Science.gov

Sample records for deep water construction

  1. Computational fracture mechanics estimation of the strength of deep-water welded constructions

    NASA Astrophysics Data System (ADS)

    Il'in, A. V.; Filin, V. Yu.

    2013-04-01

    The principles of estimating the strength of deep-water engineering constructions using the brittle fracture prevention criterion are presented. They are based on the experimental results and theoretical developments accumulated in our works.

  2. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect

    Carter, E.E.; Carter, P.E.; Cooper, D.C.

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  3. Deep water recycling through time

    PubMed Central

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2014-01-01

    We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity (vs), slab age (a) and mantle temperature (Tm). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×105 kg/m2), as a function of vs (cm/yr), a (Myrs), and Tm (°C):. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×105 kg/m2 of H2O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×108 Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5–3.7 × 108 Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga. Key Points Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H2O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern PMID:26321881

  4. Drilling, Construction, Water-Level, and Water-Quality Information for the Kualapuu Deep Monitor Well, 4-0800-01, Molokai, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Bauer, Glenn R.

    2001-01-01

    A monitor well was completed in January 2001 by the U.S. Geological Survey in the Kualapuu area of central Molokai, Hawaii that allows for monitoring the thicknesses of the freshwater body and the upper part of the underlying freshwater-saltwater transition zone. The well was drilled in cooperation with the State Department of Hawaiian Home Lands and the Maui County Department of Water Supply, and is located near the area that supplies much of the drinking water on Molokai. The well is at a ground-surface elevation of about 982 feet and penetrated a 1,585-foot section of soil and volcanic rock to a depth of 603 feet below sea level. Prior to casing, a cave-in caused the bottom 55 feet of the well to be filled with rocks originating from a zone above. Thus, the final well depth reported by the driller was 1,530 feet. Measured water levels in the well during the period from February 1 to July 13, 2001 range from 8.68 to 9.05 feet above sea level. The most recent available water-conductivity profile from July 13, 2001 indicates that the lowest salinity water in the well is in the upper zone from the water table to a depth of about 220 feet below sea level. Below this upper zone, water salinity increases with depth. The water-temperature profile from July 13, 2001 indicates that the lowest temperature water (20.2 degrees Celsius) in the well is located in the upper zone from the water table to a depth of about 200 feet below sea level. Water temperature increases to 24.5 degrees Celsius near the bottom of the measured profile, 507 feet below sea level.

  5. Pipelaying in deep water uses novel techniques

    SciTech Connect

    Not Available

    1992-10-01

    This paper reports that laying crude oil pipelines in the deep waters off the coast of California required the use of a number of innovative construction techniques. From December 1991 to February 1992, Allseas Engineering BV, Delft, the Netherlands, installed a number of 12-, 14-, and 20-in. pipelines off the coast of California. The extreme water depth of more than 1,000 ft precluded the use of divers and required the use of a number of innovative installation techniques. The work was part of the Exxon-Santa Ynez project off the coast of Santa Barbara, Calif. The field is located in depths to 1,200 ft. Novel installation techniques used in the pipelaying project included: Three diverless connection made in 1,155-ft of water using the deflect-to-connect method; Single-point lift made to allow connection of a flexible line; New type of I-tube was installed; An extensive testing program was conducted to prove the construction methods.

  6. Deep water ventilation traced by Synechococcus cyanobacteria

    NASA Astrophysics Data System (ADS)

    Vilibić, Ivica; Šantić, Danijela

    2008-07-01

    The paper describes a finding of photoautotroph cyanobacteria Synechococcus in deep Adriatic waters during the spring of 2006. The maximum abundance in early May was positioned at 800 m, being of order of the values referred for the surface waters in the Adriatic Sea. The deep abundance maximum has been associated to the fast ventilation of deep Adriatic waters, usually occurring during wintertime strong cooling events. Two processes were detected: (1) deep convection in the South Adriatic Pit (SAP) and (2) density current going downslope. The first process was responsible for bringing the cyanobacteria down to 600-m depth in the area of convection, and the second one triggered the downslope transport of the cyanobacteria to the SAP very bottom. The depletion rate of Synechoccocus cyanobacteria in an extremely hostile environment has been computed to equal about 1 month.

  7. Biology of deep-water chondrichthyans: Introduction

    NASA Astrophysics Data System (ADS)

    Cotton, C. F.; Grubbs, R. D.

    2015-05-01

    Approximately half of the known chondrichthyans (sharks, skates, rays, and chimaeras), 575 of 1207 species (47.6%, Table 1), live in the deep ocean (below 200 m), yet little is known of the biology or life histories of most of these fishes (Kyne and Simpfendorfer, 2007). The limited information available for deep-water chondrichthyans is compounded by their rarity, as well as the prevalent uncertainty in the alpha taxonomy of deep-water species. Many species are known only from the type materials, which are generally limited to nondestructive sampling, e.g., morphometrics, imaging (X-ray, MRI, CT scanning). Thus, research has been hindered by a lack of specimens available for investigation that requires destructive sampling or live specimens (e.g., life history, diet, telemetry). The need for more research and dissemination of information about deep-water chondrichthyans has become imperative as fisheries worldwide continue to expand into deeper waters and exploit deep-water stocks, usually in the absence of data required for appropriate management (Morato et al., 2006; Kyne and Simpfendorfer, 2010).

  8. Controlling Deep Water Renewal in Lake Baikal

    NASA Astrophysics Data System (ADS)

    Tsimitri, C.; Schmid, M.; Wuest, A.

    2012-12-01

    Lake Baikal is the most voluminous and deepest fresh water body on earth. Despite its great depth, about 1.6 Km and its permanent stratification below ~300 m, the lake supports a remarkable biodiversity with a major deep-water fauna composed almost entirely of endemic species. A key element contributing to this unique ecosystem is the high oxygen concentration observed throughout the water column. This extraordinary feature is sustained by regular deep water renewal. The South Basin of the lake has been monitored with moored thermistors for more than a decade. By analyzing the obtained data series we investigate the importance of coastal downwelling and of the subsequent thermobaric instability to the renewal. We study how the local wind field, the ice coverage and the stratification of the upper water layers can control the deep water state. Understanding the deep water renewal mechanism is an important prerequisite for studying biochemical cycles, for predicting the effects of climate change on this unique ecosystem and for evaluating the local climate history from the extraordinary sedimentary record of Lake Baikal.

  9. ROV drilling support for deep water

    SciTech Connect

    Shatto, H.L.

    1984-05-01

    A neutrally buoyant, cage deployed, remotely operated vehicle (ROV) was selected to provide drilling support for Shell's deep water exploration program with the Discoverer Seven Seas. This dual vehicle system, designed for severe currents, rough seas and more than twice the water depth of previous such systems, was in operation one year after the request for quote. The basis for its selection and its performance and evaluation for the first seven months of operation are covered here.

  10. Deep Water, Shallow Water: Marine Animal Homes.

    ERIC Educational Resources Information Center

    Soltow, Willow

    1984-01-01

    Examines the diversity of life in the oceans and ways in which teachers can explore ocean habitats with their students without leaving the classroom. Topic areas considered include: restricted habitats, people and marine habitats, pollution, incidental kills, and the commercial and recreational uses of marine waters. (JN)

  11. Hawaii Deep Water Cable Program: Executive Summary

    SciTech Connect

    1990-09-01

    The Hawaii Deep Water Cable Program has succeeded unequivocally in determining the feasibility of deploying a submarine power cable system between the islands of Hawaii and Oahu. Major accomplishments of the program include designing, fabricating and testing an appropriate power cable, developing an integrated system to control all aspects of the cable laying operation, and testing all deployment systems at sea in the most challenging sections of the route.

  12. Incremental Knowledge Base Construction Using DeepDive

    PubMed Central

    Shin, Jaeho; Wu, Sen; Wang, Feiran; De Sa, Christopher; Zhang, Ce; Ré, Christopher

    2016-01-01

    Populating a database with unstructured information is a long-standing problem in industry and research that encompasses problems of extraction, cleaning, and integration. Recent names used for this problem include dealing with dark data and knowledge base construction (KBC). In this work, we describe DeepDive, a system that combines database and machine learning ideas to help develop KBC systems, and we present techniques to make the KBC process more efficient. We observe that the KBC process is iterative, and we develop techniques to incrementally produce inference results for KBC systems. We propose two methods for incremental inference, based respectively on sampling and variational techniques. We also study the tradeoff space of these methods and develop a simple rule-based optimizer. DeepDive includes all of these contributions, and we evaluate Deep-Dive on five KBC systems, showing that it can speed up KBC inference tasks by up to two orders of magnitude with negligible impact on quality. PMID:27144081

  13. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  14. Deep water riser system for offshore drilling

    SciTech Connect

    Potts, H.L.

    1984-05-15

    A buoyant riser system for use in a deep water offshore drilling environment is anchored by a system of compliant guys below the active weather zone of the sea. A controllably buoyant housing of the system is submerged at a depth that is readily accessible to divers and includes a blow-out preventer (BOP) from which a suspended sub-riser leads to a well bore to which the sub-riser is coupled. Above the housing, a riser suspended from a floating drill rig is coupled to the BOP thereby communicating the drill rig directly with the well bore for drilling and well completion operations.

  15. Early Neanderthal constructions deep in Bruniquel Cave in southwestern France.

    PubMed

    Jaubert, Jacques; Verheyden, Sophie; Genty, Dominique; Soulier, Michel; Cheng, Hai; Blamart, Dominique; Burlet, Christian; Camus, Hubert; Delaby, Serge; Deldicque, Damien; Edwards, R Lawrence; Ferrier, Catherine; Lacrampe-Cuyaubère, François; Lévêque, François; Maksud, Frédéric; Mora, Pascal; Muth, Xavier; Régnier, Édouard; Rouzaud, Jean-Noël; Santos, Frédéric

    2016-06-01

    Very little is known about Neanderthal cultures, particularly early ones. Other than lithic implements and exceptional bone tools, very few artefacts have been preserved. While those that do remain include red and black pigments and burial sites, these indications of modernity are extremely sparse and few have been precisely dated, thus greatly limiting our knowledge of these predecessors of modern humans. Here we report the dating of annular constructions made of broken stalagmites found deep in Bruniquel Cave in southwest France. The regular geometry of the stalagmite circles, the arrangement of broken stalagmites and several traces of fire demonstrate the anthropogenic origin of these constructions. Uranium-series dating of stalagmite regrowths on the structures and on burnt bone, combined with the dating of stalagmite tips in the structures, give a reliable and replicated age of 176.5 thousand years (±2.1 thousand years), making these edifices among the oldest known well-dated constructions made by humans. Their presence at 336 metres from the entrance of the cave indicates that humans from this period had already mastered the underground environment, which can be considered a major step in human modernity. PMID:27251286

  16. Power, fresh water, and food from cold, deep sea water.

    PubMed

    Othmer, D F; Roels, O A

    1973-10-12

    Many times more solar heat energy accumulates in the vast volume of warm tropic seas than that produced by all of our power plants. The looming energy crisis causes a renewal of interest in utilizing this stored solar heat to give, in addition to electric power, vast quantities of fresh water. Warm surface water, when evaporated, generates steam, to power a turbine, then fresh water when the steam is condensed by the cold water. A great increase in revenues over that from power and fresh water is shown by a substantial mariculture pilot plant. Deep sea water contains large quantities of nutrients. These feed algae which feed shellfish, ultimately shrimps and lobsters, in shallow ponds. Wastes grow seaweed of value; and combined revenues from desalination, power generation, and mariculture will give substantial profit. PMID:17777883

  17. Advances in technology for the construction of deep-underground facilities

    SciTech Connect

    Not Available

    1987-12-31

    The workshop was organized in order to address technological issues important to decisions regarding the feasibility of strategic options. The objectives of the workshop were to establish the current technological capabilities for deep-underground construction, to project those capabilities through the compressed schedule proposed for construction, and to identify promising directions for timely allocation of existing research and development resources. The earth has been used as a means of protection and safekeeping for many centuries. Recently, the thickness of the earth cover required for this purpose has been extended to the 2,000- to 3,000-ft range in structures contemplated for nuclear-waste disposal, energy storage, and strategic systems. For defensive missile basing, it is now perceived that the magnitude of the threat has increased through better delivery systems, larger payloads, and variable tactics of attack. Thus, depths of 3,000 to 8,000 ft are being considered seriously for such facilities. Moreover, it appears desirable that the facilities be operational (if not totally complete) for defensive purposes within a five-year construction schedule. Deep excavations such as mines are similar in many respects to nearsurface tunnels and caverns for transit, rail, sewer, water, hydroelectric, and highway projects. But the differences that do exist are significant. Major distinctions between shallow and deep construction derive from the stress fields and behavior of earth materials around the openings. Different methodologies are required to accommodate other variations resulting from increased depth, such as elevated temperatures, reduced capability for site exploration, and limited access during project execution. This report addresses these and other questions devoted to geotechnical characterization, design, construction, and excavation equipment.

  18. North Atlantic Deep Water Production during the Last Glacial Maximum

    PubMed Central

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  19. North Atlantic Deep Water Production during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-06-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters.

  20. North Atlantic Deep Water Production during the Last Glacial Maximum.

    PubMed

    Howe, Jacob N W; Piotrowski, Alexander M; Noble, Taryn L; Mulitza, Stefan; Chiessi, Cristiano M; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ(13)C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  1. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    PubMed

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. PMID:26914787

  2. Insulated flowline technology for deep water

    SciTech Connect

    Tucker, R.N.; Hays, P.R.; Antani, J.K.

    1996-12-31

    Deepwater fields are economically developed using subsea completions, with hydrocarbon fluids typically conveyed via multiphase pipelines and flowlines to an existing shallow water host facility. These flowlines operate in a low ambient temperature, high external pressure environment, conducive to the formation of paraffin deposits or hydrates. The leading strategy to circumvent these deleterious effects is to minimize heat loss from the system using insulation. Since the experience base for such deepwater insulated flowlines is limited, the DeepStar 600 Committee on Pipelines, Flowlines, and Umbilicals initiated several studies during 1994--95, addressing three major categories of insulation systems: pipe-in-pipe systems, integrated towed flowline bundles, and non-jacketed systems. This paper helps to identify potentially viable systems, design techniques, emerging technologies, feasible materials, and technical limitations. The proper design of flowline insulation requires a balance among the high cost of the insulation, the intended operability of the system, and the acceptable risk level. The following information is presented to aid development planners and subsea flowline engineers interested in the development, applicability, and availability of this technology.

  3. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation

    NASA Astrophysics Data System (ADS)

    Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Menviel, Laurie; Zhang, Fei; Ryerson, Fredrick J.; Rohling, Eelco J.

    2014-04-01

    Carbon release from the deep ocean at glacial terminations is a critical component of past climate change, but the underlying mechanisms remain poorly understood. We present a 28,000-year high-resolution record of carbonate ion concentration, a key parameter of the global carbon cycle, at 5-km water depth in the South Atlantic. We observe similar carbonate ion concentrations between the Last Glacial Maximum and the late Holocene, despite elevated concentrations in the glacial surface ocean. This strongly supports the importance of respiratory carbon accumulation in a stratified deep ocean for atmospheric CO2 reduction during the last ice age. After ˜9 μmol/kg decline during Heinrich Stadial 1, deep South Atlantic carbonate ion concentration rose by ˜24 μmol/kg from the onset of Bølling to Pre-boreal, likely caused by strengthening North Atlantic Deep Water formation (Bølling) or increased ventilation in the Southern Ocean (Younger Drays) or both (Pre-boreal). The ˜15 μmol/kg decline in deep water carbonate ion since ˜10 ka is consistent with extraction of alkalinity from seawater by deep-sea CaCO3 compensation and coral reef growth on continental shelves during the Holocene. Between 16,600 and 15,000 years ago, deep South Atlantic carbonate ion values converged with those at 3.4-km water depth in the western equatorial Pacific, as did carbon isotope and radiocarbon values. These observations suggest a period of enhanced lateral exchange of carbon between the deep South Atlantic and Pacific Oceans, probably due to an increased transfer of momentum from southern westerlies to the Southern Ocean. By spreading carbon-rich deep Pacific waters around Antarctica for upwelling, invigorated interocean deep water exchange would lead to more efficient CO2 degassing from the Southern Ocean, and thus to an atmospheric CO2 rise, during the early deglaciation.

  4. DEEP CREEK, LATAH COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1988

    EPA Science Inventory

    Deep Creek, Idaho (17060108) had been identified as a first priority stream segment in the Nonpoint Source Pollution Abatement program. Current designated uses for Deep Creek are as a domestic and agricultural water supply, primary and secondary contact recreation, as well as co...

  5. DEEP-South: Network Construction, Test Runs and Early Results

    NASA Astrophysics Data System (ADS)

    Moon, Hong-Kyu; Kim, Myung-Jin; Yim, Hong-Suh; Choi, Young-Jun; Bae, Young-Ho; Roh, Dong-Goo; Park, Jintae; Moon, Bora

    2016-01-01

    Korea Microlensing Telescope Network (KMTNet) which consists of three identical 1.6 m wide-field telescopes with 18k × 18k CCDs, is the first optical survey system of its kind. The combination of fast optics and the mosaic CCD delivers seeing limited images over a 4 square degrees field of view. The main science goal of KMTNet is the discovery and characterization of exoplanets, yet it also offers various other science applications including DEep Ecliptic Patrol of SOUTHern sky (DEEP-South). The aim of DEEP-South is to discover and characterize asteroids and comets, including Near Earth Objects (NEOs). We started test runs last February after commissioning, and will return to normal operations in October 2015. A summary of early results from the test runs will be presented.

  6. Archaeal Diversity in Waters from Deep South African Gold Mines

    PubMed Central

    Takai, Ken; Moser, Duane P.; DeFlaun, Mary; Onstott, Tullis C.; Fredrickson, James K.

    2001-01-01

    A culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold mines was performed by performing a PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with a sequencing analysis of archaeal rDNA clone libraries. The water samples used represented various environments, including deep fissure water, mine service water, and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied with the source of water. The archaeal communities in the deep gold mine environments exhibited great phylogenetic diversity; the majority of the members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to environmental rDNA clones from surface soil (soil clones) and marine environments (marine group I [MGI]). Other clones exhibited intermediate phylogenetic affiliation between soil clones and MGI in the Crenarchaeota. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences that exhibited novel phylogeny, including a novel lineage of Euryarchaeota. These results suggest that deep South African gold mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including the newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea are reevaluated. PMID:11722932

  7. Archaeal Diversity in Waters from Deep South African Gold Mines

    SciTech Connect

    Takai, Ken; Moser, Duane P.; Deflaun, Mary; Onstott, Tullis C.; Fredrickson, Jim K.

    2001-12-01

    Culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold (Au) mines was performed by PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with sequencing analysis of archaeal rDNA clone libraries. Water samples represented various environments including: deep fissure water; mine service water; and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied directly with the source of the water. The archaeal communities in the deep Au mine environments revealed a large phylogenetic diversity; the majority of members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to the environmental rDNA clones from surface soil (Soil clones) and marine environments (Marine Group I; MGI). Other clones possessed an intermediate phylogenetic affiliation between soil clones and MGI within the Crenarchaea. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences of novel phylogeny including a novel lineage of Euryarchaeota. These results suggest that deep South African Au mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including these newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea is reevaluated.

  8. The Circulation of Newly Formed Deep Water in the Atlantic

    NASA Astrophysics Data System (ADS)

    Rhein, M.; Kieke, D.; Steinfeldt, R.

    2012-04-01

    The circulation of newly formed deep water masses (Labrador Sea Water, LSW, and Denmark Strait Overflow Water, DSOW) is examined by discussing the distribution of two parameters (age τ and fraction F of young water) calculated from the chlorofluorocarbon data measured between 1980 and 2005 in the Atlantic. Compared to previous studies, a much larger data set was used with an improved gridding procedure, allowing to resolve the distributions in more detail.

  9. Carbon Sequestration through Sustainably Sourced Algal Fertilizer: Deep Ocean Water.

    NASA Astrophysics Data System (ADS)

    Sherman, M. T.

    2014-12-01

    Drawing down carbon from the atmosphere happens in the oceans when marine plants are growing due to the use of carbon dioxide for biological processes and by raising the pH of the water. Macro- and microscopic marine photosynthesizers are limited in their growth by the availability of light and nutrients (nitrogen, phosphorous, iron, etc.) Deep ocean water (DOW), oceanic water from bellow about 1000m, is a natural medium for marine algae, which contains all (except in rare circumstances) necessary components for algal growth and represents over 90% of the volume of the ocean. The introduction of DOW to a tropical or summer sea can increase chlorophyll from near zero to 60 mg per M3 or more. The form of the utilization infrastructure for DOW can roughly be divided into two effective types; the unconstrained release and the open pond system. Unconstrained release has the advantage of having relatively low infrastructure investment and is available to any area of the ocean. The open pond system has high infrastructure costs but enables intensive use of DOW for harvesting macro- and microalgae and sustainable mariculture. It also enables greater concomitant production of DOW's other potential products such as electricity or potable water. However, unlike an unconstrained release the open pond system can capture much of the biomaterial from the water and limits the impact to the surrounding ecosystem. The Tidal Irrigation and Electrical System (TIESystem), is an open pond that is to be constructed on a continental shelf. It harnesses the tidal flux to pump DOW into the pond on the rising tide and then uses the falling tide to pump biologically rich material out of the pond. This biomaterial represents fixed CO2 and can be used for biofuel or fertilizers. The TIESystem benefits from an economy of scale that increases at a rate that is roughly equal to the relationship of the circumference of a circle (the barrier that creates the open pond) to the area of the pond

  10. The DEEP-South: Network Construction and Test Operations

    NASA Astrophysics Data System (ADS)

    Moon, Hong-Kyu; Kim, Myung-Jin; Yim, Hong-Suh; Choi, Young-Jun; Bae, Youngho; Roh, Dong-Goo; the DEEP-South Team

    2015-08-01

    Korea Astronomy and Space Science Institute achieved completion of a network of optical telescopes called the KMTNet (Korea Micro-lensing Telescope Network) in the end of 2014. The KMTNet is comprised of three 1.6-m prime focus wide-field optics and 18K×18K mosaic CCDs, each providing 2×2 degrees field of view. This network facilities located at CTIO (Chile), SAAO (South Africa), and SSO (Australia) are expected to be on line in mid-2015 with their CCDs fully functional. While its primary objective is discovery and characterization of extrasolar planets, it is also being used for “Deep Ecliptic Patrol of the Southern Sky (DEEP-South)” aiming at asteroid and comet studies as one of its secondary science projects. The KMTNet telescopes are almost equally separated in longitude, and hence enable a 24-hour uninterrupted monitoring of the southern sky. The DEEP-South will thus provide a prompt solution to a demand from the scientific community to bridge the gaps in global sky coverage with a coordinated use of a network of ground-based telescopes in the southern hemisphere. Thanks to round-the-clock capability orbits, spin states and three dimensional shape of an object will be systematically investigated and archived for the first time. Based on SDSS and BVRI colors, we will also constrain their surface mineralogy, with an emphasis on targeted photometry of km-sized Potentially Hazardous Asteroids (PHAs) in the first stage (2015-2019). In the end of 2015, we plan to complete implementing dedicated software subsystem made of an automated observation scheduler and data pipeline for the sake of an increased discovery rate, rapid follow-up, timely phase coverage, and more efficient data reduction and analysis. We will give a brief introduction to a series of test operations conducted at the KMTNet-CTIO in February, March and April in 2015 with experimental data processing. Preliminary scientific results will also be presented.

  11. Radiocarbon age of waters in the deep Atlantic revisited

    SciTech Connect

    Broecker, W.S.; Virgilio, A. ); Peng, T.H. )

    1991-01-01

    The authors use a simple box model to evaluate the impact of temporal changes of the atmosphere's {sup 14}C/C on ventilation fluxes for the deep Atlantic calculated from radiocarbon measurements. The conclusion is that despite the fact that over the 300 year period from 1650 to 1950 the atmosphere's radiocarbon content declined at the same rate as radiocarbon decays, this temporal change has a relatively small impact (10-15%) on radiocarbon-based estimates of the ventilation rate of the deep Atlantic. The reason is that the radiocarbon content of the source waters for deep Atlantic are reasonably well buffered against changes in atmospheric {sup 14}C/C.

  12. Geology of Sarawak deep water and its surroundings

    SciTech Connect

    Ismail, M.I.; Mohamad, A.M.; Ganesan, M.S.; Aziz, S.A. )

    1994-07-01

    A geological and geophysical investigation based primarily on seismic data indicates that four tectonostratigraphic zonations are recognizable in the Sarawak deep water and its surroundings. Zone A is a 7-8-km-thick Tertiary sedimentary basin in Sarawak deep water characterized by north-south-trending buried hills, extensional fault-bounded features, and local occurrences of compressional structures, and is separated from the northwest Sabah platform (zone B) by a major north-south-trending basin margin fault. This margin fault is distinct from the northwest-southeast transform fault known as Baram-Tinjar Line. The northwest Sabah platform, an attenuated continental crust that underwent late Mesozoic-Tertiary crystal stretching and rifting, is characterized by northeast-southwest-tending rift systems and generally up to 4 km-thick sedimentary cover. The leading edge of the northwest Sabah platform that was subducted beneath the northwest Borneo crust is marked by the Sabah trough (zone C). The western Sarawak deep water is occupied by a 13-km-thick, north-south-trending basin, the west Luconia delta province (zone D), demonstrating post mid-Miocene deltaic growth faults and toe-thrusts. Crustal offsets of the South China Sea Basin, north-south-trending basin margin fault between zones A and B, and extensional and compressional structures in zone A are evidence for north-south-directed transform motions leading to the development of the Sarawak deep-water Tertiary basin. Four main sedimentation phases describe the sedimentation history in Sarawak deep water and its surroundings. Oligocene-Miocene coastal plain sediments form the main hydrocarbon plays in the Sarawak deep water, and the numerous occurrences of amplitude anomalies clearly suggest a working hydrocarbon charge system.

  13. Sense Things in the Big Deep Water Bring the Big Deep Water to Computers so People can understand the Deep Water all the Time without getting wet

    NASA Astrophysics Data System (ADS)

    Pelz, M.; Heesemann, M.; Scherwath, M.; Owens, D.; Hoeberechts, M.; Moran, K.

    2015-12-01

    Senses help us learn stuff about the world. We put sense things in, over, and under the water to help people understand water, ice, rocks, life and changes over time out there in the big water. Sense things are like our eyes and ears. We can use them to look up and down, right and left all of the time. We can also use them on top of or near the water to see wind and waves. As the water gets deep, we can use our sense things to see many a layer of different water that make up the big water. On the big water we watch ice grow and then go away again. We think our sense things will help us know if this is different from normal, because it could be bad for people soon if it is not normal. Our sense things let us hear big water animals talking low (but sometimes high). We can also see animals that live at the bottom of the big water and we take lots of pictures of them. Lots of the animals we see are soft and small or hard and small, but sometimes the really big ones are seen too. We also use our sense things on the bottom and sometimes feel the ground shaking. Sometimes, we get little pockets of bad smelling air going up, too. In other areas of the bottom, we feel hot hot water coming out of the rock making new rocks and we watch some animals even make houses and food out of the hot hot water that turns to rock as it cools. To take care of the sense things we use and control water cars and smaller water cars that can dive deep in the water away from the bigger water car. We like to put new things in the water and take things out of the water that need to be fixed at least once a year. Sense things are very cool because you can use the sense things with your computer too. We share everything for free on our computers, which your computer talks to and gets pictures and sounds for you. Sharing the facts from the sense things is the best part about having the sense things because we can get many new ideas about understanding the big water from anyone with a computer!

  14. North Atlantic Deep Water and the World Ocean

    NASA Technical Reports Server (NTRS)

    Gordon, A. L.

    1984-01-01

    North Atlantic Deep Water (NADW) by being warmer and more saline than the average abyssal water parcel introduces heat and salt into the abyssal ocean. The source of these properties is upper layer or thermocline water considered to occupy the ocean less dense than sigma-theta of 27.6. That NADW convects even though it's warmer than the abyssal ocean is obviously due to the high salinity. In this way, NADW formation may be viewed as saline convection. The counter force removing heat and salinity (or introducing fresh water) is usually considered to to take place in the Southern Ocean where upwelling deep water is converted to cold fresher Antarctic water masses. The Southern ocean convective process is driven by low temperatures and hence may be considered as thermal convection. A significant fresh water source may also occur in the North Pacific where the northward flowing of abyssal water from the Southern circumpolar belt is saltier and denser than the southward flowing, return abyssal water. The source of the low salinity input may be vertical mixing of the low salinity surface water or the low salinity intermediate water.

  15. Deep water source cooling: An un-tapped resource

    SciTech Connect

    Burford, H.E.; Wiedemann, L.; Joyce, W.S.; McCabe, R.E.

    1995-12-31

    Deep water source cooling (DWSC) refers to the renewable use of a large body of naturally cold water as a heat sink for process and comfort space cooling. Water at a constant 40-50{degrees}F or less is withdrawn from deep areas within lakes, oceans, aquifers and rivers and is pumped through the primary side of a heat exchanger. On the secondary side, clean chilled water is produced with one tenth the average energy required by conventional, chiller based systems. Coincident with significant energy and operating cost savings, DWSC offers reductions in air-borne pollutants and the release of environmentally harmful refrigerants. This paper discusses the basic design concepts, environmental considerations and performance related to the application of lake and ocean DWSC systems.

  16. Composition and ecology of deep-water coral associations

    NASA Astrophysics Data System (ADS)

    Kühlmann, D. H. H.

    1983-06-01

    Between 1966 and 1978 SCUBA investigations were carried out in French Polynesia, the Red Sea, and the Caribbean, at depths down to 70 m. Although there are fewer coral species in the Caribbean, the abundance of Scleractinia in deep-water associations below 20 m almost equals that in the Indian and Pacific Oceans. The assemblages of corals living there are described and defined as deep-water coral associations. They are characterized by large, flattened growth forms. Only 6 to 7 % of the species occur exclusively below 20 m. More than 90 % of the corals recorded in deep waters also live in shallow regions. Depth-related illumination is not responsible for depth differentiations of coral associations, but very likely, a complex of mechanical factors, such as hydrodynamic conditions, substrate conditions, sedimentation etc. However, light intensity determines the general distribution of hermatypic Scleractinia in their bathymetric range as well as the platelike shape of coral colonies characteristic for deep water associations. Depending on mechanical factors, Leptoseris, Montipora, Porites and Pachyseris dominate as characteristic genera in the Central Pacific Ocean, Podabacia, Leptoseris, Pachyseris and Coscinarea in the Red Sea, Agaricia and Leptoseris in the tropical western Atlantic Ocean.

  17. A system of automated processing of deep water hydrological information

    NASA Technical Reports Server (NTRS)

    Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.

    1974-01-01

    An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.

  18. Versatile repair vessel tested in deep water

    SciTech Connect

    Not Available

    1985-07-01

    Testing of a new subsea pipeline repair system in up to 1640 ft of water has been completed. The versatile system, integrated into a catamaran-type vessel, was to be operational by the end of 1985. The main characteristic of the Submersible Underwater Pipeline Repair and Work Apparatus (Supra) is its stable floating capability on the sea surface. Supra can be towed by a supply tug or diving support vessel at five knots in 13-ft waves. The system can be operated without the assistance of heavy-lift cranes or large barges. The developers claim Supra is highly independent of bad weather and sea conditions and can work 90% of the year. Since Supra is pressure-proof similar to a submarine, it can be submerged at sea by means of an integrated propulsion and ballast system and then maneuvered to the desired working location and positioned on the seabed by means of an underwater tracking and navigation system.

  19. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-01-22

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can be applied to offset this effect. Tuning will also disturb the location of extracted amplitudes on AVO intercept and gradient (A-B) plots. Many deep water reservoirs fall this tuning thickness range. Our goal for the remaining project period is to systematically combine and document these various effects for use in deep water exploration.

  20. Seismic Evaluation of Hydorcarbon Saturation in Deep-Water Reservoirs

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-10-31

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we have moved forward on several fronts, including data acquisition as well as analysis and application. During this quarter we have: (1) Completed our site selection (finally); (2) Measured fluid effects in Troika deep water sand sample; (3) Applied the result to Ursa ''fizz gas'' zone; (4) Compared thin layer property averaging on AVO response; (5) Developed target oriented NMO stretch correction; (6) Examined thin bed effects on A-B crossplots; and (7) Begun incorporating outcrop descriptive models in seismic forward models. Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our hydrocarbon indicators. Reservoirs composed of thin bed effects will broaden the reflection amplitude distribution with incident angle. Normal move out (NMO) stretch corrections based on frequency shifts can be applied to offset this effect. Tuning will also disturb the location of extracted amplitudes on AVO intercept and gradient (A-B) plots. Many deep water reservoirs fall this tuning thickness range. Our goal for the remaining project period is to systematically combine and document these various effects for use in deep water exploration.

  1. Deep-sea floor instability to cause of deep-water cable fault, off East Taiwan

    NASA Astrophysics Data System (ADS)

    Soh, W.; Machiyama, H.; Shiraishi, Y.; Kasahara, J.

    2007-12-01

    In 2002 to 2003 years, many deep-water cable faults were taken place in the sites deeper than 4,700 m of water depth, off east Taiwan to the Okinawa Trench. Many commercial base cables were seriousely brocken in the events. To investgate the cause of the cable fault in the deep water environment we examined the location and timing of the cable faults and compared them with data/records of the bathymetry, sesimic records and precipitation of the coast range of Taiwan. Because the events were most likely to be caused by turbidite flows that run and developed along the submarine channels such as Taitung and Hualien Channels. Velocity of the turbidites reached 10 to 12 m/s on an average in the setting. The turbidtes were not hyperpicnal flow being caused by onland food event but seismoturbidite. The events were taken place just after earthqaukes ranging from 5.0 to 6.0, and the depths of the EQ sources were shallower than 23 km in and around the coast range of Taiwan. What we learn from this case is that the cable fault may be happened if the condition (or rule) is satisfied. If it is true, the cable fault in the deep water environment in the region can be predicted.

  2. Effect of quality of phreatic aquifer water and water upwelling on constructions. A case study of Ouargla

    NASA Astrophysics Data System (ADS)

    Saggaï, Sofiane; Bachi, Oum Elkheir; Saggaï, Ali

    2016-07-01

    In Ouargla's oasis, which is one of urban conglomerations of Algerian Sahara, the exploitation and/or the overexploitation of the deep aquifers of continental intercalary and of complex terminal that contain waters of mediocre quality (salty and hot), and the rejection of waters of drainage, urban residual waters and non-treated industrial waters are responsible, at the same time, of the degradation of the quality of waters of the groundwater and its upwelling. This situation has led to: (i) the deterioration of the environment and (ii) the deterioration of constructions (houses, roads, etc…). The present paper consists in giving in detail the causes of the water upwelling of phreatic aquifers in our regions, the quality of water of this aquifer and the influence of the quality of phreatic aquifer water on environment and constructions in Ouargla city by analyzing water samples of 10 points of this town.

  3. Development of study on the dynamic characteristics of deep water mooring system

    NASA Astrophysics Data System (ADS)

    Tang, You-Gang; Zhang, Su-Xia; Zhang, Ruo-Yu; Liu, Hai-Xiao

    2007-09-01

    To meet the needs of those exploiting deepwater resources, TLP and SPAR platforms are used in some areas and are considered excellent platforms in deep water. However, many problems remain to be resolved. The design of mooring systems is a key issue for deep water platforms. Environmental loads in deep water effect the physical characteristics of mooring line materials. The configuration and analysis of mooring systems involve nonlinearity due to this fluid-solid coupling, nonlinear hydrodynamic forces, and their effects on stability of motion. In this paper, some pivotal theories and technical questions are presented, including modeling of mooring lines, the theory and method of coupled dynamics analysis on the mooring system, and the development of methodologies for the study of nonlinear dynamics of mooring systems. Further study on mooring systems in deep water are recommended based on current knowledge, particularly dynamic parameters of different materials and cable configuration, interactions between seabed and cable, mechanisms of mooring system response induced by taut/slack mooring cables, discontinuous stiffness due to system materials, mooring construction, and motion instability, etc.

  4. Countermeasures Planned for Reducing Water Inflow into Deep Shafts at the Mizunami Underground Research Laboratory

    NASA Astrophysics Data System (ADS)

    Kuji, Masayoshi; Sato, Toshinori; Mikake, Shinichiro; Hara, Nasato; Minamide, Masashi; Sugihara, Kozo

    The Mizunami Underground Research Laboratory (MIU) is currently being constructed. The MIU design consists of two 1,000 m-deep shafts with several research galleries. The goals of the MIU project are to establish techniques for investigation, analysis and assessment of deep geological environments, and to develop a range of engineering expertise for application in deep underground excavations in crystalline rocks such as granite. The diameter of the Main and the Ventilation Shafts are 6.5 m and 4.5 m, respectively. Horizontal tunnels to connect the shafts will be excavated at 100 m depth intervals. The Middle Stage, at about 500 m in depth, and the Main Stage, at about 1,000 m in depth, will be the main locations for scientific investigations. The Main and the Ventilation Shafts were 180 m and 191 m deep, respectively, in November 2006. During construction, water inflow into the shafts has been increasing and affecting the project progress. In order to reduce the water inflow into the shafts, pre- and post-excavation grouting has been planned. A post-excavation grouting test has been undertaken in the Ventilation Shaft and the applicability of several techniques has been evaluated. This paper describes an outline of the MIU project, its work plan and the results of the post-excavation grouting test.

  5. Deep oxygenated ground water: Anomaly or common occurrence?

    USGS Publications Warehouse

    Winograd, I.J.; Robertson, F.N.

    1982-01-01

    Contrary to the prevailing notion that oxygen-depleting reactions in the soil zone and in the aquifer rapidly reduce the dissolved oxygen content of recharge water to detection limits, 2 to 8 milligrams per liter of dissolved oxygen is present in water from a variety of deep (100 to 1000 meters) aquifers in Nevada, Arizona, and the hot springs of the folded Appalachians and Arkansas. Most of the waters sampled are several thousand to more than 10,000 years old, and some are 80 kilometers from their point of recharge. Copyright ?? 1982 AAAS.

  6. Effects of Constructing versus Playing an Educational Game on Student Motivation and Deep Learning Strategy Use

    ERIC Educational Resources Information Center

    Vos, Nienke; van der Meijden, Henny; Denessen, Eddie

    2011-01-01

    In this study the effects of two different interactive learning tasks, in which simple games were included were described with respect to student motivation and deep strategy use. The research involved 235 students from four elementary schools in The Netherlands. One group of students (N = 128) constructed their own memory "drag and drop" game,…

  7. Deep ocean mineral water accelerates recovery from physical fatigue

    PubMed Central

    2013-01-01

    Background Deep oceans have been suggested as a possible site where the origin of life occurred. Along with this theoretical lineage, experiments using components from deep ocean water to recreate life is underway. Here, we propose that if terrestrial organisms indeed evolved from deep oceans, supply of deep ocean mineral water (DOM) to humans, as a land creature, may replenish loss of molecular complexity associated with evolutionary sea-to-land migration. Methods We conducted a randomized, double-blind, placebo-controlled crossover human study to evaluate the effect of DOM, taken from a depth of 662 meters off the coast of Hualien, Taiwan, on time of recovery from a fatiguing exercise conducted at 30°C. Results The fatiguing exercise protocol caused a protracted reduction in aerobic power (reduced VO2max) for 48 h. However, DOM supplementation resulted in complete recovery of aerobic power within 4 h (P < 0.05). Muscle power was also elevated above placebo levels within 24 h of recovery (P < 0.05). Increased circulating creatine kinase (CK) and myoglobin, indicatives of exercise-induced muscle damage, were completely eliminated by DOM (P < 0.05) in parallel with attenuated oxidative damage (P < 0.05). Conclusion Our results provide compelling evidence that DOM contains soluble elements, which can increase human recovery following an exhaustive physical challenge. PMID:23402436

  8. Early Oligocene initiation of North Atlantic Deep Water formation

    NASA Astrophysics Data System (ADS)

    Davies, Richard; Cartwright, Joseph; Pike, Jennifer; Line, Charles

    2001-04-01

    Dating the onset of deep-water flow between the Arctic and North Atlantic oceans is critical for modelling climate change in the Northern Hemisphere and for explaining changes in global ocean circulation throughout the Cenozoic era (from about 65 million years ago to the present). In the early Cenozoic era, exchange between these two ocean basins was inhibited by the Greenland-Scotland ridge, but a gateway through the Faeroe-Shetland basin has been hypothesized. Previous estimates of the date marking the onset of deep-water circulation through this basin-on the basis of circumstantial evidence from neighbouring basins-have been contradictory, ranging from about 35 to 15 million years ago. Here we describe the newly discovered Southeast Faeroes drift, which extends for 120km parallel to the basin axis. The onset of deposition in this drift has been dated to the early Oligocene epoch (~35 million years ago) from a petroleum exploration borehole. We show that the drift was deposited under a southerly flow regime, and conclude that the initiation of deep-water circulation from the Norwegian Sea into the North Atlantic Ocean took place much earlier than is currently assumed in most numerical models of ancient ocean circulation.

  9. Early Oligocene initiation of North Atlantic Deep Water formation.

    PubMed

    Davies, R; Cartwright, J; Pike, J; Line, C

    2001-04-19

    Dating the onset of deep-water flow between the Arctic and North Atlantic oceans is critical for modelling climate change in the Northern Hemisphere and for explaining changes in global ocean circulation throughout the Cenozoic era (from about 65 million years ago to the present). In the early Cenozoic era, exchange between these two ocean basins was inhibited by the Greenland-Scotland ridge, but a gateway through the Faeroe-Shetland basin has been hypothesized. Previous estimates of the date marking the onset of deep-water circulation through this basin-on the basis of circumstantial evidence from neighbouring basins-have been contradictory, ranging from about 35 to 15 million years ago. Here we describe the newly discovered Southeast Faeroes drift, which extends for 120 km parallel to the basin axis. The onset of deposition in this drift has been dated to the early Oligocene epoch ( approximately 35 million years ago) from a petroleum exploration borehole. We show that the drift was deposited under a southerly flow regime, and conclude that the initiation of deep-water circulation from the Norwegian Sea into the North Atlantic Ocean took place much earlier than is currently assumed in most numerical models of ancient ocean circulation. PMID:11309613

  10. Laminated rubber articulated joint for the Deep Water Gravity Tower

    SciTech Connect

    Sedillot, F.; Stevenson, A.

    1983-12-01

    The Deep Water Gravity Tower is an articulated structure resting on a fixed base through an articulated joint which is composed of curved laminated rubber pads, made from alternate layers of rubber and metallic shims. The paper first outlines the main design concept with the articulated joint. Some analysis is then provided of the response to imposed rotation and vertical load. This includes a brief description of the results of a finite element analysis. The paper then reviews the test performed on laminated rubber during 1980 and 1981 to assess the feasibility of the articulation: fatigue tests; environmental tests (effect of sea water, temperature, pressure).

  11. Influence of Reservoir Infill on Coastal Deep Water Hypoxia.

    PubMed

    Linker, Lewis C; Batiuk, Richard A; Cerco, Carl F; Shenk, Gary W; Tian, Richard; Wang, Ping; Yactayo, Guido

    2016-05-01

    Ecological restoration of the Chesapeake through the Chesapeake Bay total maximum daily load (TMDL) requires the reduction of nitrogen, phosphorus, and sediment loads in the Chesapeake watershed because of the tidal water quality impairments and damage to living resources they cause. Within the Chesapeake watershed, the Conowingo Reservoir has been filling in with sediment for almost a century and is now in a state of near-full capacity called . The development of the Chesapeake TMDL in 2010 was with the assumption that the Conowingo Reservoir was still effectively trapping sediment and nutrients. This is now known not to be the case. In a TMDL, pollutant loads beyond the TMDL allocation, which are brought about by growth or other conditions, must be offset. Using the analysis tools of the Chesapeake TMDL for assessing the degree of water quality standard attainment, the estimated nutrient and sediment loads from a simulated dynamic equilibrium infill condition of the Conowingo Reservoir were determined. The influence on Chesapeake water quality by a large storm and scour event of January 1996 on the Susquehanna River was estimated, and the same storm and scour events were also evaluated in the more critical living resource period of June. An analysis was also made on the estimated influence of more moderate high flow events. The infill of the Conowingo reservoir had estimated impairments of water quality, primarily on deep-water and deep-channel dissolved oxygen, because of increased discharge and transport of organic and particulate inorganic nutrients from the Conowingo Reservoir. PMID:27136155

  12. Exploring deep potential aquifer in water scarce crystalline rocks

    NASA Astrophysics Data System (ADS)

    Chandra, Subash; Nagaiah, E.; Reddy, D. V.; Rao, V. Ananda; Ahmed, Shakeel

    2012-12-01

    Characterization of the shear zone with pole-pole electrical resistivity tomography (ERT) was carried out to explore deep groundwater potential zone in a water scarce granitic area. As existing field conditions does not always allow to plant the remote electrodes at sufficiently far of distance, the effect of insufficient distance of remote electrodes on apparent resistivity measurement was studied and shown that the transverse pole-pole array affects less compared to the collinear pole-pole array. Correction factor have been computed for transverse pole-pole array for various positions of the remote electrodes. The above results helped in exploring deep aquifer site, where a 270 m deep well was drilled. Temporal hydro-chemical samples collected during the pumping indicated the hydraulic connectivity between the demarcated groundwater potential fractures. Incorporating all the information derived from different investigations, a subsurface model was synthetically simulated and generated 2D electrical resistivity response for different arrays and compared with the field responses to further validate the geoelectrical response of deep aquifer set-up associated with lineament.

  13. Is Centrophorus squamosus a highly migratory deep-water shark?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cabello, Cristina; Sánchez, Francisco

    2014-10-01

    Deep-water sharks are considered highly vulnerable species due to their life characteristics and very low recovery capacity against overfishing. However, there is still limited information on the ecology or population connectivity of these species. The aim of this study was to investigate if the species Centrophorus squamosus could make long displacements and thus confirm the existence of connectivity between different deep-water areas. In addition, the study was the first attempt to use tagging techniques on deep-water sharks, since it has never been undertaken before. Five C. squamosus were tagged with satellite tags (PAT) in the El Cachucho Marine Protected Area (Le Danois Bank) located in waters of the North of Spain, Cantabrian Sea (NE Atlantic). Data from four of these tags were recovered. One of the sharks travelled approximately 287 nm toward the north east (French continental shelf) hypothetically following the continental slope at a mean depth of 901±109 m for 45 days. Two other sharks spent almost 4 months traveling, in which time they moved 143 and 168 nm, respectively, to the west (Galician coast). Finally, another leafscale gulper shark travelled to the NW (Porcupine Bank) during a period of 3 months at a mean depth of 940±132 m. Depth and temperature preferences for all the sharks are discussed. Minimum and maximum depths recorded were 496 and 1848 m, respectively. The temperature range was between 6.2 and 11.4 °C, but the mean temperature was approximately 9.9±0.7 °C. The sharks made large vertical displacements throughout the water column with a mean daily depth range of 345±27 m. These preliminary results support the suggestion of a whole population in the NE Atlantic and confirm the capacity of this species to travel long distances.

  14. Flexible riser configuration for a FPSO in deep waters

    SciTech Connect

    Karunakaran, D.; Leira, B.J.; Olufsen, A.; Nordsve, N.T.

    1995-12-31

    Throughout the world development of oil and gas fields in deep and ultra deep waters is being considered. Floating systems offer an efficient alternative for development of such fields. Flexible risers will in general form an important part of such floating production system. Presently, the flexible risers are designed by application of factor of safety, which is based on experience from laboratory tests, theoretical pipe mechanics and engineering know-how. Generally, it is not based on reliability calculations and risk assessment. Hence it is very important to assess the safety level in current design practice and to aim at a rational and safe design procedure. In this paper, a reliability analysis procedure for flexible riser systems based on a response surface methodology and FORM/SORM methods is outlined. It is applied to a deep water riser system. In this case only a failure criterion at the top end is considered. This location is critical for this riser with respect to Ultimate Limit State (ULS). The results indicate a sufficient safety level for the top end of the riser. However, it is emphasized that this is not a conclusive result with respect to riser safety in general. A more comprehensive study is required to assess the overall safety level for flexible riser systems. Such a study should include a number of different riser configurations and limit states, specifically FLS criteria, to arrive at more general conclusions.

  15. Slab dehydration and deep water recycling through time

    NASA Astrophysics Data System (ADS)

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2015-04-01

    The fate of water in subduction zones is a key feature that influences the magmatism of the arcs, the rheology of the mantle, and the recycling of volatiles. We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity, slab age, and mantle potential temperature. Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. A hotter mantle (i.e., early Earth setting) drives the onset of crustal dehydration slightly shallower, but, mostly, dehydration reactions are very similar to those occurring in present-day setting. However, for very fast slabs and very hot mantle epidote is involved as a dehydrating crustal phase. Moreover, we provide a scaling law to estimate the amount of water that can be carried deep into the mantle. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ~15 Myr decrease of plate age, or 3) decrease in subduction velocity of ~2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ~2.2x105 kg/m2 of H2O. We estimate that for present-day conditions ~26% of the global influx water, or 7x108 Tg/Myr of H2O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5-3.7x108 Tg/Myr of H2O could still be recycled in the mantle at 2.8 Ga.

  16. Deep water drilling risers in calm and harsh environments

    SciTech Connect

    Olufsen, A.; Nordsve, N.T.

    1994-12-31

    The overall objective of the work presented in this paper is to increase the knowledge regarding application of deep water drilling risers in different environmental conditions. Identification of key parameters and their impact on design and operation of deep water drilling risers are emphasized. Riser systems for two different cases are evaluated. These are: drilling offshore Nigeria in 1,200 m water depth; drilling at the Voering Plateau offshore Northern Norway in 1,500 m water depth. The case studies are mainly referring to requirements related to normal drilling operation of the riser. They are not complete with respect to describe of total riser system design. The objectives of the case studies have been to quantify the important of various parameters and to establish limiting criteria for drilling. Dynamic riser analyses are also performed. For the Nigeria case, results for a design wave with 100 years return period show that the influence of dynamic response is only marginal (but it may of course be significant for fatigue damage/life time estimation). The regularity of the drilling operation is given as the probability that jointly occurring wave heights and current velocities are within the limiting curve.

  17. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water

    PubMed Central

    Frank, Alexander H.; Garcia, Juan A. L.; Herndl, Gerhard J.

    2016-01-01

    Summary To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep‐water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. PMID:26914787

  18. Analytical calculation of muon intensities under deep sea-water

    NASA Technical Reports Server (NTRS)

    Inazawa, H.; Kobayakawa, K.

    1985-01-01

    The study of the energy loss of high energy muons through different materials, such as rock and sea-water can cast light on characteristics of lepton interactions. There are less ambiguities for the values of atomic number (Z) and mass number (A) in sea-water than in rock. Muon intensities should be measured as fundamental data and as background data for searching the fluxes of neutrino. The average range energy relation in sea-water is derived. The correction factors due to the range fluctuation is also computed. By applying these results, the intensities deep under sea are converted from a given muon energy spectra at sea-level. The spectra of conventional muons from eta, K decays have sec theta enhancement. The spectrum of prompt muons from charmed particles is almost isotropic. The effect of prompt muons is examined.

  19. Perception vs. reality in deep-water exploration

    SciTech Connect

    Shanmugam, G. )

    1996-01-01

    The common perception in exploration is that deep-water sands are predominantly a product of low- and high-density turbidity currents, and that submarine-fan models with channel/levee and lobe elements are the norm. The reality, however, is that deep-water systems are extremely complex and variable in terms of depositional processes and sand-body geometries. For example, the Bourna Sequence, composed of T[sub a], T[sub b], T[sub c], T[sub d], and T[sub e] divisions, is believed to be the product of a turbidity current. However, recent core and outcrop studies show that the complete and partial Bouma sequences also can be explained by processes other than turbidity currents, such as sandy debris flows (i.e., [open quotes]T[sub a][close quotes]) and bottom-current reworking (i.e., [open quotes]T[sub b], T[sub c] and T[sub d][close quotes]). Massive sands are interpreted routinely as high-density turbidites, but the reality is that the term [open quotes]high-density turbidity current[close quotes] commonly refers to sandy debris flow in terms of flow theology and sediment-support mechanism. Deep-water sequences in the North Sea, Norwegian Sea, Offshore Gabon, Offshore Nigeria, Gulf of Mexico, and the Ouachita Mountains are generally considered to be turbidite-rich submarine fans. However, the reality is that these sequences are composed predominantly of sandy slumps and debris flows, not turbidites. Fan models are attractive to explorationists because of their predictable sheet-like geometries; however, these simplistic conceptual models are obsolete because they defy reality. Although the turbidite paradigm is alive and well for now in the minds of many sedimentologists and sequence stratigraphers, the turbidites themselves that form the foundation for fan models are becoming an endangered facies

  20. Perception vs. reality in deep-water exploration

    SciTech Connect

    Shanmugam, G.

    1996-12-31

    The common perception in exploration is that deep-water sands are predominantly a product of low- and high-density turbidity currents, and that submarine-fan models with channel/levee and lobe elements are the norm. The reality, however, is that deep-water systems are extremely complex and variable in terms of depositional processes and sand-body geometries. For example, the Bourna Sequence, composed of T{sub a}, T{sub b}, T{sub c}, T{sub d}, and T{sub e} divisions, is believed to be the product of a turbidity current. However, recent core and outcrop studies show that the complete and partial Bouma sequences also can be explained by processes other than turbidity currents, such as sandy debris flows (i.e., {open_quotes}T{sub a}{close_quotes}) and bottom-current reworking (i.e., {open_quotes}T{sub b}, T{sub c} and T{sub d}{close_quotes}). Massive sands are interpreted routinely as high-density turbidites, but the reality is that the term {open_quotes}high-density turbidity current{close_quotes} commonly refers to sandy debris flow in terms of flow theology and sediment-support mechanism. Deep-water sequences in the North Sea, Norwegian Sea, Offshore Gabon, Offshore Nigeria, Gulf of Mexico, and the Ouachita Mountains are generally considered to be turbidite-rich submarine fans. However, the reality is that these sequences are composed predominantly of sandy slumps and debris flows, not turbidites. Fan models are attractive to explorationists because of their predictable sheet-like geometries; however, these simplistic conceptual models are obsolete because they defy reality. Although the turbidite paradigm is alive and well for now in the minds of many sedimentologists and sequence stratigraphers, the turbidites themselves that form the foundation for fan models are becoming an endangered facies!

  1. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2006-01-30

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), our efforts have become focused on technology transfer. To this end, we completing our theoretical developments, generating recommended processing flows, and perfecting our rock and fluid properties interpretation techniques. Some minor additional data analysis and modeling will complete our case studies. During this quarter we have: Presented findings for the year at the DHI/FLUIDS meeting at UH in Houston; Presented and published eight papers to promote technology transfer; Shown how Rock and fluid properties are systematic and can be predicted; Shown Correct values must be used to properly calibrate deep-water seismic data; Quantified and examined the influence of deep water geometries in outcrop; Compared and evaluated hydrocarbon indicators for fluid sensitivity; Identified and documented inappropriate processing procedures; Developed inversion techniques to better distinguish hydrocarbons; Developed new processing work flows for frequency-dependent anomalies; and Evaluated and applied the effects of attenuation as an indicator. We have demonstrated that with careful calibration, direct hydrocarbon indicators can better distinguish between uneconomic ''Fizz'' gas and economic hydrocarbon reservoirs. Some of this progress comes from better characterization of fluid and rock properties. Other aspects include alternative techniques to invert surface seismic data for fluid types and saturations. We have also developed improved work flows for accurately measuring frequency dependent changes in seismic data that are predicted by seismic models, procedures that will help to more reliably identify anomalies associated with hydrocarbons. We have been prolific in publishing expanded abstracts and presenting results, particularly at the SEG. This year, we had eight such papers to promote technology transfer

  2. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    SciTech Connect

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and tuning will alter our

  3. A new approach to pipelaying in deep water

    SciTech Connect

    Vermeulen, E.

    1994-12-31

    The last two decades the pipelaying industry has been moving into ever deeper waters. In the beginning of the Seventies the Norwegian trench with a depth of more than 300 m was considered a technical challenge. Now that trench has been crossed a number of times, and pipelines have been installed in a water depth of 600 m while plans are being made to lay in even deeper waters. Platforms have been installed in a depth of 350 m, and the pull-in of pipelines into the J-tubes of such platforms has almost become routine. Previous studies into the laying of pipelines indicated that the J-lay method would be the most suitable for the installation of pipelines in deep water. However, by using more realistic limits on the bending strain than have been customary until now, the S-lay method can be extended to much greater depths, especially with the advent of dynamically positioned lay vessels with long fixed stingers. This method has the advantage that higher laying speeds can be achieved and that conventional welding and NDE methods can be applied. This paper gives a review of the effect of higher strain levels on the laying capabilities of S-lay vessels and describes work that is being done to come to the verification of actual strain levels in pipelines during the laying process. It further presents a discussion of experience gained with the connection of pipelines by the Deflect-to-Connect (DTC) method and the diverless installation of Small PipeLine End Manifolds (PLEMS) in deep water. Finally, a description is given of a diverless method of repairing pipelines.

  4. Deep-sea channel/submarine-yazoo system of the Labrador Sea: A new deep-water facies model

    SciTech Connect

    Hesse, R.; Rakofsky, A. )

    1992-05-01

    The deep-sea channel/submarine-yazoo system is a newly recognized deep-water depositional environment that is significantly different from previously documented turbidite environments. The new system is in many ways the antithesis of classical deep-sea fans. The purpose of this paper is to present the characteristics and elements of the system, develop a facies model for it, establish the system variables, and discuss its possible significance in the geologic record and in subsurface exploration. Previous investigators of deepwater turbidite sediments often faced difficulties in trying to fit their sequences into traditional single-source, deep-sea fan models. The present model fills part of an obvious gap in interpretation schemes for deep-water clastic sediments.

  5. Deep Water Compositions From the Los Angeles Basin and the Origin of Formation Water Salinity

    NASA Astrophysics Data System (ADS)

    Boles, J.; Giles, G.; Lockman, D.

    2005-12-01

    Deep basin formation waters represent original depositional waters that have been modified by diagenetic processes at elevated temperatures and pressures. In addition, they may be diluted by meteoric incursion from elevated structural blocks along basin flanks. It has long been thought that deep basin formation waters have salinities greater than sea water due to various processes like clay membrane filtration or other types of water-rock interaction. However, our work and similar studies in the San Joaquin basin show that formation waters in deep basins are more likely to become diluted rather than concentrated in the absence of soluble evaporite deposits that might underlie the basin. The idea of increased salinity with depth arose from studies in which the underpinning of the basin consisted of soluble evaporate deposits such as the Texas Gulf Coast, Illinois, Michigan, and some North Sea areas. There are very few deep formation water analyses from the Los Angeles Basin. Furthermore, very few of the current produced waters from any depth can be considered pristine because of the widespread formation water injection programs and commingling of fluids from different levels. Here, we describe the first analyses from a deep, previously untouched part of the basin that is currently being developed in the Inglewood Oil Field. We have analyzed a suite of formation waters from the mid-Miocene marine Sentous sandstone from sub-sea level depths of 2250 m to 2625 m at temperatures of about 110 to 126°C and pressures of about 27 MPa. The original depositional waters in the Sentous Formation were sea water whereas the sampled waters are diluted by about 20% from sea water and some show as much as 50% dilution. Based on comparison of oxygen and deuterium isotopes between the meteoric water trend and these waters, we conclude that the smectite to illite dehydration reaction is the major cause of dilution to the original formation water. Other notable differences include

  6. Adaptation to deep-sea methane seeps from Cretaceous shallow-water black shale environments?

    NASA Astrophysics Data System (ADS)

    Kiel, Steffen; Wiese, Frank; Titus, Alan

    2013-04-01

    Sulfide-enriched environments in shallow water were considered as sites where animals acquire pre-adaptations enabling them to colonize deep-sea hydrothermal vents and seeps or where they survived extinction events in their deep-sea habitats. Here we present upper Cenomanian (early Late Cretaceous) shallow-water seep communities from the Tropic Shale in the Western Interior Seaway, USA, that lived during a time of extremely warm deep-water temperatures, which supposedly facilitates adaptations to the deep sea, and time-equivalent with a period of widespread oceanic and photic zone anoxia (OAE 2) that supposedly extinguished deep-water vent and seep faunas. Contrary to the expectation, the taxa inhabiting the Tropic Shale seeps were not found at any coeval or younger deep-water seep or vent deposit. This suggests that (i) pre-adaptations for living at deep-sea vents and seeps do not evolve at shallow-water methane seeps, and probably also not in sulfide-rich shallow-water environments in general; (ii) a low temperature gradient from shallow to deep water does not facilitate onshore-offshore adaptations to deep-sea vents and seeps; and (iii) shallow-water seeps did not act as refuges for deep-sea vent and seep animals. We hypothesize that the vast majority of adaptations to successfully colonize deep-sea vents and seeps are acquired below the photic zone.

  7. Evidence for primordial water in Earth’s deep mantle

    NASA Astrophysics Data System (ADS)

    Hallis, Lydia J.; Huss, Gary R.; Nagashima, Kazuhide; Taylor, G. Jeffrey; Halldórsson, Sæmundur A.; Hilton, David R.; Mottl, Michael J.; Meech, Karen J.

    2015-11-01

    The hydrogen-isotope [deuterium/hydrogen (D/H)] ratio of Earth can be used to constrain the origin of its water. However, the most accessible reservoir, Earth’s oceans, may no longer represent the original (primordial) D/H ratio, owing to changes caused by water cycling between the surface and the interior. Thus, a reservoir completely isolated from surface processes is required to define Earth’s original D/H signature. Here we present data for Baffin Island and Icelandic lavas, which suggest that the deep mantle has a low D/H ratio (δD more negative than -218 per mil). Such strongly negative values indicate the existence of a component within Earth’s interior that inherited its D/H ratio directly from the protosolar nebula.

  8. Evidence for primordial water in Earth's deep mantle.

    PubMed

    Hallis, Lydia J; Huss, Gary R; Nagashima, Kazuhide; Taylor, G Jeffrey; Halldórsson, Sæmundur A; Hilton, David R; Mottl, Michael J; Meech, Karen J

    2015-11-13

    The hydrogen-isotope [deuterium/hydrogen (D/H)] ratio of Earth can be used to constrain the origin of its water. However, the most accessible reservoir, Earth's oceans, may no longer represent the original (primordial) D/H ratio, owing to changes caused by water cycling between the surface and the interior. Thus, a reservoir completely isolated from surface processes is required to define Earth's original D/H signature. Here we present data for Baffin Island and Icelandic lavas, which suggest that the deep mantle has a low D/H ratio (δD more negative than -218 per mil). Such strongly negative values indicate the existence of a component within Earth's interior that inherited its D/H ratio directly from the protosolar nebula. PMID:26564850

  9. Offshore oil & gas: Deep waters dominate in 1997

    SciTech Connect

    Pagano, S.S.

    1997-01-01

    Deep water exploration and field development dominate the energy market as 1997 begins. All indicators point that a turnaround in the oil and gas industry is in full swing. Strong market fundamentals are in place: the worldwide offshore mobile rig fleet is approaching full utilization of marketed rigs, which has tightened the supply/demand balance and boosted day rates for all types of drilling units. The exploration and production niche is in its healthiest shape in more than 15 years with a growth spurt in progress. The excess rig supply has disappeared and some market observers believe the present supply of deep water rigs needs to triple just to meet demand in the Gulf of Mexico market alone. There is evidence that some energy companies are delaying drilling programs because suitable rigs simply are not available. Floating rigs generally are working longer-term contracts with some units under contract until late in the decade. Analysts forecast a heated market over the next 12 to 18 months. Gas prices are expected to remain strong through 1997 and crude prices should hold steady.

  10. Implementation and testing of a Deep Water Correlation Velocity Sonar

    SciTech Connect

    Dickey, F.R.; Bookheimer, W.C.; Rhoades, K.W.

    1983-05-01

    The paper describes a new sonar designated the Magnavox MX 810 Deep Water Correlation Sonar which is under development by the General Electric Company and the Magnavox Advanced Products and Systems Company. The sonar measures ship's velocity relative to the bottom but instead of using the conventional doppler effect, it uses the correlation method described by Dickey and Edward in 1978. In this method, the narrow beams required for doppler are not needed and a low frequency that penetrates to the bottom in deep water is used. The sonar was designed with the constraint that it use a transducer that mounts through a single 12 inch gate valve. Most offshore geophysical surveys at present make use of an integrated navigation system with bottom referenced velocity input from a doppler sonar which, because of limitations on the sonar bottomtracking range, has difficulty in areas where the water depth is greater than about 500 meters. The MX 810 provides bottom tracking in regions of much greater water depth. It also may be applied as an aid in continuous positioning of a vessel over a fixed location. It also should prove useful as a more general navigation aid. The sonar is undergoing a series of tests using Magnavox's facilities for the purpose of verifying the performance and obtaining data to support and quantify planned improvements in both software and hardware. A prototype transducer of only 5 watts power output was used, but in spite of this low power, successful operation to depths of 1900 meters was obtained. Extrapolation to system parameters to be implemented in production models predicts operation to depths of 5000 meters.

  11. New Insights on Jupiter's Deep Water Abundance from Disequilibrium Species

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Gierasch, Peter; Lunine, Jonathan; Mousis, Olivier

    2014-11-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We aim to improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of eddy diffusion coefficient. The new formulation predicts a smooth transition from slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for newly derived coefficient of less than 25%, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraintprovided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other one constrains the water enrichment between 7 and 23. This difference calls for a better assessment of CO kinetic models.

  12. New insights on Jupiter's deep water abundance from disequilibrium species

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Gierasch, Peter J.; Lunine, Jonathan I.; Mousis, Olivier

    2015-04-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of the eddy diffusion coefficient for the troposphere of giant planets. The new formulation predicts a smooth transition from the slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for the newly derived coefficient of less than 25%, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraint provided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other constrains the water enrichment between 3 and 11.

  13. Competition for water between deep- and shallow-rooted grasses

    SciTech Connect

    Healy, J.L.; Black, R.A. ); Link, S.O. )

    1994-06-01

    Competition between root systems of neighboring plants may be altered by seasonal variation in precipitation and soil moisture. Competitive effects of a deep-rooted, perennial grass, Pseudoroegneria spicata, on a shallow-rooted, perennial grass, Poa sandbergii, were monitored over two growing seasons by isolating the root system of P. sandbergii individuals within PVC tubes and comparing plant and soil characteristics to controls. When isolated for the entire growing season, P. sandbergii continued vegetative growth three weeks longer and later season soil water content was significantly greater than controls. Differences in soil water content were greatest between 30 and 50cm, below P. sandbergii's typical rooting depth. Flowering phenology was unchanged. When plants were isolated late in the season, treated plants showed more negative predown xylem pressure potential the morning after isolatron. Compared to controls, soil water content was reduced the day after tube insertion. These immediate effects on plant and soil water status may be due to removal of water supplied nightly by hydraulic lift.

  14. Robust, Optimal Water Infrastructure Planning Under Deep Uncertainty Using Metamodels

    NASA Astrophysics Data System (ADS)

    Maier, H. R.; Beh, E. H. Y.; Zheng, F.; Dandy, G. C.; Kapelan, Z.

    2015-12-01

    Optimal long-term planning plays an important role in many water infrastructure problems. However, this task is complicated by deep uncertainty about future conditions, such as the impact of population dynamics and climate change. One way to deal with this uncertainty is by means of robustness, which aims to ensure that water infrastructure performs adequately under a range of plausible future conditions. However, as robustness calculations require computationally expensive system models to be run for a large number of scenarios, it is generally computationally intractable to include robustness as an objective in the development of optimal long-term infrastructure plans. In order to overcome this shortcoming, an approach is developed that uses metamodels instead of computationally expensive simulation models in robustness calculations. The approach is demonstrated for the optimal sequencing of water supply augmentation options for the southern portion of the water supply for Adelaide, South Australia. A 100-year planning horizon is subdivided into ten equal decision stages for the purpose of sequencing various water supply augmentation options, including desalination, stormwater harvesting and household rainwater tanks. The objectives include the minimization of average present value of supply augmentation costs, the minimization of average present value of greenhouse gas emissions and the maximization of supply robustness. The uncertain variables are rainfall, per capita water consumption and population. Decision variables are the implementation stages of the different water supply augmentation options. Artificial neural networks are used as metamodels to enable all objectives to be calculated in a computationally efficient manner at each of the decision stages. The results illustrate the importance of identifying optimal staged solutions to ensure robustness and sustainability of water supply into an uncertain long-term future.

  15. Calculations of Asteroid Impacts into Deep and Shallow Water

    NASA Astrophysics Data System (ADS)

    Gisler, Galen; Weaver, Robert; Gittings, Michael

    2011-06-01

    Contrary to received opinion, ocean impacts of small (<500 m) asteroids do not produce tsunamis that lead to world-wide devastation. In fact the most dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of

  16. Cestodes from deep-water squaliform sharks in the Azores

    NASA Astrophysics Data System (ADS)

    Caira, Janine N.; Pickering, Maria

    2013-12-01

    The majority of our knowledge on marine tapeworms (cestodes) is limited to taxa that are relatively easy to obtain (i.e., those that parasitize shallower-water species). The invitation to participate in a deep-water research survey off the Condor seamount in the Azores offered the opportunity to gain information regarding parasites of the less often studied sharks of the mesopelagic and bathypelagic zone. All tapeworms (Platyhelminthes: Cestoda) found parasitizing the spiral intestine of squaliform shark species (Elasmobranchii: Squaliformes) encountered as part of this survey, as well as some additional Azorean sampling from previous years obtained from local fishermen are reported. In total, 112 shark specimens of 12 species of squaliform sharks representing 4 different families from depths ranging between 400 and 1290 m were examined. Cestodes were found in the spiral intestines from 11 of the 12 squaliform species examined: Deania calcea, D. cf. profundorum, D. profundorum, Etmopterus princeps, E. pusillus, E. spinax, Centroscyllium fabricii, Centroscymnus coelolepis, C. cryptacanthus, C. crepidater, and Dalatias licha. No cestodes were found in the spiral intestines of Centrophorus squamosus. Light microscopy and scanning electron microscopy revealed several potentially novel trypanorhynch and biloculated tetraphyllidean species. Aporhynchid and gilquiniid trypanorhynchs dominated the adult cestode fauna of Etmopterus and Deania host species, respectively, while larval phyllobothriids were found across several host genera, including, Deania, Centroscyllium, and Centroscymnus. These results corroborate previous findings that deep-water cestode faunas are relatively depauperate and consist primarily of trypanorhynchs of the families Gilquiniidae and Aporhynchidae and larval tetraphyllideans. A subset of specimens of most cestode species was preserved in ethanol for future molecular analysis to allow more definitive determinations of the identification of the

  17. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    M. Batzle; D-h Han; R. Gibson; O. Djordjevic

    2003-03-20

    The ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' (Grant/Cooperative Agreement DE-FC26-02NT15342) began September 1, 2002. During this second quarter: A Direct Hydrocarbon Indicator (DHI) symposium was held at UH; Current DHI methods were presented and forecasts made on future techniques; Dr. Han moved his laboratory from HARC to the University of Houston; Subcontracts were re-initiated with UH and TAMU; Theoretical and numerical modeling work began at TAMU; Geophysical Development Corp. agreed to provide petrophysical data; Negotiations were begun with Veritas GDC to obtain limited seismic data; Software licensing and training schedules were arranged with Paradigm; and Data selection and acquisition continues. The broad industry symposium on Direct Hydrocarbon Indicators was held at the University of Houston as part of this project. This meeting was well attended and well received. A large amount of information was presented, not only on application of the current state of the art, but also on expected future trends. Although acquisition of appropriate seismic data was expected to be a significant problem, progress has been made. A 3-D seismic data set from the shelf has been installed at Texas A&M University and analysis begun. Veritas GDC has expressed a willingness to provide data in the deep Gulf of Mexico. Data may also be available from TGS.

  18. Deep-water antipatharians: Proxies of environmental change

    USGS Publications Warehouse

    Williams, B.; Risk, Michael J.; Ross, S.W.; Sulak, K.J.

    2006-01-01

    Deep-water (307-697 m) antipatharian (black coral) specimens were collected from the southeastern continental slope of the United States and the north-central Gulf of Mexico. The sclerochronology of the specimens indicates that skeletal growth takes place by formation of concentric coeval layers. We used 210Pb to estimate radial growth rate of two specimens, and to establish that they were several centuries old. Bands were delaminated in KOH and analyzed for carbon and nitrogen stable isotopes. Carbon values ranged from -16.4??? to -15.7???; oldest specimen displayed the largest range in values. Nitrogen values ranged from 7.7??? to 8.6???. Two specimens from the same location and depth had similar 15N signatures, indicating good reproducibility between specimens. ?? 2006 Geological Society of America.

  19. Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement

    SciTech Connect

    Bern, Carleton R; Breit, George N; Healy, Richard W; Zupancic, John W; Hammack, Richard

    2013-02-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300–480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  20. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  1. Channel Extension in Deep-Water Distributive Systems

    NASA Astrophysics Data System (ADS)

    Hoyal, D. C.; Sheets, B. A.

    2007-12-01

    acceleration to Fr'-critical conditions and the formation of a depositional hydraulic jump, which perturbs sediment transport and ends channel extension. Similar morphodynamic length scale controls are observed in shallow water fan-delta experiments (e.g., SAFL DB-03) and in 2-D depositional cyclic steps. The experiments seem to explain two interesting observations from the earlier self-organized fan experiments and from real submarine fans. Firstly, the observation of 'perched' fills at the steep entrances to salt withdrawal minibasins (e.g., in the Gulf of Mexico) suggesting higher sedimentation rates (or inefficient sediment transport) on higher slopes (initially higher than at the slope break downstream). Secondly, strong progradation as the fan evolves and slope decreases in 'perched' fans suggests increasing flow efficiency on lower slopes, at least over a certain window of parameter space. Apparently deep water systems have a tendency to self-regulate even when flows differ significantly in initial density. The observed modulation to Fr'-critical flow appears to be an important control on length scales in deep- water distributive channel systems, potentially explaining strong deepwater progradation or 'delta-like' patterns that have remained paradoxical. Near critical conditions have been inferred from observations of many active submarine fans but the extent to which these results from conservative density currents apply to non-conservative and potentially 'ignitive' turbidity currents is the subject of ongoing investigation.

  2. Preparative scale and convenient synthesis of a water-soluble, deep cavitand.

    PubMed

    Mosca, Simone; Yu, Yang; Rebek, Julius

    2016-08-01

    Cavitands are established tools of supramolecular chemistry and molecular recognition, and they are finding increasing application in sensing and sequestration of physiologically relevant molecules in aqueous solution. The synthesis of a water-soluble, deep cavitand is described. The route comprises six (linear) steps from commercially available precursors, and it relies on the fourfold oligomeric cyclization reaction of resorcinol with 2,3-dihydrofuran that leads to the formation of a shallow resorcinarene framework; condensation with aromatic panels, which deepens the hydrophobic binding cavity; construction of rigid urea functionalities on the upper rim; and the introduction of the water-solubilizing methylimidazolium groups on the lower rim. Late intermediates of the synthesis can be used in the preparation of congener cavitands with different properties and applications, and a sample of such a synthetic procedure is included in this protocol. Emphasis is placed on scaled-up reactions and on purification procedures that afford materials in high yield and avoid chromatographic purification. This protocol provides improvements over previously described procedures, and it enables the preparation of sizable amounts of deep cavitands: 7 g of a water-soluble cavitand can be prepared from resorcinol in 13 working days. PMID:27388554

  3. Floating production system for deep waters, marginal fields

    SciTech Connect

    Not Available

    1984-06-01

    Concrete platform expertise developed by Norwegian Contractors has been applied to a floating production concept thought to offer considerable potential for marginal and deep-water oil fields. The design is based on a multicell Monotower solution and represents the outcome of studies reaching back to 1978. This work has focused chiefly on devising a production system for Gulf's gas/condensate discovery in 380 m water on Norwegian North Sea Block 35/8. Components covered by the conceptual design study include the catenary anchored concrete floater with condensate storage, subsea and riser systems for high-pressure gas production and topside facilities for gas and condensate treatment. A system also has been developed for periodic direct loading of condensate into a shuttle tanker, which is allowed to weathervane through 360/sup 0/ around the platform. Claimed to offer better motion characteristics than a conventional semisubmersible, the weight-stable platform comprises a series of cylindrical columns arranged in a circle, an inner ring of moonpool cells and a cantilevered base for storage.

  4. On the synoptic hydrography of intermediate and deep water masses in the Iceland Basin

    NASA Astrophysics Data System (ADS)

    Van Aken, H. M.; De Boer, C. J.

    1995-02-01

    The hydrography of intermediate deep water masses in the Iceland Basin is studied from quasi-synoptic surveys carried out in 1990 and 1991. The general water mass structure was identical for both years. The interaction and mixing of the different water types present in the basin is reviewed by means of property-property plots, vertical tracer sections and isopycnal analyses. It appears that overflow waters from the Norwegian Sea are modified in successive stages during their descent into the deep Iceland Basin. They mix with Sub-Polar Mode Water at short distances from the sills in the Faroe Bank Channel and on the Iceland-Faroe Ridge, thereby forming Iceland-Scotland Overflow Water. This water type entrains Labrador Sea water during the descent into the deep Iceland Basin, where Iceland-Scotland Overflow Water is further modified mainly by diapycnal mixing with overlying Lower Deep Water, which contains a large fraction of Antarctic Bottom Water. At intermediate levels Labrador Sea Water and Intermediate Water appear to mix laterally with a slope water mass flowing along the Icelandic and Reykjanes slopes. This slope water is formed by the direct mixing of Iceland-Scotland Overflow Water with Sub-Polar Mode Water and differs from the water mass, encountered in the central Iceland Basin. The intermediate and deep circulation in the Iceland Basin has a cyclonic character with smaller-scale variations due to topographic steering along ridges on the Icelandic slope.

  5. 48. AUTOMATIC WATER CONTROL MOTOR DRIVE FOR NEEDLES CONSTRUCTION DETAILS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. AUTOMATIC WATER CONTROL MOTOR DRIVE FOR NEEDLES CONSTRUCTION DETAILS, SANTA ANA RIVER NO. 2, JAN. 24, 1977. SCE drawing no. 455667-0. - Santa Ana River Hydroelectric System, SAR-2 Powerhouse, Redlands, San Bernardino County, CA

  6. Source and transport of human enteric viruses in deep municipal water supply wells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. Over the past several years, repeated detection of enteric viruses in water from deep wells in south-central Wisconsin, shows that viruses can be significant groundwater contaminants ...

  7. 75 FR 34929 - Safety Zones: Neptune Deep Water Port, Atlantic Ocean, Boston, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones: Neptune Deep Water Port, Atlantic Ocean... comment at the Web site http://www.regulations.gov . These safety zones are needed pending implementation... Deep Water Port, Atlantic Ocean, Boston, MA; Final Rule (USCG-2009-0589), to protect vessels from...

  8. Halogenated persistent organic pollutants in deep water fish from waters to the west of Scotland.

    PubMed

    Webster, Lynda; Walsham, Pam; Russell, Marie; Hussy, Ines; Neat, Francis; Dalgarno, Eric; Packer, Gill; Scurfield, Judith A; Moffat, Colin F

    2011-04-01

    Halogenated persistent organic pollutants [polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)] along with total lipid, were measured in the liver and muscle of three species of deep water fish (black scabbard, black dogfish (liver only) and roundnose grenadier) collected from the Rockall fishing area, to the west of Scotland, between 2006 and 2008. Both contaminant groups were detected in the muscle and liver, with concentrations of PCBs being higher than PBDEs. There were no significant differences in the PCB or PBDE concentrations between the three species, or different sampling locations in the Rockall fishing area. PCB concentrations (ΣICES (International Council for the Exploration of the Sea)7 PCBs) greater than 500 μg kg(-1) lipid weight were found in 26 of the 106 liver samples. PCB concentrations were compared to OSPAR assessment criteria, concentrations were above background but below Environmental Assessment Criteria. Estimated Toxic Equivalent (TEQ) concentrations, calculated using published models, in the fish muscle and liver indicated that consumption of deep water fish is unlikely to represent a risk to human health. The high squalene content in some of the black dogfish liver necessitated an additional clean-up step, involving gel permeation chromatography, when analyzing for PBDEs. Concentrations of PBDEs were low with many congeners being below detection limits, particularly in the muscle. There are currently no assessment criteria available for PBDEs. Furthermore, there is only very limited data on PBDEs in deep water fish. However, the concentrations observed in this study were similar to the concentrations recently reported in Mediterranean deep water fish. PMID:21421255

  9. The intensification of deep-water mass changes in the deep Atlantic Ocean throughout the Mid-Pleistocene climate transition

    NASA Astrophysics Data System (ADS)

    Poirier, R. K.; Billups, K.

    2012-12-01

    We examine the deep-water hydrography at Ocean Drilling Project (ODP) Site 1063 (subtropical North Atlantic, ~4600 meter water depth) using high-resolution benthic stable isotope (δ18O, δ13C) and grain size (% coarse, % Sortable Silt - SS, SS mean diameter) analyses from ~490 to 740 ka. The benthic foraminiferal δ13C record from Site 1063 provides a proxy for changes in the relative flux of lower North Atlantic Deep Water (NADW) through time. This record will refine the timing of increases in the formation of the densest components of NADW on the orbital and millennial-scale. We explore whether or not grain size analyses provide a proxy for changes in the relative velocity of the deep current. The new stable isotope data from Site 1063, when combined with the records of Poli et al. (2000), Ferretti et al. (2005), and Billups et al. (2011), tuned to the global benthic isotope stack (LR05) of Liesicki and Raymo (2004), provides a complete deep water record spanning Marine Isotope Stage (MIS) 25 to MIS 8 (~1020 to ~240 ka). Compiling published records from 16 additional sites, we use the Ocean Data View (ODV) program (Schlitzer, 2012) to map deep-water mass distributions through time. Results reveal an increasing distribution and influence of the NADW in relation to the Antarctic Bottom Water mass within interglacial periods beginning at MIS 15 continuing though the end of the Site 1063 record within MIS 9. Preliminary grain size analyses over a short interval of time reveal regular high frequency variations on the millennial scale. We anticipate having complete, high-resolution stable isotope and grain size records to discuss the hydrographic changes within the MIS 16/15 glacial/interglacial transition, as well as throughout the Mid-Pleistocene transition (MPT).

  10. Deep-water hydrocarbon potential of Georges Bank Trough

    SciTech Connect

    Levie, D.S. Jr.

    1985-02-01

    Characterization of the petroleum potential for Georges Bank Trough has been based primarily on limited organic geochemical data that indicate the area of recent drilling activity behind the paleoshelf edge to be poor in organic carbon and C/sub 15/ + extract values, with predominantly terrestrial kerogen types. Maturation data also suggest an inadequate thermal history for hydrocarbon generation in the area. It is possible that the effects of heat flow from the New England Seamount Chain may contribute to hydrocarbon generation in the Georges Bank Trough - a relationship that may also exist between the Newfoundland Seamount Chain and the Hibernia area of the Grand Banks. Also, comparisons can be drawn between the Atlantic Fracture Zone bordering the Georges Bank Trough and the Romanche-St. Paul Fracture Zone off the Ivory Coast. In the latter region, restricted anoxic environments with sediments rich in marine kerogen types have been identified, as have both structural and stratigraphic trapping mechanisms. Within this rhombochasm configuration, reservoir lithologies of sandstone and carbonate turbidites, fractured deep-water chalks, and reefal limestones should occur. The relationships of seamount to fracture zone, as applied to the rhombochasm model for the Georges Bank Trough, should enhance the hydrocarbon potential of the lower Mesozoic sediments seaward of the paleoshelf edge and thus classify this area as a future major hydrocarbon province.

  11. Climatically induced sedimentary cycles in Pliocene deep-water carbonates

    SciTech Connect

    Gardulski, A.F. )

    1991-03-01

    Two DSDP sites (86 and 94) on the Campeche ramp in the southern Gulf of Mexico penetrated more than 100 m of Pliocene pelagic ooze. The ooze is primarily carbonate, with a much smaller volcanic ash component than occurs in some Pleistocene sediments at these sites. Cores recovered from these holes display variations in carbonate mineralogy as well as total carbonate and sand abundances that are correlated with the oxygen isotope stratigraphy. Diagenetic loss of Mg-calcite is complete by the base of the Pleistocene, but aragonite, especially high-Sr aragonite forming algal needles that were transported off the shelf to the slope, persists through upper Pliocene cores. Variations in oxygen isotope ratios in planktonic foraminifera occur throughout the Pliocene, although the amplitude of those cycles is smaller than for the Pleistocene, with its more dramatic glacial-interglacial contrasts. As in overlying Pleistocene slope sediments, cooler intervals correspond with greater abundances of aragonite in the upper Pliocene section, reflecting a shift of the shallow, productive shelf seaward across the ramp surface during times of relatively low sea level. However, the aragonite abundances in the Pliocene are reduced on average compared to the Pleistocene. This difference is due in part to diagenetic loss, but also it likely reflects the overall higher sea level that apparently characterized Pliocene oceans, trapping more algal aragonite landward. Although sea level and climatic fluctuations were indeed less extreme in the Pliocene, they were still sufficient to generate sedimentary cycles in deep-water carbonates.

  12. Deuterium in interstitial water from deep-sea cores

    USGS Publications Warehouse

    Friedman, I.; Hardcastle, K.

    1988-01-01

    As part of the Joint Oceanographic Institutions Deep Earth Sampling project, the interstitial waters of cores from 69 holes were sampled for deuterium analysis to examine changes in the deuterium content of the oceans with time. Changes in the abundance of deuterium can be related to changes in the amount of ice stored in continental glaciers, inasmuch as precipitation in the form of snow is highly depleted in deuterium compared with the oceans. Many of the cores show a change in isotopic composition of samples from early to late Miocene that can be ascribed to the buildup of the Antarctic ice sheets. After correcting for the role of diffusion in reducing the isotopic contrast between samples from a single core, we estimate an incrase of 10 per mil (???) ??D (corresponding to a ??18O change of about 1.2???) between the early and late Miocene. A similar analysis of Pleistocene to Holocene changes indicates a ??D rise of 8??? during the time of maximum continental ice, which corresponds to a ??18O increase of about 1.0???. On the basis of limited data, we find no ??D change in the oceans from Cretaceous to Miocene. -from Authors

  13. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    SciTech Connect

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-08-12

    We are now entering the final stages of our ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342). We have now developed several techniques to help distinguish economic hydrocarbon deposits from false ''Fizz'' gas signatures. These methods include using the proper in situ rock and fluid properties, evaluating interference effects on data, and doing better constrained inversions for saturations. We are testing these techniques now on seismic data from several locations in the Gulf of Mexico. In addition, we are examining the use of seismic attenuation as indicated by frequency shifts below potential reservoirs. During this quarter we have: Began our evaluation of our latest data set over the Neptune Field; Developed software for computing composite reflection coefficients; Designed and implemented stochastic turbidite reservoir models; Produced software & work flow to improve frequency-dependent AVO analysis; Developed improved AVO analysis for data with low signal-to-noise ratio; and Examined feasibility of detecting fizz gas using frequency attenuation. Our focus on technology transfer continues, both by generating numerous presentations for the upcoming SEG annual meeting, and by beginning our planning for our next DHI minisymposium next spring.

  14. Deep-water anoxygenic photosythesis in a ferruginous chemocline.

    PubMed

    Crowe, S A; Maresca, J A; Jones, C; Sturm, A; Henny, C; Fowle, D A; Cox, R P; Delong, E F; Canfield, D E

    2014-07-01

    Ferruginous Lake Matano, Indonesia hosts one of the deepest anoxygenic photosynthetic communities on Earth. This community is dominated by low-light adapted, BChl e-synthesizing green sulfur bacteria (GSB), which comprise ~25% of the microbial community immediately below the oxic-anoxic boundary (OAB; 115-120 m in 2010). The size of this community is dependent on the mixing regime within the lake and the depth of the OAB-at ~117 m, the GSB live near their low-light limit. Slow growth and C-fixation rates suggest that the Lake Matano GSB can be supported by sulfide even though it only accumulates to scarcely detectable (low μm to nm) concentrations. A model laboratory strain (Chlorobaculum tepidum) is indeed able to access HS- for oxidation at nm concentrations. Furthermore, the GSB in Lake Matano possess a full complement of S-oxidizing genes. Together, this physiological and genetic information suggests that deep-water GSB can be supported by a S-cycle, even under ferruginous conditions. The constraints we place on the metabolic capacity and physiology of GSB have important geobiological implications. Biomarkers diagnostic of GSB would be a good proxy for anoxic conditions but could not discriminate between euxinic and ferruginous states, and though GSB biomarkers could indicate a substantial GSB community, such a community may exist with very little metabolic activity. The light requirements of GSB indicate that at light levels comparable to those in the OAB of Lake Matano or the Black Sea, GSB would have contributed little to global ocean primary production, nutrient cycling, and banded iron formation (BIF) deposition in the Precambrian. Before the proliferation of oxygenic photosynthesis, shallower OABs and lower light absorption in the ocean's surface waters would have permitted greater light availability to GSB, potentially leading to a greater role for GSB in global biogeochemical cycles. PMID:24923179

  15. Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods

    NASA Astrophysics Data System (ADS)

    Molina-Kescher, Mario; Frank, Martin; Tapia, Raúl; Ronge, Thomas A.; Nürnberg, Dirk; Tiedemann, Ralf

    2016-06-01

    The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for ɛNd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic δ13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.

  16. A possible 20th-century slowdown of southern ocean deep water formation

    PubMed

    Broecker; Sutherland; Peng

    1999-11-01

    Chlorofluorocarbon-11 inventories for the deep Southern Ocean appear to confirm physical oceanographic and geochemical studies in the Southern Ocean, which suggest that no more than 5 x 10(6) cubic meters per second of ventilated deep water is currently being produced. This result conflicts with conclusions based on the distributions of the carbon-14/carbon ratio and a quasi-conservative property, PO(4)(*), in the deep sea, which seem to require an average of about 15 x 10(6) cubic meters per second of Southern Ocean deep ventilation over about the past 800 years. A major reduction in Southern Ocean deep water production during the 20th century (from high rates during the Little Ice Age) may explain this apparent discordance. If this is true, a seesawing of deep water production between the northern Atlantic and Southern oceans may lie at the heart of the 1500-year ice-rafting cycle. PMID:10550046

  17. Upwelling at the ice edge - A mechanism for deep water formation?

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1987-01-01

    This study sets forward a hypothesis which anticipates deep water formation due to ice edge upwelling. The upwelling can raise thermocline waters (the lower Arctic Intermediate Water) to the surface or near it, where the water is exposed to cooling, evaporation, mixing, and oxygenation. Thus, upwelling can act as a preconditioning mechanism for deep convection. The conjecture would also explain the salinity range of the Greenland Sea Deep Water if the upper and lower Arctic Intermediate Water masses are mixed so that the latter has at least an 80-percent contribution. It is also anticipated that the convection events induced by ice edge upwelling during winter season could give rise to a new deep water annual production rate consistent with observations.

  18. Investigation and Construction of a Thermosyphoning Solar Hot Water System

    ERIC Educational Resources Information Center

    Johnson, Harvey

    1978-01-01

    Describes how a thermosyphoning solar water heater capable of heating 110 kilogram of water to 80 degree Celsius and maintaining this temperature for 24 hours was constructed by four students in the fifth form of Sekolah Date Abdul Razak, Seremban, Malaysia in 1976. (HM)

  19. New records of Primnoidae (Cnidaria: Octocorallia) in Brazilian deep waters

    NASA Astrophysics Data System (ADS)

    Arantes, Renata C. M.; Loiola, Livia L.

    2014-01-01

    The knowledge of octocorals occurring in Brazilian deep waters is still lacking, with only a few studies conducted so far, most of which focused on large-scale marine habitats characterization. Primnoidae are common and characteristic of seamounts and deepwater coral banks, often providing habitat for other marine species. Although primnoids occur in all ocean basins, only Primnoella and Plumarella species were recorded along the Brazilian coast before this study. Primnoid specimens were obtained through dredging and remotely operated vehicles (ROV) sampling, collected by research projects conducted off the Brazilian coast, between 15 and 34°S. Taxonomic assessment resulted in 5 new records of Primnoidae genera in Brazil: Calyptrophora, Candidella, Dasystenella, Narella and Thouarella. The occurrences of Narella-off Salvador and Vitória, and in Campos Basin (935-1700 m), and Calyptrophora-in Campos Basin (1059-1152 m), are herein reported for the first time in the South Atlantic. Calyptrophora microdentata was previously known in Lesser Antilles, New England and Corner Rise Seamounts, between 686 and 2310 m. Candidella imbricata geographical distribution includes Western and Eastern Atlantic (514-2063 m and 815-2139 m, respectively), being registered herein in Campos Basin, between 1059 and 1605 m. Dasystenella acanthina collected off Rio Grande do Sul state (810 m) and occurs also off Argentina and Southern Ocean, between 150 and 5087 m. Plumarella diadema, which type locality is off São Sebastião, Brazil, has its geographical range extended northwards, occurring in Campos Basin (650 m). Thouarella koellikeri previously known for Patagonia and Antartic Peninsula, is registered for the off Brazil for the first time, in Campos Basin and off São Sebastião (609-659 m). There is a lot of work yet to be done in terms of taxonomic knowledge of Brazilian deep-sea octocorals. Research projects focusing on the investigations, including ROV sampling, of other

  20. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  1. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  2. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  3. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  4. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Sacramento Deep Water Ship... REGULATIONS § 207.640 Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and navigation. (a) Sacramento Deep Water Ship Channel Barge Lock and Approach Canals;...

  5. Construction Site Storm Water Sampling California's New Construction Sampling and Analysis Requirements

    SciTech Connect

    Forrest, C.L.; Mathews, S.

    2002-04-02

    The California State Water Resources Control Board (State Board) originally issued a National Pollutant Discharge System (NPDES) permit for storm water discharges associated with construction activities in 1992. This NPDES permit was issued as a general permit, applicable throughout the state (with certain exceptions). The general construction permit was made site-specific by a discharger-developed Storm Water Pollution Prevention Plan (SWPPP). As with most NPDES construction storm water permits, monitoring requirements were limited to inspections. Sampling and analysis of discharges was not specifically required, but a Regional Water Quality Control Board (Regional Board) could require additional monitoring. In 1999, the State -Board revised and reissued its construction general permit. While the 1999 permit significantly enhanced the erosion and sediment control descriptions and requirements, and expanded the inspection program, sampling and analysis was still not required. Environmental advocacy groups took exception to the absence of sampling requirements and sought relief in court to add sampling and analysis. In 2001, the State Board in response to the court order adopted a resolution requiring sampling and analysis of construction site runoff under two conditions. Turbidity and/or sediment sampling is required when construction site runoff enters water bodies determined to impaired for sediment or turbidity. Sampling for non-visible pollutants is required when construction operations expose materials to storm water. Sampling construction site runoff is relatively new concept for NPDES permits. Only a few permits throughout the country require sampling and analysis for sediment-related pollutants, and California is one of the only permitting entities to require sampling for non-visible pollutants in construction site runoff. The added complexity of sampling runoff requires construction operators and erosion and sediment control professionals to expand their

  6. Assessment of Deep Water Archaeological Sites with Autonomous Underwater Vehicles

    NASA Astrophysics Data System (ADS)

    Foley, B. P.; Ferrini, V. L.; Bingham, B. S.; Camilli, R.; Delaporta, K.; Kourkoumelis, D.

    2006-12-01

    Deep submergence vehicle technology has recently enabled significant advances in the rapid assessment of marine archaeological sites. Precisely navigated vehicles equipped with high resolution digital cameras and high-frequency multibeam sonar systems can be used to assess not only the distribution of wreckage, but to quantify the size, distribution, and condition of individual artifacts contained within the wreck. This information is critical to deriving new knowledge of ancient civilizations based on shipwreck sites. The Woods Hole Oceanographic Institution in collaboration with the Hellenic Ministry of Culture and the Hellenic Centre for Marine Research is conducting an ongoing program to document ancient shipwrecks and refine underwater archaeological survey methods. The first project took place in 2005 near the Aegean island, Chios, when the team deployed an Autonomous Underwater Vehicle to investigate a 4th century BC wreck in 70 m water depth. Multiple low speed (20 cm/sec) digital imaging and acoustic mapping surveys were conducted at an altitude of 2.5 m yielded 200+% coverage of the wreck. Multibeam data provide centimeter resolution of the site's bathymetry, and a subset of 6000+ overlapping digital images were used to generate a continuous photomosaic of the entire wreck at sub-centimeter resolution. The full survey of the 20 m x 7 m wreck took approximately 18 hours. The second season in 2006 resulted in the survey of a historic period warship. The combination of digital imagery and sonar data reveal information about these wrecks that would otherwise be difficult to quantify. For instance, the orientation, location, number, and preservation state of amphora cargo elements observed in high-resolution imagery can be used to determine the vessel's origin and order of lading. Additionally, first-order archaeological questions can be answered: age of the wreck, cultural origin of the vessel, dimensions of the site, computation of three-dimensional cargo

  7. Benthic foraminiferal distribution in deep-water periplatform carbonate environments

    SciTech Connect

    Martin, R.E.

    1987-05-01

    In contrast to clastic depositional environments, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 sediment samples (piston core top and grab) collected along two transverses approximately 25 km apart across the northern (windward) margin of Little Bahama Bank at depths of 275 to 1135 m. Most species exhibit great variation in abundance with depth. However, Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators (Spearman's r > 0.91; p < 0.005), being most abundant at depths > 1000 m, and correspond to lower slope (> 900 m) periplatform aprons. Individual foraminiferal suborders (Miliolina, Rotaliina, Textulariina) show no consistent depth-related trends. However, certain operational taxonomic groups, such as reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are significant more abundant at depths < 300 m (95% C.I.: 2.6 +/- 2.2% and 6.9 +/- 2.7%, respectively) than at greater depths (95% C.I.: 0.3 +/- 0.2% and 2.0 +/- 0.8%; Mann-Whitney U, p < 0.01), reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines (i.e., suborder Miliolina minus peneroplids and soritids) and rosalinids and discorbids (suborder Rotaliina) are also more abundant at depths < 300 m (95% C.I.: 27.5 +/- 7.4% and 32.6 +/- 8.5%, respectively) than at greater depths (95% C.I.: 10.0 +/- 3.9% and 1.5 +/- 1.6%; Mann-Whitney U, p < 0.01) and are winnowed from the carbonate platform. Assemblages exhibit greatest variation in diversity (species number, s; Shannon-Weaver, H'; evenness, J') at depths > 900 m; indices for shallower assemblages tend to be grouped more tightly at relatively high values.

  8. 76 FR 39790 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Catcher...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... GOA (76 FR 11111, March 1, 2011). In accordance with Sec. 679.82(d)(9)(i)(B), the Administrator... comprise the deep-water species fishery for the sideboard limit include deep-water flatfish, rex sole,...

  9. 75 FR 38937 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Catcher...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... GOA (75 FR 11749, March 12, 2010). In accordance with Sec. 679.82(d)(9)(i)(B), the Administrator... comprise the deep-water species fishery for the sideboard limit include deep-water flatfish, rex sole,...

  10. Deep-water riser fatigue monitoring systems based on acoustic telemetry

    NASA Astrophysics Data System (ADS)

    Li, Baojun; Wang, Haiyan; Shen, Xiaohong; Yan, Yongsheng; Yang, Fuzhou; Hua, Fei

    2014-12-01

    Marine risers play a key role in the deep and ultra-deep water oil and gas production. The vortex-induced vibration (VIV) of marine risers constitutes an important problem in deep water oil exploration and production. VIV will result in high rates of structural failure of marine riser due to fatigue damage accumulation and diminishes the riser fatigue life. In-service monitoring or full scale testing is essential to improve our understanding of VIV response and enhance our ability to predict fatigue damage. One marine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed to monitor deep and ultra-deep water risers' fatigue and failure that can diminish the riser fatigue life and lead to economic losses and eco-catastrophe. Many breakthroughs and innovation have been achieved in the process of developing an engineering prototype machine. Sea trials were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea. The inclination monitoring results show that the marine riser fatigue acoustic telemetry scheme is feasible and reliable and the engineering prototype machine meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained in the sea trial which provide much technical support for optimization in the engineering prototype machine in the future.

  11. Morphological divergence between three Arctic charr morphs - the significance of the deep-water environment.

    PubMed

    Skoglund, Sigrid; Siwertsson, Anna; Amundsen, Per-Arne; Knudsen, Rune

    2015-08-01

    Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow-, deep-water resource axis in a subarctic postglacial lake (Norway). The two deep-water (profundal) spawning morphs, a benthivore (PB-morph) and a piscivore (PP-morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep-water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small-sized PB-morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep-water sediments. The PP-morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO-morph) predominantly utilizes the shallow benthic-pelagic habitat and food resources. Compared to the deep-water morphs, the LO-morph had smaller head relative to body size. The LO-morph exhibited traits typical for both shallow-water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep-water habitat for the PB- and PP-morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep-water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep-water piscivore morph has to our knowledge not been described elsewhere. PMID:26357540

  12. Morphological divergence between three Arctic charr morphs – the significance of the deep-water environment

    PubMed Central

    Skoglund, Sigrid; Siwertsson, Anna; Amundsen, Per-Arne; Knudsen, Rune

    2015-01-01

    Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow-, deep-water resource axis in a subarctic postglacial lake (Norway). The two deep-water (profundal) spawning morphs, a benthivore (PB-morph) and a piscivore (PP-morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep-water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small-sized PB-morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep-water sediments. The PP-morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO-morph) predominantly utilizes the shallow benthic–pelagic habitat and food resources. Compared to the deep-water morphs, the LO-morph had smaller head relative to body size. The LO-morph exhibited traits typical for both shallow-water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep-water habitat for the PB- and PP-morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep-water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep-water piscivore morph has to our knowledge not been described elsewhere. PMID:26357540

  13. Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106

    USGS Publications Warehouse

    Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.

    1994-01-01

    Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.

  14. Near-surface mixing and pronounced deep-water stratification in a compartmentalised, human-disturbed atoll lagoon system

    NASA Astrophysics Data System (ADS)

    Gardner, J. P. A.; Garton, D. W.; Collen, J. D.

    2011-03-01

    Palmyra Atoll has four partially isolated lagoons up to 50 m in depth, each with complex and variable bottom topographies. Measurements of depth, temperature, salinity, turbidity and dissolved oxygen (DO) revealed a well-mixed shallow surface layer (0-10 m depth) and below that pronounced stratification of DO in the absence of a pycnocline. Turbidity increased in a step-like manner at ~25 m depth, at the oxycline. For all deep sections of the lagoon (>30 m), DO declined uniformly to 0% saturation. As determined from filtration, mass of particulates was independent of depth. Surface mixing and deep-water stratification are both stable at different temporal scales, including day versus night, daily, weekly and annually. We suggest that lagoon circulation is represented by a shallow, westward-moving surface layer of well-to-partially mixed water with high DO and low turbidity, underlain by a relatively static and temporally stable layer with low to zero DO and elevated turbidity. This is the first report of such conditions within a deep lagoon system, and only the second report of anoxic conditions in any such system. In deep-water, stable euxinic conditions reflect bottom topography, with dysoxic and anoxic water being constrained within silled basins. The occurrence and depth of large volumes of sediment-laden and dysoxic/anoxic water need to be considered in management proposals designed to increase water flow through the lagoon. These novel water column conditions most probably arose as a consequence of military construction work, consistent with published reports of profound changes to the atoll during 1940-1945. If so, they highlight the need to better understand the possible consequences of cutting channels and modification of lagoon flow at many atolls across the central Pacific Ocean.

  15. Impact of water mass mixing on the biogeochemistry and microbiology of the Northeast Atlantic Deep Water

    NASA Astrophysics Data System (ADS)

    Reinthaler, Thomas; Álvarez Salgado, Xosé Antón; Álvarez, Marta; Aken, Hendrik M.; Herndl, Gerhard J.

    2013-12-01

    The extent to which water mass mixing contributes to the biological activity of the dark ocean is essentially unknown. Using a multiparameter water mass analysis, we examined the impact of water mass mixing on the nutrient distribution and microbial activity of the Northeast Atlantic Deep Water (NEADW) along an 8000 km long transect extending from 62°N to 5°S. Mixing of four water types (WT) and basin scale mineralization from the site where the WT where defined to the study area explained up to 95% of the variability in the distribution of inorganic nutrients and apparent oxygen utilization. Mixing-corrected average O2:N:P mineralization ratios of 127(±11):13.0(±0.7):1 in the core of the NEADW suggested preferential utilization of phosphorus compounds while dissolved organic carbon mineralization contributed a maximum of 20% to the oxygen demand of the NEADW. In conjunction with the calculated average mineralization ratios, our results indicate a major contribution of particulate organic matter to the biological activity in the NEADW. The variability in prokaryotic abundance, high nucleic acid containing cells, and prokaryotic heterotrophic production in the NEADW was explained by large scale (64-79%) and local mineralization processes (21-36%), consistent with the idea that deep-water prokaryotic communities are controlled by substrate supply. Overall, our results suggest a major impact of mixing on the distribution of inorganic nutrients and a weaker influence on the dissolved organic matter pool supporting prokaryotic activity in the NEADW.

  16. Impact of water mass mixing on the biogeochemistry and microbiology of the Northeast Atlantic Deep Water

    PubMed Central

    Reinthaler, Thomas; Salgado, Xosé Antón Álvarez; Álvarez, Marta; van Aken, Hendrik M.; Herndl, Gerhard J.

    2014-01-01

    The extent to which water mass mixing contributes to the biological activity of the dark ocean is essentially unknown. Using a multiparameter water mass analysis, we examined the impact of water mass mixing on the nutrient distribution and microbial activity of the Northeast Atlantic Deep Water (NEADW) along an 8000 km long transect extending from 62°N to 5°S. Mixing of four water types (WT) and basin scale mineralization from the site where the WT where defined to the study area explained up to 95% of the variability in the distribution of inorganic nutrients and apparent oxygen utilization. Mixing-corrected average O2:N:P mineralization ratios of 127(±11):13.0(±0.7):1 in the core of the NEADW suggested preferential utilization of phosphorus compounds while dissolved organic carbon mineralization contributed a maximum of 20% to the oxygen demand of the NEADW. In conjunction with the calculated average mineralization ratios, our results indicate a major contribution of particulate organic matter to the biological activity in the NEADW. The variability in prokaryotic abundance, high nucleic acid containing cells, and prokaryotic heterotrophic production in the NEADW was explained by large scale (64–79%) and local mineralization processes (21–36%), consistent with the idea that deep-water prokaryotic communities are controlled by substrate supply. Overall, our results suggest a major impact of mixing on the distribution of inorganic nutrients and a weaker influence on the dissolved organic matter pool supporting prokaryotic activity in the NEADW. PMID:24683294

  17. Effects of climate change on deep-water oxygen and winter mixing in a deep lake (Lake Geneva)

    NASA Astrophysics Data System (ADS)

    Schwefel, Robert; Alfred, Wüest; Damien, Bouffard

    2016-04-01

    Oxygen is the most important dissolved gas for lake ecosystems. Because low oxygen concentrations are an ongoing problem in many parts of the oceans and numerous lakes, oxygen depletion processes have been intensively studied over the last decades and were mainly attributed to high nutrient loads. Recently, climate-induced changes in stratification and mixing behavior were recognized as additional thread to hypolimnetic oxygen budgets in lakes and reservoirs [Matzinger et al., 2007; Zhang et al., 2015]. Observational data of Lake Geneva, a deep perialpine lake situated between France and Switzerland showed no decreasing trend in hypoxia over the last 43 years, despite an impressive reduction in nutrient input during this period. Instead, hypoxic conditions were predominantly controlled by deep mixing end of winter and in turn by winter temperatures. To test the sensitivity of Lake Geneva on future climate change and changes in water transparency, we simulated the hydrodynamics and temperature of Lake Geneva under varying conditions for atmospheric temperature and water clarity performed with the one-dimensional model SIMSTRAT [Goudsmit, 2002]. The results show, that the stratification in lakes is only weakly affected by changes in light absorption due to varying water quality. For conditions expected for the end of the century, a decrease in the annual mean deep convective mixing of up to 45 m is predicted. Also complete mixing events over the whole lake are less likely to occur. A change in the hypolimnetic oxygen concentration of up to 20% can thus be expected in the future. These results show, that changes in deep mixing have an equally strong impact as eutrophication on the deep-water oxygen development of oligomictic lakes and have to be considered in the prediction of the future development of lakes. References: Goudsmit, G. H., H. Burchard, F. Peeters, and A. Wüest (2002), Application of k-ɛ turbulence models to enclosed basins: The role of internal

  18. Unique deep-water ecosystems off the southeastern United States

    USGS Publications Warehouse

    Ross, Steve W.

    2007-01-01

    If nothing else, research in deep-sea environments teaches us how little we know about such important and productive habitats. The relatively recent discovery of hydrothermal-vent and cold-seep ecosystems illustrates this paucity of knowledge, and the subsequent explosion of research on these systems is a good example of the impact such concentrated efforts can have on marine sciences (see the March 2007 special issue of Oceanography on InterRidge, and Levin et al., 2007). The recent surge of interest in deep-sea corals is another example of how focused research on a particular subject can result in new perspectives on continental slope biotopes. Although deep-sea corals have been known for over 200 years, they were viewed as somewhat of a novelty, and research on them was sporadic, typically geologic, and usually only documented their occurrences (e.g., Stetson et al., 1962; Neumann et al., 1977; Paull et al., 2000).

  19. Ecogeochemistry potential in deep time biodiversity illustrated using a modern deep-water case study.

    PubMed

    Trueman, Clive N; Chung, Ming-Tsung; Shores, Diana

    2016-04-01

    The fossil record provides the only direct evidence of temporal trends in biodiversity over evolutionary timescales. Studies of biodiversity using the fossil record are, however, largely limited to discussions of taxonomic and/or morphological diversity. Behavioural and physiological traits that are likely to be under strong selection are largely obscured from the body fossil record. Similar problems exist in modern ecosystems where animals are difficult to access. In this review, we illustrate some of the common conceptual and methodological ground shared between those studying behavioural ecology in deep time and in inaccessible modern ecosystems. We discuss emerging ecogeochemical methods used to explore population connectivity and genetic drift, life-history traits and field metabolic rate and discuss some of the additional problems associated with applying these methods in deep time. PMID:26977063

  20. 30. Photocopy of microfiched construction drawing by Pelton Water Wheel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of microfiched construction drawing by Pelton Water Wheel Company, San Francisco, California, dated 6-24-31. (Microfiched drawing located at the Denver Service Center, #104/60154 - 4 of 18) 0-3 & 0-5 GOVERNORS, CHART OF PIECE NUMBERS - Yosemite Hydroelectric Power Plant, Highways 120 & 140, Yosemite Village, Mariposa County, CA

  1. 29. Photocopy of microfiched construction drawing by Pelton Water Wheel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of microfiched construction drawing by Pelton Water Wheel Company, San Francisco, California, dated Feb. 8, 1934. (Microfiched drawing located at the Denver Service Center, #104/60154 - 3 of 18) 24' HAND OPERATED GATE VALVE - Yosemite Hydroelectric Power Plant, Highways 120 & 140, Yosemite Village, Mariposa County, CA

  2. [The content of radon 222Rn in deep borehole water of the Pojezierze Mazurskie terrain].

    PubMed

    Pachocki, K A; Gorzkowski, B; Majle, T; Rózycki, Z

    1997-01-01

    Radon 222Rn in deep borehole water of Pojezierze Mazurskie region has been quantitative determined. The measurement were performed using the alpha liquid scintillation counting method. The water samples were examined from three voivodships: Elblag, Olsztyn and Suwałki. In some cases the concentrations of 222Rn in investigated water samples exceed 11 Bq/l. PMID:9273666

  3. Geochemical evidence for anoxic deep water in the Arabian Sea during the last glaciation

    SciTech Connect

    Sarkar, A.; Bhattacharya, S.K.; Sarin, M.M. )

    1993-03-01

    Various paleoceanographic studies have indicated that the deep ocean was probably depleted in dissolved oxygen during the last glacial period ([approximately]18 kyr B.P.; [delta][sup 18]O, stage 2) compared to present time. However, direct evidence of low oxygen content in the deep waters has been lacking. Here, the authors report geochemical evidence of near anoxic conditions in the deep Arabian Sea during the entire last glacial cycle ([delta][sup 18]O; stages 2, 3, and 4). Anoxia is inferred from the concomitant enrichment of organic carbon and authigenic uranium in the glacial sections of a core from the deep eastern Arabian Sea. The anoxic conditions during the last glacial period, probably caused by a change in deep water circulation, evidently enhanced preservation of organic matter and simultaneous removal of uranium from seawater. 57 refs., 3 figs., 2 tabs.

  4. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    NASA Technical Reports Server (NTRS)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  5. North Atlantic deep water in the south-western Indian Ocean

    NASA Astrophysics Data System (ADS)

    van Aken, Hendrik M.; Ridderinkhof, Herman; de Ruijter, Wilhelmus P. M.

    2004-06-01

    The circulation of deep water in the south-western Indian Ocean has been studied from hydrographic observations and current measurements, obtained during the Dutch-South African Agulhas Current Sources Experiment programme, and from similar public data from the World Ocean Circulation Experiment. The three major water masses involved are the saline North Atlantic deep water (NADW), its derivative in the Antarctic circumpolar current, lower circumpolar deep water (LCDW), and the aged variety of deep water, North Indian deep water (NIDW). Although bound by the shallow topography near Madagascar, about 2×10 6 m 3/s from the upper half of the NADW core appears to flow across the sill in the Mozambique Channel into the Somali Basin, while the remaining NADW flows east at about 45°S and is transformed to LCDW by lateral and diapycnal mixing. East of Madagascar the deep circulation is dominated by the southward flow of NIDW. Northward inflow of LCDW into the Indian Ocean therefore can take place only in the eastern half of the Indian Ocean, along the Southeast Indian Ridge and the Ninetyeast Ridge.

  6. Constraints on water cycling in a deep mountain valley from stable water isotope and sap flux measurements

    NASA Astrophysics Data System (ADS)

    Fiorella, R.; Poulsen, C. J.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    The stable isotopes of oxygen and hydrogen in water are unequally partitioned during phase changes, with environmental conditions controlling the degree of partitioning. As a result, the isotopic composition of water reflects the thermodynamic history of water parcels in the water cycle. Recent advances in cavity ringdown spectrometry allow for the continuous measurement of water vapor isotope compositions, and provide insight into the processes influencing the concentration of near-surface water vapor at high resolution. We used stable water isotopes to investigate the processes controlling water vapor cycling in a deep mountain valley in northwestern Wyoming. A Picarro L2120-i Cavity Ring-Down spectrometer was deployed to measure the isotopic composition of atmospheric water vapor at the University of Michigan Camp Davis Field Station near Jackson, WY for three consecutive summers (2012-2014) and during winter 2013. We also constructed a network of Granier-style sap flux probes to estimate the local transpiration flux from regionally dominant tree species in July 2014. A prominent diurnal cycle was observed during the summer that was mostly absent in the winter. Summer specific humidity, δD, δ18O, and sap flux all reach daily maximum values in the mid-to-late morning that we associate with the onset of transpiration. The mountain valley is capped by an inversion, which limits atmospheric mixing during the morning. After the breakup of the inversion, the atmospheric boundary layer develops quickly and results in decreases in near-surface specific humidity and δ18O. δD appears to be less affected following the inversion breakup, resulting in a strong diurnal cycle in d-excess. Specific humidity, δD, and δ18O all return to their morning values rapidly near sunset, marking the cessation of mixing and atmospheric stratification. This absence of this diurnal cycle in the winter is consistent with reduced transpiration and atmospheric mixing anticipated for the

  7. Reefs of the deep: the biology and geology of cold-water coral ecosystems.

    PubMed

    Roberts, J Murray; Wheeler, Andrew J; Freiwald, André

    2006-04-28

    Coral reefs are generally associated with shallow tropical seas; however, recent deep-ocean exploration using advanced acoustics and submersibles has revealed unexpectedly widespread and diverse coral ecosystems in deep waters on continental shelves, slopes, seamounts, and ridge systems around the world. Advances reviewed here include the use of corals as paleoclimatic archives and their biogeological functioning, biodiversity, and biogeography. Threats to these fragile, long-lived, and rich ecosystems are mounting: The impacts of deep-water trawling are already widespread, and effects of ocean acidification are potentially devastating. PMID:16645087

  8. Ground-water problems in highway construction and maintenance

    USGS Publications Warehouse

    Rasmussen, W.C.; Haigler, L.B.

    1953-01-01

    This report discusses the occurrence of ground water in relation to certain problems in highway construction and maintenance. These problems are: the subdrainage of roads; quicksand; the arrest of soil creep in road cuts; the construction of lower and larger culverts necessitated by the farm-drainage program; the prevention of failure of bridge abutments and retaining walls; and the water-cement ratio of sub-water-table concrete. Although the highway problems and suggested solutions are of general interest, they are considered with special reference to the State of Delaware, in relation to the geology of that State. The new technique of soil stabilization by electroosmosis is reviewed in the hope that it might find application here in road work and pile setting, field application by the Germans and Russians is reviewed.

  9. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    PubMed Central

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L.; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C.; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q.; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J.; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Motz, Holger; Neff, Max; Nezri, Emma nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E.; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G.; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J. M.; Stolarczyk, Thierry; Taiuti, Mauro G. F.; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts. PMID:23874425

  10. Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data

    PubMed Central

    Raupach, Michael J.; Mayer, Christoph; Malyutina, Marina; Wägele, Johann-Wolfgang

    2008-01-01

    The Asellota are a highly variable group of Isopoda with many species in freshwater and marine shallow-water environments. However, in the deep sea, they show their most impressive radiation with a broad range of astonishing morphological adaptations and bizarre body forms. Nevertheless, the evolution and phylogeny of the deep-sea Asellota are poorly known because of difficulties in scoring morphological characters. In this study, the molecular phylogeny of the Asellota is evaluated for 15 marine shallow-water species and 101 deep-sea species, using complete 18S and partial 28S rDNA gene sequences. Our molecular data support the monophyly of most deep-sea families and give evidence for a multiple colonization of the deep sea by at least four major lineages of asellote isopods. According to our molecular data, one of these lineages indicates an impressive radiation in the deep sea. Furthermore, the present study rejects the monophyly of the family Janiridae, a group of plesiomorphic shallow-water Asellota, and several shallow-water and deep-sea genera (Acanthaspidia, Ianthopsis, Haploniscus, Echinozone, Eurycope, Munnopsurus and Syneurycope). PMID:19033145

  11. Fuzzy pricing for urban water resources: model construction and application.

    PubMed

    Zhao, Ranhang; Chen, Shouyu

    2008-08-01

    A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP. PMID:17499421

  12. Moderation of Neogene Deep-Water Overflow at the Greenland-Scotland Ridge by the Icelandic Plume

    NASA Astrophysics Data System (ADS)

    Henstock, T.; White, N. J.; Jones, S. M.; Murton, B. J.; Maclennan, J.

    2010-12-01

    A global analysis of Neogene δ13C records shows that overflow of Northern Component Water (NCW), the ancient precursor of North Atlantic Deep Water, varies with time. It is generally accepted that the Icelandic plume, which has dominated the tectonic evolution of the North Atlantic Realm since its inception ˜60 million years ago, has played a key role in moderating deep-water overflow. The V-shaped ridges, which straddle the mid-oceanic ridge system on either side of Iceland, are an important window into transient convective circulation associated with this plume. Knowledge of the evolving pattern of convective circulation can be used to constrain vertical displacement of the Greenland-Scotland Ridge through time. Although some progress has been made in refining the variation of NCW with time, any link between overflow and convective circulation has relied upon vintage seismic reflection profiles acquired in the 1960s. In order to construct a more accurate chronology of plume activity through time, we have acquired a set of regional seismic reflection profiles along flowlines which traverse the Iceland and Irminger basins between 60° and 62° N. We used a single generator-injector airgun operating at 3,000 p.s.i. and a 2 km streamer with a group spacing of 12.5 m with an average fold of 20. The porcessed seismic images are excellent. The sediment-basement interface can be accurately mapped and fine details of the sedimentary cover are resolved. We have identified a series of V-shaped ridges and erected a chronology of plume activity on an astronomical timescale. This chronology correlates with the Neogene history of deep-water overflow and confirms that convective circulation of the mantle has played a significant role in moderating deep-water overflow. Our seismic profiles also cross the major contourites of the North Atlantic Ocean, notably the Gardar, Bjorn and Eirik Drifts. Excellent images of their detailed internal stratigraphy demonstrate that distinct

  13. Implications of Cometary Water: Deep Impact, Stardust and Hayabusa

    NASA Technical Reports Server (NTRS)

    Sheldon, Robert B.; Hoover, Richard B.

    2006-01-01

    Three recent in situ spacecraft missions have explored comets or asteroids, producing data in conflict with the standard comet paradigm, the Whipple Dirty Snowball Model (DSM). We have developed an alternative Wet Comet Model (WCM) which proposes that comets undergo an irreversible phase change to a wet comet when they enter within Mars orbit. The WCM may explain some of the observational discrepancies seen by Deep Impact, Stardust and Hayabusa. In particular, it accurately predicted Deep Impact observation of organics, biominerals, and meltwater temperatures. Predictions concerning Stardust s returned cometary dust particles have yet to be falsified, but if comets are largely composed of the silicates seen by Stardust, there may be a cometary explanation for Itokawa s low density rubble-pile observed by Hayabusa.

  14. First description of deep-water elasmobranch assemblages in the Exuma Sound, The Bahamas

    NASA Astrophysics Data System (ADS)

    Brooks, Edward J.; Brooks, Annabelle M. L.; Williams, Sean; Jordan, Lance K. B.; Abercrombie, Debra; Chapman, Demian D.; Howey-Jordan, Lucy A.; Grubbs, R. Dean

    2015-05-01

    Deep-sea chondrichthyans, like many deep-water fishes, are very poorly understood at the most fundamental biological, ecological and taxonomic levels. Our study represents the first ecological investigation of deep-water elasmobranch assemblages in The Bahamas, and the first assessment of species-specific resilience to capture for all of the species captured. Standardised deep-water longline surveys (n=69) were conducted September to December 2010 and 2011 between 472 m and 1024 m deep, resulting in the capture of 144 sharks from 8 different species. These included the Cuban dogfish, Squalus cubensis, the bigeye sixgill shark, Hexanchus nakamurai, the bluntnose sixgill shark, Hexanchus griseus, the smooth dogfish, Mustelus canis insularis, the roughskin dogfish, Centroscymnus owstoni, Springer's sawtail catshark, Galeus springeri and the false catshark, Pseudotriakis microdon. Preliminary genetic analysis indicated two or more species of gulper sharks, Centrophorus spp.; however, for the present study they were treated as a single species complex. Water depth and distance from the rocky structure of the Exuma Sound wall were inversely correlated with species richness, whereas seabed temperature was directly correlated with species richness. These variables also had a significant influence on the abundance and distribution of many species. Expanded depth ranges were established for S. cubensis and H. nakamurai, which, in the case of S. cubensis, is thought to be driven by thermal preferences. At-vessel mortality rates increased significantly with depth, and post-release mortality was thought to be high for some species, in part due to high post-release predation. This study highlights the importance of utilising strategic geographic locations that provide easy access to deep water, in combination with traditional expedition-based deep-ocean science, to accelerate the acquisition of fundamental ecological and biological insights into deep-sea elasmobranchs.

  15. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    USGS Publications Warehouse

    Pitt, William A., Jr.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  16. DEEP CREEK AND MUD CREEK, TWIN FALLS, IDAHO. WATER QUALITY STATUS REPORT, 1986

    EPA Science Inventory

    Deep Creek and Mud Creek are located in Twin Falls County near Buhl, Idaho (17040212). From April through October, these creeks convey irrigation drainage water from the western part of the Twin Falls irrigation tract to the Snake River. During 1986, water quality surveys were ...

  17. Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    de La Fuente, Maria; Skinner, Luke; Calvo, Eva; Pelejero, Carles; Cacho, Isabel

    2015-07-01

    Consistent evidence for a poorly ventilated deep Pacific Ocean that could have released its radiocarbon-depleted carbon stock to the atmosphere during the last deglaciation has long been sought. Such evidence remains lacking, in part due to a paucity of surface reservoir age reconstructions required for accurate deep-ocean ventilation age estimates. Here we combine new radiocarbon data from the Eastern Equatorial Pacific (EEP) with chronostratigraphic calendar age constraints to estimate shallow sub-surface reservoir age variability, and thus provide estimates of deep-ocean ventilation ages. Both shallow- and deep-water ventilation ages drop across the last deglaciation, consistent with similar reconstructions from the South Pacific and Southern Ocean. The observed regional fingerprint linking the Southern Ocean and the EEP is consistent with a dominant southern source for EEP thermocline waters and suggests relatively invariant ocean interior transport pathways but significantly reduced air-sea gas exchange in the glacial southern high latitudes.

  18. Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific

    PubMed Central

    de la Fuente, Maria; Skinner, Luke; Calvo, Eva; Pelejero, Carles; Cacho, Isabel

    2015-01-01

    Consistent evidence for a poorly ventilated deep Pacific Ocean that could have released its radiocarbon-depleted carbon stock to the atmosphere during the last deglaciation has long been sought. Such evidence remains lacking, in part due to a paucity of surface reservoir age reconstructions required for accurate deep-ocean ventilation age estimates. Here we combine new radiocarbon data from the Eastern Equatorial Pacific (EEP) with chronostratigraphic calendar age constraints to estimate shallow sub-surface reservoir age variability, and thus provide estimates of deep-ocean ventilation ages. Both shallow- and deep-water ventilation ages drop across the last deglaciation, consistent with similar reconstructions from the South Pacific and Southern Ocean. The observed regional fingerprint linking the Southern Ocean and the EEP is consistent with a dominant southern source for EEP thermocline waters and suggests relatively invariant ocean interior transport pathways but significantly reduced air–sea gas exchange in the glacial southern high latitudes. PMID:26137976

  19. Drilling, construction, caliper-log, and specific-conductance data for well 3-3604-01, Kawailoa deep monitor well, Oahu, Hawaii

    USGS Publications Warehouse

    Presley, T.K.; Oki, D.S.

    1996-01-01

    The Kawailoa deep monitor well (State well number 3-3604-01) was drilled about 1.9 miles east- northeast of the town of Haleiwa. The well is on agricultural land in the Kawailoa ground-water area. The well penetrates through the freshwater lens and into the freshwater-saltwater transition zone to an elevation of -392 feet below mean sea level. Well-construction data, logs of drilling notes, geologic descriptions for the samples, specific-conductance and caliper-log data are presented for the well. The well is one of 12 exploratory wells drilled in the north-central Oahu area between July 1993 and May 1994 in cooperation with the Honolulu Board of Water Supply.

  20. Drilling, construction, caliper-log, and specific-conductance data for well 3-3406-12, Twin Bridge Road deep monitor well, Oahu, Hawaii

    USGS Publications Warehouse

    Presley, T.K.; Oki, D.S.

    1996-01-01

    The Twin Bridge Road deep monitor well (State well number 3-3406-12) was drilled about 2,000 feet northeast of Weed Circle in the town of Haleiwa. The well is on agricultural land. The well penetrates through the freshwater lens and into the freshwater-saltwater transition zone of the Waialua ground-water area to an elevation of -596 feet below mean sea level. Well-construction data, logs of drilling notes, geologic descriptions for the samples, caliper-log, and specific-conductance data are presented for the well. The well is one of 12 exploratory wells drilled in the north- central Oahu area between July 1993 and May 1994 in cooperation with the Honolulu Board of Water Supply.

  1. Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity.

    PubMed

    Graham, Michael H; Kinlan, Brian P; Druehl, Louis D; Garske, Lauren E; Banks, Stuart

    2007-10-16

    Classic marine ecological paradigms view kelp forests as inherently temperate-boreal phenomena replaced by coral reefs in tropical waters. These paradigms hinge on the notion that tropical surface waters are too warm and nutrient-depleted to support kelp productivity and survival. We present a synthetic oceanographic and ecophysiological model that accurately identifies all known kelp populations and, by using the same criteria, predicts the existence of >23,500 km(2) unexplored submerged (30- to 200-m depth) tropical kelp habitats. Predicted tropical kelp habitats were most probable in regions where bathymetry and upwelling resulted in mixed-layer shoaling above the depth of minimum annual irradiance dose for kelp survival. Using model predictions, we discovered extensive new deep-water Eisenia galapagensis populations in the Galápagos that increased in abundance with increasing depth to >60 m, complete with cold-water flora and fauna of temperate affinities. The predictability of deep-water kelp habitat and the discovery of expansive deep-water Galápagos kelp forests validate the extent of deep-water tropical kelp refugia, with potential implications for regional productivity and biodiversity, tropical food web ecology, and understanding of the resilience of tropical marine systems to climate change. PMID:17913882

  2. Improved water-cooled cyclone constructions in CFBs

    SciTech Connect

    Alliston, M.G.; Luomaharju, T.; Kokko, A.

    1999-07-01

    The construction of CFB boilers has advanced in comparison with early designs. One improvement has been the use of water or steam cooled cyclones, which allows the use of thin refractories and minimizes maintenance needs. Cooled cyclones are also tolerant of wide load variations when the main fuel is biologically based, and coal or some other fuel is used as a back-up. With uncooled cyclones, load changes with high volatile fuels can mean significant temperature transients in the refractory, due to post-combustion phenomena in the cyclone. Kvaerner's development of water-cooled cyclones for CFBs began in the early 1980s. The first boiler with this design was delivered in 1985 in Sweden. Since then, Kvaerner Pulping has delivered over twenty units with cooled cyclones, in capacity ranging from small units up to 400 MW{sub th}. Among these units, Kvaerner has developed unconventional solutions for CFBs, in order to simplify the constructions and to increase the reliability for different applications. The first of them was CYMIC{reg{underscore}sign}, which has its water-cooled cyclone built inside the boiler furnace. There are two commercial CYMIC boilers in operation and one in project stages. The largest CYMIC in operation is a 185 MW{sub th} industrial boiler burning various fuels. For even larger scale units Kvaerner developed the Integrated Cylindrical Cyclone and Loopseal (ICCL) assembly. One of these installations is in operation in USA, having steaming capacity of over 500 t/h. The design bases of these new solutions are quite different in comparison with conventional cyclones. Therefore, an important part of the development has been cold model testing and mathematical modeling of the cyclones. This paper reviews the state-of-the-art in water-cooled cyclone construction. The new solutions, their full-scale experience, and a comparison of the actual experience with the preliminary modeling work are introduced.

  3. Enhanced Positive Water Vapor Feedback Associated with Tropical Deep Convection: New Evidence from Aura MLS

    NASA Technical Reports Server (NTRS)

    Su, Hui; Read, William G.; Jiang, Jonathan H.; Waters, Joe W.; Wu, Dong L.; Fetzer, Eric J.

    2006-01-01

    Recent simultaneous observations of upper tropospheric (UT) water vapor and cloud ice from the Microwave Limb Sounder (MLS) on the Aura satellite provide new evidence for tropical convective influence on UT water vapor and its associated greenhouse effect. The observations show that UT water vapor increases as cloud ice water content increases. They also show that, when sea surface temperature (SST) exceeds approx.300 K, UT cloud ice associated with tropical deep convection increases sharply with increasing SST. The moistening of the upper troposphere by deep convection leads to an enhanced positive water vapor feedback, about 3 times that implied solely by thermodynamics. Over tropical oceans when SST greater than approx.300 K, the 'convective UT water vapor feedback' inferred from the MLS observations contributes approximately 65% of the sensitivity of the clear-sky greenhouse parameter to SST.

  4. Water Quality Benefits of Constructed Wetlands Integrated Within Agricultural Water Recycling Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetlands have been integrated within innovative agricultural water recycling systems, and these systems are now being evaluated at three demonstration sites located in the northwest Ohio portion of the Maumee River Basin (Defiance, Fulton, and Van Wert Counties). The water recycling syst...

  5. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  6. Seismic sequence stratigraphy of Tertiary sediments, offshore Sarawak deep-water area

    SciTech Connect

    Mohammad, A.M. )

    1994-07-01

    Tectonic processes and sea level changes are the main key factors that have strongly influenced clastic and carbonate sedimentations in the Sarawak deep-water area. A seismic sequence stratigraphy of Tertiary sediments was conducted in the area with the main objective of developing a workable genetic chronostratigraphic framework that defines the sequence and system tracts boundaries within which depositional systems and lithofacies can be identified, mapped and interpreted. This study has resulted in the identification of eight major depositional sequences that are bounded by regional unconformities and correlative conformities. These sequences can generally be grouped into four megasequences, based on the main tectonic events observed in the area. Three system tracts of a type-1, third-order sequence boundary were recognized in most of the sequences: lowstand, transgressive, and highstand systems tracts. The lowstand system tract includes basin-floor fans, slope fans, and lowstand prograding wedges. Paleoenvironmental distribution maps constructed for each of the sequences using seismic facies analysis and nearby well control suggest that the sequence intervals are predominantly transgressive units that have been intermittently interrupted by regressive pulses brought about by changes in eustatic sea level. The trend of paleocoastline observed during Oligocene to Miocene times changes from northwest-southeast orientation to a position roughly parallel to the present coastline. Seismic facies maps generated from late Oligocene to early Miocene indicate the depositional environment was coastal to coastal plain in the western and the middle part of the study area, becoming more marine toward the east and northeast.

  7. Alba field - middle Eocene deep-water channel in U. K. North Sea

    SciTech Connect

    Winter, S.R.; Bretthauer, H.H.; Mattingly, G.A.

    1989-03-01

    The Alba field is located in the Witch Ground graben between the Fladen Ground spur to the north and the Renee Ridge to the south, entirely in UKCS Block 16/26. In 1985, oil was discovered in the middle Eocene sands of the Horda formation at a depth of 6100 ft subsea. Twelve additional wells, including sidetracks, have been drilled appraise the discovery. This drilling indicates the Alba field is a stratigraphic trap covering an area of 3600 ac. The Alba sands represent a brief interruption in the hemipelagic sedimentation that dominated this part of the Witch Ground graben during the middle Eocene. Sediment was supplied intermittently from a shelf area to the northwest into a deep-water environment. Well correlations, seismic facies analysis, and core analysis indicate that these sands were deposited as part of a constructional channel/levee complex within a mud-rich, shelf-sourced submarine fan system. The cap and the updip and lateral seals to the reservoir are shale. The Alba reservoir is predominantly a homogeneous, fine-grained, unconsolidated sand. The average reservoir porosity is 33% and the average permeability is 2.8 darcys. Oil in place is estimated to be 1.1 billion bbl of 20/degrees/ API crude.

  8. Deep-water Circulation: Processes & Products (16-18 June 2010, Baiona): introduction and future challenges

    NASA Astrophysics Data System (ADS)

    Hernández-Molina, Francisco Javier; Stow, Dorrik A. V.; Llave, Estefanía; Rebesco, Michele; Ercilla, Gemma; van Rooij, David; Mena, Anxo; Vázquez, Juan-Tomás; Voelker, Antje H. L.

    2011-12-01

    Deep-water circulation is a critical part of the global conveyor belt that regulates Earth's climate. The bottom (contour)-current component of this circulation is of key significance in shaping the deep seafloor through erosion, transport, and deposition. As a result, there exists a high variety of large-scale erosional and depositional features (drifts) that together form more complex contourite depositional systems on continental slopes and rises as well as in ocean basins, generated by different water masses flowing at different depths and at different speeds either in the same or in opposite directions. Yet, the nature of these deep-water processes and the deposited contourites is still poorly understood in detail. Their ultimate decoding will undoubtedly yield information of fundamental importance to the earth and ocean sciences. The international congress Deep-water Circulation: Processes & Products was held from 16-18 June 2010 in Baiona, Spain, hosted by the University of Vigo. Volume 31(5/6) of Geo-Marine Letters is a special double issue containing 17 selected contributions from the congress, guest edited by F.J. Hernández-Molina, D.A.V. Stow, E. Llave, M. Rebesco, G. Ercilla, D. Van Rooij, A. Mena, J.-T. Vázquez and A.H.L. Voelker. The papers and discussions at the congress and the articles in this special issue provide a truly multidisciplinary perspective of interest to both academic and industrial participants, contributing to the advancement of knowledge on deep-water bottom circulation and related processes, as well as contourite sedimentation. The multidisciplinary contributions (including geomorphology, tectonics, stratigraphy, sedimentology, paleoceanography, physical oceanography, and deep-water ecology) have demonstrated that advances in paleoceanographic reconstructions and our understanding of the ocean's role in the global climate system depend largely on the feedbacks among disciplines. New insights into the link between the biota of

  9. Atlantic Ocean Circulation during the Latest Cretaceous and Early Paleogene: Progressive Deep Water Exchange

    NASA Astrophysics Data System (ADS)

    Batenburg, Sietske J.; Voigt, Silke; Friedrich, Oliver; Osborne, Ann; Frank, Martin

    2015-04-01

    The Atlantic deep ocean circulation in the Latest Cretaceous (75-66 Ma) was dominated by regional processes, as indicated by the presence of distinct deep water masses. Due to the opening of the Atlantic Ocean, its different sub-basins became progressively connected and a global mode of ocean circulation commenced in the early Paleogene, ~60 Ma. To understand the evolution of deep water formation and exchange, Nd-isotope data and δ13C stratigraphies are generated for a range of sites in the North and South Atlantic. These permit to identify different intermediate and deep-water masses, to recognize their potential source regions and to determine the exact timing of deep water connection. The carbonate-rich pelagic sediments of Site U1403 near Newfoundland can be astronomically tuned and correlated to the global δ13C framework. Relatively negative seawater ɛNd(t) signatures in the 67-62 Ma interval at Site U1403 of ~-10 are distinct from those recorded further south in the North Atlantic. Possible explanations could include elevated non-radiogenic weathering inputs from the North American craton. In the latest Maastrichtian, the Site U1403 ɛNd(t) record displays a short-term positive excursion before the K/Pg boundary (67-66 Ma) followed by a sudden drop to unradiogenic values at the boundary. Changes in ocean circulation might be related to climatic changes in the pre-extinction interval and the impact itself. The ɛNd(t) records at Sites 1267 and 525 at Walvis Ridge show that an early Maastrichtian excursion to highly radiogenic values reflects a brief interval at 72-70 Ma, related to a period of increased hot-spot volcanism. Concomitant measurements of ɛNd(t) values in three different archives, fish teeth, ferromanganese coatings of bulk sediments and of foraminifera, provide a test for the partial influence of detrital particles on the isotopic composition of coatings. The first data of Sites U1403, 1267 and 525 indicate the occurrence of a common deep-water

  10. Prokaryotic phylogenetic diversity of Hungarian deep subsurface geothermal well waters.

    PubMed

    Németh, Andrea; Szirányi, Barbara; Krett, Gergely; Janurik, Endre; Kosáros, Tünde; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    Geothermal wells characterized by thermal waters warmer than 30°C can be found in more than 65% of the area of Hungary. The examined thermal wells located nearby Szarvas are used for heating industrial and agricultural facilities because of their relatively high hydrocarbon content. The aim of this study was to reveal the prokaryotic community structure of the water of SZR18, K87 and SZR21 geothermal wells using molecular cloning methods and Denaturing Gradient Gel Electrophoresis (DGGE). Water samples from the outflow pipes were collected in 2012 and 2013. The phylogenetic distribution of archaeal molecular clones was very similar in each sample, the most abundant groups belonged to the genera Methanosaeta, Methanothermobacter and Thermofilum. In contrast, the distribution of bacterial molecular clones was very diverse. Many of them showed the closest sequence similarities to uncultured clone sequences from similar thermal environments. From the water of the SZR18 well, phylotypes closely related to genera Fictibacillus and Alicyclobacillus (Firmicutes) were only revealed, while the bacterial diversity of the K87 well water was much higher. Here, the members of the phyla Thermodesulfobacteria, Proteobacteria, Nitrospira, Chlorobi, OP1 and OPB7 were also detected besides Firmicutes. PMID:25261947

  11. Pacific-Atlantic Circumpolar Deep Water coupling during the last 500 ka

    NASA Astrophysics Data System (ADS)

    Ullermann, Johannes; Lamy, Frank; Ninnemann, Ulysses; Lembke-Jene, Lester; Gersonde, Rainer; Tiedemann, Ralf

    2016-06-01

    Investigating the interbasin deepwater exchange between the Pacific and Atlantic Oceans over glacial-interglacial climate cycles is important for understanding circum-Antarctic Southern Ocean circulation changes and their impact on the global Meridional Overturning Circulation. We use benthic foraminiferal δ13C records from the southern East Pacific Rise to characterize the δ13C composition of Circumpolar Deep Water in the South Pacific, prior to its transit through the Drake Passage into the South Atlantic. A comparison with published South Atlantic deepwater records from the northern Cape Basin suggests a continuous water mass exchange throughout the past 500 ka. Almost identical glacial-interglacial δ13C variations imply a common deepwater evolution in both basins suggesting persistent Circumpolar Deep Water exchange and homogenization. By contrast, deeper abyssal waters occupying the more southern Cape Basin and the southernmost South Atlantic have lower δ13C values during most, but not all, stadial periods. We conclude that these values represent the influence of a more southern water mass, perhaps Antarctic Bottom Water (AABW). During many interglacials and some glacial periods, the gradient between Circumpolar Deep Water and the deeper southern Cape Basin bottom water disappears suggesting either no presence of AABW or indistinguishable δ13C values of both water masses.

  12. Reduced deep soil water uptake through forest conversion to pasture in Amazonia

    SciTech Connect

    Jipp, P.H.; Nepstad, D.C. Woods Hole Research Center, MA )

    1993-06-01

    Forests of eastern Amazonia are being replaced by pastures and secondary forests. We measured soil water storage and flux in adjacent forest and pasture ecosystems using Time Domain Reflectometry sensors installed in the walls of deep (9-m) shafts. The forest withdrew 597+/-25 mm of soil water stored below 1 m depth during the 1991 dry season (Jun-Dec), 1.7 times more than the pasture. Uptake from the bottom of the forest soil profile continued even after rainfall resumed in early 1992. The hydrologic impacts of tropical deforestation may be most severe for evergreen forests with deep rooting zones in areas of seasonal drought.

  13. Deep water dissolution in Marine Isotope Stage 3 from the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Huang, B.

    2015-12-01

    The production, transport, deposition, and dissolution of carbonate profoundly implicate the global carbon cycle affect the inventory and distribution of dissolved organic carbon (DIC) and alkalinity (ALK), which drive atmospheric CO2 change on glacial-interglacial timescale. the process may provide significant clues for improved understanding of the mechanisms that control the global climate system. In this study, we calculate and analyze the foraminiferal dissolution index (FDX) and the fragmentation ratios of planktonic foraminifera over 60-25 ka based on samples from 17924 and ODP 1144 in the northeastern South China Sea (SCS) to reconstruct the deep water carbonate dissolution during Marine Isotope Stage 3 (MIS 3). Result shows that the dissolution of carbonate increases gradually at 17924 but keeps stable at ODP 1144. The changes of FDX coincidence with that of fragmentation ratios at 17924 and ODP 1144 suggest both indexes can be used as reliable dissolving proxies of planktonic foraminifera. Comparing FDX and fragmentation ratios at both sites, we find the FDX and fragmentation ratios at 17924 are higher than those at 1144, indicating that carbonate dissolution is intenser in 17924 core during MIS 3. The increasing total percentage of both N. dutertrei and G. bulloides during MIS 3 reveals the rising primary productivity that may lead to deep water [CO32-] decrease. The slow down of thermohaline circulation may increase deep water residence time and accelerate carbonate dissolution. In addition, the covering of ice caps, iron supply and increased surface-water stratification also contribute to atmosphere CO2 depletion and [CO32-] decrease in deep water. In the meanwhile, regression result from colder temperature increases the input of ALK and DIC to the deep ocean and deepens the carbonate saturation depth, which makes the deep water [CO32-] rise. In ODP Site 1144, the decrease in [CO32-] caused by more CO2 restored in deep water is equal to the increase in

  14. Water Recycling, Lower Mantle Slab Subduction, and Viscous Layering of the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Williams, Q.; McNamara, A.; Garnero, E.

    2005-12-01

    We explore the causes and possible consequences of a water/hydrogen-depleted layer in the lowermost ~1000 km of Earth`s mantle. At least three distinct, non-exclusive mechanisms exist that could generate such a layer: (1) descending melts could extract water from the deep mantle, and possibly sequester it within D``; (2) hydrogen could be stripped from deep mantle material during core formation, through formation of iron hydrides; and (3) the accreting planet could have nearly completely degassed, with the terrestrial water budget being accreted in a late hydrous veneer. In the latter two instances, the water budget of the mantle, and particularly the deep mantle, must entirely be generated by injection of water into the interior from the near surface. Our hypothesis is thus that the lower portion of Earth`s mantle might be (or have been) essentially dry, in contrast to the possible presence of 10's to 100's of ppm water in the overlying material. The principal geophysical effect of a water-depleted zone likely involves a marked increase in viscosity: for reference, such a decrease in water content produces about a 2-order of magnitude increase in the viscosity of upper mantle material. Fluid dynamic simulations show that a layer with a 2-order of magnitude viscosity increase in the bottom 1000 km of Earth`s mantle produces a substantial impediment to subduction, with subducted material laterally spreading out above this viscous layer. This behavior is compatible with tomographic images showing a lack of slab continuity into the deepest mantle, and the viscosity contrast thus produces a barrier to water ingress into the deep viscous layer, allowing it to remain anhydrous for extended time periods. Notably, the boundary between the viscous layer and overlying mantle and slab material undergoes substantial deflections, and because of the chemical similarity of the layers, should be seismically undetectable. Our results provide a straightforward mechanism through

  15. Deep-water longline fishing has reduced impact on Vulnerable Marine Ecosystems

    PubMed Central

    Pham, Christopher K.; Diogo, Hugo; Menezes, Gui; Porteiro, Filipe; Braga-Henriques, Andreia; Vandeperre, Frederic; Morato, Telmo

    2014-01-01

    Bottom trawl fishing threatens deep-sea ecosystems, modifying the seafloor morphology and its physical properties, with dramatic consequences on benthic communities. Therefore, the future of deep-sea fishing relies on alternative techniques that maintain the health of deep-sea ecosystems and tolerate appropriate human uses of the marine environment. In this study, we demonstrate that deep-sea bottom longline fishing has little impact on vulnerable marine ecosystems, reducing bycatch of cold-water corals and limiting additional damage to benthic communities. We found that slow-growing vulnerable species are still common in areas subject to more than 20 years of longlining activity and estimate that one deep-sea bottom trawl will have a similar impact to 296–1,719 longlines, depending on the morphological complexity of the impacted species. Given the pronounced differences in the magnitude of disturbances coupled with its selectivity and low fuel consumption, we suggest that regulated deep-sea longlining can be an alternative to deep-sea bottom trawling. PMID:24776718

  16. Deciduous and Evergreen Trees Rely on Deep Water Throughout the Year in a Subtropical Seasonal Forest

    NASA Astrophysics Data System (ADS)

    Ellsworth, P.

    2010-12-01

    In subtropical and tropical seasonal forests, trees have adapted to low shallow soil water availability during the dry season by modifying root density, rooting depth, and leaf phenology. Here we test the well known hypothesis that water uptake in deciduous trees is restricted to the shallow soil layer, which prevents them from sustaining transpiring leaves during the dry season. Evergreens, on the other hand, access perennially available deep water sources, allowing them to maintain their transpiring leaves during the dry season. To determine where in the soil profile deciduous and evergreen trees take up water, we used stable isotope analysis to measure water source use of two deciduous and three evergreen species for a period of 13 months. In addition, to test the possibility that leaflessness could alter the isotopic composition of stem water, we measured the isotopic variation in stem water caused by artificial defoliation of an evergreen species. Deciduous and evergreen trees took up water from the same depths in both the wet and dry seasons. Deciduous and evergreen trees used approximately 51% deep water (50-150cm) throughout the year, while soil from 0-20cm was the least important water source with 24 and 6% of water uptake for wet and dry seasons, respectively. Low use of shallow water (0-20cm) in the wet season was due to inconstant water availability. Though the top 20cm of soil is the location of most nutrients, the soil’s limited water availability requires plants to have access to a more reliable deep water source to meet both their dry and wet season transpirational demands. This apparent spatial uncoupling in water and nutrient uptake denotes separate resource allocation for nutrient and water acquisition. Deciduous trees showed isotopic enrichment of stem water compared to evergreen plants only during the period that deciduous trees were leafless. We explain this as isotopic enrichment of fixed pool of stem water by evaporation as our defoliation

  17. Method for the construction and use of carbon fiber multibarrel electrodes for deep brain recordings in the alert animal.

    PubMed

    Inagaki, Keiichiro; Heiney, Shane A; Blazquez, Pablo M

    2009-04-15

    Microiontophoresis of neuroactive substances during single unit recording in awake behaving animals can significantly advance our understanding of neural circuit function. Here, we present a detailed description of a method for constructing carbon fiber multibarrel electrodes suitable for delivering drugs while simultaneously recording single unit activity from deep structures, including brainstem nuclei and the cerebellum, in the awake behaving primate. We provide data that should aid in minimizing barrel resistance and the time required to fill long, thin multibarrel electrodes with solutions. We also show successful single unit recording from a variety of areas in the awake squirrel monkey central nervous system, including the vestibular nuclei, Interstitial Nucleus of Cajal, and the cerebellum. Our descriptions and data should be useful for investigators wishing to perform single unit recordings during microiontophoresis of neuroactive substances, particularly in deep structures of animals with chronically implanted recording chambers. PMID:19135083

  18. Clean subglacial access: prospects for future deep hot-water drilling.

    PubMed

    Makinson, Keith; Pearce, David; Hodgson, Dominic A; Bentley, Michael J; Smith, Andrew M; Tranter, Martyn; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John; Siegert, Martin J

    2016-01-28

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  19. Clean subglacial access: prospects for future deep hot-water drilling

    PubMed Central

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  20. Millennial-scale oscillations between sea ice and convective deep water formation

    NASA Astrophysics Data System (ADS)

    Saha, Raj

    2015-11-01

    During the last ice age there were several quasiperiodic abrupt warming events. The climatic effects of the so-called Dansgaard-Oeschger (D-O) events were felt globally, although the North Atlantic experienced the largest and most abrupt temperature anomalies. Similar but weaker oscillations also took place during the interglacial period. This paper proposes an auto-oscillatory mechanism between sea ice and convective deep water formation in the North Atlantic as the source of the persistent cycles. A simple dynamical model is constructed by coupling and slightly modifying two existing models of ocean circulation and sea ice. The model exhibits mixed mode oscillations, consisting of decadal-scale small-amplitude oscillations and a large-amplitude relaxation fluctuation. The decadal oscillations occur due to the insulating effect of sea ice and leads to periodic ventilation of heat from the polar ocean. Gradually, an instability builds up in the polar column and results in an abrupt initiation of convection and polar warming. The unstable convective state relaxes back to the small-amplitude oscillations from where the process repeats in a self-sustained manner. Freshwater pulses mimicking Heinrich events cause the oscillations to be grouped into packets of progressively weaker fluctuations, as observed in proxy records. Modulation of this stable oscillation mechanism by freshwater and insolation variations could account for the distribution and pacing of D-O and Bond events. Physical aspects of the system such as sea ice extent and oceanic advective flow rates could determine the characteristic 1500 year time scale of D-O events. The model results with respect to the structure of the water column in the Nordic seas during stadial and interstadial phases are in agreement with paleoproxy observations.

  1. Evidence for the bioerosion of deep-water corals by echinoids in the Northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Stevenson, Angela; Rocha, Carlos

    2013-01-01

    In situ video observations of echinoids interacting with deep-sea coral are common in the deep-sea, but paradoxically the deep-sea literature is devoid of reports of bioerosion by extant echinoids. Here we present evidence of contemporary bioerosion of cold-water coral by four species of deep-sea echinoids, Gracilechinus elegans, Gracilechinus alexandri, Cidaris cidaris, and Araeosoma fenestratum, showing that they actively predate on the living framework of reef building corals, Lophelia pertusa and Madrepora oculata, in the NE Atlantic. Echinoid specimens were collected in six canyons located in the Bay of Biscay, France and two canyons on the north side of the Porcupine Bank and Goban Spur, Ireland. A total of 44 live specimens from the four taxa (9 of G. elegans, 4 of G. alexandri, 21 of C. cidaris and 10 of A. fenestratum) showed recent ingestion of the coral infrastructure. Upon dissection, live coral skeleton was observed encased in a thick mucus layer within the gastrointestinal tract of G. elegans and G. alexandri while both live and dead coral fragments were found in C. cidaris and A. fenestratum. Echinoid bioerosion limits the growth of shallow-water reefs. Our observations suggest that echinoids may also play an important role in the ecology of deep-water coral reefs.

  2. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    PubMed Central

    Bougouffa, S.; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Z.; Al-Suwailem, A.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools. PMID:23542623

  3. Habitat, Fauna, and Conservation of Florida's Deep-Water Coral Reefs

    NASA Astrophysics Data System (ADS)

    Reed, J. K.; Pomponi, S. A.; Messing, C. G.; Brooke, S.

    2008-05-01

    Various types of deep-water coral habitats are common off the southeastern United States from the Blake Plateau through the Straits of Florida to the eastern Gulf of Mexico. Expeditions in the past decade with the Johnson-Sea- Link manned submersibles, ROVs, and AUVs have discovered, mapped and compiled data on the status, distribution, habitat, and biodiversity for many of these relatively unknown deep-sea coral ecosystems. We have discovered over three hundred, high relief (15-152-m tall) coral mounds (depth 700-800 m) along the length of eastern Florida (700 km). The north Florida sites are rocky lithoherms, whereas the southern sites are primarily classic coral bioherms, capped with dense 1-2 m tall thickets of Lophelia pertusa and Enallopsammia profunda. Off southeastern Florida, the Miami Terrace escarpment (depth 300-600 m) extends nearly 150 km as a steep, rocky slope of Miocene-age phosphoritic limestone, which provides habitat for a rich biodiversity of fish and benthic invertebrates. Off the Florida Keys, the Pourtalès Terrace (depth 200- 460 m) has extensive high-relief bioherms and numerous deep-water sinkholes to depths of 250-610 m and diameters up to 800 m. The dominant, deep-water, colonial scleractinian corals in this region include Oculina varicosa, L. pertusa, E. profunda, Madrepora oculata, and Solenosmilia variabilis. Other coral species include hydrozoans (Stylasteridae), bamboo octocorals (Isididae), numerous other gorgonians, and black corals (Antipatharia). These structure-forming taxa provide habitat and living space for a relatively unknown but biologically rich and diverse community of crustaceans, mollusks, echinoderms, polychaete and sipunculan worms, and associated fishes. We have identified 142 taxa of benthic macro-invertebrates, including 66 Porifera and 57 Cnidaria. Nearly 100 species of fish have been identified to date in association with these deep-water coral habitats. Paull et al. (2000) estimated that over 40

  4. Performance of constructed wetland system for public water supply.

    PubMed

    Elias, J M; Salati Filho, E; Salati, E

    2001-01-01

    The project is being conducted in the town of Analândia, São Paulo, Brazil. The constructed wetlands system for water supply consists of a channel with floating aquatic macrophytes, HDS system (Water Decontamination with Soil-Patent PI 850.3030), chlorinating system, filtering system and distribution. The project objectives include investigating the process variables to further optimize design and operation factors, evaluating the relation of nutrients and plants development, biomass production, shoot development, nutrient cycling and total and fecal coliforms removal, comparing the treatment efficiency among the seasons of the year; and moreover to compare the average values obtained between February and June 1998 (Salati et al., 1998) with the average obtained for the same parameters between March and June 2000. Studies have been developed in order to verify during one year the drinking quality of the water for the following parameters: turbidity, color, pH, dissolved oxygen, total of dissolved solids, COD, chloride, among others, according to the Ministry of Health's Regulation 36. This system of water supply projected to treat 15 L s(-1) has been in continuous operation for 2 years, it was implemented with support of the National Environment Fund (FNMA), administered by the Center of Environmental Studies (CEA-UNESP), while the technical supervision and design were performed by the Institute of Applied Ecology. The actual research project is being supported by FAPESP. PMID:11804153

  5. Reduced North Atlantic deep water coeval with the glacial Lake Agassiz freshwater outburst.

    PubMed

    Kleiven, Helga Kikki Flesche; Kissel, Catherine; Laj, Carlo; Ninnemann, Ulysses S; Richter, Thomas O; Cortijo, Elsa

    2008-01-01

    An outstanding climate anomaly 8200 years before the present (B.P.) in the North Atlantic is commonly postulated to be the result of weakened overturning circulation triggered by a freshwater outburst. New stable isotopic and sedimentological records from a northwest Atlantic sediment core reveal that the most prominent Holocene anomaly in bottom-water chemistry and flow speed in the deep limb of the Atlantic overturning circulation begins at approximately 8.38 thousand years B.P., coeval with the catastrophic drainage of Lake Agassiz. The influence of Lower North Atlantic Deep Water was strongly reduced at our site for approximately 100 years after the outburst, confirming the ocean's sensitivity to freshwater forcing. The similarities between the timing and duration of the pronounced deep circulation changes and regional climate anomalies support a causal link. PMID:18063758

  6. Unsteady evolution of localized unidirectional deep-water wave groups

    NASA Astrophysics Data System (ADS)

    Cousins, Will; Sapsis, Themistoklis P.

    2015-06-01

    We study the evolution of localized wave groups in unidirectional water wave envelope equations [the nonlinear Schrödinger (NLSE) and the modified NLSE (MNLSE)]. These localizations of energy can lead to disastrous extreme responses (rogue waves). We analytically quantify the role of such spatial localization, introducing a technique to reduce the underlying partial differential equation dynamics to a simple ordinary differential equation for the wave packet amplitude. We use this reduced model to show how the scale-invariant symmetries of the NLSE break down when the additional terms in the MNLSE are included, inducing a critical scale for the occurrence of extreme waves.

  7. Thick bottom nepheloid layers in the western Mediterranean generated by deep dense shelf water cascading

    NASA Astrophysics Data System (ADS)

    Puig, Pere; Madron, Xavier Durrieu de; Salat, Jordi; Schroeder, Katrin; Martín, Jacobo; Karageorgis, Aristomenis P.; Palanques, Albert; Roullier, François; Lopez-Jurado, José Luis; Emelianov, Mikhail; Moutin, Thierry; Houpert, Loïc

    2013-04-01

    The analysis of a compilation of deep CTD casts conducted in the western Mediterranean from 1998 to 2011 has documented the role that dense water formation, and particularly deep dense shelf water cascading off the Gulf of Lions, plays in transporting suspended particulate matter from the coastal regions down to the basin. Deep CTD casts reveal that after the 1999 and 2005-2006 deep cascading events the Western Mediterranean Deep Water (WMDW) was characterized by the presence of a thick bottom nepheloid layer (BNL) that corresponded in thickness with a thermohaline anomaly generated by the mixture of dense waters formed by deep convection in the open sea and by deep cascading. This BNL can be hundreds of meters thick and in the central part of the basin usually exhibits suspended sediment concentrations of <0.1 mg/l above background levels, reaching higher concentrations close to the continental rise, with near-bottom peaks >1 mg/l. After winter 1999 the BNL spread from the Gulf of Lions and the Catalan margin over the northwestern Mediterranean basin, reaching west of the Balearic Islands and the Ligurian Sea, while after winters 2005-2006 the BNL covered the entire western Mediterranean basin. Thickness and concentration of the BNL tend to diminish with time but this trend is highly dependent on the volume of dense water generated, both by convection and cascading. After winter 1999 the BNL signal vanished in one year, but after winters 2005-2006 it lasted for longer and the turbidity signal can still be distinguished at present (2011). Particle size distribution in the BNL reveals the presence of large aggregates up to 1 mm in size formed by a mixture of single particles with the same bimodal grain size distribution as the surface sediments found in the northwestern Mediterranean slope and basin. Results presented in this paper highlight the fact that the WMDW can be periodically affected by the arrival of new dense waters loaded with suspended particles mainly

  8. Water potential and starvation stress in deep subsurface microorganisms

    SciTech Connect

    Kieft, T.L.; Rosacker, L.L.; Willcox, D.; Franklin, A.J.

    1990-12-31

    Nine intact core samples, collected aseptically from depths of 10--436 m near the Savannah River Plant in South Carolina, were tested for water potential, microbial numbers, and microbial activity. Although all samples were collected from below the water table, two samples (a Pee Dee clay from 238 m and a Middendorf clay from 324 m) showed unsaturated conditions ({minus}2.7 and {minus}2.1 MPa, respectively). Both of these samples had very low numbers of culturable cells, low microbial biomass (ATP assay), and low microbial activities (measured as respiration), suggesting that low metric waterpotentials in these strata are limiting factors to microorganisms. An Acinetobacter sp. isolated from the 324 m depth was found to maintain viability under starvation conditions in sterilized aquifer material, even when subjected to severe desiccation ({minus}22 MPa). A Pseudomonas sp., with the ability to oxidize thiosulfate to sulfate, was isolated from the 378 m Middendorf clay sample. This organism survived nutrient deprivation reasonably well; however, the presence of thiosulfate appeared to interfere with its normal ability to maintain viability by endogenous metabolism. Cells cultured in the presence of thiosulfate did not undergo dwarfing and cell viability declines. These are two examples of indigenous subsurface microorganisms, each with different adaptations for long-term survival under conditions of desiccation and/or starvation.

  9. Water potential and starvation stress in deep subsurface microorganisms

    SciTech Connect

    Kieft, T.L.; Rosacker, L.L.; Willcox, D.; Franklin, A.J.

    1990-01-01

    Nine intact core samples, collected aseptically from depths of 10--436 m near the Savannah River Plant in South Carolina, were tested for water potential, microbial numbers, and microbial activity. Although all samples were collected from below the water table, two samples (a Pee Dee clay from 238 m and a Middendorf clay from 324 m) showed unsaturated conditions ({minus}2.7 and {minus}2.1 MPa, respectively). Both of these samples had very low numbers of culturable cells, low microbial biomass (ATP assay), and low microbial activities (measured as respiration), suggesting that low metric waterpotentials in these strata are limiting factors to microorganisms. An Acinetobacter sp. isolated from the 324 m depth was found to maintain viability under starvation conditions in sterilized aquifer material, even when subjected to severe desiccation ({minus}22 MPa). A Pseudomonas sp., with the ability to oxidize thiosulfate to sulfate, was isolated from the 378 m Middendorf clay sample. This organism survived nutrient deprivation reasonably well; however, the presence of thiosulfate appeared to interfere with its normal ability to maintain viability by endogenous metabolism. Cells cultured in the presence of thiosulfate did not undergo dwarfing and cell viability declines. These are two examples of indigenous subsurface microorganisms, each with different adaptations for long-term survival under conditions of desiccation and/or starvation.

  10. A New Approach for Examining Water Vapor and Deep Convection Interactions in the Tropics

    NASA Astrophysics Data System (ADS)

    Adams, D. K.

    2014-12-01

    The complex interactions/feedbacks between water vapor fields and deep atmospheric convection remains one of the outstanding problems in Tropical Meteorology. The lack of high spatial/temporal resolution, all-weather observations in the Tropics has hampered progress. Numerical models have difficulties, for example, in representing the shallow-to-deep convective transition and the diurnal cycle of precipitation. GNSS (Global Navigation Satellite System) meteorology, which provides all-weather, high frequency (5 minutes), precipitable water vapor, can help. From 3.5 years of GNSS meteorological data in Manaus, (Central Amazonia), 320 convective events were analyzed. Results reveal two characteristic time scales of water vapor convergence; an 8 h time scale of weak convergence and 4 h timescale of intense water vapor convergence associated with the shallow-to-deep convection transition. The 4 h shallow-to-deep transition time scale is particularly robust, regardless of convective intensity, seasonality, or nocturnal versus daytime convection. We also present a summary of the Amazon Dense GNSS Meteorological Network experiment, the first ever in the Tropics, was created with the explicit aim of examining the wv/deep convection relationships at the mesoscale. This innovative, international experiment, consisted of two mesoscale (100km x100km) networks: (1) a one-year (April 2011 to April 2012) campaign (20 GNSS meteorological sites) in and around Manaus , and (2) a 6 week (June 2011) intensive campaign (15 GNSS meteorological sites) in and around Belem, this latter in collaboration with the CHUVA GPM in Brazil. Results presented here from both networks focus on the diurnal cycle of precipitable water vapor: for sea breeze convection in Belem and, for assessing the influence seasonal and topographic influences for Manaus. Ultimately, these unique observations may serve to initialize, constrain, or validate precipitable water vapor spatial and temporal evolution in high

  11. Insight into the microbial community structure of a Norwegian deep-water coral reef environment

    NASA Astrophysics Data System (ADS)

    Jensen, Sigmund; Neufeld, Josh D.; Birkeland, Nils-Kåre; Hovland, Martin; Murrell, J. Colin

    2008-11-01

    Deep-water coral reefs support rich biological communities below the photic zone of fjords and continental shelves around the world. In this environment, life is enclosed within cold permanent darkness, in stark contrast to life in tropical coral reefs. We collected samples of water, sediment and a Desmacidon sp. sponge from a deep-water coral reef off the coast of Norway, and characterised bacterial communities with focus on primary producers in the dark. Following DNA extraction, PCR amplification and 16S rRNA gene library sequencing, bioinformatic analyses demonstrated significant differences between bacterial communities associated with the three samples. The finding that 50% of the clones showed <90% identity to cultured bacteria reflects the novel and uncharacterised diversity associated with these deep-water coral reefs. A total of 13 bacterial phyla were identified. Acidobacteria dominated the sponge library and Proteobacteria dominated the bacterioplankton and sediment libraries. Phylogenetic analysis revealed a possible new clade of sponge-associated Acidobacteria, which includes representatives from the Desmacidon sp. (Norway), Rhopaloeides odorabile (Australia) and Discodermia dissoluta (Curacao). Furthermore, the targeted recovery of a particulate methane monooxygenase ( pmoA) gene from the Desmacidon sp. DNA extract suggests that as yet uncultivated type I methanotrophs may mediate methane oxidation in this deep-water coral reef. Methanotrophs were not identified in the 16S rRNA gene libraries, but the presence of a high number (8%) of clones related to sulfide-, nitrite- and iodide-oxidising bacteria suggests chemosynthesis to be involved with maintenance of the deep-water coral reef ecosystem.

  12. Reservoir compartmentalization of deep-water Intra Qua Iboe sand (Pliocene), Edop field, offshore Nigeria

    SciTech Connect

    Hermance, W.E.; Olaifa, J.O.; Shanmugam, G.

    1995-08-01

    An integration of 3-D seismic and sedimentological information provides a basis for recognizing and mapping individual flow units within the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Core examination show the following depositional facies: A-Sandy slump/mass flow, B-Muddy slump/mass flow, C. Bottom current reworking. D-Non-channelized turbidity currents, E. Channelized (coalesced) turbidity currents. F-Channelized (isolated) turbidity currents, G-Pelagic/hemipelagic, H-Levee, I-Reworked slope, J-Wave dominated, and K-Tide dominated facies. With the exception of facies J and K, all these facies are of deep-water affinity. The IQI was deposited on an upper slope environment in close proximity to the shelf edge. Through time, as the shelf edge migrated scaward, deposition began with a channel dominated deep-water system (IQI 1 and 2) and progressed through a slump/debris flow dominated deep-water system (IQI 3, the principle reservoir) to a tide and wave dominated shallow-water system (IQI 4). Compositional and textural similarities between the deep-water facies result in similar log motifs. Furthermore, these depositional facies are not readily apparent as distinct seismic facies. Deep-water facies A, D, E, and F are reservoir facies, whereas facies B, C, G, H, and I are non-reservoir facies. However, Facies G is useful as a seismically mappable event throughout the study area. Mapping of these non-reservoir events provides the framework for understanding gross reservoir architecture. This study has resulted in seven defined reservoir units within the IQI, which serves as the architectural framework for ongoing reservoir characterization.

  13. Distal and proximal controls on the silicon stable isotope signature of North Atlantic Deep Water

    NASA Astrophysics Data System (ADS)

    de Souza, Gregory F.; Slater, Richard D.; Hain, Mathis P.; Brzezinski, Mark A.; Sarmiento, Jorge L.

    2015-12-01

    It has been suggested that the uniquely high δ30Si signature of North Atlantic Deep Water (NADW) results from the contribution of isotopically fractionated silicic acid by mode and intermediate waters that are formed in the Southern Ocean and transported to the North Atlantic within the upper limb of the meridional overturning circulation (MOC). Here, we test this hypothesis in a suite of ocean general circulation models (OGCMs) with widely varying MOCs and related pathways of nutrient supply to the upper ocean. Despite their differing MOC pathways, all models reproduce the observation of a high δ30Si signature in NADW, as well showing a major or dominant (46-62%) contribution from Southern Ocean mode/intermediate waters to its Si inventory. These models thus confirm that the δ30Si signature of NADW does indeed owe its existence primarily to the large-scale transport of a distal fractionation signal created in the surface Southern Ocean. However, we also find that more proximal fractionation of Si upwelled to the surface within the Atlantic Ocean must also play some role, contributing 20-46% of the deep Atlantic δ30Si gradient. Finally, the model suite reveals compensatory effects in the mechanisms contributing to the high δ30Si signature of NADW, whereby less export of high-δ30Si mode/intermediate waters to the North Atlantic is compensated by production of a high-δ30Si signal during transport to the NADW formation region. This trade-off decouples the δ30Si signature of NADW from the pathways of deep water upwelling associated with the MOC. Thus, whilst our study affirms the importance of cross-equatorial transport of Southern Ocean-sourced Si in producing the unique δ30Si signature of NADW, it also shows that the presence of a deep Atlantic δ30Si gradient does not uniquely constrain the pathways by which deep waters are returned to the upper ocean.

  14. Dissolved inorganic carbon isotopic composition of the Gulf of Mexico deep-water masses.

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, J. G.; Herguera, J. C.; Ferreira-Bartrina, V.; Hernández-Ayón, J. M.; Camacho-Ibar, V.

    2014-12-01

    This study provides new data for the establishment of a carbon biogeochemical dynamics baseline in the deep Gulf of Mexico (GM) based on carbon isotopes in dissolved inorganic carbon. Water samples from 40 deep-water stations south of 25˚N were collected during XIXIMI-2 cruise, July 2011, aboard BO/Justo Sierra. Vertical profiles of temperature, salinity and dissolved oxygen (DO) were further measured in each station. In the Stable Isotopes Laboratory at CICESE we determined the carbon isotopic composition of the dissolved inorganic carbon (DIC) (δ13CDIC). Remarkably, density, DO and δ13CCID profiles showed a clear difference between the Loop current and the deep-waters of the GM south of 25˚N. We found the following average δ13CCID values in the Loop current and in the deep-waters of the Gulf: subtropical underwater (SUW): 0.73±0.06‰ and 0.86±0.04‰; 18 degree water (18W): 0.76 ± 0.08‰ and 0.58± 0.06‰; North Atlantic central water (NACW): 0.77 ± 0.05‰ and 0.71 ± 0.09‰; South Atlantic central water (SACW): 0.80 ± 0.08‰ and 0.77 ± 0.07‰; Antartic intermediate water (AAIW): 1.00 ± 0.06‰ and 0.90 ± 0.08‰; North Atlantic deep water (NADW): 1.03 ± 0.06‰ and 1.01 ± 0.10‰. We will discuss how the biological component, δ13CCID-BIO, of subsurface water masses match very closely the apparent oxygen utilization relation described by Kroopnick, 1985, with the exception of SUW, and as a consequence the 18W is probably the water mass most affected by organic carbon remineralization processes in the GM south of 25˚N. We further show how these waters seem to store a larger proportion of anthropogenic carbon than the deeper water masses.

  15. Immature insects (Plecoptera, Trichoptera, and Ephemeroptera) collected from deep water in western Lake Superior

    USGS Publications Warehouse

    Selgeby, James H.

    1974-01-01

    Five species of aquatic insects - two plecopterans, two trichopterans, and one ephemeropteran - usually found in streams or ponds were collected in water 32-100 m deep in western Lake Superior. All appear to be new records for the lake and all were collected from far greater depths than previously recorded for these forms.

  16. Identifying pathways for sanitary sewer pathogens to reach deep water supply wells in Madison, Wisconsin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work conducted by the Wisconsin Geological and Natural History Survey indicated that human enteric viruses from leaking sewers are present in several municipal wells in Madison, WI. These wells are the drinking water source for the City of Madison, are typically 700 to 900 feet deep, and pe...

  17. Classification of human activity on water through micro-Dopplers using deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Kim, Youngwook; Moon, Taesup

    2016-05-01

    Detecting humans and classifying their activities on the water has significant applications for surveillance, border patrols, and rescue operations. When humans are illuminated by radar signal, they produce micro-Doppler signatures due to moving limbs. There has been a number of research into recognizing humans on land by their unique micro-Doppler signatures, but there is scant research into detecting humans on water. In this study, we investigate the micro-Doppler signatures of humans on water, including a swimming person, a swimming person pulling a floating object, and a rowing person in a small boat. The measured swimming styles were free stroke, backstroke, and breaststroke. Each activity was observed to have a unique micro-Doppler signature. Human activities were classified based on their micro-Doppler signatures. For the classification, we propose to apply deep convolutional neural networks (DCNN), a powerful deep learning technique. Rather than using conventional supervised learning that relies on handcrafted features, we present an alternative deep learning approach. We apply the DCNN, one of the most successful deep learning algorithms for image recognition, directly to a raw micro-Doppler spectrogram of humans on the water. Without extracting any explicit features from the micro-Dopplers, the DCNN can learn the necessary features and build classification boundaries using the training data. We show that the DCNN can achieve accuracy of more than 87.8% for activity classification using 5- fold cross validation.

  18. Carbonate mound evolution and coral diagenesis viewed by U-series dating of deep water corals

    NASA Astrophysics Data System (ADS)

    Frank, N.; Ricard, E.; Blamart, D.; van der Land, C.; Colin, C.; Foubert, A.; van Rooij, D.; van Weering, T.

    2007-12-01

    U-series dating of constructional deep sea corals is a powerful tool to reconstruct the evolution of carbonate mound sediments driven by coral growth, sediment trapping and diagenesis. Here we have investigated in great detail the time framework of constructional corals such as L. pertusa and M. oculata on 5 different mounds of the eastern North Atlantic (on Rockall Bank and in Porcupine Seabight) taken at variable depth and location (610 to 880m water depth). Periods favorable for coral growth are the Holocene and prior interglacials such as marine isotope stage 5 and 7, while glacial coral growth seems inhibited or extremely reduced. Coral development is almost continuous throughout the Holocene since mound re-colonization about 10,500 years ago. Mound accumulation rates vary between 20 and 220 cm/kyr determined from the coral age - depth relationship in each core. Those changes are most likely driven by changes between horizontal and vertical mound accumulation, food supply and ocean circulation. In addition, coral dating allowed to identify an important erosional event recorded in core MD01-2455G from Rockall Bank. Here a 1m thick sediment layer containing ancient corals likely from the start of Holocene re-colonization was displaced (collapsed) from further upslope on top of younger corals of ~2500 to 3000 years age. Prior to the initiation of coral growth diagenesis occurred frequently resulting in (1) the construction of so called carbonate hardgrounds and/or (2) the dissolution of the pre-Holocene coral framework. Solely, the deepest selected core in Porcupine Seabight (MD01-2463G at 880m depth) reveals coral re-colonization on an undisturbed ancient reef structure that dates back to 250,000 years. Diagenesis of earlier coral reef generations leading to coral dissolution leads to a loss of magnetic susceptibility and open system behavior of the coral skeletons with respect to U-series dating. While the processes causing such diagenetic layers are barely

  19. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    NASA Astrophysics Data System (ADS)

    Verstricht, J.; Areias, L.; Bastiaens, W.; Li, X. L.

    2010-06-01

    Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure), or it can be an indirect technique, deriving the stress from related quantities such as strain (changes) in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter). Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  20. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand

    PubMed Central

    Radloff, K.A.; Zheng, Y.; Michael, H.A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M.W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.

    2011-01-01

    Drinking shallow groundwater with naturally elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, growing reliance on deep (>150 m) groundwater has lowered exposure. In the most affected districts of Bangladesh, shallow groundwater concentrations average 100 to 370 μg L−1, while deep groundwater is typically < 10 μg L−1. Groundwater flow simulations have suggested that, even when deep pumping is restricted to domestic use, deep groundwater in some areas of the Bengal Basin is at risk of contamination. However, these simulations have neglected the impedance of As migration by adsorption to aquifer sediments. Here we quantify for the first time As sorption on deeper sediments in situ by replicating the intrusion of shallow groundwater through injection of 1,000 L of deep groundwater modified with 200 μg L−1 of As into a deeper aquifer. Arsenic concentrations in the injected water were reduced by 70% due to adsorption within a single day. Basin-scale modelling indicates that while As adsorption extends the sustainable use of deep groundwater, some areas remain vulnerable; these areas can be prioritized for management and monitoring. PMID:22308168

  1. Use of deep water lagoons for reducing sewage toxicity prior to wastewater treatment

    SciTech Connect

    Shaw, J.R.; Zuiderveen, J.A.; Belcher, B.; McGinley, P.; Birge, W.J.

    1994-12-31

    Investigations were conducted to determine the effectiveness of deep lagoons as a means of wastewater pretreatment. A lagoon system associated with a wastewater treatment plant (WWTP) was selected for study and parameters identified for monitoring included toxicity, metals, total suspended solids (TSS) and ammonia. This system included two lagoons, with 7--15 day hydraulic retention times, fed sequentially with untreated water. Toxicity and other parameters were measured for raw influent water, the two lagoon outfalls, and the final WWTP effluent. In seven-day chronic tests with Ceriodaphnia dubia, the NOEC of influent water was as low as 20%, and 100% mortality occurred at 40%. Outfall from the first deep water lagoon showed reduced toxicity. The NOEC was > 50% but complete mortality occurred in undiluted effluent. Further reduction in toxicity occurred in the second lagoon. Its undiluted effluent had no effect on survival, but did markedly reduce fecundity. The final effluent discharged from the treatment plant affected neither survival nor fecundity. Results of this investigation support the use of deep water lagoons as an effective and economical means of pretreating wastewater. This approach offers promise for municipal waters, industrial effluents and stormwater runoff.

  2. The characterization and bioavailability of dissolved organic carbon in deep subsurface and surface waters

    SciTech Connect

    Palumbo, A.V.; Jardine, P.M.; McCarthy, J.F. ); Zaidi, B.R. . Dept. of Marine Sciences)

    1990-01-01

    We characterized and compared the bioavailability of chemical fractions of dissolved organic carbon (DOC) from deep wells at the US Department of Energy Savannah River Plant (SRP) site with that from South Carolina surface waters. Experiments with three bacterial cultures (Corynebacterium sp., Pseudomonas sp., and a bacteria included isolated from the surface water) indicated that the bioavailability of the carbon in the near surface water may be limited by inorganic nutrients. Associated with well-defined organic compounds. The purpose of this preliminary investigation was to improve our understanding of the organic matter in groundwater by characterizing the natural organic matter in water recovered from different formations in the Deep Probe Subsurface Microbiology program and by determining if the natural organic carbon can support growth of bacterial populations. The characterization was directed at elucidating the properties of of dissolved or colloidal organic matter that are relevant to the transport and mobility of the organic matter (and contaminants sorbed to the organic matter) and that may also be relevant to the potential role of organic matter in groundwater as a nutrient source supporting microbial productivity in the deep subsurface. A secondary objective of this study was to determine the factors limiting microbial growth in surface waters and near surface groundwaters and to determine the response of the microbial community to a mixing of these waters.

  3. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, T.; Sun, J.; Cai, L.; Liang, Y.; Jiao, N.; Zhang, R.

    2014-05-01

    As the most abundant biological entities in the ocean, viruses influence host mortality and nutrient recycling mainly through lytic infection. Yet, the ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In the present study, viral abundance and lytic infection were investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21 to 16.23 to 2.45-23.40, at the surface and 2000 m, respectively. Lytic viral production rates in surface and 2000 m waters were, on average, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1. Relatively high percentages of prokaryotic cells lysed by viruses at 1000 and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in the deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in these deep waters and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.

  4. Solar hot water systems for the southeastern United States: principles and construction of breadbox water heaters

    SciTech Connect

    1983-02-01

    The use of solar energy to provide hot water is among the easier solar technologies for homeowners to utilize. In the Southeastern United States, because of the mild climate and abundant sunshine, solar energy can be harnessed to provide a household's hot water needs during the non-freezing weather period mid-April and mid-October. This workbook contains detailed plans for building breadbox solar water heaters that can provide up to 65% of your hot water needs during warm weather. If fuel costs continue to rise, the annual savings obtained from a solar water heater will grow dramatically. The designs in this workbook use readily available materials and the construction costs are low. Although these designs may not be as efficient as some commercially available systems, most of a household's hot water needs can be met with them. The description of the breadbox water heater and other types of solar systems will help you make an informed decision between constructing a solar water heater or purchasing one. This workbook is intended for use in the southeastern United States and the designs may not be suitable for use in colder climates.

  5. Contributions of the Siberian shelf polynyas to the Arctic Ocean intermediate and deep water

    NASA Technical Reports Server (NTRS)

    Martin, Seelye; Cavalieri, Donald J.

    1989-01-01

    To investigate the role of Siberian Shelf polynyas in water mass formation, and that of Whalers Bay in the cooling of the West Spitsbergen Current, satellite observations from the Nimbus 7 scanning multichannel microwave radiometer are used to determine the size and location of polynyas for November-March, 1978-1982. If salt contributes only to the Arctic Intermediate Water, the results show that the continental shelves can produce 20-60 percent of this water. Alternatively, if the salt contributes only to the deep water of the Eurasian Basin, then without consideration of the mixing of the bottom water with the Greenland and Norwegian Sea water, the contribution from the shelves yields a renewal time of about 100 years. These results imply that there is insufficient water produced in the shelf polynyas to perform all of the roles that have historically been assigned to it.

  6. Deep-focus earthquakes and recycling of water into the earth's mantle

    NASA Technical Reports Server (NTRS)

    Meade, Charles; Jeanloz, Raymond

    1991-01-01

    For more than 50 years, observations of earthquakes to depths of 100 to 650 kilometers inside earth have been enigmatic: at these depths, rocks are expected to deform by ductile flow rather than brittle fracturing or frictional sliding on fault surfaces. Laboratory experiments and detailed calculations of the pressures and temperatures in seismically active subduction zones indicate that this deep-focus seismicity could originate from dehydration and high-pressure structural instabilities occurring in the hydrated part of the lithosphere that sinks into the upper mantle. Thus, seismologists may be mapping the recirculation of water from the oceans back into the deep interior of the planet.

  7. Deep water challenges: Oil industry moves off continental shelf; meets new oceanographic data-gathering challenges

    SciTech Connect

    Mardell, G.; Flynn, J.

    1995-08-01

    While offshore oil industry activities move from the continental shelves to the continental slope and even onto the abyssal plains of the deep oceans, new oceanographic problems arise - from riser-deforming internal waves to ocean-floor avalanches. As well as soliton-induced currents, other subsurface flows need to be monitored to provide data in support of wide ranging underwater activities, including exploration drilling, deployment of subsea systems, diver and ROV operations, and pipe design, lay and inspection. This article examines some of the work carried out over the past year or so with data-gathering deep water moorings.

  8. Age Determination and Growth Rates in Deep-Water Bamboo Corals (Isididae)

    NASA Astrophysics Data System (ADS)

    Fallon, S. J.; Thresher, R.; Sherwood, O.

    2009-12-01

    Gorgonians are a major element of the fauna of deep-water coral reefs and very long-lived recorders of deep-water paleo-oceanography. Both ecological studies and paleo-analyses require accurate age determination and dating of colony formation, but because of the depths at which they occur (typically 1-3 km), direct validation by tagging of aging methods is logistically difficult. Radiocarbon analysis of both the node organic tissue and internode calcite provided apparently robust age and date information. Growth rates ranged from 40 to ~140 microns per year in samples collected from 600 to 1600m water depth. Following these analyses, we compiled the robust growth-rate data for recent material, and report on a first-pass analysis of ecological and regional effects on isidid growth rates.

  9. Comparison of numerical models for predicting ground water rebound in abandoned deep mine systems

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Baek, H.; Kim, D.

    2012-12-01

    Cessation of dewatering usually results in ground water rebound after closing a deep underground mine because the mind voids and surrounding strata flood up to the levels of decant points such as shafts and drifts. Several numerical models have been developed to predict the timing, magnitude and location of discharges resulting from ground water rebound. We compared the numerical models such as VSS-NET, GRAM and MODFLOW codes at different spatial and time scales. Based on the comparisons, a new strategy is established to develop a program for ground water rebound modeling in abandoned deep mine systems. This presentation describes the new strategy and its application to an abandoned underground mine in Korea.

  10. Protist Community Grazing on Prokaryotic Prey in Deep Ocean Water Masses.

    PubMed

    Rocke, Emma; Pachiadaki, Maria G; Cobban, Alec; Kujawinski, Elizabeth B; Edgcomb, Virginia P

    2015-01-01

    Oceanic protist grazing at mesopelagic and bathypelagic depths, and their subsequent effects on trophic links between eukaryotes and prokaryotes, are not well constrained. Recent studies show evidence of higher than expected grazing activity by protists down to mesopelagic depths. This study provides the first exploration of protist grazing in the bathypelagic North Atlantic Deep Water (NADW). Grazing was measured throughout the water column at three stations in the South Atlantic using fluorescently-labeled prey analogues. Grazing in the deep Antarctic Intermediate water (AAIW) and NADW at all three stations removed 3.79% ± 1.72% to 31.14% ± 8.24% of the standing prokaryote stock. These results imply that protist grazing may be a significant source of labile organic carbon at certain meso- and bathypelagic depths. PMID:25894547

  11. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, T.; Sun, J.; Cai, L.; Jiao, N.; Zhang, R.

    2013-12-01

    As the most abundant biological entities in the ocean, viruses can influence host mortality and nutrients recycling mainly through lytic infection. Yet ecological characteristics of virioplankton and viral impacts on host mortality and biogeochemical cycling in the deep sea are largely unknown. In present study, viral abundance and lytic infection was investigated throughout the water column in the western Pacific Ocean. Both the prokaryotic and viral abundance and production showed a significantly decreasing trend from epipelagic to meso- and bathypelagic waters. Viral abundance decreased from 0.36-1.05 × 1010 particles L-1 to 0.43-0.80 × 109 particles L-1, while the virus : prokaryote ratio varied from 7.21-16.23 to 2.45-23.40, at surface and 2000 m depth, respectively. The lytic viral production rates in surface and 2000 m waters were, averagely, 1.03 × 1010 L-1 day-1 and 5.74 × 108 L-1 day-1, respectively. Relatively high percentages of prokaryotic cells lysed by virus in 1000 m and 2000 m were observed, suggesting a significant contribution of viruses to prokaryotic mortality in deep ocean. The carbon released by viral lysis in deep western Pacific Ocean waters was from 0.03 to 2.32 μg C L-1 day-1. Our findings demonstrated a highly dynamic and active viral population in the deep western Pacific Ocean and suggested that virioplankton play an important role in the microbial loop and subsequently biogeochemical cycling in deep oceans.

  12. Impact of switching crop type on water and solute fluxes in deep vadose zone

    NASA Astrophysics Data System (ADS)

    Turkeltaub, T.; Kurtzman, D.; Russak, E. E.; Dahan, O.

    2015-12-01

    Switching crop type and consequently changing irrigation and fertilization regimes lead to alterations in deep percolation and solute concentrations of pore water. Herein, observations from the deep vadose zone and model simulations demonstrate the changes in water, chloride, and nitrate fluxes under a commercial greenhouse following the change from tomato to lettuce cropping. The site, located above a phreatic aquifer, was monitored for 5 years. A vadose-zone monitoring system was implemented under the greenhouse and provided continuous data on both temporal variations in water content and chemical composition of the pore water at multiple depths in the deep vadose zone (up to 20 m). Following crop switching, a significant reduction in chloride concentration and dramatic increase in nitrate were observed across the unsaturated zone. The changes in chemical composition of the vadose-zone pore water appeared as sequential breakthroughs across the unsaturated zone, initiating at land surface and propagating down toward the water table. Today, 3 years after switching the crops, penetration of the impact exceeds 10 m depth. Variations in the isotopic composition of nitrate (18O and 15N) in water samples obtained from the entire vadose zone clearly support a fast leaching process and mobilization of solutes across the unsaturated zone following the change in crop type. Water flow and chloride transport models were calibrated to observations acquired during an enhanced infiltration experiment. Forward simulation runs were performed with the calibrated models, constrained to tomato and lettuce cultivation regimes as surface boundary conditions. Predicted chloride and nitrate concentrations were in agreement with the observed concentrations. The simulated water drainage and nitrogen leaching implied that the observed changes are an outcome of recommended agricultural management practices.

  13. Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts

    USGS Publications Warehouse

    Von Blanckenburg, F.; O'Nions, R. K.; Belshaw, N.S.; Gibb, A.; Hein, J.R.

    1996-01-01

    The direct measurement of the ratio of cosmogenic 10Be (T1/2 = 1.5 Ma) to stable terrigenously sourced 9Be in deep seawater or marine deposits can be used to trace water mass movements and to quantify the incorporation of trace metals into the deep sea. In this study a SIMS-based technique has been used to determine the 10Be/9Be ratios of the outermost millimetre of hydrogenetic ferromanganese crusts from the worlds oceans. 10Be/9Be ratios, time-corrected for radioactive decay of cosmogenic 10Be using 234U/ 238U, are in good agreement with AMS measurements of modern deep seawater. Ratios are relatively low in the North and equatorial Atlantic samples (0.4-0.5 ?? 10-7). In the Southwest Atlantic ratios increase up to 1 ?? 10-7, they vary between 0.7 and 1.0 ?? 10-7 in Indian Ocean samples, and have a near constant value of 1.1 ?? 0.2 ?? 10-7 for all Pacific samples. If the residence time of 10Be (??10Be) in deep water is constant globally, then the observed variations in 10Be/9Be ratios could be caused by accumulation of 10Be in deep water as it flows and ages along the conveyor, following a transient depletion upon its formation in the Northern Atlantic. In this view both 10Be and 9Be reach local steady-state concentration in Pacific deep water and the global ??10Be ??? 600 a. An alternative possibility is that the Be isotope abundances are controlled by local scavenging. For this scenario ??10Be would vary according to local particle concentration and would ??? 600 a in the central Pacific, but ??10Be ??? 230 a in the Atlantic. Mass balance considerations indicate that hydrothermal additions of 9Be to the oceans are negligible and that the dissolved riverine source is also small. Furthermore, aeolian dust input of 9Be appears insufficient to provide the dissolved Be inventory. The dissolution of only a small proportion (2%) of river-derived particulates could in principle supply the observed seawater Be content. If true, ocean margins would be the sites for 9Be

  14. Three new records of deep-water goniasterids (Echinodermata: Asteroidea: Goniasteridae) from China seas

    NASA Astrophysics Data System (ADS)

    Xiao, Ning; Liao, Yulin

    2013-09-01

    In this paper, three deep-water species of the family Goniasteridae, Ceramaster misakiensis (Goto, 1914), Nymphaster arthrocnemis Fisher, 1913 and Pontioceramus grandis Fisher, 1911, are recorded for the first time from Chinese waters based on collections deposited in the Marine Biological Museum, Chinese Academy of Sciences. The specimens examined were collected during the period 1956 to 1978 from the East China and South China Seas at depths of 184 to 472 m. Diagnosis, detailed figures, and the geographic distributions are provided. A revised list of Goniasteridae recorded from Chinese waters is proposed.

  15. A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2004-01-01

    A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if

  16. Age depth model construction of the upper section of ICDP Dead Sea Deep Drilling Project based on the high-resolution 14C dating

    NASA Astrophysics Data System (ADS)

    Kitagawa, H.; Nakamura, T.; Neugebauer, I.; Schwab, M. J.; Brauer, A.; Goldstein, S. L.; Stein, M.

    2014-12-01

    To reconstruct environmental, climatic and tectonic histories of the Levant, a deep drilling has been accomplished in the northern basin of the Dead Sea during the fall winter of 2010-2011 by the Dead Sea Deep Drilling Project (DSDDP) in the framework of the ICDP program. The sediment cores from site 5017-1 (water depth of ~300 m) recorded the paleoenvironmental and paleohydrological changes in the Dead Sea and the Levant during the last two glacial-interglacial cycles (Neugebauer et al., QSR in press). To provide precise timing of sedimentological - limnological events in the lake and its watershed, and more critically the relative timing of these events, radiocarbon dating of >70 well-preserved terrestrial plants and some carbonate deposits from the upper 150 m long section of the sediment core were performed. Based on the high-resolution radiocarbon dating, a statistical age-depth model was constructed with assumptions on the deposition condition and the radiocarbon age offset of carbonate samples. We discuss the practicality and the limitation of the age-depth model toward interpreting the high-resolution records of environmental, climatic and tectonic events recorded in the long sediment cores from site 5017-1.

  17. Construction and characterization of a deep-coverage carrot (Daucus carota L.) BAC library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first carrot (Daucus carota L.) BAC library was constructed using imbred line B8503, which is nematode-resistant and accumulates carotenes in its roots. The BAC library consists of 92,160 clones comprising 22.4 haploid genome equivalents based on a genome size of 473 Mb/1C. Upon the analysis of ...

  18. Detection of deep water formation from remote sensing chlorophyll in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bernardello, Raffaele; Bahamon, Nixon; Ahumada, Miguel-Angel; Martin, Adrian; Henson, Stephanie

    2015-04-01

    The Northwestern Mediterranean Sea is one of the few regions in the world where Deep Water Formation (DWF) occurs. During wintertime cold and dry winds that typically occur in strong bursts lasting a few days, are able to erode the near-surface stability over this area, exposing the weakly stratified underwaters and initiate a phase of violent mixing and deep convection. DWF is not a steady-state process that recurs every year. Variations in wind stress and heat flux over the winter can induce a marked interannual variability: during some years the process is specially intense and completely absent during others. The extent of the area over which DWF occurs is also uncertain. The interannual variability of the DWF process is also associated to the variability in the seasonal phytoplankton dynamics over the area. The extent of the vertical mixing set the total amount of nutrients available for the phytoplankton during the following spring bloom. However, before the bloom, when deep convection is still active, surface chlorophyll (an index for phytoplankton biomass) is vertically diluted showing low surface concentration. The occurrence of these patches of anomalously low chlorophyll concentration can, in principle, be associated to the presence of active deep convection. In this study we investigate the possibility of exploiting such association in order to quantify the duration of deep convection and the extent of the area over which it occurs. These goals will be achieved through the analysis of remote sensing chlorophyll data and in-situ Argo-floats profiles.

  19. Multidecadal freshening and lightening in the deep waters of the Bransfield Strait, Antarctica

    NASA Astrophysics Data System (ADS)

    Dotto, Tiago S.; Kerr, Rodrigo; Mata, Mauricio M.; Garcia, Carlos A. E.

    2016-06-01

    The deep waters of the Bransfield Strait receive considerable amounts of water from the Weddell Sea continental shelf. The restricted connections to the surrounding ocean and relatively easier access makes the Bransfield Strait an important proxy region for monitoring changes in the dense Weddell Sea shelf water masses, which are an important precursor of Antarctic Bottom Water (AABW). Long-term hydrographic data from the period 1960s-2010s showed freshening and lightening of the deep water masses of the Bransfield Strait, which was likely caused by large freshwater inputs originating from the western shelf of the Weddell Sea. The rates of freshening and lightening were -0.0010 ± 0.0005 yr-1 and -0.0016 ± 0.0014 kg m-3 yr-1 for the central basin, respectively, and -0.0010 ± 0.0006 yr-1 and -0.0029 ± 0.0013 kg m-3 yr-1 for the eastern basin, respectively. The deep waters showed a high degree of interannual thermohaline variability, which appeared to be caused by changes in the proportions of source water mass mixing between the years. Statistically significant negative correlations between salinity/neutral density fields and the Southern Annular Mode (SAM) were observed (-0.56 and -0.62 for the central basin, respectively, and -0.58 and -0.68 for the eastern basin, respectively) between 1980 and 2014. During SAM positive phases, communication between the Weddell Sea and the Bransfield Strait is reduced, which leads to less saline and lighter water masses in the Bransfield Strait; however, the opposite trends are observed during SAM negative phases.

  20. Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Berndmeyer, C.; Thiel, V.; Schmale, O.; Wasmund, N.; Blumenberg, M.

    2014-06-01

    The water column of the Landsort Deep, central Baltic Sea, is stratified into an oxic, suboxic and anoxic zone. This stratification controls the distributions of individual microbial communities and biogeochemical processes. In summer 2011, particulate organic matter was filtered from these zones using an in~situ pump. Lipid biomarkers were extracted from the filters to establish water column profiles of individual hydrocarbons, alcohols, phospholipid fatty acids, and bacteriohopanepolyols (BHPs). As a reference, a cyanobacterial bloom sampled in summer 2012 in the central Baltic Sea Gotland Deep was analyzed for BHPs. The biomarker data from the surface layer of the oxic zone showed major inputs from different cyanobacteria and eukaryotes such as dinoflagellates and ciliates, while the underlying cold winter water layer was characterized by a low diversity and abundance of organisms, with copepods as a major group. The suboxic zone supported bacterivorous ciliates, type I aerobic methanotrophic bacteria, sulfate reducing bacteria, and, most likely, methanogenic archaea. In the anoxic zone, sulfate reducers and archaea were the dominating microorganisms as indicated by the presence of distinctive branched fatty acids, archaeol and PMI derivatives, respectively. Our study of in situ biomarkers in the Landsort Deep thus provided an integrated insight into the distribution of relevant players and the related biogeochemical processes in stratified water columns of marginal seas.

  1. Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Berndmeyer, C.; Thiel, V.; Schmale, O.; Wasmund, N.; Blumenberg, M.

    2014-12-01

    The water column of the Landsort Deep, central Baltic Sea, is stratified into an oxic, suboxic, and anoxic zone. This stratification controls the distributions of individual microbial communities and biogeochemical processes. In summer 2011, particulate organic matter was filtered from these zones using an in situ pump. Lipid biomarkers were extracted from the filters to establish water-column profiles of individual hydrocarbons, alcohols, phospholipid fatty acids, and bacteriohopanepolyols (BHPs). As a reference, a cyanobacterial bloom sampled in summer 2012 in the central Baltic Sea Gotland Deep was analyzed for BHPs. The biomarker data from the surface layer of the oxic zone showed major inputs from cyanobacteria, dinoflagellates, and ciliates, while the underlying cold winter water layer was characterized by a low diversity and abundance of organisms, with copepods as a major group. The suboxic zone supported bacterivorous ciliates, type I aerobic methanotrophic bacteria, sulfate-reducing bacteria, and, most likely, methanogenic archaea. In the anoxic zone, sulfate reducers and archaea were the dominating microorganisms as indicated by the presence of distinctive branched fatty acids: archaeol and pentamethylicosane (PMI) derivatives, respectively. Our study of in situ biomarkers in the Landsort Deep thus provided an integrated insight into the distribution of relevant compounds and describes useful tracers to reconstruct stratified water columns in the geological record.

  2. Distribution and sources of pre-anthropogenic lead isotopes in deep ocean water from Fe-Mn crusts

    USGS Publications Warehouse

    Von Blanckenburg, F.; O'Nions, R. K.; Hein, J.R.

    1996-01-01

    The lead isotope composition of ocean water is not well constrained due to contamination by anthropogenic lead. Here the global distribution of lead isotopes in deep ocean water is presented as derived from dated (ca. 100 ka) surface layers of hydrogenetic Fe-Mn crusts. The results indicate that the radiogenic lead in North Atlantic deep water is probably supplied from the continents by river particulates, and that lead in Pacific deep water is similar to that characteristic of island and continental volcanic arcs. Despite a short residence time in deep water (80-100 a), the isotopes of lead appear to be exceedingly well mixed in the Pacific basin. There is no evidence for the import of North Atlantic deep water-derived lead into the Pacific ocean, nor into the North Indian Ocean. This implies that the short residence time of lead in deep water prohibits advection over such long distances. Consequently, any climate-induced changes in deep-water flow are not expected to result in major changes in the seawater Pb-isotope record of the Pacific Ocean.

  3. Distribution and sources of pre-anthropogenic lead isotopes in deep ocean water from Fesbnd Mn crusts

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, F.; O'nions, R. K.; Heinz, J. R.

    1996-12-01

    The lead isotope composition of ocean water is not well constrained due to contamination by anthropogenic lead. Here the global distribution of lead isotopes in deep ocean water is presented as derived from dated (ca. 100 ka) surface layers of hydrogenetic Fe-Mn crusts. The results indicate that the radiogenic lead in North Atlantic deep water is probably supplied from the continents by river particulates, and that lead in Pacific deep water is similar to that characteristic of island and continental volcanic arcs. Despite a short residence time in deep water (80-100 a), the isotopes of lead appear to be exceedingly well mixed in the Pacific basin. There is no evidence for the import of North Atlantic deep water-derived lead into the Pacific ocean, nor into the North Indian Ocean. This implies that the short residence time of lead in deep water prohibits advection over such long distances. Consequently, any climate-induced changes in deep-water flow are not expected to result in major changes in the seawater Pb-isotope record of the Pacific Ocean.

  4. CO2-bearing saline water found in groundwater, related to deep low frequency earthquakes

    NASA Astrophysics Data System (ADS)

    Kazahaya, K.; Matsuzawa, T.; Hasegawa, A.; Yasuhara, M.; Takahashi, M.; Oyama, Y.; Iwamori, H.

    2011-12-01

    Very saline (Cl conc. up to twice greater than sea-water), CO2 -bearing and 18O-shifted springs are found in Japan. Not only the brines but saline waters diluted by circulating groundwater, which have similar feature with "Arima-type", naturally occur at various places along active faults, tectonic lines and close to volca-noes. In this study, we show chemical and isotopic feature of the groundwaters collected from deep wells and from self-spouting springs, and discuss their gene-sis by showing the relationships between chemistry and hypocenters of deep low frequency (DLF) earth-quakes to reveal crustal fluid processes. The waters of Cl concentration higher than 200 mg/l are selected to classify into three origin groups: seawater, fossil seawater, and Arima-type water using Li/Cl ratios, water chemistry and hydrogen and oxygen isotope ratio. Arima-type water is defined here as originated neither from meteoric water nor from sea-water and with the identical feature showing both high Li/Cl ratio and chemistry of NaCl-CO2-type. Chemical and isotopic compositions of a typical mix-ing endmember of Arima-type water is δD = -30 %, δ18O = +6 %, Cl conc. = 4 wt.%, 3He/4He = 10-5, δ13C = -5 %, which are quite similar to that of the magmatic gases, implying that the origin is similar to that of magmatic gases. The DLF earthquakes are well determined for hypocenter having feature of very deep (20-40km depth) and thought to be related with hydrothermal fluids. Characteristic feature of spatial distribution of the DLF earthquakes are; type-1) found along 1000 km of the SW Japan arc at about 35 km deep on the upper part of subducted Philippine Sea Plate, so called "Deep Low Frequency Tremor, type-2) occur close to Qua-ternary volcanoes, and type-3) occur as non-volcanic clusters at depth from 20-45km. As for type-1 related fluids, the Arima-type thermal water found along the Median tectonic line (MTL) through Shi-koku-Kinki-Tokai district are likely the fluid concern

  5. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    NASA Astrophysics Data System (ADS)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  6. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Astrophysics Data System (ADS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, Christopher S.; Lanyi. G. E.; Naudet, C. J.

    2005-11-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  7. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Technical Reports Server (NTRS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, C.; Lanyi, G.; Naudet, C.

    2005-01-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  8. Possible deep-water gas hydrate accumulations in the Bering Sea

    USGS Publications Warehouse

    Barth, Ginger A.; Scholl, David W.; Childs, Jonathan R.

    2006-01-01

    Seismic reflection images from the deep-water Aleutian and Bowers Basins of the Bering Sea contain many hundreds of acoustic Velocity-AMPlitude (VAMP) anomalies, each of which may represent a large accumulation of natural gas hydrate. Against a backdrop of essentially horizontal sedimentary reflections, the VAMP anomalies stand out as both high-amplitude bright spots and zones of vertically aligned horizon distortions. The VAMPs are interpreted as natural gas chimneys overlain by concentrated hydrate caps.

  9. Effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults.

    PubMed

    Kanitz, Ana Carolina; Delevatti, Rodrigo Sudatti; Reichert, Thais; Liedtke, Giane Veiga; Ferrari, Rodrigo; Almada, Bruna Pereira; Pinto, Stephanie Santana; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2015-04-01

    This study aimed to investigate the effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults. Thirty-four older adults men were placed into two groups: deep water endurance training (ET; n = 16; 66 ± 4 years) and deep water strength prior to endurance training (concurrent training: CT; n = 18; 64 ± 4 years). The training period lasted 12 weeks, with three sessions a week. The resting heart rate and the oxygen uptake at peak (VO2peak) and at the second ventilatory threshold (VO2VT2) were evaluated during a maximal incremental test on a cycle ergometer before and after training. In addition, maximal dynamic strength (one repetition maximum test--1RM) and local muscular resistance (maximum repetitions at 60% 1RM) of the knee extensors and flexors were evaluated. After the training period, the heart rate at rest decreased significantly, while the VO2peak and VO2VT2 showed significant increases in both groups (p<0.05). Only the VO2VT2 resulted in significantly greater values for the ET compared to the CT group after the training (p<0.05). In addition, after training, there was a significant increase in the maximal dynamic strength of the knee extensors and the local muscular endurance of the knee extensors and flexors, with no difference between the groups (p > 0.05). In summary, the two training programs were effective at producing significant improvements in cardiorespiratory and muscular strength responses in older adult men. However, deep water endurance training at high intensities provides increased cardiorespiratory responses compared to CT and results in similar muscular strength responses. PMID:25700846

  10. Deep water renewal in Lake Baikal: A model for long-term analyses

    NASA Astrophysics Data System (ADS)

    Piccolroaz, Sebastiano; Toffolon, Marco

    2013-12-01

    The phenomenon of deep water renewal in the South Basin of Lake Baikal is investigated by means of a simplified one-dimensional model. The downwelling process, whereby large volumes of superficial, cold, and oxygenated water periodically sink to the lake bottom (>1400m) due to thermobaric instability, is simulated by means of three main submodules: a reaction-diffusion equation for temperature and other tracers, and two Lagrangian algorithms, the first for the vertical stabilization of unstable density regions (including thermobaric effects) and the second handling the downwelling mechanism. A self-consistent procedure for the dynamical reconstruction of the diapycnal diffusivity profile is included to account for the effect of the variability of external conditions. The model has been developed aimed at providing a detailed description of deep-ventilation and a quantification of its consequences at the basin scale; the core algorithms have been designed suitably to perform long-term simulations (hundreds of years) and to deal with a limited amount of information about boundary conditions, which are expressed in terms of wind forcing and surface water temperature. The main parameters have been calibrated using measured profiles of temperature and chlorofluorocarbons (CFC-12) concentration over a 40 year historical period. A long-term simulation (one millennium), in which the current meteorological conditions have been kept statistically unchanged, has been used to determine the asymptotic dynamics. The results are consistent with previous measurements and estimates, suggesting that the model is suitable to qualitatively and quantitatively simulate deep water renewal in deep, temperate lakes, capturing the relative contribution and interaction of the different processes involved.

  11. A comparison of water vapor line parameters for modeling the Venus deep atmosphere

    NASA Astrophysics Data System (ADS)

    Bailey, Jeremy

    2009-06-01

    The discovery of the near infrared windows into the Venus deep atmosphere has enabled the use of remote sensing techniques to study the composition of the Venus atmosphere below the clouds. In particular, water vapor absorption lines can be observed in a number of the near-infrared windows allowing measurement of the H 2O abundance at several different levels in the lower atmosphere. Accurate determination of the abundance requires a good database of spectral line parameters for the H 2O absorption lines at the high temperatures (up to ˜700 K) encountered in the Venus deep atmosphere. This paper presents a comparison of a number of H 2O line lists that have been, or that could potentially be used, to analyze Venus deep atmosphere water abundances and shows that there are substantial discrepancies between them. For example, the early high-temperature list used by Meadows and Crisp [Meadows, V.S., Crisp, D., 1996. J. Geophys. Res. 101 (E2), 4595-4622] had large systematic errors in line intensities. When these are corrected for using the more recent high-temperature BT2 list of Barber et al. [Barber, R.J., Tennyson, J., Harris, G.J., Tolchenov, R.N., 2006. Mon. Not. R. Astron. Soc. 368, 1087-1094] their value of 45±10 ppm for the water vapor mixing ratio reduces to 27±6 ppm. The HITRAN and GEISA lists used for most other studies of Venus are deficient in "hot" lines that become important in the Venus deep atmosphere and also show evidence of systematic errors in line intensities, particularly for the 8000 to 9500 cm -1 region that includes the 1.18 μm window. Water vapor mixing ratios derived from these lists may also be somewhat overestimated. The BT2 line list is recommended as being the most complete and accurate current representation of the H 2O spectrum at Venus temperatures.

  12. Water Optical Properties and Water Color Remote Sensing in Optically Deep and Shallow Waters of Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Xi, Hongyan

    In this study, Lake Taihu in Jiangsu Province of China, a typical large freshwater lake, is selected as the study area. Based on the field spectral measurements and laboratory analyses performed in October 2008, water optical properties and water color/quality remote sensing retrieval models in Lake Taihu were investigated. It was recognized that water quality varied a lot in different areas. Waters in Lake Taihu were classified as optically deep waters (ODWs) and optically shallow waters (OSWs). ODWs are the waters where the water depth is more than three times the measured Secchi Disk Depth (SDD), otherwise they are OSWs. Cyanobacteria blooms happen frequently in ODWs and the water is eutrophicated heavily. Whereas water is very clear with rare cyanobacteria blooms but many aquatic plants in OSWs. Focused on the two types of water areas respectively, the inherent optical properties (lOPs), apparent optical properties (lOPs) and reflectance spectra were analyzed, as well as their relationships to water quality parameters. Local optical parameters f and Q, which play significant roles in water quality parameters retrieval models, were also determined. Measured remote sensing reflectance data were used to establish two-band and three-band models for chlorophyll-a (Chl-a) concentration estimation, results showed both models were suitable in ODWs. However, aquatic plants in OSWs had great influence on spectra, resulting in the inapplicability of the established models at these sites. Absorption and backscattering coefficients were used to remove those influences and simulate new set of remote sensing reflectance based on radiative transfer theory, which were proved reliable to establish Chl-a retrieval algorithms. Three-band model established by simulated spectra showed more satisfactory performance in whole ODWs, and performance of two-band model in OSWs was also enhanced much. Several models were established to estimate total suspended solids (TSS) concentrations

  13. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  14. WELL CONSTRUCTION AND PURGING EFFECTS ON GROUND-WATER SAMPLES

    EPA Science Inventory

    Multiple well installations of selected casing materials (i.e., polytetrafluoroethylene (PTFE), 304 stainless steel (SS), and polyvinyl chloride (PVC)) were constructed and sampled to determine if well purging and construction procedures would significantly bias chemical constitu...

  15. Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacial intensification

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Chalk, Thomas B.; Foster, Gavin L.; Gutjahr, Marcus

    2016-05-01

    The circulation and internal structure of the oceans exert a strong influence on Earth's climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss. Circulation change, particularly in the Atlantic Ocean, is widely suggested to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago. Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35-5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3-2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification and/or extensive sea-ice cover was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.

  16. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios

    PubMed

    Rutberg; Hemming; Goldstein

    2000-06-22

    The global circulation of the oceans and the atmosphere transports heat around the Earth. Broecker and Denton suggested that changes in the global ocean circulation might have triggered or enhanced the glacial-interglacial cycles. But proxy data for past circulation taken from sediment cores in the South Atlantic Ocean have yielded conflicting interpretations of ocean circulation in glacial times--delta13C variations in benthic foraminifera support the idea of a glacial weakening or shutdown of North Atlantic Deep Water production, whereas other proxies, such as Cd/Ca, Ba/Ca and 231Pa/230Th ratios, show little change from the Last Glacial Maximum to the Holocene epoch. Here we report neodymium isotope ratios from the dispersed Fe-Mn oxide component of two southeast Atlantic sediment cores. Both cores show variations that tend towards North Atlantic signatures during the warm marine isotope stages 1 and 3, whereas for the full glacial stages 2 and 4 they are closer to Pacific Ocean signatures. We conclude that the export of North Atlantic Deep Water to the Southern Ocean has resembled present-day conditions during the warm climate intervals, but was reduced during the cold stages. An increase in biological productivity may explain the various proxy data during the times of reduced North Atlantic Deep Water export. PMID:10879531

  17. Deep injection of waste water in the Western Canada sedimentary basin.

    PubMed

    Ferguson, Grant

    2015-01-01

    Injection of wastes into the deep subsurface has become a contentious issue, particularly in emerging regions of oil and gas production. Experience in other regions suggests that injection is an effective waste management practice and that widespread environmental damage is unlikely. Over the past several decades, 23 km(3) of water has been injected into the Western Canada Sedimentary Basin (WCSB). The oil and gas industry has injected most of this water but large amounts of injection are associated with mining activities. The amount of water injected into this basin during the past century is 2 to 3 orders magnitude greater than natural recharge to deep formations in the WCSB. Despite this large-scale disturbance to the hydrogeological system, there have been few documented cases of environmental problems related to injection wells. Deep injection of waste appears to be a low risk activity based on this experience but monitoring efforts are insufficient to make definitive statements. Serious uncharacterized legacy issues could be present. Initiating more comprehensive monitoring and research programs on the effects of injection in the WCSB could provide insight into the risks associated with injection in less developed sedimentary basins. PMID:24841226

  18. Evidence for deep-water deposition of abyssal Mediterranean evaporites during the Messinian salinity crisis

    NASA Astrophysics Data System (ADS)

    Christeleit, Elizabeth C.; Brandon, Mark T.; Zhuang, Guangsheng

    2015-10-01

    Scientific drilling of the abyssal evaporites beneath the deepest parts of the Mediterranean basin gave rise to the idea that the Mediterranean sea completely evaporated at the end of the Messinian. Herein, we show, using new organic geochemical data, that those evaporites were deposited beneath a deep-water saline basin, not in a subaerial saltpan, as originally proposed. Abundant fossil organic lipids were extracted from evaporites in Mediterranean Deep Sea Drilling Project cores. The archaeal lipid distribution and new analyses, using the ACE salinity proxy and TEX86 temperature proxy, indicate that surface waters at the time of evaporite deposition had normal marine salinity, ranging from ∼26 to 34 practical salinity units, and temperatures of 25-28 °C. These conditions require a deep-water setting, with a mixed layer with normal marine salinity and an underlying brine layer at gypsum and halite saturation. After correction for isostatic rebound, our results indicate maximum drawdown of ∼2000 m and ∼2900 m relative to modern sea level in the western and eastern Mediterranean basins, respectively. Our results are consistent with previously proposed scenarios for sea level drawdown based on both subaerial and submarine incision and backfilling of the Rhone and Nile rivers, which require Messinian sea level drops of ∼1300 m and ∼200 m, respectively. This study provides new evidence for an old debate and also demonstrates the importance of further scientific drilling and sampling of deeper part of the abyssal Messinian units.

  19. Role of sea-level change in deep water deposition along a carbonate shelf margin, Early and Middle Permian, Delaware Basin: implications for reservoir characterization

    NASA Astrophysics Data System (ADS)

    Li, Shunli; Yu, Xinghe; Li, Shengli; Giles, Katherine A.

    2015-04-01

    The architecture and sedimentary characteristics of deep water deposition can reflect influences of sea-level change on depositional processes on the shelf edge, slope, and basin floor. Outcrops of the northern slope and basin floor of the Delaware Basin in west Texas are progressively exposed due to canyon incision and road cutting. The outcrops in the Delaware Basin were measured to characterize gravity flow deposits in deep water of the basin. Subsurface data from the East Ford and Red Tank fields in the central and northeastern Delaware Basin were used to study reservoir architectures and properties. Depositional models of deep water gravity flows at different stages of sea-level change were constructed on the basis of outcrop and subsurface data. In the falling-stage system tracts, sandy debris with collapses of reef carbonates are deposited on the slope, and high-density turbidites on the slope toe and basin floor. In the low-stand system tracts, deep water fans that consist of mixed sand/mud facies on the basin floor are comprised of high- to low-density turbidites. In the transgression and high-stand system tracts, channel-levee systems and elongate lobes of mud-rich calciturbidite deposits formed as a result of sea level rise and scarcity of sandy sediment supply. For the reservoir architecture, the fan-like debris and high-density turbidites show high net-to-gross ratio of 62 %, which indicates the sandiest reservoirs for hydrocarbon accumulation. Lobe-like deep water fans with net-to-gross ratio of 57 % facilitate the formation of high quality sandy reservoirs. The channel-levee systems with muddy calciturbidites have low net-to-gross ratio of 30 %.

  20. Deep Mediterranean Water footprint measured in the Strait of Gibraltar during the last decade.

    NASA Astrophysics Data System (ADS)

    Naranjo Rosa, Cristina; García Lafuente, Jesús; Sammartino, Simone; Sánchez Garrido, José Carlos

    2016-04-01

    Deep Mediterranean Water is formed during winter in the Mediterranean Sea due to atmospheric cooling of salty Mediterranean waters. When it reaches the Strait of Gibraltar it finally flows westward into the Atlantic, from where it begins to descend the continental slope by gravity while it mixes with the overlying waters and becomes lighter. Far beyond the strait itself it maintains a recognizable signal and so affects the thermohaline circulation of the Atlantic Ocean. Thus, the Strait of Gibraltar is the perfect site to monitor the interannual changes occurring over the whole Mediterranean Sea just before Mediterranean Waters incorporate to the Atlantic circulation. From October 2004 until today the Temperature and Salinity of the Mediterranean outflow through the Strait of Gibraltar have been monitored, resulting in a long-term temporal series with more than 11 years of measurements. A Conductivity-Temperature sensor is placed around 12 meters above the seafloor in the Espartel Sill (35°56'N 5°45'W), the last constriction the Mediterranean deep water finds before leaving the Mediterranean, and is configured to take measurements every 30 minutes. The instrument has been collecting data almost continuously from 2004, except for a 2.5 month gap in 2009 and a 5 months gap during 2011. This record allows the study of the long-term trend and the interannual changes occurring over the whole Mediterranean during the last 11 years. First results show a mean temperature of the deep Mediterranean waters of 13.20±0.06 °C and a mean salinity of 38.39±0.02. It is noteworthy the cold signals registered in 2006 and 2013, which could be the result of the severe winters of 2005 and 2012 in Europe, and the positive trend in 2015 toward warmer values. No significant trends have been found for the whole period. On the other hand, the time series exhibits a noticeable interannual variability that merits a deeper analysis.

  1. Contribution of hydraulically lifted deep moisture to the water budget in a Southern California mixed forest

    NASA Astrophysics Data System (ADS)

    Kitajima, Kuni; Allen, Michael F.; Goulden, Michael L.

    2013-12-01

    and shrubs growing in California's mountains rely on deep roots to survive the hot and dry Mediterranean climate summer. The shallow montane soil cannot hold enough water to support summer transpiration, and plants must access deeper moisture from the weathered bedrock. We used the HYDRUS-1D model to simulate the moisture flux through the soil-plant continuum in Southern California's San Jacinto Mountains. The mechanisms facilitating deep water access are poorly understood, and it is possible that either or both hydraulic lift and capillary rise contribute to the survival and activity of trees and soil microorganisms. We modified HYDRUS to incorporate hydraulic lift and drove it with meteorological and physiological data. The modeled quantity of water lifted hydraulically ranged from near zero during the wet months to ~28 mm month-1 in midsummer. Likewise, modeled capillary rise was negligible during the winter and averaged ~15 mm month-1 during June through November. Both mechanisms provided water to support evapotranspiration during the dry months. Isotopic measurements of xylem water for eight shrub and tree species confirmed the importance of a deep source of water. Conventional and automated minirhizotron observations showed that fine-root and rhizomorph biomass remained relatively constant year-round, while mycorrhizal hyphae biomass varied markedly, peaking in the wet season and declining by ~70% in the dry season. Model results predict that hydraulic lift and capillary rise play key roles in Southern California's mountains: they support evapotranspiration and photosynthesis during the summer drought; they contribute to the year-round survival of fine roots and soil microorganisms.

  2. Bioclogging and Biocementation in Construction of Water Pond in Sand

    NASA Astrophysics Data System (ADS)

    Chu, J.; Ivanov, V.; Stabnikov, V.; Li, B.

    2012-12-01

    Conventionally, compacted bentonite, geosynthetic clay liner or plastic liners are used to seal ponds, channels, and reservoirs in sand. Recently, a new approach to form a low permeability layer of several centimetres thick through the microbially induced calcium carbonate precipitation (MICP) process has been developed (Chu et al., 2012). This method has been adopted to build a laboratory scale water pond model in sand. Calcium solution for bioclogging and biocementation was supplied initially by spaying to form a layer of the clogged sand by precipitation in the pores and then by slow percolation from solution above sand surface, which formed a crust of calcite. This combination of bioclogging and biocementation formed a sand layer of 1 - 3 cm depth with low permeability. The permeability of sand after this treatment was reduced from the order of 10^-4 m/s to 10^-7 m/s when an average 2.1 kg of Ca per m^2 of sand surface was precipitated. The bending strengths of the walls and the base of the model pond were in the range of 90 to 256 kPa. The unconfined compressive strengths obtained from samples from the walls and the base were in the range of 215 to 932 kPa. The graded sand and uniform supply of calcium solution were used for the model pond construction but it was significant spatial three-dimensional heterogeneity of sand bioclogging and biocementation.

  3. 25 CFR 167.17 - Construction near permanent livestock water developments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Construction near permanent livestock water developments. 167.17 Section 167.17 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER NAVAJO GRAZING REGULATIONS § 167.17 Construction near permanent livestock water developments. (a)...

  4. 25 CFR 167.17 - Construction near permanent livestock water developments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Construction near permanent livestock water developments. 167.17 Section 167.17 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER NAVAJO GRAZING REGULATIONS § 167.17 Construction near permanent livestock water developments. (a)...

  5. 25 CFR 167.17 - Construction near permanent livestock water developments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Construction near permanent livestock water developments. 167.17 Section 167.17 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER NAVAJO GRAZING REGULATIONS § 167.17 Construction near permanent livestock water developments. (a)...

  6. 25 CFR 167.17 - Construction near permanent livestock water developments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Construction near permanent livestock water developments. 167.17 Section 167.17 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER NAVAJO GRAZING REGULATIONS § 167.17 Construction near permanent livestock water developments. (a) The District Grazing Committee shall regulate...

  7. Glacial/Interglacial changes of southwest Pacific intermediate- and deep-water circulation over the last 350,000 years

    NASA Astrophysics Data System (ADS)

    Ronge, Thomas; Tiedemann, Ralf; Prange, Matthias; Merkel, Ute; Kuhn, Gerhard; Lamy, Frank

    2015-04-01

    On glacial/interglacial timescales, Southern Ocean air-sea gas exchange is considered to be an important factor, driving the variability of atmospheric CO2 concentrations. To understand the role of oceanic variability in the global carbon cycle, it is necessary to reconstruct changes in deep- and intermediate-water circulation and chemistry of Southern Ocean water masses. In this context, our study aims on the reconstruction of glacial/interglacial changes in the vertical expansion of southwest Pacific Antarctic Intermediate Water. For our study, we compared isotope records (δ13C and δ18O) measured on the epibenthic foraminifera Cibicidoides wuellerstorfi from the Antarctic Intermediate Water and the Upper Circumpolar Deep Water (943 - 2066 m water depth) off New Zealand. We used two sediment cores from the Tasman Sea (MD06-2990 and MD06-2986), retrieved during R/V Marion Dufresne cruise MD152, and three sediment cores from the Bounty Trough east of New Zealand (MD97-2120, SO 213-82-1 and SO 213-84-1). Comparing these records, we can monitor changes in southwest Pacific water mass circulation over the past 350,000 years. Over this time period, we record a significant shoaling of the boundary between Antarctic Intermediate Water and Upper Circumpolar Deep Water during all glacial stages. We propose that freshwater input by melting sea ice into the glacial intermediate-water increased the buoyancy difference to underlying deep-waters, thus hampering the downward expansion of southwest Pacific Antarctic Intermediate Water during glacials. This interpretation is consistent with our modeling results, based on the Community Climate System model version 3, which also indicate a shoaling of glacial intermediate waters due to the input of meltwater. The glacial upward displacement of the water mass boundary significantly increased the vertical extent of circumpolar deep-waters, consequently extending the volume of the proposed glacial deep-water carbon pool.

  8. Source and transport of human enteric viruses in deep municipal water supply wells

    USGS Publications Warehouse

    Bradbury, Kenneth R.; Borchardt, Mark A.; Gotkowitz, Madeline; Spencer, Susan K.; Zhu, Jun; Hunt, Randall J.

    2013-01-01

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. During 2008 and 2009 we collected a time series of virus samples from six deep municipal water-supply wells. The wells range in depth from approximately 220 to 300 m and draw water from a sandstone aquifer. Three of these wells draw water from beneath a regional aquitard, and three draw water from both above and below the aquitard. We also sampled a local lake and untreated sewage as potential virus sources. Viruses were detected up to 61% of the time in each well sampled, and many groundwater samples were positive for virus infectivity. Lake samples contained viruses over 75% of the time. Virus concentrations and serotypes observed varied markedly with time in all samples. Sewage samples were all extremely high in virus concentration. Virus serotypes detected in sewage and groundwater were temporally correlated, suggesting very rapid virus transport, on the order of weeks, from the source(s) to wells. Adenovirus and enterovirus levels in the wells were associated with precipitation events. The most likely source of the viruses in the wells was leakage of untreated sewage from sanitary sewer pipes.

  9. Renewal rates of east Atlantic deep water estimated by inversion of /sup 14/C data

    SciTech Connect

    Schlitzer, R.

    1987-03-15

    The renewal of the deep water of the East Atlantic and its large-scale internal circulation are studied on the basis of the distributions of potential temperature, silicate, ..sigma..CO/sub 2/, and /sup 14/C. An isopycnal multibox model including advection, mixing, and sources and sinks is set up and described. Tracer data are input for the model, and balance equations for the various properties for the boxes of the model serve as constraints for the determination of water fluxes, mixing coefficients, and source parameters. Extremal values for various model parameters that are consistent with the tracer data (satisfy the balance equations within the estimated tolerances) are calculated by linear programming techniques. /sup 14/C data are seen to be valuable in determining absolute flow rates. Model results confirm the importance of the Romanche Fracture Zone for the renewal of east Atlantic deep water. Eastward flows through the Romanche Fracture Zone were found to be between 2.6 and 5.1 Sv. Flows through the Vema Fracture Zone amount to at most 20% of the Romanche Fracture Zone inflow. Contributions of Antarctic Bottom Water at the southern end of the East Atlantic and of Iceland Scotland Overflow Water at the northern end are very small (<5% of equatorial inflow). Diapycnal mixing coefficients are between 1 and 10 cm/sup 2//s, and values for the dissolution rates of silicate and carbon are in the expected range.

  10. Late Quaternary Variability in the Deep Water Exchange Between South Atlantic, Southern and Indian Oceans

    NASA Astrophysics Data System (ADS)

    Leuschner, D. C.; Krueger, S.; Ehrmann, W.; Schmiedl, G.; Kuhn, G.; Mackensen, A.; Diekmann, B.

    2005-12-01

    The Southern Ocean, south of Africa, is an important mixing region for northern and southern derived deep-water masses. In this region, the North Atlantic Deep Water (NADW) extends southward into the Circumpolar Deep Water (CDW) dividing it into an upper (UCDW) and a lower (LCDW) layer. Thus, marine sediments from this area are a sensitive recorder for changes of the paleocirculation and relative variations in the deep-water formation in both, the northern Atlantic and Antarctic regions. Here we present results from the EXCHANGE Project which is located in this transition zone of the South Atlantic, the Southern Ocean and the Indian Ocean. In this project we investigate six sediment cores taken along a transect from continental slope at the southern tip of Africa towards the Conrad Rise. Pronounced glacial/interglacial variations in the dominance of NADW and LCDW across the transect are reflected in the clay mineral assemblage and carbon isotope composition of benthic foraminifera. High kaolinite/chlorite-ratios associated with high stable carbon isotope ratios indicate stronger influence of NADW during interglacials. In contrast, glacials are dominated by southern-derived LCDW. Our results suggest a fast southward advance of NADW-dominance during the last two terminations while the northward retreat of NADW, with the onset of glacial conditions, is more gradual. In general, interglacial sediments are also characterized by higher mean grain size diameters in the terrigenous silt fraction (10 to 63 microns), thus indicating stronger bottom currents. However, maximum grain size and sortable silt values are reached at the early stages of the last two glacial periods. Due to the generally weakened bottom current strength, as a result of reduced deep water formation, we would expect smaller values when compared with interglacial conditions. We therefore assume that eolian dust input from the Patagonian region plays a significant role especially in the early glacial

  11. Environmental setting of deep-water oysters in the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Van Rooij, D.; De Mol, L.; Le Guilloux, E.; Wisshak, M.; Huvenne, V. A. I.; Moeremans, R.; Henriet, J.-P.

    2010-12-01

    We report the northernmost and deepest known occurrence of deep-water pycnodontine oysters, based on two surveys along the French Atlantic continental margin to the La Chapelle continental slope (2006) and the Guilvinec Canyon (2008). The combined use of multibeam bathymetry, seismic profiling, CTD casts and a remotely operated vehicle (ROV) made it possible to describe the physical habitat and to assess the oceanographic control for the recently described species Neopycnodonte zibrowii. These oysters have been observed in vivo in depths from 540 to 846 m, colonizing overhanging banks or escarpments protruding from steep canyon flanks. Especially in the Bay of Biscay, such physical habitats may only be observed within canyons, where they are created by both long-term turbiditic and contouritic processes. Frequent observations of sand ripples on the seabed indicate the presence of a steady, but enhanced bottom current of about 40 cm/s. The occurrence of oysters also coincides with the interface between the Eastern North Atlantic Water and the Mediterranean Outflow Water. A combination of this water mass mixing, internal tide generation and a strong primary surface productivity may generate an enhanced nutrient flux, which is funnelled through the canyon. When the ideal environmental conditions are met, up to 100 individuals per m² may be observed. These deep-water oysters require a vertical habitat, which is often incompatible with the requirements of other sessile organisms, and are only sparsely distributed along the continental margins. The discovery of these giant oyster banks illustrates the rich biodiversity of deep-sea canyons and their underestimation as true ecosystem hotspots.

  12. Use of deep water lagoons for reducing sewage toxicity prior to wastewater treatment

    SciTech Connect

    Shaw, J.R.; Zuiderveen, J.A.; Belcher, B.; McGinley, P.; Birge, W.J.

    1995-12-31

    Investigations were conducted to determine the effectiveness of deep lagoons as a means of minimizing toxicity and reducing wastewater parameters. A lagoon system associated with a wastewater treatment plant (WWTP) was selected for study and parameters identified for monitoring included toxicity, metal concentrations, total suspended solids (TSS) and ammonia. This system included two lagoons, with 7--15 day hydraulic retention times, which received municipal waste. Toxicity and other parameters were measured for raw influent water, the two lagoon outfalls, and the final WWTP effluent. In a definitive seven-day chronic test with Ceriodaphnia dubia, the NOEC of influent water was 20%, and the IC{sub 50} for reproduction was 22.3%. Outfall from the first deep water lagoon showed reduced toxicity. The NOEC and IC{sub 50} were 80 and 71.8%, respectively. Further reduction in toxicity occurred in the second lagoon. The NOEC was 80% and the IC{sub 50} was 75.9. The final effluent discharged from the treatment plant affected neither survival nor fecundity. A 7-day embryo larval test conducted with Pimephales promelas yielded similar results. NOEC values increased through the lagoon system and were 2.5, 40.0, 40.0 and 100%, respectively. Acute TIE procedures implicated both metals and ammonia as primary toxicants. In all tests a sequential reduction in toxicity was observed through the lagoons. Results of this investigation support the use of deep water lagoons as an effective and economical means of pretreating wastewater. This approach offers promise for municipal waters, industrial effluents and stormwater runoff.

  13. Deep water temperature, carbonate ion, and ice volume changes across the Eocene-Oligocene climate transition

    NASA Astrophysics Data System (ADS)

    Pusz, A. E.; Thunell, R. C.; Miller, K. G.

    2011-06-01

    Paired benthic foraminiferal stable isotope and Mg/Ca data are used to estimate bottom water temperature (BWT) and ice volume changes associated with the Eocene-Oligocene Transition (EOT), the largest global climate event of the past 50 Myr. We utilized ODP Sites 1090 and 1265 in the South Atlantic to assess seawater δ18O (δw), Antarctic ice volume, and sea level changes across the EOT (˜33.8-33.54 Ma). We also use benthic δ13C data to reconstruct the sources of the deep water masses in this region during the EOT. Our data, together with previously published records, indicate that a pulse of Northern Component Water influenced the South Atlantic immediately prior to and following the EOT. Benthic δ18O records show a 0.5‰ increase at ˜33.8 Ma (EOT-1) that represents a ˜2°C cooling and a small (˜10 m) eustatic fall that is followed by a 1.0‰ increase associated with Oi-1. The expected cooling of deep waters at Oi-1 (˜33.54 Ma) is not apparent in our Mg/Ca records. We suggest the cooling is masked by coeval changes in the carbonate saturation state (Δ[CO32-]) which affect the Mg/Ca data. To account for this, the BWT, ice volume, and δw estimates are corrected for a change in the Δ[CO32-] of deep waters on the basis of recently published work. Corrected BWT at Sites 1090 and 1265 show a ˜1.5°C cooling coincident with Oi-1 and an average δw increase of ˜0.75‰. The increase in ice volume during Oi-1 resulted in a ˜70 m drop in global sea level and the development of an Antarctic ice sheet that was near modern size or slightly larger.

  14. Reconstructing late Quaternary deep-water masses in the eastern Arctic Ocean using benthonic Ostracoda

    USGS Publications Warehouse

    Jones, R. Ll; Whatley, R.C.; Cronin, T. M.; Dowsett, H.J.

    1999-01-01

    The distribution of Ostracoda in three long cores from the deep eastern Arctic Ocean was studied to determine the palaeoceanographical history of the Eurasian Basin during the late Quaternary. The samples for this study were obtained from the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau during the Arctic 91 expedition. Ostracoda previously studied in coretops at the same sites as the present study have shown that individual species have a strong association with different water masses and bathymetry. Throughout the late Quaternary, cores exhibit ostracod-rich layers separated by barren intervals. On the basis of biostratigraphical, isotopic and palaeomagnetic data the fossiliferous levels are interpreted as representing interglacial stages. The twenty most significant species were selected for subsequent quantitative investigation using Cluster and Factor analyses, in order to determine similarity and variance between the assemblages. An additional statistical method employing Modern Analogues and the Squared Chord Distance dissimilarity coefficient was utilized to compare the present late Quaternary fossil samples with a modern Arctic database. The results reveal a major faunal division within the Arctic Ocean Deep Water (AODW). Highly abundant and diverse assemblages within the cores were found to group and have good analogues with the Recent bathyal depth (1000-2500 m) upper AODW assemblages. Conversely, assemblages with low abundance and diversity correlate well with abyssal depth (> 3000 m) lower AODW assemblages. The palaeoceanographical history is complicated by the influence of adjacent water masses such as Canada Basin Deep Water (CBDW), Greenland Sea Deep Water (GSDW) and most importantly, Arctic Intermediate Water (AIW), which all had an influence on the ostracod assemblages during the late Quaternary. An enhanced flow of warm saline AIW into the Eurasian Basin results in species-rich upper AODW assemblages having good analogues down to 2750 m

  15. The Deep Cool Terrestrial Biosphere: Habitability of ancient fracture waters of the Canadian Shield (Invited)

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Ballentine, C. J.; Holland, G.; Li, L.; Slater, G. F.; Moser, D. P.

    2013-12-01

    Ancient saline fractures waters in Precambrian rocks of the Canadian Shield contain mM concentrations of dissolved CH4 and higher hydrocarbons, and in particular up to 7 mM H2 derived from radiolysis and/or serpentinization. At 2.8 km depths in the Mponeng gold mine in the Witwatersrand basin South Africa, similar groundwater systems host some of the deepest communities of H2-utilizing sulphate-reducing microbes yet identified, in waters with noble gas derived residence times on the order of tens of Ma [1, 2]. Such H2-rich environments, in fracture waters in gold mines in South Africa, in deep groundwaters from the Canadian and Fennoscandian Shields, in hydrothermal marine vents and terrestrial hot springs, are the focus of research programs designed to expand our understanding of the habitability of Earth. Results on the geochemistry and geobiology of these systems are providing important insights into the habitability of Mars and other planets and moons in our solar system. Despite the fact that Precambrian cratons constitute > 30% of the Earth's exposed continents, the habitability of deep saline fractures waters in these rocks has been significantly under-investigated to date. Unlike high-temperature hydrothermal systems on the seafloor or continental hot springs, where extensive fluid circulation and mixing with ocean or surface waters respectively rapidly deplete the products of water-rock reaction such as H2, the hydrogeologically isolated fracture waters in tectonically quiescent Precambrian Shield rock provide virtual 'time capsules'. Therein, despite the slower rates of water-gas-rock reactions, the products of water-rock reaction, and potential substrates for microbial life can accumulate and build up high concentrations over geologically long time scales. Recent results from a copper-zinc mine near Timmins Ontario Canada revealed free flowing fracture waters at 2.4 km below surface of an unparalleled antiquity. Coupling geochemical evidence from the

  16. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications.

    PubMed

    Dai, Yuntao; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2015-11-15

    Previously it was demonstrated that natural deep eutectic solvents (NADES) are promising green solvents for the extraction of natural products. However, despite their potential, an obvious disadvantage of NADES is the high viscosity. Here we explored the dilution effect on the structures and physicochemical properties of NADES and their improvements of applications using quercetin and carthamin. The results of FT-IR and (1)H NMR experiments demonstrated that there are intensive H-bonding interactions between the two components of NADES and dilution with water caused the interactions weaken gradually and even disappeared completely at around 50% (v/v) water addition. A small amount of water could reduce the viscosity of NADES to the range of water and increase the conductivity by up to 100 times for some NADES. This study provides the basis for modulating NADES in a controllable way for their applications in food processing, enzyme reactions, pharmaceuticals and cosmetics. PMID:25976992

  17. Estimation of the denitrification in Baltic Sea deep water from gas tension measurements

    NASA Astrophysics Data System (ADS)

    Loeffler, Annekatrin; Schmidt, Martin; Schneider, Bernd

    2010-05-01

    Denitrification is considered to be the most important process removing nitrogen in oceanic waters. 50-70% of marine denitrification occurs in organic rich sediments and oxygen depleted water bodies of continental shelf regions or marginal seas like the Baltic Sea, where a high percentage of riverine discharge of nitrogen is denitrified before entering the open ocean. Measurements of the gas tension (= sum of the partial pressures of all dissolved gases in the water) provide a new experimental way for the quantification of denitrification by directly measuring the reaction product of this process. Continuous pumping of water from a defined depth trough the gas tension device with a pump-CTD allows getting integrated results. Changes in N2 concentrations were calculated from gas tension by subtracting the partial pressures of the most important other dissolved gases (O2, Ar, CO2, H2S, water vapor). The pO2, pCO2 and H2S-concentrations were measured; other parameters (pAr, pH2O, solubility coefficients) were obtained from temperature and salinity. The method allows the estimation of N2-concentrations with a maximum error of 0.5%, corresponding to a standard error of 1.5 μmol L-1. Results of gas tension measurements and calculation of N2 concentrations in the Gotland Basin deep water, central Baltic Sea, from 2008 and 2009 are presented. In the deep water below the permanent halocline the estimated N2 partial pressure is continuously rising towards the oxygen depleted water layers. The calculated N2 excess compared to equilibrium concentration reached values up to 20 μmol N2 L-1 in the stagnant anoxic water layer, indicating a mean N release of 10 μmol N L-1 y-1 after 4 years of stagnation. The increase of total dissolved inorganic nitrogen (due to the N2 excess and formation of ammonium in the deep water) in relation to nitrogen background values was compared with the increase of total inorganic carbon due to mineralization processes. The resulting C:N ratios were

  18. Characteristics of the deep ocean carbon system during the past 150,000 years: ΣCO2 distributions, deep water flow patterns, and abrupt climate change

    PubMed Central

    Boyle, Edward A.

    1997-01-01

    Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-ΣCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower ΣCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more ΣCO2-depleted and deep waters are ΣCO2-enriched compared with the waters of the present. In the northern Indian Ocean, δ13C and Cd data are consistent with upper water ΣCO2 depletion relative to the present. There is no evident proximate source of this ΣCO2-depleted water, so I suggest that ΣCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000–130,000 years before the present). PMID:11607737

  19. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    SciTech Connect

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during

  20. Direct nutritional link between 600-m deep cold-water corals and surface productivity

    NASA Astrophysics Data System (ADS)

    Soetaert, Karline; Mohn, Christian; Rengstorff, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-04-01

    Cold-water corals (CWC) form deep-sea reefs that are found in all of the world's oceans, with an areal extent at par with that of tropical coral reefs, and are recognised hotspots of biodiversity and metabolic activity. Yet, it remains largely enigmatic how these rich CWC reefs can thrive in a cold and dark environment that is considered to be strongly food-limited. Here, we use a novel benthic-pelagic modeling approach, which involves coupling models of hydrodynamics, biogeochemistry and habitat suitability, to unravel organic matter delivery to reef mounds at a water depth of 600 m that are capped with a thriving CWC reef community at Rockall Bank (NE Atlantic). Model simulations show that the interaction between 300-m high reef mounds and spring tidal currents induces episodic downwelling events that establish a vertical coupling between 600-m deep CWC with surface productivity. We therefore conclude that there is a positive feedback between CWC mound growth and organic matter supply. This episodic downwelling strongly enhances carbon sequestration to the deep ocean and the ubiquitous occurrence of topographic rises along the ocean margins suggests that a topographically-induced benthic-pelagic carbon pump could be of global importance.

  1. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site

    SciTech Connect

    Takizawa, M.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    1994-01-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. (Copyright (c) 1993, American Society for Microbiology.)

  2. Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption.

    PubMed

    Valentine, David L; Mezić, Igor; Maćešić, Senka; Črnjarić-Žic, Nelida; Ivić, Stefan; Hogan, Patrick J; Fonoberov, Vladimir A; Loire, Sophie

    2012-12-11

    The irruption of gas and oil into the Gulf of Mexico during the Deepwater Horizon event fed a deep sea bacterial bloom that consumed hydrocarbons in the affected waters, formed a regional oxygen anomaly, and altered the microbiology of the region. In this work, we develop a coupled physical-metabolic model to assess the impact of mixing processes on these deep ocean bacterial communities and their capacity for hydrocarbon and oxygen use. We find that observed biodegradation patterns are well-described by exponential growth of bacteria from seed populations present at low abundance and that current oscillation and mixing processes played a critical role in distributing hydrocarbons and associated bacterial blooms within the northeast Gulf of Mexico. Mixing processes also accelerated hydrocarbon degradation through an autoinoculation effect, where water masses, in which the hydrocarbon irruption had caused blooms, later returned to the spill site with hydrocarbon-degrading bacteria persisting at elevated abundance. Interestingly, although the initial irruption of hydrocarbons fed successive blooms of different bacterial types, subsequent irruptions promoted consistency in the structure of the bacterial community. These results highlight an impact of mixing and circulation processes on biodegradation activity of bacteria during the Deepwater Horizon event and suggest an important role for mixing processes in the microbial ecology of deep ocean environments. PMID:22233808

  3. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway

    PubMed Central

    Bell, David B.; Jung, Simon J. A.; Kroon, Dick; Hodell, David A.; Lourens, Lucas J.; Raymo, Maureen E.

    2015-01-01

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7–4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ13C) and oxygen (δ18O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ13C and δ18O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate. PMID:26193070

  4. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway.

    PubMed

    Bell, David B; Jung, Simon J A; Kroon, Dick; Hodell, David A; Lourens, Lucas J; Raymo, Maureen E

    2015-01-01

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7-4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ(13)C) and oxygen (δ(18)O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ(13)C and δ(18)O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate. PMID:26193070

  5. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes.

    PubMed

    Peyer, Suzanne M; Hermanson, John C; Lee, Carol Eunmi

    2010-08-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such difference are unknown. We examined whether quagga mussel shell morphology could be induced by three environmental variables through developmental plasticity. We predicted that shallow-water conditions (high temperature, food quantity, water motion) would yield a morphotype typical of wild quagga mussels from shallow habitats, while deep-water conditions (low temperature, food quantity, water motion) would yield a morphotype present in deep habitats. We tested this prediction by examining shell morphology and growth rate of quagga mussels collected from shallow and deep habitats and reared under common-garden treatments that manipulated the three variables. Shell morphology was quantified using the polar moment of inertia. Of the variables tested, temperature had the greatest effect on shell morphology. Higher temperature (approximately 18-20 degrees C) yielded a morphotype typical of wild shallow mussels regardless of the levels of food quantity or water motion. In contrast, lower temperature (approximately 6-8 degrees C) yielded a morphotype approaching that of wild deep mussels. If shell morphology has functional consequences in particular habitats, a plastic response might confer quagga mussels with a greater ability than zebra mussels to colonize a wider range of habitats within the Great Lakes. PMID:20639421

  6. AUV Reveals Deep-Water Coral Mound Distribution, Morphology and Oceanography in the Florida Straits

    NASA Astrophysics Data System (ADS)

    Grasmueck, M.; Eberli, G. P.; Viggiano, D. A.; Correa, T.; Rathwell, G.; Luo, J.

    2006-12-01

    Since the 1960's dredge sampling and submersible dives have discovered numerous mound-forming deep- water corals in water depths of 400-800 m in the Straits of Florida. This extensive collection of samples and observations however can not be put into a geomorphologic context as existing bathymetric charts do not resolve coral mounds. To make progress in understanding the distribution and genesis of coral mounds, maps of morphology and oceanographic conditions resolving features at the 1-10 m scale are needed. On 11-18 December 2005 the C-Surveyor II(TM) mapped five sites ranging from 14-48 km2 in 590-875 m water acquiring 1-3 m resolution bathymetry and acoustic backscatter together with subbottom profiles, current vectors, salinity, and temperature. The areas mapped with the AUV contain hundreds of coral mounds with heights of 1-120 m. Mound distribution, morphology and currents are different for each survey site. Coral mounds develop on off-bank transported sediment ridges and slump features at the toe-of-slope of Great Bahama bank, while chevron pattern ridges and sinusoidal ridges are found further east in the Straits. Currents range from 0.1-0.5 m/s. At two sites currents reversed every 6 hours indicating tidal control. The AUV surveys and subsequent ground truthing with a drop camera and a submersible revealed a surprising abundance and diversity of deep-water coral habitats. The boundaries between mound fields and the barren muddy or sandy seafloor are sharp. Hull- mounted multi-beam reconnaissance mapping helped us select the most promising coral mound areas to optimize the use of valuable AUV time. Such combined use of hull-mounted and AUV-based mapping enables efficient environmental characterization of large deep-water regions such as the Florida Straits. The synoptic high-resolution datasets acquired by the multiple sensors on board the AUV enable for the first time a comprehensive assessment of deep-water coral mound ecosystems. Utilization of such

  7. Eocene to Miocene Southern Ocean Deep Water Circulation Revealed From Fossil Fish Teeth Nd Isotopes

    NASA Astrophysics Data System (ADS)

    Scher, H.; Martin, E. E.

    2001-12-01

    We have evaluated Nd and Sr isotopic compositions of cleaned fossil fish teeth for the late Eocene to early Miocene from ODP site 1090 (43° S, 9° E, 3599 m) in the Atlantic sector of the Southern Ocean. Using an age model based on biostratigraphy and paleomagnetics, Sr isotopic values from the fossil fish teeth tend to plot slightly below the seawater curve. This offset may be due to early diagenetic reactions, but overall the seawater trace metal chemistry appears to be well preserved in these samples. At site 1090, \\epsilonNd values increase from ~-7.5 at 39 Ma to ~-6 at 35 Ma and stay at this value until ~28.5 Ma. A high resolution Nd isotope record demonstrates steadily decreasing \\epsilonNd values from -6 to -8 between 28.5 and 23 Ma. Sampling during this interval reveals two rapid oscillations (<.5 Myr) in \\epsilonNd values superimposed on this decreasing trend; a one \\epsilonNd unit decrease at ~26 Ma and a one \\epsilonNd unit increase at ~23 Ma. Bottom water Nd composition is controlled by deep-water circulation, dissolved and particulate riverine inputs, and eolian inputs. In the late Eocene, bottom waters at site 1090 became increasingly radiogenic as benthic \\delta18O values began to reflect cooler deep-sea temperatures and the growth of ice sheets on Antarctica. It has been speculated that deep water in the Southern Ocean during the Eocene may have had a Tethyan origin. The shift toward radiogenic values at Site 1090 may reflect decreasing flow of nonradiogenic seawater from this low latitude deepwater source (modern Mediterranean \\epsilonNd ~-9). It may also be a result of the emergence of ice sheets on Antarctica, which reduced chemical weathering of nonradiogenic material into Southern Ocean. Although we anticipated that the opening of Drake Passage would introduce radiogenic Pacific waters into the Southern Atlantic, decreasing \\epsilonNd values coincide with age estimates for the opening based on geophysical data. Ocean circulation models

  8. 75 FR 23189 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... the GOA (75 FR 11749, March 12, 2010), for the period 1200 hrs, A.l.t., April 1, 2010, through 1200..., deep-water flatfish, rex sole, and arrowtooth flounder. This closure does not apply to fishing...

  9. 75 FR 38939 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Catcher...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ...(d), the final 2010 and 2011 harvest specifications for groundfish of the GOA (75 FR 11749, March 12... deep-water flatfish, rex sole, and arrowtooth flounder. After the effective date of this closure...

  10. 77 FR 46338 - Fisheries of the Economic Exclusive Zone Off Alaska; Deep-Water Species Fishery by Vessels Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... groundfish of the GOA (77 FR 15194, March 14, 2012), for the period 1200 hrs, A.l.t., July 1, 2012, through..., rockfish, deep-water flatfish, rex sole, and arrowtooth flounder. This closure does not apply to fishing...