12 inch gate valve. Most offshore geophysical surveys at present make use of an integrated navigation system with bottom referenced velocity input from a doppler sonar which, because of limitations on the sonar bottomtracking range, has difficulty in areas where the water depth is greater than about 500 meters. The MX 810 provides bottom tracking in regions of much greater water depth. It also may be applied as an aid in continuous positioning of a vessel over a fixed location. It also should prove useful as a more general navigation aid. The sonar is undergoing a series of tests using Magnavox's facilities for the purpose of verifying the performance and obtaining data to support and quantify planned improvements in both software and hardware. A prototype transducer of only 5 watts power output was used, but in spite of this low power, successful operation to depths of 1900 meters was obtained. Extrapolation to system parameters to be implemented in production models predicts operation to depths of 5000 meters.

  11. Competition for water between deep- and shallow-rooted grasses

    SciTech Connect

    Healy, J.L.; Black, R.A. ); Link, S.O. )

    1994-06-01

    Competition between root systems of neighboring plants may be altered by seasonal variation in precipitation and soil moisture. Competitive effects of a deep-rooted, perennial grass, Pseudoroegneria spicata, on a shallow-rooted, perennial grass, Poa sandbergii, were monitored over two growing seasons by isolating the root system of P. sandbergii individuals within PVC tubes and comparing plant and soil characteristics to controls. When isolated for the entire growing season, P. sandbergii continued vegetative growth three weeks longer and later season soil water content was significantly greater than controls. Differences in soil water content were greatest between 30 and 50cm, below P. sandbergii's typical rooting depth. Flowering phenology was unchanged. When plants were isolated late in the season, treated plants showed more negative predown xylem pressure potential the morning after isolatron. Compared to controls, soil water content was reduced the day after tube insertion. These immediate effects on plant and soil water status may be due to removal of water supplied nightly by hydraulic lift.

  12. New Insights on Jupiter's Deep Water Abundance from Disequilibrium Species

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Gierasch, Peter; Lunine, Jonathan; Mousis, Olivier

    2014-11-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We aim to improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of eddy diffusion coefficient. The new formulation predicts a smooth transition from slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for newly derived coefficient of less than 25%, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraintprovided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other one constrains the water enrichment between 7 and 23. This difference calls for a better assessment of CO kinetic models.

  13. New insights on Jupiter's deep water abundance from disequilibrium species

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Gierasch, Peter J.; Lunine, Jonathan I.; Mousis, Olivier

    2015-04-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of the eddy diffusion coefficient for the troposphere of giant planets. The new formulation predicts a smooth transition from the slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for the newly derived coefficient of less than 25%, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraint provided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other constrains the water enrichment between 3 and 11.

  14. Robust, Optimal Water Infrastructure Planning Under Deep Uncertainty Using Metamodels

    NASA Astrophysics Data System (ADS)

    Maier, H. R.; Beh, E. H. Y.; Zheng, F.; Dandy, G. C.; Kapelan, Z.

    2015-12-01

    Optimal long-term planning plays an important role in many water infrastructure problems. However, this task is complicated by deep uncertainty about future conditions, such as the impact of population dynamics and climate change. One way to deal with this uncertainty is by means of robustness, which aims to ensure that water infrastructure performs adequately under a range of plausible future conditions. However, as robustness calculations require computationally expensive system models to be run for a large number of scenarios, it is generally computationally intractable to include robustness as an objective in the development of optimal long-term infrastructure plans. In order to overcome this shortcoming, an approach is developed that uses metamodels instead of computationally expensive simulation models in robustness calculations. The approach is demonstrated for the optimal sequencing of water supply augmentation options for the southern portion of the water supply for Adelaide, South Australia. A 100-year planning horizon is subdivided into ten equal decision stages for the purpose of sequencing various water supply augmentation options, including desalination, stormwater harvesting and household rainwater tanks. The objectives include the minimization of average present value of supply augmentation costs, the minimization of average present value of greenhouse gas emissions and the maximization of supply robustness. The uncertain variables are rainfall, per capita water consumption and population. Decision variables are the implementation stages of the different water supply augmentation options. Artificial neural networks are used as metamodels to enable all objectives to be calculated in a computationally efficient manner at each of the decision stages. The results illustrate the importance of identifying optimal staged solutions to ensure robustness and sustainability of water supply into an uncertain long-term future.

  15. Calculations of Asteroid Impacts into Deep and Shallow Water

    NASA Astrophysics Data System (ADS)

    Gisler, Galen; Weaver, Robert; Gittings, Michael

    2011-06-01

    Contrary to received opinion, ocean impacts of small (<500 m) asteroids do not produce tsunamis that lead to world-wide devastation. In fact the most dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of

  16. Cestodes from deep-water squaliform sharks in the Azores

    NASA Astrophysics Data System (ADS)

    Caira, Janine N.; Pickering, Maria

    2013-12-01

    The majority of our knowledge on marine tapeworms (cestodes) is limited to taxa that are relatively easy to obtain (i.e., those that parasitize shallower-water species). The invitation to participate in a deep-water research survey off the Condor seamount in the Azores offered the opportunity to gain information regarding parasites of the less often studied sharks of the mesopelagic and bathypelagic zone. All tapeworms (Platyhelminthes: Cestoda) found parasitizing the spiral intestine of squaliform shark species (Elasmobranchii: Squaliformes) encountered as part of this survey, as well as some additional Azorean sampling from previous years obtained from local fishermen are reported. In total, 112 shark specimens of 12 species of squaliform sharks representing 4 different families from depths ranging between 400 and 1290 m were examined. Cestodes were found in the spiral intestines from 11 of the 12 squaliform species examined: Deania calcea, D. cf. profundorum, D. profundorum, Etmopterus princeps, E. pusillus, E. spinax, Centroscyllium fabricii, Centroscymnus coelolepis, C. cryptacanthus, C. crepidater, and Dalatias licha. No cestodes were found in the spiral intestines of Centrophorus squamosus. Light microscopy and scanning electron microscopy revealed several potentially novel trypanorhynch and biloculated tetraphyllidean species. Aporhynchid and gilquiniid trypanorhynchs dominated the adult cestode fauna of Etmopterus and Deania host species, respectively, while larval phyllobothriids were found across several host genera, including, Deania, Centroscyllium, and Centroscymnus. These results corroborate previous findings that deep-water cestode faunas are relatively depauperate and consist primarily of trypanorhynchs of the families Gilquiniidae and Aporhynchidae and larval tetraphyllideans. A subset of specimens of most cestode species was preserved in ethanol for future molecular analysis to allow more definitive determinations of the identification of the

  17. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    M. Batzle; D-h Han; R. Gibson; O. Djordjevic

    2003-03-20

    The ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' (Grant/Cooperative Agreement DE-FC26-02NT15342) began September 1, 2002. During this second quarter: A Direct Hydrocarbon Indicator (DHI) symposium was held at UH; Current DHI methods were presented and forecasts made on future techniques; Dr. Han moved his laboratory from HARC to the University of Houston; Subcontracts were re-initiated with UH and TAMU; Theoretical and numerical modeling work began at TAMU; Geophysical Development Corp. agreed to provide petrophysical data; Negotiations were begun with Veritas GDC to obtain limited seismic data; Software licensing and training schedules were arranged with Paradigm; and Data selection and acquisition continues. The broad industry symposium on Direct Hydrocarbon Indicators was held at the University of Houston as part of this project. This meeting was well attended and well received. A large amount of information was presented, not only on application of the current state of the art, but also on expected future trends. Although acquisition of appropriate seismic data was expected to be a significant problem, progress has been made. A 3-D seismic data set from the shelf has been installed at Texas A&M University and analysis begun. Veritas GDC has expressed a willingness to provide data in the deep Gulf of Mexico. Data may also be available from TGS.

  18. Deep-water antipatharians: Proxies of environmental change

    USGS Publications Warehouse

    Williams, B.; Risk, Michael J.; Ross, S.W.; Sulak, K.J.

    2006-01-01

    Deep-water (307-697 m) antipatharian (black coral) specimens were collected from the southeastern continental slope of the United States and the north-central Gulf of Mexico. The sclerochronology of the specimens indicates that skeletal growth takes place by formation of concentric coeval layers. We used 210Pb to estimate radial growth rate of two specimens, and to establish that they were several centuries old. Bands were delaminated in KOH and analyzed for carbon and nitrogen stable isotopes. Carbon values ranged from -16.4??? to -15.7???; oldest specimen displayed the largest range in values. Nitrogen values ranged from 7.7??? to 8.6???. Two specimens from the same location and depth had similar 15N signatures, indicating good reproducibility between specimens. ?? 2006 Geological Society of America.

  19. Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement

    SciTech Connect

    Bern, Carleton R; Breit, George N; Healy, Richard W; Zupancic, John W; Hammack, Richard

    2013-02-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300–480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  20. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  1. Channel Extension in Deep-Water Distributive Systems

    NASA Astrophysics Data System (ADS)

    Hoyal, D. C.; Sheets, B. A.

    2007-12-01

    acceleration to Fr'-critical conditions and the formation of a depositional hydraulic jump, which perturbs sediment transport and ends channel extension. Similar morphodynamic length scale controls are observed in shallow water fan-delta experiments (e.g., SAFL DB-03) and in 2-D depositional cyclic steps. The experiments seem to explain two interesting observations from the earlier self-organized fan experiments and from real submarine fans. Firstly, the observation of 'perched' fills at the steep entrances to salt withdrawal minibasins (e.g., in the Gulf of Mexico) suggesting higher sedimentation rates (or inefficient sediment transport) on higher slopes (initially higher than at the slope break downstream). Secondly, strong progradation as the fan evolves and slope decreases in 'perched' fans suggests increasing flow efficiency on lower slopes, at least over a certain window of parameter space. Apparently deep water systems have a tendency to self-regulate even when flows differ significantly in initial density. The observed modulation to Fr'-critical flow appears to be an important control on length scales in deep- water distributive channel systems, potentially explaining strong deepwater progradation or 'delta-like' patterns that have remained paradoxical. Near critical conditions have been inferred from observations of many active submarine fans but the extent to which these results from conservative density currents apply to non-conservative and potentially 'ignitive' turbidity currents is the subject of ongoing investigation.

  2. Preparative scale and convenient synthesis of a water-soluble, deep cavitand.

    PubMed

    Mosca, Simone; Yu, Yang; Rebek, Julius

    2016-08-01

    Cavitands are established tools of supramolecular chemistry and molecular recognition, and they are finding increasing application in sensing and sequestration of physiologically relevant molecules in aqueous solution. The synthesis of a water-soluble, deep cavitand is described. The route comprises six (linear) steps from commercially available precursors, and it relies on the fourfold oligomeric cyclization reaction of resorcinol with 2,3-dihydrofuran that leads to the formation of a shallow resorcinarene framework; condensation with aromatic panels, which deepens the hydrophobic binding cavity; construction of rigid urea functionalities on the upper rim; and the introduction of the water-solubilizing methylimidazolium groups on the lower rim. Late intermediates of the synthesis can be used in the preparation of congener cavitands with different properties and applications, and a sample of such a synthetic procedure is included in this protocol. Emphasis is placed on scaled-up reactions and on purification procedures that afford materials in high yield and avoid chromatographic purification. This protocol provides improvements over previously described procedures, and it enables the preparation of sizable amounts of deep cavitands: 7 g of a water-soluble cavitand can be prepared from resorcinol in 13 working days. PMID:27388554

  3. Floating production system for deep waters, marginal fields

    SciTech Connect

    Not Available

    1984-06-01

    Concrete platform expertise developed by Norwegian Contractors has been applied to a floating production concept thought to offer considerable potential for marginal and deep-water oil fields. The design is based on a multicell Monotower solution and represents the outcome of studies reaching back to 1978. This work has focused chiefly on devising a production system for Gulf's gas/condensate discovery in 380 m water on Norwegian North Sea Block 35/8. Components covered by the conceptual design study include the catenary anchored concrete floater with condensate storage, subsea and riser systems for high-pressure gas production and topside facilities for gas and condensate treatment. A system also has been developed for periodic direct loading of condensate into a shuttle tanker, which is allowed to weathervane through 360/sup 0/ around the platform. Claimed to offer better motion characteristics than a conventional semisubmersible, the weight-stable platform comprises a series of cylindrical columns arranged in a circle, an inner ring of moonpool cells and a cantilevered base for storage.

  4. On the synoptic hydrography of intermediate and deep water masses in the Iceland Basin

    NASA Astrophysics Data System (ADS)

    Van Aken, H. M.; De Boer, C. J.

    1995-02-01

    The hydrography of intermediate deep water masses in the Iceland Basin is studied from quasi-synoptic surveys carried out in 1990 and 1991. The general water mass structure was identical for both years. The interaction and mixing of the different water types present in the basin is reviewed by means of property-property plots, vertical tracer sections and isopycnal analyses. It appears that overflow waters from the Norwegian Sea are modified in successive stages during their descent into the deep Iceland Basin. They mix with Sub-Polar Mode Water at short distances from the sills in the Faroe Bank Channel and on the Iceland-Faroe Ridge, thereby forming Iceland-Scotland Overflow Water. This water type entrains Labrador Sea water during the descent into the deep Iceland Basin, where Iceland-Scotland Overflow Water is further modified mainly by diapycnal mixing with overlying Lower Deep Water, which contains a large fraction of Antarctic Bottom Water. At intermediate levels Labrador Sea Water and Intermediate Water appear to mix laterally with a slope water mass flowing along the Icelandic and Reykjanes slopes. This slope water is formed by the direct mixing of Iceland-Scotland Overflow Water with Sub-Polar Mode Water and differs from the water mass, encountered in the central Iceland Basin. The intermediate and deep circulation in the Iceland Basin has a cyclonic character with smaller-scale variations due to topographic steering along ridges on the Icelandic slope.

  5. 48. AUTOMATIC WATER CONTROL MOTOR DRIVE FOR NEEDLES CONSTRUCTION DETAILS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. AUTOMATIC WATER CONTROL MOTOR DRIVE FOR NEEDLES CONSTRUCTION DETAILS, SANTA ANA RIVER NO. 2, JAN. 24, 1977. SCE drawing no. 455667-0. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  6. Source and transport of human enteric viruses in deep municipal water supply wells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. Over the past several years, repeated detection of enteric viruses in water from deep wells in south-central Wisconsin, shows that viruses can be significant groundwater contaminants ...

  7. 75 FR 34929 - Safety Zones: Neptune Deep Water Port, Atlantic Ocean, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones: Neptune Deep Water Port, Atlantic Ocean... comment at the Web site http://www.regulations.gov . These safety zones are needed pending implementation... Deep Water Port, Atlantic Ocean, Boston, MA; Final Rule (USCG-2009-0589), to protect vessels from...

  8. Halogenated persistent organic pollutants in deep water fish from waters to the west of Scotland.

    PubMed

    Webster, Lynda; Walsham, Pam; Russell, Marie; Hussy, Ines; Neat, Francis; Dalgarno, Eric; Packer, Gill; Scurfield, Judith A; Moffat, Colin F

    2011-04-01

    Halogenated persistent organic pollutants [polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)] along with total lipid, were measured in the liver and muscle of three species of deep water fish (black scabbard, black dogfish (liver only) and roundnose grenadier) collected from the Rockall fishing area, to the west of Scotland, between 2006 and 2008. Both contaminant groups were detected in the muscle and liver, with concentrations of PCBs being higher than PBDEs. There were no significant differences in the PCB or PBDE concentrations between the three species, or different sampling locations in the Rockall fishing area. PCB concentrations (ΣICES (International Council for the Exploration of the Sea)7 PCBs) greater than 500 μg kg(-1) lipid weight were found in 26 of the 106 liver samples. PCB concentrations were compared to OSPAR assessment criteria, concentrations were above background but below Environmental Assessment Criteria. Estimated Toxic Equivalent (TEQ) concentrations, calculated using published models, in the fish muscle and liver indicated that consumption of deep water fish is unlikely to represent a risk to human health. The high squalene content in some of the black dogfish liver necessitated an additional clean-up step, involving gel permeation chromatography, when analyzing for PBDEs. Concentrations of PBDEs were low with many congeners being below detection limits, particularly in the muscle. There are currently no assessment criteria available for PBDEs. Furthermore, there is only very limited data on PBDEs in deep water fish. However, the concentrations observed in this study were similar to the concentrations recently reported in Mediterranean deep water fish. PMID:21421255

  9. The intensification of deep-water mass changes in the deep Atlantic Ocean throughout the Mid-Pleistocene climate transition

    NASA Astrophysics Data System (ADS)

    Poirier, R. K.; Billups, K.

    2012-12-01

    We examine the deep-water hydrography at Ocean Drilling Project (ODP) Site 1063 (subtropical North Atlantic, ~4600 meter water depth) using high-resolution benthic stable isotope (δ18O, δ13C) and grain size (% coarse, % Sortable Silt - SS, SS mean diameter) analyses from ~490 to 740 ka. The benthic foraminiferal δ13C record from Site 1063 provides a proxy for changes in the relative flux of lower North Atlantic Deep Water (NADW) through time. This record will refine the timing of increases in the formation of the densest components of NADW on the orbital and millennial-scale. We explore whether or not grain size analyses provide a proxy for changes in the relative velocity of the deep current. The new stable isotope data from Site 1063, when combined with the records of Poli et al. (2000), Ferretti et al. (2005), and Billups et al. (2011), tuned to the global benthic isotope stack (LR05) of Liesicki and Raymo (2004), provides a complete deep water record spanning Marine Isotope Stage (MIS) 25 to MIS 8 (~1020 to ~240 ka). Compiling published records from 16 additional sites, we use the Ocean Data View (ODV) program (Schlitzer, 2012) to map deep-water mass distributions through time. Results reveal an increasing distribution and influence of the NADW in relation to the Antarctic Bottom Water mass within interglacial periods beginning at MIS 15 continuing though the end of the Site 1063 record within MIS 9. Preliminary grain size analyses over a short interval of time reveal regular high frequency variations on the millennial scale. We anticipate having complete, high-resolution stable isotope and grain size records to discuss the hydrographic changes within the MIS 16/15 glacial/interglacial transition, as well as throughout the Mid-Pleistocene transition (MPT).

  10. Deuterium in interstitial water from deep-sea cores

    USGS Publications Warehouse

    Friedman, I.; Hardcastle, K.

    1988-01-01

    As part of the Joint Oceanographic Institutions Deep Earth Sampling project, the interstitial waters of cores from 69 holes were sampled for deuterium analysis to examine changes in the deuterium content of the oceans with time. Changes in the abundance of deuterium can be related to changes in the amount of ice stored in continental glaciers, inasmuch as precipitation in the form of snow is highly depleted in deuterium compared with the oceans. Many of the cores show a change in isotopic composition of samples from early to late Miocene that can be ascribed to the buildup of the Antarctic ice sheets. After correcting for the role of diffusion in reducing the isotopic contrast between samples from a single core, we estimate an incrase of 10 per mil (???) ??D (corresponding to a ??18O change of about 1.2???) between the early and late Miocene. A similar analysis of Pleistocene to Holocene changes indicates a ??D rise of 8??? during the time of maximum continental ice, which corresponds to a ??18O increase of about 1.0???. On the basis of limited data, we find no ??D change in the oceans from Cretaceous to Miocene. -from Authors

  11. Deep-water hydrocarbon potential of Georges Bank Trough

    SciTech Connect

    Levie, D.S. Jr.

    1985-02-01

    Characterization of the petroleum potential for Georges Bank Trough has been based primarily on limited organic geochemical data that indicate the area of recent drilling activity behind the paleoshelf edge to be poor in organic carbon and C/sub 15/ + extract values, with predominantly terrestrial kerogen types. Maturation data also suggest an inadequate thermal history for hydrocarbon generation in the area. It is possible that the effects of heat flow from the New England Seamount Chain may contribute to hydrocarbon generation in the Georges Bank Trough - a relationship that may also exist between the Newfoundland Seamount Chain and the Hibernia area of the Grand Banks. Also, comparisons can be drawn between the Atlantic Fracture Zone bordering the Georges Bank Trough and the Romanche-St. Paul Fracture Zone off the Ivory Coast. In the latter region, restricted anoxic environments with sediments rich in marine kerogen types have been identified, as have both structural and stratigraphic trapping mechanisms. Within this rhombochasm configuration, reservoir lithologies of sandstone and carbonate turbidites, fractured deep-water chalks, and reefal limestones should occur. The relationships of seamount to fracture zone, as applied to the rhombochasm model for the Georges Bank Trough, should enhance the hydrocarbon potential of the lower Mesozoic sediments seaward of the paleoshelf edge and thus classify this area as a future major hydrocarbon province.

  12. Climatically induced sedimentary cycles in Pliocene deep-water carbonates

    SciTech Connect

    Gardulski, A.F. )

    1991-03-01

    Two DSDP sites (86 and 94) on the Campeche ramp in the southern Gulf of Mexico penetrated more than 100 m of Pliocene pelagic ooze. The ooze is primarily carbonate, with a much smaller volcanic ash component than occurs in some Pleistocene sediments at these sites. Cores recovered from these holes display variations in carbonate mineralogy as well as total carbonate and sand abundances that are correlated with the oxygen isotope stratigraphy. Diagenetic loss of Mg-calcite is complete by the base of the Pleistocene, but aragonite, especially high-Sr aragonite forming algal needles that were transported off the shelf to the slope, persists through upper Pliocene cores. Variations in oxygen isotope ratios in planktonic foraminifera occur throughout the Pliocene, although the amplitude of those cycles is smaller than for the Pleistocene, with its more dramatic glacial-interglacial contrasts. As in overlying Pleistocene slope sediments, cooler intervals correspond with greater abundances of aragonite in the upper Pliocene section, reflecting a shift of the shallow, productive shelf seaward across the ramp surface during times of relatively low sea level. However, the aragonite abundances in the Pliocene are reduced on average compared to the Pleistocene. This difference is due in part to diagenetic loss, but also it likely reflects the overall higher sea level that apparently characterized Pliocene oceans, trapping more algal aragonite landward. Although sea level and climatic fluctuations were indeed less extreme in the Pliocene, they were still sufficient to generate sedimentary cycles in deep-water carbonates.

  13. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-08-12

    We are now entering the final stages of our ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342). We have now developed several techniques to help distinguish economic hydrocarbon deposits from false ''Fizz'' gas signatures. These methods include using the proper in situ rock and fluid properties, evaluating interference effects on data, and doing better constrained inversions for saturations. We are testing these techniques now on seismic data from several locations in the Gulf of Mexico. In addition, we are examining the use of seismic attenuation as indicated by frequency shifts below potential reservoirs. During this quarter we have: Began our evaluation of our latest data set over the Neptune Field; Developed software for computing composite reflection coefficients; Designed and implemented stochastic turbidite reservoir models; Produced software & work flow to improve frequency-dependent AVO analysis; Developed improved AVO analysis for data with low signal-to-noise ratio; and Examined feasibility of detecting fizz gas using frequency attenuation. Our focus on technology transfer continues, both by generating numerous presentations for the upcoming SEG annual meeting, and by beginning our planning for our next DHI minisymposium next spring.

  14. Deep-water anoxygenic photosythesis in a ferruginous chemocline.

    PubMed

    Crowe, S A; Maresca, J A; Jones, C; Sturm, A; Henny, C; Fowle, D A; Cox, R P; Delong, E F; Canfield, D E

    2014-07-01

    Ferruginous Lake Matano, Indonesia hosts one of the deepest anoxygenic photosynthetic communities on Earth. This community is dominated by low-light adapted, BChl e-synthesizing green sulfur bacteria (GSB), which comprise ~25% of the microbial community immediately below the oxic-anoxic boundary (OAB; 115-120 m in 2010). The size of this community is dependent on the mixing regime within the lake and the depth of the OAB-at ~117 m, the GSB live near their low-light limit. Slow growth and C-fixation rates suggest that the Lake Matano GSB can be supported by sulfide even though it only accumulates to scarcely detectable (low μm to nm) concentrations. A model laboratory strain (Chlorobaculum tepidum) is indeed able to access HS- for oxidation at nm concentrations. Furthermore, the GSB in Lake Matano possess a full complement of S-oxidizing genes. Together, this physiological and genetic information suggests that deep-water GSB can be supported by a S-cycle, even under ferruginous conditions. The constraints we place on the metabolic capacity and physiology of GSB have important geobiological implications. Biomarkers diagnostic of GSB would be a good proxy for anoxic conditions but could not discriminate between euxinic and ferruginous states, and though GSB biomarkers could indicate a substantial GSB community, such a community may exist with very little metabolic activity. The light requirements of GSB indicate that at light levels comparable to those in the OAB of Lake Matano or the Black Sea, GSB would have contributed little to global ocean primary production, nutrient cycling, and banded iron formation (BIF) deposition in the Precambrian. Before the proliferation of oxygenic photosynthesis, shallower OABs and lower light absorption in the ocean's surface waters would have permitted greater light availability to GSB, potentially leading to a greater role for GSB in global biogeochemical cycles. PMID:24923179

  15. Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods

    NASA Astrophysics Data System (ADS)

    Molina-Kescher, Mario; Frank, Martin; Tapia, Raúl; Ronge, Thomas A.; Nürnberg, Dirk; Tiedemann, Ralf

    2016-06-01

    The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for ɛNd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic δ13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.

  16. A possible 20th-century slowdown of southern ocean deep water formation

    PubMed

    Broecker; Sutherland; Peng

    1999-11-01

    Chlorofluorocarbon-11 inventories for the deep Southern Ocean appear to confirm physical oceanographic and geochemical studies in the Southern Ocean, which suggest that no more than 5 x 10(6) cubic meters per second of ventilated deep water is currently being produced. This result conflicts with conclusions based on the distributions of the carbon-14/carbon ratio and a quasi-conservative property, PO(4)(*), in the deep sea, which seem to require an average of about 15 x 10(6) cubic meters per second of Southern Ocean deep ventilation over about the past 800 years. A major reduction in Southern Ocean deep water production during the 20th century (from high rates during the Little Ice Age) may explain this apparent discordance. If this is true, a seesawing of deep water production between the northern Atlantic and Southern oceans may lie at the heart of the 1500-year ice-rafting cycle. PMID:10550046

  17. Upwelling at the ice edge - A mechanism for deep water formation?

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1987-01-01

    This study sets forward a hypothesis which anticipates deep water formation due to ice edge upwelling. The upwelling can raise thermocline waters (the lower Arctic Intermediate Water) to the surface or near it, where the water is exposed to cooling, evaporation, mixing, and oxygenation. Thus, upwelling can act as a preconditioning mechanism for deep convection. The conjecture would also explain the salinity range of the Greenland Sea Deep Water if the upper and lower Arctic Intermediate Water masses are mixed so that the latter has at least an 80-percent contribution. It is also anticipated that the convection events induced by ice edge upwelling during winter season could give rise to a new deep water annual production rate consistent with observations.

  18. Investigation and Construction of a Thermosyphoning Solar Hot Water System

    ERIC Educational Resources Information Center

    Johnson, Harvey

    1978-01-01

    Describes how a thermosyphoning solar water heater capable of heating 110 kilogram of water to 80 degree Celsius and maintaining this temperature for 24 hours was constructed by four students in the fifth form of Sekolah Date Abdul Razak, Seremban, Malaysia in 1976. (HM)

  19. New records of Primnoidae (Cnidaria: Octocorallia) in Brazilian deep waters

    NASA Astrophysics Data System (ADS)

    Arantes, Renata C. M.; Loiola, Livia L.

    2014-01-01

    The knowledge of octocorals occurring in Brazilian deep waters is still lacking, with only a few studies conducted so far, most of which focused on large-scale marine habitats characterization. Primnoidae are common and characteristic of seamounts and deepwater coral banks, often providing habitat for other marine species. Although primnoids occur in all ocean basins, only Primnoella and Plumarella species were recorded along the Brazilian coast before this study. Primnoid specimens were obtained through dredging and remotely operated vehicles (ROV) sampling, collected by research projects conducted off the Brazilian coast, between 15 and 34°S. Taxonomic assessment resulted in 5 new records of Primnoidae genera in Brazil: Calyptrophora, Candidella, Dasystenella, Narella and Thouarella. The occurrences of Narella-off Salvador and Vitória, and in Campos Basin (935-1700 m), and Calyptrophora-in Campos Basin (1059-1152 m), are herein reported for the first time in the South Atlantic. Calyptrophora microdentata was previously known in Lesser Antilles, New England and Corner Rise Seamounts, between 686 and 2310 m. Candidella imbricata geographical distribution includes Western and Eastern Atlantic (514-2063 m and 815-2139 m, respectively), being registered herein in Campos Basin, between 1059 and 1605 m. Dasystenella acanthina collected off Rio Grande do Sul state (810 m) and occurs also off Argentina and Southern Ocean, between 150 and 5087 m. Plumarella diadema, which type locality is off São Sebastião, Brazil, has its geographical range extended northwards, occurring in Campos Basin (650 m). Thouarella koellikeri previously known for Patagonia and Antartic Peninsula, is registered for the off Brazil for the first time, in Campos Basin and off São Sebastião (609-659 m). There is a lot of work yet to be done in terms of taxonomic knowledge of Brazilian deep-sea octocorals. Research projects focusing on the investigations, including ROV sampling, of other

  20. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  1. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  2. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  3. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  4. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  5. Construction Site Storm Water Sampling California's New Construction Sampling and Analysis Requirements

    SciTech Connect

    Forrest, C.L.; Mathews, S.

    2002-04-02

    The California State Water Resources Control Board (State Board) originally issued a National Pollutant Discharge System (NPDES) permit for storm water discharges associated with construction activities in 1992. This NPDES permit was issued as a general permit, applicable throughout the state (with certain exceptions). The general construction permit was made site-specific by a discharger-developed Storm Water Pollution Prevention Plan (SWPPP). As with most NPDES construction storm water permits, monitoring requirements were limited to inspections. Sampling and analysis of discharges was not specifically required, but a Regional Water Quality Control Board (Regional Board) could require additional monitoring. In 1999, the State -Board revised and reissued its construction general permit. While the 1999 permit significantly enhanced the erosion and sediment control descriptions and requirements, and expanded the inspection program, sampling and analysis was still not required. Environmental advocacy groups took exception to the absence of sampling requirements and sought relief in court to add sampling and analysis. In 2001, the State Board in response to the court order adopted a resolution requiring sampling and analysis of construction site runoff under two conditions. Turbidity and/or sediment sampling is required when construction site runoff enters water bodies determined to impaired for sediment or turbidity. Sampling for non-visible pollutants is required when construction operations expose materials to storm water. Sampling construction site runoff is relatively new concept for NPDES permits. Only a few permits throughout the country require sampling and analysis for sediment-related pollutants, and California is one of the only permitting entities to require sampling for non-visible pollutants in construction site runoff. The added complexity of sampling runoff requires construction operators and erosion and sediment control professionals to expand their

  6. Assessment of Deep Water Archaeological Sites with Autonomous Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Foley, B. P.; Ferrini, V. L.; Bingham, B. S.; Camilli, R.; Delaporta, K.; Kourkoumelis, D.

    2006-12-01

    Deep submergence vehicle technology has recently enabled significant advances in the rapid assessment of marine archaeological sites. Precisely navigated vehicles equipped with high resolution digital cameras and high-frequency multibeam sonar systems can be used to assess not only the distribution of wreckage, but to quantify the size, distribution, and condition of individual artifacts contained within the wreck. This information is critical to deriving new knowledge of ancient civilizations based on shipwreck sites. The Woods Hole Oceanographic Institution in collaboration with the Hellenic Ministry of Culture and the Hellenic Centre for Marine Research is conducting an ongoing program to document ancient shipwrecks and refine underwater archaeological survey methods. The first project took place in 2005 near the Aegean island, Chios, when the team deployed an Autonomous Underwater Vehicle to investigate a 4th century BC wreck in 70 m water depth. Multiple low speed (20 cm/sec) digital imaging and acoustic mapping surveys were conducted at an altitude of 2.5 m yielded 200+% coverage of the wreck. Multibeam data provide centimeter resolution of the site's bathymetry, and a subset of 6000+ overlapping digital images were used to generate a continuous photomosaic of the entire wreck at sub-centimeter resolution. The full survey of the 20 m x 7 m wreck took approximately 18 hours. The second season in 2006 resulted in the survey of a historic period warship. The combination of digital imagery and sonar data reveal information about these wrecks that would otherwise be difficult to quantify. For instance, the orientation, location, number, and preservation state of amphora cargo elements observed in high-resolution imagery can be used to determine the vessel's origin and order of lading. Additionally, first-order archaeological questions can be answered: age of the wreck, cultural origin of the vessel, dimensions of the site, computation of three-dimensional cargo

  7. Benthic foraminiferal distribution in deep-water periplatform carbonate environments

    SciTech Connect

    Martin, R.E.

    1987-05-01

    In contrast to clastic depositional environments, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 sediment samples (piston core top and grab) collected along two transverses approximately 25 km apart across the northern (windward) margin of Little Bahama Bank at depths of 275 to 1135 m. Most species exhibit great variation in abundance with depth. However, Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators (Spearman's r > 0.91; p < 0.005), being most abundant at depths > 1000 m, and correspond to lower slope (> 900 m) periplatform aprons. Individual foraminiferal suborders (Miliolina, Rotaliina, Textulariina) show no consistent depth-related trends. However, certain operational taxonomic groups, such as reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are significant more abundant at depths < 300 m (95% C.I.: 2.6 +/- 2.2% and 6.9 +/- 2.7%, respectively) than at greater depths (95% C.I.: 0.3 +/- 0.2% and 2.0 +/- 0.8%; Mann-Whitney U, p < 0.01), reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines (i.e., suborder Miliolina minus peneroplids and soritids) and rosalinids and discorbids (suborder Rotaliina) are also more abundant at depths < 300 m (95% C.I.: 27.5 +/- 7.4% and 32.6 +/- 8.5%, respectively) than at greater depths (95% C.I.: 10.0 +/- 3.9% and 1.5 +/- 1.6%; Mann-Whitney U, p < 0.01) and are winnowed from the carbonate platform. Assemblages exhibit greatest variation in diversity (species number, s; Shannon-Weaver, H'; evenness, J') at depths > 900 m; indices for shallower assemblages tend to be grouped more tightly at relatively high values.

  8. 76 FR 39790 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Catcher...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... GOA (76 FR 11111, March 1, 2011). In accordance with Sec. 679.82(d)(9)(i)(B), the Administrator... comprise the deep-water species fishery for the sideboard limit include deep-water flatfish, rex sole,...

  9. 75 FR 38937 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Catcher...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... GOA (75 FR 11749, March 12, 2010). In accordance with Sec. 679.82(d)(9)(i)(B), the Administrator... comprise the deep-water species fishery for the sideboard limit include deep-water flatfish, rex sole,...

  10. Deep-water riser fatigue monitoring systems based on acoustic telemetry

    NASA Astrophysics Data System (ADS)

    Li, Baojun; Wang, Haiyan; Shen, Xiaohong; Yan, Yongsheng; Yang, Fuzhou; Hua, Fei

    2014-12-01

    Marine risers play a key role in the deep and ultra-deep water oil and gas production. The vortex-induced vibration (VIV) of marine risers constitutes an important problem in deep water oil exploration and production. VIV will result in high rates of structural failure of marine riser due to fatigue damage accumulation and diminishes the riser fatigue life. In-service monitoring or full scale testing is essential to improve our understanding of VIV response and enhance our ability to predict fatigue damage. One marine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed to monitor deep and ultra-deep water risers' fatigue and failure that can diminish the riser fatigue life and lead to economic losses and eco-catastrophe. Many breakthroughs and innovation have been achieved in the process of developing an engineering prototype machine. Sea trials were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea. The inclination monitoring results show that the marine riser fatigue acoustic telemetry scheme is feasible and reliable and the engineering prototype machine meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained in the sea trial which provide much technical support for optimization in the engineering prototype machine in the future.

  11. Morphological divergence between three Arctic charr morphs - the significance of the deep-water environment.

    PubMed

    Skoglund, Sigrid; Siwertsson, Anna; Amundsen, Per-Arne; Knudsen, Rune

    2015-08-01

    Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow-, deep-water resource axis in a subarctic postglacial lake (Norway). The two deep-water (profundal) spawning morphs, a benthivore (PB-morph) and a piscivore (PP-morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep-water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small-sized PB-morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep-water sediments. The PP-morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO-morph) predominantly utilizes the shallow benthic-pelagic habitat and food resources. Compared to the deep-water morphs, the LO-morph had smaller head relative to body size. The LO-morph exhibited traits typical for both shallow-water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep-water habitat for the PB- and PP-morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep-water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep-water piscivore morph has to our knowledge not been described elsewhere. PMID:26357540

  12. Morphological divergence between three Arctic charr morphs – the significance of the deep-water environment

    PubMed Central

    Skoglund, Sigrid; Siwertsson, Anna; Amundsen, Per-Arne; Knudsen, Rune

    2015-01-01

    Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow-, deep-water resource axis in a subarctic postglacial lake (Norway). The two deep-water (profundal) spawning morphs, a benthivore (PB-morph) and a piscivore (PP-morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep-water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small-sized PB-morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep-water sediments. The PP-morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO-morph) predominantly utilizes the shallow benthic–pelagic habitat and food resources. Compared to the deep-water morphs, the LO-morph had smaller head relative to body size. The LO-morph exhibited traits typical for both shallow-water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep-water habitat for the PB- and PP-morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep-water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep-water piscivore morph has to our knowledge not been described elsewhere. PMID:26357540

  13. Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106

    USGS Publications Warehouse

    Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.

    1994-01-01

    Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.

  14. Near-surface mixing and pronounced deep-water stratification in a compartmentalised, human-disturbed atoll lagoon system

    NASA Astrophysics Data System (ADS)

    Gardner, J. P. A.; Garton, D. W.; Collen, J. D.

    2011-03-01

    Palmyra Atoll has four partially isolated lagoons up to 50 m in depth, each with complex and variable bottom topographies. Measurements of depth, temperature, salinity, turbidity and dissolved oxygen (DO) revealed a well-mixed shallow surface layer (0-10 m depth) and below that pronounced stratification of DO in the absence of a pycnocline. Turbidity increased in a step-like manner at ~25 m depth, at the oxycline. For all deep sections of the lagoon (>30 m), DO declined uniformly to 0% saturation. As determined from filtration, mass of particulates was independent of depth. Surface mixing and deep-water stratification are both stable at different temporal scales, including day versus night, daily, weekly and annually. We suggest that lagoon circulation is represented by a shallow, westward-moving surface layer of well-to-partially mixed water with high DO and low turbidity, underlain by a relatively static and temporally stable layer with low to zero DO and elevated turbidity. This is the first report of such conditions within a deep lagoon system, and only the second report of anoxic conditions in any such system. In deep-water, stable euxinic conditions reflect bottom topography, with dysoxic and anoxic water being constrained within silled basins. The occurrence and depth of large volumes of sediment-laden and dysoxic/anoxic water need to be considered in management proposals designed to increase water flow through the lagoon. These novel water column conditions most probably arose as a consequence of military construction work, consistent with published reports of profound changes to the atoll during 1940-1945. If so, they highlight the need to better understand the possible consequences of cutting channels and modification of lagoon flow at many atolls across the central Pacific Ocean.

  15. Impact of water mass mixing on the biogeochemistry and microbiology of the Northeast Atlantic Deep Water

    PubMed Central

    Reinthaler, Thomas; Salgado, Xosé Antón Álvarez; Álvarez, Marta; van Aken, Hendrik M.; Herndl, Gerhard J.

    2014-01-01

    The extent to which water mass mixing contributes to the biological activity of the dark ocean is essentially unknown. Using a multiparameter water mass analysis, we examined the impact of water mass mixing on the nutrient distribution and microbial activity of the Northeast Atlantic Deep Water (NEADW) along an 8000 km long transect extending from 62°N to 5°S. Mixing of four water types (WT) and basin scale mineralization from the site where the WT where defined to the study area explained up to 95% of the variability in the distribution of inorganic nutrients and apparent oxygen utilization. Mixing-corrected average O2:N:P mineralization ratios of 127(±11):13.0(±0.7):1 in the core of the NEADW suggested preferential utilization of phosphorus compounds while dissolved organic carbon mineralization contributed a maximum of 20% to the oxygen demand of the NEADW. In conjunction with the calculated average mineralization ratios, our results indicate a major contribution of particulate organic matter to the biological activity in the NEADW. The variability in prokaryotic abundance, high nucleic acid containing cells, and prokaryotic heterotrophic production in the NEADW was explained by large scale (64–79%) and local mineralization processes (21–36%), consistent with the idea that deep-water prokaryotic communities are controlled by substrate supply. Overall, our results suggest a major impact of mixing on the distribution of inorganic nutrients and a weaker influence on the dissolved organic matter pool supporting prokaryotic activity in the NEADW. PMID:24683294

  16. Impact of water mass mixing on the biogeochemistry and microbiology of the Northeast Atlantic Deep Water

    NASA Astrophysics Data System (ADS)

    Reinthaler, Thomas; Álvarez Salgado, Xosé Antón; Álvarez, Marta; Aken, Hendrik M.; Herndl, Gerhard J.

    2013-12-01

    The extent to which water mass mixing contributes to the biological activity of the dark ocean is essentially unknown. Using a multiparameter water mass analysis, we examined the impact of water mass mixing on the nutrient distribution and microbial activity of the Northeast Atlantic Deep Water (NEADW) along an 8000 km long transect extending from 62°N to 5°S. Mixing of four water types (WT) and basin scale mineralization from the site where the WT where defined to the study area explained up to 95% of the variability in the distribution of inorganic nutrients and apparent oxygen utilization. Mixing-corrected average O2:N:P mineralization ratios of 127(±11):13.0(±0.7):1 in the core of the NEADW suggested preferential utilization of phosphorus compounds while dissolved organic carbon mineralization contributed a maximum of 20% to the oxygen demand of the NEADW. In conjunction with the calculated average mineralization ratios, our results indicate a major contribution of particulate organic matter to the biological activity in the NEADW. The variability in prokaryotic abundance, high nucleic acid containing cells, and prokaryotic heterotrophic production in the NEADW was explained by large scale (64-79%) and local mineralization processes (21-36%), consistent with the idea that deep-water prokaryotic communities are controlled by substrate supply. Overall, our results suggest a major impact of mixing on the distribution of inorganic nutrients and a weaker influence on the dissolved organic matter pool supporting prokaryotic activity in the NEADW.

  17. Effects of climate change on deep-water oxygen and winter mixing in a deep lake (Lake Geneva)

    NASA Astrophysics Data System (ADS)

    Schwefel, Robert; Alfred, Wüest; Damien, Bouffard

    2016-04-01

    Oxygen is the most important dissolved gas for lake ecosystems. Because low oxygen concentrations are an ongoing problem in many parts of the oceans and numerous lakes, oxygen depletion processes have been intensively studied over the last decades and were mainly attributed to high nutrient loads. Recently, climate-induced changes in stratification and mixing behavior were recognized as additional thread to hypolimnetic oxygen budgets in lakes and reservoirs [Matzinger et al., 2007; Zhang et al., 2015]. Observational data of Lake Geneva, a deep perialpine lake situated between France and Switzerland showed no decreasing trend in hypoxia over the last 43 years, despite an impressive reduction in nutrient input during this period. Instead, hypoxic conditions were predominantly controlled by deep mixing end of winter and in turn by winter temperatures. To test the sensitivity of Lake Geneva on future climate change and changes in water transparency, we simulated the hydrodynamics and temperature of Lake Geneva under varying conditions for atmospheric temperature and water clarity performed with the one-dimensional model SIMSTRAT [Goudsmit, 2002]. The results show, that the stratification in lakes is only weakly affected by changes in light absorption due to varying water quality. For conditions expected for the end of the century, a decrease in the annual mean deep convective mixing of up to 45 m is predicted. Also complete mixing events over the whole lake are less likely to occur. A change in the hypolimnetic oxygen concentration of up to 20% can thus be expected in the future. These results show, that changes in deep mixing have an equally strong impact as eutrophication on the deep-water oxygen development of oligomictic lakes and have to be considered in the prediction of the future development of lakes. References: Goudsmit, G. H., H. Burchard, F. Peeters, and A. Wüest (2002), Application of k-ɛ turbulence models to enclosed basins: The role of internal

  18. Unique deep-water ecosystems off the southeastern United States

    USGS Publications Warehouse

    Ross, Steve W.

    2007-01-01

    If nothing else, research in deep-sea environments teaches us how little we know about such important and productive habitats. The relatively recent discovery of hydrothermal-vent and cold-seep ecosystems illustrates this paucity of knowledge, and the subsequent explosion of research on these systems is a good example of the impact such concentrated efforts can have on marine sciences (see the March 2007 special issue of Oceanography on InterRidge, and Levin et al., 2007). The recent surge of interest in deep-sea corals is another example of how focused research on a particular subject can result in new perspectives on continental slope biotopes. Although deep-sea corals have been known for over 200 years, they were viewed as somewhat of a novelty, and research on them was sporadic, typically geologic, and usually only documented their occurrences (e.g., Stetson et al., 1962; Neumann et al., 1977; Paull et al., 2000).

  19. Ecogeochemistry potential in deep time biodiversity illustrated using a modern deep-water case study.

    PubMed

    Trueman, Clive N; Chung, Ming-Tsung; Shores, Diana

    2016-04-01

    The fossil record provides the only direct evidence of temporal trends in biodiversity over evolutionary timescales. Studies of biodiversity using the fossil record are, however, largely limited to discussions of taxonomic and/or morphological diversity. Behavioural and physiological traits that are likely to be under strong selection are largely obscured from the body fossil record. Similar problems exist in modern ecosystems where animals are difficult to access. In this review, we illustrate some of the common conceptual and methodological ground shared between those studying behavioural ecology in deep time and in inaccessible modern ecosystems. We discuss emerging ecogeochemical methods used to explore population connectivity and genetic drift, life-history traits and field metabolic rate and discuss some of the additional problems associated with applying these methods in deep time. PMID:26977063

  20. 29. Photocopy of microfiched construction drawing by Pelton Water Wheel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of microfiched construction drawing by Pelton Water Wheel Company, San Francisco, California, dated Feb. 8, 1934. (Microfiched drawing located at the Denver Service Center, #104/60154 - 3 of 18) 24' HAND OPERATED GATE VALVE - Yosemite Hydroelectric Power Plant, Highways 120 & 140, Yosemite Village, Mariposa County, CA

  1. 30. Photocopy of microfiched construction drawing by Pelton Water Wheel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of microfiched construction drawing by Pelton Water Wheel Company, San Francisco, California, dated 6-24-31. (Microfiched drawing located at the Denver Service Center, #104/60154 - 4 of 18) 0-3 & 0-5 GOVERNORS, CHART OF PIECE NUMBERS - Yosemite Hydroelectric Power Plant, Highways 120 & 140, Yosemite Village, Mariposa County, CA

  2. [The content of radon 222Rn in deep borehole water of the Pojezierze Mazurskie terrain].

    PubMed

    Pachocki, K A; Gorzkowski, B; Majle, T; Rózycki, Z

    1997-01-01

    Radon 222Rn in deep borehole water of Pojezierze Mazurskie region has been quantitative determined. The measurement were performed using the alpha liquid scintillation counting method. The water samples were examined from three voivodships: Elblag, Olsztyn and Suwałki. In some cases the concentrations of 222Rn in investigated water samples exceed 11 Bq/l. PMID:9273666

  3. Geochemical evidence for anoxic deep water in the Arabian Sea during the last glaciation

    SciTech Connect

    Sarkar, A.; Bhattacharya, S.K.; Sarin, M.M. )

    1993-03-01

    Various paleoceanographic studies have indicated that the deep ocean was probably depleted in dissolved oxygen during the last glacial period ([approximately]18 kyr B.P.; [delta][sup 18]O, stage 2) compared to present time. However, direct evidence of low oxygen content in the deep waters has been lacking. Here, the authors report geochemical evidence of near anoxic conditions in the deep Arabian Sea during the entire last glacial cycle ([delta][sup 18]O; stages 2, 3, and 4). Anoxia is inferred from the concomitant enrichment of organic carbon and authigenic uranium in the glacial sections of a core from the deep eastern Arabian Sea. The anoxic conditions during the last glacial period, probably caused by a change in deep water circulation, evidently enhanced preservation of organic matter and simultaneous removal of uranium from seawater. 57 refs., 3 figs., 2 tabs.

  4. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    NASA Technical Reports Server (NTRS)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  5. North Atlantic deep water in the south-western Indian Ocean

    NASA Astrophysics Data System (ADS)

    van Aken, Hendrik M.; Ridderinkhof, Herman; de Ruijter, Wilhelmus P. M.

    2004-06-01

    The circulation of deep water in the south-western Indian Ocean has been studied from hydrographic observations and current measurements, obtained during the Dutch-South African Agulhas Current Sources Experiment programme, and from similar public data from the World Ocean Circulation Experiment. The three major water masses involved are the saline North Atlantic deep water (NADW), its derivative in the Antarctic circumpolar current, lower circumpolar deep water (LCDW), and the aged variety of deep water, North Indian deep water (NIDW). Although bound by the shallow topography near Madagascar, about 2×10 6 m 3/s from the upper half of the NADW core appears to flow across the sill in the Mozambique Channel into the Somali Basin, while the remaining NADW flows east at about 45°S and is transformed to LCDW by lateral and diapycnal mixing. East of Madagascar the deep circulation is dominated by the southward flow of NIDW. Northward inflow of LCDW into the Indian Ocean therefore can take place only in the eastern half of the Indian Ocean, along the Southeast Indian Ridge and the Ninetyeast Ridge.

  6. Constraints on water cycling in a deep mountain valley from stable water isotope and sap flux measurements

    NASA Astrophysics Data System (ADS)

    Fiorella, R.; Poulsen, C. J.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    The stable isotopes of oxygen and hydrogen in water are unequally partitioned during phase changes, with environmental conditions controlling the degree of partitioning. As a result, the isotopic composition of water reflects the thermodynamic history of water parcels in the water cycle. Recent advances in cavity ringdown spectrometry allow for the continuous measurement of water vapor isotope compositions, and provide insight into the processes influencing the concentration of near-surface water vapor at high resolution. We used stable water isotopes to investigate the processes controlling water vapor cycling in a deep mountain valley in northwestern Wyoming. A Picarro L2120-i Cavity Ring-Down spectrometer was deployed to measure the isotopic composition of atmospheric water vapor at the University of Michigan Camp Davis Field Station near Jackson, WY for three consecutive summers (2012-2014) and during winter 2013. We also constructed a network of Granier-style sap flux probes to estimate the local transpiration flux from regionally dominant tree species in July 2014. A prominent diurnal cycle was observed during the summer that was mostly absent in the winter. Summer specific humidity, δD, δ18O, and sap flux all reach daily maximum values in the mid-to-late morning that we associate with the onset of transpiration. The mountain valley is capped by an inversion, which limits atmospheric mixing during the morning. After the breakup of the inversion, the atmospheric boundary layer develops quickly and results in decreases in near-surface specific humidity and δ18O. δD appears to be less affected following the inversion breakup, resulting in a strong diurnal cycle in d-excess. Specific humidity, δD, and δ18O all return to their morning values rapidly near sunset, marking the cessation of mixing and atmospheric stratification. This absence of this diurnal cycle in the winter is consistent with reduced transpiration and atmospheric mixing anticipated for the

  7. Reefs of the deep: the biology and geology of cold-water coral ecosystems.

    PubMed

    Roberts, J Murray; Wheeler, Andrew J; Freiwald, André

    2006-04-28

    Coral reefs are generally associated with shallow tropical seas; however, recent deep-ocean exploration using advanced acoustics and submersibles has revealed unexpectedly widespread and diverse coral ecosystems in deep waters on continental shelves, slopes, seamounts, and ridge systems around the world. Advances reviewed here include the use of corals as paleoclimatic archives and their biogeological functioning, biodiversity, and biogeography. Threats to these fragile, long-lived, and rich ecosystems are mounting: The impacts of deep-water trawling are already widespread, and effects of ocean acidification are potentially devastating. PMID:16645087

  8. Ground-water problems in highway construction and maintenance

    USGS Publications Warehouse

    Rasmussen, W.C.; Haigler, L.B.

    1953-01-01

    This report discusses the occurrence of ground water in relation to certain problems in highway construction and maintenance. These problems are: the subdrainage of roads; quicksand; the arrest of soil creep in road cuts; the construction of lower and larger culverts necessitated by the farm-drainage program; the prevention of failure of bridge abutments and retaining walls; and the water-cement ratio of sub-water-table concrete. Although the highway problems and suggested solutions are of general interest, they are considered with special reference to the State of Delaware, in relation to the geology of that State. The new technique of soil stabilization by electroosmosis is reviewed in the hope that it might find application here in road work and pile setting, field application by the Germans and Russians is reviewed.

  9. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    PubMed Central

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L.; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C.; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q.; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J.; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Motz, Holger; Neff, Max; Nezri, Emma nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E.; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G.; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J. M.; Stolarczyk, Thierry; Taiuti, Mauro G. F.; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts. PMID:23874425

  10. Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data

    PubMed Central

    Raupach, Michael J.; Mayer, Christoph; Malyutina, Marina; Wägele, Johann-Wolfgang

    2008-01-01

    The Asellota are a highly variable group of Isopoda with many species in freshwater and marine shallow-water environments. However, in the deep sea, they show their most impressive radiation with a broad range of astonishing morphological adaptations and bizarre body forms. Nevertheless, the evolution and phylogeny of the deep-sea Asellota are poorly known because of difficulties in scoring morphological characters. In this study, the molecular phylogeny of the Asellota is evaluated for 15 marine shallow-water species and 101 deep-sea species, using complete 18S and partial 28S rDNA gene sequences. Our molecular data support the monophyly of most deep-sea families and give evidence for a multiple colonization of the deep sea by at least four major lineages of asellote isopods. According to our molecular data, one of these lineages indicates an impressive radiation in the deep sea. Furthermore, the present study rejects the monophyly of the family Janiridae, a group of plesiomorphic shallow-water Asellota, and several shallow-water and deep-sea genera (Acanthaspidia, Ianthopsis, Haploniscus, Echinozone, Eurycope, Munnopsurus and Syneurycope). PMID:19033145

  11. Fuzzy pricing for urban water resources: model construction and application.

    PubMed

    Zhao, Ranhang; Chen, Shouyu

    2008-08-01

    A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP. PMID:17499421

  12. Moderation of Neogene Deep-Water Overflow at the Greenland-Scotland Ridge by the Icelandic Plume

    NASA Astrophysics Data System (ADS)

    Henstock, T.; White, N. J.; Jones, S. M.; Murton, B. J.; Maclennan, J.

    2010-12-01

    A global analysis of Neogene δ13C records shows that overflow of Northern Component Water (NCW), the ancient precursor of North Atlantic Deep Water, varies with time. It is generally accepted that the Icelandic plume, which has dominated the tectonic evolution of the North Atlantic Realm since its inception ˜60 million years ago, has played a key role in moderating deep-water overflow. The V-shaped ridges, which straddle the mid-oceanic ridge system on either side of Iceland, are an important window into transient convective circulation associated with this plume. Knowledge of the evolving pattern of convective circulation can be used to constrain vertical displacement of the Greenland-Scotland Ridge through time. Although some progress has been made in refining the variation of NCW with time, any link between overflow and convective circulation has relied upon vintage seismic reflection profiles acquired in the 1960s. In order to construct a more accurate chronology of plume activity through time, we have acquired a set of regional seismic reflection profiles along flowlines which traverse the Iceland and Irminger basins between 60° and 62° N. We used a single generator-injector airgun operating at 3,000 p.s.i. and a 2 km streamer with a group spacing of 12.5 m with an average fold of 20. The porcessed seismic images are excellent. The sediment-basement interface can be accurately mapped and fine details of the sedimentary cover are resolved. We have identified a series of V-shaped ridges and erected a chronology of plume activity on an astronomical timescale. This chronology correlates with the Neogene history of deep-water overflow and confirms that convective circulation of the mantle has played a significant role in moderating deep-water overflow. Our seismic profiles also cross the major contourites of the North Atlantic Ocean, notably the Gardar, Bjorn and Eirik Drifts. Excellent images of their detailed internal stratigraphy demonstrate that distinct

  13. Implications of Cometary Water: Deep Impact, Stardust and Hayabusa

    NASA Technical Reports Server (NTRS)

    Sheldon, Robert B.; Hoover, Richard B.

    2006-01-01

    Three recent in situ spacecraft missions have explored comets or asteroids, producing data in conflict with the standard comet paradigm, the Whipple Dirty Snowball Model (DSM). We have developed an alternative Wet Comet Model (WCM) which proposes that comets undergo an irreversible phase change to a wet comet when they enter within Mars orbit. The WCM may explain some of the observational discrepancies seen by Deep Impact, Stardust and Hayabusa. In particular, it accurately predicted Deep Impact observation of organics, biominerals, and meltwater temperatures. Predictions concerning Stardust s returned cometary dust particles have yet to be falsified, but if comets are largely composed of the silicates seen by Stardust, there may be a cometary explanation for Itokawa s low density rubble-pile observed by Hayabusa.

  14. First description of deep-water elasmobranch assemblages in the Exuma Sound, The Bahamas

    NASA Astrophysics Data System (ADS)

    Brooks, Edward J.; Brooks, Annabelle M. L.; Williams, Sean; Jordan, Lance K. B.; Abercrombie, Debra; Chapman, Demian D.; Howey-Jordan, Lucy A.; Grubbs, R. Dean

    2015-05-01

    Deep-sea chondrichthyans, like many deep-water fishes, are very poorly understood at the most fundamental biological, ecological and taxonomic levels. Our study represents the first ecological investigation of deep-water elasmobranch assemblages in The Bahamas, and the first assessment of species-specific resilience to capture for all of the species captured. Standardised deep-water longline surveys (n=69) were conducted September to December 2010 and 2011 between 472 m and 1024 m deep, resulting in the capture of 144 sharks from 8 different species. These included the Cuban dogfish, Squalus cubensis, the bigeye sixgill shark, Hexanchus nakamurai, the bluntnose sixgill shark, Hexanchus griseus, the smooth dogfish, Mustelus canis insularis, the roughskin dogfish, Centroscymnus owstoni, Springer's sawtail catshark, Galeus springeri and the false catshark, Pseudotriakis microdon. Preliminary genetic analysis indicated two or more species of gulper sharks, Centrophorus spp.; however, for the present study they were treated as a single species complex. Water depth and distance from the rocky structure of the Exuma Sound wall were inversely correlated with species richness, whereas seabed temperature was directly correlated with species richness. These variables also had a significant influence on the abundance and distribution of many species. Expanded depth ranges were established for S. cubensis and H. nakamurai, which, in the case of S. cubensis, is thought to be driven by thermal preferences. At-vessel mortality rates increased significantly with depth, and post-release mortality was thought to be high for some species, in part due to high post-release predation. This study highlights the importance of utilising strategic geographic locations that provide easy access to deep water, in combination with traditional expedition-based deep-ocean science, to accelerate the acquisition of fundamental ecological and biological insights into deep-sea elasmobranchs.

  15. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    USGS Publications Warehouse

    Pitt, William A., Jr.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  16. DEEP CREEK AND MUD CREEK, TWIN FALLS, IDAHO. WATER QUALITY STATUS REPORT, 1986

    EPA Science Inventory

    Deep Creek and Mud Creek are located in Twin Falls County near Buhl, Idaho (17040212). From April through October, these creeks convey irrigation drainage water from the western part of the Twin Falls irrigation tract to the Snake River. During 1986, water quality surveys were ...

  17. Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific

    PubMed Central

    de la Fuente, Maria; Skinner, Luke; Calvo, Eva; Pelejero, Carles; Cacho, Isabel

    2015-01-01

    Consistent evidence for a poorly ventilated deep Pacific Ocean that could have released its radiocarbon-depleted carbon stock to the atmosphere during the last deglaciation has long been sought. Such evidence remains lacking, in part due to a paucity of surface reservoir age reconstructions required for accurate deep-ocean ventilation age estimates. Here we combine new radiocarbon data from the Eastern Equatorial Pacific (EEP) with chronostratigraphic calendar age constraints to estimate shallow sub-surface reservoir age variability, and thus provide estimates of deep-ocean ventilation ages. Both shallow- and deep-water ventilation ages drop across the last deglaciation, consistent with similar reconstructions from the South Pacific and Southern Ocean. The observed regional fingerprint linking the Southern Ocean and the EEP is consistent with a dominant southern source for EEP thermocline waters and suggests relatively invariant ocean interior transport pathways but significantly reduced air–sea gas exchange in the glacial southern high latitudes. PMID:26137976

  18. Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    de La Fuente, Maria; Skinner, Luke; Calvo, Eva; Pelejero, Carles; Cacho, Isabel

    2015-07-01

    Consistent evidence for a poorly ventilated deep Pacific Ocean that could have released its radiocarbon-depleted carbon stock to the atmosphere during the last deglaciation has long been sought. Such evidence remains lacking, in part due to a paucity of surface reservoir age reconstructions required for accurate deep-ocean ventilation age estimates. Here we combine new radiocarbon data from the Eastern Equatorial Pacific (EEP) with chronostratigraphic calendar age constraints to estimate shallow sub-surface reservoir age variability, and thus provide estimates of deep-ocean ventilation ages. Both shallow- and deep-water ventilation ages drop across the last deglaciation, consistent with similar reconstructions from the South Pacific and Southern Ocean. The observed regional fingerprint linking the Southern Ocean and the EEP is consistent with a dominant southern source for EEP thermocline waters and suggests relatively invariant ocean interior transport pathways but significantly reduced air-sea gas exchange in the glacial southern high latitudes.

  19. Drilling, construction, caliper-log, and specific-conductance data for well 3-3406-12, Twin Bridge Road deep monitor well, Oahu, Hawaii

    USGS Publications Warehouse

    Presley, T.K.; Oki, D.S.

    1996-01-01

    The Twin Bridge Road deep monitor well (State well number 3-3406-12) was drilled about 2,000 feet northeast of Weed Circle in the town of Haleiwa. The well is on agricultural land. The well penetrates through the freshwater lens and into the freshwater-saltwater transition zone of the Waialua ground-water area to an elevation of -596 feet below mean sea level. Well-construction data, logs of drilling notes, geologic descriptions for the samples, caliper-log, and specific-conductance data are presented for the well. The well is one of 12 exploratory wells drilled in the north- central Oahu area between July 1993 and May 1994 in cooperation with the Honolulu Board of Water Supply.

  20. Drilling, construction, caliper-log, and specific-conductance data for well 3-3604-01, Kawailoa deep monitor well, Oahu, Hawaii

    USGS Publications Warehouse

    Presley, T.K.; Oki, D.S.

    1996-01-01

    The Kawailoa deep monitor well (State well number 3-3604-01) was drilled about 1.9 miles east- northeast of the town of Haleiwa. The well is on agricultural land in the Kawailoa ground-water area. The well penetrates through the freshwater lens and into the freshwater-saltwater transition zone to an elevation of -392 feet below mean sea level. Well-construction data, logs of drilling notes, geologic descriptions for the samples, specific-conductance and caliper-log data are presented for the well. The well is one of 12 exploratory wells drilled in the north-central Oahu area between July 1993 and May 1994 in cooperation with the Honolulu Board of Water Supply.

  1. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity.

    PubMed

    Graham, Michael H; Kinlan, Brian P; Druehl, Louis D; Garske, Lauren E; Banks, Stuart

    2007-10-16

    Classic marine ecological paradigms view kelp forests as inherently temperate-boreal phenomena replaced by coral reefs in tropical waters. These paradigms hinge on the notion that tropical surface waters are too warm and nutrient-depleted to support kelp productivity and survival. We present a synthetic oceanographic and ecophysiological model that accurately identifies all known kelp populations and, by using the same criteria, predicts the existence of >23,500 km(2) unexplored submerged (30- to 200-m depth) tropical kelp habitats. Predicted tropical kelp habitats were most probable in regions where bathymetry and upwelling resulted in mixed-layer shoaling above the depth of minimum annual irradiance dose for kelp survival. Using model predictions, we discovered extensive new deep-water Eisenia galapagensis populations in the Galápagos that increased in abundance with increasing depth to >60 m, complete with cold-water flora and fauna of temperate affinities. The predictability of deep-water kelp habitat and the discovery of expansive deep-water Galápagos kelp forests validate the extent of deep-water tropical kelp refugia, with potential implications for regional productivity and biodiversity, tropical food web ecology, and understanding of the resilience of tropical marine systems to climate change. PMID:17913882

  2. Improved water-cooled cyclone constructions in CFBs

    SciTech Connect

    Alliston, M.G.; Luomaharju, T.; Kokko, A.

    1999-07-01

    The construction of CFB boilers has advanced in comparison with early designs. One improvement has been the use of water or steam cooled cyclones, which allows the use of thin refractories and minimizes maintenance needs. Cooled cyclones are also tolerant of wide load variations when the main fuel is biologically based, and coal or some other fuel is used as a back-up. With uncooled cyclones, load changes with high volatile fuels can mean significant temperature transients in the refractory, due to post-combustion phenomena in the cyclone. Kvaerner's development of water-cooled cyclones for CFBs began in the early 1980s. The first boiler with this design was delivered in 1985 in Sweden. Since then, Kvaerner Pulping has delivered over twenty units with cooled cyclones, in capacity ranging from small units up to 400 MW{sub th}. Among these units, Kvaerner has developed unconventional solutions for CFBs, in order to simplify the constructions and to increase the reliability for different applications. The first of them was CYMIC{reg{underscore}sign}, which has its water-cooled cyclone built inside the boiler furnace. There are two commercial CYMIC boilers in operation and one in project stages. The largest CYMIC in operation is a 185 MW{sub th} industrial boiler burning various fuels. For even larger scale units Kvaerner developed the Integrated Cylindrical Cyclone and Loopseal (ICCL) assembly. One of these installations is in operation in USA, having steaming capacity of over 500 t/h. The design bases of these new solutions are quite different in comparison with conventional cyclones. Therefore, an important part of the development has been cold model testing and mathematical modeling of the cyclones. This paper reviews the state-of-the-art in water-cooled cyclone construction. The new solutions, their full-scale experience, and a comparison of the actual experience with the preliminary modeling work are introduced.

  3. Water Quality Benefits of Constructed Wetlands Integrated Within Agricultural Water Recycling Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetlands have been integrated within innovative agricultural water recycling systems, and these systems are now being evaluated at three demonstration sites located in the northwest Ohio portion of the Maumee River Basin (Defiance, Fulton, and Van Wert Counties). The water recycling syst...

  4. Enhanced Positive Water Vapor Feedback Associated with Tropical Deep Convection: New Evidence from Aura MLS

    NASA Technical Reports Server (NTRS)

    Su, Hui; Read, William G.; Jiang, Jonathan H.; Waters, Joe W.; Wu, Dong L.; Fetzer, Eric J.

    2006-01-01

    Recent simultaneous observations of upper tropospheric (UT) water vapor and cloud ice from the Microwave Limb Sounder (MLS) on the Aura satellite provide new evidence for tropical convective influence on UT water vapor and its associated greenhouse effect. The observations show that UT water vapor increases as cloud ice water content increases. They also show that, when sea surface temperature (SST) exceeds approx.300 K, UT cloud ice associated with tropical deep convection increases sharply with increasing SST. The moistening of the upper troposphere by deep convection leads to an enhanced positive water vapor feedback, about 3 times that implied solely by thermodynamics. Over tropical oceans when SST greater than approx.300 K, the 'convective UT water vapor feedback' inferred from the MLS observations contributes approximately 65% of the sensitivity of the clear-sky greenhouse parameter to SST.

  5. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  6. Seismic sequence stratigraphy of Tertiary sediments, offshore Sarawak deep-water area

    SciTech Connect

    Mohammad, A.M. )

    1994-07-01

    Tectonic processes and sea level changes are the main key factors that have strongly influenced clastic and carbonate sedimentations in the Sarawak deep-water area. A seismic sequence stratigraphy of Tertiary sediments was conducted in the area with the main objective of developing a workable genetic chronostratigraphic framework that defines the sequence and system tracts boundaries within which depositional systems and lithofacies can be identified, mapped and interpreted. This study has resulted in the identification of eight major depositional sequences that are bounded by regional unconformities and correlative conformities. These sequences can generally be grouped into four megasequences, based on the main tectonic events observed in the area. Three system tracts of a type-1, third-order sequence boundary were recognized in most of the sequences: lowstand, transgressive, and highstand systems tracts. The lowstand system tract includes basin-floor fans, slope fans, and lowstand prograding wedges. Paleoenvironmental distribution maps constructed for each of the sequences using seismic facies analysis and nearby well control suggest that the sequence intervals are predominantly transgressive units that have been intermittently interrupted by regressive pulses brought about by changes in eustatic sea level. The trend of paleocoastline observed during Oligocene to Miocene times changes from northwest-southeast orientation to a position roughly parallel to the present coastline. Seismic facies maps generated from late Oligocene to early Miocene indicate the depositional environment was coastal to coastal plain in the western and the middle part of the study area, becoming more marine toward the east and northeast.

  7. Alba field - middle Eocene deep-water channel in U. K. North Sea

    SciTech Connect

    Winter, S.R.; Bretthauer, H.H.; Mattingly, G.A.

    1989-03-01

    The Alba field is located in the Witch Ground graben between the Fladen Ground spur to the north and the Renee Ridge to the south, entirely in UKCS Block 16/26. In 1985, oil was discovered in the middle Eocene sands of the Horda formation at a depth of 6100 ft subsea. Twelve additional wells, including sidetracks, have been drilled appraise the discovery. This drilling indicates the Alba field is a stratigraphic trap covering an area of 3600 ac. The Alba sands represent a brief interruption in the hemipelagic sedimentation that dominated this part of the Witch Ground graben during the middle Eocene. Sediment was supplied intermittently from a shelf area to the northwest into a deep-water environment. Well correlations, seismic facies analysis, and core analysis indicate that these sands were deposited as part of a constructional channel/levee complex within a mud-rich, shelf-sourced submarine fan system. The cap and the updip and lateral seals to the reservoir are shale. The Alba reservoir is predominantly a homogeneous, fine-grained, unconsolidated sand. The average reservoir porosity is 33% and the average permeability is 2.8 darcys. Oil in place is estimated to be 1.1 billion bbl of 20/degrees/ API crude.

  8. Deep-water Circulation: Processes & Products (16-18 June 2010, Baiona): introduction and future challenges

    NASA Astrophysics Data System (ADS)

    Hernández-Molina, Francisco Javier; Stow, Dorrik A. V.; Llave, Estefanía; Rebesco, Michele; Ercilla, Gemma; van Rooij, David; Mena, Anxo; Vázquez, Juan-Tomás; Voelker, Antje H. L.

    2011-12-01

    Deep-water circulation is a critical part of the global conveyor belt that regulates Earth's climate. The bottom (contour)-current component of this circulation is of key significance in shaping the deep seafloor through erosion, transport, and deposition. As a result, there exists a high variety of large-scale erosional and depositional features (drifts) that together form more complex contourite depositional systems on continental slopes and rises as well as in ocean basins, generated by different water masses flowing at different depths and at different speeds either in the same or in opposite directions. Yet, the nature of these deep-water processes and the deposited contourites is still poorly understood in detail. Their ultimate decoding will undoubtedly yield information of fundamental importance to the earth and ocean sciences. The international congress Deep-water Circulation: Processes & Products was held from 16-18 June 2010 in Baiona, Spain, hosted by the University of Vigo. Volume 31(5/6) of Geo-Marine Letters is a special double issue containing 17 selected contributions from the congress, guest edited by F.J. Hernández-Molina, D.A.V. Stow, E. Llave, M. Rebesco, G. Ercilla, D. Van Rooij, A. Mena, J.-T. Vázquez and A.H.L. Voelker. The papers and discussions at the congress and the articles in this special issue provide a truly multidisciplinary perspective of interest to both academic and industrial participants, contributing to the advancement of knowledge on deep-water bottom circulation and related processes, as well as contourite sedimentation. The multidisciplinary contributions (including geomorphology, tectonics, stratigraphy, sedimentology, paleoceanography, physical oceanography, and deep-water ecology) have demonstrated that advances in paleoceanographic reconstructions and our understanding of the ocean's role in the global climate system depend largely on the feedbacks among disciplines. New insights into the link between the biota of

  9. Atlantic Ocean Circulation during the Latest Cretaceous and Early Paleogene: Progressive Deep Water Exchange

    NASA Astrophysics Data System (ADS)

    Batenburg, Sietske J.; Voigt, Silke; Friedrich, Oliver; Osborne, Ann; Frank, Martin

    2015-04-01

    The Atlantic deep ocean circulation in the Latest Cretaceous (75-66 Ma) was dominated by regional processes, as indicated by the presence of distinct deep water masses. Due to the opening of the Atlantic Ocean, its different sub-basins became progressively connected and a global mode of ocean circulation commenced in the early Paleogene, ~60 Ma. To understand the evolution of deep water formation and exchange, Nd-isotope data and δ13C stratigraphies are generated for a range of sites in the North and South Atlantic. These permit to identify different intermediate and deep-water masses, to recognize their potential source regions and to determine the exact timing of deep water connection. The carbonate-rich pelagic sediments of Site U1403 near Newfoundland can be astronomically tuned and correlated to the global δ13C framework. Relatively negative seawater ɛNd(t) signatures in the 67-62 Ma interval at Site U1403 of ~-10 are distinct from those recorded further south in the North Atlantic. Possible explanations could include elevated non-radiogenic weathering inputs from the North American craton. In the latest Maastrichtian, the Site U1403 ɛNd(t) record displays a short-term positive excursion before the K/Pg boundary (67-66 Ma) followed by a sudden drop to unradiogenic values at the boundary. Changes in ocean circulation might be related to climatic changes in the pre-extinction interval and the impact itself. The ɛNd(t) records at Sites 1267 and 525 at Walvis Ridge show that an early Maastrichtian excursion to highly radiogenic values reflects a brief interval at 72-70 Ma, related to a period of increased hot-spot volcanism. Concomitant measurements of ɛNd(t) values in three different archives, fish teeth, ferromanganese coatings of bulk sediments and of foraminifera, provide a test for the partial influence of detrital particles on the isotopic composition of coatings. The first data of Sites U1403, 1267 and 525 indicate the occurrence of a common deep-water

  10. Prokaryotic phylogenetic diversity of Hungarian deep subsurface geothermal well waters.

    PubMed

    Németh, Andrea; Szirányi, Barbara; Krett, Gergely; Janurik, Endre; Kosáros, Tünde; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    Geothermal wells characterized by thermal waters warmer than 30°C can be found in more than 65% of the area of Hungary. The examined thermal wells located nearby Szarvas are used for heating industrial and agricultural facilities because of their relatively high hydrocarbon content. The aim of this study was to reveal the prokaryotic community structure of the water of SZR18, K87 and SZR21 geothermal wells using molecular cloning methods and Denaturing Gradient Gel Electrophoresis (DGGE). Water samples from the outflow pipes were collected in 2012 and 2013. The phylogenetic distribution of archaeal molecular clones was very similar in each sample, the most abundant groups belonged to the genera Methanosaeta, Methanothermobacter and Thermofilum. In contrast, the distribution of bacterial molecular clones was very diverse. Many of them showed the closest sequence similarities to uncultured clone sequences from similar thermal environments. From the water of the SZR18 well, phylotypes closely related to genera Fictibacillus and Alicyclobacillus (Firmicutes) were only revealed, while the bacterial diversity of the K87 well water was much higher. Here, the members of the phyla Thermodesulfobacteria, Proteobacteria, Nitrospira, Chlorobi, OP1 and OPB7 were also detected besides Firmicutes. PMID:25261947

  11. Pacific-Atlantic Circumpolar Deep Water coupling during the last 500 ka

    NASA Astrophysics Data System (ADS)

    Ullermann, Johannes; Lamy, Frank; Ninnemann, Ulysses; Lembke-Jene, Lester; Gersonde, Rainer; Tiedemann, Ralf

    2016-06-01

    Investigating the interbasin deepwater exchange between the Pacific and Atlantic Oceans over glacial-interglacial climate cycles is important for understanding circum-Antarctic Southern Ocean circulation changes and their impact on the global Meridional Overturning Circulation. We use benthic foraminiferal δ13C records from the southern East Pacific Rise to characterize the δ13C composition of Circumpolar Deep Water in the South Pacific, prior to its transit through the Drake Passage into the South Atlantic. A comparison with published South Atlantic deepwater records from the northern Cape Basin suggests a continuous water mass exchange throughout the past 500 ka. Almost identical glacial-interglacial δ13C variations imply a common deepwater evolution in both basins suggesting persistent Circumpolar Deep Water exchange and homogenization. By contrast, deeper abyssal waters occupying the more southern Cape Basin and the southernmost South Atlantic have lower δ13C values during most, but not all, stadial periods. We conclude that these values represent the influence of a more southern water mass, perhaps Antarctic Bottom Water (AABW). During many interglacials and some glacial periods, the gradient between Circumpolar Deep Water and the deeper southern Cape Basin bottom water disappears suggesting either no presence of AABW or indistinguishable δ13C values of both water masses.

  12. Deep water dissolution in Marine Isotope Stage 3 from the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Huang, B.

    2015-12-01

    The production, transport, deposition, and dissolution of carbonate profoundly implicate the global carbon cycle affect the inventory and distribution of dissolved organic carbon (DIC) and alkalinity (ALK), which drive atmospheric CO2 change on glacial-interglacial timescale. the process may provide significant clues for improved understanding of the mechanisms that control the global climate system. In this study, we calculate and analyze the foraminiferal dissolution index (FDX) and the fragmentation ratios of planktonic foraminifera over 60-25 ka based on samples from 17924 and ODP 1144 in the northeastern South China Sea (SCS) to reconstruct the deep water carbonate dissolution during Marine Isotope Stage 3 (MIS 3). Result shows that the dissolution of carbonate increases gradually at 17924 but keeps stable at ODP 1144. The changes of FDX coincidence with that of fragmentation ratios at 17924 and ODP 1144 suggest both indexes can be used as reliable dissolving proxies of planktonic foraminifera. Comparing FDX and fragmentation ratios at both sites, we find the FDX and fragmentation ratios at 17924 are higher than those at 1144, indicating that carbonate dissolution is intenser in 17924 core during MIS 3. The increasing total percentage of both N. dutertrei and G. bulloides during MIS 3 reveals the rising primary productivity that may lead to deep water [CO32-] decrease. The slow down of thermohaline circulation may increase deep water residence time and accelerate carbonate dissolution. In addition, the covering of ice caps, iron supply and increased surface-water stratification also contribute to atmosphere CO2 depletion and [CO32-] decrease in deep water. In the meanwhile, regression result from colder temperature increases the input of ALK and DIC to the deep ocean and deepens the carbonate saturation depth, which makes the deep water [CO32-] rise. In ODP Site 1144, the decrease in [CO32-] caused by more CO2 restored in deep water is equal to the increase in

  13. Reduced deep soil water uptake through forest conversion to pasture in Amazonia

    SciTech Connect

    Jipp, P.H.; Nepstad, D.C. Woods Hole Research Center, MA )

    1993-06-01

    Forests of eastern Amazonia are being replaced by pastures and secondary forests. We measured soil water storage and flux in adjacent forest and pasture ecosystems using Time Domain Reflectometry sensors installed in the walls of deep (9-m) shafts. The forest withdrew 597+/-25 mm of soil water stored below 1 m depth during the 1991 dry season (Jun-Dec), 1.7 times more than the pasture. Uptake from the bottom of the forest soil profile continued even after rainfall resumed in early 1992. The hydrologic impacts of tropical deforestation may be most severe for evergreen forests with deep rooting zones in areas of seasonal drought.

  14. Water Recycling, Lower Mantle Slab Subduction, and Viscous Layering of the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Williams, Q.; McNamara, A.; Garnero, E.

    2005-12-01

    We explore the causes and possible consequences of a water/hydrogen-depleted layer in the lowermost ~1000 km of Earth`s mantle. At least three distinct, non-exclusive mechanisms exist that could generate such a layer: (1) descending melts could extract water from the deep mantle, and possibly sequester it within D``; (2) hydrogen could be stripped from deep mantle material during core formation, through formation of iron hydrides; and (3) the accreting planet could have nearly completely degassed, with the terrestrial water budget being accreted in a late hydrous veneer. In the latter two instances, the water budget of the mantle, and particularly the deep mantle, must entirely be generated by injection of water into the interior from the near surface. Our hypothesis is thus that the lower portion of Earth`s mantle might be (or have been) essentially dry, in contrast to the possible presence of 10's to 100's of ppm water in the overlying material. The principal geophysical effect of a water-depleted zone likely involves a marked increase in viscosity: for reference, such a decrease in water content produces about a 2-order of magnitude increase in the viscosity of upper mantle material. Fluid dynamic simulations show that a layer with a 2-order of magnitude viscosity increase in the bottom 1000 km of Earth`s mantle produces a substantial impediment to subduction, with subducted material laterally spreading out above this viscous layer. This behavior is compatible with tomographic images showing a lack of slab continuity into the deepest mantle, and the viscosity contrast thus produces a barrier to water ingress into the deep viscous layer, allowing it to remain anhydrous for extended time periods. Notably, the boundary between the viscous layer and overlying mantle and slab material undergoes substantial deflections, and because of the chemical similarity of the layers, should be seismically undetectable. Our results provide a straightforward mechanism through

  15. Deep-water longline fishing has reduced impact on Vulnerable Marine Ecosystems

    PubMed Central

    Pham, Christopher K.; Diogo, Hugo; Menezes, Gui; Porteiro, Filipe; Braga-Henriques, Andreia; Vandeperre, Frederic; Morato, Telmo

    2014-01-01

    Bottom trawl fishing threatens deep-sea ecosystems, modifying the seafloor morphology and its physical properties, with dramatic consequences on benthic communities. Therefore, the future of deep-sea fishing relies on alternative techniques that maintain the health of deep-sea ecosystems and tolerate appropriate human uses of the marine environment. In this study, we demonstrate that deep-sea bottom longline fishing has little impact on vulnerable marine ecosystems, reducing bycatch of cold-water corals and limiting additional damage to benthic communities. We found that slow-growing vulnerable species are still common in areas subject to more than 20 years of longlining activity and estimate that one deep-sea bottom trawl will have a similar impact to 296–1,719 longlines, depending on the morphological complexity of the impacted species. Given the pronounced differences in the magnitude of disturbances coupled with its selectivity and low fuel consumption, we suggest that regulated deep-sea longlining can be an alternative to deep-sea bottom trawling. PMID:24776718

  16. Deciduous and Evergreen Trees Rely on Deep Water Throughout the Year in a Subtropical Seasonal Forest

    NASA Astrophysics Data System (ADS)

    Ellsworth, P.

    2010-12-01

    In subtropical and tropical seasonal forests, trees have adapted to low shallow soil water availability during the dry season by modifying root density, rooting depth, and leaf phenology. Here we test the well known hypothesis that water uptake in deciduous trees is restricted to the shallow soil layer, which prevents them from sustaining transpiring leaves during the dry season. Evergreens, on the other hand, access perennially available deep water sources, allowing them to maintain their transpiring leaves during the dry season. To determine where in the soil profile deciduous and evergreen trees take up water, we used stable isotope analysis to measure water source use of two deciduous and three evergreen species for a period of 13 months. In addition, to test the possibility that leaflessness could alter the isotopic composition of stem water, we measured the isotopic variation in stem water caused by artificial defoliation of an evergreen species. Deciduous and evergreen trees took up water from the same depths in both the wet and dry seasons. Deciduous and evergreen trees used approximately 51% deep water (50-150cm) throughout the year, while soil from 0-20cm was the least important water source with 24 and 6% of water uptake for wet and dry seasons, respectively. Low use of shallow water (0-20cm) in the wet season was due to inconstant water availability. Though the top 20cm of soil is the location of most nutrients, the soil’s limited water availability requires plants to have access to a more reliable deep water source to meet both their dry and wet season transpirational demands. This apparent spatial uncoupling in water and nutrient uptake denotes separate resource allocation for nutrient and water acquisition. Deciduous trees showed isotopic enrichment of stem water compared to evergreen plants only during the period that deciduous trees were leafless. We explain this as isotopic enrichment of fixed pool of stem water by evaporation as our defoliation

  17. Method for the construction and use of carbon fiber multibarrel electrodes for deep brain recordings in the alert animal.

    PubMed

    Inagaki, Keiichiro; Heiney, Shane A; Blazquez, Pablo M

    2009-04-15

    Microiontophoresis of neuroactive substances during single unit recording in awake behaving animals can significantly advance our understanding of neural circuit function. Here, we present a detailed description of a method for constructing carbon fiber multibarrel electrodes suitable for delivering drugs while simultaneously recording single unit activity from deep structures, including brainstem nuclei and the cerebellum, in the awake behaving primate. We provide data that should aid in minimizing barrel resistance and the time required to fill long, thin multibarrel electrodes with solutions. We also show successful single unit recording from a variety of areas in the awake squirrel monkey central nervous system, including the vestibular nuclei, Interstitial Nucleus of Cajal, and the cerebellum. Our descriptions and data should be useful for investigators wishing to perform single unit recordings during microiontophoresis of neuroactive substances, particularly in deep structures of animals with chronically implanted recording chambers. PMID:19135083

  18. Clean subglacial access: prospects for future deep hot-water drilling

    PubMed Central

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  19. Clean subglacial access: prospects for future deep hot-water drilling.

    PubMed

    Makinson, Keith; Pearce, David; Hodgson, Dominic A; Bentley, Michael J; Smith, Andrew M; Tranter, Martyn; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John; Siegert, Martin J

    2016-01-28

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  20. Millennial-scale oscillations between sea ice and convective deep water formation

    NASA Astrophysics Data System (ADS)

    Saha, Raj

    2015-11-01

    During the last ice age there were several quasiperiodic abrupt warming events. The climatic effects of the so-called Dansgaard-Oeschger (D-O) events were felt globally, although the North Atlantic experienced the largest and most abrupt temperature anomalies. Similar but weaker oscillations also took place during the interglacial period. This paper proposes an auto-oscillatory mechanism between sea ice and convective deep water formation in the North Atlantic as the source of the persistent cycles. A simple dynamical model is constructed by coupling and slightly modifying two existing models of ocean circulation and sea ice. The model exhibits mixed mode oscillations, consisting of decadal-scale small-amplitude oscillations and a large-amplitude relaxation fluctuation. The decadal oscillations occur due to the insulating effect of sea ice and leads to periodic ventilation of heat from the polar ocean. Gradually, an instability builds up in the polar column and results in an abrupt initiation of convection and polar warming. The unstable convective state relaxes back to the small-amplitude oscillations from where the process repeats in a self-sustained manner. Freshwater pulses mimicking Heinrich events cause the oscillations to be grouped into packets of progressively weaker fluctuations, as observed in proxy records. Modulation of this stable oscillation mechanism by freshwater and insolation variations could account for the distribution and pacing of D-O and Bond events. Physical aspects of the system such as sea ice extent and oceanic advective flow rates could determine the characteristic 1500 year time scale of D-O events. The model results with respect to the structure of the water column in the Nordic seas during stadial and interstadial phases are in agreement with paleoproxy observations.

  1. Evidence for the bioerosion of deep-water corals by echinoids in the Northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Stevenson, Angela; Rocha, Carlos

    2013-01-01

    In situ video observations of echinoids interacting with deep-sea coral are common in the deep-sea, but paradoxically the deep-sea literature is devoid of reports of bioerosion by extant echinoids. Here we present evidence of contemporary bioerosion of cold-water coral by four species of deep-sea echinoids, Gracilechinus elegans, Gracilechinus alexandri, Cidaris cidaris, and Araeosoma fenestratum, showing that they actively predate on the living framework of reef building corals, Lophelia pertusa and Madrepora oculata, in the NE Atlantic. Echinoid specimens were collected in six canyons located in the Bay of Biscay, France and two canyons on the north side of the Porcupine Bank and Goban Spur, Ireland. A total of 44 live specimens from the four taxa (9 of G. elegans, 4 of G. alexandri, 21 of C. cidaris and 10 of A. fenestratum) showed recent ingestion of the coral infrastructure. Upon dissection, live coral skeleton was observed encased in a thick mucus layer within the gastrointestinal tract of G. elegans and G. alexandri while both live and dead coral fragments were found in C. cidaris and A. fenestratum. Echinoid bioerosion limits the growth of shallow-water reefs. Our observations suggest that echinoids may also play an important role in the ecology of deep-water coral reefs.

  2. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    PubMed Central

    Bougouffa, S.; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Z.; Al-Suwailem, A.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools. PMID:23542623

  3. Performance of constructed wetland system for public water supply.

    PubMed

    Elias, J M; Salati Filho, E; Salati, E

    2001-01-01

    The project is being conducted in the town of Analândia, São Paulo, Brazil. The constructed wetlands system for water supply consists of a channel with floating aquatic macrophytes, HDS system (Water Decontamination with Soil-Patent PI 850.3030), chlorinating system, filtering system and distribution. The project objectives include investigating the process variables to further optimize design and operation factors, evaluating the relation of nutrients and plants development, biomass production, shoot development, nutrient cycling and total and fecal coliforms removal, comparing the treatment efficiency among the seasons of the year; and moreover to compare the average values obtained between February and June 1998 (Salati et al., 1998) with the average obtained for the same parameters between March and June 2000. Studies have been developed in order to verify during one year the drinking quality of the water for the following parameters: turbidity, color, pH, dissolved oxygen, total of dissolved solids, COD, chloride, among others, according to the Ministry of Health's Regulation 36. This system of water supply projected to treat 15 L s(-1) has been in continuous operation for 2 years, it was implemented with support of the National Environment Fund (FNMA), administered by the Center of Environmental Studies (CEA-UNESP), while the technical supervision and design were performed by the Institute of Applied Ecology. The actual research project is being supported by FAPESP. PMID:11804153

  4. Habitat, Fauna, and Conservation of Florida's Deep-Water Coral Reefs

    NASA Astrophysics Data System (ADS)

    Reed, J. K.; Pomponi, S. A.; Messing, C. G.; Brooke, S.

    2008-05-01

    Various types of deep-water coral habitats are common off the southeastern United States from the Blake Plateau through the Straits of Florida to the eastern Gulf of Mexico. Expeditions in the past decade with the Johnson-Sea- Link manned submersibles, ROVs, and AUVs have discovered, mapped and compiled data on the status, distribution, habitat, and biodiversity for many of these relatively unknown deep-sea coral ecosystems. We have discovered over three hundred, high relief (15-152-m tall) coral mounds (depth 700-800 m) along the length of eastern Florida (700 km). The north Florida sites are rocky lithoherms, whereas the southern sites are primarily classic coral bioherms, capped with dense 1-2 m tall thickets of Lophelia pertusa and Enallopsammia profunda. Off southeastern Florida, the Miami Terrace escarpment (depth 300-600 m) extends nearly 150 km as a steep, rocky slope of Miocene-age phosphoritic limestone, which provides habitat for a rich biodiversity of fish and benthic invertebrates. Off the Florida Keys, the Pourtalès Terrace (depth 200- 460 m) has extensive high-relief bioherms and numerous deep-water sinkholes to depths of 250-610 m and diameters up to 800 m. The dominant, deep-water, colonial scleractinian corals in this region include Oculina varicosa, L. pertusa, E. profunda, Madrepora oculata, and Solenosmilia variabilis. Other coral species include hydrozoans (Stylasteridae), bamboo octocorals (Isididae), numerous other gorgonians, and black corals (Antipatharia). These structure-forming taxa provide habitat and living space for a relatively unknown but biologically rich and diverse community of crustaceans, mollusks, echinoderms, polychaete and sipunculan worms, and associated fishes. We have identified 142 taxa of benthic macro-invertebrates, including 66 Porifera and 57 Cnidaria. Nearly 100 species of fish have been identified to date in association with these deep-water coral habitats. Paull et al. (2000) estimated that over 40

  5. Reduced North Atlantic deep water coeval with the glacial Lake Agassiz freshwater outburst.

    PubMed

    Kleiven, Helga Kikki Flesche; Kissel, Catherine; Laj, Carlo; Ninnemann, Ulysses S; Richter, Thomas O; Cortijo, Elsa

    2008-01-01

    An outstanding climate anomaly 8200 years before the present (B.P.) in the North Atlantic is commonly postulated to be the result of weakened overturning circulation triggered by a freshwater outburst. New stable isotopic and sedimentological records from a northwest Atlantic sediment core reveal that the most prominent Holocene anomaly in bottom-water chemistry and flow speed in the deep limb of the Atlantic overturning circulation begins at approximately 8.38 thousand years B.P., coeval with the catastrophic drainage of Lake Agassiz. The influence of Lower North Atlantic Deep Water was strongly reduced at our site for approximately 100 years after the outburst, confirming the ocean's sensitivity to freshwater forcing. The similarities between the timing and duration of the pronounced deep circulation changes and regional climate anomalies support a causal link. PMID:18063758

  6. Unsteady evolution of localized unidirectional deep-water wave groups

    NASA Astrophysics Data System (ADS)

    Cousins, Will; Sapsis, Themistoklis P.

    2015-06-01

    We study the evolution of localized wave groups in unidirectional water wave envelope equations [the nonlinear Schrödinger (NLSE) and the modified NLSE (MNLSE)]. These localizations of energy can lead to disastrous extreme responses (rogue waves). We analytically quantify the role of such spatial localization, introducing a technique to reduce the underlying partial differential equation dynamics to a simple ordinary differential equation for the wave packet amplitude. We use this reduced model to show how the scale-invariant symmetries of the NLSE break down when the additional terms in the MNLSE are included, inducing a critical scale for the occurrence of extreme waves.

  7. Thick bottom nepheloid layers in the western Mediterranean generated by deep dense shelf water cascading

    NASA Astrophysics Data System (ADS)

    Puig, Pere; Madron, Xavier Durrieu de; Salat, Jordi; Schroeder, Katrin; Martín, Jacobo; Karageorgis, Aristomenis P.; Palanques, Albert; Roullier, François; Lopez-Jurado, José Luis; Emelianov, Mikhail; Moutin, Thierry; Houpert, Loïc

    2013-04-01

    The analysis of a compilation of deep CTD casts conducted in the western Mediterranean from 1998 to 2011 has documented the role that dense water formation, and particularly deep dense shelf water cascading off the Gulf of Lions, plays in transporting suspended particulate matter from the coastal regions down to the basin. Deep CTD casts reveal that after the 1999 and 2005-2006 deep cascading events the Western Mediterranean Deep Water (WMDW) was characterized by the presence of a thick bottom nepheloid layer (BNL) that corresponded in thickness with a thermohaline anomaly generated by the mixture of dense waters formed by deep convection in the open sea and by deep cascading. This BNL can be hundreds of meters thick and in the central part of the basin usually exhibits suspended sediment concentrations of <0.1 mg/l above background levels, reaching higher concentrations close to the continental rise, with near-bottom peaks >1 mg/l. After winter 1999 the BNL spread from the Gulf of Lions and the Catalan margin over the northwestern Mediterranean basin, reaching west of the Balearic Islands and the Ligurian Sea, while after winters 2005-2006 the BNL covered the entire western Mediterranean basin. Thickness and concentration of the BNL tend to diminish with time but this trend is highly dependent on the volume of dense water generated, both by convection and cascading. After winter 1999 the BNL signal vanished in one year, but after winters 2005-2006 it lasted for longer and the turbidity signal can still be distinguished at present (2011). Particle size distribution in the BNL reveals the presence of large aggregates up to 1 mm in size formed by a mixture of single particles with the same bimodal grain size distribution as the surface sediments found in the northwestern Mediterranean slope and basin. Results presented in this paper highlight the fact that the WMDW can be periodically affected by the arrival of new dense waters loaded with suspended particles mainly

  8. Water potential and starvation stress in deep subsurface microorganisms

    SciTech Connect

    Kieft, T.L.; Rosacker, L.L.; Willcox, D.; Franklin, A.J.

    1990-12-31

    Nine intact core samples, collected aseptically from depths of 10--436 m near the Savannah River Plant in South Carolina, were tested for water potential, microbial numbers, and microbial activity. Although all samples were collected from below the water table, two samples (a Pee Dee clay from 238 m and a Middendorf clay from 324 m) showed unsaturated conditions ({minus}2.7 and {minus}2.1 MPa, respectively). Both of these samples had very low numbers of culturable cells, low microbial biomass (ATP assay), and low microbial activities (measured as respiration), suggesting that low metric waterpotentials in these strata are limiting factors to microorganisms. An Acinetobacter sp. isolated from the 324 m depth was found to maintain viability under starvation conditions in sterilized aquifer material, even when subjected to severe desiccation ({minus}22 MPa). A Pseudomonas sp., with the ability to oxidize thiosulfate to sulfate, was isolated from the 378 m Middendorf clay sample. This organism survived nutrient deprivation reasonably well; however, the presence of thiosulfate appeared to interfere with its normal ability to maintain viability by endogenous metabolism. Cells cultured in the presence of thiosulfate did not undergo dwarfing and cell viability declines. These are two examples of indigenous subsurface microorganisms, each with different adaptations for long-term survival under conditions of desiccation and/or starvation.

  9. Water potential and starvation stress in deep subsurface microorganisms

    SciTech Connect

    Kieft, T.L.; Rosacker, L.L.; Willcox, D.; Franklin, A.J.

    1990-01-01

    Nine intact core samples, collected aseptically from depths of 10--436 m near the Savannah River Plant in South Carolina, were tested for water potential, microbial numbers, and microbial activity. Although all samples were collected from below the water table, two samples (a Pee Dee clay from 238 m and a Middendorf clay from 324 m) showed unsaturated conditions ({minus}2.7 and {minus}2.1 MPa, respectively). Both of these samples had very low numbers of culturable cells, low microbial biomass (ATP assay), and low microbial activities (measured as respiration), suggesting that low metric waterpotentials in these strata are limiting factors to microorganisms. An Acinetobacter sp. isolated from the 324 m depth was found to maintain viability under starvation conditions in sterilized aquifer material, even when subjected to severe desiccation ({minus}22 MPa). A Pseudomonas sp., with the ability to oxidize thiosulfate to sulfate, was isolated from the 378 m Middendorf clay sample. This organism survived nutrient deprivation reasonably well; however, the presence of thiosulfate appeared to interfere with its normal ability to maintain viability by endogenous metabolism. Cells cultured in the presence of thiosulfate did not undergo dwarfing and cell viability declines. These are two examples of indigenous subsurface microorganisms, each with different adaptations for long-term survival under conditions of desiccation and/or starvation.

  10. Distal and proximal controls on the silicon stable isotope signature of North Atlantic Deep Water

    NASA Astrophysics Data System (ADS)

    de Souza, Gregory F.; Slater, Richard D.; Hain, Mathis P.; Brzezinski, Mark A.; Sarmiento, Jorge L.

    2015-12-01

    It has been suggested that the uniquely high δ30Si signature of North Atlantic Deep Water (NADW) results from the contribution of isotopically fractionated silicic acid by mode and intermediate waters that are formed in the Southern Ocean and transported to the North Atlantic within the upper limb of the meridional overturning circulation (MOC). Here, we test this hypothesis in a suite of ocean general circulation models (OGCMs) with widely varying MOCs and related pathways of nutrient supply to the upper ocean. Despite their differing MOC pathways, all models reproduce the observation of a high δ30Si signature in NADW, as well showing a major or dominant (46-62%) contribution from Southern Ocean mode/intermediate waters to its Si inventory. These models thus confirm that the δ30Si signature of NADW does indeed owe its existence primarily to the large-scale transport of a distal fractionation signal created in the surface Southern Ocean. However, we also find that more proximal fractionation of Si upwelled to the surface within the Atlantic Ocean must also play some role, contributing 20-46% of the deep Atlantic δ30Si gradient. Finally, the model suite reveals compensatory effects in the mechanisms contributing to the high δ30Si signature of NADW, whereby less export of high-δ30Si mode/intermediate waters to the North Atlantic is compensated by production of a high-δ30Si signal during transport to the NADW formation region. This trade-off decouples the δ30Si signature of NADW from the pathways of deep water upwelling associated with the MOC. Thus, whilst our study affirms the importance of cross-equatorial transport of Southern Ocean-sourced Si in producing the unique δ30Si signature of NADW, it also shows that the presence of a deep Atlantic δ30Si gradient does not uniquely constrain the pathways by which deep waters are returned to the upper ocean.

  11. A New Approach for Examining Water Vapor and Deep Convection Interactions in the Tropics

    NASA Astrophysics Data System (ADS)

    Adams, D. K.

    2014-12-01

    The complex interactions/feedbacks between water vapor fields and deep atmospheric convection remains one of the outstanding problems in Tropical Meteorology. The lack of high spatial/temporal resolution, all-weather observations in the Tropics has hampered progress. Numerical models have difficulties, for example, in representing the shallow-to-deep convective transition and the diurnal cycle of precipitation. GNSS (Global Navigation Satellite System) meteorology, which provides all-weather, high frequency (5 minutes), precipitable water vapor, can help. From 3.5 years of GNSS meteorological data in Manaus, (Central Amazonia), 320 convective events were analyzed. Results reveal two characteristic time scales of water vapor convergence; an 8 h time scale of weak convergence and 4 h timescale of intense water vapor convergence associated with the shallow-to-deep convection transition. The 4 h shallow-to-deep transition time scale is particularly robust, regardless of convective intensity, seasonality, or nocturnal versus daytime convection. We also present a summary of the Amazon Dense GNSS Meteorological Network experiment, the first ever in the Tropics, was created with the explicit aim of examining the wv/deep convection relationships at the mesoscale. This innovative, international experiment, consisted of two mesoscale (100km x100km) networks: (1) a one-year (April 2011 to April 2012) campaign (20 GNSS meteorological sites) in and around Manaus , and (2) a 6 week (June 2011) intensive campaign (15 GNSS meteorological sites) in and around Belem, this latter in collaboration with the CHUVA GPM in Brazil. Results presented here from both networks focus on the diurnal cycle of precipitable water vapor: for sea breeze convection in Belem and, for assessing the influence seasonal and topographic influences for Manaus. Ultimately, these unique observations may serve to initialize, constrain, or validate precipitable water vapor spatial and temporal evolution in high

  12. Insight into the microbial community structure of a Norwegian deep-water coral reef environment

    NASA Astrophysics Data System (ADS)

    Jensen, Sigmund; Neufeld, Josh D.; Birkeland, Nils-Kåre; Hovland, Martin; Murrell, J. Colin

    2008-11-01

    Deep-water coral reefs support rich biological communities below the photic zone of fjords and continental shelves around the world. In this environment, life is enclosed within cold permanent darkness, in stark contrast to life in tropical coral reefs. We collected samples of water, sediment and a Desmacidon sp. sponge from a deep-water coral reef off the coast of Norway, and characterised bacterial communities with focus on primary producers in the dark. Following DNA extraction, PCR amplification and 16S rRNA gene library sequencing, bioinformatic analyses demonstrated significant differences between bacterial communities associated with the three samples. The finding that 50% of the clones showed <90% identity to cultured bacteria reflects the novel and uncharacterised diversity associated with these deep-water coral reefs. A total of 13 bacterial phyla were identified. Acidobacteria dominated the sponge library and Proteobacteria dominated the bacterioplankton and sediment libraries. Phylogenetic analysis revealed a possible new clade of sponge-associated Acidobacteria, which includes representatives from the Desmacidon sp. (Norway), Rhopaloeides odorabile (Australia) and Discodermia dissoluta (Curacao). Furthermore, the targeted recovery of a particulate methane monooxygenase ( pmoA) gene from the Desmacidon sp. DNA extract suggests that as yet uncultivated type I methanotrophs may mediate methane oxidation in this deep-water coral reef. Methanotrophs were not identified in the 16S rRNA gene libraries, but the presence of a high number (8%) of clones related to sulfide-, nitrite- and iodide-oxidising bacteria suggests chemosynthesis to be involved with maintenance of the deep-water coral reef ecosystem.

  13. Reservoir compartmentalization of deep-water Intra Qua Iboe sand (Pliocene), Edop field, offshore Nigeria

    SciTech Connect

    Hermance, W.E.; Olaifa, J.O.; Shanmugam, G.

    1995-08-01

    An integration of 3-D seismic and sedimentological information provides a basis for recognizing and mapping individual flow units within the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Core examination show the following depositional facies: A-Sandy slump/mass flow, B-Muddy slump/mass flow, C. Bottom current reworking. D-Non-channelized turbidity currents, E. Channelized (coalesced) turbidity currents. F-Channelized (isolated) turbidity currents, G-Pelagic/hemipelagic, H-Levee, I-Reworked slope, J-Wave dominated, and K-Tide dominated facies. With the exception of facies J and K, all these facies are of deep-water affinity. The IQI was deposited on an upper slope environment in close proximity to the shelf edge. Through time, as the shelf edge migrated scaward, deposition began with a channel dominated deep-water system (IQI 1 and 2) and progressed through a slump/debris flow dominated deep-water system (IQI 3, the principle reservoir) to a tide and wave dominated shallow-water system (IQI 4). Compositional and textural similarities between the deep-water facies result in similar log motifs. Furthermore, these depositional facies are not readily apparent as distinct seismic facies. Deep-water facies A, D, E, and F are reservoir facies, whereas facies B, C, G, H, and I are non-reservoir facies. However, Facies G is useful as a seismically mappable event throughout the study area. Mapping of these non-reservoir events provides the framework for understanding gross reservoir architecture. This study has resulted in seven defined reservoir units within the IQI, which serves as the architectural framework for ongoing reservoir characterization.

  14. Dissolved inorganic carbon isotopic composition of the Gulf of Mexico deep-water masses.

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, J. G.; Herguera, J. C.; Ferreira-Bartrina, V.; Hernández-Ayón, J. M.; Camacho-Ibar, V.

    2014-12-01

    This study provides new data for the establishment of a carbon biogeochemical dynamics baseline in the deep Gulf of Mexico (GM) based on carbon isotopes in dissolved inorganic carbon. Water samples from 40 deep-water stations south of 25˚N were collected during XIXIMI-2 cruise, July 2011, aboard BO/Justo Sierra. Vertical profiles of temperature, salinity and dissolved oxygen (DO) were further measured in each station. In the Stable Isotopes Laboratory at CICESE we determined the carbon isotopic composition of the dissolved inorganic carbon (DIC) (δ13CDIC). Remarkably, density, DO and δ13CCID profiles showed a clear difference between the Loop current and the deep-waters of the GM south of 25˚N. We found the following average δ13CCID values in the Loop current and in the deep-waters of the Gulf: subtropical underwater (SUW): 0.73±0.06‰ and 0.86±0.04‰; 18 degree water (18W): 0.76 ± 0.08‰ and 0.58± 0.06‰; North Atlantic central water (NACW): 0.77 ± 0.05‰ and 0.71 ± 0.09‰; South Atlantic central water (SACW): 0.80 ± 0.08‰ and 0.77 ± 0.07‰; Antartic intermediate water (AAIW): 1.00 ± 0.06‰ and 0.90 ± 0.08‰; North Atlantic deep water (NADW): 1.03 ± 0.06‰ and 1.01 ± 0.10‰. We will discuss how the biological component, δ13CCID-BIO, of subsurface water masses match very closely the apparent oxygen utilization relation described by Kroopnick, 1985, with the exception of SUW, and as a consequence the 18W is probably the water mass most affected by organic carbon remineralization processes in the GM south of 25˚N. We further show how these waters seem to store a larger proportion of anthropogenic carbon than the deeper water masses.

  15. Identifying pathways for sanitary sewer pathogens to reach deep water supply wells in Madison, Wisconsin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work conducted by the Wisconsin Geological and Natural History Survey indicated that human enteric viruses from leaking sewers are present in several municipal wells in Madison, WI. These wells are the drinking water source for the City of Madison, are typically 700 to 900 feet deep, and pe...

  16. Immature insects (Plecoptera, Trichoptera, and Ephemeroptera) collected from deep water in western Lake Superior

    USGS Publications Warehouse

    Selgeby, James H.

    1974-01-01

    Five species of aquatic insects - two plecopterans, two trichopterans, and one ephemeropteran - usually found in streams or ponds were collected in water 32-100 m deep in western Lake Superior. All appear to be new records for the lake and all were collected from far greater depths than previously recorded for these forms.

  17. Classification of human activity on water through micro-Dopplers using deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Kim, Youngwook; Moon, Taesup

    2016-05-01

    Detecting humans and classifying their activities on the water has significant applications for surveillance, border patrols, and rescue operations. When humans are illuminated by radar signal, they produce micro-Doppler signatures due to moving limbs. There has been a number of research into recognizing humans on land by their unique micro-Doppler signatures, but there is scant research into detecting humans on water. In this study, we investigate the micro-Doppler signatures of humans on water, including a swimming person, a swimming person pulling a floating object, and a rowing person in a small boat. The measured swimming styles were free stroke, backstroke, and breaststroke. Each activity was observed to have a unique micro-Doppler signature. Human activities were classified based on their micro-Doppler signatures. For the classification, we propose to apply deep convolutional neural networks (DCNN), a powerful deep learning technique. Rather than using conventional supervised learning that relies on handcrafted features, we present an alternative deep learning approach. We apply the DCNN, one of the most successful deep learning algorithms for image recognition, directly to a raw micro-Doppler spectrogram of humans on the water. Without extracting any explicit features from the micro-Dopplers, the DCNN can learn the necessary features and build classification boundaries using the training data. We show that the DCNN can achieve accuracy of more than 87.8% for activity classification using 5- fold cross validation.

  18. Carbonate mound evolution and coral diagenesis viewed by U-series dating of deep water corals

    NASA Astrophysics Data System (ADS)

    Frank, N.; Ricard, E.; Blamart, D.; van der Land, C.; Colin, C.; Foubert, A.; van Rooij, D.; van Weering, T.

    2007-12-01

    U-series dating of constructional deep sea corals is a powerful tool to reconstruct the evolution of carbonate mound sediments driven by coral growth, sediment trapping and diagenesis. Here we have investigated in great detail the time framework of constructional corals such as L. pertusa and M. oculata on 5 different mounds of the eastern North Atlantic (on Rockall Bank and in Porcupine Seabight) taken at variable depth and location (610 to 880m water depth). Periods favorable for coral growth are the Holocene and prior interglacials such as marine isotope stage 5 and 7, while glacial coral growth seems inhibited or extremely reduced. Coral development is almost continuous throughout the Holocene since mound re-colonization about 10,500 years ago. Mound accumulation rates vary between 20 and 220 cm/kyr determined from the coral age - depth relationship in each core. Those changes are most likely driven by changes between horizontal and vertical mound accumulation, food supply and ocean circulation. In addition, coral dating allowed to identify an important erosional event recorded in core MD01-2455G from Rockall Bank. Here a 1m thick sediment layer containing ancient corals likely from the start of Holocene re-colonization was displaced (collapsed) from further upslope on top of younger corals of ~2500 to 3000 years age. Prior to the initiation of coral growth diagenesis occurred frequently resulting in (1) the construction of so called carbonate hardgrounds and/or (2) the dissolution of the pre-Holocene coral framework. Solely, the deepest selected core in Porcupine Seabight (MD01-2463G at 880m depth) reveals coral re-colonization on an undisturbed ancient reef structure that dates back to 250,000 years. Diagenesis of earlier coral reef generations leading to coral dissolution leads to a loss of magnetic susceptibility and open system behavior of the coral skeletons with respect to U-series dating. While the processes causing such diagenetic layers are barely

  19. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    NASA Astrophysics Data System (ADS)

    Verstricht, J.; Areias, L.; Bastiaens, W.; Li, X. L.

    2010-06-01

    Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure), or it can be an indirect technique, deriving the stress from related quantities such as strain (changes) in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter). Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  20. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand

    PubMed Central

    Radloff, K.A.; Zheng, Y.; Michael, H.A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M.W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.

    2011-01-01

    Drinking shallow groundwater with naturally elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, growing reliance on deep (>150 m) groundwater has lowered exposure. In the most affected districts of Bangladesh, shallow groundwater concentrations average 100 to 370 μg L−1, while deep groundwater is typically < 10 μg L−1. Groundwater flow simulations have suggested that, even when deep pumping is restricted to domestic use, deep groundwater in some areas of the Bengal Basin is at risk of contamination. However, these simulations have neglected the impedance of As migration by adsorption to aquifer sediments. Here we quantify for the first time As sorption on deeper sediments in situ by replicating the intrusion of shallow groundwater through injection of 1,000 L of deep groundwater modified with 200 μg L−1 of As into a deeper aquifer. Arsenic concentrations in the injected water were reduced by 70% due to adsorption within a single day. Basin-scale modelling indicates that while As adsorption extends the sustainable use of deep groundwater, some areas remain vulnerable; these areas can be prioritized for management and monitoring. PMID:22308168

  1. Use of deep water lagoons for reducing sewage toxicity prior to wastewater treatment

    SciTech Connect

    Shaw, J.R.; Zuiderveen, J.A.; Belcher, B.; McGinley, P.; Birge, W.J.

    1994-12-31

    Investigations were conducted to determine the effectiveness of deep lagoons as a means of wastewater pretreatment. A lagoon system associated with a wastewater treatment plant (WWTP) was selected for study and parameters identified for monitoring included toxicity, metals, total suspended solids (TSS) and ammonia. This system included two lagoons, with 7--15 day hydraulic retention times, fed sequentially with untreated water. Toxicity and other parameters were measured for raw influent water, the two lagoon outfalls, and the final WWTP effluent. In seven-day chronic tests with Ceriodaphnia dubia, the NOEC of influent water was as low as 20%, and 100% mortality occurred at 40%. Outfall from the first deep water lagoon showed reduced toxicity. The NOEC was > 50% but complete mortality occurred in undiluted effluent. Further reduction in toxicity occurred in the second lagoon. Its undiluted effluent had no effect on survival, but did markedly reduce fecundity. The final effluent discharged from the treatment plant affected neither survival nor fecundity. Results of this investigation support the use of deep water lagoons as an effective and economical means of pretreating wastewater. This approach offers promise for municipal waters, industrial effluents and stormwater runoff.

  2. The characterization and bioavailability of dissolved organic carbon in deep subsurface and surface waters

    SciTech Connect

    Palumbo, A.V.; Jardine, P.M.; McCarthy, J.F. ); Zaidi, B.R. . Dept. of Marine Sciences)

    1990-01-01

    We characterized and compared the bioavailability of chemical fractions of dissolved organic carbon (DOC) from deep wells at the US Department of Energy Savannah River Plant (SRP) site with that from South Carolina surface waters. Experiments with three bacterial cultures (Corynebacterium sp., Pseudomonas sp., and a bacteria included isolated from the surface water) indicated that the bioavailability of the carbon in the near surface water may be limited by inorganic nutrients. Associated with well-defined organic compounds. The purpose of this preliminary investigation was to improve our understanding of the organic matter in groundwater by characterizing the natural organic matter in water recovered from different formations in the Deep Probe Subsurface Microbiology program and by determining if the natural organic carbon can support growth of bacterial populations. The characterization was directed at elucidating the properties of of dissolved or colloidal organic matter that are relevant to the transport and mobility of the organic matter (and contaminants sorbed to the organic matter) and that may also be relevant to the potential role of organic matter in groundwater as a nutrient source supporting microbial productivity in the deep subsurface. A secondary objective of this study was to determine the factors limiting microbial growth in surface waters and near surface groundwaters and to determine the response of the microbial community to a mixing of these waters.

  3. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, T.; Sun, J.; Cai, L.; Liang, Y.; Jiao, N.; Zhang, R.

    2014-05-01

    As the most abundant biological entities in the ocean, viruses influence host mortality and nutrient recycling mainly through lytic infection. Yet, the ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In the present study, viral abundance and lytic infection were investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21 to 16.23 to 2.45-23.40, at the surface and 2000 m, respectively. Lytic viral production rates in surface and 2000 m waters were, on average, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1. Relatively high percentages of prokaryotic cells lysed by viruses at 1000 and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in the deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in these deep waters and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.

  4. Solar hot water systems for the southeastern United States: principles and construction of breadbox water heaters

    SciTech Connect

    1983-02-01

    The use of solar energy to provide hot water is among the easier solar technologies for homeowners to utilize. In the Southeastern United States, because of the mild climate and abundant sunshine, solar energy can be harnessed to provide a household's hot water needs during the non-freezing weather period mid-April and mid-October. This workbook contains detailed plans for building breadbox solar water heaters that can provide up to 65% of your hot water needs during warm weather. If fuel costs continue to rise, the annual savings obtained from a solar water heater will grow dramatically. The designs in this workbook use readily available materials and the construction costs are low. Although these designs may not be as efficient as some commercially available systems, most of a household's hot water needs can be met with them. The description of the breadbox water heater and other types of solar systems will help you make an informed decision between constructing a solar water heater or purchasing one. This workbook is intended for use in the southeastern United States and the designs may not be suitable for use in colder climates.

  5. Contributions of the Siberian shelf polynyas to the Arctic Ocean intermediate and deep water

    NASA Technical Reports Server (NTRS)

    Martin, Seelye; Cavalieri, Donald J.

    1989-01-01

    To investigate the role of Siberian Shelf polynyas in water mass formation, and that of Whalers Bay in the cooling of the West Spitsbergen Current, satellite observations from the Nimbus 7 scanning multichannel microwave radiometer are used to determine the size and location of polynyas for November-March, 1978-1982. If salt contributes only to the Arctic Intermediate Water, the results show that the continental shelves can produce 20-60 percent of this water. Alternatively, if the salt contributes only to the deep water of the Eurasian Basin, then without consideration of the mixing of the bottom water with the Greenland and Norwegian Sea water, the contribution from the shelves yields a renewal time of about 100 years. These results imply that there is insufficient water produced in the shelf polynyas to perform all of the roles that have historically been assigned to it.

  6. Deep-focus earthquakes and recycling of water into the earth's mantle

    NASA Technical Reports Server (NTRS)

    Meade, Charles; Jeanloz, Raymond

    1991-01-01

    For more than 50 years, observations of earthquakes to depths of 100 to 650 kilometers inside earth have been enigmatic: at these depths, rocks are expected to deform by ductile flow rather than brittle fracturing or frictional sliding on fault surfaces. Laboratory experiments and detailed calculations of the pressures and temperatures in seismically active subduction zones indicate that this deep-focus seismicity could originate from dehydration and high-pressure structural instabilities occurring in the hydrated part of the lithosphere that sinks into the upper mantle. Thus, seismologists may be mapping the recirculation of water from the oceans back into the deep interior of the planet.

  7. Deep water challenges: Oil industry moves off continental shelf; meets new oceanographic data-gathering challenges

    SciTech Connect

    Mardell, G.; Flynn, J.

    1995-08-01

    While offshore oil industry activities move from the continental shelves to the continental slope and even onto the abyssal plains of the deep oceans, new oceanographic problems arise - from riser-deforming internal waves to ocean-floor avalanches. As well as soliton-induced currents, other subsurface flows need to be monitored to provide data in support of wide ranging underwater activities, including exploration drilling, deployment of subsea systems, diver and ROV operations, and pipe design, lay and inspection. This article examines some of the work carried out over the past year or so with data-gathering deep water moorings.

  8. Protist Community Grazing on Prokaryotic Prey in Deep Ocean Water Masses.

    PubMed

    Rocke, Emma; Pachiadaki, Maria G; Cobban, Alec; Kujawinski, Elizabeth B; Edgcomb, Virginia P

    2015-01-01

    Oceanic protist grazing at mesopelagic and bathypelagic depths, and their subsequent effects on trophic links between eukaryotes and prokaryotes, are not well constrained. Recent studies show evidence of higher than expected grazing activity by protists down to mesopelagic depths. This study provides the first exploration of protist grazing in the bathypelagic North Atlantic Deep Water (NADW). Grazing was measured throughout the water column at three stations in the South Atlantic using fluorescently-labeled prey analogues. Grazing in the deep Antarctic Intermediate water (AAIW) and NADW at all three stations removed 3.79% ± 1.72% to 31.14% ± 8.24% of the standing prokaryote stock. These results imply that protist grazing may be a significant source of labile organic carbon at certain meso- and bathypelagic depths. PMID:25894547

  9. Age Determination and Growth Rates in Deep-Water Bamboo Corals (Isididae)

    NASA Astrophysics Data System (ADS)

    Fallon, S. J.; Thresher, R.; Sherwood, O.

    2009-12-01

    Gorgonians are a major element of the fauna of deep-water coral reefs and very long-lived recorders of deep-water paleo-oceanography. Both ecological studies and paleo-analyses require accurate age determination and dating of colony formation, but because of the depths at which they occur (typically 1-3 km), direct validation by tagging of aging methods is logistically difficult. Radiocarbon analysis of both the node organic tissue and internode calcite provided apparently robust age and date information. Growth rates ranged from 40 to ~140 microns per year in samples collected from 600 to 1600m water depth. Following these analyses, we compiled the robust growth-rate data for recent material, and report on a first-pass analysis of ecological and regional effects on isidid growth rates.

  10. Comparison of numerical models for predicting ground water rebound in abandoned deep mine systems

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Baek, H.; Kim, D.

    2012-12-01

    Cessation of dewatering usually results in ground water rebound after closing a deep underground mine because the mind voids and surrounding strata flood up to the levels of decant points such as shafts and drifts. Several numerical models have been developed to predict the timing, magnitude and location of discharges resulting from ground water rebound. We compared the numerical models such as VSS-NET, GRAM and MODFLOW codes at different spatial and time scales. Based on the comparisons, a new strategy is established to develop a program for ground water rebound modeling in abandoned deep mine systems. This presentation describes the new strategy and its application to an abandoned underground mine in Korea.

  11. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, T.; Sun, J.; Cai, L.; Jiao, N.; Zhang, R.

    2013-12-01

    As the most abundant biological entities in the ocean, viruses can influence host mortality and nutrients recycling mainly through lytic infection. Yet ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In present study, viral abundance and lytic infection was investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21-16.23 to 2.45-23.40, at surface and 2000 m depth, respectively. The lytic viral production rates in surface and 2000 m waters were, averagely, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1, respectively. Relatively high percentages of prokaryotic cells lysed by virus in 1000 m and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in the deep western Pacific Ocean and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.

  12. Impact of switching crop type on water and solute fluxes in deep vadose zone

    NASA Astrophysics Data System (ADS)

    Turkeltaub, T.; Kurtzman, D.; Russak, E. E.; Dahan, O.

    2015-12-01

    Switching crop type and consequently changing irrigation and fertilization regimes lead to alterations in deep percolation and solute concentrations of pore water. Herein, observations from the deep vadose zone and model simulations demonstrate the changes in water, chloride, and nitrate fluxes under a commercial greenhouse following the change from tomato to lettuce cropping. The site, located above a phreatic aquifer, was monitored for 5 years. A vadose-zone monitoring system was implemented under the greenhouse and provided continuous data on both temporal variations in water content and chemical composition of the pore water at multiple depths in the deep vadose zone (up to 20 m). Following crop switching, a significant reduction in chloride concentration and dramatic increase in nitrate were observed across the unsaturated zone. The changes in chemical composition of the vadose-zone pore water appeared as sequential breakthroughs across the unsaturated zone, initiating at land surface and propagating down toward the water table. Today, 3 years after switching the crops, penetration of the impact exceeds 10 m depth. Variations in the isotopic composition of nitrate (18O and 15N) in water samples obtained from the entire vadose zone clearly support a fast leaching process and mobilization of solutes across the unsaturated zone following the change in crop type. Water flow and chloride transport models were calibrated to observations acquired during an enhanced infiltration experiment. Forward simulation runs were performed with the calibrated models, constrained to tomato and lettuce cultivation regimes as surface boundary conditions. Predicted chloride and nitrate concentrations were in agreement with the observed concentrations. The simulated water drainage and nitrogen leaching implied that the observed changes are an outcome of recommended agricultural management practices.

  13. Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts

    USGS Publications Warehouse

    Von Blanckenburg, F.; O'Nions, R. K.; Belshaw, N.S.; Gibb, A.; Hein, J.R.

    1996-01-01

    The direct measurement of the ratio of cosmogenic 10Be (T1/2 = 1.5 Ma) to stable terrigenously sourced 9Be in deep seawater or marine deposits can be used to trace water mass movements and to quantify the incorporation of trace metals into the deep sea. In this study a SIMS-based technique has been used to determine the 10Be/9Be ratios of the outermost millimetre of hydrogenetic ferromanganese crusts from the worlds oceans. 10Be/9Be ratios, time-corrected for radioactive decay of cosmogenic 10Be using 234U/ 238U, are in good agreement with AMS measurements of modern deep seawater. Ratios are relatively low in the North and equatorial Atlantic samples (0.4-0.5 ?? 10-7). In the Southwest Atlantic ratios increase up to 1 ?? 10-7, they vary between 0.7 and 1.0 ?? 10-7 in Indian Ocean samples, and have a near constant value of 1.1 ?? 0.2 ?? 10-7 for all Pacific samples. If the residence time of 10Be (??10Be) in deep water is constant globally, then the observed variations in 10Be/9Be ratios could be caused by accumulation of 10Be in deep water as it flows and ages along the conveyor, following a transient depletion upon its formation in the Northern Atlantic. In this view both 10Be and 9Be reach local steady-state concentration in Pacific deep water and the global ??10Be ??? 600 a. An alternative possibility is that the Be isotope abundances are controlled by local scavenging. For this scenario ??10Be would vary according to local particle concentration and would ??? 600 a in the central Pacific, but ??10Be ??? 230 a in the Atlantic. Mass balance considerations indicate that hydrothermal additions of 9Be to the oceans are negligible and that the dissolved riverine source is also small. Furthermore, aeolian dust input of 9Be appears insufficient to provide the dissolved Be inventory. The dissolution of only a small proportion (2%) of river-derived particulates could in principle supply the observed seawater Be content. If true, ocean margins would be the sites for 9Be

  14. Three new records of deep-water goniasterids (Echinodermata: Asteroidea: Goniasteridae) from China seas

    NASA Astrophysics Data System (ADS)

    Xiao, Ning; Liao, Yulin

    2013-09-01

    In this paper, three deep-water species of the family Goniasteridae, Ceramaster misakiensis (Goto, 1914), Nymphaster arthrocnemis Fisher, 1913 and Pontioceramus grandis Fisher, 1911, are recorded for the first time from Chinese waters based on collections deposited in the Marine Biological Museum, Chinese Academy of Sciences. The specimens examined were collected during the period 1956 to 1978 from the East China and South China Seas at depths of 184 to 472 m. Diagnosis, detailed figures, and the geographic distributions are provided. A revised list of Goniasteridae recorded from Chinese waters is proposed.

  15. A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2004-01-01

    A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if

  16. Age depth model construction of the upper section of ICDP Dead Sea Deep Drilling Project based on the high-resolution 14C dating

    NASA Astrophysics Data System (ADS)

    Kitagawa, H.; Nakamura, T.; Neugebauer, I.; Schwab, M. J.; Brauer, A.; Goldstein, S. L.; Stein, M.

    2014-12-01

    To reconstruct environmental, climatic and tectonic histories of the Levant, a deep drilling has been accomplished in the northern basin of the Dead Sea during the fall winter of 2010-2011 by the Dead Sea Deep Drilling Project (DSDDP) in the framework of the ICDP program. The sediment cores from site 5017-1 (water depth of ~300 m) recorded the paleoenvironmental and paleohydrological changes in the Dead Sea and the Levant during the last two glacial-interglacial cycles (Neugebauer et al., QSR in press). To provide precise timing of sedimentological - limnological events in the lake and its watershed, and more critically the relative timing of these events, radiocarbon dating of >70 well-preserved terrestrial plants and some carbonate deposits from the upper 150 m long section of the sediment core were performed. Based on the high-resolution radiocarbon dating, a statistical age-depth model was constructed with assumptions on the deposition condition and the radiocarbon age offset of carbonate samples. We discuss the practicality and the limitation of the age-depth model toward interpreting the high-resolution records of environmental, climatic and tectonic events recorded in the long sediment cores from site 5017-1.

  17. Construction and characterization of a deep-coverage carrot (Daucus carota L.) BAC library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first carrot (Daucus carota L.) BAC library was constructed using imbred line B8503, which is nematode-resistant and accumulates carotenes in its roots. The BAC library consists of 92,160 clones comprising 22.4 haploid genome equivalents based on a genome size of 473 Mb/1C. Upon the analysis of ...

  18. Detection of deep water formation from remote sensing chlorophyll in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bernardello, Raffaele; Bahamon, Nixon; Ahumada, Miguel-Angel; Martin, Adrian; Henson, Stephanie

    2015-04-01

    The Northwestern Mediterranean Sea is one of the few regions in the world where Deep Water Formation (DWF) occurs. During wintertime cold and dry winds that typically occur in strong bursts lasting a few days, are able to erode the near-surface stability over this area, exposing the weakly stratified underwaters and initiate a phase of violent mixing and deep convection. DWF is not a steady-state process that recurs every year. Variations in wind stress and heat flux over the winter can induce a marked interannual variability: during some years the process is specially intense and completely absent during others. The extent of the area over which DWF occurs is also uncertain. The interannual variability of the DWF process is also associated to the variability in the seasonal phytoplankton dynamics over the area. The extent of the vertical mixing set the total amount of nutrients available for the phytoplankton during the following spring bloom. However, before the bloom, when deep convection is still active, surface chlorophyll (an index for phytoplankton biomass) is vertically diluted showing low surface concentration. The occurrence of these patches of anomalously low chlorophyll concentration can, in principle, be associated to the presence of active deep convection. In this study we investigate the possibility of exploiting such association in order to quantify the duration of deep convection and the extent of the area over which it occurs. These goals will be achieved through the analysis of remote sensing chlorophyll data and in-situ Argo-floats profiles.

  19. Multidecadal freshening and lightening in the deep waters of the Bransfield Strait, Antarctica

    NASA Astrophysics Data System (ADS)

    Dotto, Tiago S.; Kerr, Rodrigo; Mata, Mauricio M.; Garcia, Carlos A. E.

    2016-06-01

    The deep waters of the Bransfield Strait receive considerable amounts of water from the Weddell Sea continental shelf. The restricted connections to the surrounding ocean and relatively easier access makes the Bransfield Strait an important proxy region for monitoring changes in the dense Weddell Sea shelf water masses, which are an important precursor of Antarctic Bottom Water (AABW). Long-term hydrographic data from the period 1960s-2010s showed freshening and lightening of the deep water masses of the Bransfield Strait, which was likely caused by large freshwater inputs originating from the western shelf of the Weddell Sea. The rates of freshening and lightening were -0.0010 ± 0.0005 yr-1 and -0.0016 ± 0.0014 kg m-3 yr-1 for the central basin, respectively, and -0.0010 ± 0.0006 yr-1 and -0.0029 ± 0.0013 kg m-3 yr-1 for the eastern basin, respectively. The deep waters showed a high degree of interannual thermohaline variability, which appeared to be caused by changes in the proportions of source water mass mixing between the years. Statistically significant negative correlations between salinity/neutral density fields and the Southern Annular Mode (SAM) were observed (-0.56 and -0.62 for the central basin, respectively, and -0.58 and -0.68 for the eastern basin, respectively) between 1980 and 2014. During SAM positive phases, communication between the Weddell Sea and the Bransfield Strait is reduced, which leads to less saline and lighter water masses in the Bransfield Strait; however, the opposite trends are observed during SAM negative phases.

  20. Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Berndmeyer, C.; Thiel, V.; Schmale, O.; Wasmund, N.; Blumenberg, M.

    2014-06-01

    The water column of the Landsort Deep, central Baltic Sea, is stratified into an oxic, suboxic and anoxic zone. This stratification controls the distributions of individual microbial communities and biogeochemical processes. In summer 2011, particulate organic matter was filtered from these zones using an in~situ pump. Lipid biomarkers were extracted from the filters to establish water column profiles of individual hydrocarbons, alcohols, phospholipid fatty acids, and bacteriohopanepolyols (BHPs). As a reference, a cyanobacterial bloom sampled in summer 2012 in the central Baltic Sea Gotland Deep was analyzed for BHPs. The biomarker data from the surface layer of the oxic zone showed major inputs from different cyanobacteria and eukaryotes such as dinoflagellates and ciliates, while the underlying cold winter water layer was characterized by a low diversity and abundance of organisms, with copepods as a major group. The suboxic zone supported bacterivorous ciliates, type I aerobic methanotrophic bacteria, sulfate reducing bacteria, and, most likely, methanogenic archaea. In the anoxic zone, sulfate reducers and archaea were the dominating microorganisms as indicated by the presence of distinctive branched fatty acids, archaeol and PMI derivatives, respectively. Our study of in situ biomarkers in the Landsort Deep thus provided an integrated insight into the distribution of relevant players and the related biogeochemical processes in stratified water columns of marginal seas.

  1. Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Berndmeyer, C.; Thiel, V.; Schmale, O.; Wasmund, N.; Blumenberg, M.

    2014-12-01

    The water column of the Landsort Deep, central Baltic Sea, is stratified into an oxic, suboxic, and anoxic zone. This stratification controls the distributions of individual microbial communities and biogeochemical processes. In summer 2011, particulate organic matter was filtered from these zones using an in situ pump. Lipid biomarkers were extracted from the filters to establish water-column profiles of individual hydrocarbons, alcohols, phospholipid fatty acids, and bacteriohopanepolyols (BHPs). As a reference, a cyanobacterial bloom sampled in summer 2012 in the central Baltic Sea Gotland Deep was analyzed for BHPs. The biomarker data from the surface layer of the oxic zone showed major inputs from cyanobacteria, dinoflagellates, and ciliates, while the underlying cold winter water layer was characterized by a low diversity and abundance of organisms, with copepods as a major group. The suboxic zone supported bacterivorous ciliates, type I aerobic methanotrophic bacteria, sulfate-reducing bacteria, and, most likely, methanogenic archaea. In the anoxic zone, sulfate reducers and archaea were the dominating microorganisms as indicated by the presence of distinctive branched fatty acids: archaeol and pentamethylicosane (PMI) derivatives, respectively. Our study of in situ biomarkers in the Landsort Deep thus provided an integrated insight into the distribution of relevant compounds and describes useful tracers to reconstruct stratified water columns in the geological record.

  2. Distribution and sources of pre-anthropogenic lead isotopes in deep ocean water from Fe-Mn crusts

    USGS Publications Warehouse

    Von Blanckenburg, F.; O'Nions, R. K.; Hein, J.R.

    1996-01-01

    The lead isotope composition of ocean water is not well constrained due to contamination by anthropogenic lead. Here the global distribution of lead isotopes in deep ocean water is presented as derived from dated (ca. 100 ka) surface layers of hydrogenetic Fe-Mn crusts. The results indicate that the radiogenic lead in North Atlantic deep water is probably supplied from the continents by river particulates, and that lead in Pacific deep water is similar to that characteristic of island and continental volcanic arcs. Despite a short residence time in deep water (80-100 a), the isotopes of lead appear to be exceedingly well mixed in the Pacific basin. There is no evidence for the import of North Atlantic deep water-derived lead into the Pacific ocean, nor into the North Indian Ocean. This implies that the short residence time of lead in deep water prohibits advection over such long distances. Consequently, any climate-induced changes in deep-water flow are not expected to result in major changes in the seawater Pb-isotope record of the Pacific Ocean.

  3. Distribution and sources of pre-anthropogenic lead isotopes in deep ocean water from Fesbnd Mn crusts

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, F.; O'nions, R. K.; Heinz, J. R.

    1996-12-01

    The lead isotope composition of ocean water is not well constrained due to contamination by anthropogenic lead. Here the global distribution of lead isotopes in deep ocean water is presented as derived from dated (ca. 100 ka) surface layers of hydrogenetic Fe-Mn crusts. The results indicate that the radiogenic lead in North Atlantic deep water is probably supplied from the continents by river particulates, and that lead in Pacific deep water is similar to that characteristic of island and continental volcanic arcs. Despite a short residence time in deep water (80-100 a), the isotopes of lead appear to be exceedingly well mixed in the Pacific basin. There is no evidence for the import of North Atlantic deep water-derived lead into the Pacific ocean, nor into the North Indian Ocean. This implies that the short residence time of lead in deep water prohibits advection over such long distances. Consequently, any climate-induced changes in deep-water flow are not expected to result in major changes in the seawater Pb-isotope record of the Pacific Ocean.

  4. CO2-bearing saline water found in groundwater, related to deep low frequency earthquakes

    NASA Astrophysics Data System (ADS)

    Kazahaya, K.; Matsuzawa, T.; Hasegawa, A.; Yasuhara, M.; Takahashi, M.; Oyama, Y.; Iwamori, H.

    2011-12-01

    Very saline (Cl conc. up to twice greater than sea-water), CO2 -bearing and 18O-shifted springs are found in Japan. Not only the brines but saline waters diluted by circulating groundwater, which have similar feature with "Arima-type", naturally occur at various places along active faults, tectonic lines and close to volca-noes. In this study, we show chemical and isotopic feature of the groundwaters collected from deep wells and from self-spouting springs, and discuss their gene-sis by showing the relationships between chemistry and hypocenters of deep low frequency (DLF) earth-quakes to reveal crustal fluid processes. The waters of Cl concentration higher than 200 mg/l are selected to classify into three origin groups: seawater, fossil seawater, and Arima-type water using Li/Cl ratios, water chemistry and hydrogen and oxygen isotope ratio. Arima-type water is defined here as originated neither from meteoric water nor from sea-water and with the identical feature showing both high Li/Cl ratio and chemistry of NaCl-CO2-type. Chemical and isotopic compositions of a typical mix-ing endmember of Arima-type water is δD = -30 %, δ18O = +6 %, Cl conc. = 4 wt.%, 3He/4He = 10-5, δ13C = -5 %, which are quite similar to that of the magmatic gases, implying that the origin is similar to that of magmatic gases. The DLF earthquakes are well determined for hypocenter having feature of very deep (20-40km depth) and thought to be related with hydrothermal fluids. Characteristic feature of spatial distribution of the DLF earthquakes are; type-1) found along 1000 km of the SW Japan arc at about 35 km deep on the upper part of subducted Philippine Sea Plate, so called "Deep Low Frequency Tremor, type-2) occur close to Qua-ternary volcanoes, and type-3) occur as non-volcanic clusters at depth from 20-45km. As for type-1 related fluids, the Arima-type thermal water found along the Median tectonic line (MTL) through Shi-koku-Kinki-Tokai district are likely the fluid concern

  5. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    NASA Astrophysics Data System (ADS)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  6. Effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults.

    PubMed

    Kanitz, Ana Carolina; Delevatti, Rodrigo Sudatti; Reichert, Thais; Liedtke, Giane Veiga; Ferrari, Rodrigo; Almada, Bruna Pereira; Pinto, Stephanie Santana; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2015-04-01

    This study aimed to investigate the effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults. Thirty-four older adults men were placed into two groups: deep water endurance training (ET; n = 16; 66 ± 4 years) and deep water strength prior to endurance training (concurrent training: CT; n = 18; 64 ± 4 years). The training period lasted 12 weeks, with three sessions a week. The resting heart rate and the oxygen uptake at peak (VO2peak) and at the second ventilatory threshold (VO2VT2) were evaluated during a maximal incremental test on a cycle ergometer before and after training. In addition, maximal dynamic strength (one repetition maximum test--1RM) and local muscular resistance (maximum repetitions at 60% 1RM) of the knee extensors and flexors were evaluated. After the training period, the heart rate at rest decreased significantly, while the VO2peak and VO2VT2 showed significant increases in both groups (p<0.05). Only the VO2VT2 resulted in significantly greater values for the ET compared to the CT group after the training (p<0.05). In addition, after training, there was a significant increase in the maximal dynamic strength of the knee extensors and the local muscular endurance of the knee extensors and flexors, with no difference between the groups (p > 0.05). In summary, the two training programs were effective at producing significant improvements in cardiorespiratory and muscular strength responses in older adult men. However, deep water endurance training at high intensities provides increased cardiorespiratory responses compared to CT and results in similar muscular strength responses. PMID:25700846

  7. Possible deep-water gas hydrate accumulations in the Bering Sea

    USGS Publications Warehouse

    Barth, Ginger A.; Scholl, David W.; Childs, Jonathan R.

    2006-01-01

    Seismic reflection images from the deep-water Aleutian and Bowers Basins of the Bering Sea contain many hundreds of acoustic Velocity-AMPlitude (VAMP) anomalies, each of which may represent a large accumulation of natural gas hydrate. Against a backdrop of essentially horizontal sedimentary reflections, the VAMP anomalies stand out as both high-amplitude bright spots and zones of vertically aligned horizon distortions. The VAMPs are interpreted as natural gas chimneys overlain by concentrated hydrate caps.

  8. Deep water renewal in Lake Baikal: A model for long-term analyses

    NASA Astrophysics Data System (ADS)

    Piccolroaz, Sebastiano; Toffolon, Marco

    2013-12-01

    The phenomenon of deep water renewal in the South Basin of Lake Baikal is investigated by means of a simplified one-dimensional model. The downwelling process, whereby large volumes of superficial, cold, and oxygenated water periodically sink to the lake bottom (>1400m) due to thermobaric instability, is simulated by means of three main submodules: a reaction-diffusion equation for temperature and other tracers, and two Lagrangian algorithms, the first for the vertical stabilization of unstable density regions (including thermobaric effects) and the second handling the downwelling mechanism. A self-consistent procedure for the dynamical reconstruction of the diapycnal diffusivity profile is included to account for the effect of the variability of external conditions. The model has been developed aimed at providing a detailed description of deep-ventilation and a quantification of its consequences at the basin scale; the core algorithms have been designed suitably to perform long-term simulations (hundreds of years) and to deal with a limited amount of information about boundary conditions, which are expressed in terms of wind forcing and surface water temperature. The main parameters have been calibrated using measured profiles of temperature and chlorofluorocarbons (CFC-12) concentration over a 40 year historical period. A long-term simulation (one millennium), in which the current meteorological conditions have been kept statistically unchanged, has been used to determine the asymptotic dynamics. The results are consistent with previous measurements and estimates, suggesting that the model is suitable to qualitatively and quantitatively simulate deep water renewal in deep, temperate lakes, capturing the relative contribution and interaction of the different processes involved.

  9. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Technical Reports Server (NTRS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, C.; Lanyi, G.; Naudet, C.

    2005-01-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  10. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Astrophysics Data System (ADS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, Christopher S.; Lanyi. G. E.; Naudet, C. J.

    2005-11-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  11. A comparison of water vapor line parameters for modeling the Venus deep atmosphere

    NASA Astrophysics Data System (ADS)

    Bailey, Jeremy

    2009-06-01

    The discovery of the near infrared windows into the Venus deep atmosphere has enabled the use of remote sensing techniques to study the composition of the Venus atmosphere below the clouds. In particular, water vapor absorption lines can be observed in a number of the near-infrared windows allowing measurement of the H 2O abundance at several different levels in the lower atmosphere. Accurate determination of the abundance requires a good database of spectral line parameters for the H 2O absorption lines at the high temperatures (up to ˜700 K) encountered in the Venus deep atmosphere. This paper presents a comparison of a number of H 2O line lists that have been, or that could potentially be used, to analyze Venus deep atmosphere water abundances and shows that there are substantial discrepancies between them. For example, the early high-temperature list used by Meadows and Crisp [Meadows, V.S., Crisp, D., 1996. J. Geophys. Res. 101 (E2), 4595-4622] had large systematic errors in line intensities. When these are corrected for using the more recent high-temperature BT2 list of Barber et al. [Barber, R.J., Tennyson, J., Harris, G.J., Tolchenov, R.N., 2006. Mon. Not. R. Astron. Soc. 368, 1087-1094] their value of 45±10 ppm for the water vapor mixing ratio reduces to 27±6 ppm. The HITRAN and GEISA lists used for most other studies of Venus are deficient in "hot" lines that become important in the Venus deep atmosphere and also show evidence of systematic errors in line intensities, particularly for the 8000 to 9500 cm -1 region that includes the 1.18 μm window. Water vapor mixing ratios derived from these lists may also be somewhat overestimated. The BT2 line list is recommended as being the most complete and accurate current representation of the H 2O spectrum at Venus temperatures.

  12. Water Optical Properties and Water Color Remote Sensing in Optically Deep and Shallow Waters of Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Xi, Hongyan

    In this study, Lake Taihu in Jiangsu Province of China, a typical large freshwater lake, is selected as the study area. Based on the field spectral measurements and laboratory analyses performed in October 2008, water optical properties and water color/quality remote sensing retrieval models in Lake Taihu were investigated. It was recognized that water quality varied a lot in different areas. Waters in Lake Taihu were classified as optically deep waters (ODWs) and optically shallow waters (OSWs). ODWs are the waters where the water depth is more than three times the measured Secchi Disk Depth (SDD), otherwise they are OSWs. Cyanobacteria blooms happen frequently in ODWs and the water is eutrophicated heavily. Whereas water is very clear with rare cyanobacteria blooms but many aquatic plants in OSWs. Focused on the two types of water areas respectively, the inherent optical properties (lOPs), apparent optical properties (lOPs) and reflectance spectra were analyzed, as well as their relationships to water quality parameters. Local optical parameters f and Q, which play significant roles in water quality parameters retrieval models, were also determined. Measured remote sensing reflectance data were used to establish two-band and three-band models for chlorophyll-a (Chl-a) concentration estimation, results showed both models were suitable in ODWs. However, aquatic plants in OSWs had great influence on spectra, resulting in the inapplicability of the established models at these sites. Absorption and backscattering coefficients were used to remove those influences and simulate new set of remote sensing reflectance based on radiative transfer theory, which were proved reliable to establish Chl-a retrieval algorithms. Three-band model established by simulated spectra showed more satisfactory performance in whole ODWs, and performance of two-band model in OSWs was also enhanced much. Several models were established to estimate total suspended solids (TSS) concentrations

  13. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  14. WELL CONSTRUCTION AND PURGING EFFECTS ON GROUND-WATER SAMPLES

    EPA Science Inventory

    Multiple well installations of selected casing materials (i.e., polytetrafluoroethylene (PTFE), 304 stainless steel (SS), and polyvinyl chloride (PVC)) were constructed and sampled to determine if well purging and construction procedures would significantly bias chemical constitu...

  15. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios

    PubMed

    Rutberg; Hemming; Goldstein

    2000-06-22

    The global circulation of the oceans and the atmosphere transports heat around the Earth. Broecker and Denton suggested that changes in the global ocean circulation might have triggered or enhanced the glacial-interglacial cycles. But proxy data for past circulation taken from sediment cores in the South Atlantic Ocean have yielded conflicting interpretations of ocean circulation in glacial times--delta13C variations in benthic foraminifera support the idea of a glacial weakening or shutdown of North Atlantic Deep Water production, whereas other proxies, such as Cd/Ca, Ba/Ca and 231Pa/230Th ratios, show little change from the Last Glacial Maximum to the Holocene epoch. Here we report neodymium isotope ratios from the dispersed Fe-Mn oxide component of two southeast Atlantic sediment cores. Both cores show variations that tend towards North Atlantic signatures during the warm marine isotope stages 1 and 3, whereas for the full glacial stages 2 and 4 they are closer to Pacific Ocean signatures. We conclude that the export of North Atlantic Deep Water to the Southern Ocean has resembled present-day conditions during the warm climate intervals, but was reduced during the cold stages. An increase in biological productivity may explain the various proxy data during the times of reduced North Atlantic Deep Water export. PMID:10879531

  16. Deep injection of waste water in the Western Canada sedimentary basin.

    PubMed

    Ferguson, Grant

    2015-01-01

    Injection of wastes into the deep subsurface has become a contentious issue, particularly in emerging regions of oil and gas production. Experience in other regions suggests that injection is an effective waste management practice and that widespread environmental damage is unlikely. Over the past several decades, 23 km(3) of water has been injected into the Western Canada Sedimentary Basin (WCSB). The oil and gas industry has injected most of this water but large amounts of injection are associated with mining activities. The amount of water injected into this basin during the past century is 2 to 3 orders magnitude greater than natural recharge to deep formations in the WCSB. Despite this large-scale disturbance to the hydrogeological system, there have been few documented cases of environmental problems related to injection wells. Deep injection of waste appears to be a low risk activity based on this experience but monitoring efforts are insufficient to make definitive statements. Serious uncharacterized legacy issues could be present. Initiating more comprehensive monitoring and research programs on the effects of injection in the WCSB could provide insight into the risks associated with injection in less developed sedimentary basins. PMID:24841226

  17. Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacial intensification

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Chalk, Thomas B.; Foster, Gavin L.; Gutjahr, Marcus

    2016-05-01

    The circulation and internal structure of the oceans exert a strong influence on Earth's climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss. Circulation change, particularly in the Atlantic Ocean, is widely suggested to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago. Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35-5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3-2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification and/or extensive sea-ice cover was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.

  18. Evidence for deep-water deposition of abyssal Mediterranean evaporites during the Messinian salinity crisis

    NASA Astrophysics Data System (ADS)

    Christeleit, Elizabeth C.; Brandon, Mark T.; Zhuang, Guangsheng

    2015-10-01

    Scientific drilling of the abyssal evaporites beneath the deepest parts of the Mediterranean basin gave rise to the idea that the Mediterranean sea completely evaporated at the end of the Messinian. Herein, we show, using new organic geochemical data, that those evaporites were deposited beneath a deep-water saline basin, not in a subaerial saltpan, as originally proposed. Abundant fossil organic lipids were extracted from evaporites in Mediterranean Deep Sea Drilling Project cores. The archaeal lipid distribution and new analyses, using the ACE salinity proxy and TEX86 temperature proxy, indicate that surface waters at the time of evaporite deposition had normal marine salinity, ranging from ∼26 to 34 practical salinity units, and temperatures of 25-28 °C. These conditions require a deep-water setting, with a mixed layer with normal marine salinity and an underlying brine layer at gypsum and halite saturation. After correction for isostatic rebound, our results indicate maximum drawdown of ∼2000 m and ∼2900 m relative to modern sea level in the western and eastern Mediterranean basins, respectively. Our results are consistent with previously proposed scenarios for sea level drawdown based on both subaerial and submarine incision and backfilling of the Rhone and Nile rivers, which require Messinian sea level drops of ∼1300 m and ∼200 m, respectively. This study provides new evidence for an old debate and also demonstrates the importance of further scientific drilling and sampling of deeper part of the abyssal Messinian units.

  19. Role of sea-level change in deep water deposition along a carbonate shelf margin, Early and Middle Permian, Delaware Basin: implications for reservoir characterization

    NASA Astrophysics Data System (ADS)

    Li, Shunli; Yu, Xinghe; Li, Shengli; Giles, Katherine A.

    2015-04-01

    The architecture and sedimentary characteristics of deep water deposition can reflect influences of sea-level change on depositional processes on the shelf edge, slope, and basin floor. Outcrops of the northern slope and basin floor of the Delaware Basin in west Texas are progressively exposed due to canyon incision and road cutting. The outcrops in the Delaware Basin were measured to characterize gravity flow deposits in deep water of the basin. Subsurface data from the East Ford and Red Tank fields in the central and northeastern Delaware Basin were used to study reservoir architectures and properties. Depositional models of deep water gravity flows at different stages of sea-level change were constructed on the basis of outcrop and subsurface data. In the falling-stage system tracts, sandy debris with collapses of reef carbonates are deposited on the slope, and high-density turbidites on the slope toe and basin floor. In the low-stand system tracts, deep water fans that consist of mixed sand/mud facies on the basin floor are comprised of high- to low-density turbidites. In the transgression and high-stand system tracts, channel-levee systems and elongate lobes of mud-rich calciturbidite deposits formed as a result of sea level rise and scarcity of sandy sediment supply. For the reservoir architecture, the fan-like debris and high-density turbidites show high net-to-gross ratio of 62 %, which indicates the sandiest reservoirs for hydrocarbon accumulation. Lobe-like deep water fans with net-to-gross ratio of 57 % facilitate the formation of high quality sandy reservoirs. The channel-levee systems with muddy calciturbidites have low net-to-gross ratio of 30 %.

  20. Deep Mediterranean Water footprint measured in the Strait of Gibraltar during the last decade.

    NASA Astrophysics Data System (ADS)

    Naranjo Rosa, Cristina; García Lafuente, Jesús; Sammartino, Simone; Sánchez Garrido, José Carlos

    2016-04-01

    Deep Mediterranean Water is formed during winter in the Mediterranean Sea due to atmospheric cooling of salty Mediterranean waters. When it reaches the Strait of Gibraltar it finally flows westward into the Atlantic, from where it begins to descend the continental slope by gravity while it mixes with the overlying waters and becomes lighter. Far beyond the strait itself it maintains a recognizable signal and so affects the thermohaline circulation of the Atlantic Ocean. Thus, the Strait of Gibraltar is the perfect site to monitor the interannual changes occurring over the whole Mediterranean Sea just before Mediterranean Waters incorporate to the Atlantic circulation. From October 2004 until today the Temperature and Salinity of the Mediterranean outflow through the Strait of Gibraltar have been monitored, resulting in a long-term temporal series with more than 11 years of measurements. A Conductivity-Temperature sensor is placed around 12 meters above the seafloor in the Espartel Sill (35°56'N 5°45'W), the last constriction the Mediterranean deep water finds before leaving the Mediterranean, and is configured to take measurements every 30 minutes. The instrument has been collecting data almost continuously from 2004, except for a 2.5 month gap in 2009 and a 5 months gap during 2011. This record allows the study of the long-term trend and the interannual changes occurring over the whole Mediterranean during the last 11 years. First results show a mean temperature of the deep Mediterranean waters of 13.20±0.06 °C and a mean salinity of 38.39±0.02. It is noteworthy the cold signals registered in 2006 and 2013, which could be the result of the severe winters of 2005 and 2012 in Europe, and the positive trend in 2015 toward warmer values. No significant trends have been found for the whole period. On the other hand, the time series exhibits a noticeable interannual variability that merits a deeper analysis.

  1. Contribution of hydraulically lifted deep moisture to the water budget in a Southern California mixed forest

    NASA Astrophysics Data System (ADS)

    Kitajima, Kuni; Allen, Michael F.; Goulden, Michael L.

    2013-12-01

    and shrubs growing in California's mountains rely on deep roots to survive the hot and dry Mediterranean climate summer. The shallow montane soil cannot hold enough water to support summer transpiration, and plants must access deeper moisture from the weathered bedrock. We used the HYDRUS-1D model to simulate the moisture flux through the soil-plant continuum in Southern California's San Jacinto Mountains. The mechanisms facilitating deep water access are poorly understood, and it is possible that either or both hydraulic lift and capillary rise contribute to the survival and activity of trees and soil microorganisms. We modified HYDRUS to incorporate hydraulic lift and drove it with meteorological and physiological data. The modeled quantity of water lifted hydraulically ranged from near zero during the wet months to ~28 mm month-1 in midsummer. Likewise, modeled capillary rise was negligible during the winter and averaged ~15 mm month-1 during June through November. Both mechanisms provided water to support evapotranspiration during the dry months. Isotopic measurements of xylem water for eight shrub and tree species confirmed the importance of a deep source of water. Conventional and automated minirhizotron observations showed that fine-root and rhizomorph biomass remained relatively constant year-round, while mycorrhizal hyphae biomass varied markedly, peaking in the wet season and declining by ~70% in the dry season. Model results predict that hydraulic lift and capillary rise play key roles in Southern California's mountains: they support evapotranspiration and photosynthesis during the summer drought; they contribute to the year-round survival of fine roots and soil microorganisms.

  2. Bioclogging and Biocementation in Construction of Water Pond in Sand

    NASA Astrophysics Data System (ADS)

    Chu, J.; Ivanov, V.; Stabnikov, V.; Li, B.

    2012-12-01

    Conventionally, compacted bentonite, geosynthetic clay liner or plastic liners are used to seal ponds, channels, and reservoirs in sand. Recently, a new approach to form a low permeability layer of several centimetres thick through the microbially induced calcium carbonate precipitation (MICP) process has been developed (Chu et al., 2012). This method has been adopted to build a laboratory scale water pond model in sand. Calcium solution for bioclogging and biocementation was supplied initially by spaying to form a layer of the clogged sand by precipitation in the pores and then by slow percolation from solution above sand surface, which formed a crust of calcite. This combination of bioclogging and biocementation formed a sand layer of 1 - 3 cm depth with low permeability. The permeability of sand after this treatment was reduced from the order of 10^-4 m/s to 10^-7 m/s when an average 2.1 kg of Ca per m^2 of sand surface was precipitated. The bending strengths of the walls and the base of the model pond were in the range of 90 to 256 kPa. The unconfined compressive strengths obtained from samples from the walls and the base were in the range of 215 to 932 kPa. The graded sand and uniform supply of calcium solution were used for the model pond construction but it was significant spatial three-dimensional heterogeneity of sand bioclogging and biocementation.

  3. 25 CFR 167.17 - Construction near permanent livestock water developments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Construction near permanent livestock water developments. 167.17 Section 167.17 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER NAVAJO GRAZING REGULATIONS § 167.17 Construction near permanent livestock water developments. (a)...

  4. 25 CFR 167.17 - Construction near permanent livestock water developments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Construction near permanent livestock water developments. 167.17 Section 167.17 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER NAVAJO GRAZING REGULATIONS § 167.17 Construction near permanent livestock water developments. (a)...

  5. 25 CFR 167.17 - Construction near permanent livestock water developments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Construction near permanent livestock water developments. 167.17 Section 167.17 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER NAVAJO GRAZING REGULATIONS § 167.17 Construction near permanent livestock water developments. (a)...

  6. 25 CFR 167.17 - Construction near permanent livestock water developments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Construction near permanent livestock water developments. 167.17 Section 167.17 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER NAVAJO GRAZING REGULATIONS § 167.17 Construction near permanent livestock water developments. (a) The District Grazing Committee shall regulate...

  7. Glacial/Interglacial changes of southwest Pacific intermediate- and deep-water circulation over the last 350,000 years

    NASA Astrophysics Data System (ADS)

    Ronge, Thomas; Tiedemann, Ralf; Prange, Matthias; Merkel, Ute; Kuhn, Gerhard; Lamy, Frank

    2015-04-01

    On glacial/interglacial timescales, Southern Ocean air-sea gas exchange is considered to be an important factor, driving the variability of atmospheric CO2 concentrations. To understand the role of oceanic variability in the global carbon cycle, it is necessary to reconstruct changes in deep- and intermediate-water circulation and chemistry of Southern Ocean water masses. In this context, our study aims on the reconstruction of glacial/interglacial changes in the vertical expansion of southwest Pacific Antarctic Intermediate Water. For our study, we compared isotope records (δ13C and δ18O) measured on the epibenthic foraminifera Cibicidoides wuellerstorfi from the Antarctic Intermediate Water and the Upper Circumpolar Deep Water (943 - 2066 m water depth) off New Zealand. We used two sediment cores from the Tasman Sea (MD06-2990 and MD06-2986), retrieved during R/V Marion Dufresne cruise MD152, and three sediment cores from the Bounty Trough east of New Zealand (MD97-2120, SO 213-82-1 and SO 213-84-1). Comparing these records, we can monitor changes in southwest Pacific water mass circulation over the past 350,000 years. Over this time period, we record a significant shoaling of the boundary between Antarctic Intermediate Water and Upper Circumpolar Deep Water during all glacial stages. We propose that freshwater input by melting sea ice into the glacial intermediate-water increased the buoyancy difference to underlying deep-waters, thus hampering the downward expansion of southwest Pacific Antarctic Intermediate Water during glacials. This interpretation is consistent with our modeling results, based on the Community Climate System model version 3, which also indicate a shoaling of glacial intermediate waters due to the input of meltwater. The glacial upward displacement of the water mass boundary significantly increased the vertical extent of circumpolar deep-waters, consequently extending the volume of the proposed glacial deep-water carbon pool.

  8. Renewal rates of east Atlantic deep water estimated by inversion of /sup 14/C data

    SciTech Connect

    Schlitzer, R.

    1987-03-15

    The renewal of the deep water of the East Atlantic and its large-scale internal circulation are studied on the basis of the distributions of potential temperature, silicate, ..sigma..CO/sub 2/, and /sup 14/C. An isopycnal multibox model including advection, mixing, and sources and sinks is set up and described. Tracer data are input for the model, and balance equations for the various properties for the boxes of the model serve as constraints for the determination of water fluxes, mixing coefficients, and source parameters. Extremal values for various model parameters that are consistent with the tracer data (satisfy the balance equations within the estimated tolerances) are calculated by linear programming techniques. /sup 14/C data are seen to be valuable in determining absolute flow rates. Model results confirm the importance of the Romanche Fracture Zone for the renewal of east Atlantic deep water. Eastward flows through the Romanche Fracture Zone were found to be between 2.6 and 5.1 Sv. Flows through the Vema Fracture Zone amount to at most 20% of the Romanche Fracture Zone inflow. Contributions of Antarctic Bottom Water at the southern end of the East Atlantic and of Iceland Scotland Overflow Water at the northern end are very small (<5% of equatorial inflow). Diapycnal mixing coefficients are between 1 and 10 cm/sup 2//s, and values for the dissolution rates of silicate and carbon are in the expected range.

  9. Source and transport of human enteric viruses in deep municipal water supply wells

    USGS Publications Warehouse

    Bradbury, Kenneth R.; Borchardt, Mark A.; Gotkowitz, Madeline; Spencer, Susan K.; Zhu, Jun; Hunt, Randall J.

    2013-01-01

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. During 2008 and 2009 we collected a time series of virus samples from six deep municipal water-supply wells. The wells range in depth from approximately 220 to 300 m and draw water from a sandstone aquifer. Three of these wells draw water from beneath a regional aquitard, and three draw water from both above and below the aquitard. We also sampled a local lake and untreated sewage as potential virus sources. Viruses were detected up to 61% of the time in each well sampled, and many groundwater samples were positive for virus infectivity. Lake samples contained viruses over 75% of the time. Virus concentrations and serotypes observed varied markedly with time in all samples. Sewage samples were all extremely high in virus concentration. Virus serotypes detected in sewage and groundwater were temporally correlated, suggesting very rapid virus transport, on the order of weeks, from the source(s) to wells. Adenovirus and enterovirus levels in the wells were associated with precipitation events. The most likely source of the viruses in the wells was leakage of untreated sewage from sanitary sewer pipes.

  10. Late Quaternary Variability in the Deep Water Exchange Between South Atlantic, Southern and Indian Oceans

    NASA Astrophysics Data System (ADS)

    Leuschner, D. C.; Krueger, S.; Ehrmann, W.; Schmiedl, G.; Kuhn, G.; Mackensen, A.; Diekmann, B.

    2005-12-01

    The Southern Ocean, south of Africa, is an important mixing region for northern and southern derived deep-water masses. In this region, the North Atlantic Deep Water (NADW) extends southward into the Circumpolar Deep Water (CDW) dividing it into an upper (UCDW) and a lower (LCDW) layer. Thus, marine sediments from this area are a sensitive recorder for changes of the paleocirculation and relative variations in the deep-water formation in both, the northern Atlantic and Antarctic regions. Here we present results from the EXCHANGE Project which is located in this transition zone of the South Atlantic, the Southern Ocean and the Indian Ocean. In this project we investigate six sediment cores taken along a transect from continental slope at the southern tip of Africa towards the Conrad Rise. Pronounced glacial/interglacial variations in the dominance of NADW and LCDW across the transect are reflected in the clay mineral assemblage and carbon isotope composition of benthic foraminifera. High kaolinite/chlorite-ratios associated with high stable carbon isotope ratios indicate stronger influence of NADW during interglacials. In contrast, glacials are dominated by southern-derived LCDW. Our results suggest a fast southward advance of NADW-dominance during the last two terminations while the northward retreat of NADW, with the onset of glacial conditions, is more gradual. In general, interglacial sediments are also characterized by higher mean grain size diameters in the terrigenous silt fraction (10 to 63 microns), thus indicating stronger bottom currents. However, maximum grain size and sortable silt values are reached at the early stages of the last two glacial periods. Due to the generally weakened bottom current strength, as a result of reduced deep water formation, we would expect smaller values when compared with interglacial conditions. We therefore assume that eolian dust input from the Patagonian region plays a significant role especially in the early glacial

  11. Use of deep water lagoons for reducing sewage toxicity prior to wastewater treatment

    SciTech Connect

    Shaw, J.R.; Zuiderveen, J.A.; Belcher, B.; McGinley, P.; Birge, W.J.

    1995-12-31

    Investigations were conducted to determine the effectiveness of deep lagoons as a means of minimizing toxicity and reducing wastewater parameters. A lagoon system associated with a wastewater treatment plant (WWTP) was selected for study and parameters identified for monitoring included toxicity, metal concentrations, total suspended solids (TSS) and ammonia. This system included two lagoons, with 7--15 day hydraulic retention times, which received municipal waste. Toxicity and other parameters were measured for raw influent water, the two lagoon outfalls, and the final WWTP effluent. In a definitive seven-day chronic test with Ceriodaphnia dubia, the NOEC of influent water was 20%, and the IC{sub 50} for reproduction was 22.3%. Outfall from the first deep water lagoon showed reduced toxicity. The NOEC and IC{sub 50} were 80 and 71.8%, respectively. Further reduction in toxicity occurred in the second lagoon. The NOEC was 80% and the IC{sub 50} was 75.9. The final effluent discharged from the treatment plant affected neither survival nor fecundity. A 7-day embryo larval test conducted with Pimephales promelas yielded similar results. NOEC values increased through the lagoon system and were 2.5, 40.0, 40.0 and 100%, respectively. Acute TIE procedures implicated both metals and ammonia as primary toxicants. In all tests a sequential reduction in toxicity was observed through the lagoons. Results of this investigation support the use of deep water lagoons as an effective and economical means of pretreating wastewater. This approach offers promise for municipal waters, industrial effluents and stormwater runoff.

  12. Environmental setting of deep-water oysters in the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Van Rooij, D.; De Mol, L.; Le Guilloux, E.; Wisshak, M.; Huvenne, V. A. I.; Moeremans, R.; Henriet, J.-P.

    2010-12-01

    We report the northernmost and deepest known occurrence of deep-water pycnodontine oysters, based on two surveys along the French Atlantic continental margin to the La Chapelle continental slope (2006) and the Guilvinec Canyon (2008). The combined use of multibeam bathymetry, seismic profiling, CTD casts and a remotely operated vehicle (ROV) made it possible to describe the physical habitat and to assess the oceanographic control for the recently described species Neopycnodonte zibrowii. These oysters have been observed in vivo in depths from 540 to 846 m, colonizing overhanging banks or escarpments protruding from steep canyon flanks. Especially in the Bay of Biscay, such physical habitats may only be observed within canyons, where they are created by both long-term turbiditic and contouritic processes. Frequent observations of sand ripples on the seabed indicate the presence of a steady, but enhanced bottom current of about 40 cm/s. The occurrence of oysters also coincides with the interface between the Eastern North Atlantic Water and the Mediterranean Outflow Water. A combination of this water mass mixing, internal tide generation and a strong primary surface productivity may generate an enhanced nutrient flux, which is funnelled through the canyon. When the ideal environmental conditions are met, up to 100 individuals per m² may be observed. These deep-water oysters require a vertical habitat, which is often incompatible with the requirements of other sessile organisms, and are only sparsely distributed along the continental margins. The discovery of these giant oyster banks illustrates the rich biodiversity of deep-sea canyons and their underestimation as true ecosystem hotspots.

  13. Deep water temperature, carbonate ion, and ice volume changes across the Eocene-Oligocene climate transition

    NASA Astrophysics Data System (ADS)

    Pusz, A. E.; Thunell, R. C.; Miller, K. G.

    2011-06-01

    Paired benthic foraminiferal stable isotope and Mg/Ca data are used to estimate bottom water temperature (BWT) and ice volume changes associated with the Eocene-Oligocene Transition (EOT), the largest global climate event of the past 50 Myr. We utilized ODP Sites 1090 and 1265 in the South Atlantic to assess seawater δ18O (δw), Antarctic ice volume, and sea level changes across the EOT (˜33.8-33.54 Ma). We also use benthic δ13C data to reconstruct the sources of the deep water masses in this region during the EOT. Our data, together with previously published records, indicate that a pulse of Northern Component Water influenced the South Atlantic immediately prior to and following the EOT. Benthic δ18O records show a 0.5‰ increase at ˜33.8 Ma (EOT-1) that represents a ˜2°C cooling and a small (˜10 m) eustatic fall that is followed by a 1.0‰ increase associated with Oi-1. The expected cooling of deep waters at Oi-1 (˜33.54 Ma) is not apparent in our Mg/Ca records. We suggest the cooling is masked by coeval changes in the carbonate saturation state (Δ[CO32-]) which affect the Mg/Ca data. To account for this, the BWT, ice volume, and δw estimates are corrected for a change in the Δ[CO32-] of deep waters on the basis of recently published work. Corrected BWT at Sites 1090 and 1265 show a ˜1.5°C cooling coincident with Oi-1 and an average δw increase of ˜0.75‰. The increase in ice volume during Oi-1 resulted in a ˜70 m drop in global sea level and the development of an Antarctic ice sheet that was near modern size or slightly larger.

  14. Reconstructing late Quaternary deep-water masses in the eastern Arctic Ocean using benthonic Ostracoda

    USGS Publications Warehouse

    Jones, R. Ll; Whatley, R.C.; Cronin, T. M.; Dowsett, H.J.

    1999-01-01

    The distribution of Ostracoda in three long cores from the deep eastern Arctic Ocean was studied to determine the palaeoceanographical history of the Eurasian Basin during the late Quaternary. The samples for this study were obtained from the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau during the Arctic 91 expedition. Ostracoda previously studied in coretops at the same sites as the present study have shown that individual species have a strong association with different water masses and bathymetry. Throughout the late Quaternary, cores exhibit ostracod-rich layers separated by barren intervals. On the basis of biostratigraphical, isotopic and palaeomagnetic data the fossiliferous levels are interpreted as representing interglacial stages. The twenty most significant species were selected for subsequent quantitative investigation using Cluster and Factor analyses, in order to determine similarity and variance between the assemblages. An additional statistical method employing Modern Analogues and the Squared Chord Distance dissimilarity coefficient was utilized to compare the present late Quaternary fossil samples with a modern Arctic database. The results reveal a major faunal division within the Arctic Ocean Deep Water (AODW). Highly abundant and diverse assemblages within the cores were found to group and have good analogues with the Recent bathyal depth (1000-2500 m) upper AODW assemblages. Conversely, assemblages with low abundance and diversity correlate well with abyssal depth (> 3000 m) lower AODW assemblages. The palaeoceanographical history is complicated by the influence of adjacent water masses such as Canada Basin Deep Water (CBDW), Greenland Sea Deep Water (GSDW) and most importantly, Arctic Intermediate Water (AIW), which all had an influence on the ostracod assemblages during the late Quaternary. An enhanced flow of warm saline AIW into the Eurasian Basin results in species-rich upper AODW assemblages having good analogues down to 2750 m

  15. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications.

    PubMed

    Dai, Yuntao; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2015-11-15

    Previously it was demonstrated that natural deep eutectic solvents (NADES) are promising green solvents for the extraction of natural products. However, despite their potential, an obvious disadvantage of NADES is the high viscosity. Here we explored the dilution effect on the structures and physicochemical properties of NADES and their improvements of applications using quercetin and carthamin. The results of FT-IR and (1)H NMR experiments demonstrated that there are intensive H-bonding interactions between the two components of NADES and dilution with water caused the interactions weaken gradually and even disappeared completely at around 50% (v/v) water addition. A small amount of water could reduce the viscosity of NADES to the range of water and increase the conductivity by up to 100 times for some NADES. This study provides the basis for modulating NADES in a controllable way for their applications in food processing, enzyme reactions, pharmaceuticals and cosmetics. PMID:25976992

  16. The Deep Cool Terrestrial Biosphere: Habitability of ancient fracture waters of the Canadian Shield (Invited)

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Ballentine, C. J.; Holland, G.; Li, L.; Slater, G. F.; Moser, D. P.

    2013-12-01

    Ancient saline fractures waters in Precambrian rocks of the Canadian Shield contain mM concentrations of dissolved CH4 and higher hydrocarbons, and in particular up to 7 mM H2 derived from radiolysis and/or serpentinization. At 2.8 km depths in the Mponeng gold mine in the Witwatersrand basin South Africa, similar groundwater systems host some of the deepest communities of H2-utilizing sulphate-reducing microbes yet identified, in waters with noble gas derived residence times on the order of tens of Ma [1, 2]. Such H2-rich environments, in fracture waters in gold mines in South Africa, in deep groundwaters from the Canadian and Fennoscandian Shields, in hydrothermal marine vents and terrestrial hot springs, are the focus of research programs designed to expand our understanding of the habitability of Earth. Results on the geochemistry and geobiology of these systems are providing important insights into the habitability of Mars and other planets and moons in our solar system. Despite the fact that Precambrian cratons constitute > 30% of the Earth's exposed continents, the habitability of deep saline fractures waters in these rocks has been significantly under-investigated to date. Unlike high-temperature hydrothermal systems on the seafloor or continental hot springs, where extensive fluid circulation and mixing with ocean or surface waters respectively rapidly deplete the products of water-rock reaction such as H2, the hydrogeologically isolated fracture waters in tectonically quiescent Precambrian Shield rock provide virtual 'time capsules'. Therein, despite the slower rates of water-gas-rock reactions, the products of water-rock reaction, and potential substrates for microbial life can accumulate and build up high concentrations over geologically long time scales. Recent results from a copper-zinc mine near Timmins Ontario Canada revealed free flowing fracture waters at 2.4 km below surface of an unparalleled antiquity. Coupling geochemical evidence from the

  17. Estimation of the denitrification in Baltic Sea deep water from gas tension measurements

    NASA Astrophysics Data System (ADS)

    Loeffler, Annekatrin; Schmidt, Martin; Schneider, Bernd

    2010-05-01

    Denitrification is considered to be the most important process removing nitrogen in oceanic waters. 50-70% of marine denitrification occurs in organic rich sediments and oxygen depleted water bodies of continental shelf regions or marginal seas like the Baltic Sea, where a high percentage of riverine discharge of nitrogen is denitrified before entering the open ocean. Measurements of the gas tension (= sum of the partial pressures of all dissolved gases in the water) provide a new experimental way for the quantification of denitrification by directly measuring the reaction product of this process. Continuous pumping of water from a defined depth trough the gas tension device with a pump-CTD allows getting integrated results. Changes in N2 concentrations were calculated from gas tension by subtracting the partial pressures of the most important other dissolved gases (O2, Ar, CO2, H2S, water vapor). The pO2, pCO2 and H2S-concentrations were measured; other parameters (pAr, pH2O, solubility coefficients) were obtained from temperature and salinity. The method allows the estimation of N2-concentrations with a maximum error of 0.5%, corresponding to a standard error of 1.5 μmol L-1. Results of gas tension measurements and calculation of N2 concentrations in the Gotland Basin deep water, central Baltic Sea, from 2008 and 2009 are presented. In the deep water below the permanent halocline the estimated N2 partial pressure is continuously rising towards the oxygen depleted water layers. The calculated N2 excess compared to equilibrium concentration reached values up to 20 μmol N2 L-1 in the stagnant anoxic water layer, indicating a mean N release of 10 μmol N L-1 y-1 after 4 years of stagnation. The increase of total dissolved inorganic nitrogen (due to the N2 excess and formation of ammonium in the deep water) in relation to nitrogen background values was compared with the increase of total inorganic carbon due to mineralization processes. The resulting C:N ratios were

  18. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    SciTech Connect

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during

  19. Characteristics of the deep ocean carbon system during the past 150,000 years: ΣCO2 distributions, deep water flow patterns, and abrupt climate change

    PubMed Central

    Boyle, Edward A.

    1997-01-01

    Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-ΣCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower ΣCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more ΣCO2-depleted and deep waters are ΣCO2-enriched compared with the waters of the present. In the northern Indian Ocean, δ13C and Cd data are consistent with upper water ΣCO2 depletion relative to the present. There is no evident proximate source of this ΣCO2-depleted water, so I suggest that ΣCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000–130,000 years before the present). PMID:11607737

  20. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site

    SciTech Connect

    Takizawa, M.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    1994-01-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. (Copyright (c) 1993, American Society for Microbiology.)

  1. Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption.

    PubMed

    Valentine, David L; Mezić, Igor; Maćešić, Senka; Črnjarić-Žic, Nelida; Ivić, Stefan; Hogan, Patrick J; Fonoberov, Vladimir A; Loire, Sophie

    2012-12-11

    The irruption of gas and oil into the Gulf of Mexico during the Deepwater Horizon event fed a deep sea bacterial bloom that consumed hydrocarbons in the affected waters, formed a regional oxygen anomaly, and altered the microbiology of the region. In this work, we develop a coupled physical-metabolic model to assess the impact of mixing processes on these deep ocean bacterial communities and their capacity for hydrocarbon and oxygen use. We find that observed biodegradation patterns are well-described by exponential growth of bacteria from seed populations present at low abundance and that current oscillation and mixing processes played a critical role in distributing hydrocarbons and associated bacterial blooms within the northeast Gulf of Mexico. Mixing processes also accelerated hydrocarbon degradation through an autoinoculation effect, where water masses, in which the hydrocarbon irruption had caused blooms, later returned to the spill site with hydrocarbon-degrading bacteria persisting at elevated abundance. Interestingly, although the initial irruption of hydrocarbons fed successive blooms of different bacterial types, subsequent irruptions promoted consistency in the structure of the bacterial community. These results highlight an impact of mixing and circulation processes on biodegradation activity of bacteria during the Deepwater Horizon event and suggest an important role for mixing processes in the microbial ecology of deep ocean environments. PMID:22233808

  2. Direct nutritional link between 600-m deep cold-water corals and surface productivity

    NASA Astrophysics Data System (ADS)

    Soetaert, Karline; Mohn, Christian; Rengstorff, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-04-01

    Cold-water corals (CWC) form deep-sea reefs that are found in all of the world's oceans, with an areal extent at par with that of tropical coral reefs, and are recognised hotspots of biodiversity and metabolic activity. Yet, it remains largely enigmatic how these rich CWC reefs can thrive in a cold and dark environment that is considered to be strongly food-limited. Here, we use a novel benthic-pelagic modeling approach, which involves coupling models of hydrodynamics, biogeochemistry and habitat suitability, to unravel organic matter delivery to reef mounds at a water depth of 600 m that are capped with a thriving CWC reef community at Rockall Bank (NE Atlantic). Model simulations show that the interaction between 300-m high reef mounds and spring tidal currents induces episodic downwelling events that establish a vertical coupling between 600-m deep CWC with surface productivity. We therefore conclude that there is a positive feedback between CWC mound growth and organic matter supply. This episodic downwelling strongly enhances carbon sequestration to the deep ocean and the ubiquitous occurrence of topographic rises along the ocean margins suggests that a topographically-induced benthic-pelagic carbon pump could be of global importance.

  3. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway

    PubMed Central

    Bell, David B.; Jung, Simon J. A.; Kroon, Dick; Hodell, David A.; Lourens, Lucas J.; Raymo, Maureen E.

    2015-01-01

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7–4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ13C) and oxygen (δ18O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ13C and δ18O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate. PMID:26193070

  4. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway.

    PubMed

    Bell, David B; Jung, Simon J A; Kroon, Dick; Hodell, David A; Lourens, Lucas J; Raymo, Maureen E

    2015-01-01

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7-4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ(13)C) and oxygen (δ(18)O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ(13)C and δ(18)O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate. PMID:26193070

  5. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes.

    PubMed

    Peyer, Suzanne M; Hermanson, John C; Lee, Carol Eunmi

    2010-08-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such difference are unknown. We examined whether quagga mussel shell morphology could be induced by three environmental variables through developmental plasticity. We predicted that shallow-water conditions (high temperature, food quantity, water motion) would yield a morphotype typical of wild quagga mussels from shallow habitats, while deep-water conditions (low temperature, food quantity, water motion) would yield a morphotype present in deep habitats. We tested this prediction by examining shell morphology and growth rate of quagga mussels collected from shallow and deep habitats and reared under common-garden treatments that manipulated the three variables. Shell morphology was quantified using the polar moment of inertia. Of the variables tested, temperature had the greatest effect on shell morphology. Higher temperature (approximately 18-20 degrees C) yielded a morphotype typical of wild shallow mussels regardless of the levels of food quantity or water motion. In contrast, lower temperature (approximately 6-8 degrees C) yielded a morphotype approaching that of wild deep mussels. If shell morphology has functional consequences in particular habitats, a plastic response might confer quagga mussels with a greater ability than zebra mussels to colonize a wider range of habitats within the Great Lakes. PMID:20639421

  6. AUV Reveals Deep-Water Coral Mound Distribution, Morphology and Oceanography in the Florida Straits

    NASA Astrophysics Data System (ADS)

    Grasmueck, M.; Eberli, G. P.; Viggiano, D. A.; Correa, T.; Rathwell, G.; Luo, J.

    2006-12-01

    Since the 1960's dredge sampling and submersible dives have discovered numerous mound-forming deep- water corals in water depths of 400-800 m in the Straits of Florida. This extensive collection of samples and observations however can not be put into a geomorphologic context as existing bathymetric charts do not resolve coral mounds. To make progress in understanding the distribution and genesis of coral mounds, maps of morphology and oceanographic conditions resolving features at the 1-10 m scale are needed. On 11-18 December 2005 the C-Surveyor II(TM) mapped five sites ranging from 14-48 km2 in 590-875 m water acquiring 1-3 m resolution bathymetry and acoustic backscatter together with subbottom profiles, current vectors, salinity, and temperature. The areas mapped with the AUV contain hundreds of coral mounds with heights of 1-120 m. Mound distribution, morphology and currents are different for each survey site. Coral mounds develop on off-bank transported sediment ridges and slump features at the toe-of-slope of Great Bahama bank, while chevron pattern ridges and sinusoidal ridges are found further east in the Straits. Currents range from 0.1-0.5 m/s. At two sites currents reversed every 6 hours indicating tidal control. The AUV surveys and subsequent ground truthing with a drop camera and a submersible revealed a surprising abundance and diversity of deep-water coral habitats. The boundaries between mound fields and the barren muddy or sandy seafloor are sharp. Hull- mounted multi-beam reconnaissance mapping helped us select the most promising coral mound areas to optimize the use of valuable AUV time. Such combined use of hull-mounted and AUV-based mapping enables efficient environmental characterization of large deep-water regions such as the Florida Straits. The synoptic high-resolution datasets acquired by the multiple sensors on board the AUV enable for the first time a comprehensive assessment of deep-water coral mound ecosystems. Utilization of such

  7. Eocene to Miocene Southern Ocean Deep Water Circulation Revealed From Fossil Fish Teeth Nd Isotopes

    NASA Astrophysics Data System (ADS)

    Scher, H.; Martin, E. E.

    2001-12-01

    We have evaluated Nd and Sr isotopic compositions of cleaned fossil fish teeth for the late Eocene to early Miocene from ODP site 1090 (43° S, 9° E, 3599 m) in the Atlantic sector of the Southern Ocean. Using an age model based on biostratigraphy and paleomagnetics, Sr isotopic values from the fossil fish teeth tend to plot slightly below the seawater curve. This offset may be due to early diagenetic reactions, but overall the seawater trace metal chemistry appears to be well preserved in these samples. At site 1090, \\epsilonNd values increase from ~-7.5 at 39 Ma to ~-6 at 35 Ma and stay at this value until ~28.5 Ma. A high resolution Nd isotope record demonstrates steadily decreasing \\epsilonNd values from -6 to -8 between 28.5 and 23 Ma. Sampling during this interval reveals two rapid oscillations (<.5 Myr) in \\epsilonNd values superimposed on this decreasing trend; a one \\epsilonNd unit decrease at ~26 Ma and a one \\epsilonNd unit increase at ~23 Ma. Bottom water Nd composition is controlled by deep-water circulation, dissolved and particulate riverine inputs, and eolian inputs. In the late Eocene, bottom waters at site 1090 became increasingly radiogenic as benthic \\delta18O values began to reflect cooler deep-sea temperatures and the growth of ice sheets on Antarctica. It has been speculated that deep water in the Southern Ocean during the Eocene may have had a Tethyan origin. The shift toward radiogenic values at Site 1090 may reflect decreasing flow of nonradiogenic seawater from this low latitude deepwater source (modern Mediterranean \\epsilonNd ~-9). It may also be a result of the emergence of ice sheets on Antarctica, which reduced chemical weathering of nonradiogenic material into Southern Ocean. Although we anticipated that the opening of Drake Passage would introduce radiogenic Pacific waters into the Southern Atlantic, decreasing \\epsilonNd values coincide with age estimates for the opening based on geophysical data. Ocean circulation models

  8. Basin-wide N2 fixation in the deep waters of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Benavides, Mar; Bonnet, Sophie; Hernández, Nauzet; Martínez-Pérez, Alba María.; Nieto-Cid, Mar; Álvarez-Salgado, Xosé Antón; Baños, Isabel; Montero, María. F.; Mazuecos, Ignacio P.; Gasol, Josep M.; Osterholz, Helena; Dittmar, Thorsten; Berman-Frank, Ilana; Arístegui, Javier

    2016-06-01

    Recent findings indicate that N2 fixation is significant in aphotic waters, presumably due to heterotrophic diazotrophs depending on organic matter for their nutrition. However, the relationship between organic matter and heterotrophic N2 fixation remains unknown. Here we explore N2 fixation in the deep chlorophyll maximum and underneath deep waters across the whole Mediterranean Sea and relate it to organic matter composition, characterized by optical and molecular methods. Our N2 fixation rates were in the range of those previously reported for the euphotic zone of the Mediterranean Sea (up to 0.43 nmol N L-1 d-1) and were significantly correlated to the presence of relatively labile organic matter with fluorescence and molecular formula properties representative for peptides and unsaturated aliphatics and associated with the presence of more oxygenated ventilated water masses. Finally, and despite that the aphotic N2 fixation contributes largely to total water column diazotrophic activity (>50%), its contribution to overall nitrogen inputs to the basin is negligible (<0.5%).

  9. 75 FR 23189 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... the GOA (75 FR 11749, March 12, 2010), for the period 1200 hrs, A.l.t., April 1, 2010, through 1200..., deep-water flatfish, rex sole, and arrowtooth flounder. This closure does not apply to fishing...

  10. 75 FR 38939 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Catcher...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ...(d), the final 2010 and 2011 harvest specifications for groundfish of the GOA (75 FR 11749, March 12... deep-water flatfish, rex sole, and arrowtooth flounder. After the effective date of this closure...

  11. 77 FR 46338 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... groundfish of the GOA (77 FR 15194, March 14, 2012), for the period 1200 hrs, A.l.t., July 1, 2012, through..., rockfish, deep-water flatfish, rex sole, and arrowtooth flounder. This closure does not apply to fishing...

  12. 78 FR 30242 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... the GOA (78 FR 13162, February 26, 2013), for the period 1200 hours, A.l.t., April 1, 2013, through..., rockfish, deep-water flatfish, rex sole, and arrowtooth flounder. This closure does not apply to fishing...

  13. Plastic debris ingested by deep-water fish of the Ionian Sea (Eastern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Anastasopoulou, Aikaterini; Mytilineou, Chryssi; Smith, Christopher J.; Papadopoulou, Konstantia N.

    2013-04-01

    Debris has been recognized as a global environmental problem including within deep habitats. From 26 fish species (1504 specimens) caught in the Eastern Ionian Sea during deep-water long-line surveys, plastic debris was found in 24 individuals of Galeus melastomus (3.2%) and single individuals of Pteroplatytrygon violacea, Squalus blainville, Etmopterus spinax, and Pagellus bogaraveo. The occurrence of debris among their food was infrequent. Ingested debris included primarily plastics (86.5%) and to a lesser extent pieces of metal and wood. Among ingested plastics, fragments of hard plastic material constituted the highest proportion (56.0%), followed by plastic bag fragments (22.0%), fragments of fishing gears (19.0%) and textile fibers (3.0%). Among the species with ingested debris, G. melastomus swallowed all debris categories; P. violacea and S. blainville ingested plastic bag fragments, whereas pieces of hard plastics were found in E. spinax and P. bogaraveo.

  14. The effects of construction on water quality: a case study of the culverting of Abram Creek.

    PubMed

    Houser, Darci L; Pruess, Heidi

    2009-08-01

    While sediment is a leading cause of impaired water, studies have shown that construction activities incorporating best management practices (BMPs) can be conducted without lasting detrimental effects on water quality. This paper examines the water quality impacts of a construction project involving the culverting of a creek to allow for the construction of a runway at an airport in Cleveland, Ohio. Sampling parameters included total suspended solids (TSS), dissolved oxygen (DO), pH, conductivity, and temperature. To assess the effects of the construction project conducted using appropriate BMPs, weekly water quality samples were taken upstream and downstream from the construction site. The samples were categorized as baseline, active construction, and post-construction to isolate the effects of the construction activities. t tests were used to compare upstream and downstream data for each of the parameters and ANOVA was used to compare the individual water quality parameters in the three sampling periods to see if there were significant increases or decreases of the water quality parameters within the phases. Results of ANOVA indicate there were no statistically significant differences between upstream and downstream in the mean sample results for TSS, conductivity, and pH when comparing the three phases. While the descriptive statistics conducted on the data illustrated minor variation in the upstream, downstream, and between phase comparisons, the results of the t tests helped to strengthen the theory that construction projects utilizing appropriate BMPs can yield minimal impact on overall water quality of surrounding water bodies. PMID:18629442

  15. Early life history of deep-water gorgonian corals may limit their abundance.

    PubMed

    Lacharité, Myriam; Metaxas, Anna

    2013-01-01

    Deep-water gorgonian corals are long-lived organisms found worldwide off continental margins and seamounts, usually occurring at depths of ∼200-1,000 m. Most corals undergo sexual reproduction by releasing a planktonic larval stage that disperses; however, recruitment rates and the environmental and biological factors influencing recruitment in deep-sea species are poorly known. Here, we present results from a 4-year field experiment conducted in the Gulf of Maine (northwest Atlantic) at depths >650 m that document recruitment for 2 species of deep-water gorgonian corals, Primnoa resedaeformis and Paragorgia arborea. The abundance of P. resedaeformis recruits was high, and influenced by the structural complexity of the recipient habitat, but very few recruits of P. arborea were found. We suggest that divergent reproductive modes (P. resedaeformis as a broadcast spawner and P. arborea as a brooder) may explain this pattern. Despite the high recruitment of P. resedaeformis, severe mortality early on in the benthic stage of this species may limit the abundance of adult colonies. Most recruits of this species (∼80%) were at the primary polyp stage, and less than 1% of recruits were at stage of 4 polyps or more. We propose that biological disturbance, possibly by the presence of suspension-feeding brittle stars, and limited food supply in the deep sea may cause this mortality. Our findings reinforce the vulnerability of these corals to anthropogenic disturbances, such as trawling with mobile gear, and the importance of incorporating knowledge on processes during the early life history stages in conservation decisions. PMID:23762358

  16. Early Life History of Deep-Water Gorgonian Corals May Limit Their Abundance

    PubMed Central

    Lacharité, Myriam; Metaxas, Anna

    2013-01-01

    Deep-water gorgonian corals are long-lived organisms found worldwide off continental margins and seamounts, usually occurring at depths of ∼200–1,000 m. Most corals undergo sexual reproduction by releasing a planktonic larval stage that disperses; however, recruitment rates and the environmental and biological factors influencing recruitment in deep-sea species are poorly known. Here, we present results from a 4-year field experiment conducted in the Gulf of Maine (northwest Atlantic) at depths >650 m that document recruitment for 2 species of deep-water gorgonian corals, Primnoa resedaeformis and Paragorgia arborea. The abundance of P. resedaeformis recruits was high, and influenced by the structural complexity of the recipient habitat, but very few recruits of P. arborea were found. We suggest that divergent reproductive modes (P. resedaeformis as a broadcast spawner and P. arborea as a brooder) may explain this pattern. Despite the high recruitment of P. resedaeformis, severe mortality early on in the benthic stage of this species may limit the abundance of adult colonies. Most recruits of this species (∼80%) were at the primary polyp stage, and less than 1% of recruits were at stage of 4 polyps or more. We propose that biological disturbance, possibly by the presence of suspension-feeding brittle stars, and limited food supply in the deep sea may cause this mortality. Our findings reinforce the vulnerability of these corals to anthropogenic disturbances, such as trawling with mobile gear, and the importance of incorporating knowledge on processes during the early life history stages in conservation decisions. PMID:23762358

  17. An algorithm to detect tropical deep convective clouds through AMSU-B water vapor channels

    NASA Astrophysics Data System (ADS)

    Xu, Xu; Georg, Heygster; Zhang, Suping

    2009-03-01

    An algorithm to detect tropical deep convective clouds and deep convective overshootings based on the measurements from the three water vapor channels (183.3 GHz±1 GHz, 183.3 GHz±3 GHz and 183.3 GHz±7 GHz) of the Advanced Microwave Sounding Unit-B (AMSU-B) is presented. This algorithm is an improved version of the method of Hong et al. (2005). The proposed procedure is based on the statistical analysis of seven years’ (2001-2007) measurements from AMSU-B on NOAA-16. From the 1-d histograms of the brightness temperature of the three water vapor channels and the 2-d histograms of the brightness temperature difference between these channels, new thresholds for brightness temperature differences and the brightness temperature of channel 18 (183.3 GHz±1 GHz) are suggested. The new algorithm is employed to investigate the mean distribution of tropical deep convective clouds and convective overshootings from 30°S to 30°N for the years 2001 to 2007. The major concentration of deep convective clouds and convective overshootings is found over the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), tropical Africa, South America, the Indian Ocean and Indonesia with an average fraction of 0.4%. In terms of these clouds we identify the secondary Intertropical Convergence Zone located in the eastern South Pacific and parallel to the main ITCZ in the North Pacific. The convective overshooting is more frequently observed over land than over the ocean.

  18. Oxygen and hydrogen isotopes in deep thermal waters from the South Meager Creek geothermal area, British Columbia, Canada

    SciTech Connect

    Ghomshei, M.M. ); Clark, I.D. )

    1993-04-01

    Deuterium and oxygen-18 ([sup 18]O) have been measured in deep thermal, shallow thermal and non-thermal water samples collected at various times between 1982 and 1989 from the Meager Creek area, with the aim of assessing the origin of the thermal waters. The isotopic composition of the reservoir waters ([delta][sup 18]O = [minus]13[per thousand] and [delta]D= [minus]114.8[per thousand]) was calculated from data on post-flash deep thermal waters, using a two-stage steam loss model. The reservoir composition shows an oxygen shift of 2.4[per thousand] relative to the local meteoric water line. The composition of the recharge, obtained by removing the oxygen shift, is isotopically heavier than the average local meteoric waters, suggesting that the recharge may be from an area to the west of Mt Meager where isotopically heavier ground-waters are likely to be found. The small [delta][sup 18]O shift of the deep high-temperature waters is indicative of dominance of fracture-related permeability in the reservoir. Analyses of the chemistry and the temperature of the waters from hot springs and shallow thermal wells suggests that these waters have evolved from the deep geothermal waters through dilution by meteoric waters and about 40C adiabatic cooling (steam loss).

  19. Seafloor bathymetry in deep and shallow water marine CSEM responses of Nigerian Niger Delta oil field: Effects and corrections

    NASA Astrophysics Data System (ADS)

    Folorunso, Adetayo Femi; Li, Yuguo

    2015-12-01

    Topography distortions in bathymetrically acquired marine Controlled-Source Electromagnetic (mCSEM) responses are capable of misleading interpretation to the presence or absence of the target if not corrected for. For this reason, the effects and correction of bathymetry distortions on the deep and shallow seafloor mCSEM responses of the Niger Delta Oil province were examined in this paper. Marine CSEM response of the Niger Delta geological structure was modelled by using a 2.5D adaptive finite element forward modelling code. In both the deep water and shallow water cases, the bathymetry distortions in the electric field amplitude and phase were found to get smaller with increasing Tx-Rx offsets and contain short-wavelength components in the amplitude curves which persist at all Tx-Rx offsets. In the deep water, topographic effects on the reservoir signatures are not significant, but as water depth reduces, bathymetric distortions become more significant as a result of the airwave effects, masking the target signatures. The correction technique produces a good agreement between the flat-seafloor reservoir model and its equivalent bathymetric model in deep water at 0.25 Hz, while in shallow water, the corrected response only shows good agreement at shorter offsets but becomes complicated at longer offsets due to airwave effects. Transmission frequency was extended above and below 0.25 Hz in the frequency spectrum and the correction method applied. The bathymetry correction at higher frequency (1.75 Hz) is not effective in removing the topographic effects in either deep or shallow water. At 0.05 Hz for both seafloor scenarios, we obtained the best corrected amplitude profiles, removing completely the distortions from both topographic undulation and airwave effects in the shallow water model. Overall, the work shows that the correction technique is effective in reducing bathymetric effects in deep water at medium frequency and in both deep and shallow waters at a low

  20. Exotic water worlds: how life-friendly is a deep ocean?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Höning, D.; Lammer, H.; Bredehöft, J. H.

    2014-04-01

    like we know it. In the search for life-friendly worlds, ocean planets therefore seem to be obvious candidates and have attracted increasing attention in the past years. The ocean on such planets could be hundreds of kilometers deep depending on the water content and the evolution of the proto-atmosphere. In our study we address the question if life can form and develop in these oceans, i.e. if they are habitable, from a geophysical point of view. We concentrate on the necessary condition of liquid water and sufficient nutrients supply for the origin of life. We employ an ocean model to infer the depth-dependent physical state and the different phases of water and ice.

  1. Deep low-frequency radio observations of the NOAO Boötes field. I. Data reduction and catalog construction

    NASA Astrophysics Data System (ADS)

    Intema, H. T.; van Weeren, R. J.; Röttgering, H. J. A.; Lal, D. V.

    2011-11-01

    In this article we present deep, high-resolution radio interferometric observations at 153 MHz to complement the extensively studied NOAO Boötes field. We provide a description of the observations, data reduction and source catalog construction. From our single pointing GMRT observation of ~12 h we obtain a high-resolution (26″ × 22″) image of ~11.3 square degrees, fully covering the Boötes field region and beyond. The image has a central noise level of ~1.0 mJy beam-1, which rises to 2.0-2.5 mJy beam-1 at the field edge, placing it amongst the deepest ~150 MHz surveys to date. The catalog of 598 extracted sources is estimated to be ~92 percent complete for > 10 mJy sources, while the estimated contamination with false detections is < 1 percent. The low rms position uncertainty of 1.24″ facilitates accurate matching against catalogs at optical, infrared and other wavelengths. Differential source counts are determined down to ≲10 mJy. There is no evidence for flattening of the counts towards lower flux densities as observed in deep radio surveys at higher frequencies, suggesting that our catalog is dominated by the classical radio-loud AGN population that explains the counts at higher flux densities. Combination with available deep 1.4 GHz observations yields an accurate determination of spectral indices for 417 sources down to the lowest 153 MHz flux densities, of which 16 have ultra-steep spectra with spectral indices below -1.3. We confirm that flattening of the median spectral index towards low flux densities also occurs at this frequency. The detection fraction of the radio sources in NIR KS-band is found to drop with radio spectral index, which is in agreement with the known correlation between spectral index and redshift for brighter radio sources. Full Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/535/A38

  2. Deep formation waters of Western Europe, Russia and North America characterised by sodium, calcium, magnesium and chloride concentrations

    NASA Astrophysics Data System (ADS)

    Bozau, Elke; Hemme, Christina; Sattler, Carl-Diedrich; van Berk, Wolfgang

    2015-04-01

    Deep formation water can be classified according to depth, temperature, and salinity (e.g., Graf et al. 1966, Kharaka & Hanor 2007). Most of the deep formation waters contain dissolved solids in excess of sea water. The hydrogeochemical development of formation water has been discussed for a long time. It is widely accepted that deep aquifers are influenced by the meteoric cycle and geochemical processes within the crust (e.g., Hebig et al. 2012). Similar hydrogeochemical signatures are found in deep formation waters of all continents and can be explained by general geochemical processes within the deep reservoirs (e.g., Land 1995). Therefore, data of deep formation waters from Western Europe, Russia, and North America are collected and classified by the major water components. The data are used to identify important hydrogeochemical processes (e.g., halite dissolution and albitisation) leading to different compositions of formation water. Two significant water types are identified: Na-Cl water and Na-Ca-Cl water. Based on the collected hydrogeochemical data, development trends are stated for the formation waters, and albitisation is favoured as the main process for calcium enrichment. Furthermore, differences of formation water according to stratigraphical units are shown for deep reservoirs of the North German Basin and the North Sea. References: Graf, D.L., 1982. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochimica Cosmochimica Acta 46, 1431-1448. Hebig, K.H., Ito, N., Scheytt, T., Marui, A., 2012. Review: Deep groundwater research with focus on Germany. Hydrogeology Journal 20, 227-243. Kharaka, Y.K., Hanor, J.S., 2007. Deep fluids in continents: I. Sedimentary Basins. Treatise on Geochemistry 5, 1-48. Land, L.S., 1995. The role of saline formation water in the crustal cycling. Aquatic Geochemistry 1, 137-145. Acknowledgements: The presented data are results of the collaborative research program "gebo" (Geothermal energy

  3. A new deep-water Astyris species (Buccinoidea: Columbellidae) from the southeastern Pacific.

    PubMed

    Araya, Juan Francisco; Catalán, Ricardo; Aliaga, Juan Antonio

    2016-01-01

    Marine mollusks from northern Chile and from the Región de Atacama in particular have been sparsely documented, and only a few works have reviewed the area (see Araya & Araya, 2015; Labrín et al. 2015; Araya & Valdés 2016). Mollusks from deep water and offshore areas are one of the least known groups and, apart from some classic works from the 19th century, only McLean (1970), Bernard (1983), Véliz and Vásquez (2000), Fraussen & Haddorn (2000), Houart (2003), Vilvens & Sellanes (2010), and Araya (2013) have included deep-water molluscan species from northern Chile. Among the Neogastropoda, the Columbellidae constitute a quite diverse and well-distributed family of small snails, with about seven hundred extant species distributed in 70 genera (deMaintenon, 2014). Most columbellids are active epibenthic carnivores or scavengers; their shells are small, normally between 3 and 20 mm in height and they can have determinate growth, with many adult shells presenting a thickened outer lip with denticles on the interior surface (Squires, 2015). In the southeastern Pacific off Chile this family is represented by only 14 species, all from shallow water, mostly found in the northern and central parts of the country (Valdovinos, 1999). PMID:27470793

  4. Environmental risk management and preparations for the first deep water well in Nigeria

    SciTech Connect

    Berger, F.

    1996-12-31

    Statoil is among the leaders in protecting health, environment and safety in all aspects of the business. The evaluations of business opportunities and development of blocks opened by authorities for petroleum exploration, are assessed in accordance with the goals for environmental protection. Progressive improvement of environmental performance is secured through proper environmental risk management. In 1995, Statoil, the technical operator on Block 210 off the Nigerian coast, was the first company to drill in deep waters in this area. An exploration well was drilled in a water depth of about 320 meters. The drilling preparations included environmental assessment, drillers Hazop, oil spill drift calculations, oil spill response plans and environmental risk analysis. In the environmental preparations for the well, Statoil adhered to local and national government legislation, as well as to international guidelines and company standards. Special attention was paid to the environmental sensitivity of potentially affected areas. Statoil co-operated with experienced local companies, with the authorities and other international and national oil companies. This being the first deep water well offshore Nigeria, it was a challenge to co-operate with other operators in the area. The preparations that were carried out, will set the standard for future environmental work in the area. Co-operation difficulties in the beginning were turned positively into a attitude to the environmental challenge.

  5. Similar glacial and Holocene deep water circulation inferred from southeast Pacific benthic foraminiferal carbon isotope composition

    NASA Astrophysics Data System (ADS)

    Matsumoto, Katsumi; Lynch-Stieglitz, Jean

    1999-04-01

    We present Holocene and last glacial maximum (LGM) oxygen and carbon isotope measurements on Planulina wuellerstorfi in six southeast Pacific cores. Sedimentation rates are low in this part of the ocean, and measurements were made on individual foraminiferal shells in order to identify the Holocene and glacial individuals on the basis of their extreme δ18O. The new δ13C data were combined with previous P. wuellerstorfi data for interpretation of global thermohaline circulation. Data from the Southern Ocean were examined closely for regional coherency and a few anomalous δ13C values suspected of having productivity overprint were removed. The resulting global δ13C distributions and gradients indicate that the deep water circulation was similar during the Holocene and LGM. This interpretation brings δ13C data to a better agreement with Cd/Ca data and marks a sharp contrast with a widely held view based on δ13C measurements that the glacial Southern Ocean was the terminus of the thermohaline circulation. The proposed presence of glacial North Atlantic Deep Water does not necessarily contradict the postulated presence of Glacial North Atlantic Intermediate Water.

  6. Deep-water fossorial shrimps from the Oligocene Kiscell Clay of Hungary: Taxonomy and palaeoecology

    PubMed Central

    HYŽNÝ, MATÚŠ; DULAI, ALFRÉD

    2015-01-01

    We describe deep-water ghost shrimp assemblages from the otherwise well known Oligocene Kiscell Clay in Hungary. The described fossorial shrimps (Decapoda: Callianassidae and Ctenochelidae) include: Ctenocheles rupeliensis (younger synonym Callianassa nuda) and Lepidophthalmus crateriferus (younger synonym Callianassa brevimanus). The fossil material of the former species is assigned to Ctenocheles based on the morphology of the major cheliped, particularly the pectinate fingers, bulbous propodus, cup-shaped carpus and elongated merus. Lepidophthalmus crateriferus from the Oligocene of Hungary is the first unequivocal fossil record of the genus, which is distinguished in the fossil record on the basis of the presence of a meral blade and meral hook on the major cheliped. Lepidophthalmus is today known exclusively from shallow-water environments. The finding of a deep-water fossil representative of Lepidophthalmus therefore appears to be a reverse of the common pattern of groups shifting environments from onshore to offshore over geological time, as seen in many taxa. The presence of Lepidophthalmus crateriferus comb. nov. in the Kiscell Clay therefore suggests different ecological requirements for at least some populations of this genus in the geological past. PMID:25908897

  7. Impact of deep-water fish farms on benthic macrofauna communities under different hydrodynamic conditions.

    PubMed

    Valdemarsen, Thomas; Hansen, Pia Kupka; Ervik, Arne; Bannister, Raymond J

    2015-12-30

    In this study the environmental impacts of two fish farms located over deep water (180-190 m) were compared. MC-Farm was located at a site with slightly higher water currents (mean current speed 3-5 cms(-1)) than LC-farm (<2 cms(-1)). Macrofauna composition, bioirrigation and benthic fluxes (CO2 and NH4(+)) were quantified at different stages of the production cycle, revealing very different impact of the two farms. Macrofauna abundance and bioirrigation were stimulated compared to a non-impacted reference site at MC-farm, while macrofauna diversity was only moderately reduced. In contrast, macrofauna communities and related parameters were severely impoverished at LC-Farm. This study suggests that deep-water fish farms should not be sited in low current areas (<2 cms(-1)), since this will hamper waste dispersal and aggravate environmental impacts. On the other hand, fish farming at slightly more dynamic sites can lead to stimulated benthic macrofauna communities and only moderate environmental impacts. PMID:26443387

  8. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers. PMID:24116529

  9. Distribution of deep-water corals along the North American continental margins: Relationships with environmental factors

    NASA Astrophysics Data System (ADS)

    Bryan, Tanya L.; Metaxas, Anna

    2006-12-01

    Despite the increasing attention to assemblages of deep-water corals in the past decade, much of this research has been focused on documenting and enumerating associated fauna. However, an understanding of the distribution of most species of coral and the ecological processes associated with these assemblages is still lacking. In this study, we qualitatively and quantitatively described the habitats of two families of deep-water corals in relation to six oceanographic factors (depth, slope, temperature, current, chlorophyll a concentration and substrate) on the Pacific and Atlantic Continental Margins of North America (PCM and ACM study areas, respectively). This study focused primarily on the distributions of Primnoidae and Paragorgiidae because of the large number of documented occurrences. For each environmental factor, deep-water coral locations were compared to the surrounding environment using χ2 tests. On both continental margins, coral locations were found to be not randomly distributed within the study areas, but were within specific ranges for most environmental factors. In the PCM study area, Paragorgiidae and Primnoidae locations were found in areas with slopes ranging from 0° to 10.0°, temperature from -2.0 to 11.0 °C and currents from 0 to 143 cm s -1. In the ACM study area, Paragorgiidae and Primnoidae locations were found in areas with slopes ranging from 0° to 1.4°, temperature ranging from 0 to 11.0 °C and currents ranging from 0 to 207 cm s -1. Although the patterns in habitat characteristics were similar, differences existed between families with respect to particular environmental factors. In both study areas, most environmental parameters in locations where corals occurred were significantly different from the average values of these parameters as determined with χ2 tests ( p<0.05) except for substrate in Paragorgiidae locations and depth in Primnoidae locations on the PCM. This is the first study to show coral distributional patterns

  10. DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut.

    PubMed

    Vadez, V; Rao, J S; Bhatnagar-Mathur, P; Sharma, K K

    2013-01-01

    Water deficit is a major yield-limiting factor for many crops, and improving the root system has been proposed as a promising breeding strategy, although not in groundnut (Arachis hypogaea L.). The present work was carried out mainly to assess how root traits are influenced under water stress in groundnut, whether transgenics can alter root traits, and whether putative changes lead to water extraction differences. Several transgenic events, transformed with DREB1A driven by the rd29 promoter, along with wild-type JL24, were tested in a lysimeter system that mimics field conditions under both water stress (WS) and well-watered (WW) conditions. The WS treatment increased the maximum rooting depth, although the increase was limited to about 20% in JL24, compared to 50% in RD11. The root dry weight followed a similar trend. Consequently, the root dry weight and length density of transgenics was higher in layers below 100-cm depth (Exp. 1) and below 30 cm (Exp. 2). The root diameter was unchanged under WS treatment, except a slight increase in the 60-90-cm layer. The root diameter increased below 60 cm in both treatments. In the WW treatment, total water extraction of RD33 was higher than in JL24 and other transgenic events, and somewhat lower in RD11 than in JL24. In the WS treatment, water extraction of RD2, RD11 and RD33 was higher than in JL24. These water extraction differences were mostly apparent in the initial 21 days after treatment imposition and were well related to root length density in the 30-60-cm layer (R(2) = 0.68), but not to average root length density. In conclusion, water stress promotes rooting growth more strongly in transgenic events than in the wild type, especially in deep soil layers, and this leads to increased water extraction. This opens an avenue for tapping these characteristics toward the improvement of drought adaptation in deep soil conditions, and toward a better understanding of genes involved in rooting in groundnut. PMID:22672619

  11. A Psychometric Study of Reading Processes in L2 Acquisition: Deploying Deep Processing to Push Learners' Discourse Towards Syntactic Processing-Based Constructions

    ERIC Educational Resources Information Center

    Manuel, Carlos J.

    2009-01-01

    This study assesses reading processes and/or strategies needed to deploy deep processing that could push learners towards syntactic-based constructions in L2 classrooms. Research has found L2 acquisition to present varying degrees of success and/or fossilization (Bley-Vroman 1989, Birdsong 1992 and Sharwood Smith 1994). For example, learners have…

  12. Seismic characterization of deep-water pipe structures in the Levant Basin, SE Mediterranean

    NASA Astrophysics Data System (ADS)

    Eruteya, Ovie Emmanuel; Waldmann, Nicolas; Schalev, Dagan; Makovsky, Yizhaq; Ben-Avraham, Zvi

    2015-04-01

    Analysis of a new deep-water (1100 m - 1500 m) high resolution 3D seismic dataset covering part of the central Levant Basin, offshore Israel reveals previously undocumented evidences for subsurface fluid flow in the post-Messinian overburden manifested as pipe structures. Interestingly, these pipe structures are genetically and spatially contextualized east and west of the study area, all emanating from the Messinian evaporite substratum. Pipes in the western group accounts for 83% of the pipe population, are crudely cylindrical, oval to elliptical in planform, with diameter and height ranging ca. 350 m - 2000 m and 320 m - 420 m, respectively. Internal configuration within this group varies from chaotic to concave upward reflections diagnostic of fluid induced collapse. Pipes in the eastern group are seepage pipes appearing conical in shape, with height of ~350 m - 510 m and diameter of 320 m - 420 m. The western group indicates an episode of fluid flow till the mid-Pliocene, compared to late Pliocene in the eastern group where successive mass wasting events during the late Pliocene plugged piping. A conceptual model for the pipes in the western group is proposed to have occurred from subjacent dissolution of the Messinian evaporite under deep-water marine conditions during the Pliocene by vertically focused fluid flow from intra-Messinian realm dissolving the top evaporites and inducing systematic collapse in the overburden. The onset of which may have been triggered by seismicity. Conversely, pipes in the eastern group are proposed to develop from breaching the top evaporite by pressurized fluids that developed from lateral pressure transfer due to differential loading of the overburden and salt tectonics. Most likely, these fluids are biogenic gas since the major gas fields in deep-waters offshore Israel and close to the study area are of this composition. The pipe structures identified in the study area extend the current understanding of fluid flow subsequent

  13. Draft genome sequence of Pseudomonas oleovorans strain MGY01 isolated from deep sea water.

    PubMed

    Wang, Runping; Ren, Chong; Huang, Nan; Liu, Yang; Zeng, Runying

    2015-04-01

    Pseudomonas oleovorans MGY01 isolated from the deep-sea water of the South China Sea could effectively degrade malachite green. The draft genome of P. oleovorans MGY01 was sequenced and analyzed to gain insights into its efficient metabolic pathway for degrading malachite green. The data obtained revealed 109 Contigs (N50; 128,269 bp) with whole genome size of 5,201,892 bp. The draft genome sequence of strain MGY01 will be helpful in studying the genetic pathways involved in the degradation of malachite green. PMID:25528517

  14. Novel gas-tight multi-sampler for discrete deep-sea water

    NASA Astrophysics Data System (ADS)

    Huang, Haocai; Yang, Canjun; Chen, Shicheng; Chen, Daohua; Sun, Chunyan; Niu, Wenda; Li, Fengbo; Liu, Guanghu; Chen, Ying

    2012-07-01

    The issues of how to quickly collect seawater samples and of how to make sure that those samples truly reflect the in-situ information on gas composition and concentration have therefore become a hot but difficult topic in the field of ocean technology. Most conventional seawater samplers only focus on collecting seawater itself, but take little consideration on gas preservation. A set of new oceanographic tools are presented for ocean resource exploration such as hydrothermal sulfide and gas hydrate, and for investigations on the processes and mechanisms of marine physical, chemical and biological evolutions. A gas-tight deep-sea water sampling system (GTWSS) is designed for the collection of deep-sea geochemical samples. This set of tools mainly consists of a conductivity temperature depth profiler (CTD), release devices and gas-tight deep-sea water samplers (GTWS). The GTWS is able to hold the gases in deep-sea water samples tightly, providing in-situ information on gas contents in the seawater samples and can be deployed on a routine wire-deployed CTD sampler for multi-layer discrete sampling of gas-tight seawater. Sea trials are performed successfully in 2008 and 2009, on a research vessel named HaiYang Si Hao in South China Sea, with the deepest trial depth 3 930 m. GTWSS is capable of quickly sampling 12 discrete gas-tight seawater samples (8.3 L per sample) during its single deployment. The head space method is employed to separate the gases from the seawater samples immediately after recovery of the seawater samples on the vessel. Field geochemical analysis is carried out by gaseous hydrocarbon sensors and an infrared gas analyzer. Results show that the concentrations of CH4 and CO2 in the seawater sampled by GTWSS are higher than those sampled by general non-gas-tight water samplers, thus confirming the gas tightness of GTWSS. Seawater samples can be collected quickly by using GTWSS, and GTWSS can keep the samples' integrity quite well.

  15. CP survey of deep water structures and subsea installations using an ROV

    SciTech Connect

    Leask, L.J. )

    1989-01-01

    The successful and efficient CP survey of a deep water structure using a remotely operated vehicle (ROV) has remained an enigma to many corrosion engineers in oil companies. The location of the corrosion group within the company structure often plays a major role in the success of the project. Operators locate their corrosion departments in different groups, some in the offshore/onshore operations and others in the design group. This location often has a bearing on the financial and operational approach to the project. This paper discusses how a successful CP survey is both an achievable and exciting project with experienced pre- planning and selection of the correct equipment.

  16. Cathodic protection survey of deep-water structures and subsea installations

    SciTech Connect

    Leask, L.J. )

    1989-11-01

    The successful and efficient cathodic protection (CP) survey of a deep water structure using a remotely operated vehicle (ROV) has remained an enigma to many corrosion engineers in oil companies. The location of the corrosion group within the company structure often plays a major role in the success of the project. Operators locate their corrosion departments in different groups, some in the offshore/onshore operations and others in the design group. This location often has a bearing on the financial and operational approach to the project. The author discusses how a successful CP survey is both an achievable and exciting project with experienced preplanning and selection of the correct equipment.

  17. Occurrence and turnover of DMSP and DMS in deep waters of the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Rellinger, Alison N.; Kiene, Ronald P.; del Valle, Daniela A.; Kieber, David J.; Slezak, Doris; Harada, Hyakubun; Bisgrove, John; Brinkley, Jordan

    2009-05-01

    High concentrations of the phytoplankton metabolite dimethylsulfoniopropionate (DMSP) and its degradation product dimethylsulfide (DMS) are associated with blooms of Phaeocystis antarctica in the Ross Sea, Antarctica. Episodic and rapid vertical export of Phaeocystis biomass to deep water has been reported for the Ross Sea, therefore we examined the distribution and microbial consumption rates of DMSP and DMS throughout the sub-euphotic water column. Total DMSP (dissolved+particulate; DMSPt) was present at 0.5-22 nM at depths between 70 and 690 m during both the early bloom (November) and the late bloom (January). Sub-euphotic peaks of DMSP were sometimes associated with mid-water temperature maxima, and elevated DMSP below 70 m was found mainly in water masses characterized as Modified Circumpolar Deep Water or Antarctic Shelf Water. Overall, 50-94% of the integrated water-column DMSPt was found below the euphotic zone. At one station during the early bloom, local maxima of DMSPt (14 nM) and DMS (20 nM) were observed between 113 and 240 m and these maxima corresponded with high chlorophyll a concentrations, P. antarctica cell numbers, and Fv/Fm (the quantum yield of photosystem II). During the late bloom, a sub-euphotic maximum of DMSPt (15.8 nM) at 250 m cooccurred with peaks of chlorophyll a concentration, DMSP lyase activity, bacterial production and dissolved DMSP consumption rates. DMSP turnover contributed ˜12% of the bacterial carbon demand between 200 and 400 m. DMS concentrations peaked at 286 m but the maximum concentration (0.42 nM) was far lower than observed during the early bloom, probably because of relatively rapid biological consumption of DMS (1-3 turnovers per day) which, in turn, contributed to elevated dissolved dimethylsulfoxide (DMSO) concentrations. Relatively stable DMSPt distributions at some sites suggest that rapid sinking of Phaeocystis biomass is probably not the major mechanism responsible for mesopelagic DMSP accumulations. Rather

  18. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth

    PubMed Central

    Pan, Ding; Spanu, Leonardo; Harrison, Brandon; Sverjensky, Dimitri A.; Galli, Giulia

    2013-01-01

    Water is a major component of fluids in the Earth’s mantle, where its properties are substantially different from those at ambient conditions. At the pressures and temperatures of the mantle, experiments on aqueous fluids are challenging, and several fundamental properties of water are poorly known; e.g., its dielectric constant has not been measured. This lack of knowledge of water dielectric properties greatly limits our ability to model water–rock interactions and, in general, our understanding of aqueous fluids below the Earth’s crust. Using ab initio molecular dynamics, we computed the dielectric constant of water under the conditions of the Earth’s upper mantle, and we predicted the solubility products of carbonate minerals. We found that MgCO3 (magnesite)—insoluble in water under ambient conditions—becomes at least slightly soluble at the bottom of the upper mantle, suggesting that water may transport significant quantities of oxidized carbon. Our results suggest that aqueous carbonates could leave the subducting lithosphere during dehydration reactions and could be injected into the overlying lithosphere. The Earth’s deep carbon could possibly be recycled through aqueous transport on a large scale through subduction zones. PMID:23513225

  19. Human and animal enteric virus in groundwater from deep wells, and recreational and network water.

    PubMed

    Fongaro, Gislaine; Padilha, J; Schissi, C D; Nascimento, M A; Bampi, G B; Viancelli, A; Barardi, C R M

    2015-12-01

    This study was designed to assess the presence of human adenovirus (HAdV), rotavirus-A (RVA), hepatitis A virus (HAV), and porcine circovirus-2 (PCV2) in groundwater from deep wells, and recreational and network waters. The water samples were collected and concentrated and the virus genomes were assessed and quantified by quantitative PCR (qPCR). Infectious HAdV was evaluated in groundwater and network water samples by integrated cell culture using transcribed messenger RNA (mRNA) (ICC-RT-qPCR). In recreational water samples, HAdV was detected in 100 % (6/6), HAV in 66.6 % (4/6), and RVA in 66.6 % (4/6). In network water, HAdV was detected in 100 % (6/6) of the samples (these 83 % contained infectious HAdV), although HAV and RVA were not detected and PCV2 was not evaluated. In groundwater from deep wells, during rainy period, HAdV and RVA were detected in 80 % (4/5) of the samples, and HAV and PCV2 were not detected; however, during dry period, HAdV and RVA were detected in 60 % (3/5), HAV in only one sample, and PCV2 in 60 % (4/5). In groundwater, all samples contained infectious HAdV. PCV2 presence in groundwater is indicative of contamination caused by swine manure in Concórdia, Santa Catarina, Brazil. The disinfection of human and animal wastes is urgent, since they can contaminate surface and groundwater, being a potential threat for public and animal health. PMID:26300358

  20. Early colonization of metazoans in the deep-water: Evidences from the lowermost Cambrian black shales of South China

    NASA Astrophysics Data System (ADS)

    Zhu, M.-Y.; Yang, A.-H.; Zhang, J.-M.; Li, G.-X.; Yang, X.-L.

    2003-04-01

    Diversity of metazoans is high in the deep-water of the present ocean. But it is unknown that when the metazoans began to colonize in the deep-water and what kinds of metazoans first colonized in the deep-water since origin and radiation of metazoans during the Precambrian-Cambrian transition interval. Up to the present, colonization of the deep-sea began in the Ordovician. Although it is suggested that animals were penetrated into the intermediate water depth during the Precambrian, evidences support such suggestion are based on the problematic Ediacaran-grade fossils. However, almost fossil materials that support the Cambrian Explosion hypothesis were discovered from the lowermost Cambrian shallow-water deposits. The abundant earliest Cambrian mineralized small shelly fossils (SSF) are globally from the shallow-water deposits, and the well-known Chengjiang fauna that may records most complete features of metazoans in the ocean after the Cambrian Explosion, occurs as well in the shallow basin near an old land on the Yangtze Platform. In order to understand ecology of the Cambrian Explosion time interval and how happened of the onshore-offshore trends of metazoans, we focused our attention on collecting fossils in the lowermost Cambrian deposits under the varied facies on the Yangtze Platformm during recent years. Investigations of the shallow-water carbonate facies and the oxygen-depleted deep-water black shale facies revealed additional biological and ecological information that are not recorded in the Chengjiang fauna in the siliclastic shallow-water facies. Here we report our discovery of a particular fossil association from more than 10 sections in the deep-water black shales (Qiongzhusian) in the out shelf and slope area of the Yangtze Platform. The fossil association is composed of pelagic and sessile organisms, including abundant sponges, 3 types of bivalved arthropods, 3 types of tubular animals and few problematic organisms. The fossils have either

  1. Construction and preliminary analysis of a deep-sea sediment metagenomic fosmid library from Qiongdongnan Basin, South China Sea.

    PubMed

    Hu, Yongfei; Fu, Chengzhang; Yin, Yeshi; Cheng, Gong; Lei, Fang; Yang, Xi; Li, Jing; Ashforth, Elizabeth Jane; Zhang, Lixin; Zhu, Baoli

    2010-11-01

    Preliminary characterization of the microbial phylogeny and metabolic potential of a deep-sea sediment sample from the Qiongdongnan Basin, South China Sea, was carried out using a metagenomic library approach. An effective and rapid method of DNA isolation, purification, and library construction was used resulting in approximately 200,000 clones with an average insert size of about 36 kb. End sequencing of 600 individual clones from the fosmid library generated 1,051 sequences with an average sequence length of 619 bp. Phylogenetic ascription indicated that this library was dominated by Bacteria, predominantly Proteobacteria, though Planctomycetes were also relatively abundant. Sulfate-reducing and anaerobic ammonium-oxidizing bacteria, which play important roles in the cycling of sedimentary nutrients, were abundant in the library. Cluster of orthologous groups category analysis showed that most of the genes contained in the end sequences were related to metabolism, and with cellular processes and signaling. Functional groups assigned by SEED (subsystems-based annotations) highlighted the existence of 'one-carbon' metabolism within this community as well as identifying functional genes involved in methanogenesis. Furthermore, diverse genes involved in the biodegradation of xenobiotics were found using Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis. PMID:20514504

  2. Bacterial communities of surface and deep hydrocarbon-contaminated waters of the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Yang, T.; Nigro, L. M.; McKay, L.; Ziervogel, K.; Gutierrez, T.; Teske, A.

    2010-12-01

    We performed a 16S rRNA gene sequencing survey of bacterial communities within oil-contaminated surface water, deep hydrocarbon plume water, and deep water samples above and below the plume to determine spatial and temporal patterns of oil-degrading bacteria growing in response to the Deepwater Horizon oil leak. In addition, we are reporting 16S rRNA sequencing results from time series incubation, enrichment and cultivation experiments. Surface oil slick samples were collected 3 nautical miles from ground zero, (5/6/10, RV Pelican) and were added to uncontaminated surface water (collected within a 30 nautical mile radius of ground zero, 5/6/10 - 5/9/10, RV Pelican). This mixture was incubated for 20 days in a rolling bottle at 25°C. 16S rRNA clone libraries from marine snow-like microbial flocs that had formed during the incubation yielded a highly diverse bacterial community, predominately composed of the Alpha- and Gammaproteobacteria, and a smaller number of Planktomycetes and other bacterial lineages. The most frequently recovered proteobacterial sequences were closely related to cultured species of the genus Cycloclasticus, specialists in aerobic oxidation of aromatic hydrocarbons. These time series incubation results will be compared to the microbial community structure of contaminated surface water, sampled on the same cruise with RV Pelican (5/6/10-5/9/10) and frozen immediately. Stable isotope probing (SIP) experiments with C13-labelled alkanes and polycyclic aromatic substrates and gulf water samples have yielded different enrichments. With naphthalene, predominantly Alteromonas-related clones and a smaller share of Cycloclasticus clones were recovered; phenanthrene yielded predominantly clones related to Cycloclasticus, and diverse other Gamma- and Alphaproteobacteria. Analyses of SIP experiments with hexadecane are in progress. The microbial community composition of the deep hydrocarbon plume was characterized using water column profile samples taken

  3. Do Physical Oceanographers Care About Coastal Processes in Water Less Than 20-m Deep?

    NASA Astrophysics Data System (ADS)

    Muenchow, A.

    2004-12-01

    The resounding yes may surprise Arctic researchers and old-style oceanographers, but the physics of coastal waters less than 20-m deep has been the subject of intense experimental and theoretical study over the last decade by physical oceanographers. For example, discoveries on the dynamics of (often sediment ladden) freshwater discharges into the coastal ocean relate to many Arctic systems that receive freshwater from rivers and ice melt. Boundary layer processes due to bottom and surface friction, too, often dominate coastal dynamics. Material transport and fluxes both along and across the coastal zone are strongly affected by stress- and buoyancy induced physical processes that mid-latitude physical oceanographers have explored extensively. Much of this progress has yet to migrate into the Arctic research community where oceanographers appear to focus on steady-state and deep-basin problems with little interest to processes impacted by the presence of a coastline and/or flow phenomena at the internal Rossby radius of deformation. This situation has left geological and biological scientists working on pressing Arctic coastal zone problems isolated from new advances, understanding, and technologies of exchange processes at the land-ocean interface that generally is less than 20-m deep. More specifically, I discuss published and unpublished observational and theoretical model results from both Arctic and mid-latitude inner shelf systems. The inner shelf is here defined as the region where surface and bottom boundary layers overlap. I will contrast data from the Canadian Mackenzie and Russian East Siberian shelf seas with similar data (and models to explain them) from North- and South-American inner shelves. I will demonstrate conceptionally how frictional and buoyancy forces interact in waters less than 20-m deep to cause circulations, vertical stratification, and depth-dependent material transport that differs substantially from steady and linear perceptions of a

  4. Deep and bottom water export from the Southern Ocean to the Pacific over the past 38 million years

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2004-01-01

    The application of radiogenic isotopes to the study of Cenozoic circulation patterns in the South Pacific Ocean has been hampered by the fact that records from only equatorial Pacific deep water have been available. We present new Pb and Nd isotope time series for two ferromanganese crusts that grew from equatorial Pacific bottom water (D137-01, "Nova," 7219 m water depth) and southwest Pacific deep water (63KD, "Tasman," 1700 m water depth). The crusts were dated using 10Be/9Be ratios combined with constant Co-flux dating and yield time series for the past 38 and 23 Myr, respectively. The surface Nd and Pb isotope distributions are consistent with the present-day circulation pattern, and therefore the new records are considered suitable to reconstruct Eocene through Miocene paleoceanography for the South Pacific. The isotope time series of crusts Nova and Tasman suggest that equatorial Pacific deep water and waters from the Southern Ocean supplied the dissolved trace metals to both sites over the past 38 Myr. Changes in the isotopic composition of crust Nova are interpreted to reflect development of the Antarctic Circumpolar Current and changes in Pacific deep water circulation caused by the build up of the East Antarctic Ice Sheet. The Nd isotopic composition of the shallower water site in the southwest Pacific appears to have been more sensitive to circulation changes resulting from closure of the Indonesian seaway. Copyright 2004 by the American Geophysical Union.

  5. Reversed flow of Atlantic deep water during the Last Glacial Maximum.

    PubMed

    Negre, César; Zahn, Rainer; Thomas, Alexander L; Masqué, Pere; Henderson, Gideon M; Martínez-Méndez, Gema; Hall, Ian R; Mas, José L

    2010-11-01

    The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch. PMID:21048764

  6. Highstand fans in the California borderland: the overlooked deep-water depositional systems

    USGS Publications Warehouse

    Covault, Jacob A.; Normark, William R.; Romans, Brian W.; Graham, Stephan A.

    2007-01-01

    Contrary to widely used sequence-stratigraphic models, lowstand fans are only part of the turbidite depositional record; our analysis reveals that a comparable volume of coarse-grained sediment has been deposited in California borderland deep-water basins regardless of sea level. Sedimentation rates and periods of active sediment transport have been determined for deep-water canyon-channel systems contributing to the southeastern Gulf of Santa Catalina and San Diego Trough since 40 ka using an extensive grid of high-resolution and deep-penetration seismic-reflection data. A regional seismic-reflection horizon (40 ka) has been correlated across the study area using radiocarbon age dates from the Mohole borehole and U.S. Geological Survey piston cores. This study focused on the submarine fans fed by the Oceanside, Carlsbad, and La Jolla Canyons, all of which head within the length of the Ocean-side littoral cell. The Oceanside Canyon–channel system was active from 45 to 13 ka, and the Carlsbad system was active from 50 (or earlier) to 10 ka. The La Jolla system was active over two periods, from 50 (or earlier) to 40 ka, and from 13 ka to the present. One or more of these canyon-channel systems have been active regardless of sea level. During sea-level fluctuation, shelf width between the canyon head and the littoral zone is the primary control on canyon-channel system activity. Highstand fan deposition occurs when a majority of the sediment within the Oceanside littoral cell is intercepted by one of the canyon heads, currently La Jolla Canyon. Since 40 ka, the sedimentation rate on the La Jolla highstand fan has been >2 times the combined rates on the Oceanside and Carlsbad lowstand fans.

  7. Noble gas residence times of saline waters within crystalline bedrock, Outokumpu Deep Drill Hole, Finland

    NASA Astrophysics Data System (ADS)

    Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo T.; Niedermann, Samuel; Wiersberg, Thomas

    2014-11-01

    Noble gas residence times of saline groundwaters from the 2516 m deep Outokumpu Deep Drill Hole, located within the Precambrian crystalline bedrock of the Fennoscandian Shield in Finland, are presented. The accumulation of radiogenic (4He, 40Ar) and nucleogenic (21Ne) noble gas isotopes in situ together with the effects of diffusion are considered. Fluid samples were collected from depths between 180 and 2480 m below surface, allowing us to compare the modelled values with the measured concentrations along a vertical depth profile. The results show that while the concentrations in the upper part are likely affected by diffusion, there is no indication of diffusive loss at or below 500 m depth. Furthermore, no mantle derived gases were found unequivocally. Previous studies have shown that distinct vertical variation occurs both in geochemistry and microbial community structuring along the drill hole, indicating stagnant waters with no significant exchange of fluids between different fracture systems or with surface waters. Therefore in situ accumulation is the most plausible model for the determination of noble gas residence times. The results show that the saline groundwaters in Outokumpu are remarkably old, with most of the samples indicating residence times between ∼20 and 50 Ma. Although being first order approximations, the ages of the fluids clearly indicate that their formation must predate more recent events, such as Quaternary glaciations. Isolation within the crust since the Eocene-Miocene epochs has also direct implications to the deep biosphere found at Outokumpu. These ecosystems must have been isolated for a long time and thus very likely rely on energy and carbon sources such as H2 and CO2 from groundwater and adjacent bedrock rather than from the ground surface.

  8. Water mass structure and deep mixing processes in the Tyrrhenian Sea: Results from the VECTOR project

    NASA Astrophysics Data System (ADS)

    Falco, Pierpaolo; Trani, Marilisa; Zambianchi, Enrico

    2016-07-01

    In this study, we analyze data from observations conducted in the southern Tyrrhenian Sea, within the framework of the VECTOR project, initiated in 2006. In the six cruises organized as part of the project, in November 2006, in February, April and June 2007, in February 2008 and in January 2009, repeated hydrological measurements were collected along a transect. Data collected at the same stations in a subsequent cruise in November 2010 were also incorporated into the study. The main Tyrrhenian water masses were clearly identified in vertical sections. In particular, a positive salinity anomaly, observed both in the first (late autumn) and second (winter) cruise, associated with an anti-cyclonic structure, characterized the surface layer. The intermediate layer revealed salinity values higher than the climatological salinities, continuing the rising trend observed in the previous works, because of the influence of the Eastern Mediterranean Transient on the western basin hydrology. At the bottom, both temperature and salinity showed higher values with respect to the historical data, but were nearly constant during the study period. However, the water column between 600 m and 2500 m exhibited a trend of increases in temperature and salinity at a mean rate of 0.025°/y and 0.0075/y, higher than the findings in earlier studies. This discrepancy is likely due to the downward transfer of excess heat and salt from the intermediate depths. In the Tyrrhenian Sea, one of the main mechanisms responsible for transferring heat and salt in the deep layers is double diffusion, which is particularly active here. Double diffusion forms 'staircase' structures that are better developed and more stable than in other areas of the world's oceans. Such structures are clearly seen in the analysis of the CTD data collected at an offshore station. These features occur at depths below 600 m, where the Levantine Intermediate Water (LIW) encounters the Tyrrhenian Dense Water, and mixing

  9. North Atlantic Surface and Deep-Water Hydrography during the Early Pliocene Warm Period

    NASA Astrophysics Data System (ADS)

    Voelker, A. H. L.; Evans, H. F.; Naafs, B. D.; Cavaleiro, C. D.; Rebotim, A.; Ventura, C.; Stein, R. H.; Channell, J. E. T.

    2014-12-01

    The early Pliocene, with atmospheric carbon dioxide concentrations at levels similar to today, is seen as a case study for Earth's future climate evolution. During this period the progressive closing of the Central American Seaway led to increased poleward heat and salt transport within the Atlantic with North Atlantic Deep Water (NADW) becoming warmer and saltier and resulting in an enhanced Atlantic Meridional Overturning Circulation (AMOC). In order to understand how stable the AMOC really was we produced millennial-scale (1-2 kyr) surface and deep-water records for IODP Site U1313 (41°N, 33°W, 3412m) for the interval from 3.4 to 4.1 Ma. This site is ideally located to monitor past AMOC changes with North Atlantic Drift waters at the surface and NADW in the deep. Although interglacial/glacial cycles are visible, the higher frequency oscillations recorded in both the planktonic G. ruber (white) and benthic Cibicidoides sp. δ18O records impede tuning to the LR04 stack (Lisiecki and Raymo, 2005). We therefore exploit a different approach: using the magnetic polarity chrons (Gilbert, Cochiti) as recorded at Site U1313 as framework, we tune our benthic δ18O record to that of ODP Site 1085 (on LR04 ages). The benthic δ13C record shows millennial-scale oscillations, and the values indicate nearly continuous NADW presence and confirm a strong AMOC, also during most of the glacial periods. Varying surface water conditions, especially during the younger interglacial periods, are reflected in the G. ruber isotope data and appear to be linked to salinity changes since they are not recorded in the alkenone sea-surface temperature data. Although glacial stages Gi 2 and Gi 4 show the expected higher benthic δ18O values, Gi 6 was the glacial period with the strongest impact on the AMOC as revealed by cooler, less ventilated surface waters and a less ventilated NADW. Overall, the AMOC was strong throughout, but experienced high frequency oscillations at a level similar to

  10. Smectite Dehydration, Membrane Filtration, and Pore-Water Freshening in Deep Ultra-Low Permeability Formations: Deep Processes in the Nankai Accretionary Wedge

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Sample, J. C.; Even, E.; Poeppe, D.; Henry, P.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    We address the fundamental questions surrounding the nature of water and chemical transport processes deep within sedimentary basin and accretionary-wedge environments. Consolidation and permeability studies conducted to 165 MPa (~10km depth) indicate that ultra-tight clay formations (10-18 m2 to10-21 m2) can substantially modify the fluids migrating through then. Pore-water extractions conducted on smectite/illite rich core samples obtained from 1-3 km depths at IODP (NanTroSEIZE, Chikyu) deep-riser drilling Site C0002, at the elevated loads required to squeeze waters from such deeply buried sediment (stresses up to 100 MPa),resulted in anomalous patterns of sequential freshening with progressive loading. More accurate laboratory investigations (both incremental loading and Constant Rate of Strain test) revealed that such freshening initiates above 20 MPa and progresses with consolidation to become greater than 20% by effective normal load of 165 MPa. Log-log plots of stress vs. hydraulic conductivity reveal that trends remain linear to elevated stresses and total porosities as low at 14%. The implications are that stress induced smectite dehydration and/or membrane filtration effects cause remarkable changes in pore water chemistry with fluid migration through deep, tight, clay-rich formations. These changes should occur in addition to any thermally induced diagenetic and clay-dehydration effects on pore water chemistry. Work is progressing to evaluate the impact of clay composition and temperature to ascertain if purely illitic compositions show similar trends and if the mass fractionation of water and other isotopes also occurs. Such studies will ascertain if the presence of smectite is a prerequisite for freshening or if membrane filtration is a major process in earth systems containing common clay minerals. The results have major implications for interpretations of mass chemical balances, pore water profiles, and the hydrologic, geochemical, and stress state

  11. Impacts of open-ocean deep convection in the Weddell Sea on coastal and bottom water temperature

    NASA Astrophysics Data System (ADS)

    Wang, Zhaomin; Wu, Yang; Lin, Xia; Liu, Chengyan; Xie, Zelin

    2016-07-01

    A high resolution global ocean-sea ice model is employed to investigate the impacts of open-ocean deep convection on coastal and bottom water temperature in the Weddell Sea. The imposed strong and persistent cyclonic wind forcing and the large loss of bottom water weaken the stratification and eventually trigger the occurrence of open-ocean deep convection in the southern limb of the Weddell Gyre in this model. The production rate of the bottom water induced by the deep convection is estimated to be about 5 Sv (1 Sv = 106 m3/s) for a polynya with a similar size to that of the observed Weddell Polynya in the mid-1970s. The cooling induced by deep convection at mid-depth is transported towards the shelf regions by standing meanders or eddies to affect the basal melting of ice shelves, and is transported westward by an intensified slope current; interior coastal temperature in regions with a broader continental shelf is less affected by the deep convection, as the intensified slope current acts to suppress heat exchanges across the shelf break. Also, the deep convection causes warming in the Weddell bottom water around the convection site, when the simulated polynya size is similar to that of the observed Weddell Polynya in the mid-1970s. This finding sheds light on the observed non-monotonic decadal change (cooling between 1984-1992 and warming between 1998-2008) in the Weddell bottom water temperature. When the simulated polynya further develops into a large size across the Weddell Sea, the sustained broad deep convection causes large cooling in the bottom water in the western Weddell Sea and warming in the eastern Weddell Sea, with the bottom water temperature also being strongly modulated by a greatly intensified Weddell Gyre.

  12. Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution

    NASA Astrophysics Data System (ADS)

    Sultan, N.; Bohrmann, G.; Ruffine, L.; Pape, T.; Riboulot, V.; Colliat, J.-L.; De Prunelé, A.; Dennielou, B.; Garziglia, S.; Himmler, T.; Marsset, T.; Peters, C. A.; Rabiu, A.; Wei, J.

    2014-04-01

    In previous works, it has been suggested that dissolution of gas hydrate can be responsible for pockmark formation and evolution in deep water Nigeria. It was shown that those pockmarks which are at different stages of maturation are characterized by a common internal architecture associated to gas hydrate dynamics. New results obtained by drilling into gas hydrate-bearing sediments with the MeBo seafloor drill rig in concert with geotechnical in situ measurements and pore water analyses indicate that pockmark formation and evolution in the study area are mainly controlled by rapid hydrate growth opposed to slow hydrate dissolution. On one hand, positive temperature anomalies, free gas trapped in shallow microfractures near the seafloor and coexistence of free gas and gas hydrate indicate rapid hydrate growth. On the other hand, slow hydrate dissolution is evident by low methane concentrations and almost constant sulfate values 2 m above the Gas Hydrate Occurrence Zone.

  13. Seamount egg-laying grounds of the deep-water skate Bathyraja richardsoni.

    PubMed

    Henry, L-A; Stehmann, M F W; De Clippele, L; Findlay, H S; Golding, N; Roberts, J M

    2016-08-01

    Highly localized concentrations of elasmobranch egg capsules of the deep-water skate Bathyraja richardsoni were discovered during the first remotely operated vehicle (ROV) survey of the Hebrides Terrace Seamount in the Rockall Trough, north-east Atlantic Ocean. Conductivity-temperature-depth profiling indicated that the eggs were bathed in a specific environmental niche of well-oxygenated waters between 4·20 and 4·55° C, and salinity 34·95-35·06, on a coarse to fine-grained sandy seabed on the seamount's eastern flank, whereas a second type of egg capsule (possibly belonging to the skate Dipturus sp.) was recorded exclusively amongst the reef-building stony coral Solenosmilia variabilis. The depths of both egg-laying habitats (1489-1580 m) provide a de facto refuge from fisheries mortality for younger life stages of these skates. PMID:27350418

  14. Diversity-based acoustic communication with a glider in deep water.

    PubMed

    Song, H C; Howe, Bruce M; Brown, Michael G; Andrew, Rex K

    2014-03-01

    The primary use of underwater gliders is to collect oceanographic data within the water column and periodically relay the data at the surface via a satellite connection. In summer 2006, a Seaglider equipped with an acoustic recording system received transmissions from a broadband acoustic source centered at 75 Hz deployed on the bottom off Kauai, Hawaii, while moving away from the source at ranges up to ∼200 km in deep water and diving up to 1000-m depth. The transmitted signal was an m-sequence that can be treated as a binary-phase shift-keying communication signal. In this letter multiple receptions are exploited (i.e., diversity combining) to demonstrate the feasibility of using the glider as a mobile communication gateway. PMID:24606244

  15. Sound of shallow and deep water lobsters: Measurements, analysis, and characterization (L)

    NASA Astrophysics Data System (ADS)

    Latha, G.; Senthilvadivu, S.; Venkatesan, R.; Rajendran, V.

    2005-05-01

    Study of sound made by marine species aid in ambient noise studies and characterization. This letter presents the work carried out on measurement of sound made by lobsters in a controlled environment and the data processing and the spectral analysis to identify the frequency contents. Lobsters collected in the shallow waters as well as deep waters in the ocean have been used for the sound measurement. The Panulirus Homarus and Palinustur Waguersis species were kept in a tank in a laboratory and measurements were made. Their fundamental frequencies, harmonics, and peaks are analyzed in the band 3 to 100 kHz under different conditions such as molting and nonmolting states. Analysis with respect to diurnal variations is also carried out. The results show that lobsters produce sound like musical instruments, which agree with the observations of Patek [Nature (London) 411, 153-154 (2001)]. .

  16. A new deep-water goatfish of the genus Upeneus (Mullidae) from Vanuatu, South Pacific.

    PubMed

    Uiblein, Franz; Causse, Romain

    2013-01-01

    A new goatfish, Upeneus vanuatu (Mullidae), is described based on five specimens collected off two islands of Vanuatu (South Pacific), at depths of 191-321 m, and compared with five closely related species: Upeneus davidaroni (Red Sea), U. mascareinsis (Western Indian Ocean), U. stenopsis (northern Australia, Philippines, 127-275 m), and the more shallow-occurring Indo-West Pacific species U. subvittatus (26-120 m) and U. vittatus (deep-water Upeneus species, the so-called "stenopsis" species group can be distinguished from four other species groups that were established in earlier studies in order to facilitate intrageneric comparisons. The ecological and evolutionary significance of deep-water goatfishes is briefly discussed. PMID:26217854

  17. High Biodiversity on a Deep-Water Reef in the Eastern Fram Strait

    PubMed Central

    Meyer, Kirstin S.; Soltwedel, Thomas; Bergmann, Melanie

    2014-01-01

    We report on the distribution and abundance of megafauna on a deep-water rocky reef (1796–2373 m) in the Fram Strait, west of Svalbard. Biodiversity and population density are high, with a maximum average of 26.7±0.9 species m−2 and 418.1±49.6 individuals m−2 on the east side of the reef summit. These figures contrast with the surrounding abyssal plain fauna, with an average of only 18.1±1.4 species and 29.4±4.3 individuals m−2 (mean ± standard error). The east side of the reef summit, where the highest richness and density of fauna are found, faces into the predominant bottom current, which likely increases in speed to the summit and serves as a source of particulate food for the numerous suspension feeders present there. We conclude that the observed faunal distribution patterns could be the result of hydrodynamic patterns and food availability above and around the reef. To our knowledge, this study is the first to describe the distribution and diversity of benthic fauna on a rocky reef in deep water. PMID:25153985

  18. Extreme diving behaviour in devil rays links surface waters and the deep ocean

    PubMed Central

    Thorrold, Simon R.; Afonso, Pedro; Fontes, Jorge; Braun, Camrin D.; Santos, Ricardo S.; Skomal, Gregory B.; Berumen, Michael L.

    2014-01-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite of predators that include commercially important fishes and marine mammals. Here we deploy pop-up satellite archival transmitting tags on 15 Chilean devil rays (Mobula tarapacana) in the central North Atlantic Ocean, which provide movement patterns of individuals for up to 9 months. Devil rays were considered surface dwellers but our data reveal individuals descending at speeds up to 6.0 m s−1 to depths of almost 2,000 m and water temperatures <4 °C. The shape of the dive profiles suggests that the rays are foraging at these depths in deep scattering layers. Our results provide evidence of an important link between predators in the surface ocean and forage species occupying pelagic habitats below the euphotic zone in ocean ecosystems. PMID:24983949

  19. Extreme diving behaviour in devil rays links surface waters and the deep ocean.

    PubMed

    Thorrold, Simon R; Afonso, Pedro; Fontes, Jorge; Braun, Camrin D; Santos, Ricardo S; Skomal, Gregory B; Berumen, Michael L

    2014-01-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite of predators that include commercially important fishes and marine mammals. Here we deploy pop-up satellite archival transmitting tags on 15 Chilean devil rays (Mobula tarapacana) in the central North Atlantic Ocean, which provide movement patterns of individuals for up to 9 months. Devil rays were considered surface dwellers but our data reveal individuals descending at speeds up to 6.0 m s(-1) to depths of almost 2,000 m and water temperatures <4 °C. The shape of the dive profiles suggests that the rays are foraging at these depths in deep scattering layers. Our results provide evidence of an important link between predators in the surface ocean and forage species occupying pelagic habitats below the euphotic zone in ocean ecosystems. PMID:24983949

  20. A trophic ecology of two grenadier species (Macrouridae, Pisces) in deep waters of the Southwest Atlantic

    NASA Astrophysics Data System (ADS)

    Laptikhovsky, V. V.

    2005-08-01

    The feeding habits of slope-dwelling macrourid fishes from the southern Southwest Atlantic is unknown. In this study the feeding ecology of the two most abundant species, Macrourus carinatus and M. holotrachys, was investigated. Both these grenadiers fed on a variety of prey, including gelatinous plankton, crustaceans, mesopelagic and benthic fish and cephalopods, echinoderms, as well as fishery discards. M. carinatus forage mostly in depths shallower than 900 m and its feeding spectrum and hunting strategy display important seasonal variability. It consumes more pelagic fish, squid and crustaceans than M. holotrachys, which probably indicates occasional feeding in the water column and higher availability of pelagic prey. M. holotrachys forages mostly in depths deeper than 1100 m and is a specialised bottom feeder. Macrourids are able to switch their feeding strategy from browsing on abundant food sources in summer and autumn (a narrow niche breadth and high number of prey per stomach) to hunting occasional prey in winter and spring (a wide niche breadth, low number of prey per stomach). Both species are of similar size and hard to distinguish morphologically, but in deep water M. holotrachys males are smaller than, and females larger than, those of M. carinatus. A probable reason for such energy re-distribution within a population in M. holotrachys is to achieve a higher reproductive output in a food-poor and harsh deep-sea environment.

  1. Documentation of a deep percolation model for estimating ground-water recharge

    USGS Publications Warehouse

    Bauer, H.H.; Vaccaro, J.J.

    1987-01-01

    A deep percolation model, which operates on a daily basis, was developed to estimate long-term average groundwater recharge from precipitation. It has been designed primarily to simulate recharge in large areas with variable weather, soils, and land uses, but it can also be used at any scale. The physical and mathematical concepts of the deep percolation model, its subroutines and data requirements, and input data sequence and formats are documented. The physical processes simulated are soil moisture accumulation, evaporation from bare soil, plant transpiration, surface water runoff, snow accumulation and melt, and accumulation and evaporation of intercepted precipitation. The minimum data sets for the operation of the model are daily values of precipitation and maximum and minimum air temperature, soil thickness and available water capacity, soil texture, and land use. Long-term average annual precipitation, actual daily stream discharge, monthly estimates of base flow, Soil Conservation Service surface runoff curve numbers, land surface altitude-slope-aspect, and temperature lapse rates are optional. The program is written in the FORTRAN 77 language with no enhancements and should run on most computer systems without modifications. Documentation has been prepared so that program modifications may be made for inclusions of additional physical processes or deletion of ones not considered important. (Author 's abstract)

  2. Formation of carbonate chimneys in the Mediterranean Sea linked to deep-water oxygen depletion

    NASA Astrophysics Data System (ADS)

    Bayon, Germain; Dupré, Stéphanie; Ponzevera, Emmanuel; Etoubleau, Joël; Chéron, Sandrine; Pierre, Catherine; Mascle, Jean; Boetius, Antje; de Lange, Gert J.

    2013-09-01

    Marine sediments at ocean margins vent substantial amounts of methane. Microbial oxidation of the methane released can trigger the precipitation of carbonate within sediments and support a broad diversity of seafloor ecosystems. The factors controlling microbial activity and carbonate precipitation associated with the seepage of submarine fluid over geological time remain poorly constrained. Here, we characterize the petrology and geochemistry of rocks sampled from metre-size build-ups of methane-derived carbonate chimneys located at the Amon mud volcano on the Nile deep-sea fan. We find that these carbonates comprise porous structures composed of aggregated spherules of aragonite, and closely resemble microbial carbonate reefs forming at present in the anoxic bottom waters of the Black Sea. Using U-series dating, we show that the Amon carbonate build-ups formed between 12 and 7 thousand years ago, contemporaneous with the deposition of organic-rich sediments in the eastern Mediterranean, the so-called sapropel layer S1. We propose that the onset of deep-water suboxic or anoxic conditions associated with sapropel formation resulted in the development of intense anaerobic microbial activity at the sea floor, and thus the formation of carbonate chimneys.

  3. Stochastic Plume Simulations for the Fukushima Accident and the Deep Water Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Coelho, E.; Peggion, G.; Rowley, C.; Hogan, P.

    2012-04-01

    The Fukushima Dai-ichi power plant suffered damage leading to radioactive contamination of coastal waters. Major issues in characterizing the extent of the affected waters were a poor knowledge of the radiation released to the coastal waters and the rather complex coastal dynamics of the region, not deterministically captured by the available prediction systems. Equivalently, during the Gulf of Mexico Deep Water Horizon oil platform accident in April 2010, significant amounts of oil and gas were released from the ocean floor. For this case, issues in mapping and predicting the extent of the affected waters in real-time were a poor knowledge of the actual amounts of oil reaching the surface and the fact that coastal dynamics over the region were not deterministically captured by the available prediction systems. To assess the ocean regions and times that were most likely affected by these accidents while capturing the above sources of uncertainty, ensembles of the Navy Coastal Ocean Model (NCOM) were configured over the two regions (NE Japan and Northern Gulf of Mexico). For the Fukushima case tracers were released on each ensemble member; their locations at each instant provided reference positions of water volumes where the signature of water released from the plant could be found. For the Deep Water Horizon oil spill case each ensemble member was coupled with a diffusion-advection solution to estimate possible scenarios of oil concentrations using perturbed estimates of the released amounts as the source terms at the surface. Stochastic plumes were then defined using a Risk Assessment Code (RAC) analysis that associates a number from 1 to 5 to each grid point, determined by the likelihood of having tracer particle within short ranges (for the Fukushima case), hence defining the high risk areas and those recommended for monitoring. For the Oil Spill case the RAC codes were determined by the likelihood of reaching oil concentrations as defined in the Bonn Agreement

  4. Advection of North Atlantic Deep Water from the Labrador Sea to the southern hemisphere

    NASA Astrophysics Data System (ADS)

    Rhein, Monika; Kieke, Dagmar; Steinfeldt, Reiner

    2015-04-01

    Recently formed Labrador Seawater (LSW) and overflow water from Denmark Strait (DSOW) are main components of the Atlantic Meridional Overturning Circulation. Both exhibit a distinct chlorofluorocarbon (CFC) maximum. Here we use 25 years of CFC observations in the Atlantic to study the main features of the circulation of LSW and DSOW. From the CFC data, the age and fraction of young deep water are inferred. Due to the superior spatial data resolution compared to former attempts, regional differences in the spreading velocity and pathways of young deep water become evident, dependent on the regional circulation. The observed distributions of young LSW and DSOW showed that the DWBC is the fastest pathway to reach the southern hemisphere. The downstream decrease of the fractions of young LSW in the DWBC is slower compared to model studies. From 47°N to 42°N, DWBC transports of young LSW and DSOW decrease by 44% and 49%, respectively. At 26°N, the DWBC transport of young water is still 39% of the LSW formation rate and 44% of the DSOW overflow transport. Interior pathways also exist, especially in the subpolar North Atlantic and in the transition zone between the subpolar and subtropical gyre. Compared to DSOW, the distributions indicate a higher tendency for LSW to follow additional interior pathways. North of 45°N the major part of LSW is younger than 20 years. The general weakening of new LSW formation since the 1990s worked toward a homogenization between the LSW in the western and the eastern subpolar North Atlantic.

  5. The deep water cycle and origin of cratonic flood basalts: two examples from the Siberian craton

    NASA Astrophysics Data System (ADS)

    Ivanov, A. V.

    2014-12-01

    Cratonic flood basalt volcanism is the most puzzling phenomenon compared to all other types of intraplate volcanism. Cratons are thick and cold; the two parameters which suppress melting of either sublithospheric or lithospheric mantle in dry conditions. Fusible eclogites at hot plume geotherm start to melt in sublithospheric depth (~ 230 km), but geochemical arguments require that, in addition to eclogitic component, significant volume of flood basalts are from peridotitic mantle. Dry peridotitic mantle cannot be melted unless the lithospheric thickness reduced to about 60 km. That is why modern plume models incorporate lithospheric delamination and/or initially thinned lithosphere to explain cratonic flood basalts. However, if lithosphere remained thick, which was the case for the Siberian craton by the time of formation of its Devonian (Vilyui) and Permo-Triassic (Siberian) flood basalt provinces, then plume model is unable to explain the flood basalt volcanism. If mantle is wet, the peridotitic solidus lowered such as it can start to melt at sublithospheric depth (for example, 2 wt. % H2O-bearing peridotite starts to melt at ~320 km depth even at a normal mantle geotherm). In this presentation I will show that fluxing of mantle via the deep water cycle process may explain the Siberian craton flood basalts and many other continental flood basalts. According to the deep water cycle model, water is carried to the mantle transition zone by fast subducting slabs (may be in form of solid ice VII), then water is released from the slabs due to warming to the ambient mantle temperature, then localized hydration creates buoyant wet diapirs (or melt-bearing diapirs), the diapirs raise up to the sublithosheric depth were melt accumulates for the following tectonically triggered flood basalt eruptions.

  6. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems

    PubMed Central

    Lynch, Jonathan P.

    2013-01-01

    Background A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • The ideotype Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low Km and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops. PMID:23328767

  7. The first experience the transportation of deep-water methane hydrates in a container

    NASA Astrophysics Data System (ADS)

    Egorov, A. V.; Rimskii-Korsakov, N. A.; Rozhkov, A. N.; Chernyaev, E. S.

    2011-04-01

    Deep-water experiments on the transportation of collected samples of methane hydrates from a lake's bottom to a support container were carried out as part of the MIRY na Baikale (2008-2009) expedition run by the Russian Academy of Sciences. High pressures and low temperatures are necessary for gas hydrates stability. As a sample of the hydrate is lifted to the water's surface, it intensively decomposes into water and methane gas. To reduce the decomposition, we used a container in which the hydrate's sample occurs in a gas medium rather than in water, which results in a substantial reduction in the rate of the heat exchange. At that, the gas for the container's filling was supplied by the hydrate itself due to its partial decomposition. To estimate the method's efficiency, we observed the hydrate's decomposition during lifting from a depth of 1400 m using different transportation techniques such as gas- or water-filled containers or fixing the sample in the manipulator's arm of the submersible. The sample in the gaseous medium was the only one that was safely delivered on board the support container, while the two others completely decomposed during the transportation. It is remarkable that all the samples started to decompose simultaneously at a depth of 380 m but their decomposition occurred at different rates.

  8. Characterization of the bacterial flora in mineral waters in upstreaming fluids of deep igneous rock aquifers

    NASA Astrophysics Data System (ADS)

    Wagner, C.; Mau, M.; SchlöMann, M.; Heinicke, J.; Koch, U.

    2007-03-01

    The bacterial community of the mineral spring Wettinquelle in the Vogtland/NW Bohemian region (German-Czech border) was characterized by sequence analysis of amplified small subunit ribosomal RNA genes. The acidulous spring water consists mostly of old groundwater from deep aquifers, which is mixed with 15-20% young water from upper groundwater horizons. The spring water contains high concentrations of iron, Ca2+ and SO42- ions. A remarkable attribute is the high radon activity of 27 kBq L-1 water. Free escaping spring gas consists mainly of CO2 originating from the mantle, N2 (1.2%) and traces of other gases, like methane and helium. Close relatives of Gallionella ferruginea, a micro-aerobic oxidizer of ferrous iron, contributed most to the clone library. Clones with sequences related to Thiobacillus aquaesulis, members of the Sulfuricurvum-cluster and members of several branches of the OP11 group were present in significantly lower numbers but still with some microdiversity. These bacterial groups, which contributed strongly to the clone library and have known physiology, obviously depend on the oxygen in the younger water and reduced compounds from the below.

  9. Purification of fuel and nitrate contaminated ground water using a free water surface constructed wetland plant

    SciTech Connect

    Machate, T.; Heuermann, E.; Schramm, K.W.; Kettrup, A.

    1999-10-01

    Contaminated ground water from a former coke plant site was purified in a free water surface (FWS) constructed wetland plant during a 3-mo short-term experiment. The pilot plant (total surface area 27 m{sup 2}) was filled with a 1 m thick lava-gravel substrate planted with cattail (Typha spp.) and bulrush (Scirpus lacustrls). Major contaminants were low to moderate concentrations of polycyclic aromatic hydrocarbons, BTEX, nitrate, and nitrite. The wetland was dosed at hydraulic loading rates of q{sub A} = 4.8 and 9.6 cm d{sup {minus}1} with a hydraulic residence time (HRT) of 13.7 and 6.8 d. The surface removal rates of PAH were between 98.8 and 1914 mg m{sup {minus}2} d{sup {minus}1}. Efficiency was always {gt}99%. Extraction of lava gravel showed that approx. 0.4% of the applied PAH were retained on the substratum. The ratio of {Sigma}2,3-ring PAH and {Sigma}4,5,6-ring PAH showed a shift from 1:0.11 in water to 1:2.5 in lava. The removal of BTEX was {gt}99%, but might be in part due to volatilization. The efficiency in the removal of nitrate was 91% and of nitrite was 97%. Purification performance was not influenced by hydraulic loading rates or after die-back of the macrophytes.

  10. Monitoring of Intense Events of Deep Water Formations in the Northwestern Mediterranean over the last five years

    NASA Astrophysics Data System (ADS)

    Houpert, Loïc; Durrieu de Madron, Xavier; Testor, Pierre; Bosse, Anthony; Mortier, Laurent

    2014-05-01

    A multi-platforms and integrated monitoring system in the framework of the Mediterranean Ocean Observing System on Environment (MOOSE) enables to monitor the deep water formation processes. Since 2007, it provides high frequency in-situ temperature, salinity vertical profiles, derived from CTD measurements on moorings, ships, and gliders, as well as horizontal and vertical currents from moorings. The aim of this study is to investigate the temporal scales associated to the deep convection phases. We also studied the interannual variability of the deep convection and its implication in the evolution of deep water thermohaline characteristics. Recent measurements from the mooring lines reveal the temporal evolution of the physical processes interfering in the phases of deep convection. Horizontal currents were strongly equivalent barotropic during each deployment and strong currents were also recorded during the different events of deep ocean convection: high frequencies vertical velocities exceeded 10 cm.s-1 during the violent vertical mixing phase and strong mesoscale horizontal currents reached 40cm.s-1 during the spreading/restratification phase. Using a eddy-detection method based on a kinematic model, more than 34 eddies crossing the mooring line were detected between November 2009 and July 2012, 19 cyclones and 15 anticyclones. The radii (resp. velocities) ranging from 1.9 km to 20.0 km (resp. 2.5 cm.s-1 to 25.1 cm.s-1 ). The main mode of the distribution of eddies radii is centered at 4km for the cyclones and 5km for the anticyclones. The apparition of newly-formed deep waters was detected in winter 2009, 2010, 2011 and 2012. In winter 2010, two newly-formed deep waters were detected after the deep convection event, both present a different potential temperature but a similar salinity, suggesting that both might be formed in the cyclonic gyre, but in different locations. In 2012, two new deep waters were detected at the mooring location, one was identified as

  11. High-Resolution Glacial Discharge Records From Deep-Water Tidal Rhythmites in an Alaskan Fjord

    NASA Astrophysics Data System (ADS)

    Jackolski, C. L.; Cowan, E. A.; Jaeger, J. M.; Powell, R. D.

    2006-12-01

    In this study we have compiled and analyzed two high-resolution records of deep-water tidal rhythmites derived from glacial discharges. The rhythmites contain an average of 1 cm of sediment thickness per week during the melt-season. Two sediment cores over 17-m-long were collected from Muir Inlet, Glacier Bay National Park, Southeast Alaska, aboard the R/V Maurice Ewing in 2004 (EW0408). One core (core 60JC) was collected just north of the mouth of Wachusett Inlet. The other (core 62JC) was collected 3.8 km due north of 60JC in a separate basin more proximal to Muir and McBride Glaciers. In Glacier Bay, glacial retreat since the Little Ice Age Maximum is well constrained by historical mapping of glacial temini, and local climate records exist as well. The next step after establishing glacial discharge records is to test hypotheses relating glacial discharge to temperature and rainfall. The cores were subsampled with ODP-style u-channels and scanned for magnetic susceptibility and bulk density. X-radiographs of u-channels were collected to observe small-scale (42 microns/pixel) density differences between silt and mud laminae. Spring-neap tidal packages, representing 2-week periods during summer, are visible because of closely-spaced bounding silt laminae. Seasonality is marked by winter gravelly mud (diamicton) beds and/or spring plankton blooms. Spring-neap packages and seasonal markers were considered jointly in order to construct two mostly continuous records of spring-neap packages and melt- season deposits in each core. Secondarily, melt-season duration, which we define as the number of spring- neap packages occurring in a melt-season, was determined. We found that core 60JC extends back 83 years. 75 of those years were identified as having complete, contiguous melt-season deposits that are, on average, 17 cm thick and contain 8.3 spring-neap packages. Core 62JC extends back 62 years. 57 of those years were identified as having complete, contiguous melt

  12. Eddy-Mediated Transport of Circumpolar Deep Water Across the Antarctic Shelf Break

    NASA Astrophysics Data System (ADS)

    Stewart, A.; Thompson, A. F.

    2014-12-01

    The continental shelves of Antarctica produce the ocean's densest water, Antarctic Bottom Water (AABW), which ventilates over 50% of the sub-surface global ocean. The heat needed to melt marine-terminating Antarctic ice sheets and produce dense water is supplied by Circumpolar Deep Water (CDW), a relatively warm, mid-depth water mass found offshore. The onshore transport of CDW is obstructed by the Antarctic Slope Front (ASF), a westward current at the continental shelf break that almost completely encircles the continent. Relatively little is understood about the processes that control the exchange of water masses and shoreward heat transport across the ASF, due to a scarcity of observations and the prohibitive cost of simulating turbulent flows in this region. Using a process model of the ASF that resolves the mesoscale eddies at the shelf break, we show that the ASF is shaped by an interplay between the surface wind forcing, transport by mesoscale eddies, and the geometry of the continental shelf. Consequently the onshore transport of CDW and the properties of the outflowing AABW are strongly sensitive to the wind and buoyancy forcing at the ocean surface, and to the geometry of the continental shelf. The onshore mass transport of CDW occurs through an eddy thickness flux. We develop a scaling for this transport that accurately captures the strong sensitivity to forcing and geometry, which is largely controlled by the eddy kinetic energy (EKE) over the continental slope. We find that the EKE is enhanced in the CDW density classes over the continental slope, but cross-slope mixing is constrained by the strong topographic potential vorticity gradient. Our results offer an explanation for the substantial changes in the structure of the ASF around Antarctica, and provide insight into future rates of dense water production and shoreward heat transport around Antarctica.

  13. Suborbital timescale variability of North Atlantic Deep Water during the past 200,000 years

    NASA Astrophysics Data System (ADS)

    Oppo, Delia W.; Lehman, Scott J.

    1995-10-01

    We generated ˜200-kyr-long proxy records of surface and deepwater variability from a subpolar North Atlantic core (V29-202), enabling us to assess the linkage between surface and deepwater changes on suborbital timescales. In particular, we used a benthic δ13C record to evaluate the deep water response to Dansgaard-Oeschger temperature oscillations and to Heinrich events, times of massive iceberg delivery to the North Atlantic. We found that the reduction of North Atlantic Deep Water (NADW) production was generally associated with cold or dropping sea surface temperatures (SSTs) as indicated by planktonic foraminiferal assemblages. The NADW contribution to the site did not drop appreciably during Heinrich events H4 through H2, probably because these events followed intervals of prolonged surface cooling already characterized by low rates of NADW production. By contrast NADW reduction appears to have been synchronous with H5. SST rise associated with both Dansgaard-Oeschger oscillations and Heinrich events was usually accompanied by increasing NADW strength. In a few cases the NADW recovery appeared to lag the SST rise; however, the apparent delay is most likely an artefact of the sedimentary record (low concentrations of benthic foraminifera). As a result of low benthic foraminiferal abundances during stage 6, the stage 6 benthic foraminiferal δ13C record is of lower resolution than the younger part of the record. The stage 6 proxy records for surface hydrography nevertheless reveal millennial-scale oscillations similar to those seen in stage 3. The available δ13C data suggest that NADW weakened in association with the cold portions of stage 6 SST oscillations. We also sought to confirm a recent study which concluded that there was little NADW variability during the peak of the last interglaciation, marine oxygen isotope substage 5e (Eemian). Isotope stage 5 was marked by a trend of increasing benthic δ13C in V29-202. Rising δ13C through isotope stage 5 is

  14. Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters.

    PubMed

    Borin, Maurizio; Tocchetto, Davide

    2007-07-15

    The performance of a constructed surface flow wetland in reducing diffuse N pollution coming from croplands is being investigated in an ongoing experiment, begun in 1998 in NE Italy. The 0.32 ha wetland is vegetated with Phragmites australis (Cav.) Trin. and Typha latifolia (L.). It receives drainage water from 6 ha of land managed for an experiment on drainage systems, where maize, sugarbeet, winter wheat and soybean are cultivated. During the period 1998-2002, the wetland received from 4698 to 8412 mm of water per year (on average, about 9 times the environmental rainfall); its water regimen was discontinuous and flooding occurred on a variable number of days per year (from 13 to 126). Nitric nitrogen was the most important form of element load. Its concentration in the inflow water over time was rather discontinuous, with median values ranging from 0.2 (in 2001) to 4.5 (in 2000) mg L(-1). Inflow nitric N concentrations were occasionally in the 5-15 mg L(-1) range. Concentrations reduced passing through the wetland, with a more evident effect in the last year. Over 5 years, the wetland received slightly more than 2000 kg ha(-1) of nitrogen, 87% in nitric form mostly from farmland drainage. The remaining 13% of N was applied as organic slurry directly onto the wetland, with 5 distributions during 1998 to assess wetland performance in treating occasional organic loads. Field drainage loads had a discontinuous time pattern and occurred mostly during autumn-winter, with the exception of the 2001-2002 season which was a very dry. The wetland discharged 206 kg ha(-1) of N, over the 5-year period, with an apparent removal efficiency of about 90%. The disappearance was mostly due to plant uptake (1110 kg ha(-1)) and soil accumulation (570 kg ha(-1)), with the contribution of denitrification being estimated at around 7%. PMID:17270250

  15. Subsurface microbial diversity in deep-granitic-fracture water in Colorado

    USGS Publications Warehouse

    Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology

  16. Subsurface microbial diversity in deep-granitic-fracture water in Colorado.

    PubMed

    Sahl, Jason W; Schmidt, Raleigh; Swanner, Elizabeth D; Mandernack, Kevin W; Templeton, Alexis S; Kieft, Thomas L; Smith, Richard L; Sanford, William E; Callaghan, Robert L; Mitton, Jeffry B; Spear, John R

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. PMID:17981950

  17. Ancient Martian Deltas: Evidence for Shallow and Deep Standing Bodies of Water

    NASA Astrophysics Data System (ADS)

    Jew, C. L.; Kim, W.; Lim, Y.; Piliouras, A.

    2015-12-01

    Ancient deltas on Mars are indicative of a geologic history composed of complex fluvio-deltaic deposits. We focus on two morphologically different deltas preserved on Mars, one located in the Jezero crater and the other in the Shalbatana Valles canyon. The Jezero delta, formed during the Noachian age, is a large fluvial delta with strong channelization and a rigid shoreline resembling a terrestrial delta. In contrast, the Shalbatana Delta is a smaller scaled more briefly lived delta system, developed during the Hesperian, that is characterized by its smooth and simple planform. Evidence from previous studies on these Martian deltas such as the base level, mechanism to build sediment cohesion, estimated discharge, and time of formation offer support to ultimately discover why one delta drastically differs from the other. Based upon the observations from these two locations, we investigate through our physical experiments the conditions required to create these prograding deltas. We use carbonate precipitation in our experiments as a mechanism to increase bank stability, an alternative for any chemically driven precipitated deposits that potentially improve cohesion as vegetation does for terrestrial deltas. We found that there are differences in floodplain thickness, channelization, shoreline rugosity, and delta shape in the carbonate verse non-carbonate runs. Additionally, we conducted runs for isolating the influence that shallow and deep standing bodies of water have on prograding deltas. The experimental results suggested that the highly channelized delta (e.g., Jezero delta) rapidly prograded into a shallow body of water, covering a broader surface area and is dependent on a cohesive force for channel organization. On the contrary, Gilbert-type delta (e.g., Shalbatana delta) was best replicated when prograding into a deep standing body of water. Investigation using the experimental carbonate deltas suggests that cohesion results in better channelization (more

  18. Salinity of deep groundwater in California: Water quantity, quality, and protection.

    PubMed

    Kang, Mary; Jackson, Robert B

    2016-07-12

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California's Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km(3), most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km(3) of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California's Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  19. Salinity of deep groundwater in California: Water quantity, quality, and protection

    PubMed Central

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [<3,000 ppm total dissolved solids (TDS)] groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; <10,000 ppm TDS). Up to 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  20. Heterotrophic Protists in Hypersaline Microbial Mats and Deep Hypersaline Basin Water Columns

    PubMed Central

    Edgcomb, Virginia P.; Bernhard, Joan M.

    2013-01-01

    Although hypersaline environments pose challenges to life because of the low water content (water activity), many such habitats appear to support eukaryotic microbes. This contribution presents brief reviews of our current knowledge on eukaryotes of water-column haloclines and brines from Deep Hypersaline Anoxic Basins (DHABs) of the Eastern Mediterranean, as well as shallow-water hypersaline microbial mats in solar salterns of Guerrero Negro, Mexico and benthic microbialite communities from Hamelin Pool, Shark Bay, Western Australia. New data on eukaryotic diversity from Shark Bay microbialites indicates eukaryotes are more diverse than previously reported. Although this comparison shows that eukaryotic communities in hypersaline habitats with varying physicochemical characteristics are unique, several groups are commonly found, including diverse alveolates, strameonopiles, and fungi, as well as radiolaria. Many eukaryote sequences (SSU) in both regions also have no close homologues in public databases, suggesting that these environments host unique microbial eukaryote assemblages with the potential to enhance our understanding of the capacity of eukaryotes to adapt to hypersaline conditions. PMID:25369746

  1. A Statistical Comparison of Meteorological Data Types Derived from Deep Space Network Water Vapor Radiometers

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.; Keihm, S.; Slobin, S.

    2015-11-01

    Water vapor radiometers measure the sky brightness along a path through the atmosphere. This sky brightness is a combination of the atmospheric "noise" temperature and the cosmic background. By removing the cosmic contribution, the remaining atmospheric noise temperature contribution can be used to infer atmospheric attenuation and atmospheric noise temperature used in telecommunications link budgets. Water vapor radiometer (WVR) data also have been used to calibrate or experimentally characterize atmospheric error sources in phase data gathered from radio science and very long baseline interferometry (VLBI) experiments. A previous article reported on the comparison of atmospheric attenuation derived from WVR data with that estimated from International Telecommunication Union (ITU) models for the three Deep Space Network (DSN) sites. The focus of this current article is to examine and cross-compare the statistics of the meteorological data types (integrated precipitable water vapor, integrated liquid water content, and wet path delay) extracted from the WVR measurements for all three DSN sites. In this article, we will also compare some of the statistical estimates against those available using ITU models and prediction methods.

  2. Packaged FBG sensors for real-time stress monitoring on deep-water riser

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Yang, Dexing; Jiang, Yajun; Wang, Meirong; Zhai, Huailun; Bai, Yang

    2014-11-01

    The safety of under-water risers in drilling platform is of great significance. A packaged fiber Bragg grating (FBG) sensor for real-time stress monitoring is designed for the applications on oil drilling risers under 3000 meters deep water. A copper tube which is the main component of the sensor has a small hole along its axes and a groove at its each end. The bare FBG is passed through the small hole and fixed to its ends by epoxy resin. Then the copper tube is packaged by filling the groove with structural adhesive. In order to avoid that the outer water-pressure is applied on the epoxy resin through the structural adhesive, a gap between the two types of glues is left. The relationships between the stress of the riser and the tension, pressure, temperature of the single sensor are discussed, respectively. The measured tension sensitivity is 136.75 pm/KN while the minimum R-square value is 0.99997. The experimental results also show that there is a good linear response between water-pressure and the Bragg wavelength from 0 to 30MPa, and the sensor can even survive under the pressure more than 30MPa. In addition, the Bragg wavelength shifts linearly with the increasing temperature from 0 to 40°C. So, the pressure and temperature can be easily compensated if another sensor without tension is used.

  3. 25 CFR 167.17 - Construction near permanent livestock water developments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... within one-half mile of Government or Navajo Tribal developed permanent livestock waters such as springs... mile of Government or Navajo Tribal developed springs, wells and charcos or deep reservoirs. (c) No sewage disposal system shall be authorized to be built which will drain into springs or stream...

  4. Water withdrawal in deep soil layers: a key strategy to cope with drought in tropical eucalypt plantations

    NASA Astrophysics Data System (ADS)

    Christina, M.; Laclau, J.; Nouvellon, Y.; Duursma, R. A.; Stape, J. L.; Lambais, G. R.; Le Maire, G.

    2013-12-01

    Little is known about the role of very deep roots to supply the water requirements of tropical forests. Clonal Eucalyptus plantations managed in short rotation on very deep Ferralsols are simple forest ecosystems (only 1 plant genotype growing on a relatively homogeneous soil) likely to provide an insight into tree water use strategies in tropical forests. Fine roots have been observed down to a depth of 6 m at age 1 year in Brazilian eucalypt plantations. However, the contribution of water stored in very deep soil layers to stand evapotranspiration over tree growth has been poorly quantified. An eco-physiological model, MAESPA, has been used to simulate half-hourly stand water balance over the first three years of growth in a clonal Eucalyptus grandis plantation in southern Brazil (Eucflux project, State of São Paulo). The water balance model in MAESPA is an equilibrium-type model between soil and leaf water potentials for individual trees aboveground, and at the stand scale belowground. The dynamics of the vertical fine root distribution have been taken into account empirically from linear interpolations between successive measurements. The simulations were compared to time series of soil water contents measured every meter down to 10m deep and to daily latent heat fluxes measured by eddy covariance. Simulations of volumetric soil water contents matched satisfactorily with measurements (RMSE = 0.01) over the three-year period. Good agreement was also observed between simulated and measured latent heat fluxes. In the rainy season, more than 75 % of tree transpiration was supplied by water withdrawn in the upper 1 m of soil, but water uptake progressed to deeper soil layers during dry periods, down to a depth of 6 m, 12 m and 15 m the first, second and third year after planting, respectively. During the second growing season, 15% of water was withdrawn below a depth of 6 m, and 5% below 10m. Most of the soil down to 12m deep was dried out the second year after

  5. Elephant overflows: Multi-annual variability in Weddell Sea Deep Water driven by surface forcing

    NASA Astrophysics Data System (ADS)

    Meijers, Andrew; Meredith, Michael; Abrahamsen, Povl; Naviera-Garabato, Alberto; Ángel Morales Maqueda, Miguel; Polzin, Kurt

    2015-04-01

    The volume of the deepest and densest water mass in Drake Passage, Lower Weddell Sea Deep Water (LWSDW), is shown to have been decreasing over the last 20 years of observations, with an associated reduction in density driven by freshening. Superimposed on this long term trend is a multi-annual oscillation with a period of 3-5 years. This variability only appears in Drake Passage; observations in the east of the Scotia Sea show a similar long term trend, but with no apparent multi-annual variability. Clues as to the source of this variability may be found on the continental slope at approximately 1000 m immediately north of Elephant Island on the northern tip of the Antarctic Peninsula. Here there is an intermittent westward flowing cold/fresh slope current whose volume and properties are strongly correlated with the LWSDW multi-annual variability, although leading the LWSDW by around one year. As the slope current and LWSDW are separated from each other both geographically and in water mass characteristics, their co-variability implies that they are responding to a common forcing, while the lag between deep LWSDW and shallow slope current provides information on the timescale of this response. A newly available high resolution temperature and salinity multi-year time series from the Elephant Island slope at 1000 m is compared with reanalysis and model derived surface fluxes, sea ice extent and wind stress. We find that there are strong positive relationships between the surface wind stress and heat flux over the shelf at the tip of the Antarctic Peninsula and the properties of the slope current at 1000 m on seasonal to annual timescales. We use tracer release experiments in the Southern Ocean State Estimate (SOSE) model to investigate the lag between the slope current and LWSDW timeseries and hypothesise that the observed multi-annual variability in both water masses is driven by surface forcing over the shelf and the overflow of modified water from the slope in

  6. Simulated interannual variability of the Greenland Sea deep water formation and its connection to surface forcing

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa

    1995-01-01

    A fully prognostic Arctic ice-ocean model is used to study the interannual variability of deepwater formation in the Greenland Sea Gyre based on the simulations for the Arctic ice-ocean system for the period 1955 and 1960 - 1985. The model uses monthly climatology for thermodynamic forcing components (such as air temperature and cloudiness), together with constant annual net precipitation and river runoff. The daily wind forcing is derived from analyzed sea level air pressures from the National Center for Atmospheric Research (NCAR). In summary, the model shows that the occurence of deep convection in the Greenland Sea Gyre is controlled by the extensive Fram Strait ice export and/or local wind conditions in the Greenland Sea. In the latter case the weakening of the local wind curl allows the Polar Front to move eastward. The movement of the Polar Front causes adverse ice conditions, often together with much larger than normal ice export from the Arctic, such as in 1968, which can block convection in the gyre. The density difference between upper and lower layers is investigated as an indication of water mass formation through convection, occurring as strong diffusion in the model. The model-simulated density difference between the average top 100 m and deep levels reveals that the period 1960 - 1985 had only a few distinct years with weak stratification, and, especially, the model predicts no deep convection since the nid-1970s. The common factor for the years of the weakest decrease of the model-predicted heat content of the upper 2000 m which can, to a high degree, be explained by local heat loss.

  7. Footprint of Deepwater Horizon blowout impact to deep-water coral communities

    PubMed Central

    Fisher, Charles R.; Hsing, Pen-Yuan; Kaiser, Carl L.; Yoerger, Dana R.; Roberts, Harry H.; Shedd, William W.; Cordes, Erik E.; Shank, Timothy M.; Berlet, Samantha P.; Saunders, Miles G.; Larcom, Elizabeth A.; Brooks, James M.

    2014-01-01

    On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations. PMID:25071200

  8. Footprint of Deepwater Horizon blowout impact to deep-water coral communities.

    PubMed

    Fisher, Charles R; Hsing, Pen-Yuan; Kaiser, Carl L; Yoerger, Dana R; Roberts, Harry H; Shedd, William W; Cordes, Erik E; Shank, Timothy M; Berlet, Samantha P; Saunders, Miles G; Larcom, Elizabeth A; Brooks, James M

    2014-08-12

    On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondo wellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near the wellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations. PMID:25071200

  9. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean

    USGS Publications Warehouse

    Banakar, V.K.; Hein, J.R.

    2000-01-01

    A deep-water ferromanganese crust from a Central Indian Ocean seamount dated previously by 10Be and 230Th(excess) was studied for compositional and textural variations that occurred throughout its growth history. The 10Be/9Be dated interval (upper 32 mm) yields an uniform growth rate of 2.8 ?? 0.1 mm/Ma [Frank, M., O'Nions, R.K., 1998. Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion. Earth Planet. Sci. Lett., 158, pp. 121-130.] which gives an extrapolated age of ~ 26 Ma for the base of the crust at 72 mm and is comparable to the maximum age derived from the Co-model based growth rate estimates. This study shows that Fe-Mn oxyhydroxide precipitation did not occur from the time of emplacement of the seamount during the Eocene (~ 53 Ma) until the late Oligocene (~ 26 Ma). This paucity probably was the result of a nearly overlapping palaeo-CCD and palaeo-depth of crust formation, increased early Eocene productivity, instability and reworking of the surface rocks on the flanks of the seamount, and lack of oxic deep-water in the nascent Indian Ocean. Crust accretion began (older zone) with the formation of isolated cusps of Fe-Mn oxide during a time of high detritus influx, probably due to the early-Miocene intense erosion associated with maximum exhumation of the Himalayas (op. cit.). This cuspate textured zone extends from 72 mm to 42 mm representing the early-Miocene period. Intense polar cooling and increased mixing of deep and intermediate waters at the close of the Oligocene might have led to the increased oxygenation of the bottom-water in the basin. A considerable expansion in the vertical distance between the seafloor depth and the CCD during the early Miocene in addition to the influx of oxygenated bottom-water likely initiated Fe-Mn crust formation. Pillar structure characterises the younger zone, which extends from 40 mm to the surface of the crust, i.e., ~ 15 Ma to Present. This zone is characterised by > 25% higher

  10. Stirring by deep cyclones and the evolution of Denmark strait overflow water observed at line W

    NASA Astrophysics Data System (ADS)

    Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M.; Joyce, T. M.; Curry, R. G.

    2016-03-01

    Shipboard velocity and water property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40 °N are examined to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and mixing between DSOW and the interior. The examined transects along Line W - which stretches from the continental shelf south of New England to Bermuda - were made between 1994 and 2014. The shipboard data comprise measurements at regular stations of velocity from lowered acoustic Doppler current profilers, CTD profiles and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths. Comparison of the Line W velocity sections with concurrent sea surface height maps from satellite altimetry indicates that large cyclones in the deep ocean accompany intermittent quasi-stationary meander troughs in the Gulf Stream path at Line W. A composite of 5 velocity sections along Line W suggests that a typical cyclone reaches swirl speeds of greater than 30 cm s-1 at 3400-m depth and has a radius (distance between the center and the maximum velocity) of 75 km. Tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC's DSOW and the interior. Vigorous exchange is corroborated by a mismatch in the CFC-11:CFC-12 and CFC-113:CFC-12 ratio ages calculated for DSOW at Line W. During the most recent 5-year period (2010-2014), a decrease in DSOW density has been driven by warming (increasing by almost 0.1 °C) as salinity has increased only slightly (by 0.003, which is close to the 0.002 uncertainty of the measurements). The abyssal ocean offshore of the DWBC and Gulf Stream and deeper than 3000-m depth has freshened at a rate of 6×10-4 yr-1 since at least 2003. Density here remains nearly unchanged over this period, due to temperature compensation, though a linear cooling trend in the abyssal ocean (to compensate the

  11. Can Plume-Forming Asteroid Airbursts Generate Meteotsunami in Deep Water?

    NASA Astrophysics Data System (ADS)

    Boslough, M.

    2015-12-01

    Hydrocode simulations suggest that the 1908 Tunguska explosion was a plume-forming airburst analogous to those caused by Comet Shoemaker-Levy 9 (SL9) collisions with Jupiter in 1994. A noctilucent cloud that appeared over Europe following the Tunguska event is similar to post-impact features on Jupiter, consistent with a collapsed plume containing condensation from the vaporized asteroid. Previous workers treated Tunguska as a point explosion and used seismic records, barograms, and extent of fallen trees to determine explosive yield. Estimates were based on scaling laws derived from nuclear weapons data, neglecting directionality, mass, and momentum of the asteroid. This point-source assumption, with other simplifications, led to a significant overestimate. Tunguska seismic data were consistent with ground motion from a vertical point impulse of 7×1018dyn sec caused by the downward blast wave of a 12.5-megaton nuclear explosion at an altitude of 8.5 km for an effective momentum multiplication factor (β) of ~80. However, simulations of a 3-megaton collisional airburst reveal that the upward-directed momentum contained in a ballistic plume can reach this level within the first minute after the explosion (β≈300). The reaction impulse from such an airburst is therefore similar to a much larger non-plume-forming nuclear explosion. Momentum is coupled through the atmosphere to the surface, generating disproportionately large seismic signatures. This result suggests that coupling from an over-water plume-forming airburst could be a more efficient tsunami source mechanism than a collapsing impact cavity or direct air blast because the characteristic time of the plume is closer to that of a long-period wave in deep water. As the plume accelerates upward, it creates a slowly-rising and sustained overpressure with a ramp wave that propagates outward at the speed of sound, generating a tsunami in deep ocean by the same mechanism that yields slower meteotsunami in shallow

  12. Unidirectionally migrating deep-water channels: Architectural styles and flow processes

    NASA Astrophysics Data System (ADS)

    Gong, C.; Steel, R. J.; Wang, Y.; Xu, Q.

    2014-12-01

    3D seismic data are used to investigate flow processes and sedimentation in deep-water slope channels of an alternate type characterized by short and straight channel courses, a lack of levees, and absence of any coeval fans. The study allows a picture of unusual flow processes in submarine channels. The studied channels can be divided into two discrete segments: (1) Upper segments are characterized by low aspect ratio(W/T), little lateral offset (Lm), and low migration/aggradation ratios (Lm/Va). These upper segment channels build vertically-stacked channel-complex sets (CCSs), each of which is characterized by a facies transition from fine-grained sands in the lower part overlain by debris flow deposits and then shale drapes. Energetic sediment density flows triggered by fluid escape and/or strong wave action were well able to bypass sediment and to mask relatively weak bottom currents, yielding deep-water channels characterized by little lateral offset and dominantly aggradational stacking patterns. (2) Lower segments are characterized by higher W/T, wide lateral offset (Lm), and high Lm/Va. They consist of laterally-migrated CCSs, each of which consists of fine-grained reworked sands in the lower part overlain by debris flow deposits and, finally, shale drapes. Bottom currents restricted within the channels would have induced a tilt of the interface between turbidity currents and the overriding bottom currents (Wedderburn number > 1). This would have deflected turbidity currents downward and back toward the gentle channel bank, thus causing channel migration (the steep bank) by ~2° to 15°, and yielding a helical flow circulation composed of a high-velocity zone along the steep bank and a low-velocity zone along the gentle bank. This bottom current-induced helical flow circulation promoted deposition on the gentle bank, but it favored erosion on the steep banke, yielding deep-water channels exhibiting wide lateral offset and dominantly laterally

  13. Phase I of the Kissimmee River restoration project, Florida, USA: impacts of construction on water quality.

    PubMed

    Colangelo, David J; Jones, Bradley L

    2005-03-01

    Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction. PMID:15869183

  14. Deep water drilling and production Articulated Column - Water depth 350m

    SciTech Connect

    Baduel, F.; Figenschou, A.

    1985-01-01

    An Articulated Tower for drilling and production in the Norwegian Sea for 350m water depth is presented. Main features are: Christmas trees at the deck-level, 17,000 tonnes deck payload, limited motions, steel structure including main float and lattice, low stressed mechanical articulation with anti-torque device and controlled bending risers. The extensive study has considered in detail the behaviour in extreme conditions, the fatigue of main structural parts and risers, operating procedures, fabrication and installation. General results are given concerning behaviour, structural design, articulation, bending riser, fabrication and installation. A fabrication and installation schedule is also given.

  15. High diversity of microplankton surrounds deep-water coral reef in the Norwegian Sea.

    PubMed

    Jensen, Sigmund; Bourne, David G; Hovland, Martin; Murrell, J Colin

    2012-10-01

    Coral reefs that exist in the depths of the oceans are surrounded by Eukarya, Archaea and bacterial communities that may play an important role in the nutrition and health of the reef. The first interdomain community structure of planktonic organisms in seawater from a deep-water coral reef is described. Community profiling and analysis of ribosomal RNA gene sequences from a coral reef system at 350 m depth in the Norwegian Sea revealed a rich diversity of Eukarya and Bacteria and a moderate diversity of Archaea. Most sequences affiliated with marine microplankton from deep-sea to cold-surface regions, with many sequences being similar to those described in studies of mesopelagic and oxygen minimum zones. Dominant phylotypes belonged to the Alveolata (group I, II, dinoflagellates), Stramenopiles (silicoflagellates), Alphaproteobacteria (Pelagibacter ubique), Gammaproteobacteria (ARCTIC96BD-19), Bacteroidetes (Flavobacteria) and mesophilic Crenarchaeota (Nitrosopumilus maritimus). Several rare and novel members of the community fell into distinct phylogenetic groups. The inferred function of dominant community members suggested autotrophs that utilise light, ammonium or sulphide, and lifestyles based on host associations. The high diversity reflected a microplankton community structure, which is significantly different from that of microplankton collected at the same depth at a pelagic station away from reefs. PMID:22571287

  16. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    SciTech Connect

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  17. Role of Deep Convection in Establishing the Isotopic Composition of Water Vapor in the Tropical Transition Layer

    NASA Technical Reports Server (NTRS)

    Smith, Jamison A.; Ackerman, Andrew S.; Jensen, Eric J.; Toon, Owen B.

    2006-01-01

    The transport of H2O and HDO within deep convection is investigated with 3-D large eddy simulations (LES) using bin microphysics. The lofting and sublimation of HDO-rich ice invalidate the Rayleigh fractionation model of isotopologue distribution within deep convection. Bootstrapping the correlation of the ratio of HDO to H2O (deltaD) to water vapor mixing ratio (q(sub v)) through a sequence of convective events produced non-Rayleigh correlations resembling observations. These results support two mechanisms for stratospheric entry. Deep convection can inject air with water vapor of stratospheric character directly into the tropical transition layer (TTL). Alternatively, moister air detraining from convection may be dehydrated via cirrus formation n the TTL to produce stratospheric water vapor. Significant production of subsaturated air in the TTL via convective dehydration is not observed in these simulations, nor is it necessary to resolve the stratospheric isotope paradox.

  18. Water management simulation games and the construction of knowledge

    NASA Astrophysics Data System (ADS)

    Rusca, M.; Heun, J.; Schwartz, K.

    2012-08-01

    In recent years, simulations have become an important part of teaching activities. The reasons behind the popularity of simulation games are twofold. On the one hand, emerging theories on how people learn have called for an experienced-based learning approach. On the other hand, the demand for water management professionals has changed. Three important developments are having considerable consequences for water management programmes, which educate and train these professionals. These developments are the increasing emphasis on integration in water management, the characteristics and speed of reforms in the public sector and the shifting state-society relations in many countries. In response to these developments, demand from the labour market is oriented toward water professionals who need to have both a specialist in-depth knowledge in their own field, as well as the ability to understand and interact with other disciplines and interests. In this context, skills in negotiating, consensus building and working in teams are considered essential for all professionals. In this paper, we argue that simulation games have an important role to play in (actively) educating students and training the new generation of water professionals to respond to the above-mentioned challenges. At the same time, simulations are not a panacea for learners and teachers. Challenges of using simulation games include the demands it places on the teacher. Setting up the simulation game, facilitating the delivery and ensuring that learning objectives are achieved require considerable knowledge and experience as well as considerable time-inputs of the teacher. Moreover, simulation games usually incorporate a case-based learning model, which may neglect or underemphasize theories and conceptualizations. For simulations to be effective, they have to be embedded in this larger theoretical and conceptual framework. Simulations, therefore, complement rather than substitute traditional teaching

  19. Water management simulation games and the construction of knowledge

    NASA Astrophysics Data System (ADS)

    Rusca, M.; Heun, J.; Schwartz, K.

    2012-03-01

    In recent years simulations have become an important part of teaching activities. The reasons behind the popularity of simulation games are twofold. On the one hand, emerging theories on how people learn have called for an experienced-based learning approach. On the other hand, the demand for water management professionals has changed. Three important developments are having considerable consequences for water management programmes, which educate and train these professionals. These developments are the increasing emphasis on integration in water management, the characteristics and speed of reforms in the public sector and the shifting state-society relations in many countries. In response to these developments, demand from the labour market is oriented toward water professionals who need to have both a specialist in-depth knowledge in their own field, as well as the ability to understand and interact with other disciplines and interests. In this context, skills in negotiating, consensus building and working in teams are considered essential for all professionals. In this paper we argue that simulation games have an important role to play in (actively) educating students and training the new generation of water professionals to respond to the above-mentioned challenges. At the same time, simulations are not a panacea for learners and teachers. Challenges of using simulations games include the demands it places on the teacher. Setting up the simulation game, facilitating the delivery and ensuring that learning objectives are achieved requires considerable knowledge and experience as well as considerable time-inputs of the teacher. Moreover, simulation games usually incorporate a case-based learning model, which may neglect or underemphasize theories and conceptualization. For simulations to be effective they have to be embedded in this larger theoretical and conceptual framework. Simulations, therefore, complement rather than substitute traditional teaching methods.

  20. Total Mercury in Surface and Deep Waters in the Western and Eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Varde', M.; Cofone, F.; Servidio, A.; Rosselli, A.; Hedgecock, I. M.; Ammoscato, I.; Mannarino, V.; Sprovieri, F.; Gensini, M.; Pirrone, N.

    2014-12-01

    In the framework of the Italian National Research Council (CNR) Med-Oceanor measurement program and as part of the Global Mercury Observation System (GMOS) objectives, we performed two cruise campaigns with the CNR's Research Vessel (RV) Urania, in the western and eastern Mediterranean Basin, in the summers of 2012 and 2013. Total Mercury (THg) concentration in seawater was systematically measured at different depths from the sea bottom to the surface. A total of 155 surface and deep seawater samples at 25 selected stations were collected during the cruise campaigns using a stainless-steel rosette system on which 24 Niskin bottles (10L) were mounted. Continuous monitoring of temperature, conductivity, salinity and oxygen with depth were obtained by CTD measurements. All fluorinated containers were cleaned prior to use following GMOS SOPs. The chemical reagents used were suitable for ultra-trace Hg analysis. After sampling, samples were preserved by adding HCl solution to the sample bottles, which were refrigerated during transportation and analyzed within four weeks of the end of the oceanographic campaign. Sea water samples were analyzed in the laboratory following the US-EPA 1631 method revision E (US-EPA, 2002). To assess the critical issues related to mercury (Hg) contamination and to prevent leakage of Hg through volatilization we used all necessary precautions for sampling, sample stabilization, preservation and subsequent analysis in the laboratory. Quality assurance and quality control were performed using transport blanks, laboratory blanks and use of seawater certified reference materials. The accuracy of the analytical procedures for the determination of THg in sea water was corroborated by participation in a global inter-laboratory comparison study for THg in natural waters. THg concentrations in surface and deep waters found in the Mediterranean basin during the last two cruise campaigns Med-Oceanor as well as the THg measurements in sea water

  1. Photosynthetic use of inorganic carbon in deep-water kelps from the Strait of Gibraltar.

    PubMed

    García-Sánchez, María Jesús; Delgado-Huertas, Antonio; Fernández, José Antonio; Flores-Moya, Antonio

    2016-03-01

    Mechanisms of inorganic carbon assimilation were investigated in the four deep-water kelps inhabiting sea bottoms at the Strait of Gibraltar; these species are distributed at different depths (Saccorhiza polysiches at shallower waters, followed by Laminaria ochroleuca, then Phyllariopsis brevipes and, at the deepest bottoms, Phyllariopsis purpurascens). To elucidate the capacity to use HCO3 (-) as a source of inorganic carbon for photosynthesis in the kelps, different experimental approaches were used. Specifically, we measured the irradiance-saturated gross photosynthetic rate versus pH at a constant dissolved inorganic carbon (DIC) concentration of 2 mM, the irradiance-saturated apparent photosynthesis (APS) rate versus DIC, the total and the extracellular carbonic anhydrase (CAext), the observed and the theoretical photosynthetic rates supported by the spontaneous dehydration of HCO3 (-) to CO2, and the δ(13)C signature in tissues of the algae. While S. polyschides and L. ochroleuca showed photosynthetic activity at pH 9.5 (around 1.0 µmol O2 m(-2) s(-1)), the activity was close to zero in both species of Phyllariopsis. The APS versus DIC was almost saturated for the DIC values of natural seawater (2 mM) in S. polyschides and L. ochroleuca, but the relationship was linear in P. brevipes and P. purpurascens. The four species showed total and CAext activities but the inhibition of the CAext originated the observed photosynthetic rates at pH 8.0 to be similar to the theoretical rates that could be supported by the spontaneous dehydration of HCO3 (-). The isotopic (13)C signatures ranged from -17.40 ± 1.81 to -21.11 ± 1.73 ‰ in the four species. Additionally, the δ(13)C signature was also measured in the deep-water Laminaria rodriguezii growing at 60-80 m, showing even a more negative value of -26.49 ± 1.25 ‰. All these results suggest that the four kelps can use HCO3 (-) as external carbon source for photosynthesis mainly by the action of

  2. Neopetrosiquinones A and B, sesquiterpene benzoquinones isolated from the deep-water sponge Neopetrosia cf. proxima.

    PubMed

    Winder, Priscilla L; Baker, Heather L; Linley, Patricia; Guzmán, Esther A; Pomponi, Shirley A; Diaz, M Cristina; Reed, John K; Wright, Amy E

    2011-11-15

    Two new marine-derived sesquiterpene benzoquinones which we designate as neopetrosiquinones A (1) and B (2), have been isolated from a deep-water sponge of the family Petrosiidae. The structures were elucidated on the basis of their spectroscopic data. Compounds 1 and 2 inhibit the in vitro proliferation of the DLD-1 human colorectal adenocarcinoma cell line with IC(50) values of 3.7 and 9.8 μM, respectively, and the PANC-1 human pancreatic carcinoma cell line with IC(50) values of 6.1 and 13.8 μM, respectively. Neopetrosiquinone A (1) also inhibited the in vitro proliferation of the AsPC-1 human pancreatic carcinoma cell line with an IC(50) value of 6.1 μM. The compounds are structurally related to alisiaquinone A, cyclozonarone, and xestoquinone. PMID:22014756

  3. Neopetrosiquinones A and B, Sesquiterpene Benzoquinones Isolated from the Deep-water Sponge Neopetrosia cf. proxima

    PubMed Central

    Winder, Priscilla L.; Baker, Heather L.; Linley, Patricia; Guzmán, Esther; Pomponi, Shirley A.; Diaz, M. Cristina; Reed, John K.; Wright, Amy E.

    2011-01-01

    Two new marine-derived sesquiterpene benzoquinones which we designate as neopetrosiquinone A (1) and B (2), have been isolated from a deep-water sponge of the family Petrosiidae. The structures were elucidated on the basis of their spectroscopic data. Compounds 1 and 2 inhibit the in vitro proliferation of the DLD-1 human colorectal adenocarcinoma cell line with IC50 values of 3.7 and 9.8 μM, respectively, and the PANC-1 human pancreatic carcinoma cell line with IC50 values of 6.1 and 13.8 μM, respectively. Neopetrosiquinone A (1) also inhibited the in vitro proliferation of the AsPC-1 human pancreatic carcinoma cell line with an IC50 value of 6.1 μM. The compounds are structurally related to alisiaquinone A, cyclozonarone and xestoquinone. PMID:22014756

  4. IMPACT OF PLANT DENSITY AND MICROBIAL COMPOSITION ON WATER QUALITY FROM A FREE WATER SURFACE CONSTRUCTED WETLAND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Prado Wetlands in Chino, CA is a free water surface (FWS) constructed wetland consisting of 50 shallow ponds that treats approximately 50% of Santa Ana River water prior to its passage to Orange County, CA where it is used for groundwater recharge. The main function of Prado Wetlands has been t...

  5. Investigation of jack-up leg extension for deep water operations

    NASA Astrophysics Data System (ADS)

    Welaya, Yousri M. A.; Elhewy, Ahmed; Hegazy, Mohamed

    2015-06-01

    Since the first jack-up was built, jackups have become the most popular type of mobile offshore drilling unit (MODU) for offshore exploration and development purposes in shallow water. The most pivotal component of the jack-up unit is the leg, which can directly affect the global performance of the unit. In this paper, an investigation into extending the length of the jack up leg is carried out in order to study the enhancement of the rig capability to drill in deeper water approaching the range of the Semisubmersible Drilling Unit (SSDU) (300-1000ft). A study of the performance of a deep-water jack-up unit is performed with different leg lengths. Typical leg scantling dimensions and identical external loads are assigned, and then a detailed Finite Element Analysis (FEA) model is created in order to simulate the jack-up leg unit's structural behavior. A Multi-point Constraint (MPC) element together with the spring element is used to deal with the boundary conditions. Finally, a comparative analysis for five leg lengths is carried out to illustrate their performance, including the ultimate static strength, and weight.

  6. Quantifying Deep Vadose Zone Soil Water Potential Changes at a Waste Disposal Site

    SciTech Connect

    Joel M. Hubbell; Deborah L. McElroy

    2007-08-01

    Recent advances in moisture monitoring using tensiometers has resulted in long-duration, high quality data sets from within the deep vadose zone. A network of about 30 advanced tensiometers in 18 wells provided field-scale data to monitor soil water potential conditions and movement in the subsurface in and around a mixed waste disposal site at depths ranging from 6 to over 67 m below land surface (bls). Sensors are located in both sediments and fractured rock within the geologic profile and some have been in operation for over 10 years. The moisture monitoring was able to detect long term declines in soil water potential in response to lower than normal precipitation and resultant infiltration over the time period from 2000 to 2004. This trend was reversed in 2005 and 2006 in more than half of the monitoring sites over the 6 to 33 m depth interval and in several monitoring sites from 33 to 67 m, in response to above normal precipitation. These tensiometer data have the potential to effectively and rapidly validate that a remedial action such as placement of an ET cover would be successful in reducing the water moisture movement inside the disposal area to levels similar to those in undisturbed sites outside of the disposal area. This paper will describe the instrument design, how the instruments were installed, and the resultant data from this monitoring system.

  7. A new pathway for Deep water exchange between the Natal Valley and Mozambique Basin?

    NASA Astrophysics Data System (ADS)

    Wiles, Errol; Green, Andrew; Watkeys, Mike; Jokat, Wilfried; Krocker, Ralf

    2014-12-01

    Although global thermohaline circulation pathways are fairly well known, the same cannot be said for local circulation pathways. Within the southwest Indian Ocean specifically there is little consensus regarding the finer point of thermohaline circulation. We present recently collected multibeam bathymetry and PARASOUND data from the northern Natal Valley and Mozambique Ridge, southwest Indian Ocean. These data show the Ariel Graben, a prominent feature in this region, creates a deep saddle across the Mozambique Ridge at ca. 28°S connecting the northern Natal Valley with the Mozambique Basin. Results show a west to east change in bathymetric and echo character across the northern flank of the Ariel Graben. Whereby eroded plastered sediment drifts in the west give way to aggrading plastered sediment drift in the midgraben, terminating in a field of seafloor undulations in the east. In contrast, the southern flank of the Ariel Graben exhibits an overall rugged character with sediments ponding in bathymetric depressions in between rugged sub/outcrop. It is postulated that this change in sea-floor character is the manifestation of deep water flow through the Ariel Graben. Current flow stripping, due to increased curvature of the graben axis, results in preferential deposition of suspended load in an area of limited accommodation space consequently developing an over-steepened plastered drift. These deposited sediments overcome the necessary shear stresses, resulting in soft sediment deformation in the form of down-slope growth faulting (creep) and generation of undulating sea-floor morphology. Contrary to previous views, our works suggests that water flows from west to east across the Mozambique Ridge via the Ariel Graben.

  8. Six new deep-water sternaspid species (Annelida, Sternaspidae) from the Pacific Ocean

    PubMed Central

    Salazar-Vallejo, Sergio I.; Buzhinskaja, Galina

    2013-01-01

    Abstract Most sternaspid species have been described from shallow water, and Caulleryaspis Sendall & Salazar-Vallejo, 2013 includes one deep water species: C. gudmundssoni Sendall & Salazar-Vallejo, 2013 from Iceland. In Sternaspis Otto, 1821, the most speciose genus, most species were described from shallow water and only three thrive in deep water: S. maior Chamberlin, 1919 from the Gulf of California, S. princeps Selenka, 1885 from New Zealand, and S. riestchi Caullery, 1944 from Indonesia. The study of some deep sea sternaspids from the Pacific Ocean in the collections of six research institutions resulted in the discovery of six undescribed species, and for three of them there were abundant materials showing ventro-caudal shield development. Caulleryaspis fauchaldi sp. n. is described based on specimens from Oregon and California; it differs from the known species because it has a shield with rounded anterior margins and its peg chaetae form thin, small spines. Caulleryaspis nuda sp. n. was collected off Oregon; it is unique because its shield lacks a layer of sediment particles firmly attached, but has instead a thin layer of small particles loosely attached. Four other species are newly described in Sternaspis: S. annenkovae sp. n. was collected east off the northern Kurile Islands in about 4,000 m depth; it differs from other species by having a bicolored body, with the introvert darker than the abdomen, and its ventro-caudal shield plates are divergent resulting in a divided fan. The second species, S. maureri sp. n. was found off Peru in 1296–6489 m water depths and in the Southwestern Pacific in 795–3830 m; it resembles S. williamsae sp. n. but differs because its shield has better-developed ribs, the fan has a shallow or indistinct median notch and has lateral notches well-developed. The third species, S. uschakovi sp. n., was found in the Okhotsk Sea in 592–1366 m, off California in 1585 m, Gulf of California in 1200–1274 m, and Western Mexico

  9. Biological source and provenance of deep-water derived isoprenoid tetraether lipids along the Portuguese continental margin

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hyun; Villanueva, Laura; Zell, Claudia; Sinninghe Damsté, Jaap S.

    2016-01-01

    There is increasing evidence that nitrifying Thaumarchaeota in the deep ocean waters may contribute to the sedimentary composition of isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs), impacting TEX86 paleothermometry. We investigated the potential effect of deep-water dwelling Thaumarchaeota in the warm and saline Mediterranean Outflow Water (MOW) on the distribution of isoGDGTs by analysing suspended particulate matter (SPM) and surface sediments collected along five land-ocean transects along the southern Portuguese continental margin. To this end, we directly compared for the first time the composition of intact polar lipid (IPL)-derived isoGDGTs of SPM with the diversity, abundance, and activity of Thaumarchaeota based on the genetic analysis of the genes coding for the archaeal ammonia monooxygenase (amoA) and the geranylgeranylglyceryl phosphate (GGGP) synthase involved in the isoGDGT biosynthetic pathway. Our results revealed a strong positive relationship between water depth and TEX86H values for both SPM and surface sediments. The increasing TEX86H trends for both core lipid (CL) and IPL-derived fractions were accompanied by increasing fractional abundances of GDGT-2 and crenarchaeol regio-isomer and decreasing fractional abundances of GDGT-1 and GDGT-3 with increasing water depth. Phylogenetic analyses based on the archaeal amoA and the GGGP synthase proteins showed that Thaumarchaeota populations detected at 1 m and 50 m water depth were different from those detected in 200 m and 1000 m water depth, which had an increased contribution of so-called 'deep water' Thaumarchaeota. The differences in the fractional abundances of isoGDGTs with water depth were compatible with the increasing contribution of 'deep water' Thaumarchaeota harboring a different GGGP synthase enzyme which has been suggested to relate to changes in the relative proportion of synthesized isoGDGTs. Accordingly, it appears that the sedimentary distribution of CL isoGDGTs used

  10. Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments

    NASA Astrophysics Data System (ADS)

    Beck, Melanie; Dellwig, Olaf; Schnetger, Bernhard; Brumsack, Hans-Jürgen

    2008-06-01

    Trace metals (Mn, Fe, Mo, U, Cr, V) were studied in pore waters of an intertidal flat located in the German Wadden Sea. The study system is an example of a permeable tidal flat system where pore water exchange is affected by tidal driven pressure gradients besides diffusion. Permanently installed in situ samplers were used to extract pore waters down to 5 m depth throughout one year. The samplers were either located close to the tidal flat margin or in central parts of the tidal flat. Despite dynamic sedimentological and hydrological conditions, the general trends with depth in deep tidal flat pore waters are remarkably similar to those observed in deep sea environments. Rates of trace metal cycling must be comparably large in order to maintain the observed pore water profiles. Trace metals further show similar general trends with depth close to the margin and in central parts of the tidal flat. Seasonal sampling revealed that V and Cr vary concurrent with seasonal changes in dissolved organic carbon (DOC) concentration. This effect is most notable close to the tidal flat margin where sulphate, DOC, and nutrients vary with season down to some metres depth. Seasonal variations of Mn, Fe, Mo, and U are by contrast limited to the upper decimetres of the sediment. Their seasonal patterns depend on organic matter supply, redox stratification, and particulate matter deposited on sediment surfaces. Pore water sampling within one tidal cycle provides evidence for pore water advection in margin sediments. During low tide pore water flow towards the creekbank is generated by a hydraulic gradient suggesting that deep pore waters may be seeping out of creekbank sediments. Owing to the enrichment of specific elements like Mn in pore water compared to sea water, seeping pore waters may have an impact on the chemistry of the open water column. Mass balance calculations reveal that the impact of deep pore waters on the Mn budget in the open water column is below 4%. Mn deep pore

  11. Construction of estimated flow- and load-duration curves for Kentucky using the Water Availability Tool for Environmental Resources (WATER)

    USGS Publications Warehouse

    Unthank, Michael D.; Newson, Jeremy K.; Williamson, Tanja N.; Nelson, Hugh L.

    2012-01-01

    Flow- and load-duration curves were constructed from the model outputs of the U.S. Geological Survey's Water Availability Tool for Environmental Resources (WATER) application for streams in Kentucky. The WATER application was designed to access multiple geospatial datasets to generate more than 60 years of statistically based streamflow data for Kentucky. The WATER application enables a user to graphically select a site on a stream and generate an estimated hydrograph and flow-duration curve for the watershed upstream of that point. The flow-duration curves are constructed by calculating the exceedance probability of the modeled daily streamflows. User-defined water-quality criteria and (or) sampling results can be loaded into the WATER application to construct load-duration curves that are based on the modeled streamflow results. Estimates of flow and streamflow statistics were derived from TOPographically Based Hydrological MODEL (TOPMODEL) simulations in the WATER application. A modified TOPMODEL code, SDP-TOPMODEL (Sinkhole Drainage Process-TOPMODEL) was used to simulate daily mean discharges over the period of record for 5 karst and 5 non-karst watersheds in Kentucky in order to verify the calibrated model. A statistical evaluation of the model's verification simulations show that calibration criteria, established by previous WATER application reports, were met thus insuring the model's ability to provide acceptably accurate estimates of discharge at gaged and ungaged sites throughout Kentucky. Flow-duration curves are constructed in the WATER application by calculating the exceedence probability of the modeled daily flow values. The flow-duration intervals are expressed as a percentage, with zero corresponding to the highest stream discharge in the streamflow record. Load-duration curves are constructed by applying the loading equation (Load = Flow*Water-quality criterion) at each flow interval.

  12. SHARAD Investigation of the Interaction Between Volcanism and Deep Water Release in Elysium Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Morgan, G. A.; Campbell, B. A.; Carter, L. M.; Plaut, J. J.

    2011-12-01

    Situated between the equator and 12°N and extending from 130° to 180°E, Elysium Planitia is considered to be the youngest volcanic plain on Mars. Recent crater counts on individual lava units argue for multiple phases of activity over the last 230 Myrs, with the most recent volcanic features dating to just ~2 Ma. The region also contains the youngest outflow channels on the planet. Multiple channel systems which are present across the region are interpreted to have been carved by the release of deep ground water (>1 km) from the broadly east-west trending Cerberus Fossae graben system. Elysium Planitia is therefore a region of high scientific interest, as it represents an ideal site to investigate the interaction of lava and water both below and on the surface of Mars. Extensive geologic mapping of Elysium Planitia has provided detailed information concerning the stratigraphy of the major volcanic units in addition to the classification of other landforms attributed to volcanic (e.g. small shields), fluvial (e.g. outflow channels) and aeolian (e.g. yardangs) activity. Orbital sounding radar provides a means to take this work to the next level through the mapping of buried surfaces associated with a contrast in dielectric permittivity and thus can be used to investigate the 3-D structure of the subsurface. Previous studies using the SHARAD radar sounder onboard the Mars Reconnaissance Orbiter have identified multiple subsurface reflectors below the plains of Elysium Planitia. We will present our investigation of SHARAD data covering the eastern portion of this region of Mars - an area that includes the upstream reaches of Marte Vallis and the eastern extent of Cerberus Fossae. Our subsurface mapping shows remarkable correlations with published geologic maps produced using visible orbital datasets. These similarities allow us to use SHARAD data to make estimates of the average permittivity values and imply density measurements of the volcanic units. We will

  13. Beyond optimality: Multistakeholder robustness tradeoffs for regional water portfolio planning under deep uncertainty

    NASA Astrophysics Data System (ADS)

    Herman, Jonathan D.; Zeff, Harrison B.; Reed, Patrick M.; Characklis, Gregory W.

    2014-10-01

    While optimality is a foundational mathematical concept in water resources planning and management, "optimal" solutions may be vulnerable to failure if deeply uncertain future conditions deviate from those assumed during optimization. These vulnerabilities may produce severely asymmetric impacts across a region, making it vital to evaluate the robustness of management strategies as well as their impacts for regional stakeholders. In this study, we contribute a multistakeholder many-objective robust decision making (MORDM) framework that blends many-objective search and uncertainty analysis tools to discover key tradeoffs between water supply alternatives and their robustness to deep uncertainties (e.g., population pressures, climate change, and financial risks). The proposed framework is demonstrated for four interconnected water utilities representing major stakeholders in the "Research Triangle" region of North Carolina, U.S. The utilities supply well over one million customers and have the ability to collectively manage drought via transfer agreements and shared infrastructure. We show that water portfolios for this region that compose optimal tradeoffs (i.e., Pareto-approximate solutions) under expected future conditions may suffer significantly degraded performance with only modest changes in deeply uncertain hydrologic and economic factors. We then use the Patient Rule Induction Method (PRIM) to identify which uncertain factors drive the individual and collective vulnerabilities for the four cooperating utilities. Our framework identifies key stakeholder dependencies and robustness tradeoffs associated with cooperative regional planning, which are critical to understanding the tensions between individual versus regional water supply goals. Cooperative demand management was found to be the key factor controlling the robustness of regional water supply planning, dominating other hydroclimatic and economic uncertainties through the 2025 planning horizon. Results

  14. Economics of residential gas furnaces and water heaters in United States new construction market

    SciTech Connect

    Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

    2009-05-06

    New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

  15. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States

    NASA Astrophysics Data System (ADS)

    Henry, Lea-Anne; Nizinski, Martha S.; Ross, Steve W.

    2008-06-01

    Deep-water coral habitats off the southeastern USA (SEUS) support diverse fish and invertebrate assemblages, but are poorly explored. This study is the first to report on the hydroids collected from these habitats in this area. Thirty-five species, including two species that are likely new to science, were identified from samples collected primarily by manned submersible during 2001-2005 from deep-water coral habitats off North Carolina to east-central Florida. Eleven of the species had not been reported since the 19th to mid-20th century. Ten species, and one family, the Rosalindidae, are documented for the first time in the SEUS. Latitudinal ranges of 15 species are extended, and the deepest records in the western North Atlantic for 10 species are reported. A species accumulation curve illustrated that we continue to add to our knowledge of hydroid diversity in these habitats. Sexually mature individuals were collected for 19 species during the summer to early autumn months. Most of the observed species (89%) liberate planula larvae as part of their life cycles, suggesting that these species exhibit a reproductive strategy that reduces the risk of dispersal to sub-optimal habitats. Hydroids occurred across various substrata including coral rubble, live corals, rock and other animal hosts including hydroids themselves. All observed species were regionally widespread with typically deep-neritic to bathyal sub-tropical/tropical distributions. Hydroid assemblages from deep-water SEUS coral habitats were most similar to those from adjacent deep-water habitats off the SEUS (17 shared species), and those in the Straits of Florida/Bahamas and Caribbean/West Indian regions (14 and 8 shared species, respectively). The similarity to sub-tropical and tropical assemblages and the richness of plumularioids in the SEUS deep-water coral habitats support the idea of a Pleistocene intrusion of tropical species northwards following an intensification of the Gulf Stream from the

  16. Benthic foraminifera (Protista) as tools in deep-water palaeoceanography: environmental influences on faunal characteristics.

    PubMed

    Gooday, Andrew J

    2003-01-01

    Foraminiferal research lies at the border between geology and biology. Benthic foraminifera are a major component of marine communities, highly sensitive to environmental influences, and the most abundant benthic organisms preserved in the deep-sea fossil record. These characteristics make them important tools for reconstructing ancient oceans. Much of the recent work concerns the search for palaeoceanographic proxies, particularly for the key parameters of surface primary productivity and bottom-water oxygenation. At small spatial scales, organic flux and pore-water oxygen profiles are believed to control the depths at which species live within the sediment (their 'microhabitats'). Epifaunal/shallow infaunal species require oxygen and labile food and prefer relatively oligotrophic settings. Some deep infaunal species can tolerate anoxia and are closely linked to redox fronts within the sediment; they consume more refractory organic matter, and flourish in relatively eutrophic environments. Food and oxygen availability are also key factors at large (i.e. regional) spatial scales. Organic flux to the sea floor, and its seasonality, strongly influences faunal densities, species compositions and diversity parameters. Species tend to be associated with higher or lower flux rates and the annual flux range of 2-3 g Corg m-2 appears to mark an important faunal boundary. The oxygen requirements of benthic foraminifera are not well understood. It has been proposed that species distributions reflect oxygen concentrations up to fairly high values (3 ml l-1 or more). Other evidence suggests that oxygen only begins to affect community parameters at concentrations < 0.5 ml l-1. Different species clearly have different thresholds, however, creating species successions along oxygen gradients. Other factors such as sediment type, hydrostatic pressure and attributes of bottom-water masses (particularly carbonate undersaturation and current flow) influence foraminiferal distributions

  17. Structural style and Basin Formation in Deep-water Area of Northern South China Sea

    NASA Astrophysics Data System (ADS)

    di, Z.; Zhen, S.; Xiong, P.; Min, C. C.

    2007-12-01

    In the deep-water area of northern South China Sea (SCS) developed a series of sedimentary basins. Active exploration for deep-water hydrocarbon has begun in these areas since this century. The well LW3-1-1 at water depth of 1480m in the BaiYun Sag (BYS) of the Pearl River Mouth Basin in 2006 discovered 56m layer of pure gas, demonstrated the good hydrocarbon potential of the area. Wide-angle seismic profiling has verified the transitional type of crust in the slope areas. The Moho surface shoals step-by-step from 30-29km under the shelf, ~15 km under the slope, and ~12km under the abyssal plain. Moho also rises beneath depocenters, mirroring the shape of sedimentary basement. The crustal thickness at the center of the BYS is <7km. Lower crustal high velocity layer is found in the eastern and central portions of the northern SCS. The pre-Cenozoic basement in northern SCS is the extension of the inland basement and consists of mainly metamorphosed Paleozoic and Mesozoic marine and continental strata, complicated by Yanshanian (J-K) intrusive and extrusive rocks. From geophysical data we inferred that a SW-NE Mesozoic trench-arc system exists beneath the Cenozoic sediments in the northeastern SCS, related to the subduction of the Paleo-Pacific Ocean towards the East Eurasian margin. The stress field in the East Eurasian margin changed abruptly in Late Cretaceous. Rifting started in the entire margin and eventually led to the opening of the SCS in late Early Oligocene. Large sedimentary basins developed in the margins of the SCS. Paleogene lacustrine sediments contain hydrocarbon sources, while traps are mostly found in Neogene marine strata. The structure of the northern SCS shows clear W-E variation, divided into NE-, NEE-, and NE-trending segments by two major NW-SE transfer faults. The Southern Depression of the Qiongdongnan Basin to the west is characterized by NE-trending half grabens. The BYS at the central segment is characterized by NEE-trending composite

  18. Searching for the conduit waters of old glacial carbon: deglacial intermediate to deep water records from the western sub-equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Martinez-Mendez, G.; Awaluddin, M. Y.; Steinke, S.; Southon, J. R.; Mohtadi, M.

    2014-12-01

    Glacial pCO2 levels were lower than interglacial ones and the Deep Ocean is a strong candidate for storing the excess interglacial CO2. There are two main hypotheses about the glacial storage of atmospheric CO2 in the Deep Ocean and subsequent deglacial outgas/release of CO2 to the atmosphere: i) CO2 was stored in the Southern Ocean and was ventilated through the Antarctic Intermediate (AAIW) and Equatorial Intermediate Waters (EqIW); ii) CO2 was stored in the Deep Pacific and was ventilated through other intermediate waters. A mélange of all these intermediate waters is found in the western equatorial Pacific above the Pacific Deep Water (PDW) converting the region in an ideal setting to investigate these hypotheses. During RV Sonne Expedition SO228, sea water samples and sediment cores were retrieved off Mindanao and Papua New Guinea at various water depths. Here we present hydrographic and sedimentary data from key locations. CTD temperature, salinity and oxygen as well as seawater δ13C, δ18O and δD from various stations enable to study the modern oceanography in the region. The data allows the identification of various types of intermediate and deep waters and a characterization of water properties that can be used to study these water masses back in time using the sediment cores. The paleoceanographic study will focus on the last 25 kyrs and use benthic stable isotopes and paired planktonic-benthic foraminiferal radiocarbon measurements on two sediment cores off Mindanao at 404 and 848 m water depth and four cores off Papua New Guinea at 845, 1365, 1887 and 2210 m water depth. Preliminary radiocarbon-based age models indicate varying sedimentation rates from 2 to 30 cm/ka for the cores, higher off Mindanao than off Papua New Guinea. The benthic foraminiferal assemblage of the intermediate core at 845 m water depth provides initial indications of shifting water properties at intermediate levels, potentially connected to the inflow of well versus poor

  19. A Broad Spectrum Catalytic System for Removal of Toxic Organics from Water by Deep Oxidation - Final Report

    SciTech Connect

    Sen, Ayusman

    2000-12-01

    A most pressing need for the DOE environmental management program is the removal of toxic organic compounds present in groundwater and soil at specific DOE sites. While several remediation procedures have been proposed, they suffer from one or more drawbacks. The objective of the present research was to develop new catalytic procedures for the removal of toxic organic compounds from the environment through their deep oxidation to harmless products. In water, metallic palladium was found to catalyze the deep oxidation of a wide variety of toxic organic compounds by dioxygen at 80-90 C in the presence of carbon monoxide or dihydrogen. Several classes of organic compounds were examined: benzene, phenol and substituted phenols, nitro and halo organics, organophosphorus, and organosulfur compounds. In every case, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 hour period. For substrates susceptible to hydrogenation, the conversions were generally high with dihydrogen than with carbon monoxide. It is clear from the results obtained that we have discovered an exceptionally versatile catalytic system for the deep oxidation of toxic organic compounds in water. This system possesses several attractive features not found simultaneously in other reported systems. These are (a) the ability to directly utilize dioxygen as the oxidant, (b) the ability to carry out the deep oxidation of a particularly wide range of functional organics, and (c) the ease of recovery of the catalyst by simple filtration.

  20. In-situ observation of deep water corals in the northern Red Sea waters of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Qurban, Mohammad A.; Krishnakumar, P. K.; Joydas, T. V.; Manikandan, K. P.; Ashraf, T. T. M.; Quadri, S. I.; Wafar, M.; Qasem, Ali; Cairns, S. D.

    2014-07-01

    Three sites offshore of the Saudi Arabia coast in the northern Red Sea were surveyed in November 2012 to search for deep-water coral (DWC) grounds using a Remotely Operated Vehicle. A total of 156 colonies were positively identified between 400 and 760 m, and were represented by seven species belonging to Scleractinia (3), Alcyonacea (3) and Antipatharia (1). The scleractinians Dasmosmilia valida Marenzeller, 1907, Eguchipsammia fistula (Alcock, 1902) and Rhizotrochus typus Milne-Edwards and Haime, 1848 were identified to species level, while the octocorals Acanthogorgia sp., Chironephthya sp., Pseudopterogorgia sp., and the antipatharian Stichopathes sp., were identified to genus level. Overall, the highest abundance of DWC was observed at Site A1, the closest to the coast. The most abundant species in the study area was D. valida, which lives attached to rocky substrates and represented 42% of the total coral population at site A1. Water column attributes at this depth were quite homogenous with temperature ca. 21.6 °C, salinity ca. 40.56, dissolved oxygen ca. 1.75 ml L-1 and current velocity from 0.6 to 34.5 cm s-1 with a mean value of 9.5 cm s-1. Interestingly, these DWC can cope with high temperature and salinity, compared to those in other regions.

  1. Enhanced Anti-Obesity Activities of Red Mold Dioscorea When Fermented Using Deep Ocean Water as the Culture Water

    PubMed Central

    Wang, Li-Chun; Lung, Tzu-Ying; Kung, Yi-Hsin; Wang, Jyh-Jye; Tsai, Tsung-Yu; Wei, Bai-Luh; Pan, Tzu-Ming; Lee, Chun-Lin

    2013-01-01

    Deep ocean water (DOW) has, in previous studies, been found to be a novel anti-obesity drink and useful in raising Monascus-produced monascin and ankaflavin levels. This may resolve the limited anti-obesity ability of red mold dioscorea (RMD) known as the Monascus purpureus-fermented Disocorea batatas. This study aims to compare the anti-obesity effect of DOW-cultured RMD (DOW-RMD) and ultra-pure water-cultured RMD (UPW-RMD) in rats fed on a high fat diet. Moreover, the effect of ions composition of DOW and DOW-influenced functional metabolites change of RMD on the differentiation and lipogenesis regulation were investigated using 3T3-L1 pre-adipocytes. In the animal test, compared to UPW-RMD, DOW-RMD possessed better ability to inhibit increases in weight gain, and better feed efficiency, body-fat pad and cross-sectional area of adipocytes. In the cell test, the anti-obesity abilities of DOW-RMD in inhibiting PPARγ and C/EBPα expression in differentiation and lipoprotein lipase activity in lipogenesis were contributed to by the DOW-increased monascin and ankaflavin levels and the ions of DOW, respectively. PMID:24132179

  2. Solvatochromic probe behavior within choline chloride-based deep eutectic solvents: effect of temperature and water.

    PubMed

    Pandey, Ashish; Pandey, Siddharth

    2014-12-18

    Deep eutectic solvents (DESs) have shown potential as promising environmentally friendly alternatives to conventional solvents. Many common and popular DESs are obtained by simply mixing a salt and a H-bond donor. Properties of such a DES depend on its constituents. Change in temperature and addition of water, a benign cosolvent, can change the physicochemical properties of DESs. The effect of changing temperature and addition of water on solvatochromic probe behavior within three DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, and urea, respectively, in 1:2 mol ratios termed ethaline, glyceline, and reline is presented. Increase in temperature results in reduced H-bond donating acidity of the DESs. Dipolarity/polarizability and H-bond accepting basicity do not change with changing temperature of the DESs. The response of the fluorescence probe pyrene also indicates a decrease in the polarity of the DESs as temperature is increased. Addition of water to DES results in increased dipolarity/polarizability and a decrease in H-bond accepting basicity. Except for pyrene, solvatochromic probes exhibit responses close to those predicted from ideal-additive behavior with slight preferential solvation by DES within the aqueous mixtures. Pyrene response reveals significant preferential solvation by DES and/or the presence of solvent-solvent interactions, especially within aqueous mixtures of ethaline and glyceline, the DESs constituted of H-bond donors with hydroxyl functionalities. FTIR absorbance and Raman spectroscopic measurements of aqueous DES mixtures support the outcomes from solvatochromic probe responses. Aqueous mixtures of ethaline and glyceline possess relatively more interspecies H-bonds as compared to aqueous mixtures of reline, where interstitial accommodation of water within the reline molecular network appears to dominate. PMID:25418894

  3. Noble gas tracers of ventilation during deep-water formation in the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Nicholson, D. P.; Khatiwala, S.; Heimbach, P.

    2016-05-01

    To explore the dynamics and implications of incomplete air-sea equilibration during the formation of abyssal water masses, we simulated noble gases in the Estimating the Circulation & Climate of the Ocean (ECCO) global ocean state estimate. A novel computation approach utilizing a matrix-free Newton-Krylov (MFNK) scheme was applied to quickly compute the periodic seasonal solutions for noble gas tracers. MFNK allows for quick computation of a cyclo-stationary solution for tracers (i.e., a spun-up, repeating seasonal cycle), which would otherwise be computationally infeasible due to the long time scale of dynamic adjustment of the abyssal ocean (1000’s of years). A suite of experiments isolates individual processes, including atmospheric pressure effects, the solubility pump and air-sea bubble fluxes. In addition to these modeled processes, a volumetric contribution of 0.28 ± 0.07% of glacial melt water is required to reconcile deep-water observations in the Weddell Sea. Another primary finding of our work is that the saturation anomaly of heavy noble gases in model simulations is in excess of two-fold more negative than is suggested from Weddell Sea observations. This result suggests that model water masses are insufficiently ventilated prior to subduction and thus there is insufficient communication between atmosphere and ocean at high latitudes. The discrepancy between noble gas observations and ECCO simulations highlights that important inadequacies remain in how we model high-latitude ventilation with large implications for the oceanic uptake and storage of carbon.

  4. Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN

    NASA Astrophysics Data System (ADS)

    Mao, Miaohua; van der Westhuysen, André J.; Xia, Meng; Schwab, David J.; Chawla, Arun

    2016-06-01

    Accurate wind-wave simulations are vital for evaluating the impact of waves on coastal dynamics, especially when wave observations are sparse. It has been demonstrated that structured-grid models have the ability to capture the wave dynamics of large-scale offshore domains, and the recent emergence of unstructured meshes provides an opportunity to better simulate shallow-water waves by resolving the complex geometry along islands and coastlines. For this study, wind waves in Lake Michigan were simulated using the unstructured-grid version of Simulating Waves Nearshore (un-SWAN) model with various types of wind forcing, and the model was calibrated using in situ wave observations. Sensitivity experiments were conducted to investigate the key factors that impact wave growth and dissipation processes. In particular, we considered (1) three wind field sources, (2) three formulations for wind input and whitecapping, (3) alternative formulations and coefficients for depth-induced breaking, and (4) various mesh types. We find that un-SWAN driven by Global Environmental Multiscale (GEM) wind data reproduces significant wave heights reasonably well using previously proposed formulations for wind input, recalibrated whitecapping parameters, and alternative formulations for depth-induced breaking. The results indicate that using GEM wind field data as input captures large waves in the midlake most accurately, while using the Natural Neighbor Method wind field reproduces shallow-water waves more accurately. Wind input affects the simulated wave evolution across the whole lake, whereas whitecapping primarily affects wave dynamics in deep water. In shallow water, the process of depth-induced breaking is dominant and highly dependent upon breaker indices and mesh types.

  5. Effective Removal of Nitrogen and Phosphorus from Surface Water Using Constructed Comprehensive Floating Remediation Islands

    NASA Astrophysics Data System (ADS)

    Wang, M.; Bai, S.

    2008-12-01

    Nitrogen and phosphorus are the chief pollutants of our aquatic systems which may be resulted from different contamination sources and could cause serious environmental and ecological problems. For example, nitrate contamination of the water systems from agricultural practices may be contributing to the eutrophication of the Chesapeake Bay, Maryland, USA, degrading water quality and aquatic habitats. Effective approaches for removal of nitrogen and phosphorus from our aquatic systems, particularly from surface water, is called for imminently. An in-situ remediation measure by constructed floating remediation islands has been developed and tested through the field experiments recently. Four pilot-scale settings with the different components and structures were constructed and operated in parallel in which a new type of the constructed floating remediation islands with multi-layers of substrate fillers, called the constructed multi-layer comprehensive floating remediation island, was included. The contaminated water taken directly from a river containing richly nitrogen and phosphorus was used for those experiments. The experiment results obtained from the four different experiment settings were examined. It was noticed that the degradation rates of both nitrogen and phosphorus in water in the setting with the constructed multi-layer comprehensive floating remediation island was greater than those in others. The mean removal rate of phosphorous in the experiment setting with the constructed multi-layer comprehensive floating remediation island was considerably higher than the removal rates of phosphorous in the other three experiment settings.

  6. FREE-WATER DEPTH AS A MANAGEMENT TOOL FOR CONSTRUCTED WETLANDS

    EPA Science Inventory

    Marsh plants in constructed wetlands have shown the capacity to remove unwanted pollutants from storm water runoff. The plants can be established at the site from bare roots. However, plant growth from bare roots can be restricted by the elevated water depths. Using several wa...

  7. PREDICTING SUSTAINABLE GROUND WATER TO CONSTRUCTED RIPARIAN WETLANDS: SHAKER TRACE, OHIO, USA

    EPA Science Inventory

    Water isotopy is introduced as a best management practice for the prediction of sustained ground water inflows to prospective constructed wetlands. A primer and application of the stable isotopes, 18O and 2H, are discussed for riparian wetland restoration ar...

  8. Enhancement of Immune Activation Activities of Spirulina maxima Grown in Deep-Sea Water

    PubMed Central

    Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2013-01-01

    In this study, the immuno-modulatory and anticancer activities of marine algae, Spirulina maxima grown in deep-sea water (DSW), were investigated. It was found that the extract of S. maxima, cultured in DSW, effectively suppressed the expression of Bcl2 in A549 cells as well as inhibiting various human cancer cells with concentration dependency, which possibly implies that the extracts may play more important roles in controlling cancer cell growth. The secretion of cytokines IL-6 and TNF-α from human B cells was also greatly increased, compared to those of the extract grown in conventional sea-water. The growth of Human Natural Killer (NK) cells in the presence of the extracts from DSW was significantly higher (12.2 × 104 viable cells/mL) when compared to the control (1.1 × 104 viable cells/mL). Based on HPLC analysis, the increase in the biological activities of the extracts from DSW was caused by considerably high amounts of β-carotene and ascorbic acid because the DSW contained high concentrations and good ratios of several key minerals for biosynthesizing β-carotene and ascorbic acid, as well as maintaining high cell growth. PMID:23743830

  9. Effect of sea water interaction on strontium isotope composition of deep-sea basalts

    USGS Publications Warehouse

    Julius, Dasch E.; Hedge, C.E.; Dymond, J.

    1973-01-01

    Analyses of rim-to-interior samples of fresh tholeiitic pillow basalts, deuterically altered holocrystalline basalts, and older, weathered tholeiitic basalts from the deep sea indicate that 87Sr 86Sr ratios of the older basalts are raised by low temperature interaction with strontium dissolved in sea water. 87Sr 86Sr correlates positively with H2O in these basalts; however, there is little detectable modification of the strontium isotope composition in rocks with H2O contents less than 1%. The isotope changes appear to be a function of relatively long-term, low-temperature weathering, rather than high-temperature or deuteric alteration. Strontium abundance and isotopic data for these rocks suggest that strontium content is only slightly modified by interaction with sea water, and it is a relatively insensitive indicator of marine alteration. Average Rb-Sr parameters for samples of apparently unaltered basalt are: Rb = 1.11 ppm; Sr = 132 ppm; 87Sr 86Sr = 0.70247. ?? 1973.

  10. Calculation and experiment for dynamic response of bridge in deep water under seismic excitation

    NASA Astrophysics Data System (ADS)

    Liu, Chun-guang; Sun, Guo-shuai

    2014-08-01

    The fluid-structure interaction under seismic excitation is very complicated, and thus the damage identification of the bridge in deep water is the key technique to ensure the safe service. Based on nonlinear Morison equation considering the added mass effect and the fluid-structure interaction effect, the effect of hydrodynamic pressure on the structure is analyzed. A series of underwater shaking table tests are conducted in the air and in water. The dynamic characteristics affected by hydrodynamic pressure are discussed and the distribution of hydrodynamic pressure is also analyzed. In addition, the damage of structure is distinguished through the natural frequency and the difference of modal curvature, and is then compared with the test results. The numerical simulation and test of this study indicate that the effect of hydrodynamic pressure on the structure should not be neglected. It is also found that the presence of the damage, the location of the damage and the degree of the severity can be judged through the variation of structure frequency and the difference of modal curvature.

  11. Enhancement of immune activation activities of Spirulina maxima grown in deep-sea water.

    PubMed

    Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2013-01-01

    In this study, the immuno-modulatory and anticancer activities of marine algae, Spirulina maxima grown in deep-sea water (DSW), were investigated. It was found that the extract of S. maxima, cultured in DSW, effectively suppressed the expression of Bcl2 in A549 cells as well as inhibiting various human cancer cells with concentration dependency, which possibly implies that the extracts may play more important roles in controlling cancer cell growth. The secretion of cytokines IL-6 and TNF-α from human B cells was also greatly increased, compared to those of the extract grown in conventional sea-water. The growth of Human Natural Killer (NK) cells in the presence of the extracts from DSW was significantly higher (12.2 × 104 viable cells/mL) when compared to the control (1.1 × 104 viable cells/mL). Based on HPLC analysis, the increase in the biological activities of the extracts from DSW was caused by considerably high amounts of β-carotene and ascorbic acid because the DSW contained high concentrations and good ratios of several key minerals for biosynthesizing β-carotene and ascorbic acid, as well as maintaining high cell growth. PMID:23743830

  12. Glider observations of the biological response to Modified Circumpolar Deep Water Variability in the Ross Sea

    NASA Astrophysics Data System (ADS)

    O'Connell, D.; Kaufman, D.; Friedrichs, M. A.; Smith, W.

    2011-12-01

    The Ross Sea is the most productive area within the Southern Ocean, and is believed to play a significant role in the global marine carbon cycle. This region is also characterized by strong spatial and temporal variability in both physical and biogeochemical conditions; however this variability occurs on spatial and temporal scales that are difficult to resolve with traditional data sources. In order to better understand this variability, two gliders were deployed in the Ross Sea in late November 2010 during the early stages of the summer plankton bloom. Together, the two gliders made over 1500 dives and collected data (salinity, temperature, fluorescence and oxygen) throughout the water column for roughly two months. The data from these gliders were used to identify the presence of the relatively high-nutrient Modified Circumpolar Deep Water (MCDW), which has been hypothesized to be a significant factor affecting the spatial and temporal extent of the summer plankton blooms. Preliminary data analyses indicate a positive correlation between areas of MCDW and high chlorophyll concentrations. The glider data were also compared to contemporaneous cruise data and satellite data and were found to fit well with these other data, yet were better able to resolve the high temporal and spatial variability of this region. Specifically, the lower resolution of the cruise data, as compared to the glider data, made it difficult to resolve the correlation of MCDW to high chlorophyll from the cruise data alone.

  13. Seismic blanking zones in the deep-water Ullung Basin, East Sea of Korea.

    NASA Astrophysics Data System (ADS)

    Ryu, Byong-Jae; Riedel, Michael; Yoo, Dong-Geun

    2015-04-01

    A total 12366.395 L.km of 2D multichannel seismic data were acquired by the Korea Institute of Geoscience and Mineral Resources (KIGAM) for detecting and mapping seismic indicators for the presence of gas hydrate in the deep-water Ulleung Basin, East Sea of Korea. The seismic data were acquired using Trilogy System of Geco-Prakla, Bolt Air-gun System onboard the R/V TAMHAE II of KIGAM during the years of 2000 to 2004. The seismic faices of shallow sediments were also analyzed to understand the sedimentary strata developed in the basin. Seismic data were processed to define gas hydrate indicators such as bottom simulating reflectors (BSRs) and seismic blank zones. The BSR was identified by (a) its polarity opposite to the seafloor, (b) its seafloor-parallel reflection behavior, and (c) its occurrence at a sub-bottom depth corresponding to the expected base of gas hydrate stability zone, on heat flow and other thermal data for the region and on seismic velocity data. The seismic velocity analysis was also conducted for determining the velocity deviation effect of high-velocity gas hydrate and underlying low-velocity free gas. The BSRs occur mainly in the southern part of the basin where mass transport deposits are widely occurring. A number of vertical to sub-vertical seismic blanking zones were identified in the basin. The blanking zones are near-vertical broad chimney-like structures of reduced seismic reflectivity. They may be formed by gas and/or fluid upwelling through fractures and faults. Many of the blanking zones show apparent velocity pull-up effects of sediment layering structures that are interpreted to be a result of higher velocity gas hydrate. The presence of substantial amounts of gas hydrate in the blank zones were first found by piston coring in 2007, and subsequently confirmed by two deep-drilling expeditions in 2007 and 2010. Most of the blanking zones occur in well-bedded turbidite/hemi-pelagic sediments in the northern deep basin. The

  14. Transition Zone Anisotropy Beneath Deep Slabs and the Transport of Water into the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Nowacki, A.; Kendall, J. M.; Wookey, J. M.; Pemberton, A.

    2014-12-01

    To first order, the Earth exhibits seismic anisotropy (the variation of wave speed with direction) only in the uppermost and lowermost mantle, as well as the inner core. However, a growing body of evidence suggests that it is also present in the transition zone (TZ) and uppermost lower mantle (LM). We use the method of 'source-side' shear wave splitting to observe anisotropy in the regions of deep earthquakes distributed globally. This technique removes the effects of anisotropy near well-characterised receiver stations to infer the splitting at the source, allowing us to probe the midmantle where slabs appear to be impinging on the LM. Over 130 observations, mainly beneath South America, Tonga and Japan, are made for earthquakes 200-650 km deep. They show shear wave splitting with mean delay time 1.0 s, but there is no trend of decreasing—or increasing—δt with depth. Because of the distribution of circum-Pacific deep earthquakes, our data are only sensitive to anisotropy in the sub-slab region and the slab itself. Our observations reveal a consistent pattern: the data are best fit with a style of anisotropy which has a rotational symmetry axis pointing upwards along the slab. This pattern of anisotropy is typical of approximately uniaxial flattening of material which develops a lattice preferred orientation (LPO) by dislocation creep. This is consistent with the expected mechanics of slab sinking and supported by the P-axes of moment tensor solutions for the events we analyse. Because the amount of anisotropy does not appear to be related to the depth, we can confine the source region to either the slab itself, or the top of the LM. The amount of anisotropy makes it unlikely that MgSiO3-perovskite in the LM is the source, as it would require a high-strain layer over 1500~km thick. Dense hydrous magnesium silicate (DHMS) phases which are known to become stable at the base of the TZ (the so-called 'alphabet' phases; such as D and superhydrous B), do however

  15. Iron-titanium oxyhydroxides which transport water into the deep upper mantle and mantle transition zone

    NASA Astrophysics Data System (ADS)

    Matsukage, K. N.; Nishihara, Y.

    2015-12-01

    We experimentally discovered a new hydrous phase in the system FeOOH-TiO2 at pressures of 10-16 GPa and temperatures of 1000-1600°C which corresponds to conditions of the deep upper mantle and the Earth's mantle transition zone. Seven different compositions in the FeOOH-TiO2 system having molar ratios of x = Ti/(Fe + Ti) = 0, 0.125, 0.25, 0.375, 0.5, 0.75 that were prepared by mixing reagent grade a-FeOOH (goethite) and TiO2 (anatase) powders were used as starting materials. High-pressure and high-temperature experiments were carried out using Kawai-type multi-anvil apparatus (Orange-1000 at Ehime University and SPI-1000 at Tokyo Institute of Technology). In this system, we identified two stable iron-titanium oxyhydroxide phases whose estimated composition is expressed by (FeH)1 - xTixO2 . One is the Fe-rich solid solution (x < 0.23) with e-FeOOH type crystal structure (e-phase, orthorhombic, P21nm) that was described by the previous studies (e.g., Suzuki 2010), and the other is the more Ti-rich solid solution (x > 0.35) with a-PbO2 type structure (a-phase, orthorhombic, Pbcn). The a-phase is stable up to 1500ºC for a composition of x = 0.5 and at least to 1600ºC for x = 0.75. Our result means that this phase is stable at average mantle temperature in the Earth's mantle transition zone. The Iron-titanium-rich hydrous phases was possible to stable in basalt + H2O system (e.g., Hashimoto and Matsukage 2013). Therefore our findings suggest that water transport in the Earth's deep interior is probably much more efficient than had been previously thought.

  16. Estimating Trans-Seasonal Variability in Water Column Biomass for a Highly Migratory, Deep Diving Predator

    PubMed Central

    O'Toole, Malcolm D.; Lea, Mary-Anne; Guinet, Christophe; Hindell, Mark A.

    2014-01-01

    The deployment of animal-borne electronic tags is revolutionizing our understanding of how pelagic species respond to their environment by providing in situ oceanographic information such as temperature, salinity, and light measurements. These tags, deployed on pelagic animals, provide data that can be used to study the ecological context of their foraging behaviour and surrounding environment. Satellite-derived measures of ocean colour reveal temporal and spatial variability of surface chlorophyll-a (a useful proxy for phytoplankton distribution). However, this information can be patchy in space and time resulting in poor correspondence with marine animal behaviour. Alternatively, light data collected by animal-borne tag sensors can be used to estimate chlorophyll-a distribution. Here, we use light level and depth data to generate a phytoplankton index that matches daily seal movements. Time-depth-light recorders (TDLRs) were deployed on 89 southern elephant seals (Mirounga leonina) over a period of 6 years (1999–2005). TDLR data were used to calculate integrated light attenuation of the top 250 m of the water column (LA250), which provided an index of phytoplankton density at the daily scale that was concurrent with the movement and behaviour of seals throughout their entire foraging trip. These index values were consistent with typical seasonal chl-a patterns as measured from 8-daySea-viewing Wide Field-of-view Sensor (SeaWiFs) images. The availability of data recorded by the TDLRs was far greater than concurrent remotely sensed chl-a at higher latitudes and during winter months. Improving the spatial and temporal availability of phytoplankton information concurrent with animal behaviour has ecological implications for understanding the movement of deep diving predators in relation to lower trophic levels in the Southern Ocean. Light attenuation profiles recorded by animal-borne electronic tags can be used more broadly and routinely to estimate lower trophic

  17. Estimating trans-seasonal variability in water column biomass for a highly migratory, deep diving predator.

    PubMed

    O'Toole, Malcolm D; Lea, Mary-Anne; Guinet, Christophe; Hindell, Mark A

    2014-01-01

    The deployment of animal-borne electronic tags is revolutionizing our understanding of how pelagic species respond to their environment by providing in situ oceanographic information such as temperature, salinity, and light measurements. These tags, deployed on pelagic animals, provide data that can be used to study the ecological context of their foraging behaviour and surrounding environment. Satellite-derived measures of ocean colour reveal temporal and spatial variability of surface chlorophyll-a (a useful proxy for phytoplankton distribution). However, this information can be patchy in space and time resulting in poor correspondence with marine animal behaviour. Alternatively, light data collected by animal-borne tag sensors can be used to estimate chlorophyll-a distribution. Here, we use light level and depth data to generate a phytoplankton index that matches daily seal movements. Time-depth-light recorders (TDLRs) were deployed on 89 southern elephant seals (Mirounga leonina) over a period of 6 years (1999-2005). TDLR data were used to calculate integrated light attenuation of the top 250 m of the water column (LA(250)), which provided an index of phytoplankton density at the daily scale that was concurrent with the movement and behaviour of seals throughout their entire foraging trip. These index values were consistent with typical seasonal chl-a patterns as measured from 8-daySea-viewing Wide Field-of-view Sensor (SeaWiFs) images. The availability of data recorded by the TDLRs was far greater than concurrent remotely sensed chl-a at higher latitudes and during winter months. Improving the spatial and temporal availability of phytoplankton information concurrent with animal behaviour has ecological implications for understanding the movement of deep diving predators in relation to lower trophic levels in the Southern Ocean. Light attenuation profiles recorded by animal-borne electronic tags can be used more broadly and routinely to estimate lower trophic

  18. The role of carrion supply in the abundance of deep-water fish off California.

    PubMed

    Drazen, Jeffrey C; Bailey, David M; Ruhl, Henry A; Smith, Kenneth L

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9-20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics. PMID:23133679

  19. The Role of Carrion Supply in the Abundance of Deep-Water Fish off California

    PubMed Central

    Drazen, Jeffrey C.; Bailey, David M.; Ruhl, Henry A.; Smith, Kenneth L.

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9–20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics. PMID:23133679

  20. Water-retaining barrier and method of construction

    DOEpatents

    Adams, Melvin R.; Field, Jim G.

    1996-01-01

    An agricultural barrier providing a medium for supporting plant life in an arid or semi-arid land region having a ground surface, the barrier being disposed on native soil of the region, the barrier including: a first layer composed of pieces of basalt, the first layer being porous and being in contact with the native soil; a porous second layer of at least one material selected from at least one of sand and gravel, the second layer being less porous than, and overlying, the first layer; and a porous third layer containing soil which favors plant growth, the third layer being less porous than, and overlying, the second layer and having an exposed upper surface, wherein the porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer.

  1. Water-retaining barrier and method of construction

    DOEpatents

    Adams, M.R.; Field, J.G.

    1996-02-20

    An agricultural barrier is disclosed which provides a medium for supporting plant life in an arid or semi-arid land region having a ground surface. The barrier is disposed on native soil of the region. The barrier includes a first porous layer composed of pieces of basalt, and is in contact with the native soil. There is a less porous second layer of at least one material selected from at least one of sand and gravel. The second layer overlies the first layer. A third layer, less porous than the second layer, contains soil which favors plant growth. The third layer overlies the second layer and has an exposed upper surface. The porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer. 2 figs.

  2. Geothermal brine well: Mile-deep drill hole may tap ore-bearing magmatic water and rocks Undergoing Metamorphism

    USGS Publications Warehouse

    White, D.E.; Anderson, E.T.; Grubbs, D.K.

    1963-01-01

    A deep geothermal well in California has tapped a very saline brine extraordinarily high in heavy metals and other rare elements; copper and silver are precipitated during brine production. Preliminary evidence suggests that the brine may be pure magmatic water and an active ore-forming solution. Metamorphism of relatively young rocks may also be occurring within accessible depths.

  3. Deep-Water Benthic Foraminifers from the Paleocene and Eocene of the North Pacific Region: Paleontology, Biostratigraphy, and Paleoceanological Reconstructions

    NASA Astrophysics Data System (ADS)

    Olshanetskiy, D. M.

    2015-12-01

    A zonal scheme for the Lower Paleogene of the northern Pacific Ocean is proposed on the basis of the stratigraphic distribution of benthic foraminifers in the lower bathyal-abyssal beds studied in boreholes in the North and South Pacific regions. This scheme includes eight subdivisions (six zones and two subzones). The boundaries of the benthic zonal subdivisions are defined by bioevents (appearance or disappearance of stratigraphically important taxa) and are linked to the zonal scales based on planktonic foraminifers and calcareous nannoplankton. It is established that most of these bioevents are recognized subglobally. Apart from the evolutionary events, changes in the deep-water benthic foraminiferal assemblages were caused by changes in the paleooceanological environment. This allowed detailed characterization of a global mass extinction of assemblages of deep-water benthic foraminifers in the region studied. It is also established that changes in the assemblages of deep-water benthic foraminifers, observed in either change in their taxonomic composition or changes in abundance and diversity, resulted from the presence of different deep-water masses in the region.

  4. Reproductive biology of the deep-water coral Acanella arbuscula (Phylum Cnidaria: Class Anthozoa: Order Alcyonacea), northwest Atlantic

    NASA Astrophysics Data System (ADS)

    Beazley, Lindsay I.; Kenchington, Ellen L.

    2012-10-01

    Knowledge of the reproductive life-history of deep-water corals is important for assessing their vulnerability to anthropogenic impacts. Yet, the reproductive biology of many deep-water corals, especially members of the subclass Octocorallia, has not been examined. We used histological techniques to describe the reproductive biology of the deep-water gorgonian coral Acanella arbuscula from the northwest Atlantic. All colonies examined were gonochoric, and no embryos or planula larvae were observed in the polyps. Mean polyp-level fecundity (females: 21.0±17.5 oocytes polyp-1, and males: 13.9±13.5 sperm sacs polyp-1) is high compared to other deep-water gorgonians, and polyps closer to the branch tips had the highest fecundities in both females and males. The presence of large oocytes (maximum diameter 717.8 μm) suggests that A. arbuscula produces lecithotrophic larvae. Despite the potentially high fecundity and small size at first reproduction, the paucity of information on dispersal and recruitment, combined with its longevity, vulnerability to bottom fishing gear, and ecological role as a structure-forming species, still warrants the classification of A. arbuscula as a vulnerable marine ecosystem indicator.

  5. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    PubMed

    Marzinelli, Ezequiel M; Williams, Stefan B; Babcock, Russell C; Barrett, Neville S; Johnson, Craig R; Jordan, Alan; Kendrick, Gary A; Pizarro, Oscar R; Smale, Dan A; Steinberg, Peter D

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves. PMID:25693066

  6. From circumpolar deep water to the glacial meltwater plume on the eastern Amundsen Shelf

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Schröder, M.; Hellmer, H. H.

    2013-07-01

    The melting of Pine Island Ice Shelf (PIIS) has increased since the 1990 s, which may have a large impact on ice sheet dynamics, sea-level rise, and changes in water mass properties of surrounding oceans. The reason for the PIIS melting is the relatively warm (˜1.2°C) Circumpolar Deep Water (CDW) that penetrates into the PIIS cavity through two submarine glacial troughs located on the Amundsen Sea continental shelf. In this study, we mainly analyze the hydrographic data obtained during ANTXXVI/3 in 2010 with the focus on pathways of the intruding CDW, PIIS melt rates, and the fate of glacial meltwater. We analyze the data by dividing CTD profiles into 6 groups according to intruding CDW properties and meltwater content. From this analysis, it is seen that CDW warmer than 1.23 °C (colder than 1.23 °C) intrudes via the eastern (central) trough. The temperature is controlled by the thickness of the intruding CDW layer. The eastern trough supports a denser CDW layer than the water mass in Pine Island Trough (PIT). The eastern intrusion is modified on the way into PIT through mixing with the lighter and colder CDW from the central trough. Using ocean transport and tracer transport calculations from the ice shelf front CTD section, the estimated melt rate in 2010 is ˜30myr-1, which is comparable to published values. From spatial distributions of meltwater content, meltwater flows along the bathymetry towards the west. When compared with earlier (2000) observations, a warmer and thicker CDW layer is observed in Pine Island Trough for the period 2007-2010, indicating a recent thickening of the CDW intrusion.

  7. Source rock in the lower Tertiary and Cretaceous, deep-water Gulf of Mexico

    SciTech Connect

    Wagner, B.E.; Sofer, Z.; Claxton, B.L.

    1994-12-31

    The MC-84 (King) well was drilled in the deep-water Gulf of Mexico in 1993, in Mississippi Canyon Block 84 in a water depth of 5,149 ft. This well drilled an anticlinal feature. The well penetrated an Upper Cretaceous section and crossed Middle Cretaceous Unconformity with final total depth in the Lower Cenomanian. Numerous sidewall cores were taken throughout the Lower Tertiary and Cretaceous. Six of the sidewall cores (from 14,230 to 15,170 ft subsea) are organic rich and contain Type II oil-prone kerogen (TOC values from 2.6 to 5.2% and hydrogen indices from 360 to 543 ppm). The Lower Tertiary through Lower Cenomianian section is thermally immature for oil generation, on the basis of biomarker ratios and vitrinite reflectance measurements. Organic extracts from cores in the Cretaceous section had biomarker characteristics similar to oil recovered from the Miocene in the MC-84 well. The oil was generated from a similar but more mature source rock, probably of Early Cretaceous age. Results of thermal modeling indicate that the only section thermally mature for oil generation is in the lower portion of the Lower Cretaceous, below the total depth of the well. The model also indicates that the organic-rich section equivalent to that penetrated by the MC-84 well could be mature farther to the north, where water depths are shallower, overburden thickness is greater, and heat flow is higher. Late Tertiary sediment loading in this area, primarily during the Miocene, is probably the driving mechanism for hydrocarbon generation from the Cretaceous (and possibly the Lower Tertiary) potential source rocks. This offers a favorable geological setting for capturing hydrocarbons because reservoirs and traps associated with Miocene deposition and subsequent loading-induced salt movement had formed prior to the onset of oil generation and migration.

  8. 1,3-propanediol binds deep inside the channel to inhibit water permeation through aquaporins.

    PubMed

    Yu, Lili; Rodriguez, Roberto A; Chen, L Laurie; Chen, Liao Y; Perry, George; McHardy, Stanton F; Yeh, Chih-Ko

    2016-02-01

    Aquaporins and aquaglyceroporins (AQPs) are membrane channel proteins responsible for transport of water and for transport of glycerol in addition to water across the cell membrane, respectively. They are expressed throughout the human body and also in other forms of life. Inhibitors of human AQPs have been sought for therapeutic treatment for various medical conditions including hypertension, refractory edema, neurotoxic brain edema, and so forth. Conducting all-atom molecular dynamics simulations, we computed the binding affinity of acetazolamide to human AQP4 that agrees closely with in vitro experiments. Using this validated computational method, we found that 1,3-propanediol (PDO) binds deep inside the AQP4 channel to inhibit that particular aquaporin efficaciously. Furthermore, we used the same method to compute the affinities of PDO binding to four other AQPs and one aquaglyceroporin whose atomic coordinates are available from the protein data bank (PDB). For bovine AQP1, human AQP2, AQP4, AQP5, and Plasmodium falciparum PfAQP whose structures were resolved with high resolution, we obtained definitive predictions on the PDO dissociation constant. For human AQP1 whose PDB coordinates are less accurate, we estimated the dissociation constant with a rather large error bar. Taking into account the fact that PDO is generally recognized as safe by the US FDA, we predict that PDO can be an effective diuretic which directly modulates water flow through the protein channels. It should be free from the serious side effects associated with other diuretics that change the hydro-homeostasis indirectly by altering the osmotic gradients. PMID:26481430

  9. High resolution sequence stratigraphy of Miocene deep-water clastic outcrops, Taranaki coast, New Zealand

    SciTech Connect

    King, P.R.; Browne, G.H.; Slatt, R.M.

    1995-08-01

    Approximately 700m of deep water clastic deposits of Mt. Messenger Formation are superbly exposed along the Taranaki coast of North Island, New Zealand. Biostratigraphy indicates the interval was deposited during the time span 10.5-9.2m.y. in water depths grading upward from lower bathyal to middle-upper bathyal. This interval is considered part of a 3rd order depositional sequence deposited under conditions of fluctuating relative sea-level, concomitant with high sedimentation rates. Several 4th order depositional sequences, reflecting successive sea-level falls, are recognized within the interval. Sequence boundaries display a range of erosive morphologies from metre-wide canyons to scours several hundred metres across. All components of a generic lowstand systems tract--basin floor fan, channel-levee complex and progading complex--are present in logical and temporal order. They are repetitive through the interval, with the relatively shallower-water components becoming more prevalent upward. Basin floor fan lithologies are mainly m-thick, massive and convolute-bedded sandstones that alternate with cm- and dm-thick massive, horizontally-stratified and ripple-laminated sandstones and bioturbated mudstones. Channel-levee deposits consist of interleaving packages of thin-bedded, climbing-rippled and parallel-laminated sandstones and millstones; infrequent channels are filled with sandstones and mudstones, and sometimes lined with conglomerate. Thin beds of parallel to convoluted mudstone comprise prograding complex deposits. Similar lowstand systems tracts can be recognized and correlated on subsurface seismic reflection profiles and wireline logs. Such correlation has been aided by a continuous outcrop gamma-ray fog obtained over most of the measured interval. In the adjacent Taranaki peninsula, basin floor fan and channel-levee deposits comprise hydrocarbon reservoir intervals. Outcrop and subsurface reservior sandstones exhibit similar permeabilities.

  10. Large-Scale Geographic Variation in Distribution and Abundance of Australian Deep-Water Kelp Forests

    PubMed Central

    Marzinelli, Ezequiel M.; Williams, Stefan B.; Babcock, Russell C.; Barrett, Neville S.; Johnson, Craig R.; Jordan, Alan; Kendrick, Gary A.; Pizarro, Oscar R.; Smale, Dan A.; Steinberg, Peter D.

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia’s Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10–100 m to 100–1,000 km) and depths (15–60 m) across several regions ca 2–6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40–50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves. PMID:25693066

  11. Significance of water fluxes in a deep arid-region vadose zone to waste disposal strategies

    SciTech Connect

    Johnejack, K.R.; Blout, D.O.; Sully, M.J.; Emer, D.F.; Hammermeister, D.P.; Dever, L.G.; O`Neill, L.J.; Tyler, S.W.; Chapman, J.

    1994-03-01

    Recently collected subsurface site characterization data have led to the development of a conceptual model of water movement beneath the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) that differs significantly from the conceptual model of water movement inherent in Resource Conservation and Recovery Act (RCRA) regulations. At the Area 5 RWMS, water fluxes in approximately the upper 75 m (250 ft) of the vadose zone point in the upward direction (rather than downward) which effectively isolates this region from the deep (approximately 250 m (820 ft)) uppermost aquifer. Standard RCRA approaches for detection and containment (groundwater monitoring and double liners/leachate collection/leak detection systems) are not able to fulfill their intended function in this rather unique hydrogeologic environment. In order to better fulfill the waste detection and containment intentions of RCRA for mixed waste disposal at the Area 5 RWMS, the Department of Energy, Nevada Operations Office (DOE/NV) is preparing a single petition for both a waiver from groundwater monitoring and an exemption from double liners with leachate collection/leak detection. DOE/NV proposes in this petition that the containment function of liners and leachate collection is better accomplished by the natural hydrogeologic processes operating in the upper vadose zone; and the detection function of groundwater monitoring and the leak detection system in liners is better fulfilled by an alternative vadose zone monitoring system. In addition, an alternative point of compliance is proposed that will aid in early detection, as well as limit the extent of potential contamination before detection. Finally, special cell design features and operation practices will be implemented to limit leachate formation, especially while the cell is open to the atmosphere during waste emplacement.

  12. Early arrival of Southern Source Water in the deep North Atlantic prior to Heinrich event 2

    NASA Astrophysics Data System (ADS)

    Gutjahr, Marcus; Lippold, JöRg

    2011-06-01

    The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in the Northern Hemisphere climate system. Significant interest went into the question of how excessive freshwater input through melting of continental ice can affect its overturning vigor and, hence, heat supply, to higher northern latitudes. Such forcing can be tested by investigating its behavior during extreme iceberg discharge events into the open North Atlantic during the last glacial period, the so-called Heinrich events (HE). Here we present neodymium (Nd) isotope compositions of past seawater, a sensitive chemical water mass tag, extracted from sediments of Ocean Drilling Program Site 1063 in the western North Atlantic (Bermuda Rise), covering the period surrounding HE 2, the Last Glacial Maximum, and the early deglaciation. These data are compared with a record of the kinematic circulation tracer (231Pa/230Th)xs extracted from the same sediment core. Both tracers indicate significant circulation changes preceding intense ice rafting during HE 2 by almost 2 kyr. Moreover, the Nd isotope record suggests the presence of deeply ventilating North Atlantic Deep Water early during Marine Isotope Stage 2 until it was replaced by Southern Source Water at ˜27 ka. The early switch to high (Pa/Th)xs and radiogenic ɛNd in relation to intensified ice rafting during HE 2 suggests that ice rafting into the open North Atlantic during major HE 2 was preceded by an early change of the AMOC. This opens the possibility that variations in AMOC contributed to or even triggered the ice sheet instability rather than merely responding to it.

  13. Mechanical stratigraphy of deep-water sandstones: insights from a multisciplinary field and laboratory study

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; di Celma, Claudio; Tondi, Emanuele; Corradetti, Amerigo; Cantalamessa, Gino

    2010-05-01

    Turbidite sandstones found in deep-water fold-and-thrust belts are increasingly exploited as hydrocarbon reservoirs. Within these rocks, the fluid flow is profoundly affected by the complex interaction between primary sedimentological and stratigraphic attributes (i.e, facies, layering, reservoir quality, stacking patterns, bed connectivity and lateral extent) and fracture characteristics (i.e., length, spacing, distribution, orientation, connectivity). Unfortunately, most of these features are at, or below, the resolution of conventional seismic datasets and, for this reason, their identification and localization represent one of the fundamental challenges facing exploration, appraisal and production of the sandstone reservoirs. In this respect, whereas considerable effort has been afforded to a characterization of the sedimentological and stratigraphic aspects of sandstones, detailed analysis of fractures in this type of successions has received significantly less attention. In this work, we combine field and laboratory analyses to assess the possible mechanical control exerted by the rock properties (grain size, intergranualr porosity, and Young modulus), as well as the influence of bed thickness, on joint density in turbidite sandstones. Joints are mode-I fractures occurring parallel to the greatest principle stress axis, which solve opening displacement and do not show evidence of shearing and enhance the values of total porosity forming preferential hydraulic conduits for fluid flow. Within layered rocks, commonly, joints form perpendicular to bedding due to overburden or exhumation. The empirical relation between joint spacing and bed thickness, documented in the field by many authors, has been mechanically related to the stress perturbation taking place around joints during their formation. Furthermore, close correlations between joint density and rock properties have been already established. In this present contribution, we focus on the bed

  14. Deep-water sediment transport processes in the northeastern South China Sea: Mooring and shipboard-based observations

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Zhao, Y.; Zhang, Y.; Li, J.; Li, X.; Wang, W.; Xu, J.

    2013-12-01

    Six moorings equipped with acoustic doppler current profiler (ADCP), recording current meter (RCM), and sediment trap have been deployed in the northeastern South China Sea at water depths ranging from 1700-3900 m to collect time-series data that can hopefully help better characterize the bottom current system and transport process in the region. Shipboard-based measurements including CTD, transmissometer, optical backscatter (OBS), and in-situ layered suspended particle sampling using large volume pump (LVP) were undertaken along three deep-water transects in the region during two cruises in the spring of 2012 and 2013. Preliminary results show for the first time the presence of continuous and relative stable contour currents and widespread deep-water nepheloid layers in the deep South China Sea. The contour currents flow southwestwards with average speeds of 2-4 cm/s (occasionally up to 11 cm/s) along lower slope of the northern South China Sea at depths of 1700-2500 m. The large-scale sediment waves recorded by high-resolution multibeam bathymetry appear to be related to activities of the contour currents. Intermediate and bottom nepheloid layers with an average suspended particle concentration of 0.6 mg/l are extended from the lower slope to the deep basin of the South China Sea. The intermediate nepheloid layers in depths ranging from 900 to 1100 m are thought to be controlled mainly by the interaction between the North Pacific Intermediate Water and the Pacific Deep Water masses. A sedimentary core (MD01-2905) previously collected on the sediment drift of ODP Site 1144, where three of the mooring systems are located, indicates that 60% of total fine-grained terrigenous sediment budget since the last glacial time have sourced from Taiwan. Our data suggest that the observed contour currents are the major carrier for transporting Taiwan-derived sediments to the northern slope of the South China Sea.

  15. Are high p-wave velocity sediments on thin Tethyan crust, deep-water carbonates?

    NASA Astrophysics Data System (ADS)

    Gutscher, Marc-Andre; Graindorge, David; Klingelhoefer, Frauke; Dellong, David; Kopp, Heidrun; Sallares, Valenti; Bartolome, Rafael; Gallais, Flora

    2016-04-01

    Seismic reflection profiles from the Central Mediterranean and Gulf of Cadiz regions indicate the widespread presence of a seismic unit, marked by strong continuous reflectors, directly overlying the basement. Seismic velocity analysis from seismic reflection and refraction studies indicate high p-wave velocities of 3.5 - 4.5 km/s in this layer. These same seismic studies image a thin crust, typically 6-9 km thick, in most cases thought to be oceanic in nature and related to the Tethys oceanic domain separating Africa (Gondwana) from Laurussia. We interpret this 2-3 km thick reflective layer to be carbonates, deposited in the late Triassic, Jurassic and early Cretaceous in the Tethys Ocean, in deep marine basins. Few drilling studies have penetrated into this layer. In one case (DSDP site 135, drilled at 4152 m water depth on Coral Patch Ridge in the western Gulf of Cadiz), Aptian (early Cretaceous) marls and limestone were drilled (560-689 m sub-seafloor depth). The Calcite compensation depth during the Jurassic to Early Cretaceous was about 4000 m to 3500 m according to compilations from the Atlantic and Indian Oceans and is consistent with deposition of deep-water carbonates. For the NW Moroccan margin (Mazagan transect near El Jadida) there is a 2 km thick sedimentary layer with p-wave velocities of 4.0 - 4.5 km/s at the base of a 4 - 6 km thick sedimentary section. This layer extends from seafloor thought to be oceanic crust (west of the West African Coast magnetic anomaly) across a domain of thin/transitional crust with abundant Triassic salt diapirs to the foot of the margin. This reflective basal layer is also observed in reflection and refraction profiles from the Seine abyssal plain, below the toe of the Cadiz accretionary wedge (S. Algarve margin), in the Ionian abyssal plain and below the toe of the Calabrian accretionary wedge, all regions floored by this thin Tethyan crust. Work is in progress to determine the exact nature of this crust.

  16. Detecting potential impacts of deep subsurface CO2 injection on shallow drinking water

    NASA Astrophysics Data System (ADS)

    Smyth, R. C.; Yang, C.; Romanak, K.; Mickler, P. J.; Lu, J.; Hovorka, S. D.

    2012-12-01

    Presented here are results from one aspect of collective research conducted at Gulf Coast Carbon Center, BEG, Jackson School at UT Austin. The biggest hurdle to public acceptance of CCS is to show that drinking water resources will not be impacted. Since late 1990s our group has been supported by US DOE NETL and private industry to research how best to detect potential impacts to shallow (0 to ~0.25 km) subsurface drinking water from deep (~1 to 3.5 km) injection of CO2. Work has and continues to include (1) field sampling and testing, (2) laboratory batch experiments, (3) geochemical modeling. The objective has been to identify the most sensitive geochemical indicators using data from research-level investigations, which can be economically applied on an industrial-scale. The worst-case scenario would be introduction of CO2 directly into drinking water from a leaking wellbore at a brownfield site. This is unlikely for a properly screened and/or maintained site, but needs to be considered. Our results show aquifer matrix (carbonate vs. clastic) to be critical to interpretation of pH and carbonate (DIC, Alkalinity, and δ13C of DIC) parameters because of the influence of water-rock reaction (buffering vs. non-buffering) on aqueous geochemistry. Field groundwater sampling sites to date are Cranfield, MS and SACROC, TX CO2-EOR oilfields. Two major aquifer types are represented, one dominated by silicate (Cranfield) and the other by carbonate (SACROC) water-rock reactions. We tested sensitivity of geochemical indicators (pH, DIC, Alkalinity, and δ13C of DIC) by modeling the effects of increasing pCO2 on aqueous geochemistry, and laboratory batch experiments, both with partial pressure of CO2 gas (pCO2) at 1x105 Pa (1 atm). Aquifer matrix and groundwater data provided constraints for the geochemical models. We used results from modeling and batch experiments to rank geochemical parameter sensitivity to increased pCO2 into weakly, mildly and strongly sensitive

  17. North Atlantic demersal deep-water fish distribution and biology: present knowledge and challenges for the future.

    PubMed

    Bergstad, O A

    2013-12-01

    This paper summarizes knowledge and knowledge gaps on benthic and benthopelagic deep-water fishes of the North Atlantic Ocean, i.e. species inhabiting deep continental shelf areas, continental and island slopes, seamounts and the Mid-Atlantic Ridge. While several studies demonstrate that distribution patterns are species specific, several also show that assemblages of species can be defined and such assemblages are associated with circulatory features and water mass distributions. In many subareas, sampling has, however, been scattered, restricted to shallow areas or soft substrata, and results from different studies tend to be difficult to compare quantitatively because of sampler differences. Particularly, few studies have been conducted on isolated deep oceanic seamounts and in Arctic deep-water areas. Time series of data are very few and most series are short. Recent studies of population structure of widely distributed demersal species show less than expected present connectivity and considerable spatial genetic heterogeneity and complexity for some species. In other species, genetic homogeneity across wide ranges was discovered. Mechanisms underlying the observed patterns have been proposed, but to test emerging hypotheses more species should be investigated across their entire distribution ranges. Studies of population biology reveal greater diversity in life-history strategies than often assumed, even between co-occurring species of the same family. Some slope and ridge-associated species are rather short-lived, others very long-lived, and growth patterns also show considerable variation. Recent comparative studies suggest variation in life-history strategies along a continuum correlated with depth, ranging from shelf waters to the deep sea where comparatively more species have extended lifetimes, and slow rates of growth and reproduction. Reproductive biology remains too poorly known for most deep-water species, and temporal variation in recruitment has

  18. First Autonomous Bio-Optical Profiling Float in the Gulf of Mexico Reveals Dynamic Biogeochemistry in Deep Waters

    PubMed Central

    Green, Rebecca E.; Bower, Amy S.; Lugo-Fernández, Alexis

    2014-01-01

    Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local “hot spots”, including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network

  19. First autonomous bio-optical profiling float in the Gulf of Mexico reveals dynamic biogeochemistry in deep waters.

    PubMed

    Green, Rebecca E; Bower, Amy S; Lugo-Fernández, Alexis

    2014-01-01

    Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local "hot spots", including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network for

  20. 30 CFR 203.60 - Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of...

  1. 30 CFR 203.60 - Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR MINERALS REVENUE... royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or offshore of Alaska? You...

  2. Deep-Water Chemosynthetic Ecosystem Research during the Census of Marine Life Decade and Beyond: A Proposed Deep-Ocean Road Map

    PubMed Central

    German, Christopher R.; Ramirez-Llodra, Eva; Baker, Maria C.; Tyler, Paul A.

    2011-01-01

    The ChEss project of the Census of Marine Life (2002–2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71°N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72°N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean – the largest contiguous habitat for life within Earth's biosphere, but also the

  3. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    PubMed

    German, Christopher R; Ramirez-Llodra, Eva; Baker, Maria C; Tyler, Paul A

    2011-01-01

    The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the

  4. [Water treatment efficiency of constructed wetland plant-bed/ditch systems].

    PubMed

    Wang, Zhong-Qiong; Zhang, Rong-Bin; Chen, Qing-Hua; Wei, Hong-Bin; Wang, Wei-Dong

    2012-11-01

    Shijiuyang constructed wetland (SJY-CW) in Jiaxing City adopted plant-bed/ditch systems originated from the natural landscape as its major functioning unit. The constructed root channel technology (CRCT) is the core technique applied within the plant-bed/ditch systems. Monitoring results demonstrated that the wetland had the capability of improving water quality indexes by one rank grade according to the national environmental quality standards for surface water (GB 3838-2002). In order to optimize the water quality improvement function of plant-bed/ditch systems and CRCT, a pilot project in SJY-CW was constructed from May to October, 2010. The project contained 16 independent experimental cells. Orthogonal test design was applied to probe into the effects of constructed root channel layers, plant species combination, and reinforced physical substrates on promoting the water quality amelioration efficiency of the plant-bed/ditch systems. Comprehensively considering water treatment effects, construction difficulty, and construction and maintenance cost, the recommended optimal ways are as follows. Plant straws were preferably paved under subsurface zones by two layers with a gap of 20-30 cm. The preferable plant combination was reed (Phragmites australis) plus wild rice (Zizania caduciflora). Calcite might be applied as alternative reinforced media in some suitable sites of plant-bed/ditch systems. Water treatment effects were compared between pilot project and the whole wetland area of SJY-CW. The results showed that the reinforced pilot project exhibited higher treatment efficiency for nutrients than SJY-CW itself. The removal rates of total nitrogen, total phosphorus, and ammonia nitrogen were increased by about 20% - 40% in the pilot project. This suggested that SJY-CW could release its vast water treatment potential by means of increasing water flux through the subsurface root channel zones of plant beds. Therefore, some adjustment and control measures could be

  5. Norwegian deep-water coral reefs: cultivation and molecular analysis of planktonic microbial communities.

    PubMed

    Jensen, Sigmund; Lynch, Michael D J; Ray, Jessica L; Neufeld, Josh D; Hovland, Martin

    2015-10-01

    Deep-sea coral reefs do not receive sunlight and depend on plankton. Little is known about the plankton composition at such reefs, even though they constitute habitats for many invertebrates and fish. We investigated plankton communities from three reefs at 260-350 m depth at hydrocarbon fields off the mid-Norwegian coast using a combination of cultivation and small subunit (SSU) rRNA gene and transcript sequencing. Eight months incubations of a reef water sample with minimal medium, supplemented with carbon dioxide and gaseous alkanes at in situ-like conditions, enabled isolation of mostly Alphaproteobacteria (Sulfitobacter, Loktanella), Gammaproteobacteria (Colwellia) and Flavobacteria (Polaribacter). The relative abundance of isolates in the original sample ranged from ∼ 0.01% to 0.80%. Comparisons of bacterial SSU sequences from filtered plankton of reef and non-reef control samples indicated high abundance and metabolic activity of primarily Alphaproteobacteria (SAR11 Ia), Gammaproteobacteria (ARCTIC96BD-19), but also of Deltaproteobacteria (Nitrospina, SAR324). Eukaryote SSU sequences indicated metabolically active microalgae and animals, including codfish, at the reef sites. The plankton community composition varied between reefs and differed between DNA and RNA assessments. Over 5000 operational taxonomic units were detected, some indicators of reef sites (e.g. Flavobacteria, Cercozoa, Demospongiae) and some more active at reef sites (e.g. Gammaproteobacteria, Ciliophora, Copepoda). PMID:24911121

  6. Larvae from deep-sea methane seeps disperse in surface waters

    PubMed Central

    Arellano, Shawn M.; Van Gaest, Ahna L.; Johnson, Shannon B.; Vrijenhoek, Robert C.; Young, Craig M.

    2014-01-01

    Many species endemic to deep-sea methane seeps have broad geographical distributions, suggesting that they produce larvae with at least episodic long-distance dispersal. Cold-seep communities on both sides of the Atlantic share species or species complexes, yet larval dispersal across the Atlantic is expected to take prohibitively long at adult depths. Here, we provide direct evidence that the long-lived larvae of two cold-seep molluscs migrate hundreds of metres above the ocean floor, allowing them to take advantage of faster surface currents that may facilitate long-distance dispersal. We collected larvae of the ubiquitous seep mussel “Bathymodiolus” childressi and an associated gastropod, Bathynerita naticoidea, using remote-control plankton nets towed in the euphotic zone of the Gulf of Mexico. The timing of collections suggested that the larvae might disperse in the water column for more than a year, where they feed and grow to more than triple their original sizes. Ontogenetic vertical migration during a long larval life suggests teleplanic dispersal, a plausible explanation for the amphi-Atlantic distribution of “B.” mauritanicus and the broad western Atlantic distribution of B. naticoidea. These are the first empirical data to demonstrate a biological mechanism that might explain the genetic similarities between eastern and western Atlantic seep fauna. PMID:24827437

  7. A Possible Role for Agglutinated Foraminifers in the Growth of Deep-Water Coral Bioherms

    NASA Astrophysics Data System (ADS)

    Messing, C. G.; Reed, J. K.; Brooke, S. D.

    2008-05-01

    Exploration of deep-water bioherms dominated by the scleractinian corals Lophelia pertusa and Enallopsammia profunda along the east coast of Florida in ~400-800 m depth reveals an often dense and rich assemblage of small (~1-30 mm) epifauna on dead coral branches, which is often dominated by agglutinated astrorhizacean foraminifers accompanied by thecate and athecate hydroids, sponges, stylasterids, anemones and barnacles. The dominant agglutinated foraminifer is an arborescent form up to 15 mm tall, consisting of a basal tube that gives rise to branchlets of successively decreasing diameter and thickly coated with fine-grained material including coccoliths and diatom frustules. The large numbers of foraminifers generate an enormous adhesive, sediment-trapping surface area and may represent an important accelerated route for sediment deposition and bioherm growth relative to baffling of suspended sediment particles by the coral branches themselves. These foraminifers also occur on still living coral, suggesting that they may either contribute to coral death or invade stressed colonies. They may thus be responsible for or contribute to the small percent of living corals observed in many of these habitats. Other epifauna appear to colonize after the coral has died.

  8. Pigmentation and Spectral Absorbance Signatures in Deep-Water Corals from the Trondheimsfjord, Norway

    PubMed Central

    Elde, Anette C.; Pettersen, Ragnhild; Bruheim, Per; Järnegren, Johanna; Johnsen, Geir

    2012-01-01

    The pigmentation and corresponding in vivo and in vitro absorption characteristics in three different deep-water coral species: white and orange Lophelia pertusa, Paragorgia arborea and Primnoa resedaeformis, collected from the Trondheimsfjord are described. Pigments were isolated and characterized by High-Performance Liquid Chromatography (HPLC) analysis and High-Performance Liquid Chromatography Time-Of-Flight Mass Spectrometer (LC-TOF MS). The main carotenoids identified for all three coral species were astaxanthin and a canthaxanthin-like carotenoid. Soft tissue and skeleton of orange L. pertusa contained 2 times more astaxanthin g−1 wet weight compared to white L. pertusa. White and orange L. pertusa were characterized with in vivo absorbance peaks at 409 and 473 nm, respectively. In vivo absorbance maxima for P. arborea and P. resedaeformis was typically at 475 nm. The shapes of the absorbance spectra (400–700 nm) were species-specific, indicated by in vivo, in vitro and the corresponding difference spectra. The results may provide important chemotaxonomic information for pigment when bonded to their proteins in vivo, bio-prospecting, and for in situ identification, mapping and monitoring of corals. PMID:22822381

  9. Deep sea water improves exercise and inhibits oxidative stress in a physical fatigue mouse model

    PubMed Central

    FAN, HUIJIE; TAN, ZHANGBIN; HUA, YUE; HUANG, XIAOFANG; GAO, YITING; WU, YUTING; LIU, BIN; ZHOU, YINGCHUN

    2016-01-01

    Physical fatigue is extremely common and occurs daily, and is considered to be associated with oxidative stress. The diverse functions of deep sea water (DSW) have recently gained increasing attention. Previous studies have emphasized the anti-fatigue effect of DSW, but the intrinsic mechanism behind the effect remains to be elucidated. In the imprinting control region (ICR) mice model, DSW delayed the exhaustive swimming time. In addition, DSW decreased the area under the blood lactate (BLA) curve, which was associated with the area under the BLA curve of pre-swimming, post-swimming and post-rest. Furthermore, DSW reduced the basal levels of malondialdehyde and the post-swimming concentration of blood urea nitrogen, lactate dehydrogenase and creatine kinase after swimming, along with an increase in the normal level of antioxidant enzyme activity such as superoxide dismutase and glutathione peroxidase. However, no significant effect on body weight, hepatic glycogen and muscle glycogen was observed between any group. In conclusion, DSW can improve the athletic ability and alleviate physical fatigue of ICR mice. This effect is achieved by enhancing the antioxidant capacity. PMID:27284418

  10. Attenuated Effects of Deep-Sea Water on Hepatic Apoptosis in STZ-Induced Diabetic Rats.

    PubMed

    Hsu, Tsai-Ching; Chiu, Chun-Ching; Lin, Hsou-Lin; Kao, Tseng-Wei; Chen, Li-Jeng; Wu, Li-Yi; Huang, Chih-Yang; Tzang, Bor-Show

    2015-06-30

    Diabetes mellitus (DM) is a metabolic disorder and increasing evidences have indicated a connection between DM and hepatic abnormality. Deep-sea water (DSW) has been applied in many fields, especially in medicine; herein, we investigated the influence of DSW on hepatic apoptosis in streptozocin (STZ)-induced diabetes rats. Our experimental results firstly demonstrated the beneficial effects of 1×DSW, 2×DSW and 3×DSW in alleviating hepatic apoptosis in STZ-induced diabetic rats. We demonstrated that 1×DSW, 2×DSW and 3×DSW significantly suppressed the caspase-3 activity and TUNEL-positive cells in livers of STZ-induced diabetic rats. Significant reductions of both Fas-dependent and mitochondrial-dependent apoptotic molecules were also detected in livers of STZ-induced diabetic rats receiving DSW. Additionally, apoptotic signaling molecules such as phosphorylated IκB-α and NF-κB were significantly reduced in livers of DSW-treated STZ-induced diabetic rats. These findings indicate hepatic protective effects of DSW on DM and suggest DSW as a possible ingredient for health food. PMID:26014125

  11. On the difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Timmermann, R.; Schröder, M.; Hellmer, H. H.

    2014-12-01

    In the Amundsen Sea, warm Circumpolar Deep Water (CDW) intrudes onto the continental shelf and flows into the ice shelf cavities of the West Antarctic Ice Sheet, resulting in high basal melt rates. However, none of the high resolution global models resolving all the small ice shelves around Antarctica can reproduce a realistic CDW flow onto the Amundsen Sea continental shelf, and previous studies show simulated bottom potential temperature at the Pine Island Ice Shelf front of about -1.8 °C. In this study, using the Finite-Element Sea ice-ice shelf-Ocean Model (FESOM), we reproduce warm CDW intrusions onto the Amundsen Sea continental shelf and realistic melt rates of the ice shelves in West Antarctica. To investigate the importance of horizontal resolution, forcing, horizontal diffusivity, and the effect of grounded icebergs, eight sensitivity experiments are conducted. To simulate the CDW intrusion realistically, a horizontal resolution of about 5 km or smaller is required. The choice of forcing is also important and the cold bias in the NCEP/NCAR reanalysis over the eastern Amundsen Sea prevents warm CDW from intruding onto the continental shelf. On the other hand, the CDW intrusion is not highly sensitive to the strength of horizontal diffusion. The effect of grounded icebergs located off Bear Peninsula is minor, but may act as a buffer to an anomalously cold year.

  12. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    PubMed Central

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  13. Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea

    NASA Astrophysics Data System (ADS)

    Wakeham, Stuart G.; Lewis, Cynthia M.; Hopmans, Ellen C.; Schouten, Stefan; Sinninghe Damsté, Jaap S.

    2003-04-01

    We evaluate anaerobic oxidation of methane (AOM) in the Black Sea water column by determining distributions of archaea-specific glyceryl dialkyl glyceryl tetraethers (GDGTs) and 13C isotopic compositions of their constituent biphytanes in suspended particulate matter (SPM), sinking particulate matter collected in sediment traps, and surface sediments. We also determined isotopic compositions of fatty acids specific to sulfate-reducing bacteria to test for biomarker and isotopic evidence of a syntrophic relationship between archaea and sulfate-reducing bacteria in carrying out AOM. Bicyclic and tricyclic GDGTs and their constituent 13C-depleted monocyclic and bicyclic biphytanes (down to -67‰) indicative of archaea involved in AOM were present in SPM in the anoxic zone below 700 m depth. In contrast, GDGT-0 and crenarchaeol derived from planktonic crenarchaeota dominated the GDGT distributions in the oxic surface and shallow anoxic waters. Fatty acids indicative of sulfate-reducing bacteria (i.e., iso- and anteiso-C 15) were not strongly isotopically depleted (e.g., -32 to -25‰), although anteiso-C 15 was 5‰ more depleted in 13C than iso-C 15. Our results suggest that either AOM is carried out by archaea independent of sulfate-reducing bacteria or those sulfate-reducing bacteria involved in a syntrophy with methane-oxidizing archaea constitute a small enough fraction of the total sulfate-reducing bacterial community that an isotope depletion in their fatty acids is not readily detected. Sinking particulate material collected in sediment traps and the underlying sediments in the anoxic zone contained the biomarker and isotope signature of upper-water column archaea. AOM-specific GDGTs and 13C-depleted biphytanes characteristic of the SPM in the deep anoxic zone are not incorporated into sinking particles and are not efficiently transported to the sediments. This observation suggests that sediments may not always record AOM in overlying euxinic water columns and

  14. On triad nonlinear resonant interactions of deep water waves trapped by jet currents

    NASA Astrophysics Data System (ADS)

    Shrira, Victor; Slunyaev, Alexey

    2014-05-01

    We derive an asymptotic description of weakly nonlinear wave interactions between waves trapped by opposing jet currents by extending the asymptotic modal approach developed in Shrira & Slunyaev (2014). It is widely believed that to the leading order the nonlinear interactions between water waves in deep water are always quartic and potential. We show that for waves trapped on the jet currents it is not true: triad resonant interactions between trapped modes are always allowed. Moreover, the nonlinear evolution of the wave field is to the leading order determined by these triad interactions if the current is sufficiently strong or wave field nonlinearity is appropriately weak. To the leading order the corresponding interaction coefficients are controlled by the background vorticity due to the jet. More specifically, we consider waves upon a longitudinally uniform jet current; the current is assumed to be stationary and without vertical shear. The approximate separation of variables allows us to find the two-dimensional mode structure by means of one-dimensional boundary value problem (BVP) for wave Fourier harmonics along the current. The asymptotic weakly nonlinear theory taking into account quadratic nonlinearity for broad but not necessary weak currents is developed. The evolution equations for three interacting modes are written explicitly, the nonlinear interaction coefficients are computed. The three-wave interactions weaken when the current is weak. When the ratio of the current magnitude to wave celerity is of order of wave steepness the effects of 3-wave and 4-wave resonances appear at the same asymptotic order. These regimes, as well as the identified regimes where triad resonant interactions between trapped waves are dominant, lead to a qualitatively new wave dynamics which remains to be explored yet. V.I. Shrira, A.V. Slunyaev, Trapped waves on jet currents: asymptotic modal approach. J. Fluid Mech. 738, 65-104 (2014).

  15. Deep-water sponges (Porifera) from Bonaire and Klein Curaçao, Southern Caribbean.

    PubMed

    Van Soest, Rob W M; Meesters, Erik H W G; Becking, Leontine E

    2014-01-01

    Four submersible dives off the coast of Bonaire (Caribbean Netherlands) and Klein Curaçao (Curaçao) to depths of 99.5-242 m, covering lower mesophotic and upper dysphotic zones, yielded 52 sponge specimens belonging to 31 species. Among these we identified 13 species as new to science. These are Plakinastrella stinapa n. sp., Pachastrella pacoi n. sp., Characella pachastrelloides n. sp., Geodia curacaoensis n. sp., Caminus carmabi n. sp., Discodermia adhaerens n. sp., Clathria (Microciona) acarnoides n. sp., Antho (Acarnia) pellita n. sp., Parahigginsia strongylifera n. sp., Calyx magnoculata n. sp., Neopetrosia dutchi n. sp., Neopetrosia ovata n. sp. and Neopetrosia eurystomata n. sp. We also report an euretid hexactinellid, which belongs to the rare genus Verrucocoeloidea, recently described (2014) as V. liberatorii Reiswig & Dohrmann. The remaining 18 already known species are all illustrated by photos of the habit, either in situ or 'on deck', but only briefly characterized in an annotated table to confirm their occurrence in the Southern Caribbean. The habitat investigated-steep limestone rocks, likely representing Pleistocene fossil reefs--is similar to deep-water fossil reefs at Barbados of which the sponges were sampled and studied by Van Soest and Stentoft (1988). A comparison is made between the two localities, showing a high degree of similarity in sponge composition: 53% of the present Bonaire-Klein Curaçao species were also retrieved at Barbados. At the level of higher taxa (genera, families) Bonaire-Klein Curaçao shared approximately 80% of its lower mesophotic and upper dysphotic sponge fauna with Barbados, despite a distance between them of 1000 km, indicating high faunal homogeneity. We also preliminarily compared the shallow-water (euphotic) sponge fauna of Curaçao with the combined data available for the Barbados, Bonaire and Klein Curaçao mesophotic and upper dysphotic sponges, which resulted in the conclusion that the two faunas show only

  16. New glass sponges (Porifera: Hexactinellida) from deep waters of the central Aleutian Islands, Alaska.

    PubMed

    Reiswig, Henry M; Stone, Robert P

    2013-01-01

    Hexactinellida from deep-water communities of the central Aleutian Islands, Alaska, are described. They were mostly collected by the remotely operated vehicle 'Jason II' from 494–2311 m depths during a 2004 RV 'Roger Revelle' expedition, but one shallow-water species collected with a shrimp trawl from 155 m in the same area is included. The excellent condition of the ROV-collected specimens enabled valuable redescription of some species previously known only from badly damaged specimens. New taxa include one new genus and eight new species in five families. Farreidae consist of two new species, Farrea aleutiana and F. aspondyla. Euretidae consists of only Pinulasma fistulosum n. gen., n. sp. Tretodictyidae include only Tretodictyum amchitkensis n. sp. Euplectellidae consists of only the widespread species Regadrella okinoseana Ijima, reported here over 3,700 km from its closest previously known occurrence. The most diverse family, Rossellidae, consists of Aulosaccus ijimai (Schulze), Aulosaccus schulzei Ijima, Bathydorus sp. (young stage not determinable to species), Caulophacus (Caulophacus) adakensis n. sp., Acanthascus koltuni n. sp., Staurocalyptus psilosus n. sp., Staurocalyptus tylotus n. sp. and Rhabdocalyptus mirabilis Schulze. We present argument for reinstatement of the abolished rossellid subfamily Acanthascinae and return of the subgenera  Staurocalyptus Ijima and Rhabdocalyptus Schulze to their previous generic status. These fauna provides important complexity to the hard substrate communities that likely serve as nursery areas for the young stages of commercially important fish and crab species, refuge from predation for both young and adult stages, and also as a focal source of prey for juvenile and adult stages of those same species. PMID:25325089

  17. Fracture zones in the Mid Atlantic Ridge lead to alterations in prokaryotic and viral parameters in deep-water masses.

    PubMed

    Muck, Simone; Griessler, Thomas; Köstner, Nicole; Klimiuk, Adam; Winter, Christian; Herndl, Gerhard J

    2014-01-01

    We hypothesized that mixing zones of deep-water masses act as ecotones leading to alterations in microbial diversity and activity due to changes in the biogeochemical characteristics of these boundary systems. We determined the changes in prokaryotic and viral abundance and production in the Vema Fracture Zone (VFZ) of the subtropical North Atlantic Ocean, where North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) are funneled through this narrow canyon and therefore, are subjected to intense vertical mixing. Consequently, salinity, potential temperature, oxygen, PO4, SiO4, NO3 were altered in the NADW inside the VFZ as compared to the NADW outside of the VFZ. Also, viral abundance, lytic viral production (VP) and the virus-to-prokaryote ratio (VPR) were elevated in the NADW in the VFZ as compared to the NADW outside the VFZ. In contrast to lytic VP, lysogenic VP and both the frequency of lytically (FIC) and lysogenically infected cells (FLC) did not significantly differ between in- and outside the VFZ. Generally, FIC was higher than FLC throughout the water column. Prokaryotic (determined by T-RFLP) and viral (determined by RAPD-PCR) community composition was depth-stratified inside and outside the VFZ. The viral community was more modified both with depth and over distance inside the VFZ as compared to the northern section and to the prokaryotic communities. However, no clusters of prokaryotic and viral communities characteristic for the VFZ were identified. Based on our observations, we conclude that turbulent mixing of the deep water masses impacts not only the physico-chemical parameters of the mixing zone but also the interaction between viruses and prokaryotes due to a stimulation of the overall activity. However, only minor effects of deep water mixing were observed on the community composition of the dominant prokaryotes and viruses. PMID:24917857

  18. Cessation and partial reversal of deep water freshening in the northern North Atlantic: observation-based estimates and attribution

    NASA Astrophysics Data System (ADS)

    Sarafanov, Artem; Mercier, Herlé; Falina, Anastasia; Sokov, Alexey; Lherminier, Pascale

    2010-01-01

    Recent decadal salinity changes in the Greenland-Scotland overflow-derived deep waters are quantified using CTD data from repeated hydrographic sections in the Irminger Sea. The Denmark Strait Overflow Water salinity record shows the absence of any net change over the 1980s-2000s changes in the Iceland-Scotland Overflow Water (ISOW) and in the deep water column (σ0 > 27.82), enclosing both overflows, show a distinct freshening reversal in the early 2000s. The observed freshening reversal is a lagged consequence of the persistent ISOW salinification that occurred upstream, in the Iceland Basin, after 1996 in response to salinification of the northeast Atlantic waters entrained into the overflow. The entrainment salinity increase is explained by the earlier documented North Atlantic Oscillation (NAO)-induced contraction of the subpolar gyre and corresponding northwestward advance of subtropical waters that followed the NAO decline in the mid-1990s and continued through the mid-2000s. Remarkably, the ISOW freshening reversal is not associated with changes in the overflow water salinity. This suggests that changes in the NAO-dependent relative contributions of subpolar and subtropical waters to the entrainment south of the Iceland-Scotland Ridge may dominate over changes in the Nordic Seas freshwater balance with respect to their effect on the ISOW salinity.

  19. Gravel admix, vegetation, and soil water interactions in protective barriers: Experimental design, construction, and initial conditions

    SciTech Connect

    Waugh, W.J.

    1989-05-01

    The purpose of this study is to measure the interactive effects of gravel admix and greater precipitation on soil water storage and plant abundance. The study is one of many tasks in the Protective Barrier Development Program for the disposal of Hanford defense waste. A factorial field-plot experiment was set up at the site selected as the borrow area for barrier topsoil. Gravel admix, vegetation, and enhanced precipitation treatments were randomly assigned to the plots using a split-split plot design structure. Changes in soil water storage and plant cover were monitored using neutron probe and point intercept methods, respectively. The first-year results suggest that water extraction by plants will offset gravel-caused increases in soil water storage. Near-surface soil water contents were much lower in graveled plots with plants than in nongraveled plots without plants. Large inherent variability in deep soil water storage masked any effects gravel may have had on water content below the root zone. In the future, this source of variation will be removed by differencing monthly data series and testing for changes in soil water storage. Tests of the effects of greater precipitation on soil water storage were inconclusive. A telling test will be possible in the spring of 1988, following the first wet season during which normal precipitation is doubled. 26 refs., 9 figs., 9 tabs.

  20. Deep-water chaunacid and lophiid anglerfishes (Pisces: Lophiiformes) off the south-eastern United States

    USGS Publications Warehouse

    Caruso, John H.; Ross, S.W.; Sulak, K.J.; Sedberry, G.R.

    2007-01-01

    Recent research cruises to deep (80-910 m) reef habitats off the south-eastern U.S. and in the northern Gulf of Mexico have provided new information on the diagnostic characteristics, behaviours, colour patterns in life, bottom associations, distributions and maximum sizes of species of the anglerfish genera Chaunax, Lophiodes and Sladenia. Chaunax stigmaeus occurred much further south than previously known (Blake Plateau off South Carolina), and all C. stigmaeus observed were found associated with dense beds of dead coral (Lophelia pertusa) rubble or on broken hard bottom. In contrast, Chaunax suttkusi was found on soft bottoms. Chaunax stigmaeus and C. suttkusi appear to be sympatric over a major portion of their ranges. Because knowledge of pigmentation in live or freshly caught Chaunax is critical to distinguish some members of the genus, changes in the colouration of C. suttkusi were noted and documented photographically immediately after death and after fixation. The yellow spots found on some, but not all specimens, temporarily disappeared completely after death, but they reappeared after fixation, slowly disappearing thereafter along with other carotenoid pigments. Lophiodes beroe and Lophiodes monodi were collected for the first time off the Atlantic coast of the U.S., being previously known only from the Gulf of Mexico, Caribbean Sea and the northern coast of South America. For both species (L. beroe and L. monodi), the collections included the two largest known representatives of the species (400 and 325 mm standard length, respectively). Lophiodes beroe commonly occurred on L. pertusa rubble, and seemed to prefer this habitat. Occupying such a habitat that is deep and difficult to sample probably explains how this common species escaped detection. Only a single L. monodi was collected or observed, so this species appears to be uncommon in this geographic area or at least so on coral rubble habitat. Detailed aspects of the colour patterns of both species

  1. Deep-water chaunacid and lophiid anglerfishes (Pisces: Lophiiformes) off the Southeastern United States

    USGS Publications Warehouse

    Caruso, John H.; Ross, S.W.; Sulak, Kenneth J.; Sedberry, George R.

    2007-01-01

    Recent research cruises to deep (80–910 m) reef habitats off the south-eastern U.S. and in the northern Gulf of Mexico have provided new information on the diagnostic characteristics, behaviours, colour patterns in life, bottom associations, distributions and maximum sizes of species of the anglerfish genera Chaunax, Lophiodes and Sladenia. Chaunax stigmaeus occurred much further south than previously known (Blake Plateau off South Carolina), and all C. stigmaeusobserved were found associated with dense beds of dead coral (Lophelia pertusa) rubble or on broken hard bottom. In contrast, Chaunax suttkusi was found on soft bottoms. Chaunax stigmaeusand C. suttkusi appear to be sympatric over a major portion of their ranges. Because knowledge of pigmentation in live or freshly caught Chaunax is critical to distinguish some members of the genus, changes in the colouration of C. suttkusi were noted and documented photographically immediately after death and after fixation. The yellow spots found on some, but not all specimens, temporarily disappeared completely after death, but they reappeared after fixation, slowly disappearing thereafter along with other carotenoid pigments. Lophiodes beroe andLophiodes monodi were collected for the first time off the Atlantic coast of the U.S., being previously known only from the Gulf of Mexico, Caribbean Sea and the northern coast of South America. For both species (L. beroe and L. monodi), the collections included the two largest known representatives of the species (400 and 325 mm standard length, respectively). Lophiodes beroecommonly occurred on L. pertusa rubble, and seemed to prefer this habitat. Occupying such a habitat that is deep and difficult to sample probably explains how this common species escaped detection. Only a single L. monodi was collected or observed, so this species appears to be uncommon in this geographic area or at least so on coral rubble habitat. Detailed aspects of the colour

  2. Constructed wetlands for water pollution management of aquaculture farms conducting earthen pond culture.

    PubMed

    Lin, Ying-Feng; Jing, Shuh-Ren; Lee, Der-Yuan; Chang, Yih-Feng; Sui, Hsuan-Yu

    2010-08-01

    This study established farm-scale constructed wetlands integrated to shrimp ponds, using existing earthern pond areas, with a wetland-to-pond ratio of only 0.086 for shrimp culture. The constructed wetlands were used as practice for aquaculture water and wastewater treatment, to regulate the water quality of shrimp ponds and manage pollution from pond effluents. The results of water quality monitoring for influent and effluent showed that constructed wetlands significantly reduced total suspended solids (59 to 72%), turbidity (55 to 65%), chlorophyll a (58 to 72%), 5-day biochemical oxygen demand (29 to 40%), and chemical oxygen demand (13 to 24%) from pond water. The wetland treatment sufficiently regulated water quality of the recirculating shrimp pond, which was significantly (p < 0.05) better than that in a control shrimp pond, without the connection of constructed wetlands. Furthermore, the wetland-treated effluent satisfied the national effluent standards for aquaculture farms (R.O.C. Environmental Protection Administration, 2007). Accordingly, wetland treatment applications were proposed to implement the best management practices to reduce pollution from aquaculture farms in Taiwan. PMID:20853755

  3. Bacterial biodiversity in deep-sea sediments from two regions of contrasting surface water productivity near the Crozet Islands, Southern Ocean

    NASA Astrophysics Data System (ADS)

    Jamieson, R. E.; Heywood, J. L.; Rogers, A. D.; Billett, D. S. M.; Pearce, D. A.

    2013-05-01

    The relationship between surface-derived particulate organic matter (POM) and deep-sea sediment bacterial abundance, community structure and composition was investigated in two different sediment layers from two zones of contrasting surface water productivity in the southern Indian Ocean. Bacterial sediment communities from high chlorophyll (HC) and low chlorophyll (LC) sites were characterized and compared using direct counts, clone library construction, denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). Of the 1566 bacterial clones generated from the sediment communities, 1010 matched published 16S rDNA sequences at ≥97% identity. A comparison of surface sediment clone libraries showed that at least one third of all identified operational taxonomic units (OTUs) were common to both HC and LC sites. DGGE community profiles were consistent (82% similar) and evenness of the major phylogenetic groups was 96% similar between surface sediment communities, where gamma- and alpha-Proteobacteria were dominant. Sediment communities shared similarly high biodiversity, while species richness was marginally higher at the LC site. Intra-site shifts in bacterial abundance and composition were observed with increasing sediment depth. Despite the differences in organic matter input between sites, the consistency observed between HC and LC sediment communities pointed to (1) the extent of remineralisation by mega and meio-fauna as a potential factor affecting the quantity and quality of POM available to sediment bacteria, (2) sampling during the early 'nutrient assimilation phase' of the bacterial response to freshly deposited POM or (3) that the action of bacteria in the water column could affect the quantity and quality of POM available to sediment bacteria. Although factors other than these may explain the observed similarities, this first comparison of such deep-sea sediment communities in relation to surface-derived productivity may

  4. Consistent nonlinear deterministic and stochastic evolution equations for deep to shallow water wave shoaling

    NASA Astrophysics Data System (ADS)

    Vrecica, Teodor; Toledo, Yaron

    2015-04-01

    oscillating terms, but as the water depth becomes shallow they change to an exponential growth (or decay) behavior. Hence, the formerly used localization technique cannot be justified for the shallow water region. A new formulation is devised for the localization in shallow water, it approximates the nonlinear non-local shoaling coefficient in shallow water and matches it to the one fitting to the intermediate water region. This allows the model behavior to be consistent from deep water to intermediate depths and up to the shallow water regime. Various simulations of the model were performed for the cases of intermediate, and shallow water, overall the model was found to give good results in both shallow and intermediate water depths. The essential difference between the shallow and intermediate nonlinear shoaling physics is explained via the dominating class III Bragg resonances phenomenon. By inspecting the resonance conditions and the nature of the dispersion relation, it is shown that unlike in the intermediate water regime, in shallow water depths the formation of resonant interactions is possible without taking into account bottom components. References Agnon, Y. & Sheremet, A. 1997 Stochastic nonlinear shoaling of directional spectra. J. Fluid Mech. 345, 79-99. Benney, D. J. & Saffman, P. G. 1966 Nonlinear interactions of random waves. Proc. R. Soc. Lond. A 289, 301-321. Bredmose, H., Agnon, Y., Madsen, P.A. & Schaffer, H.A. 2005 Wave transformation models with exact second-order transfer. European J. of Mech. - B/Fluids 24 (6), 659-682. Eldeberky, Y. & Madsen, P. A. 1999 Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves. Coastal Engineering 38, 1-24. Kaihatu, J. M. & Kirby, J. T. 1995 Nonlinear transformation of waves in infinite water depth. Phys. Fluids 8, 175-188. Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10, 906-914. Stiassnie, M. & Drimer, N. 2006 Prediction of long forcing waves

  5. Lateral supply and downward export of particulate matter from upper waters to the seafloor in the deep eastern Fram Strait

    NASA Astrophysics Data System (ADS)

    Lalande, Catherine; Nöthig, Eva-Maria; Bauerfeind, Eduard; Hardge, Kristin; Beszczynska-Möller, Agnieszka; Fahl, Kirsten

    2016-08-01

    Time-series sediment traps were deployed at 4 depths in the eastern Fram Strait from July 2007 to June 2008 to investigate variations in the magnitude and composition of the sinking particulate matter from upper waters to the seafloor. Sediment traps were deployed at 196 m in the Atlantic Water layer, at 1296 and 2364 m in the intermediate and deep waters, and at 2430 m on a benthic lander in the near-bottom layer. Fluxes of total particulate matter, particulate organic carbon, particulate organic nitrogen, biogenic matter, lithogenic matter, biogenic particulate silica, calcium carbonate, dominant phytoplankton cells, and zooplankton fecal pellets increased with depth, indicating the importance of lateral advection on fluxes in the deep Fram Strait. The lateral supply of particulate matter was further supported by the constant fluxes of biomarkers such as brassicasterol, alkenones, campesterol, β-sitosterol, and IP25 at all depths sampled. However, enhanced fluxes of diatoms and appendicularian fecal pellets from the upper waters to the seafloor in the presence of ice during spring indicated the rapid export (15-35 days) of locally-produced large particles that likely contributed most of the food supply to the benthic communities. These results show that lateral supply and downward fluxes are both important processes influencing the transport of particulate matter to the seafloor in the deep eastern Fram Strait, and that particulate matter size dictates the prevailing sinking process.

  6. High water level impedes the adaptation of Polygonum hydropiper to deep burial: Responses of biomass allocation and root morphology

    PubMed Central

    Pan, Ying; Xie, Yong H.; Deng, Zheng M.; Tang, Yue; Pan, Dong D.

    2014-01-01

    Many studies have investigated the individual effects of sedimentation or inundation on the performance of wetland plants, but few have examined the combined influence of these processes. Wetland plants might show greater morphological plasticity in response to inundation than to sedimentation when these processes occur simultaneously since inundation can negate the negative effects of burial on plant growth. Here, we evaluate this hypothesis by assessing growth of the emergent macrophyte Polygonum hydropiper under flooding (0 and 40 cm) and sedimentation (0, 5, and 10 cm), separately and in combination. Deep burial and high water level each led to low oxidation-reduction potential, biomass (except for 5-cm burial), and growth of thick, short roots. These characteristics were generally more significant under high water level than under deep burial conditions. More biomass was allocated to stems in the deep burial treatments, but more to leaves in the high water level treatments. Additionally, biomass accumulation was lower and leaf mass ratio was higher in the 40-cm water level + 10-cm burial depth treatment than both separate effects. Our data indicate that inundation plays a more important role than sedimentation in determining plant morphology, suggesting hierarchical effects of environmental stressors on plant growth. PMID:25002329

  7. Design, construction, and operation of an actively controlled deep-sea CO2 enrichment experiment using a cabled observatory system

    NASA Astrophysics Data System (ADS)

    Kirkwood, William J.; Walz, Peter M.; Peltzer, Edward T.; Barry, James P.; Herlien, Robert A.; Headley, Kent L.; Kecy, Chad; Matsumoto, George I.; Maughan, Thom; O'Reilly, Thomas C.; Salamy, Karen A.; Shane, Farley; Brewer, Peter G.

    2015-03-01

    We describe the design, testing, and performance of an actively controlled deep-sea Free Ocean CO2 Enrichment (dp-FOCE) system for the execution of seafloor experiments relating to the impacts of ocean acidification on natural ecosystems. We used the 880 m deep MARS (Monterey Accelerated Research System) cable site offshore Monterey Bay, California for this work, but the Free Ocean CO2 Enrichment (FOCE) system concept is designed to be scalable and can be modified to be used in a wide variety of ocean depths and locations. The main frame is based on a flume design with active thruster control of flow and a central experimental chamber. The unit was allowed to free fall to the seafloor and connected to the cable node by remotely operated vehicle (ROV) manipulation. For operation at depth we designed a liquid CO2 containment reservoir which provided the CO2 enriched working fluid as ambient seawater was drawn through the reservoir beneath the more buoyant liquid CO2. Our design allowed for the significant lag time associated with the hydration of the dissolved CO2 molecule, resulting in an e-folding time, τ, of 97 s between fluid injection and pH sensing at the mean local T=4.31±0.14 °C and pHT of 7.625±0.011. The system maintained a pH offset of ~0.4 pH units compared to the surrounding ocean for a period of ~1 month. The unit allows for the emplacement of deep-sea animals for testing. We describe the components and software used for system operation and show examples of each. The demonstrated ability for active control of experimental systems opens new possibilities for deep-sea biogeochemical perturbation experiments of several kinds and our developments in open source control systems software and hardware described here are applicable to this end.

  8. Global Transition Zone Anisotropy and Consequences for Mantle Flow and Earth's Deep Water Cycle

    NASA Astrophysics Data System (ADS)

    Beghein, C.; Yuan, K.

    2011-12-01

    The transition zone has long been at the center of the debate between multi- and single-layered convection models that directly relate to heat transport and chemical mixing throughout the mantle. It has also been suggested that the transition zone is a reservoir that collects water transported by subduction of the lithosphere into the mantle. Since water lowers mantle minerals density and viscosity, thereby modifying their rheology and melting behavior, it likely affects global mantle dynamics and the history of plate tectonics. Constraining mantle flow is therefore important for our understanding of Earth's thermochemical evolution and deep water cycle. Because it can result from deformation by dislocation creep during convection, seismic anisotropy can help us model mantle flow. It is relatively well constrained in the uppermost mantle, but its presence in the transition zone is still debated. Its detection below 250 km depth has been challenging to date because of the poor vertical resolution of commonly used datasets. In this study, we used global Love wave overtone phase velocity maps, which are sensitive to structure down to much larger depths than fundamental modes alone, and have greater depth resolution than shear wave-splitting data. This enabled us to obtain a first 3-D model of azimuthal anisotropy for the upper 800km of the mantle. We inverted the 2Ψ terms of anisotropic phase velocity maps [Visser, et al., 2008] for the first five Love wave overtones between 35s and 174s period. The resulting model shows that the average anisotropy amplitude for vertically polarized shear waves displays two main stable peaks: one in the uppermost mantle and, most remarkably, one in the lower transition zone. F-tests showed that the presence of 2Ψ anisotropy in the transition zone is required to improve the third, fourth, and fifth overtones fit. Because of parameter trade-offs, however, we cannot exclude that the anisotropy is located in the upper transition zone as

  9. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  10. WATER PUMP HOUSE, TRA619. VIEW OF PUMP HOUSE UNDER CONSTRUCTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PUMP HOUSE, TRA-619. VIEW OF PUMP HOUSE UNDER CONSTRUCTION. CAMERA IS ON WATER TOWER AND FACES NORTHWEST. TWO RESERVOIR TANKS ALREADY ARE COMPLETED. NOTE EXCAVATIONS FOR PIPE LINES EXITING FROM BELOW GROUND ON SOUTH SIDE OF PUMP HOUSE. BUILDING AT LOWER RIGHT IS ELECTRICAL CONTROL BUILDING, TRA-623. SWITCHYARD IS IN LOWER RIGHT CORNER OF VIEW. INL NEGATIVE NO. 2753. Unknown Photographer, ca. 6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Southern Ocean intermediate water pH information provided by modern and fossil scleraxonian deep-sea corals

    NASA Astrophysics Data System (ADS)

    Gutjahr, M.; Vance, D.; Foster, G. L.; Hillenbrand, C.; Kuhn, G.

    2010-12-01

    There is a great deal of current interest in the chemistry of the deep glacial Southern Ocean, and the degree to which it communicated with the surface ocean and atmosphere. Recent findings that include high surface water radiocarbon ages [1] and renewed upwelling during the deglacial [2], suggest a re-organisation in Southern Ocean circulation that led to the demise of a deep water mass rich in dissolved inorganic carbon (DIC), leading to its renewed equilibration with the atmosphere and the deglacial rise in atmospheric CO2. However, conclusive evidence for higher Southern Ocean deep water DIC during the glacial is scarce, largely due to the lack of suitable substrates for recording it. Boron isotopic compositions measured in deep marine organisms may help to provide records of intermediate water pH, and hence DIC changes [3]. We will present boron isotope compositions of a selection of radiocarbon-dated, calcitic, deep-sea octocorals from the Amundsen Sea sector of the Southern Ocean (˜123°W, ˜69°S, 2500 m to 1430 m water depth), with the aim of resolving deglacial intermediate water pH changes. Since boron isotopic studies have not been carried out on these types of octocorals before, we will first present the δ11B distribution within a modern sample in order to examine biological fractionation that may potentially compromise the coral δ11B (cf. [4, 5]). Contrary to previously employed scleractinia [6], the corals analysed here appear to be internally homogenous and have only slightly elevated δ11B compared to that of ambient intermediate water borate ion. Moreover, modern and early Holocene coral δ11B display fairly constant compositions, whereas deglacial coral δ11B are higher. These boron isotopic changes are accompanied by corresponding deglacial changes in the coral Nd isotopic composition (expressed in ɛNd), which has been determined on the same specimens. Together, the striking co-variation between the deep-water coral δ11B and ɛNd suggest

  12. Characterization of a deep-sea sediment metagenomic clone that produces water-soluble melanin in Escherichia coli.

    PubMed

    Huang, Yali; Lai, Xintian; He, Xiaocui; Cao, Lixiang; Zeng, Zhirui; Zhang, Jiong; Zhou, Shining

    2009-01-01

    To access to the microbial genetic resources of deep-sea sediment by a culture-independent approach, the sediment DNA was extracted and cloned into fosmid vector (pCC1FOS) generating a library of 39,600 clones with inserts of 24-45 kb. The clone fss6 producing red-brown pigment was isolated and characterized. The pigment was identified as melanin according to its physico-chemical characteristics. Subcloning and sequences analyses of fss6 demonstrated that one open reading frame (ORF2) was responsible for the pigment production. The deduced protein from ORF2 revealed significant amino acid similarity to the 4-hydroxyphenylpyruvate dioxygenase (HPPD) from deep-sea bacteria Idiomarina loihiensis. Further study demonstrated that the production of melanin was correlated with homogentistic acid (HGA). The p-hydroxyphenylpyruvate produced by the Escherichia coli host was converted to HGA through the oxidation reaction of introduced HPPD. The results demonstrate that expression of DNA extracted directly from the environment might generate applicable microbial gene products. The construction and analysis of the metagenomic library from deep-sea sediment contributed to our understanding for the reservoir of unexploited deep-sea microorganisms. PMID:18648877

  13. Phytoremediation of Water Using Phragmites karka and Veteveria nigritana in Constructed Wetland.

    PubMed

    Badejo, Adedayo A; Sridhar, Mynepalli K C; Coker, Adewale O; Ndambuki, Julius M; Kupolati, Williams K

    2015-01-01

    Constructed wetland is an innovative and emerging ecological technology for wastewater treatment. This study was conducted to investigate the effectiveness of a Vegetated Submerged Bed Constructed Wetland (VSBCW) for removal of heavy metals from industrial wastewater in a steel manufacturing company. A pilot Effluent Treatment Plant (ETP) consisting of equalization basin, two VSBCW basins and a storage tank was constructed. The VSBCW was constructed using 10-30 mm round granite for the different zones. This was overlaid by 200 mm deep granite and 150 mm washed sand with Phragmites karka, Vetiveria nigritana and Cana lilies as macrophytes. Irrigation of macrophytes using effluent from the industry was done after 3 months of planting and ETP monitored. Industrial wastewater samples were collected and analyzed for heavy metals such as zinc (Zn), lead (Pb), iron (Fe), manganese (Mn), magnesium (Mg) and chromium (Cr) to know the treatment efficiency of the ETP. Results indicated that the removal efficiencies of the VSBCW for Pb, Mg and Cr were 15.4%, 79.7% and 97.9% respectively. Fe and Mn were seen to increase by 1.8% and 33% respectively. The ETP using locally available macrophytes is effective in the phytoremediation of heavy metals, particularly Cr from the wastewater. PMID:26151537

  14. Stimulatory Effects of Balanced Deep Sea Water on Mitochondrial Biogenesis and Function.

    PubMed

    Ha, Byung Geun; Park, Jung-Eun; Cho, Hyun-Jung; Shon, Yun Hee

    2015-01-01

    The worldwide prevalence of metabolic diseases, including obesity and diabetes, is increasing. Mitochondrial dysfunction is recognized as a core feature of these diseases. Emerging evidence also suggests that defects in mitochondrial biogenesis, number, morphology, fusion, and fission, contribute to the development and progression of metabolic diseases. Our previous studies revealed that balanced deep-sea water (BDSW) has potential as a treatment for diabetes and obesity. In this study, we aimed to investigate the mechanism by which BDSW regulates diabetes and obesity by studying its effects on mitochondrial metabolism. To determine whether BDSW regulates mitochondrial biogenesis and function, we investigated its effects on mitochondrial DNA (mtDNA) content, mitochondrial enzyme activity, and the expression of transcription factors and mitochondria specific genes, as well as on the phosphorylation of signaling molecules associated with mitochondria biogenesis and its function in C2C12 myotubes. BDSW increased mitochondrial biogenesis in a time and dose-dependent manner. Quantitative real-time PCR revealed that BDSW enhances gene expression of PGC-1α, NRF1, and TFAM for mitochondrial transcription; MFN1/2 and DRP1 for mitochondrial fusion; OPA1 for mitochondrial fission; TOMM40 and TIMM44 for mitochondrial protein import; CPT-1α and MCAD for fatty acid oxidation; CYTC for oxidative phosphorylation. Upregulation of these genes was validated by increased mitochondria staining, CS activity, CytC oxidase activity, NAD+ to NADH ratio, and the phosphorylation of signaling molecules such as AMPK and SIRT1. Moreover, drinking BDSW remarkably improved mtDNA content in the muscles of HFD-induced obese mice. Taken together, these results suggest that the stimulatory effect of BDSW on mitochondrial biogenesis and function may provide further insights into the regulatory mechanism of BDSW-induced anti-diabetic and anti-obesity action. PMID:26068191

  15. Changes in the deep-water benthos of eastern Lake Erie between 1979 and 1993

    SciTech Connect

    Dermott, R.; Kerec, D.

    1995-06-01

    In order to examine changes of the benthic community and benthic biomass as a result of mussel colonization, a survey of the deep-water benthic fauna in eastern Lake Erie was repeated in 1993 using the same sites and methods as in a 1979 survey. During 1979, the community beyond 30 m was dominated by oligochaete worms and the burrowing amphipod Diporeia, which represented 50 and 40% of the total benthic biomass respectively. By 1993, quagga mussels (Dreissena bugensis) formed over 90% of the benthic biomass. Mussels were present at all 13 sites. Densities of individuals >2 mm in length averaged 3,241 mussels m{sup -2}. Of these mussels, 97% were quagga mussels. Total density of all sizes retained on a 180 {mu}m sieve averaged 34,800 mussels m{sup -2} but total biomass decreased from 1.58 to 0.98 g m{sup -2}. The density of the amphipod Diporeia was reduced from 1,844 in 1979 to 218 m{sup -2} in 1993. While present at all sites during 1979, Diporeia remained common only at two sites and were absent at 8 of the 13 sites in 1993. The native fingernail clams, Pisidium spp., were reduced from 327 to 82 m{sup -2}. No significant reduction occurred in the worm and chironomid populations, however the dry biomass of the chironomids was reduced from 0.07 to 0.0008 g m{sup -2}. These reductions may be due to competition with the mussels for freshly settling algae. The meiofauna, which included small nematodes, ostracods, and harpacticoids retained on a 180 {mu}m sieve, all increased in density. Perhaps they benefited from an increase in the detritus deposited as pseudofeces around the mussels.

  16. Logarithmic velocity structure in the deep hypolimnetic waters of Lake Michigan

    NASA Astrophysics Data System (ADS)

    Troy, Cary; Cannon, David; Liao, Qian; Bootsma, Harvey

    2016-01-01

    The characteristics of the bottom boundary layer are reported from a Lake Michigan field study carried out in deep hypolimnetic waters (55 m depth) during the stratified period (June-September 2012). The sandy substrate at the measurement site was densely covered with invasive quagga mussels (mean size: 1.6 cm; mean density: 10,000 mussels m-2). The measurements reveal a sluggish, compact bottom boundary layer, with flow speeds at 1 mab less than 5 cm s-1 for most of the period, and a dominance of subinertial energy. A downwelling event caused the largest currents observed during the deployment (10 cm s-1 at 1 mab) and a logarithmic layer thickness of 15 m. In spite of the weak flow, logarithmic profile fitting carried out on high-resolution, near-bed velocity profiles show consistent logarithmic structure (90% of profiles). Flow was dominated by subinertial energy but strong modified by near-inertial waves. Fitted drag coefficients and roughness values are = 0.004 and = 0.12 cm, respectively. These values increase with decreasing flow speed, but approach canonical values for 1 mab flow speeds exceeding 4 cm s-1. The estimated vertical extent of the logarithmic region was compact, with a mean value of 1.2 m and temporal variation that is reasonably described by Ekman scaling, 0.07 /, and the estimated overall Ekman layer thickness was generally less than 10 m. Near-bed dissipation rates inferred from the law of the wall were 10-8-10-7 W kg-1 and turbulent diffusivities were 10-4-10-3 m2s-1.

  17. Source rock in the Lower Tertiary and Cretaceous, deep-water Gulf of Mexico

    SciTech Connect

    Wagner, B.E.; Sofer, Z.; Claxton, B.L.

    1994-09-01

    Amoco drilled three wells in the deep-water Gulf of Mexico in 1993. One well, in Mississippi Canyon Block 84 (W.D. 5200 ft), drilled a structural feature. The well penetrated Cretaceous section and crossed the middle Cenomanian unconformity. Six sidewall cores from 14,230-15,200 ft (subsea) contained TOC values from 2.6 to 5.2% with hydrogen indices front 360 to 543 ppm in lower Tertiary and Cretaceous shales. All six cores were thermally immature, for oil generation, based on biomarker ratios and vitrinite reflectance measurements. Organic extracts from cores in the Cretaceous had biomarker characteristics similar to oil reservoired in the Miocene. The oil was probably generated from a similar, but more mature, source rock. The high structural position of the well prevented the lower Tertiary and Upper Cretaceous section from entering the oil window at this location. There are over 2000 ft of structural relief and an additional 6000-8000 ft of Lower Cretaceous section below the level penetrated by the well. It is probable that an equivalent section off structure is in the oil window. Prior to drilling, estimates of expected thermal maturities and temperatures were made using {sub BASINMOD}, a hydrocarbon generation/expulsion modeling package. The model predicted higher well temperatures (e,g., 225{degrees}F vs. 192{degrees}F) and lower vitrinite maturity (0.44% vs. 0.64%) than encountered in the well. Vitrinite reflectance equivalents of 0.41% and 0.43% were calculated from biomarker ratios of the Cretaceous core extracts, matching the {sub BASINMOD} predicted value of 0.44%.

  18. Turbidite systems in deep-water basin margins classified by grain size and feeder system

    SciTech Connect

    Reading, H.G. ); Richards, M. )

    1994-05-01

    Depositional system in deep-water basin margins can be classified on the basis of grain size and feeder system into 12 classes: mud-rich, mud/sand-rich, sand-rich, and gravel-rich [open quotes]point-source submarine fans,[close quotes] mud-rich, mud/sand-rich, sand-rich, and gravel-rich [open quotes]multiple-source submarine ramps;[close quotes] and mud-rich, mud/sand-rich, sand-rich, and gravel-rich [open quotes]linear-source slope aprons.[close quotes] The size and stability of channels and the organization of the depositional sequences decreases toward a linear source as does the length:width ratio of the system. As grain size increases, so does slope gradient, impersistence of channel systems, and tendency for channels to migrate. As grain size diminishes, there is an increase in the size of the source area, the size of the depositional system, the downcurrent length, the persistence and size of flows, fan channels, channel-levee systems, and in the tendency to meander and for major slumps and sheet sands to reach the lower fan and basin plan. The exact positioning of any one depositional system within the scheme cannot always be precise and the position may be altered by changes in tectonic, climate, supply, and sea level. The models derived from each system are sufficiently different to significantly affect the nature of petroleum prospectivity and reservoir pattern. Understanding and recognizing this variability is crucial to all elements of the exploration-production chain. In exploration, initial evaluations of prospectivity and commerciality rely on the accurate stratigraphic prediction of reservoir facies, architecture, and trapping styles. For field appraisal and reservoir development, a similar appreciation of variability aids reservoir description by capturing the distribution and architecture of reservoir and nonreservoir facies and their impact on reservoir delineation, reservoir behavior, and production performance. 161 refs., 19 figs., 4 tabs.

  19. Cleavage of a Gulf of Mexico Loop Current eddy by a deep water cyclone

    NASA Astrophysics Data System (ADS)

    Biggs, D. C.; Fargion, G. S.; Hamilton, P.; Leben, R. R.

    1996-09-01

    Eddy Triton, an anticyclonic eddy shed by the Loop Current in late June 1991, drifted SW across the central Gulf of Mexico in the first 6 months of 1992, along the ``southern'' of the three characteristic drift paths described by Vukovich and Crissman [1986] from their analyses of 13 years of advanced very high resolution radiometer sea surface temperature data. An expendable bathythermograph (XBT) and conductivity-temperature-depth (CTD) transect of opportunity through Triton at eddy age 7 months in January 1992 found that eddy interior stood 23 dyn. cm higher than periphery; this gradient drove an anticyclonic swirl transport of 9-10 Sv relative to 800 dbar. At eddy age 9-10 months and while this eddy was in deep water near 94°W, it interacted with a mesoscale cyclonic circulation and was cleaved into two parts. The major (greater dynamic centimeters) piece drifted NW to end up in the ``eddy graveyard'' in the NW corner of the gulf, while the minor piece drifted SW and reached the continental margin of the western gulf off Tuxpan. This southern piece of Eddy Triton then turned north to follow the 2000-m isobath to about 24°N and later coalesced with what remained of the major fragment. Because Eddy Triton's cleavage took place just before the start of marine mammals (GulfCet) and Louisiana-Texas physical oceanography (LATEX) field programs, the closely spaced CTD, XBT, and air dropped XBT (AXBT) data that were gathered on the continental margin north of 26°N in support of these programs allow a detailed look at the northern margin of the larger fragment of this eddy. Supporting data from the space-borne altimeters on ERS 1 and TOPEX/POSEIDON allow us to track both pieces of Eddy Triton in the western Gulf and follow their spin down in dynamic height, coalescence, and ultimate entrainment in January 1993 into another anticyclonic eddy (Eddy U).

  20. Event sedimentation in low-latitude deep-water carbonate basins, Anegada passage, northeast Caribbean

    USGS Publications Warehouse

    Chaytor, Jason D.; ten Brink, Uri S.

    2015-01-01

    The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic

  1. [The contents of radon in deep borehole water of hydro-geological region of Gdańsk].

    PubMed

    Pachocki, K A; Gorzkowski, B; Rózycki, Z; Majle, T

    1999-01-01

    Radon 222Rn in deep borehole water of Gdańsk Hydrogeological Region has been quantitative determined. This region is located in east part of Gdańsk Voivodship and in west part of Elblag Voivodship including Zuławy. The measurements were performed using alpha liquid scintillation counting method. Only in some case the concentrations of 222Rn in investigated samples exceed recommended limit 11 Bq/l. PMID:10523933

  2. Markov chains and entropy tests in genetic-based lithofacies analysis of deep-water clastic depositional systems

    NASA Astrophysics Data System (ADS)

    Borka, Szabolcs

    2016-01-01

    The aim of this study was to examine the relationship between structural elements and the so-called genetic lithofacies in a clastic deep-water depositional system. Process-sedimentology has recently been gaining importance in the characterization of these systems. This way the recognized facies attributes can be associated with the depositional processes establishing the genetic lithofacies. In this paper this approach was presented through a case study of a Tertiary deep-water sequence of the Pannonian-basin. Of course it was necessary to interpret the stratigraphy of the sequences in terms of "general" sedimentology, focusing on the structural elements. For this purpose, well-logs and standard deep-water models were applied. The cyclicity of sedimentary sequences can be easily revealed by using Markov chains. Though Markov chain analysis has broad application in mainly fluvial depositional environments, its utilization is uncommon in deep-water systems. In this context genetic lithofacies was determined and analysed by embedded Markov chains. The randomness in the presence of a lithofacies within a cycle was estimated by entropy tests (entropy after depositional, before depositional, for the whole system). Subsequently the relationships between lithofacies were revealed and a depositional model (i.e. modal cycle) was produced with 90% confidence level of stationarity. The non-randomness of the latter was tested by chi-square test. The consequences coming from the comparison of "general" sequences (composed of architectural elements), the genetic-based sequences (showing the distributions of the genetic lithofacies) and the lithofacies relationships were discussed in details. This way main depositional channel has the best, channelized lobes have good potential hydrocarbon reservoir attributes, with symmetric alternation of persistent fine-grained sandstone (Facies D) and muddy fine-grained sandstone with traction structures (Facies F)

  3. The Role of Ceased Deep Water Ventilation in Massive Organic Carbon Sedimentation

    NASA Astrophysics Data System (ADS)

    Marino, G.; Rohling, E. J.; Rijpstra, I. W.; Sangiorgi, F.; Brinkhuis, H.; Schouten, S.; Sinninghe-Damsté, J. S.

    2006-12-01

    Sapropels reflect periods of widespread deposition of organic-carbon in the eastern Mediterranean (eMed) in response to positive shifts in the freshwater budget of the basin driven by distinct minima in the precession cycle that led to increased primary productivity and/or improved organic matter preservation. Last interglacial sapropel S5 is intensively developed and holds excellent potential for high-resolution studies. This is essential to track the major changes that led the eMed thermohaline circulation to its sapropel mode and, in turn, to the massive organic sedimentation. However, to date, no S5 has been recovered and studied from the marginal basins of the eMed (Adriatic and the Aegean Sea), which currently play a critical role in the basin's deep-water ventilation. Here we present the first systematic high-resolution multi-proxy study of an extremely organic-rich (up to 14% Corg) sapropel S5 from the Aegean Sea (core LC21) and discuss it in the context of previously described contemporaneous records from key locations in the open eMed. Our results unequivocally support the previous notion that the increased runoff (160-300% greater than today), largely discharged into the open eMed along the North African margin, crucially forced the anoxic event with profound oceanographic and biotic reorganizations throughout the basin. The Aegean subsurface circulation collapsed shortly after the onset of the freshwater flooding, as indicated by the sudden disappearance of benthic fossils and major increase in the organic carbon accumulation. In a few centuries, the occurrence of large amounts of isorenieratene marks the development of euxinic conditions throughout the Aegean water-column up to 200 m or shallower. Similar conditions successively spread over the open eMed. This reconstruction provides an unprecedented decadal-scale insight into the actual processes involved in the S5 deposition and, in a more general sense, in other episodes of massive carbon burial (e

  4. Reduced Deep Root Hydraulic Redistribution Due to Climate Change Impacts Carbon and Water Cycling in Southern US Pine Plantations

    NASA Astrophysics Data System (ADS)

    Domec, J.; Noormets, A.; King, J. S.; Sun, G.; McNulty, S.; Gavazzi, M. J.; Treasure, E.; Caldwell, P.

    2010-12-01

    It is well known that plants lose water from the canopy through transpiration, and also lose a portion of water drawn up at night from deep, moist soil layers through roots and deposited to shallow, dry soil layers. This process is termed hydraulic redistribution (HR). Deep root water uptake and HR have been a major discovery during the last 15 years, but little is known about the impact of future climatic and environmental conditions on deep root water uptake and its impact on water balance and carbon sequestration. We investigated the temporal variability of soil moisture dynamics in three AmeriFlux sites and used data from the Duke Free-Air CO2 Enrichment site to forecast future environmental impacts on HR and its impact on water cycling and carbon sequestration. Our results showed that HR played a critical role in delaying the drying of upper soil layers by replacing more than 25% of the water utilized during the day with water taken up by deep roots at night. Furthermore, HR mitigated the effects of soil drying in the understory and had important implications for net primary productivity and carbon sink potential of young plantations. A warming climate is associated with higher vapor pressure deficits, which will increase nighttime evapotranspiration and reduce HR because trees will act as a competitor with the upper soil for water. We predicted that increases in temperature, vapor pressure deficit and CO2 would reduce HR and limit shallow soil rewetting, thus decreasing net ecosystem productivity (NEP) especially in young and in shallow rooted forest plantations. Modeled carbon flux showed that in the absence of HR, gross ecosystem productivity (GEP) would be reduced by more than 30%, or 200 g C m-2 yr-1 and 750 g C m-2 yr-1 in a young and in a mid-rotation plantation, respectively. HR-induced decrease of GEP outweighed the decrease of ecosystem respiration, thus leading to a lower NEP. For these two types of managed forests, NEP would also be reduced by 100

  5. The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China.

    PubMed

    Ma, Weixing; Huang, Tinglin; Li, Xuan; Zhou, Zizhen; Li, Yang; Zeng, Kang

    2015-07-01

    Storm runoff events in the flooding season affect the water quality of reservoirs and increase risks to the water supply, but coping strategies have seldom been reported. The phenomenon of turbid current intrusion resulting in water turbidity and anoxic conditions reappearing after storm runoff, resulting in the deterioration of water quality, was observed in the flooding season in the deep canyon-shaped Heihe Reservoir. The objective of this work was to elucidate the effects of storm runoff on the Heihe Reservoir water quality and find a coping strategy. In this study, an intensive sampling campaign measuring water temperature, dissolved oxygen, turbidity, nutrients, and metals were conducted in the reservoir over a period of two years, and the water-lifting aerators were improved to achieve single aeration and a full layer of mixing and oxygenation functions using different volumes of gas. The operation of the improved water-lifting aerators mixed the reservoir three months ahead of the natural mixing time, and good water quality was maintained during the induced mixing period, thereby extending the good water quality period. The results can provide an effective coping strategy to improve the water quality of a source water reservoir and ensure the safety of drinking water. PMID:26184258

  6. The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China

    PubMed Central

    Ma, Weixing; Huang, Tinglin; Li, Xuan; Zhou, Zizhen; Li, Yang; Zeng, Kang

    2015-01-01

    Storm runoff events in the flooding season affect the water quality of reservoirs and increase risks to the water supply, but coping strategies have seldom been reported. The phenomenon of turbid current intrusion resulting in water turbidity and anoxic conditions reappearing after storm runoff, resulting in the deterioration of water quality, was observed in the flooding season in the deep canyon-shaped Heihe Reservoir. The objective of this work was to elucidate the effects of storm runoff on the Heihe Reservoir water quality and find a coping strategy. In this study, an intensive sampling campaign measuring water temperature, dissolved oxygen, turbidity, nutrients, and metals were conducted in the reservoir over a period of two years, and the water-lifting aerators were improved to achieve single aeration and a full layer of mixing and oxygenation functions using different volumes of gas. The operation of the improved water-lifting aerators mixed the reservoir three months ahead of the natural mixing time, and good water quality was maintained during the induced mixing period, thereby extending the good water quality period. The results can provide an effective coping strategy to improve the water quality of a source water reservoir and ensure the safety of drinking water. PMID:26184258

  7. Noblegas Radionuclide (KR-85, AR-39, KR-81) Concentrations in Deep Fracture Waters of the Withwatersrand Basin South Africa

    NASA Astrophysics Data System (ADS)

    Purtschert, R.; Onstott, T. C.; Jiang, W.; Lu, Z.; Müller, P.; van Heerden, E.; Erasmus, M.; Borgonie, G.; Linage, B.; Kuloyo, O.; Kipfer, R.; Brennwald, M. S.

    2013-12-01

    81Kr has been proposed since many years an ideal tracer for dating subsurface fluids on timescales up to 2 million years. However, only recently the method became practicable for real case investigations due to significant analytical improvements [1]. In this study radioactive noble gas isotopes (81Kr, 85Kr and 39Ar) were applied for the characterisation of fracture waters in the deep gold mines of the Witwatersrand Basin, South Africa [2]. Those waters catalyzed interest because of deep microbial communities that persists to depths of over 3 km [3]. The key objective of the present study is to further constrain the origin of the fluids, to determine the timing of deep subsurface life and to test the 81Kr method in all kinds of environments. In contrast to expectations [4] we discovered that underground production of 81Kr is a significant process in the rocks of the Withwatersrand and Ventersdorp Supergroups. All measured 81Kr activities from fracture water were significantly higher than in atmospheric equilibrium. This is most likely related to elevated U/Th concentrations in the rock strata. Radiometric decay dating is complicated in such cases. [1].W. Jiang et al., Geochim. Cosmochim. Acta 91, 1 (2012). [2].T. C. Onstott et al., Geomicrobiology J. 26, 269 (2009). [3].G. Borgonie et al., Nature 474, 79. [4]. B. Lehmann et al, WRR. 29, 2027 (1993).

  8. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

    PubMed Central

    White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W. J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.

    2012-01-01

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems. PMID:22454495

  9. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

    USGS Publications Warehouse

    White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W.J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.

    2012-01-01

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.

  10. Results and prospects of deep under-ground, under-water and under-ice experiments

    NASA Astrophysics Data System (ADS)

    Zornoza, J. D.

    2014-04-01

    Astroparticle experiments have provided a long list of achievements both for particle physics and astrophysics. Many of these experiments require to be protected from the background produced by cosmic rays in the atmosphere. The main options for such protection are to build detectors deep under ground (mines, tunnels) or in the deep sea or Antarctic ice. In this proceeding we review the main results shown in the RICAP 2013 conference related with these kind of experiments and the prospects for the future.

  11. Snow dynamics and water fluxes within a constructed watershed in Northern Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Ketcheson, S. J.; Price, J. S.

    2013-12-01

    The most important aspect to consider during the development of reclamation soil covers and constructed watershed designs is the influence of the regional climate and the availability of water to recharge systems, which is driven by the difference between precipitation (P) and actual evapotranspiration (AET). Snowfall represents ~25% of P in the sub-humid climate of the Western Boreal Plains region of Canada (WBP) where, in most years, potential evapotranspiration (PET) slightly exceeds P. Despite the importance of water availability, few studies focus on the distribution of snow and, hence, the storage of winter precipitation in reclaimed oil sands landscapes in the WBP. In this study, the distribution, ablation and fate of snowmelt waters are quantified within a constructed ecosystem in a post-extraction oil sands environment in the WBP. Field measurements made during March/April 2013 indicated that snow depth was the greatest at changes in slope, which suggests that wind redistribution was a dominant control on snow distribution. Basin-averaged peak snow water equivalence (SWE) was 100 mm, but varied depending upon the presence (109 mm SWE) or absence (85 mm SWE) of vegetation. Over-winter accumulation of dust layers within the snowpack caused increased ablation rates when exposed at the melting surface, which decreased the snow surface albedo and subsequently increased the absorption of shortwave radiation. Similarly, vegetation presence and height (as influenced by time since reclamation/revegetation) also influenced ablation rates via increased absorption of shortwave radiation upon emergence of vegetation stems and branches from the snowpack. Recharge to aquifers within the constructed watershed was minimal, as the presence of ground frost constrained infiltration of snowmelt water. Accordingly, substantial surface runoff was observed from all reclaimed slopes, including those designed to reduce runoff and increase water storage, which indicates the

  12. Localized sub-glacial deep karst formation due to water infiltration into glacier crevasses: A case study from Asiago, Italy

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Frehner, Marcel; Busellato, Leonardo; Grasselli, Giovanni

    2015-04-01

    In karstic plateaus, deep karst phenomena (e.g. abysses) are the preferential pathways for surface water to penetrate the Earth's crust. After percolation along diaclases and meanders, the infiltrated water often springs at the foot of the karstic plateau, potentially representing a valuable water resource. Thus, it is crucial to understand the formation and distribution of deep karst phenomena, for instance to predict karstic groundwater flow paths or to preserve water resources from pollution. The role of glaciers in enhancing the formation of deep karst is not yet clear. On the one hand, chilly water retains more CO2 which increases its acidity and efficiency in corroding carbonates. On the other hand, glaciers obliterate the soil and vegetation covering the developing karst decreasing the quantity of humic acids dissolved in the surface water. Nevertheless, ice-caps may play a key role in controlling how and where surface water can access the developing karstic system. Due to the presence of a glacier, some sub-glacial areas may not be reached by surface water, which prevents karstification, while other areas may be connected to intra- or sub-glacial flow paths possibly leading to localized kartification in these areas. Here we investigate the relationship between sub-glacial topography and the development of preferred intra-glacier flow paths and how this relationship leads to localized sub-glacial karstification. As a case study site, we use the karstic plateau of Asiago in Northern Italy. The Asiago plateau (https://goo.gl/maps/bLezx) is mainly composed of Permian to Cretaceous rocks. The northern and southern boundaries of the plateau are marked by two Alpine trusts, which uplifted the plateau during the Alpine orogeny to ~1500 m above the Po flood plain delimiting the plateau to the South. The Asiago plateau extends for ~600 km2 and contains ~2100 natural caves, including many significantly deep caves such as the deepest cave of Veneto: the 1011 m deep

  13. A Deep Percolation Model for Estimating Ground-Water Recharge: Documentation of Modules for the Modular Modeling System of the U.S. Geological Survey

    USGS Publications Warehouse

    Vaccaro, J.J.

    2007-01-01

    A daily water-budget model for estimating ground-water recharge, the Deep Percolation Model, was modularized for inclusion into the U.S. Geological Survey's Modular Modeling System. The model was modularized in order to facilitate estimation of ground-water recharge under a large range in climatic, landscape, and land-use and land-cover conditions. The model can be applied to areas as large as regions or as small as a field plot. An overview of the Modular Modeling System and the Deep Percolation Model is presented. Data requirements, parameters, and variables for the model are described. The modules that compose the Deep Percolation Model are documented.

  14. A micropalaeontological perspective on export productivity, oxygenation and temperature in NE Atlantic deep-waters across Terminations I and II

    NASA Astrophysics Data System (ADS)

    Grunert, Patrick; Skinner, Luke; Hodell, David A.; Piller, Werner E.

    2015-08-01

    Census counts of benthic foraminifera were studied from the SW Iberian Margin to reconstruct past changes in deep-water hydrography across Terminations I and II. Detailed benthic faunal data (> 125 μm size-fraction) allow us to evaluate the limitations imposed by taphonomic processes and restricted size-fractions. The comparison of recent (mudline) and fossil assemblages at IODP Site U1385 indicates the quick post-mortem disintegration of shells of astrorhizoid taxa (~ 80% of the present-day fauna), resulting in impoverished fossil assemblages. While the application of quantitative proxy methods is problematic under these circumstances, the fossil assemblages can still provide a qualitative palaeoenvironmental signal that, while most fully expressed in the 125-212 μm size-fraction, is nonetheless also expressed to some degree in the > 212 μm size-fraction. Variations in the benthic foraminiferal assemblages reveal information about changing organic matter supply, deep-water oxygenation and temperature. MIS 2 is generally characterized by an elevated trophic state and variable oxic conditions, with oxygenation minima culminating in the Younger Dryas (YD) and Heinrich Stadials (HS) 1, 2 and 3. Low oxic conditions coincide with decreased water-temperature and lower benthic δ13C, pointing to the strong influence of a southern sourced water-mass during these periods. HS 1 is the most extreme of these intervals, providing further evidence for a severe temporary reduction or even shutdown of AMOC. With the inception of MIS 1, organic matter supply reduced and a better ventilated deep-water environment bathed by NEADW is established. For Termination II, clear indications of southern-sourced water are limited to the early phase of HS 11. During the latter part of HS 11, the deep-water environment seems to be determined by strongly increased supply of organic matter, potentially explaining the decoupling of benthic δ13C and Mg/Ca records of earlier studies as a

  15. Impact of deep-water derived isoprenoid tetraether lipids on the TEX86 paleothermometry along the portuguese continental margin

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hyun; Villanueva, Laura; Zell, Claudia; Sinninghe Damsté, Jaap S.

    2016-04-01

    The TEX86 proxy was developed based on isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) biosynthesized by Thaumarchaeota and afterwards slightly modified to TEX86-H, a logarithmic function for TEX86. However, it remains uncertain how well this proxy reconstructs annual mean SST, especially due to the water depth influence. We investigated the potential effect of deep-water dwelling Thaumarchaeota in the warm and saline Mediterranean Outflow Water (MOW) on the distribution of isoGDGTs by analysing suspended particulate matter (SPM) and surface sediments collected along five land-ocean transects along the southern Portuguese continental margin. To this end, we directly compared for the first time the composition of intact polar lipid (IPL)-derived isoGDGTs of SPM with the diversity, abundance, and activity of Thaumarchaeota based on the genetic analysis of the genes coding for the archaeal ammonia monooxygenase (amoA) and the geranylgeranylglyceryl phosphate (GGGP) synthase involved in the isoGDGT biosynthetic pathway. Our results show that the sedimentary distribution of CL isoGDGTs used in TEX86-H along the Portuguese margin is primarily influenced by water depth due to the increasing contribution of the deep-water population of Thaumarchaeota residing in the MOW.

  16. The Plio-Pleistocene development of Atlantic deep-water circulation and its influence on climate trends

    NASA Astrophysics Data System (ADS)

    Bell, David B.; Jung, Simon J. A.; Kroon, Dick

    2015-09-01

    Using benthic stable isotope records from 10 sites in the Atlantic Ocean, including two new records from Walvis Ridge in the Southeast Atlantic (Sites 1264 and 1267), we review changes in Atlantic deep-water circulation in the context of Plio-Pleistocene climate. Overall, we find non-linear responses of Atlantic deep-water circulation to a cooling climate, with differently evolving glacial and interglacial states. Our main conclusion is that pe