Science.gov

Sample records for deficient omega-3 fatty

  1. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of medications ...

  2. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  3. Excess and deficient omega-3 fatty acid during pregnancy and lactation cause impaired neural transmission in rat pups.

    PubMed

    Church, M W; Jen, K-L C; Dowhan, L M; Adams, B R; Hotra, J W

    2008-01-01

    Omega-3 fatty acids (omega-3 FA) consumption during pregnancy and lactation is beneficial to fetal and infant growth and may reduce the severity of preterm births. Thus, scientists and clinicians are recommending increasingly higher omega-3 FA doses for pregnant women and nursing babies for advancing the health of preterm, low birth weight, and normal babies. In contrast, some studies report that over-supplementation with omega-3 FA can have adverse effects on fetal and infant development by causing a form of nutritional toxicity. Our goal was to assess the effects of omega-3 FA excess and deficiency during pregnancy and lactation on the offspring's neural transmission as evidenced by their auditory brainstem responses (ABR). Female Wistar rats were given one of three diets from day 1 of pregnancy through lactation. The three diets were the Control omega-3 FA condition (omega-3/omega-6 ratio approximately 0.14), the Deficient omega-3 FA condition (omega-3/omega-6 ratio approximately 0%) and the Excess omega-3 FA condition (omega-3/omega-6 ratio approximately 14.0). The Control diet contained 7% soybean oil, whereas the Deficient diet contained 7% safflower oil and the Excess diet contained 7% fish oil. The offspring were ABR-tested on postnatal day 24. The rat pups in the Excess group had prolonged ABR latencies in comparison to the Control group, indicating slowed neural transmission times. The pups in the Excess group also showed postnatal growth restriction. The Deficient group showed adverse effects that were milder than those seen in the Excess group. Milk fatty acid profiles reflected the fatty acid profiles of the maternal diets. In conclusion, excess or deficient amounts of omega-3 FA during pregnancy and lactation adversely affected the offspring's neural transmission times and postnatal thriving. Consuming either large or inadequate amounts of omega-3 FA during pregnancy and lactation seems inadvisable because of the potential for adverse effects on

  4. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  5. Omega-3 fatty acid deficiency selectively up-regulates delta6-desaturase expression and activity indices in rat liver: prevention by normalization of omega-3 fatty acid status.

    PubMed

    Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Magrisso, I Jack; Benoit, Stephen C; McNamara, Robert K

    2011-09-01

    This study investigated the effects of perinatal dietary omega-3 (n-3) fatty acid depletion and subsequent repletion on the expression of genes that regulate long-chain (LC) polyunsaturated fatty acid biosynthesis in rat liver and brain. It was hypothesized that chronic n-3 fatty acid deficiency would increase liver Fads1 and Fads2 messenger RNA (mRNA) expression/activity and that n-3 fatty acid repletion would normalize this response. Adult rats fed the n-3-free diet during perinatal development exhibited significantly lower erythrocyte, liver, and frontal cortex LCn-3 fatty acid composition and reciprocal elevations in LC omega-6 (n-6) fatty acid composition compared with controls (CONs) and repleted rats. Liver Fads2, but not Fads1, Elovl2, or Elovl5, mRNA expression was significantly greater in n-3-deficient (DEF) rats compared with CONs and was partially normalized in repleted rats. The liver 18:3n-6/18:2n-6 ratio, an index of delta6-desturase activity, was significantly greater in DEF rats compared with CON and repleted rats and was positively correlated with Fads2 mRNA expression among all rats. The liver 18:3n-6/18:2n-6 ratio, but not Fads2 mRNA expression, was also positively correlated with erythrocyte and frontal cortex LCn-6 fatty acid compositions. Neither Fads1 or Fads2 mRNA expression was altered in brain cortex of DEF rats. These results confirm previous findings that liver, but not brain, delta6-desaturase expression and activity indices are negatively regulated by dietary n-3 fatty acids. PMID:22024496

  6. Omega-3 fatty acid deficiency disrupts endocytosis, neuritogenesis, and mitochondrial protein pathways in the mouse hippocampus

    PubMed Central

    English, Jane A.; Harauma, Akiko; Föcking, Melanie; Wynne, Kieran; Scaife, Caitriona; Cagney, Gerard; Moriguchi, Toru; Cotter, David R.

    2013-01-01

    Omega-3 fatty acid (n-3 FA) deficiency is an environmental risk factor for schizophrenia, yet characterization of the consequences of deficiency at the protein level in the brain is limited. We aimed to identify the protein pathways disrupted as a consequence of chronic n-3 deficiency in the hippocampus of mice. Fatty acid analysis of the hippocampus following chronic dietary deficiency revealed a 3-fold decrease (p < 0.001) in n-3 FA levels. Label free LC-MS/MS analysis identified and profiled 1008 proteins, of which 114 were observed to be differentially expressed between n-3 deficient and control groups (n = 8 per group). The cellular processes that were most implicated were neuritogenesis, endocytosis, and exocytosis, while specific protein pathways that were most significantly dysregulated were mitochondrial dysfunction and clathrin mediated endocytosis (CME). In order to characterize whether these processes and pathways are ones influenced by antipsychotic medication, we used LC-MS/MS to test the differential expression of these 114 proteins in the hippocampus of mice chronically treated with the antipsychotic agent haloperidol. We observed 23 of the 114 proteins to be differentially expressed, 17 of which were altered in the opposite direction to that observed following n-3 deficiency. Overall, our findings point to disturbed synaptic function, neuritogenesis, and mitochondrial function as a consequence of dietary deficiency in n-3 FA. This study greatly aids our understanding of the molecular mechanism by which n-3 deficiency impairs normal brain function, and provides clues as to how n-3 FA exert their therapeutic effect in early psychosis. PMID:24194745

  7. Detection and treatment of omega-3 fatty acid deficiency in psychiatric practice: Rationale and implementation.

    PubMed

    Messamore, Erik; McNamara, Robert K

    2016-01-01

    A body of translational evidence has implicated dietary deficiency in long-chain omega-3 (LCn-3) fatty acids, including eicosapenaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and potentially etiology of different psychiatric disorders. Case-control studies have consistently observed low erythrocyte (red blood cell) EPA and/or DHA levels in patients with major depressive disorder, bipolar disorder, schizophrenia, and attention deficit hyperactivity disorder. Low erythrocyte EPA + DHA biostatus can be treated with fish oil-based formulations containing preformed EPA + DHA, and extant evidence suggests that fish oil supplementation is safe and well-tolerated and may have therapeutic benefits. These and other data provide a rationale for screening for and treating LCn-3 fatty acid deficiency in patients with psychiatric illness. To this end, we have implemented a pilot program that routinely measures blood fatty acid levels in psychiatric patients entering a residential inpatient clinic. To date over 130 blood samples, primarily from patients with treatment-refractory mood or anxiety disorders, have been collected and analyzed. Our initial results indicate that the majority (75 %) of patients exhibit whole blood EPA + DHA levels at ≤ 4 percent of total fatty acid composition, a rate that is significantly higher than general population norms (25 %). In a sub-set of cases, corrective treatment with fish oil-based products has resulted in improvements in psychiatric symptoms without notable side effects. In view of the urgent need for improvements in conventional treatment algorithms, these preliminary findings provide important support for expanding this approach in routine psychiatric practice. PMID:26860589

  8. Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency

    PubMed Central

    Bondi, Corina O.; Taha, Ameer Y.; Tock, Jody L.; Totah, Nelson K.; Cheon, Yewon; Torres, Gonzalo E.; Rapoport, Stanley I.; Moghaddam, Bita

    2013-01-01

    Background Understanding the nature of environmental factors that contribute to behavioral health is critical for successful prevention strategies in individuals at-risk for psychiatric disorders. These factors are typically experiential in nature, such as stress and urbanicity, but nutrition, in particular dietary deficiency of omega-3 polyunsaturated fatty acids (n-3 PUFAs), has increasingly been implicated in the symptomatic onset of schizophrenia and mood disorders, which typically occurs during adolescence to early adulthood. Thus, adolescence may be the critical age range for the negative impact of diet as an environmental insult. Methods A rat model involving consecutive generations of n-3 PUFA deficiency was developed based on the assumption that dietary trends toward decreased consumption of these fats began four-five decades ago when the parents of current adolescents were born. Behavioral performance in a wide range of tasks, as well as markers of dopamine-related neurotransmission was compared in adolescents and adults fed n-3 PUFA adequate and deficient diets. Results In adolescents, dietary n-3 PUFA deficiency across consecutive generations produced a modality-selective and task-dependent impairment in cognitive and motivated behavior distinct from the deficits observed in adults. While this dietary deficiency affected expression of dopamine-related proteins in both age groups, in adolescents, but not adults, there was an increase in tyrosine hydroxylase expression that was selective to the dorsal striatum. Conclusions These data support a nutritional contribution to optimal cognitive and affective functioning in adolescents. Furthermore, they suggest that n-3 PUFA deficiency disrupts adolescent behaviors through enhanced dorsal striatal dopamine availability. PMID:23890734

  9. Omega-3 deficiency impairs honey bee learning

    PubMed Central

    Arien, Yael; Dag, Arnon; Zarchin, Shlomi; Masci, Tania

    2015-01-01

    Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3–poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3–rich diets, or omega-3–rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal. PMID:26644556

  10. Maternal omega-3 fatty acid supplementation to a vitamin B12 deficient diet normalizes angiogenic markers in the pup brain at birth.

    PubMed

    Rathod, Richa S; Khaire, Amrita A; Kale, Anvita A; Joshi, Sadhana R

    2015-06-01

    Vitamin B12 and omega-3 fatty acids are critical for normal brain development and function and their deficiencies during pregnancy could have adverse effects on cognitive performance in children. Our earlier studies indicate that both maternal vitamin B12 and omega-3 fatty acids influence brain development by regulating the levels of neurotrophins. Literature suggests that there exists a cross talk between neurotrophins like nerve growth factor (NGF) and angiogenic factors like vascular endothelial growth factor (VEGF). It remains to be established whether maternal nutrients like vitamin B12 and omega-3 fatty acids influence the levels of angiogenic markers like VEGF and NGF in the brain of the offspring. Therefore the present study examines the effect of maternal vitamin B12 and omega-3 fatty acids on protein and mRNA levels of VEGF, HIF-1 alpha (hypoxia inducible factor alpha) and NGF in the pup brain at birth. Pregnant Wistar rats were divided into five dietary groups (n=8 each): control, vitamin B12 deficient, vitamin B12 deficient+omega-3 fatty acid, vitamin B12 supplemented, vitamin B12 supplemented+omega-3 fatty acid. At birth the pups were dissected to collect the brain tissue. Maternal vitamin B12 deficiency showed lower (p<0.05) pup brain mRNA and protein levels (p<0.01) of VEGF, higher (p<0.01) HIF-1 alpha protein levels, lower (p<0.05) NGF protein levels while NGF mRNA levels were not altered. Omega-3 fatty acid supplementation to a vitamin B12 deficient group normalized the VEGF mRNA levels, NGF protein levels and HIF-1 alpha protein levels. Vitamin B12 supplementation showed similar protein and mRNA levels of VEGF and NGF as well as HIF-1 alpha protein levels as compared to control. Omega-3 fatty acid supplementation to the vitamin B12 supplemented group showed higher (p<0.01) protein and mRNA levels of NGF but the protein and mRNA levels of VEGF were comparable to control. In conclusion maternal vitamin B12 and omega-3 fatty acids both influence the

  11. Adult medication-free schizophrenic patients exhibit long-chain omega-3 Fatty Acid deficiency: implications for cardiovascular disease risk.

    PubMed

    McNamara, Robert K; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Dwivedi, Yogesh; Pandey, Ghanshyam N

    2013-01-01

    Deficiency in long-chain omega-3 (LCn - 3) fatty acids, eicosapentaenoic acid (EPA, 20:5n - 3) and docosahexaenoic acid (DHA, 22:6n - 3), has been implicated in the pathoetiology of cardiovascular disease, a primary cause of excess premature mortality in patients with schizophrenia (SZ). In the present study, we determined erythrocyte EPA + DHA levels in adult medication-free patients SZ (n = 20) and age-matched healthy controls (n = 24). Erythrocyte EPA + DHA composition exhibited by SZ patients (3.5%) was significantly lower than healthy controls (4.5%, -22%, P = 0.007). The majority of SZ patients (72%) exhibited EPA+DHA levels ≤4.0% compared with 37% of controls (Chi-square, P = 0.001). In contrast, the omega-6 fatty acid arachidonic acid (AA, 20:4n - 6) (+9%, P = 0.02) and the AA:EPA + DHA ratio (+28%, P = 0.0004) were significantly greater in SZ patients. Linoleic acid (18:2n - 6) was significantly lower (-12%, P = 0.009) and the erythrocyte 20:3/18:2 ratio (an index of delta6-desaturase activity) was significantly elevated in SZ patients. Compared with same-gender controls, EPA + DHA composition was significantly lower in male (-19%, P = 0.04) but not female (-13%, P = 0.33) SZ patients, whereas the 20:3/18:2 ratio was significantly elevated in both male (+22%, P = 0.008) and female (+22%, P = 0.04) SZ patients. These results suggest that the majority of SZ patients exhibit low LCn - 3 fatty acid levels which may place them at increased risk for cardiovascular morbidity and mortality. PMID:23533712

  12. Omega-3 Fatty Acids during Pregnancy

    MedlinePlus

    ... omega-3s. They are mostly found in fatty fish like salmon, sardines, and trout. Some eggs are ... and yogurt. Should I Worry About Eating Certain Fish? Because of mercury contamination of our oceans, rivers, ...

  13. Omega-3 Fatty Acid supplementation during pregnancy.

    PubMed

    Greenberg, James A; Bell, Stacey J; Ausdal, Wendy Van

    2008-01-01

    Omega-3 fatty acids are essential and can only be obtained from the diet. The requirements during pregnancy have not been established, but likely exceed that of a nonpregnant state. Omega-3 fatty acids are critical for fetal neurodevelopment and may be important for the timing of gestation and birth weight as well. Most pregnant women likely do not get enough omega-3 fatty acids because the major dietary source, seafood, is restricted to 2 servings a week. For pregnant women to obtain adequate omega-3 fatty acids, a variety of sources should be consumed: vegetable oils, 2 low-mercury fish servings a week, and supplements (fish oil or algae-based docosahexaenoic acid). PMID:19173020

  14. Dietary omega-3 fatty acids for women.

    PubMed

    Bourre, Jean-Marie

    2007-01-01

    This review details the specific needs of women for omega-3 fatty acids, including alpha linoleic acid (ALA) and the very long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acid (dietary or in capsules) ensures that a woman's adipose tissue contains a reserve of these fatty acids for the developing fetus and the breast-fed newborn infant. This ensures the optimal cerebral and cognitive development of the infant. The presence of large quantities of EPA and DHA in the diet slightly lengthens pregnancy, and improves its quality. Human milk contains both ALA and DHA, unlike that of other mammals. Conditions such as diabetes can alter the fatty acid profile of mother's milk, while certain diets, like those of vegetarians, vegans, or even macrobiotic diets, can have the same effect, if they do not include seafood. ALA, DHA and EPA, are important for preventing ischemic cardiovascular disease in women of all ages. Omega-3 fatty acids can help to prevent the development of certain cancers, particularly those of the breast and colon, and possibly of the uterus and the skin, and are likely to reduce the risk of postpartum depression, manic-depressive psychosis, dementias (Alzheimer's disease and others), hypertension, toxemia, diabetes and, to a certain extend, age-related macular degeneration. Omega-3 fatty acids could play a positive role in the prevention of menstrual syndrome and postmenopausal hot flushes. The normal western diet contains little ALA (less than 50% of the RDA). The only adequate sources are rapeseed oil (canola), walnuts and so-called "omega-3" eggs (similar to wild-type or Cretan eggs). The amounts of EPA and DHA in the diet vary greatly from person to person. The only good sources are fish and seafood, together with "omega-3" eggs. PMID:17254747

  15. Omega-3 polyunsaturated fatty acids: photoprotective macronutrients.

    PubMed

    Pilkington, Suzanne M; Watson, Rachel E B; Nicolaou, Anna; Rhodes, Lesley E

    2011-07-01

    Ultraviolet radiation (UVR) in sunlight has deleterious effects on skin, while behavioural changes have resulted in people gaining more sun exposure. The clinical impact includes a year-on-year increase in skin cancer incidence, and topical sunscreens alone provide an inadequate measure to combat overexposure to UVR. Novel methods of photoprotection are being targeted as additional measures, with growing interest in the potential for systemic photoprotection through naturally sourced nutrients. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are promising candidates, showing potential to protect the skin from UVR injury through a range of mechanisms. In this review, we discuss the biological actions of n-3 PUFA in the context of skin protection from acute and chronic UVR overexposure and describe how emerging new technologies such as nutrigenomics and lipidomics assist our understanding of the contribution of such nutrients to skin health. PMID:21569104

  16. Early life stress interacts with the diet deficiency of omega-3 fatty acids during the life course increasing the metabolic vulnerability in adult rats.

    PubMed

    Bernardi, Juliana R; Ferreira, Charles F; Senter, Gabrielle; Krolow, Rachel; de Aguiar, Bianca W; Portella, André K; Kauer-Sant'anna, Márcia; Kapczinski, Flávio; Dalmaz, Carla; Goldani, Marcelo Z; Silveira, Patrícia P

    2013-01-01

    Early stress can cause metabolic disorders in adulthood. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) deficiency has also been linked to the development of metabolic disorders. The aim of this study was to assess whether an early stressful event such as maternal separation interacts with the nutritional availability of n-3 PUFAs during the life course on metabolic aspects. Litters were randomized into: maternal separated (MS) and non-handled (NH). The MS group was removed from their dam for 3 hours per day and put in an incubator at 32 °C on days 1° to 10° postnatal (PND). On PND 35, males were subdivided into diets that were adequate or deficient in n-3 PUFAs, and this intervention was applied during the subsequent 15 weeks. Animal's body weight and food consumption were measured weekly, and at the end of the treatment tissues were collected. MS was associated with increased food intake (p = 0.047) and weight gain (p = 0.012), but no differences were found in the NPY hypothalamic content between the groups. MS rats had also increased deposition of abdominal fat (p<0.001) and plasma triglycerides (p = 0.018) when compared to the NH group. Interactions between early life stress and n-3 PUFAs deficiency were found in plasma insulin (p = 0.033), HOMA index (p = 0.049), leptin (p = 0.010) and liver PEPCK expression (p = 0.050), in which the metabolic vulnerability in the MS group was aggravated by the n-3 PUFAs deficient diet exposure. This was associated with specific alterations in the peripheral fatty acid profile. Variations in the neonatal environment interact with nutritional aspects during the life course, such as n-3 PUFAs diet content, and persistently alter the metabolic vulnerability in adulthood. PMID:23614006

  17. Update on marine omega-3 fatty acids: management of dyslipidemia and current omega-3 treatment options.

    PubMed

    Weintraub, Howard

    2013-10-01

    Low-density lipoprotein cholesterol (LDL-C) is currently the primary target in the management of dyslipidemia, and statins are first-line pharmacologic interventions. Adjunct therapy such as niacins, fibrates, bile acid sequestrants, or cholesterol absorption inhibitors may be considered to help reduce cardiovascular risk. This review discusses the need for alternative adjunct treatment options and the potential place for omega-3 fatty acids as such. The cardiovascular benefits of fish consumption are attributed to the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and a variety of omega-3 fatty acid products are available with varied amounts of EPA and DHA. The product types include prescription drugs, food supplements, and medical foods sourced from fish, krill, algal and plant oils or purified from these oils. Two prescription omega-3 fatty acids are currently available, omega-3 fatty acid ethyl esters (contains both EPA and DHA ethyl esters), and icosapent ethyl (IPE; contains high-purity EPA ethyl ester). A pharmaceutical containing free fatty acid forms of omega-3 is currently in development. Omega-3 fatty acid formulations containing EPA and DHA have been shown to increase LDL-C levels while IPE has been shown to lower triglyceride levels without raising LDL-C levels, alone or in combination with statin therapy. In addition, recent studies have not been able to demonstrate reduced cardiovascular risk following treatment with fibrates, niacins, cholesterol absorption inhibitors, or omega-3 fatty acid formulations containing both EPA and DHA in statin-treated patients; thus, there remains a need for further cardiovascular outcomes studies for adjunct therapy. PMID:24075771

  18. Omega-3 Fatty Acid Deficiency Does Not Alter the Effects of Chronic Fluoxetine Treatment on Central Serotonin Turnover or Behavior in the Forced Swim Test in Female Rats

    PubMed Central

    McNamara, Robert K.; Able, Jessica A.; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Lipton, Jack W.

    2013-01-01

    While translational evidence suggests that long-chain omega-3 fatty acid status is positively associated with the efficacy of selective serotonin reuptake inhibitor drugs, the neurochemical mechanisms mediating this interaction are not known. Here we investigated the effects of dietary omega-3 (n-3) fatty acid insufficiency on the neurochemical and behavioral effects of chronic fluoxetine (FLX) treatment. Female rats were fed diets with (CON, n=56) or without (DEF, n=40) the n-3 fatty acids during peri-adolescent development (P21-P90), and one half of each group were administered FLX (10 mg/kg/d) for 30 d (P60-P90) prior to testing. In adulthood (P90), regional brain serotonin (5-HT) and 5-hydroxyindoleacetic (5-HIAA) concentrations, presynaptic markers of 5-HT neurotransmission, behavioral responses in the forced swim test (FST), and plasma FLX and norfluoxetine (NFLX) concentrations were investigated. Peri-adolescent n-3 insufficiency led to significant reductions in cortical docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (−25%, p≤0.0001) and DEF+FLX (−28%, p≤0.0001) rats. Untreated DEF rats exhibited significantly lower regional 5-HIAA/5-HT ratios compared with untreated CON rats, but exhibited similar behavioral responses in the FST. In both CON and DEF rats, chronic FLX treatment similarly and significantly decreased 5-HIAA concentrations and the 5-HIAA/5-HT ratio in the hypothalamus, hippocampus, and nucleus accumbens, brainstem tryptophan hydroxylase-2 mRNA expression, and immobility in the FST. While the FLX-induced reduction in 5-HIAA concentrations in the prefrontal cortex was significantly blunted in DEF rats, the reduction in the 5-HIAA/5-HT ratio was similar to CON rats. Although plasma FLX and NFLX levels were not significantly different in DEF and CON rats, the NFLX/FLX ratio was significantly lower in DEF+FLX rats. These preclinical data demonstrate that n-3 fatty acid deficiency does not significantly reduce the effects of chronic

  19. Differential Regulation of Hepatic Transcription Factors in the Wistar Rat Offspring Born to Dams Fed Folic Acid, Vitamin B12 Deficient Diets and Supplemented with Omega-3 Fatty Acids

    PubMed Central

    Meher, Akshaya; Joshi, Asmita; Joshi, Sadhana

    2014-01-01

    Nutritional status of the mother is known to influence various metabolic adaptations required for optimal fetal development. These may be mediated by transcription factors like peroxisome proliferator activated receptors (PPARs), which are activated by long chain polyunsaturated fatty acids. The objective of the current study was to examine the expression of different hepatic transcription factors and the levels of global methylation in the liver of the offspring born to dams fed micronutrient deficient (folic acid and vitamin B12) diets and supplemented with omega-3 fatty acids. Female rats were divided into five groups (n = 8/group) as follows; control, folic acid deficient (FD), vitamin B12 deficient (BD) and omega-3 fatty acid supplemented groups (FDO and BDO). Diets were given starting from pre-conception and continued throughout pregnancy and lactation. Pups were dissected at the end of lactation. Liver tissues were removed; snap frozen and stored at −80°C. Maternal micronutrients deficiency resulted in lower (p<0.05) levels of pup liver docosahexaenoic acid (DHA) and arachidonic acid (ARA) as compared to the control group. Pup liver PPARα and PPARγ expression was lower (p<0.05) in the BD group although there were no differences in the expression of SREBP-1c, LXRα and RXRα expression. Omega-3 fatty acids supplementation to this group normalized (p<0.05) levels of both PPARα and PPARγ but reduced (p<0.05) SREBP-1c, LXRα and RXRα expression. There was no change in any of the transcription factors in the pup liver in the FD group. Omega-3 fatty acids supplementation to this group reduced (p<0.05) PPARα, SREBP-1c and RXRα expression. Pup liver global methylation levels were higher (p<0.01) in both the micronutrients deficient groups and could be normalized (p<0.05) by omega-3 fatty acid supplementation. Our novel findings suggest a role for omega-3 fatty acids in the one carbon cycle in influencing the hepatic expression of transcription factors

  20. Omega-3 fatty acids. What consumers need to know.

    PubMed

    McManus, Alexandra; Merga, Margaret; Newton, Wendy

    2011-08-01

    The general public is increasingly aware of the health benefits associated with consumption of omega-3 fatty acids. While evidence of health benefits continues to mount, the underlying science is complex. Omega-3 fatty acids vary in their physiological efficacy. Consumers are typically unaware of differences in the efficacy of different omega-3 fatty acids and this lack of knowledge can result in consumers being misled within the marketplace. There is a need for consumers to be educated about the distinctions between omega-3 fatty acids. In the interim consumers remain at risk of purchasing premium fortified products and supplements that will not correspond to their desired health outcomes. This paper summarises the current understanding of fatty acid physiological metabolism and interaction for the purpose of highlighting this complex and multifaceted concern. PMID:21497627

  1. Omega-3 fatty acid supplementation in perinatal settings.

    PubMed

    Blanchard, Dawn S

    2006-01-01

    The purpose of this article is (a) to explain the role of omega-3 fatty acids in human health, specifically in fetal/neonatal development, (b) to summarize the recent research behind the innovations in infant formula manufacturing and advertisement of omega-3 fatty acid supplementation for pregnant and lactating mothers, and (c) to relate the research findings to clinical practice. Omega-3 fatty acid supplementation in perinatal settings is discussed here from three vantage points: (a) supplementation of the third-trimester pregnant woman to enhance fetal development, (b) supplementation of the lactating mother to enhance development of the breastfeeding infant, and (c) supplementation of infant formulas to enhance development of the bottle-feeding infant. Supplementation can occur by increasing one's intake of foods high in omega-3 fatty acids or by ingesting fatty acid nutritional supplements. The challenge of supplementation for vegan and vegetarian women is also addressed. PMID:16940822

  2. Omega-3 Fatty Acids and Skeletal Muscle Health

    PubMed Central

    Jeromson, Stewart; Gallagher, Iain J.; Galloway, Stuart D. R.; Hamilton, D. Lee

    2015-01-01

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle. PMID:26610527

  3. Rapid lipid enrichment in omega3 fatty acids: plasma data.

    PubMed

    Carpentier, Yvon A; Peltier, Sebastien; Portois, Laurence; Sener, Abdullah; Malaisse, Willy J

    2008-03-01

    The bolus intravenous injection of a novel medium-chain triglyceride:fish oil emulsion to normal subjects was recently reported to enrich within 60 min the phospholipid content of leucocytes and platelets in long-chain polyunsaturated omega3 fatty acids. The present study, conducted in second generation omega3-depleted rats, aimed at investigating whether such a procedure may also increase within 60 min the phospholipid content of omega3 fatty acids in cells located outwards the bloodstream, in this case liver cells, and whether this coincides with correction of the perturbation in the liver triglyceride fatty acid content and profile otherwise prevailing in these rats. This first report deals mainly with the fatty acid pattern of plasma lipids in male omega3-depleted rats that were non-injected or injected with either the omega3-rich emulsion or a control medium-chain triglyceride:olive oil emulsion. The results provide information on the fate of the exogenous lipids present in the lipid emulsions and injected intravenously 60 min before sacrifice. Moreover, in the uninjected omega3-depleted rats the comparison between individual plasma and liver measurements indicated positive correlations in the fatty acid profile of phospholipids and triglycerides. PMID:18288383

  4. Omega-3 Fatty Acids and Skeletal Muscle Health.

    PubMed

    Jeromson, Stewart; Gallagher, Iain J; Galloway, Stuart D R; Hamilton, D Lee

    2015-11-01

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle. PMID:26610527

  5. Vitamin B12 and omega-3 fatty acids together regulate lipid metabolism in Wistar rats.

    PubMed

    Khaire, Amrita; Rathod, Richa; Kale, Anvita; Joshi, Sadhana

    2015-08-01

    Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (p<0.01) but reduced docosahexaenoic acid (DHA) (p<0.05), liver mRNA levels of acetyl CoA carboxylase-1 (ACC-1) (p<0.05) and carnitine palmitoyltransferase-1 (CPT-1) (p<0.01) in the offspring. Omega-3 fatty acid supplementation to this group normalized cholesterol but not mRNA levels of ACC-1 and CPT-1. Vitamin B12 supplementation normalized the levels cholesterol to that of control but increased plasma triglyceride (p<0.01) and reduced liver mRNA levels of adiponectin, ACC-1, and CPT-1 (p<0.01 for all). Supplementation of both vitamin B12 and omega-3 fatty acid normalized triglyceride and mRNA levels of all the above genes. Prenatal and postnatal vitamin B12 and omega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring. PMID:26003565

  6. Omega-3 polyunsaturated fatty acids and vegetarian diets.

    PubMed

    Saunders, Angela V; Davis, Brenda C; Garg, Manohar L

    2013-08-19

    While intakes of the omega-3 fatty acid α-linolenic acid (ALA) are similar in vegetarians and non-vegetarians, intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are low in vegetarians and virtually absent in vegans. Plasma, blood and tissue levels of EPA and DHA are lower in vegetarians than in non-vegetarians, although the clinical significance of this is unknown. Vegetarians do not exhibit clinical signs of DHA deficiency, but further research is required to ascertain whether levels observed in vegetarians are sufficient to support optimal health. ALA is endogenously converted to EPA and DHA, but the process is slow and inefficient and is affected by genetics, sex, age and dietary composition. Vegetarians can take practical steps to optimise conversion of ALA to EPA and DHA, including reducing intake of linoleic acid. There are no official separate recommendations for intake of fatty acids by vegetarians. However, we suggest that vegetarians double the current adequate intake of ALA if no direct sources of EPA and DHA are consumed. Vegetarians with increased needs or reduced conversion ability may receive some advantage from DHA and EPA supplements derived from microalgae. A supplement of 200-300 mg/day of DHA and EPA is suggested for those with increased needs, such as pregnant and lactating women, and those with reduced conversion ability, such as older people or those who have chronic disease (eg, diabetes). PMID:25369925

  7. Omega-3 Fatty acids and airway hyperresponsiveness in asthma.

    PubMed

    Mickleborough, Timothy D; Ionescu, Alina A; Rundell, Kenneth W

    2004-12-01

    Despite the progress that has been made in the treatment of asthma, the prevalence and burden of this disease has continued to increase. Exercise is a powerful trigger of asthma symptoms and reversible airflow obstruction and may result in the avoidance of physical activity by patients with asthma, resulting in detrimental consequences to their health. Approximately 90% of patients with asthma are hyperresponsive to exercise and experience exercise-induced bronchoconstriction (EIB). While pharmacologic treatment of asthma is usually highly effective, medications often have significant side-effects or exhibit tachyphylaxis. Alternative therapies for treatment (complementary medicine) that reduce the dose requirements of pharmacologic interventions would be beneficial, and could potentially reduce the public health burden of this disease. There is accumulating evidence that dietary modification has potential to influence the severity of asthma and reduce the prevalence and incidence of this condition. A possible contributing factor to the increased incidence of asthma in Western societies may be the consumption of a proinflammatory diet. In the typical Western diet, 20- to 25-fold more omega- 6 polyunsaturated fatty acids (PUFA) than omega-3 PUFA are consumed, which causes the release of proinflammatory arachidonic acid metabolites (leukotrienes and prostanoids). This review analyzes the existing literature on omega-3 PUFA supplementation as a potential modifier of airway hyperresponsiveness in asthma and includes studies concerning the efficacy of omega-3 PUFA supplementation in EIB. While clinical data evaluating the effect of omega-3 PUFA supplementation in asthma has been equivocal, it has recently been shown that pharmaceutical-grade fish oil (omega-3 PUFA) supplementation reduces airway hyperresponsiveness after exercise, medication use, and proinflammatory mediator generation in nonatopic elite athletes with EIB. These findings are provocative and suggest that

  8. The importance of the ratio of omega-6/omega-3 essential fatty acids.

    PubMed

    Simopoulos, A P

    2002-10-01

    Several sources of information suggest that human beings evolved on a diet with a ratio of omega-6 to omega-3 essential fatty acids (EFA) of approximately 1 whereas in Western diets the ratio is 15/1-16.7/1. Western diets are deficient in omega-3 fatty acids, and have excessive amounts of omega-6 fatty acids compared with the diet on which human beings evolved and their genetic patterns were established. Excessive amounts of omega-6 polyunsaturated fatty acids (PUFA) and a very high omega-6/omega-3 ratio, as is found in today's Western diets, promote the pathogenesis of many diseases, including cardiovascular disease, cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA (a low omega-6/omega-3 ratio) exert suppressive effects. In the secondary prevention of cardiovascular disease, a ratio of 4/1 was associated with a 70% decrease in total mortality. A ratio of 2.5/1 reduced rectal cell proliferation in patients with colorectal cancer, whereas a ratio of 4/1 with the same amount of omega-3 PUFA had no effect. The lower omega-6/omega-3 ratio in women with breast cancer was associated with decreased risk. A ratio of 2-3/1 suppressed inflammation in patients with rheumatoid arthritis, and a ratio of 5/1 had a beneficial effect on patients with asthma, whereas a ratio of 10/1 had adverse consequences. These studies indicate that the optimal ratio may vary with the disease under consideration. This is consistent with the fact that chronic diseases are multigenic and multifactorial. Therefore, it is quite possible that the therapeutic dose of omega-3 fatty acids will depend on the degree of severity of disease resulting from the genetic predisposition. A lower ratio of omega-6/omega-3 fatty acids is more desirable in reducing the risk of many of the chronic diseases of high prevalence in Western societies, as well as in the developing countries, that are being exported to the rest of the world. PMID:12442909

  9. [Omega-3 polyunsaturated fatty acids in the prevention of atherosclerosis].

    PubMed

    Varga, Zsuzsa

    2008-04-01

    Cardioprotective action of omega-3 polyunsaturated fatty acids such as eicosapentaenoic and docosahexaenoic acid in fish and alpha-linolenic acid in plants was demonstrated in primary and secondary clinical trials. Fish oil therapy causes a marked decrease in serum triacylglycerol and very low density lipoprotein levels and increases moderately high density lipoprotein levels without any adverse effects. Omega-3 fatty acids decrease slightly, but significantly blood pressure, enhance endothelial function, they have anti-aggregator, anti-thrombotic and anti-inflammatory effects as well. These beneficial effects are in connection with modification of gene transcription levels of some key molecules such as nuclear factor-kappaB and sterol element binding receptor protein-1c, which regulate for example expression of adhesion molecules or several receptors involved in triglyceride synthesis (hepatocyte X receptor, hepatocyte nuclear factor 4alpha, farnesol X receptor, and peroxisome proliferator-activated receptors). On the basis of these observations, the supplementation of the diet with omega-3 fatty acids (fish, fish oil, linseed, and linseed oil or canola oil) is advisable in primary and secondary prevention. PMID:18375362

  10. Omega-3 fatty acids for breast cancer prevention and survivorship.

    PubMed

    Fabian, Carol J; Kimler, Bruce F; Hursting, Stephen D

    2015-01-01

    Women with evidence of high intake ratios of the marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid have been found to have a reduced risk of breast cancer compared with those with low ratios in some but not all case-control and cohort studies. If increasing EPA and DHA relative to arachidonic acid is effective in reducing breast cancer risk, likely mechanisms include reduction in proinflammatory lipid derivatives, inhibition of nuclear factor-κB-induced cytokine production, and decreased growth factor receptor signaling as a result of alteration in membrane lipid rafts. Primary prevention trials with either risk biomarkers or cancer incidence as endpoints are underway but final results of these trials are currently unavailable. EPA and DHA supplementation is also being explored in an effort to help prevent or alleviate common problems after a breast cancer diagnosis, including cardiac and cognitive dysfunction and chemotherapy-induced peripheral neuropathy. The insulin-sensitizing and anabolic properties of EPA and DHA also suggest supplementation studies to determine whether these omega-3 fatty acids might reduce chemotherapy-associated loss of muscle mass and weight gain. We will briefly review relevant omega-3 fatty acid metabolism, and early investigations in breast cancer prevention and survivorship. PMID:25936773

  11. A Comparative Overview of Prescription Omega-3 Fatty Acid Products

    PubMed Central

    Ito, Matthew K.

    2015-01-01

    An estimated 25% of adults in the United States have elevated triglyceride (TG) levels. This is of particular concern given the evidence for a causal role of TG in the pathway of cardiovascular (CV) disease. Approved prescription omega-3 fatty acid products (RxOM3FAs) contain the long-chain fatty acids docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA) and are effective options for the treatment of high TG levels. RxOM3FAs that contain both EPA and DHA include omega-3-acid ethyl esters (ethyl esters of EPA and DHA; brand and generic products) and omega-3-carboxylic acids (free fatty acids primarily composed of EPA and DHA), while the RxOM3FA icosapent ethyl (the ethyl ester of EPA) contains EPA only. All RxOM3FA products produce substantial TG reduction and other beneficial effects on atherogenic lipid and inflammation-related parameters, blood pressure, and heart rate variability, but products that contain DHA may raise low-density lipoprotein-cholesterol (LDL-C). This commentary provides an overview of hypertriglyceridemia while summarizing the pharmacology, efficacy, and safety of prescription RxOM3FAs. PMID:26681905

  12. Do we need 'new' omega-3 polyunsaturated fatty acids formulations?

    PubMed

    Cicero, Arrigo F G; Morbini, Martino; Borghi, Claudio

    2015-02-01

    The therapeutic value of omega-3 polyunsaturated fatty acids (PUFAs), mainly (but not only) found in fish oils, eicosapentaenoic and docosahexaenoic acids (EPA and DHA, respectively), has been extensively studied in a wide variety of disease conditions, predominantly in cardiovascular disease. However, the significant difference in efficacy observed in various conditions with different dosages seems to be at least partly related to the large discrepancy in quality of the product and to the bioavailability of the omega-3 PUFA. The research of new sources (e.g., from arctic Krill oil) and pharmaceutical forms of omega-3 PUFA (e.g., omega-3 carboxylic acids) is needed in order to detect the one with the best bioavailability and efficacy, and with a parallel reduction in the production costs. There is also the need to understand if long-term PUFA supplementation could increase the efficacy of the already-available evidence-based therapies for cardiovascular disease prevention and for the management of the diseases where the use of PUFA could have a possible improving effect. PMID:25474717

  13. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia

    PubMed Central

    Kaliannan, Kanakaraju; Wang, Bin; Li, Xiang-Yong; Kim, Kui-Jin; Kang, Jing X.

    2015-01-01

    Metabolic endotoxemia, commonly derived from gut dysbiosis, is a primary cause of chronic low grade inflammation that underlies many chronic diseases. Here we show that mice fed a diet high in omega-6 fatty acids exhibit higher levels of metabolic endotoxemia and systemic low-grade inflammation, while transgenic conversion of tissue omega-6 to omega-3 fatty acids dramatically reduces endotoxemic and inflammatory status. These opposing effects of tissue omega-6 and omega-3 fatty acids can be eliminated by antibiotic treatment and animal co-housing, suggesting the involvement of the gut microbiota. Analysis of gut microbiota and fecal transfer revealed that elevated tissue omega-3 fatty acids enhance intestinal production and secretion of intestinal alkaline phosphatase (IAP), which induces changes in the gut bacteria composition resulting in decreased lipopolysaccharide production and gut permeability, and ultimately, reduced metabolic endotoxemia and inflammation. Our findings uncover an interaction between host tissue fatty acid composition and gut microbiota as a novel mechanism for the anti-inflammatory effect of omega-3 fatty acids. Given the excess of omega-6 and deficiency of omega-3 in the modern Western diet, the differential effects of tissue omega-6 and omega-3 fatty acids on gut microbiota and metabolic endotoxemia provide insight into the etiology and management of today’s health epidemics. PMID:26062993

  14. Heterologous Reconstitution of Omega-3 Polyunsaturated Fatty Acids in Arabidopsis

    PubMed Central

    Kim, Sun Hee; Roh, Kyung Hee; Park, Jong-Sug; Kim, Kwang-Soo; Kim, Hyun Uk; Lee, Kyeong-Ryeol; Kang, Han-Chul; Kim, Jong-Bum

    2015-01-01

    Reconstitution of nonnative, very-long-chain polyunsaturated fatty acid (VLC-PUFA) biosynthetic pathways in Arabidopsis thaliana was undertaken. The introduction of three primary biosynthetic activities to cells requires the stable coexpression of multiple proteins within the same cell. Herein, we report that C22 VLC-PUFAs were synthesized from C18 precursors by reactions catalyzed by Δ6-desaturase, an ELOVL5-like enzyme involved in VLC-PUFA elongation, and Δ5-desaturase. Coexpression of the corresponding genes (McD6DES, AsELOVL5, and PtD5DES) under the control of the seed-specific vicilin promoter resulted in production of docosapentaenoic acid (22:5 n-3) and docosatetraenoic acid (22:4 n-6) as well as eicosapentaenoic acid (20:5 n-3) and arachidonic acid (20:4 n-6) in Arabidopsis seeds. The contributions of the transgenic enzymes and endogenous fatty acid metabolism were determined. Specifically, the reasonable synthesis of omega-3 stearidonic acid (18:4 n-3) could be a useful tool to obtain a sustainable system for the production of omega-3 fatty acids in seeds of a transgenic T3 line 63-1. The results indicated that coexpression of the three proteins was stable. Therefore, this study suggests that metabolic engineering of oilseed crops to produce VLC-PUFAs is feasible. PMID:26339641

  15. Novel Omega-3 Fatty Acid Epoxygenase Metabolite Reduces Kidney Fibrosis

    PubMed Central

    Sharma, Amit; Khan, Md. Abdul Hye; Levick, Scott P.; Lee, Kin Sing Stephen; Hammock, Bruce D.; Imig, John D.

    2016-01-01

    Cytochrome P450 (CYP) monooxygenases epoxidize the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid into novel epoxydocosapentaenoic acids (EDPs) that have multiple biological actions. The present study determined the ability of the most abundant EDP regioisomer, 19,20-EDP to reduce kidney injury in an experimental unilateral ureteral obstruction (UUO) renal fibrosis mouse model. Mice with UUO developed kidney tubular injury and interstitial fibrosis. UUO mice had elevated kidney hydroxyproline content and five-times greater collagen positive fibrotic area than sham control mice. 19,20-EDP treatment to UUO mice for 10 days reduced renal fibrosis with a 40%–50% reduction in collagen positive area and hydroxyproline content. There was a six-fold increase in kidney α-smooth muscle actin (α-SMA) positive area in UUO mice compared to sham control mice, and 19,20-EDP treatment to UUO mice decreased α-SMA immunopositive area by 60%. UUO mice demonstrated renal epithelial-to-mesenchymal transition (EMT) with reduced expression of the epithelial marker E-cadherin and elevated expression of multiple mesenchymal markers (FSP-1, α-SMA, and desmin). Interestingly, 19,20-EDP treatment reduced renal EMT in UUO by decreasing mesenchymal and increasing epithelial marker expression. Overall, we demonstrate that a novel omega-3 fatty acid metabolite 19,20-EDP, prevents UUO-induced renal fibrosis in mice by reducing renal EMT. PMID:27213332

  16. Omega-3 fatty acid supplementation and cardiovascular disease

    PubMed Central

    Jump, Donald B.; Depner, Christopher M.; Tripathy, Sasmita

    2012-01-01

    Epidemiological studies on Greenland Inuits in the 1970s and subsequent human studies have established an inverse relationship between the ingestion of omega-3 fatty acids [C20–22 ω 3 polyunsaturated fatty acids (PUFA)], blood levels of C20–22 ω 3 PUFA, and mortality associated with cardiovascular disease (CVD). C20–22 ω 3 PUFA have pleiotropic effects on cell function and regulate multiple pathways controlling blood lipids, inflammatory factors, and cellular events in cardiomyocytes and vascular endothelial cells. The hypolipemic, anti-inflammatory, anti-arrhythmic properties of these fatty acids confer cardioprotection. Accordingly, national heart associations and government agencies have recommended increased consumption of fatty fish or ω 3 PUFA supplements to prevent CVD. In addition to fatty fish, sources of ω 3 PUFA are available from plants, algae, and yeast. A key question examined in this review is whether nonfish sources of ω 3 PUFA are as effective as fatty fish-derived C20–22 ω 3 PUFA at managing risk factors linked to CVD. We focused on ω 3 PUFA metabolism and the capacity of ω 3 PUFA supplements to regulate key cellular events linked to CVD. The outcome of our analysis reveals that nonfish sources of ω 3 PUFA vary in their capacity to regulate blood levels of C20–22 ω 3 PUFA and CVD risk factors. PMID:22904344

  17. Towards sustainable sources for omega-3 fatty acids production.

    PubMed

    Adarme-Vega, T Catalina; Thomas-Hall, Skye R; Schenk, Peer M

    2014-04-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues. PMID:24607804

  18. Does Short-Term Dietary Omega-3 Fatty Acid Supplementation Influence Brain Hippocampus Gene Expression of Zinc Transporter-3?

    PubMed

    Sopian, Nur Farhana Ahmad; Ajat, Mokrish; Shafie, Nurul' Izzati; Noor, Mohd Hezmee Mohd; Ebrahimi, Mehdi; Rajion, Mohamed Ali; Meng, Goh Yong; Ahmad, Hafandi

    2015-01-01

    Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6), standard pellet added with 10% (w/w) fish oil (FO, n = 6), 10% (w/w) soybean oil (SO, n = 6) and 10% (w/w) butter (BT, n = 6). After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice. PMID:26184176

  19. The Role of Omega-3 Polyunsaturated Fatty Acids in Stroke

    PubMed Central

    Bu, Jiyuan; Dou, Yang; Tian, Xiaodi; Wang, Zhong

    2016-01-01

    Stroke is the third commonest cause of death following cardiovascular diseases and cancer. In particular, in recent years, the morbidity and mortality of stroke keep remarkable growing. However, stroke still captures people attention far less than cardiovascular diseases and cancer. Past studies have shown that oxidative stress and inflammation play crucial roles in the progress of cerebral injury induced by stroke. Evidence is accumulating that the dietary supplementation of fish oil exhibits beneficial effects on several diseases, such as cardiovascular diseases, metabolic diseases, and cancer. Omega-3 polyunsaturated fatty acids (n-3 PUFAs), the major component of fish oil, have been found against oxidative stress and inflammation in cardiovascular diseases. And the potential of n-3 PUFAs in stroke treatment is attracting more and more attention. In this review, we will review the effects of n-3 PUFAs on stroke and mainly focus on the antioxidant and anti-inflammatory effects of n-3 PUFAs. PMID:27433289

  20. Oxidative stability of omega-3 polyunsaturated fatty acids enriched eggs.

    PubMed

    Ren, Yuan; Perez, Tulia I; Zuidhof, Martin J; Renema, Robert A; Wu, Jianping

    2013-11-27

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) enriched eggs have a growing market share in the egg industry. This study examined the stability of n-3 PUFA enriched eggs fortified with antioxidants (vitamin E or organic Selenium [Sel-Plex] or both) following cooking and storage. The total fat content was not affected by cooking or simulated retail storage conditions, whereas, n-3 fatty acids were reduced. The content of n-3 fatty acids in boiled eggs was higher than in fried eggs. Lipid oxidation was significantly affected by the different cooking methods. Fried eggs contained higher levels of malondialdehyde (MDA, 2.02 μg/kg) and cholesterol oxidation products (COPs, 13.58 μg/g) compared to boiled (1.44 and 10.15 μg/kg) and raw eggs (0.95 and 9.03 μg/kg, respectively, for MDA and COPs). Supplementation of antioxidants reduced the formation of MDA by 40% and COPs by 12% in fried eggs. Although the content of MDA was significantly increased after 28 days of storage, COPs were not affected by storage. Our study indicated that the n-3 PUFA in enriched eggs was relatively stable during storage and home cooking in the presence of antioxidants. PMID:24164329

  1. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    PubMed Central

    De Mel, Damitha; Suphioglu, Cenk

    2014-01-01

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration. PMID:25195602

  2. Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells.

    PubMed

    De Mel, Damitha; Suphioglu, Cenk

    2014-08-01

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration. PMID:25195602

  3. Novel insights into the effect of vitamin B₁₂ and omega-3 fatty acids on brain function.

    PubMed

    Rathod, Richa; Kale, Anvita; Joshi, Sadhana

    2016-01-01

    The prevalence of psychiatric disorders which are characterized by cognitive decline is increasing at an alarming rate and account for a significant proportion of the global disease burden. Evidences from human and animal studies indicate that neurocognitive development is influenced by various environmental factors including nutrition. It has been established that nutrition affects the brain throughout life. However, the mechanisms through which nutrition modulates mental health are still not well understood. It has been suggested that the deficiencies of both vitamin B12 and omega-3 fatty acids can have adverse effects on cognition and synaptic plasticity. Studies indicate a need for supplementation of vitamin B12 and omega-3 fatty acids to reduce the risk of cognitive decline, although the results of intervention trials using these nutrients in isolation are inconclusive. In the present article, we provide an overview of vitamin B12 and omega-3 fatty acids, the possible mechanisms and the evidences through which vitamin B12 and omega-3 fatty acids modulate mental health and cognition. Understanding the role of vitamin B12 and omega-3 fatty acids on brain functioning may provide important clues to prevent early cognitive deficits and later neurobehavioral disorders. PMID:26809263

  4. Omega-3 fatty acid and nutrient deficits in adverse neurodevelopment and childhood behaviors.

    PubMed

    Gow, Rachel V; Hibbeln, Joseph R

    2014-07-01

    Nutritional insufficiencies of omega-3 highly unsaturated fatty acids (HUFAs) may have adverse effects on brain development and neurodevelopmental outcomes. A recent meta-analysis reported a small to modest effect size for the efficacy of omega-3 in youth. Several controlled trials of omega-3 HUFAs combined with micronutrients show sizable reductions in aggressive, antisocial, and violent behavior in youth and young adult prisoners. Studies of HUFAs in youth, however, remain lacking. As the evidence base for omega-3 HUFAs as potential psychiatric treatment develops, dietary adjustments to increase omega-3 and reduce omega-6 HUFA consumption are sensible recommendations based on general health considerations. PMID:24975625

  5. Omega-3 Fatty Acids for Autistic Spectrum Disorder: A Systematic Review

    ERIC Educational Resources Information Center

    Bent, Stephen; Bertoglio, Kiah; Hendren, Robert L.

    2009-01-01

    We conducted a systematic review to determine the safety and efficacy of omega-3 fatty acids for autistic spectrum disorder (ASD). Articles were identified by a search of MEDLINE, EMBASE, and the Cochrane Database using the terms autism or autistic and omega-3 fatty acids. The search identified 143 potential articles and six satisfied all…

  6. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids

    PubMed Central

    Watts, Jennifer L.

    2016-01-01

    The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids. PMID:26848697

  7. Handmade Cloned Transgenic Sheep Rich in Omega-3 Fatty Acids

    PubMed Central

    Dou, Hongwei; Chen, Lei; Chen, Longxin; Lin, Lin; Tan, Pingping; Vajta, Gabor; Gao, Jianfeng; Du, Yutao; Ma, Runlin Z.

    2013-01-01

    Technology of somatic cell nuclear transfer (SCNT) has been adapted worldwide to generate transgenic animals, although the traditional procedure relies largely on instrumental micromanipulation. In this study, we used the modified handmade cloning (HMC) established in cattle and pig to produce transgenic sheep with elevated levels of omega-3 (n−3) fatty acids. Codon-optimized nematode mfat-1 was inserted into a eukaryotic expression vector and was transferred into the genome of primary ovine fibroblast cells from a male Chinese merino sheep. Reverse transcriptase PCR, gas chromatography, and chromosome analyses were performed to select nuclear donor cells capable of converting omega-6 (n−6) into n−3 fatty acids. Blastocysts developed after 7 days of in vitro culture were surgically transplanted into the uterus of female ovine recipients of a local sheep breed in Xinjiang. For the HMC, approximately 8.9% (n  = 925) of reconstructed embryos developed to the blastocyst stage. Four recipients became pregnant after 53 blastocysts were transplanted into 29 naturally cycling females, and a total of 3 live transgenic lambs were produced. Detailed analyses on one of the transgenic lambs revealed a single integration of the modified nematode mfat-1 gene at sheep chromosome 5. The transgenic sheep expressed functional n−3 fatty acid desaturase, accompanied by more than 2-folds reduction of n−6/n−3 ratio in the muscle (p<0.01) and other major organs/tissues (p<0.05). To our knowledge, this is the first report of transgenic sheep produced by the HMC. Compared to the traditional SCNT method, HMC showed an equivalent efficiency but proved cheaper and easier in operation. PMID:23437077

  8. Omega 3 Fatty Acids: Novel Neurotherapeutic Targets for Cognitive Dysfunction in Mood Disorders and Schizophrenia?

    PubMed Central

    Knöchel, Christian; Voss, Martin; Grter, Florian; Alves, Gilberto S.; Matura, Silke; Sepanski, Beate; Stäblein, Michael; Wenzler, Sofia; Prvulovic, David; Carvalho, André F.; Oertel-Knöchel, Viola

    2015-01-01

    An increasing body of evidences from preclinical as well as epidemiological and clinical studies suggest a potential beneficial role of dietary intake of omega-3 fatty acids for cognitive functioning. In this narrative review, we will summarize and discuss recent findings from epidemiological, interventional and experimental studies linking dietary consumption of omega-3 fatty acids to cognitive function in healthy adults. Furthermore, affective disorders and schizophrenia (SZ) are characterized by cognitive dysfunction encompassing several domains. Cognitive dysfunction is closely related to impaired functioning and quality of life across these conditions. Therefore, the current review focues on the potential influence of omega-3 fatty acids on cognition in SZ and affective disorders. In sum, current data predominantly from mechanistic models and animal studies suggest that adjunctive omega-3 fatty acid supplementation could lead to improved cognitive functioning in SZ and affective disorders. However, besides its translational promise, evidence for clinical benefits in humans has been mixed. Notwithstanding evidences indicate that adjunctive omega-3 fatty acids may have benefit for affective symptoms in both unipolar and bipolar depression, to date no randomized controlled trial had evaluated omega-3 as cognitive enhancer for mood disorders, while a single published controlled trial suggested no therapeutic benefit for cognitive improvement in SZ. Considering the pleiotropic mechanisms of action of omega-3 fatty acids, the design of well-designed controlled trials of omega-3 supplementation as a novel, domain-specific, target for cognitive impairment in SZ and affective disorders is warranted. PMID:26467414

  9. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity.

    PubMed

    Simopoulos, Artemis P

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  10. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity

    PubMed Central

    Simopoulos, Artemis P.

    2016-01-01

    In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity. PMID:26950145

  11. Inflammatory bowel disease: can omega-3 fatty acids really help?

    PubMed

    Barbalho, Sandra Maria; Goulart, Ricardo de Alvares; Quesada, Karina; Bechara, Marcelo Dib; de Carvalho, Antonely de Cássio Alves

    2016-01-01

    Adjuvants to the traditional therapy of inflammatory bowel disease (IBD) have been studied to enhance the efficacy of the treatment and improve patients' quality of life. Omega-3 polyunsaturated fatty acids (ω3FA) have been associated with attenuation of the inflammatory responses in IBD, possibly acting as substrates for anti-inflammatory eicosanoid production, similar to prostaglandins and leukotrienes. ω3FA also act as substrates for the synthesis of resolvins, maresins and protectins, indispensable in resolving inflammation processes. These acids may influence the development or course of IBD by: reducing oxidative stress, production of tumor necrosis factor-α and proinflammatory cytokines; working as chemopreventive agents; and decreasing the expression of adhesion molecules. There are numerous controversies in the literature on the effects of ω3FA in the prevention or treatment of IBD, but their effects in reducing inflammation is incontestable. Therefore, more studies are warranted to elucidate the pathophysiological mechanisms and establish the recommended daily intake to prevent or induce remission in IBD patients. PMID:26752948

  12. Inflammatory bowel disease: can omega-3 fatty acids really help?

    PubMed Central

    Barbalho, Sandra Maria; Goulart, Ricardo de Alvares; Quesada, Karina; Bechara, Marcelo Dib; de Carvalho, Antonely de Cássio Alves

    2016-01-01

    Adjuvants to the traditional therapy of inflammatory bowel disease (IBD) have been studied to enhance the efficacy of the treatment and improve patients’ quality of life. Omega-3 polyunsaturated fatty acids (ω3FA) have been associated with attenuation of the inflammatory responses in IBD, possibly acting as substrates for anti-inflammatory eicosanoid production, similar to prostaglandins and leukotrienes. ω3FA also act as substrates for the synthesis of resolvins, maresins and protectins, indispensable in resolving inflammation processes. These acids may influence the development or course of IBD by: reducing oxidative stress, production of tumor necrosis factor-α and proinflammatory cytokines; working as chemopreventive agents; and decreasing the expression of adhesion molecules. There are numerous controversies in the literature on the effects of ω3FA in the prevention or treatment of IBD, but their effects in reducing inflammation is incontestable. Therefore, more studies are warranted to elucidate the pathophysiological mechanisms and establish the recommended daily intake to prevent or induce remission in IBD patients. PMID:26752948

  13. Functions of omega-3 fatty acids and FFA4 (GPR120) in macrophages.

    PubMed

    Im, Dong-Soon

    2016-08-15

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs), which are plentiful in fish oil, have been known for decades to be beneficial functional nutrients in different disease states. GPR120 is a G protein-coupled receptor for long-chain unsaturated fatty acids, including n-3 PUFAs, and was recently renamed free fatty acid receptor 4 (FFA4). Studies on FFA4-deficient mice and the development of specific pharmacological tools have started to unravel the functions of FFA4 associated with the actions of n-3 PUFAs in obesity, type 2 diabetes, and inflammation-related diseases. Here, the state of the art regarding the roles and functions of FFA4 and n-3 PUFA in macrophages are reviewed from the pharmacological perspective. In particular, the functions of n-3 PUFA on the anti-inflammatory M2 phenotypes of macrophages in different organs, such as, adipose tissues and liver, are discussed along with future research directions. PMID:25987421

  14. Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid?

    PubMed Central

    Ross, Brian M; Seguin, Jennifer; Sieswerda, Lee E

    2007-01-01

    Background A growing number of observational and epidemiological studies have suggested that mental illness, in particular mood disorders, is associated with reduced dietary intake and/or cellular abundance of omega-3 polyunsaturated fatty acids (PUFA). This has prompted researchers to test the efficacy of omega-3 PUFA in a range of different psychiatric disorders. We have critically reviewed the double blind placebo controlled clinical trials published prior to April 2007 to determine whether omega-3 PUFA are likely to be efficacious in these disorders. Results Most trials involved a small number of participants but were largely well designed. Omega-3 PUFA were well tolerated by both children and adults with mild gastrointestinal effects being the only consistently reported adverse event. For schizophrenia and borderline personality disorder we found little evidence of a robust clinically relevant effect. In the case of attention deficit hyperactivity disorder and related disorders, most trials showed at most small benefits over placebo. A limited meta-analysis of these trials suggested that benefits of omega-3 PUFA supplementation may be greater in a classroom setting than at home. Some evidence indicates that omega-3 PUFA may reduce symptoms of anxiety although the data is preliminary and inconclusive. The most convincing evidence for beneficial effects of omega-3 PUFA is to be found in mood disorders. A meta-analysis of trials involving patients with major depressive disorder and bipolar disorder provided evidence that omega-3 PUFA supplementation reduces symptoms of depression. Furthermore, meta-regression analysis suggests that supplementation with eicosapentaenoic acid may be more beneficial in mood disorders than with docosahexaenoic acid, although several confounding factors prevented a definitive conclusion being made regarding which species of omega-3 PUFA is most beneficial. The mechanisms underlying the apparent efficacy of omega-3 PUFA in mood

  15. Fluoxetine potentiation of omega-3 fatty acid antidepressant effect: evaluating pharmacokinetic and brain fatty acid-related aspects in rodents.

    PubMed

    Laino, Carlos Horacio; Garcia, Pilar; Podestá, María Fernanda; Höcht, Christian; Slobodianik, Nora; Reinés, Analía

    2014-10-01

    We previously reported that combined fluoxetine administration at antidepressant doses renders additive antidepressant effects, whereas non-antidepressant doses potentiate the omega-3 fatty acid antidepressant effect. In the present study, we aimed to evaluate putative pharmacokinetic and brain omega-3 fatty acid-related aspects for fluoxetine potentiation of omega-3 fatty acid antidepressant effect in rats. Coadministration of omega-3 fatty acids with a non-antidepressant dose of fluoxetine (1 mg/kg day) failed to affect both brain fluoxetine concentration and norfluoxetine plasma concentration profile. Fluoxetine plasma concentrations remained below the sensitivity limit of the detection method. Either antidepressant (10 mg/kg day) or non-antidepressant (1 mg/kg day) doses of fluoxetine in combination with omega-3 fatty acids increased hippocampal docosapentaenoic acid (DPA, 22:5 omega-3) levels. Although individual treatments had no effects on DPA concentration, DPA increase was higher when omega-3 were combined with the non-antidepressant dose of fluoxetine. Chronic DPA administration exerted antidepressant-like effects in the forced swimming test while increasing hippocampal docosahexaenoic (22:6 omega-3) and DPA levels. Our results suggest no pharmacokinetic interaction and reveal specific hippocampal DPA changes after fluoxetine and omega-3 combined treatments in our experimental conditions. The DPA role in the synergistic effect of fluoxetine and omega-3 combined treatments will be for sure the focus of future studies. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:3316-3325, 2014. PMID:25174836

  16. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing.

    PubMed

    Bourre, J M

    2004-01-01

    Among various organs, in the brain, the fatty acids most extensively studied are omega-3 fatty acids. Alpha-linolenic acid (18:3omega3) deficiency alters the structure and function of membranes and induces minor cerebral dysfunctions, as demonstrated in animal models and subsequently in human infants. Even though the brain is materially an organ like any other, that is to say elaborated from substances present in the diet (sometimes exclusively), for long it was not accepted that food can have an influence on brain structure, and thus on its function. Lipids, and especially omega-3 fatty acids, provided the first coherent experimental demonstration of the effect of diet (nutrients) on the structure and function of the brain. In fact the brain, after adipose tissue, is the organ richest in lipids, whose only role is to participate in membrane structure. First it was shown that the differentiation and functioning of cultured brain cells requires not only alpha-linolenic acid (the major component of the omega-3, omega3 family), but also the very long omega-3 and omega-6 carbon chains (1). It was then demonstrated that alpha-linolenic acid deficiency alters the course of brain development, perturbs the composition and physicochemical properties of brain cell membranes, neurones, oligodendrocytes, and astrocytes (2). This leads to physicochemical modifications, induces biochemical and physiological perturbations, and results in neurosensory and behavioural upset (3). Consequently, the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for infants (premature and term) conditions the visual and cerebral abilities, including intellectual. Moreover, dietary omega-3 fatty acids are certainly involved in the prevention of some aspects of cardiovascular disease (including at the level of cerebral vascularization), and in some neuropsychiatric disorders, particularly depression, as well as in dementia, notably Alzheimer's disease. Recent

  17. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases.

    PubMed

    Simopoulos, Artemis P

    2008-06-01

    Several sources of information suggest that human beings evolved on a diet with a ratio of omega-6 to omega-3 essential fatty acids (EFA) of approximately 1 whereas in Western diets the ratio is 15/1-16.7/1. Western diets are deficient in omega-3 fatty acids, and have excessive amounts of omega-6 fatty acids compared with the diet on which human beings evolved and their genetic patterns were established. Excessive amounts of omega-6 polyunsaturated fatty acids (PUFA) and a very high omega-6/omega-3 ratio, as is found in today's Western diets, promote the pathogenesis of many diseases, including cardiovascular disease, cancer, and inflammatory and autoimmune diseases, whereas increased levels of omega-3 PUFA (a lower omega-6/omega-3 ratio), exert suppressive effects. In the secondary prevention of cardiovascular disease, a ratio of 4/1 was associated with a 70% decrease in total mortality. A ratio of 2.5/1 reduced rectal cell proliferation in patients with colorectal cancer, whereas a ratio of 4/1 with the same amount of omega-3 PUFA had no effect. The lower omega-6/omega-3 ratio in women with breast cancer was associated with decreased risk. A ratio of 2-3/1 suppressed inflammation in patients with rheumatoid arthritis, and a ratio of 5/1 had a beneficial effect on patients with asthma, whereas a ratio of 10/1 had adverse consequences. These studies indicate that the optimal ratio may vary with the disease under consideration. This is consistent with the fact that chronic diseases are multigenic and multifactorial. Therefore, it is quite possible that the therapeutic dose of omega-3 fatty acids will depend on the degree of severity of disease resulting from the genetic predisposition. A lower ratio of omega-6/omega-3 fatty acids is more desirable in reducing the risk of many of the chronic diseases of high prevalence in Western societies, as well as in the developing countries. PMID:18408140

  18. Relationship between omega-3 fatty acids and plasma neuroactive steroids in alcoholism, depression and controls.

    PubMed

    Nieminen, L R G; Makino, K K; Mehta, N; Virkkunen, M; Kim, H Y; Hibbeln, J R

    2006-01-01

    Deficiency in the long-chain omega-3 fatty acid, docosahexaenoic acid (DHA) has been associated with increased corticotropin releasing hormone and may contribute to hypothalamic pituitary axis (HPA) hyperactivity. Elevated levels of the neuroactive steroids, allopregnanolone (3alpha,5alpha-THP) and 3alpha,5alpha-tetrahydrodeoxycorticosterone (THDOC) appear to counter-regulate HPA hyperactivity. Plasma essential fatty acids and neurosteroids were assessed among 18 male healthy controls and among 34 male psychiatric patients with DSM-III alcoholism, depression, or both. Among all subjects, lower plasma DHA was correlated with higher plasma THDOC (r = -0.3, P < 0.05) and dihydroprogesterone (DHP) (r = -0.52, P < 0.05). Among psychiatric patients lower DHA was correlated with higher DHP (r = -0.60, P < 0.01), and among healthy controls lower plasma DHA was correlated with higher THDOC (r = -0.83, P < 0.01) and higher isopregnanolone (3beta,5alpha-THP) (r = -0.55, P < 0.05). In this pilot observational study, lower long-chain omega-3 essential fatty acid status was associated with higher neuroactive steroid concentrations, possibly indicating increased feedback inhibition of the HPA axis. PMID:16959481

  19. Weed control possibilities and harvest strategies for the Omega-3 fatty acid producing crop common purslane (Portulacca oleracea var. sativa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common purslane is traditionally considered a weed. Recent literature suggests the potential human health benefits of omega-3 fatty acid consumption. Omega-3 fatty acids are found in flax seed oil (LNA) and fish oil (DHA and EPA), but the highest known producer of Omega-3 fatty acid in plant tissu...

  20. Dietary sources of omega 3 fatty acids: public health risks and benefits.

    PubMed

    Tur, J A; Bibiloni, M M; Sureda, A; Pons, A

    2012-06-01

    Omega 3 fatty acids can be obtained from several sources, and should be added to the daily diet to enjoy a good health and to prevent many diseases. Worldwide, general population use omega-3 fatty acid supplements and enriched foods to get and maintain adequate amounts of these fatty acids. The aim of this paper was to review main scientific evidence regarding the public health risks and benefits of the dietary sources of omega-3 fatty acids. A systematic literature search was performed, and one hundred and forty-five articles were included in the results for their methodological quality. The literature described benefits and risks of algal, fish oil, plant, enriched dairy products, animal-derived food, krill oil, and seal oil omega-3 fatty acids. PMID:22591897

  1. Omega-3 Fatty Acid and Nutrient Deficits in Adverse Neurodevelopment and Childhood Behaviors

    PubMed Central

    Hibbeln, Joseph. R.; Gow, Rachel V.

    2014-01-01

    Synopsis Nutritional insufficiencies of omega-3 highly unsaturated fatty acids (HUFAs) may have adverse effects on brain development and neurodevelopmental outcomes. A recent meta-analysis of ten randomized controlled trials of omega-3 HUFAs reported a small to modest effect size for the efficacy of omega-3 for treating symptoms of ADHD in youth. Several controlled trials of omega-3 HUFAs combined with micronutrients (vitamins, minerals) show sizeable reductions in aggressive, antisocial, and violent behavior in youth and in young adult prisoners. Meta-analyses report efficacy for depressive symptoms in adults, and preliminary findings suggest anti-suicidal properties in adults, but studies in youth are insufficient to draw any conclusions regarding mood. Dietary adjustments to increase omega-3 and reduce omega-6 HUFA consumption are sensible recommendations for youth and adults based on general health considerations, while the evidence base for omega-3 HUFAs as potential psychiatric treatments develops. PMID:24975625

  2. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production

    PubMed Central

    2012-01-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae. PMID:22830315

  3. Potential Role of Omega-3 Fatty Acids on the Myogenic Program of Satellite Cells

    PubMed Central

    Bhullar, Amritpal S.; Putman, Charles T.; Mazurak, Vera C.

    2016-01-01

    Skeletal muscle loss is associated with aging as well as pathological conditions. Satellite cells (SCs) play an important role in muscle regeneration. Omega-3 fatty acids are widely studied in a variety of muscle wasting diseases; however, little is known about their impact on skeletal muscle regeneration. The aim of this review is to evaluate studies examining the effect of omega-3 fatty acids, α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on the regulation of SC proliferation and differentiation. This review highlights mechanisms by which omega-3 fatty acids may modulate the myogenic program of the stem cell population within skeletal muscles and identifies considerations for future studies. It is proposed that minimally three myogenic transcriptional regulatory factors, paired box 7 (Pax7), myogenic differentiation 1 protein, and myogenin, should be measured to confirm the stage of SCs within the myogenic program affected by omega-3 fatty acids. PMID:26884682

  4. Effect of dietary selenium and omega-3 fatty acids on muscle composition and quality in broilers

    PubMed Central

    Haug, Anna; Eich-Greatorex, Susanne; Bernhoft, Aksel; Wold, Jens P; Hetland, Harald; Christophersen, Olav A; Sogn, Trine

    2007-01-01

    Background Human health may be improved if dietary intakes of selenium and omega-3 fatty acids are increased. Consumption of broiler meat is increasing, and the meat content of selenium and omega-3 fatty acids are affected by the composition of broiler feed. A two-way analyses of variance was used to study the effect of feed containing omega-3 rich plant oils and selenium enriched yeast on broiler meat composition, antioxidation- and sensory parameters. Four different wheat-based dietary treatments supplemented with 5% rapeseed oil or 4% rapeseed oil plus 1% linseed oil, and either 0.50 mg selenium or 0.84 mg selenium (organic form) per kg diet was fed to newly hatched broilers for 22 days. Results The different dietary treatments gave distinct different concentrations of selenium and fatty acids in thigh muscle; one percent linseed oil in the diet increased the concentration of the omega-3 fatty acids 18:3, 20:5 and 22:5, and 0.84 mg selenium per kg diet gave muscle selenium concentration at the same level as is in fish muscle (0.39 mg/kg muscle). The high selenium intake also resulted in increased concentration of the long-chain omega-3 fatty acids EPA (20:5), DPA (22:5) and DHA (22:6), thus it may be speculated if high dietary selenium might have a role in increasing the concentration of EPA, DPA and DHA in tissues after intake of plant oils contning omega-3 fatty acids. Conclusion Moderate modifications of broiler feed may give a healthier broiler meat, having increased content of selenium and omega-3 fatty acids. High intakes of selenium (organic form) may increase the concentration of very long-chain omega-3 fatty acids in muscle. PMID:17967172

  5. Omega-3 Fatty Acids for Depression in Multiple Sclerosis: A Randomized Pilot Study

    PubMed Central

    Shinto, Lynne; Marracci, Gail; Mohr, David C.; Bumgarner, Lauren; Murchison, Charles; Senders, Angela; Bourdette, Dennis

    2016-01-01

    Multiple sclerosis is the most common chronic disabling disease in the central nervous system in young to middle aged adults. Depression is common in multiple sclerosis (MS) affecting between 50–60% of patients. Pilot studies in unipolar depression report an improvement in depression when omega-3 fatty acids are given with antidepressants. The objective of this study was to investigate whether omega-3 fatty acid supplementation, as an augmentation therapy, improves treatment-resistant major depressive disorder (MDD) in people with MS. We performed a randomized, double-blind, placebo-controlled pilot study of omega-3 fatty acids at six grams per day over three months. The primary outcome was a 50% or greater improvement on the Montgomery-Asberg Depression Rating Scale (MADRS). Thirty-nine participants were randomized and thirty-one completed the 3-month intervention. Improvement on MADRS between groups was not significantly different at the 3-month end point with 47.4% in the omega-3 fatty acid group and 45.5% in the placebo group showing 50% or greater improvement (p = 0.30). Omega-3 fatty acids as an augmentation therapy for treatment-resistant depression in MS was not significantly different than placebo in this pilot trial. Omega-3 fatty acid supplementation at the dose given was well-tolerated over 3 months. Trial Registration ClinicalTrials.gov NCT00122954 PMID:26799942

  6. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.

    PubMed

    Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana

    2015-04-15

    Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases. PMID:25466121

  7. Omega-6 to Omega-3 Fatty Acid Ratio in Patients with ADHD: A Meta-Analysis

    PubMed Central

    LaChance, Laura; McKenzie, Kwame; Taylor, Valerie H.; Vigod, Simone N.

    2016-01-01

    Objective: Omega-3 and omega-6 fatty acids have been shown to be deficient in individuals with attention deficit/hyperactivity disorder compared to controls (Hawkey & Nigg, 2014). Clinical trials of omega-3 and omega-6 supplements as treatment for ADHD have demonstrated minimal efficacy (Bloch & Qawasmi, 2011; Gillies, Sinn, Lad, Leach, & Ross, 2011; Hawkey & Nigg, 2014; Puri & Martins, 2014; Sonuga-Barke et al., 2013). Existing trials have analyzed omega-3 and omega-6 separately although the tissue ratio of these fatty acids (n6/n3) may be more important than absolute levels of either. The objective of this study was to determine the relationship between blood n6/n3 and arachidonic acid to eicosapentaenoic acid (AA/EPA), to ADHD symptoms. Method: A systematic literature review identified original articles measuring blood n6/n3 or AA/EPA ratio in children and youth with ADHD, compared to controls without ADHD. Three databases were searched. Blood n6/n3, and AA/EPA ratios were compared between individuals with ADHD and controls. Results were pooled across studies using quantitative synthesis. Results: Five articles met inclusion criteria for the meta-analysis. The pooled mean difference between patients with ADHD and controls was 1.97 (0.90–3.04) for n6/n3 (n=5 studies, I2 83%) and 8.25 (5.94–10.56) for AA/EPA (n=3 studies, I2 0%). Conclusions: Children and youth with ADHD have elevated ratios of both blood n6/n3 and AA/EPA fatty acids compared to controls. Thus an elevated n6/n3, and more specifically AA/EPA, ratio may represent the underlying disturbance in essential fatty acid levels in patients with ADHD. These findings have implications for the development of future interventions using essential fatty acids to treat ADHD, and for the use of these ratios as biomarkers for titrating and monitoring ADHD treatment with essential fatty acids. PMID:27274744

  8. A combination of omega-3 fatty acids, folic acid and B-group vitamins is superior at lowering homocysteine than omega-3 alone: A meta-analysis.

    PubMed

    Dawson, Samantha Loren; Bowe, Steven John; Crowe, Timothy Charles

    2016-06-01

    The aim of the study was to assess whether omega-3 polyunsaturated fatty acid supplementation alone or in combination with folic acid and B-group vitamins is effective in lowering homocysteine. The Medline Ovid, Embase and Cochrane databases were searched for randomized-controlled trial studies that intervened with omega-3 supplementation (with or without folic acid) and measured changes in homocysteine concentration. Studies were pooled using a random effects model for meta-analysis. Three different models were analyzed: all trials combined, omega-3 polyunsaturated fatty acid trials, and omega-3 polyunsaturated fatty acids with folic acid and B-group vitamin trials. Nineteen studies were included, consisting of 3267 participants completing 21 trials. Studies were heterogeneous; varying by dose, duration and participant health conditions. Across all trials, omega-3 supplementation was effective in lowering homocysteine by an average of 1.18μmol/L (95%CI: (-1.89, -0.48), P=.001). The average homocysteine-lowering effect was greater when omega-3 supplementation was combined with folic acid and B-group vitamins (-1.37μmol/L, 95%CI: (-2.38, -0.36), P<.01) compared to omega-3 supplementation alone (-1.09μmol/L 95%CI: (-2.04, -0.13), P=.03). Omega-3 polyunsaturated fatty acid supplementation was associated with a modest reduction in homocysteine. For the purposes of reducing homocysteine, a combination of omega-3s (0.2-6g/day), folic acid (150 - 2500μg/day) and vitamins B6 and B12 may be more effective than omega-3 supplementation alone. PMID:27188895

  9. Potential Approach of Microbial Conversion to Develop New Antifungal Products of Omega-3 Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Omega-3/('-3) or n-3 fatty acids are a family of unsaturated fatty acids that have in common a final carbon-carbon double bond in the n-3 position. n-3 Fatty acids which are important in human nutrition are: a-linolenic acid (18:3, n-3; ALA), eicosapentaenoic acid (20:5, n-3; EPA), and docosahexaen...

  10. A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid.

    PubMed Central

    Pereira, Suzette L; Huang, Yung-Sheng; Bobik, Emil G; Kinney, Anthony J; Stecca, Kevin L; Packer, Jeremy C L; Mukerji, Pradip

    2004-01-01

    Long-chain n-3 PUFAs (polyunsaturated fatty acids) such as EPA (eicosapentaenoic acid; 20:5 n-3) have important therapeutic and nutritional benefits in humans. In plants, cyanobacteria and nematodes, omega3-desaturases catalyse the formation of these n-3 fatty acids from n-6 fatty acid precursors. Here we describe the isolation and characterization of a gene ( sdd17 ) derived from an EPA-rich fungus, Saprolegnia diclina, that encodes a novel omega3-desaturase. This gene was isolated by PCR amplification of an S. diclina cDNA library using oligonucleotide primers corresponding to conserved regions of known omega3-desaturases. Expression of this gene in Saccharomyces cerevisiae, in the presence of various fatty acid substrates, revealed that the recombinant protein could exclusively desaturate 20-carbon n-6 fatty acid substrates with a distinct preference for ARA (arachidonic acid; 20:4 n-6), converting it into EPA. This activity differs from that of the known omega3-desaturases from any organism. Plant and cyanobacterial omega3-desaturases exclusively desaturate 18-carbon n-6 PUFAs, and a Caenorhabditis elegans omega3-desaturase preferentially desaturated 18-carbon PUFAs over 20-carbon substrates, and could not convert ARA into EPA when expressed in yeast. The sdd17 -encoded desaturase was also functional in transgenic somatic soya bean embryos, resulting in the production of EPA from exogenously supplied ARA, thus demonstrating its potential for use in the production of EPA in transgenic oilseed crops. PMID:14651475

  11. Omega-3 Fatty Acid Formulations in Cardiovascular Disease: Dietary Supplements are Not Substitutes for Prescription Products.

    PubMed

    Fialkow, Jonathan

    2016-08-01

    Omega-3 fatty acid products are available as prescription formulations (icosapent ethyl, omega-3-acid ethyl esters, omega-3-acid ethyl esters A, omega-3-carboxylic acids) and dietary supplements (predominantly fish oils). Most dietary supplements and all but one prescription formulation contain mixtures of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Products containing both EPA and DHA may raise low-density lipoprotein cholesterol (LDL-C). In clinical trials, the EPA-only prescription product, icosapent ethyl, did not raise LDL-C compared with placebo. To correct a common misconception, it is important to note that omega-3 fatty acid dietary supplements are not US FDA-approved over-the-counter drugs and are not required to demonstrate safety and efficacy prior to marketing. Conversely, prescription products are supported by extensive clinical safety and efficacy investigations required for FDA approval and have active and ongoing safety monitoring programs. While omega-3 fatty acid dietary supplements may have a place in the supplementation of diet, they generally contain lower levels of EPA and DHA than prescription products and are not approved or intended to treat disease. Perhaps due to the lack of regulation of dietary supplements, EPA and DHA levels may vary widely within and between brands, and products may also contain unwanted cholesterol or fats or potentially harmful components, including toxins and oxidized fatty acids. Accordingly, omega-3 fatty acid dietary supplements should not be substituted for prescription products. Similarly, prescription products containing DHA and EPA should not be substituted for the EPA-only prescription product, as DHA may raise LDL-C and thereby complicate the management of patients with dyslipidemia. PMID:27138439

  12. Omega-3 Fatty Acids Moderate Effects of Physical Activity on Cognitive Function

    PubMed Central

    Leckie, Regina L.; Manuck, Stephen B.; Bhattacharee, Neha; Muldoon, Matthew F.; Flory, Janine M.; Erickson, Kirk I.

    2014-01-01

    Greater amounts of physical activity (PA) and omega-3 fatty acids have both been independently associated with better cognitive performance. Because of the overlapping biological effects of omega-3 fatty acids and PA, fatty acid intake may modify the effects of PA on neurocognitive function. The present study tested this hypothesis by examining whether the ratio of serum omega-6 to omega-3 fatty acid levels would moderate the association between PA and executive and memory functions in 344 participants (Mean age = 44.42 years, SD = 6.72). The Paffenbarger Physical Activity Questionnaire (PPAQ), serum fatty acid levels, and performance on a standard neuropsychological battery were acquired on all subjects. A principal component analysis reduced the number of cognitive outcomes to three factors: n-back working memory, Trail Making test, and Logical Memory. We found a significant interaction between PA and the ratio of omega-6 to omega-3 fatty acid serum levels on Trail Making performance and n-back performance, such that higher amounts of omega-3 levels offset the deleterious effects of lower amounts of PA. These effects remained significant in a subsample (n=299) controlling for overall dietary fat consumption. There were no significant additive or multiplicative benefits of higher amounts of both omega-3 and PA on cognitive performance. Our results demonstrate that a diet high in omega-3 fatty acids might mitigate the effect of lower levels of PA on cognitive performance. This study illuminates the importance of understanding dietary and PA factors in tandem when exploring their effects on neurocognitive health. PMID:24813150

  13. Omega-3 fatty acids moderate effects of physical activity on cognitive function.

    PubMed

    Leckie, Regina L; Manuck, Stephen B; Bhattacharjee, Neha; Muldoon, Matthew F; Flory, Janine M; Erickson, Kirk I

    2014-07-01

    Greater amounts of physical activity (PA) and omega-3 fatty acids have both been independently associated with better cognitive performance. Because of the overlapping biological effects of omega-3 fatty acids and PA, fatty acid intake may modify the effects of PA on neurocognitive function. The present study tested this hypothesis by examining whether the ratio of serum omega-6 to omega-3 fatty acid levels would moderate the association between PA and executive and memory functions in 344 participants (Mean age=44.42 years, SD=6.72). The Paffenbarger Physical Activity Questionnaire (PPAQ), serum fatty acid levels, and performance on a standard neuropsychological battery were acquired on all subjects. A principal component analysis reduced the number of cognitive outcomes to three factors: n-back working memory, Trail Making test, and Logical Memory. We found a significant interaction between PA and the ratio of omega-6 to omega-3 fatty acid serum levels on Trail Making performance and n-back performance, such that higher amounts of omega-3 levels offset the deleterious effects of lower amounts of PA. These effects remained significant in a subsample (n=299) controlling for overall dietary fat consumption. There were no significant additive or multiplicative benefits of higher amounts of both omega-3 and PA on cognitive performance. Our results demonstrate that a diet high in omega-3 fatty acids might mitigate the effect of lower levels of PA on cognitive performance. This study illuminates the importance of understanding dietary and PA factors in tandem when exploring their effects on neurocognitive health. PMID:24813150

  14. Omega 3 fatty acids for prevention and treatment of cardiovascular disease

    PubMed Central

    Hooper, Lee; Harrison, Roger A; Summerbell, Carolyn D; Moore, Helen; Worthington, Helen V; Ness, Andrew; Capps, Nigel; Smith, George Davey; Riemersma, Rudolph; Ebrahim, Shah

    2014-01-01

    Background It has been suggested that omega 3 (W3, n-3 or omega-3) fats from oily fish and plants are beneficial to health. Objectives To assess whether dietary or supplemental omega 3 fatty acids alter total mortality, cardiovascular events or cancers using both RCT and cohort studies. Search methods Five databases including CENTRAL, MEDLINE and EMBASE were searched to February 2002. No language restrictions were applied. Bibliographies were checked and authors contacted. Selection criteria RCTs were included where omega 3 intake or advice was randomly allocated and unconfounded, and study duration was at least six months. Cohorts were included where a cohort was followed up for at least six months and omega 3 intake estimated. Data collection and analysis Studies were assessed for inclusion, data extracted and quality assessed independently in duplicate. Random effects meta-analysis was performed separately for RCT and cohort data. Main results Forty eight randomised controlled trials (36,913 participants) and 41 cohort analyses were included. Pooled trial results did not show a reduction in the risk of total mortality or combined cardiovascular events in those taking additional omega 3 fats (with significant statistical heterogeneity). Sensitivity analysis, retaining only studies at low risk of bias, reduced heterogeneity and again suggested no significant effect of omega 3 fats. Restricting analysis to trials increasing fish-based omega 3 fats, or those increasing short chain omega 3s, did not suggest significant effects on mortality or cardiovascular events in either group. Subgroup analysis by dietary advice or supplementation, baseline risk of CVD or omega 3 dose suggested no clear effects of these factors on primary outcomes. Neither RCTs nor cohorts suggested increased relative risk of cancers with higher omega 3 intake but estimates were imprecise so a clinically important effect could not be excluded. Authors’ conclusions It is not clear that dietary

  15. Omega-3 polyunsaturated fatty acids: a necessity for a comprehensive secondary prevention strategy

    PubMed Central

    Patel, Jeetesh V; Tracey, Inessa; Hughes, Elizabeth A; Lip, Gregory YH

    2009-01-01

    Long-chain omega-3 polyunsaturated fatty acid (PUFA) supplementation has been used for the secondary prevention of fatal and nonfatal myocardial infarction (MI). However, the benefit of this therapy is frequently confused with other established treatments in the therapeutic strategy among such patients. We review the data on omega-3 PUFA use in secondary care and consider indications for its use which include post-MI and raised triglycerides. We suggest that the available evidence supports the use of omega-3 supplementation as part of the comprehensive secondary care package for post-MI patients. PMID:19812692

  16. Dietary omega-3 and polyunsaturated fatty acids modify fatty acyl composition and insulin binding in skeletal-muscle sarcolemma.

    PubMed

    Liu, S; Baracos, V E; Quinney, H A; Clandinin, M T

    1994-05-01

    Feeding animals with diets high in saturated fat induces insulin resistance, and replacing saturated fat isocalorically with poly-unsaturated fat, especially long-chain omega-3 fatty acids, will prevent the development of insulin resistance in skeletal-muscle tissue. To investigate the mechanism, rats were fed on high-fat (20%, w/w) semipurified diets for 6 weeks. Diets containing ratios of polyunsaturated/saturated (P/S) fatty acid of 0.25 (low-P/S diet) and 1.0 (high-P/S diet) were used to study the effect of the level of saturated fat. To study the effects of omega-3 fatty acids, diets with a low-P/S ratio containing either 0 (low-omega-3 diet) or 3.3% (high-omega-3 diet) long-chain omega-3 fatty acids from fish oil were fed. Plasma membrane from skeletal muscle was purified. The content of fatty acids in sarcolemmal phospholipid was significantly related to the dietary composition. Insulin binding to intact sarcolemmal vesicles prepared from rats fed on diets high in omega-3 fatty acids increased 14-fold compared with animals fed on the low-omega-3 diet (P < 0.0001). Feeding rats on a diet with a high P/S ratio increased sarcolemmal insulin binding by 2.3-fold (P < 0.05). Increased insulin binding was due to increased receptor number at the low-affinity high-capacity binding site. Dietary effects on insulin binding were eliminated when studies were carried out on detergent-solubilized membranes, indicating the importance of the phospholipid fatty acyl composition for insulin binding. The results suggest that dietary omega-3 and polyunsaturated fatty acids increase insulin binding to sarcolemma by changing the fatty acyl composition of phospholipid surrounding the insulin receptor, and this might be the mechanism by which dietary fatty acids modify insulin action. PMID:8192673

  17. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data.

    PubMed

    Bozzatello, Paola; Brignolo, Elena; De Grandi, Elisa; Bellino, Silvio

    2016-01-01

    A new application for omega-3 fatty acids has recently emerged, concerning the treatment of several mental disorders. This indication is supported by data of neurobiological research, as highly unsaturated fatty acids (HUFAs) are highly concentrated in neural phospholipids and are important components of the neuronal cell membrane. They modulate the mechanisms of brain cell signaling, including the dopaminergic and serotonergic pathways. The aim of this review is to provide a complete and updated account of the empirical evidence of the efficacy and safety that are currently available for omega-3 fatty acids in the treatment of psychiatric disorders. The main evidence for the effectiveness of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been obtained in mood disorders, in particular in the treatment of depressive symptoms in unipolar and bipolar depression. There is some evidence to support the use of omega-3 fatty acids in the treatment of conditions characterized by a high level of impulsivity and aggression and borderline personality disorders. In patients with attention deficit hyperactivity disorder, small-to-modest effects of omega-3 HUFAs have been found. The most promising results have been reported by studies using high doses of EPA or the association of omega-3 and omega-6 fatty acids. In schizophrenia, current data are not conclusive and do not allow us either to refuse or support the indication of omega-3 fatty acids. For the remaining psychiatric disturbances, including autism spectrum disorders, anxiety disorders, obsessive-compulsive disorder, eating disorders and substance use disorder, the data are too scarce to draw any conclusion. Concerning tolerability, several studies concluded that omega-3 can be considered safe and well tolerated at doses up to 5 g/day. PMID:27472373

  18. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data

    PubMed Central

    Bozzatello, Paola; Brignolo, Elena; De Grandi, Elisa; Bellino, Silvio

    2016-01-01

    A new application for omega-3 fatty acids has recently emerged, concerning the treatment of several mental disorders. This indication is supported by data of neurobiological research, as highly unsaturated fatty acids (HUFAs) are highly concentrated in neural phospholipids and are important components of the neuronal cell membrane. They modulate the mechanisms of brain cell signaling, including the dopaminergic and serotonergic pathways. The aim of this review is to provide a complete and updated account of the empirical evidence of the efficacy and safety that are currently available for omega-3 fatty acids in the treatment of psychiatric disorders. The main evidence for the effectiveness of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been obtained in mood disorders, in particular in the treatment of depressive symptoms in unipolar and bipolar depression. There is some evidence to support the use of omega-3 fatty acids in the treatment of conditions characterized by a high level of impulsivity and aggression and borderline personality disorders. In patients with attention deficit hyperactivity disorder, small-to-modest effects of omega-3 HUFAs have been found. The most promising results have been reported by studies using high doses of EPA or the association of omega-3 and omega-6 fatty acids. In schizophrenia, current data are not conclusive and do not allow us either to refuse or support the indication of omega-3 fatty acids. For the remaining psychiatric disturbances, including autism spectrum disorders, anxiety disorders, obsessive-compulsive disorder, eating disorders and substance use disorder, the data are too scarce to draw any conclusion. Concerning tolerability, several studies concluded that omega-3 can be considered safe and well tolerated at doses up to 5 g/day. PMID:27472373

  19. The effect of dietary fat and omega-3 fatty acids on whole body lipid oxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipid peroxidation of polyunsaturated fatty acids yields several electrophilic, reactive carbonyl metabolites. We hypothesized that an increased intake of omega-3 fatty acids (n-3) would lead to increased lipid peroxidation metabolites compared to a diet low in n-3. As part of a randomized crossov...

  20. Comparison of natural antioxidants and their effects on omega-3 fatty acid oxidation in fish oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyunsaturated fatty acids (PUFA), such as the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been found to offer a variety of health benefits including cardiovascular protection, anti-inflammatory effect and human development. It is known that fish and algae o...

  1. Abnormal neurological responses in young adult offspring caused by excess omega-3 fatty acid (fish oil) consumption by the mother during pregnancy and lactation.

    PubMed

    Church, M W; Jen, K-L C; Jackson, D A; Adams, B R; Hotra, J W

    2009-01-01

    Consuming omega-3 fatty acids (omega-3 FA) during pregnancy and lactation benefits fetal and infant brain development and might reduce the severity of preterm births by prolonging pregnancy. However, diets that are relatively rich in omega-3 FA can adversely affect fetal and infant development and the auditory brainstem response (ABR), a measure of brain development and sensory function. We previously examined the offspring of female rats fed excessive, adequate or deficient amounts of omega-3 FA during pregnancy and lactation. The 24-day-old offspring in the Excess group, compared to the Control group, had postnatal growth retardation and poor hearing acuity and prolonged neural transmission times as evidenced by the ABR. The Deficient group was intermediate. The current study followed these offspring to see if these poor outcomes persisted into young adulthood. Based on prior findings, we hypothesized that the Excess and Deficient offspring would "catch-up" to the Control offspring by young adulthood. Female Wistar rats received one of the three diet conditions from day 1 of pregnancy through lactation. The three diets were the Control omega-3 FA condition (omega-3/omega-6 ratio approximately 0.14), the Excess omega-3 FA condition (omega-3/omega-6 ratio approximately 14.0) and Deficient omega-3 FA condition (omega-3/omega-6 ratio approximately 0% ratio). The Control diet contained 7% soybean oil; whereas the Deficient and Excess omega-3 FA diets contained 7% safflower oil and 7% fish oil, respectively. One male and female offspring per litter were ABR-tested as young adults using tone pip stimuli of 2, 4, 8 and 16 kHz. The postnatal growth retardation and prolonged neural transmission times in the Excess and Deficient pups had dissipated by young adulthood. In contrast, the Excess group had elevated ABR thresholds (hearing loss) at all tone pip frequencies in comparison to the Control and Deficient groups. The Deficient group had worse ABR thresholds than the

  2. Omega-3 polyunsaturated fatty acids and cancer: lessons learned from clinical trials.

    PubMed

    Nabavi, Seyed Fazel; Bilotto, Stefania; Russo, Gian Luigi; Orhan, Ilkay Erdogan; Habtemariam, Solomon; Daglia, Maria; Devi, Kasi Pandima; Loizzo, Monica Rosa; Tundis, Rosa; Nabavi, Seyed Mohammad

    2015-09-01

    Over the past decades, extensive studies have addressed the therapeutic effects of omega-3 polyunsaturated fatty acids (omega-3 FAs) against different human diseases such as cardiovascular and neurodegenerative diseases, cancer, etc. A growing body of scientific research shows the pharmacokinetic information and safety of these natural occurring substances. Moreover, during recent years, a plethora of studies has demonstrated that omega-3 FAs possess therapeutic role against certain types of cancer. It is also known that omega-3 FAs can improve efficacy and tolerability of chemotherapy. Previous reports showed that suppression of nuclear factor-κB, activation of AMPK/SIRT1, modulation of cyclooxygenase (COX) activity, and up-regulation of novel anti-inflammatory lipid mediators such as protectins, maresins, and resolvins, are the main mechanisms of antineoplastic effect of omega-3 FAs. In this review, we have collected the available clinical data on the therapeutic role of omega-3 FAs against breast cancer, colorectal cancer, leukemia, gastric cancer, pancreatic cancer, esophageal cancer, prostate cancer, lung cancer, head and neck cancer, as well as cancer cachexia. We also discussed the chemistry, dietary source, and bioavailability of omega-3 FAs, and the potential molecular mechanisms of anticancer and adverse effects. PMID:26227583

  3. Influence of selenomethionine and omega-3 fatty acid on serum mineral profile and nutrient utilization of broiler chicken

    PubMed Central

    Kumar, Pankaj; Tiwari, S. P.; Sahu, Tarini; Naik, Surendra Kumar

    2015-01-01

    Aim: This study was conducted to investigate the effect of selenomethionine and omega-3 fatty acid on serum mineral profile and nutrient utilization of broiler chicken. Materials and Methods: The present study was a 2×3 factorial arrangement of two levels of selenomethionine (0 and 0.3 ppm) and three levels of omega-3 fatty acid (0, 0.5 and 1%). Day-old Vencobb broiler chicks (n=180), were randomly assigned in six treatment groups. The experiment lasted for 42 days. Treatment groups followed of: Group I was a control. Group II, III, IV, V and VI were supplemented with 0 ppm selenomethionine with 0.5% omega-3 fatty acid, 0 ppm selenomethionine with 1% omega-3 fatty acid, 0.3 ppm selenomethionine with 0% omega-3 fatty acid, 0.3 ppm selenomethionine with 0.5% omega-3 fatty acid and 0.3 ppm selenomethionine with 1% omega-3 fatty acid, respectively. Linseed oil was used as a source of omega-3 fatty acid while sel-plex is used for selenomethionine supplementation. Results: Significant (p<0.05) interaction exist between selenomethionine and omega-3 fatty acid for serum zinc and iron concentration whereas, it was non-significant for serum calcium and copper. Significantly (p<0.05) increased concentration of selenium, zinc, iron and phosphorus was observed in birds fed 0.3 ppm selenomethionine whereas, significantly (p<0.05) increased zinc and iron was observed in birds fed 0.5% omega-3 fatty acid. There was significant (p<0.05) interaction exist between selenomethionine and omega-3 fatty acid for calcium and phosphorus retention percentage. The maximum retention of calcium and phosphorus was recorded in birds supplemented with 0.3 ppm selenomethionine in combination with 0.5% omega-3 fatty acid. There was marked interaction between selenomethionine and omega-3 fatty acid for hemoglobin (Hb), total erythrocytic count, total leukocytic count and platelets (p<0.05) however, it was non-significant for mean corpuscular volume, mean corpuscular Hb, MCH concentration and

  4. 7 Things to Know about Omega-3 Fatty Acids

    MedlinePlus

    ... DHA are found in seafood, such as fatty fish (e.g., salmon, tuna, and trout) and shellfish ( ... are also available as dietary supplements; for example, fish oil supplements contain EPA and DHA, and flaxseed ...

  5. Omega-3 fatty acid effect on alveolar bone loss in rats.

    PubMed

    Kesavalu, L; Vasudevan, B; Raghu, B; Browning, E; Dawson, D; Novak, J M; Correll, M C; Steffen, M J; Bhattacharya, A; Fernandes, G; Ebersole, J L

    2006-07-01

    Gingival inflammation and alveolar bone resorption are hallmarks of adult periodontitis, elicited in response to oral micro-organisms such as Porphyromonas gingivalis. We hypothesized that omega (omega)-3 fatty acids (FA) dietary supplementation would modulate inflammatory reactions leading to periodontal disease in infected rats. Rats were fed fish oil (omega-3 FA) or corn oil (n-6 FA) diets for 22 weeks and were infected with P. gingivalis. Rats on the omega-3 FA diet exhibited elevated serum levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), documenting diet-induced changes. PCR analyses demonstrated that rats were orally colonized by P. gingivalis; increased IgG antibody levels substantiated this infection. P. gingivalis-infected rats treated with omega-3 FA had significantly less alveolar bone resorption. These results demonstrated the effectiveness of an omega-3 FA-supplemented diet in modulating alveolar bone resorption following P. gingivalis infection, and supported that omega-3 FA may be a useful adjunct in the treatment of periodontal disease. PMID:16798867

  6. Potential Benefits of Omega-3 Fatty Acids in Non-Melanoma Skin Cancer

    PubMed Central

    Black, Homer S.; Rhodes, Lesley E.

    2016-01-01

    Considerable circumstantial evidence has accrued from both experimental animal and human clinical studies that support a role for omega-3 fatty acids (FA) in the prevention of non-melanoma skin cancer (NMSC). Direct evidence from animal studies has shown that omega-3 FA inhibit ultraviolet radiation (UVR) induced carcinogenic expression. In contrast, increasing levels of dietary omega-6 FA increase UVR carcinogenic expression, with respect to a shorter tumor latent period and increased tumor multiplicity. Both omega-6 and omega-3 FA are essential FA, necessary for normal growth and maintenance of health and although these two classes of FA exhibit only minor structural differences, these differences cause them to act significantly differently in the body. Omega-6 and omega-3 FA, metabolized through the lipoxygenase (LOX) and cyclooxygenase (COX) pathways, lead to differential metabolites that are influential in inflammatory and immune responses involved in carcinogenesis. Clinical studies have shown that omega-3 FA ingestion protects against UVR-induced genotoxicity, raises the UVR-mediated erythema threshold, reduces the level of pro-inflammatory and immunosuppressive prostaglandin E2 (PGE2) in UVR-irradiated human skin, and appears to protect human skin from UVR-induced immune-suppression. Thus, there is considerable evidence that omega-3 FA supplementation might be beneficial in reducing the occurrence of NMSC, especially in those individuals who are at highest risk. PMID:26861407

  7. Potential Benefits of Omega-3 Fatty Acids in Non-Melanoma Skin Cancer.

    PubMed

    Black, Homer S; Rhodes, Lesley E

    2016-01-01

    Considerable circumstantial evidence has accrued from both experimental animal and human clinical studies that support a role for omega-3 fatty acids (FA) in the prevention of non-melanoma skin cancer (NMSC). Direct evidence from animal studies has shown that omega-3 FA inhibit ultraviolet radiation (UVR) induced carcinogenic expression. In contrast, increasing levels of dietary omega-6 FA increase UVR carcinogenic expression, with respect to a shorter tumor latent period and increased tumor multiplicity. Both omega-6 and omega-3 FA are essential FA, necessary for normal growth and maintenance of health and although these two classes of FA exhibit only minor structural differences, these differences cause them to act significantly differently in the body. Omega-6 and omega-3 FA, metabolized through the lipoxygenase (LOX) and cyclooxygenase (COX) pathways, lead to differential metabolites that are influential in inflammatory and immune responses involved in carcinogenesis. Clinical studies have shown that omega-3 FA ingestion protects against UVR-induced genotoxicity, raises the UVR-mediated erythema threshold, reduces the level of pro-inflammatory and immunosuppressive prostaglandin E2 (PGE₂) in UVR-irradiated human skin, and appears to protect human skin from UVR-induced immune-suppression. Thus, there is considerable evidence that omega-3 FA supplementation might be beneficial in reducing the occurrence of NMSC, especially in those individuals who are at highest risk. PMID:26861407

  8. Balancing omega-6 and omega-3 fatty acids in ready-to-use therapeutic foods (RUTF).

    PubMed

    Brenna, J Thomas; Akomo, Peter; Bahwere, Paluku; Berkley, James A; Calder, Philip C; Jones, Kelsey D; Liu, Lei; Manary, Mark; Trehan, Indi; Briend, André

    2015-01-01

    Ready-to-use therapeutic foods (RUTFs) are a key component of a life-saving treatment for young children who present with uncomplicated severe acute malnutrition in resource limited settings. Increasing recognition of the role of balanced dietary omega-6 and omega-3 polyunsaturated fatty acids (PUFA) in neurocognitive and immune development led two independent groups to evaluate RUTFs. Jones et al. (BMC Med 13:93, 2015), in a study in BMC Medicine, and Hsieh et al. (J Pediatr Gastroenterol Nutr 2015), in a study in the Journal of Pediatric Gastroenterology and Nutrition, reformulated RUTFs with altered PUFA content and looked at the effects on circulating omega-3 docosahexaenoic acid (DHA) status as a measure of overall omega-3 status. Supplemental oral administration of omega-3 DHA or reduction of RUTF omega-6 linoleic acid using high oleic peanuts improved DHA status, whereas increasing omega-3 alpha-linolenic acid in RUTF did not. The results of these two small studies are consistent with well-established effects in animal studies and highlight the need for basic and operational research to improve fat composition in support of omega-3-specific development in young children as RUTF use expands. PMID:25980919

  9. Omega-3 polyunsaturated fatty acid supplementation in the prevention of cardiovascular disease

    PubMed Central

    Walz, Courtney P.; Barry, Arden R.; Koshman, Sheri L.

    2016-01-01

    Introduction: Omega-3 polyunsaturated fatty acids (PUFAs) have purported protective cardiovascular (CV) effects. We sought to assess the evidence available for the use of omega-3 PUFAs for the prevention of cardiovascular disease (CVD). Methods: A systematic literature search was conducted using MEDLINE and EMBASE from 1999 to 2015. Placebo-controlled, randomized controlled trials (RCTs) that enrolled over 1000 patients with follow-up greater than 1 year and meta-analyses of RCTs were included. Results: Eight RCTs and 2 meta-analyses were included. In patients with preexisting CVD, only 1 of 5 included RCTs demonstrated a reduction in CV events with omega-3 PUFAs; however, the effect size was minimal, and the study was limited by an open-label design and lack of placebo control. Two meta-analyses concluded omega-3 PUFAs do not reduce CV events in addition to standard, evidence-based therapy in patients after myocardial infarction. Of the 3 predominantly primary prevention RCTs, only 1 demonstrated a minor reduction in major coronary events; however, it was also an open-label study. Furthermore, the safety of omega-3 PUFAs should be considered. While data from RCTs have not demonstrated serious safety concerns, omega-3 PUFAs can increase the risk of bleeding and may interact with other medications that affect hemostasis, such as antiplatelet agents and warfarin. Discussion and Conclusion: There is currently a lack of evidence to support the routine use of omega-3 PUFAs in the primary and secondary prevention of CVD. Pharmacists are ideally situated to engage patients in the discussion of the lack of benefit and possible risk of omega-3 PUFA supplements. PMID:27212967

  10. Metabolites derived from omega-3 polyunsaturated fatty acids are important for cardioprotection.

    PubMed

    Gilbert, Kim; Malick, Mandy; Madingou, Ness; Touchette, Charles; Bourque-Riel, Valérie; Tomaro, Leandro; Rousseau, Guy

    2015-12-15

    Although controversial, some data suggest that omega-3 polyunsaturated fatty acids (PUFA) are beneficial to cardiovascular diseases, and could reduce infarct size. In parallel, we have reported that the administration of Resolvin D1 (RvD1), a metabolite of docosahexaenoic acid, an omega-3 PUFA, can reduce infarct size. The present study was designed to determine if the inhibition of two important enzymes involved in the formation of RvD1 from omega-3 PUFA could reduce the cardioprotective effect of omega-3 PUFA. Sprague-Dawley rats were fed with a diet rich in omega-3 PUFA during 10 days before myocardial infarction (MI). Two days before MI, rats received a daily dose of Meloxicam, an inhibitor of cyclooxygenase-2, PD146176, an inhibitor of 15-lipoxygenase, both inhibitors or vehicle. MI was induced by the occlusion of the left coronary artery for 40min followed by reperfusion. Infarct size and neutrophil accumulation were evaluated after 24h of reperfusion while caspase-3, -8 and Akt activities were assessed at 30min of reperfusion. Rats receiving inhibitors, alone or in combination, showed a larger infarct size than those receiving omega-3 PUFA alone. Caspase-3 and -8 activities are higher in ischemic areas with inhibitors while Akt activity is diminished in groups treated with inhibitors. Moreover, the study showed that RvD1 restores cardioprotection when added to the inhibitors. Results from this study indicate that the inhibition of the metabolism of Omega-3 PUFA attenuate their cardioprotective properties. Then, resolvins seem to be an important mediator in the cardioprotection conferred by omega-3 PUFA in our experimental model of MI. PMID:26550951

  11. Phospholipid fatty acid pattern and D-glucose metabolism in muscles from omega3 fatty acid-depleted rats.

    PubMed

    Agascioglu, Eda; Zhang, Ying; Sener, Abdullah; Portois, Laurence; Chardigny, Jean-Michel; Malaisse, Willy J; Carpentier, Yvon A

    2007-03-01

    A depletion in long-chain polyunsaturated omega3 fatty acids may affect fuel homeostasis. In such a perspective, the present study deals mainly with the in vitro fate of D-[U-(14)C]glucose in hemidiaphragms, stretched soleus and plantaris muscle pieces obtained from normal and omega3-depleted rats (second generation) and incubated in the absence or presence of insulin. When so required, the omega3-depleted rats were injected 120 min before sacrifice with either a omega3 fatty acid-rich medium-chain triglyceride:fish oil emulsion (FO) or a control medium-chain triglyceride:olive oil emulsion (OO). The content of the soleus muscle in long-chain polyunsaturated omega3 fatty acids was severely decreased in the omega3-depleted rats, and modestly albeit significantly increased after injection of FO to these animals. In stretched soleus muscles from OO-injected omega3-depleted rats, the absolute values for glycogen synthesis measured in the absence or presence of insulin were about twice higher than in normal animals. In the OO-injected omega3-depleted rats, insulin augmented the output of (14)C-labelled amino acids, whilst such was not the case in normal animals. These and other findings suggest a lower catabolism of D-glucose relative to the anabolic process of glycogen synthesis and a lower availability of endogenous amino acids in the muscles of omega3-depleted rats, as compared to those of control animals. The prior injection of FO to the omega3-depleted rats restored a normal value for the paired ratio between the output of (14)C-labelled amino acids and acidic metabolites, but further increased glycogen net synthesis. It is proposed, therefore, that the perturbation of d-glucose metabolism in muscles from omega3-depleted rats involves a multifactorial determinism, only some of the concerned factors being susceptible to rapid correction after enrichment of cell phospholipids in long-chain polyunsaturated omega3 fatty acids. PMID:17084500

  12. Omega-3 fatty acid profile of eggs from laying hens fed diets supplemented with chia, fish oil, and flaxseed.

    PubMed

    Coorey, Ranil; Novinda, Agnes; Williams, Hannah; Jayasena, Vijay

    2015-01-01

    The aim of this study was to investigate the effect of diets supplemented with fish oil, flaxseed, and chia seed on the omega-3 fatty acid composition and sensory properties of hens' eggs. No significant difference in yolk fat content was found between treatments. The fatty acid composition of egg yolk was significantly affected by the dietary treatments. Inclusion of chia at 300 g/kg into the diet produced eggs with the highest concentration of omega-3 fatty acid. Eicosapentaenoic acid and docosahexaenoic acid were only detected in eggs from laying hens fed the diet supplemented with fish oil. Diet had a significant effect on color, flavor and overall acceptability of eggs. Types and levels of omega-3 fatty acids in feed influence the level of yolk omega-3 fatty acids in egg yolk. Inclusion of chia into the hens' diet significantly increased the concentration of yolk omega-3 fatty acid without significant change in sensory properties. PMID:25557903

  13. Fish intake, marine omega-3 fatty acids, and mortality in a cohort of postmenopausal women.

    PubMed

    Folsom, Aaron R; Demissie, Zewditu

    2004-11-15

    Intake of fish or omega-3 fatty acids may decrease risk of total and coronary heart disease death, but evidence from low-risk populations is less convincing. The authors assessed intake by using a food frequency questionnaire at baseline in a cohort of Iowa women aged 55-69 years. Among women initially free of heart disease and cancer (4,653 deaths over 442,965 person-years), there was an inverse age- and energy-adjusted association between total mortality and fish intake, with a relative risk of 0.82 (95% confidence interval: 0.74, 0.91) for the highest versus lowest quintile. Age- and energy-adjusted associations also were inverse (p for trend < 0.05), although not entirely monotonic, for cardiovascular, coronary heart disease, and cancer mortality. Adjustment for multiple other risk factors attenuated all associations to statistically nonsignificant levels. Estimated marine omega-3 fatty acid intake also was not associated with total or cause-specific mortality. In comparison, plant-derived alpha-linolenic acid was inversely associated with mortality after multivariable adjustment. Intake of neither fish nor marine omega-3 fatty acids was associated with breast cancer incidence. These findings do not argue against recommending fish as part of a healthy diet, as other evidence suggests benefit. Nevertheless, the authors of this 1986-2000 study could not verify that fish and marine omega-3 fatty acid intake had independent health benefits in these postmenopausal women. PMID:15522857

  14. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: A systematic review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greater fish oil consumption has been associated with reduced CVD risk, although the mechanisms are unclear. Plant-source oil omega-3 fatty acids (ALA) have also been studied regarding their cardiovascular effect. We conducted a systematic review of randomized controlled trials that evaluated the ef...

  15. Combination of Antiestrogens and Omega-3 Fatty Acids for Breast Cancer Prevention

    PubMed Central

    Manni, Andrea; El-Bayoumy, Karam; Skibinski, Christine G.; Thompson, Henry J.; Santucci-Pereira, Julia; Bidinotto, Lucas Tadeu; Russo, Jose

    2015-01-01

    The molecular and biological heterogeneity of human breast cancer emphasizes the importance of a multitargeted approach for effective chemoprevention. Targeting the estrogen receptor pathway alone with the antiestrogens, Tamoxifen and Raloxifene reduces the incidence of estrogen receptor positive tumors but is ineffective against the development of hormone independent cancers. Our preclinical data indicate that the administration of omega-3 fatty acids potentiates the antitumor effects of Tamoxifen by inhibiting multiple proliferative and antiapoptotic pathways, several of which interact with estrogen receptor signaling. The complementarity in the mechanism of antitumor action of Tamoxifen and omega-3 fatty acids is well supported by our signaling, genomic, and proteomic studies. Furthermore, administration of omega-3 fatty acids allows the use of lower and, hence, likely less toxic doses of Tamoxifen. If these findings are supported in the clinical setting, the combination of omega-3 fatty acids and anteistrogens may emerge as a promising, effective, and safe chemopreventive strategy to be tested in a large multi-institutional trial using breast cancer incidence as the primary endpoint. PMID:26339626

  16. DIETARY OMEGA-3 FATTY ACIDS MODIFIED THE ASSOCIATION OF PULMONARY FUNCTION WITH AIR POLLUTION IN ADOLESCENTS

    EPA Science Inventory

    Previous children's studies in North America and Germany have shown that ambient sulfate particles are associated with an increased prevalence of bronchitis and decreased lung function. We have now investigated the ability of dietary intake of anti-inflammatory omega-3 fatty aci...

  17. A Pilot Randomized Controlled Trial of Omega-3 Fatty Acids for Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Bent, Stephen; Bertoglio, Kiah; Ashwood, Paul; Bostrom, Alan; Hendren, Robert L.

    2011-01-01

    We conducted a pilot randomized controlled trial to determine the feasibility and initial safety and efficacy of omega-3 fatty acids (1.3 g/day) for the treatment of hyperactivity in 27 children ages 3-8 with autism spectrum disorder (ASD). After 12 weeks, hyperactivity, as measured by the Aberrant Behavior Checklist, improved 2.7 (plus or minus…

  18. Antimicrobial potential of bioconverted products of omega-3 fatty acids by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioconverted omega-3 fatty acids, eicosapentaenoic acid (bEPA) and docosahexanoic acid (bDHA), obtained from the microbial conversion of non-bioconverted eicosapentaenoic and docosahexaenoic acids by Pseudomonas aeruginosa PR3 were evaluated for their antimicrobial potential. bEPA and bDHA at 5 µl/...

  19. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases.

    PubMed

    Miyata, Jun; Arita, Makoto

    2015-01-01

    Omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are found naturally in fish oil and are commonly thought to be anti-inflammatory nutrients, with protective effects in inflammatory diseases including asthma and allergies. The mechanisms of these effects remain mostly unknown but are of great interest for their potential therapeutic applications. Large numbers of epidemiological and observational studies investigating the effect of fish intake or omega-3 fatty acid supplementation during pregnancy, lactation, infancy, childhood, and adulthood on asthmatic and allergic outcomes have been conducted. They mostly indicate protective effects and suggest a causal relationship between decreased intake of fish oil in modernized diets and an increasing number of individuals with asthma or other allergic diseases. Specialized pro-resolving mediators (SPM: protectins, resolvins, and maresins) are generated from omega-3 fatty acids such as EPA and DHA via several enzymatic reactions. These mediators counter-regulate airway eosinophilic inflammation and promote the resolution of inflammation in vivo. Several reports have indicated that the biosynthesis of SPM is impaired, especially in severe asthma, which suggests that chronic inflammation in the lung might result from a resolution defect. This article focuses on the beneficial aspects of omega-3 fatty acids and offers recent insights into their bioactive metabolites including resolvins and protectins. PMID:25572556

  20. Paradoxical effect of omega-3 fatty acids on plasma lipoprotein profile in the Golden Syrian hamster

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to determine the effect of dietary omega-3 and omega-6 fatty acids, and cholesterol (C) loading or C depletion on plasma lipids and mRNA levels of genes associated with C metabolism. Hamsters were fed high safflower (SO) or fish (FO) oil diets (10% w/w) for 12 weeks, with 0.01% (-C...

  1. A randomized controlled trial of omega-3 fatty acids in dry eye syndrome

    PubMed Central

    Bhargava, Rahul; Kumar, Prachi; Kumar, Manjushrii; Mehra, Namrata; Mishra, Anurag

    2013-01-01

    AIM To evaluate the role of dietary supplementation of omega-3 fatty acids in dry eye syndrome. METHODS A prospective, interventional, placebo controlled, double blind randomized trial was done at two referral eye centers. Two hundred and sixty-four eyes of patients with dry eye were randomized to receive one capsule (500mg) two times a day containing 325mg EPA and 175mg DHA for 3 months (omega-3 group). The omega-3 group was compared to a group of patients (n=254) who received a placebo (placebo group). There were 4 patient visits (at baseline, 1 month, 2 months and 3 months). On each visit, recording of corrected distance visual acuity (CDVA), slit lamp examination and questionnaire based symptom evaluation and scoring was done. A symptomatic score of 0-6 was mild, 6.1-12 moderate and 12.1-18 severe dry eye. Response to intervention was monitored by routine tear function tests like Schirmer I test, tear film break-up time (TBUT), Rose Bengal staining and most notably, conjunctival impression cytology. RESULTS Sixty-five percent of patients in the omega-3 group and 33% of patients in placebo group had significant improvement in symptoms at 3 months (P=0.005). There was a significant change in both Schirmer's test value and TBUT values in the omega-3 group (P<0.001), both comparisons. However, there was a larger drift in TBUT values in omega-3 than the placebo group, in comparison to Schirmer's test values. The mean TBUT score was 2.54±2.34 in the omega-3 group and 0.13±0.16 in placebo group, respectively. The mean reduction in symptom score in omega-3 group was 2.02±0.96 as compared to 0.48±0.22 in placebo group (P<0.001). Despite a slight increase mean score, the Schirmer scores did not correlate well with symptomatic improvement. CONCLUSION Omega-3 fatty acids have a definite role for dry eye syndrome. The benefit seems to be more marked in conditions such as blepharitis and meibomian gland disease. The role of omega fatty acids in tear production and

  2. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid.

    PubMed

    Nguyen, Long N; Ma, Dongliang; Shui, Guanghou; Wong, Peiyan; Cazenave-Gassiot, Amaury; Zhang, Xiaodong; Wenk, Markus R; Goh, Eyleen L K; Silver, David L

    2014-05-22

    Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is essential for normal brain growth and cognitive function. Consistent with its importance in the brain, DHA is highly enriched in brain phospholipids. Despite being an abundant fatty acid in brain phospholipids, DHA cannot be de novo synthesized in brain and must be imported across the blood-brain barrier, but mechanisms for DHA uptake in brain have remained enigmatic. Here we identify a member of the major facilitator superfamily--Mfsd2a (previously an orphan transporter)--as the major transporter for DHA uptake into brain. Mfsd2a is found to be expressed exclusively in endothelium of the blood-brain barrier of micro-vessels. Lipidomic analysis indicates that Mfsd2a-deficient (Mfsd2a-knockout) mice show markedly reduced levels of DHA in brain accompanied by neuronal cell loss in hippocampus and cerebellum, as well as cognitive deficits and severe anxiety, and microcephaly. Unexpectedly, cell-based studies indicate that Mfsd2a transports DHA in the form of lysophosphatidylcholine (LPC), but not unesterified fatty acid, in a sodium-dependent manner. Notably, Mfsd2a transports common plasma LPCs carrying long-chain fatty acids such LPC oleate and LPC palmitate, but not LPCs with less than a 14-carbon acyl chain. Moreover, we determine that the phosphor-zwitterionic headgroup of LPC is critical for transport. Importantly, Mfsd2a-knockout mice have markedly reduced uptake of labelled LPC DHA, and other LPCs, from plasma into brain, demonstrating that Mfsd2a is required for brain uptake of DHA. Our findings reveal an unexpected essential physiological role of plasma-derived LPCs in brain growth and function. PMID:24828044

  3. Excess omega-3 fatty acid consumption by mothers during pregnancy and lactation caused shorter life span and abnormal ABRs in old adult offspring.

    PubMed

    Church, M W; Jen, K-L C; Anumba, J I; Jackson, D A; Adams, B R; Hotra, J W

    2010-01-01

    Consuming omega-3 fatty acids (omega-3 FA) during pregnancy and lactation is beneficial to fetal and infant development and might reduce the incidence and severity of preterm births by prolonging pregnancy. Consequently, supplementing maternal diets with large amounts of omega-3 FA is gaining acceptance. However, both over- and under-supplementation with omega-3 FA can harm offspring development. Adverse fetal and neonatal conditions in general can enhance age-related neural degeneration, shorten life span and cause other adult-onset disorders. We hypothesized that maternal over- and under-nutrition with omega-3 FA would shorten the offspring's life span and enhance neural degeneration in old adulthood. To test these hypotheses, female Wistar rats were randomly assigned to one of the three diet conditions starting from day 1 of pregnancy through the entire period of pregnancy and lactation. The three diets were Control omega-3 FA (omega-3/omega-6 ratio approximately 0.14), Excess omega-3 FA (omega-3/omega-6 ratio approximately 14.5) and Deficient omega-3 FA (omega-3/omega-6 ratio approximately 0% ratio). When possible, one male and female offspring from each litter were assessed for life span and sensory/neural degeneration (n=15 litters/group). The Excess offspring had shorter life spans compared to their Control and Deficient cohorts (mean+/-SEM=506+/-24, 601+/-14 and 585+/-21 days, pDeficient groups (33.3, 4.3 and 4.5%, p=0.011) and a persistence of other sensory/neurological abnormalities and lower body weights in old adulthood. In conclusion, omega-3 FA over-nutrition or imbalance during pregnancy and lactation had adverse effects on life span and sensory/neurological function in old adulthood. The adverse outcomes in the Excess offspring were likely due to a "nutritional toxicity" during fetal and/or neonatal development

  4. Total dietary fat and omega-3 fatty acids have modest effects on urinary sex hormones in postmenopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Total fat and omega-3 fatty acids in the diet may affect breast cancer risk by altering estrogen metabolism. The purpose of this study was to elucidate the effects of differing total fat and omega-3 fatty acid content of diets on a panel of urinary estrogens and metabolites. A controlled, cross-ove...

  5. Recent findings on the health effects of omega-3 fatty acids and statins, and their interactions: do statins inhibit omega-3?

    PubMed Central

    2013-01-01

    Early randomized controlled trials (RCTs) demonstrated the health benefits of omega-3 fatty acids (n-3), whereas recent RCTs were negative. We now address the issue, focusing on the temporal changes having occurred: most patients in recent RCTs are no longer n-3 deficient and the vast majority are now treated with statins. Recent RCTs testing n-3 against arrhythmias suggest that n-3 reduce the risk only in patients not taking a statin. Other recent RCTs in secondary prevention were negative although, in a post-hoc analysis separating statin users and non-users, non-significant protection of n-3 was observed among statin non-users whereas statin users had no effect. Recent RCTs testing statins - after the implementation of the New Clinical Trial Regulation in 2007 - are negative (or flawed) suggesting that the lack of effect of n-3 cannot be attributed to a parallel protection by statins. Finally, statins favor the metabolism of omega-6 fatty acids (n-6), which in turn inhibits n-3 and, contrary to n-3, they increase insulin resistance and the risk of diabetes. Thus, n-3 and statins are counteractive at several levels and statins appear to inhibit n-3. PMID:23289647

  6. Omega-3 fatty acids, lipid rafts, and T cell signaling.

    PubMed

    Hou, Tim Y; McMurray, David N; Chapkin, Robert S

    2016-08-15

    n-3 polyunsaturated fatty acids (PUFA) have been shown in many clinical studies to attenuate inflammatory responses. Although inflammatory responses are orchestrated by a wide spectrum of cells, CD4(+) T cells play an important role in the etiology of many chronic inflammatory diseases such as inflammatory bowel disease and obesity. In light of recent concerns over the safety profiles of non-steroidal anti-inflammatory drugs (NSAIDs), alternatives such as bioactive nutraceuticals are becoming more attractive. In order for these agents to be accepted into mainstream medicine, however, the mechanisms by which nutraceuticals such as n-3 PUFA exert their anti-inflammatory effects must be fully elucidated. Lipid rafts are nanoscale, dynamic domains in the plasma membrane that are formed through favorable lipid-lipid (cholesterol, sphingolipids, and saturated fatty acids) and lipid-protein (membrane-actin cytoskeleton) interactions. These domains optimize the clustering of signaling proteins at the membrane to facilitate efficient cell signaling which is required for CD4(+) T cell activation and differentiation. This review summarizes novel emerging data documenting the ability of n-3 PUFA to perturb membrane-cytoskeletal structure and function in CD4(+) T cells. An understanding of these underlying mechanisms will provide a rationale for the use of n-3 PUFA in the treatment of chronic inflammation. PMID:26001374

  7. Omega-3 fatty acids: Mechanisms of benefit and therapeutic effects in pediatric and adult NAFLD.

    PubMed

    Nobili, Valerio; Alisi, Anna; Musso, Giovanni; Scorletti, Eleonora; Calder, Philip C; Byrne, Christopher D

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is currently considered the most common liver disease in industrialized countries, and it is estimated that it will become the most frequent indication for liver transplantation in the next decade. NAFLD may be associated with moderate (i.e. steatosis) to severe (i.e. steatohepatitis and fibrosis) liver damage and affects all age groups. Furthermore, subjects with NAFLD may be at a greater risk of other obesity-related complications later in life, and people with obesity and obesity-related complications (e.g. metabolic syndrome, type 2 diabetes and cardiovascular disease) are at increased risk of developing NAFLD. To date, there is no licensed treatment for NAFLD and therapy has been mainly centered on weight loss and increased physical activity. Unfortunately, it is often difficult for patients to adhere to the advised lifestyle changes. Therefore, based on the known pathogenesis of NAFLD, several clinical trials with different nutritional supplementation and prescribed drugs have been undertaken or are currently underway. Experimental evidence has emerged about the health benefits of omega-3 fatty acids, a group of polyunsaturated fatty acids that are important for a number of health-related functions. Omega-3 fatty acids are present in some foods (oils, nuts and seeds) that also contain omega-6 fatty acids, and the best sources of exclusively omega-3 fatty acids are oily fish, krill oil and algae. In this review, we provide a brief overview of the pathogenesis of NAFLD, and we also discuss the molecular and clinical evidence for the benefits of different omega-3 fatty acid preparations in NAFLD. PMID:26463349

  8. Omega-3 Polyunsaturated Fatty Acids in Prevention of Mood and Anxiety Disorders

    PubMed Central

    Su, Kuan-Pin; Matsuoka, Yutaka; Pae, Chi-Un

    2015-01-01

    Psychiatric disorders in general, and major depression and anxiety disorders in particular, account for a large burden of disability, morbidity and premature mortality worldwide. Omega-3 polyunsaturated fatty acids (PUFAs) have a range of neurobiological activities in modulation of neurotransmitters, anti-inflammation, anti-oxidation and neuroplasticity, which could contribute to psychotropic effects. Here we reviewed recent research on the benefits of omega-3 PUFA supplements in prevention against major depression, bipolar disorders, interferon-α-induced depression patients with chronic hepatitis C viral infection, and posttraumatic stress disorder. The biological mechanisms underlying omega-3 PUFAs’ psychotropic effects are proposed and reviewed. Nutrition is a modifiable environmental factor that might be important in prevention medicine, which have been applied for many years in the secondary prevention of heart disease with omega-3 PUFAs. This review extends the notion that nutrition in psychiatry is a modifiable environmental factor and calls for more researches on prospective clinical studies to justify the preventive application of omega-3 PUFAs in daily practice. PMID:26243838

  9. Cultural symbolism of fish and the psychotropic properties of omega-3 fatty acids.

    PubMed

    Reis, L C; Hibbeln, J R

    2006-01-01

    Fish is a food with unique psychotropic properties. Consumption of long-chain omega-3 fatty acids, rich in seafood, reduces depression, aggression and anger while improving mental well-being. We posit that symbols of fish have become linked to the emotional states induced by long-chain fatty acid by associative pairings, both conscious and unconscious. The limbic and hippocampal activity necessary for memory formation containing emotional content and the labeling of social context by cortical processes appears to be optimized by diets rich in long-chain omega-3 fatty acid. In this critical literature survey, we find that fish have been culturally labeled as symbols of emotional well-being and social healing in religious and medical practices among independent cultures, for at least six millennia. This understanding of the perception of fish as a symbolically healing or purifying food can assist current messages improving public health. PMID:16962306

  10. [Polyunsaturated fatty acids: omega-3 in child development].

    PubMed

    Caramia, G

    2002-01-01

    The understanding of the role of lipids has made major advances following the identification, by George and Mildred Burr, of so-called "essential fatty acids", i.e. linoleic acid (LA) and alpha-linolenic acid (ALA). LA is supplied by animal and vegetal fats, while ALA reaches higher levels in breastmilk, fish, and olive oil. For both LA and ALA, the human body depends exclusively on the dietary supply. These lipids play a major role as structural components of cell membranes, in particular of neurons, nerves, myelinated sheath, retina, vessels, heart, and blood cells; moreover, they act as precursors of several short-life compounds with hormone-like action: prostaglandins, prostacylins, thromboxanes, leukotriens, all with a regulatory effect on several cell functions, and on cholesterol pathway. It has been suggested a "health programming" role for food, due to the impact of the type of feeding on the subsequent neuromotor development, learning abilities, behavior, metabolism, blood pressure, bone mineralization, and degenrative diseases. This is the consequence of changes of the genomic expression, with a guided clone selection. This is in line with the "imprinting hypothesis" proposed by K. Lorenz (1973 Nobel Prize for Physiology and Medicine), who suggested that stimulations at a particular age may drive animal behavior for the rest of their life. PMID:12494533

  11. Role of Arginine and Omega-3 Fatty Acids in Wound Healing and Infection.

    PubMed

    Alexander, J Wesley; Supp, Dorothy M

    2014-11-01

    Significance: Only a few decades ago, the primary focus of nutritional supplementation was to prevent deficiencies of essential nutrients. It is now recognized that, at higher than essential levels, selected nutrients can have a pharmacologic effect to prevent or treat disease. Recent Advances: Two of the most important pharmaconutrients, arginine, and the omega-3 polyunsaturated fatty acids in fish oil, have been shown to have profound effects on wound healing and infections. Critical Issues: Both arginine and fish oils have independent benefits, but the combination appears to be much more effective. This combination has been shown to affect outcomes involving wound healing and infections, as reviewed here, and can also affect incidence and outcomes in cardiovascular disease, diabetes, organ transplant rejection, and other inflammatory conditions. These possibilities have not yet progressed to widespread clinical application. Future Directions: The optimal combinations of immunonutrients, timing of administration, and the doses needed for best results need to be determined in preclinical and clinical studies. Also, the mechanisms involved in the administration of pharmaconutrients need to be established. PMID:25371851

  12. Role of Arginine and Omega-3 Fatty Acids in Wound Healing and Infection

    PubMed Central

    Alexander, J. Wesley; Supp, Dorothy M.

    2014-01-01

    Significance: Only a few decades ago, the primary focus of nutritional supplementation was to prevent deficiencies of essential nutrients. It is now recognized that, at higher than essential levels, selected nutrients can have a pharmacologic effect to prevent or treat disease. Recent Advances: Two of the most important pharmaconutrients, arginine, and the omega-3 polyunsaturated fatty acids in fish oil, have been shown to have profound effects on wound healing and infections. Critical Issues: Both arginine and fish oils have independent benefits, but the combination appears to be much more effective. This combination has been shown to affect outcomes involving wound healing and infections, as reviewed here, and can also affect incidence and outcomes in cardiovascular disease, diabetes, organ transplant rejection, and other inflammatory conditions. These possibilities have not yet progressed to widespread clinical application. Future Directions: The optimal combinations of immunonutrients, timing of administration, and the doses needed for best results need to be determined in preclinical and clinical studies. Also, the mechanisms involved in the administration of pharmaconutrients need to be established. PMID:25371851

  13. Omega-3 fatty acids in the gravid pig uterus as affected by maternal supplementation with omega-3 fatty acids.

    PubMed

    Brazle, A E; Johnson, B J; Webel, S K; Rathbun, T J; Davis, D L

    2009-03-01

    Two experiments evaluated the ability of maternal fatty acid supplementation to alter conceptus and endometrial fatty acid composition. In Exp. 1, treatments were 1) the control, a corn-soybean meal diet; 2) flax, the control diet plus ground flax (3.75% of diet); and 3) protected fatty acids (PFA), the control plus a protected fish oil source rich in n-3 PUFA (Gromega, JBS United Inc., Sheridan, IN; 1.5% of diet). Supplements replaced equal parts of corn and soybean meal. When gilts reached 170 d of age, PG600 (PMSG and hCG, Intervet USA, Millsboro, DE) was injected to induce puberty, and dietary treatments (n = 8/treatment) were initiated. When detected in estrus, gilts were artificially inseminated. On d 40 to 43 of gestation, 7 gilts in the control treatment, 8 gilts in the PFA treatment, and 5 gilts in the flax treatment were pregnant and were slaughtered. Compared with the control treatment, the flax treatment tended to increase eicosapentaenoic acid (EPA: C20:5n-3) in fetuses (0.14 vs. 0.25 +/- 0.03 mg/g of dry tissue; P = 0.055), whereas gilts receiving PFA had more (P < 0.05) docosahexaenoic acid (DHA: C22:6n-3) in their fetuses (5.23 vs. 4.04 +/- 0.078 mg/g) compared with gilts fed the control diet. Both the flax and PFA diets increased (P < 0.05) DHA (0.60, 0.82, and 0.85 +/- 0.078 mg/g for the control, flax, and PFA diet, respectively) in the chorioallantois. In the endometrium, EPA and docosapentaenoic acid (C22:5n-3) were increased by the flax diet (P < 0.001; P < 0.05), whereas gilts receiving PFA had increased DHA (P < 0.001). The flax diet selectively increased EPA, and the PFA diet selectively increased DHA in the fetus and endometrium. In Exp. 2, gilts were fed diets containing PFA (1.5%) or a control diet beginning at approximately 170 of age (n = 13/treatment). A blood sample was collected after 30 d of treatment, and gilts were artificially inseminated when they were approximately 205 d old. Conceptus and endometrial samples were collected on

  14. The challenges of incorporation of omega-3 fatty acids into ration components and their prevalence in garrison feeding.

    PubMed

    Davis, Betty A; Prall, Brian C

    2014-11-01

    Increasingly, private and military consumers are becoming aware of the positive benefits of a diet rich in omega-3 fatty acids (FAs) as health claims range from reducing inflammation to improving mood. The number of positive scientific articles supporting these claims is rapidly increasing, leading the military to examine the possibility of omega-3 supplementation for personnel. A variety of menus used either in shipboard or garrison feeding include fatty fishes that are rich in omega-3 FAs. However, omega-3 FAs have shelf-stability issues because of their susceptibility to oxidize; therefore, they create a challenge in terms of incorporation into ration components in nutritionally significant amounts. As a result, the Department of Defense Combat Feeding Directorate is investigating methods, technologies, and emerging products for incorporation of omega-3s into ration components. Based on existing research, fortification of foods with omega-3 FAs would improve nutritional quality as well as provide added benefit to the Warfighters. PMID:25373101

  15. Omega-3 fatty acids modulate neonatal cytokine response to endotoxin.

    PubMed

    Espiritu, Michael M; Lin, Hong; Foley, Elizabeth; Tsang, Valerie; Rhee, Eunice; Perlman, Jeffrey; Cunningham-Rundles, Susanna

    2016-08-01

    Neonatal immune response is characterized by an uncompensated pro-inflammatory response that can lead to inflammation-related morbidity and increased susceptibility to infection. We investigated the effects of long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) pre-treatment on cytokine secretion to low-concentration endotoxin (lipopolysaccharide, LPS) in THP-1 monocytes and neonatal cord blood (CB) from healthy full-term infants. Pre-treatment of THP-1 cells, with either n-3 PUFA at 25 or 100 μM significantly reduced IL-6, IL-10, and IL-12 secretion while DHA, but not EPA, reduced TNF-α response to LPS. DHA inhibition was stronger compared to EPA and effective at the low concentration. The same concentrations of n-3 PUFAs inhibited IL-12 but not IL-10 cytokine response in whole CB from 9 infants pre-treated for 24 h. To assess clinical relevance for acute response to LPS, the effects of low-concentration DHA at 25 μM or 12.5 μM were assessed before and after LPS exposure of isolated CB mononuclear cells from 20 infants for 1 h. When added before or after LPS, physiologic DHA treatment produced significant concentration-dependent inhibition of TNF-α, IL-6, IL-1β, and IL-8 secretion. The results demonstrate prophylactic and therapeutic modulation of neonatal cytokine response to LPS and provide proof-of-concept that low-concentration administration of n-3 PUFA could attenuate or resolve neonatal inflammatory response. PMID:26812855

  16. Omega-3 Polyunsaturated Fatty Acids: The Way Forward in Times of Mixed Evidence

    PubMed Central

    Weylandt, Karsten H.; Serini, Simona; Chen, Yong Q.; Su, Hui-Min; Lim, Kyu; Cittadini, Achille; Calviello, Gabriella

    2015-01-01

    Almost forty years ago, it was first hypothesized that an increased dietary intake of omega-3 polyunsaturated fatty acids (PUFA) from fish fat could exert protective effects against several pathologies. Decades of intense preclinical investigation have supported this hypothesis in a variety of model systems. Several clinical cardiovascular studies demonstrated the beneficial health effects of omega-3 PUFA, leading medical institutions worldwide to publish recommendations for their increased intake. However, particularly in recent years, contradictory results have been obtained in human studies focusing on cardiovascular disease and the clinical evidence in other diseases, particularly chronic inflammatory and neoplastic diseases, was never established to a degree that led to clear approval of treatment with omega-3 PUFA. Recent data not in line with the previous findings have sparked a debate on the health efficacy of omega-3 PUFA and the usefulness of increasing their intake for the prevention of a number of pathologies. In this review, we aim to examine the controversies on the possible use of these fatty acids as preventive/curative tools against the development of cardiovascular, metabolic, and inflammatory diseases, as well as several kinds of cancer. PMID:26301240

  17. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    PubMed

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications. PMID:26502170

  18. Functional and safety evaluation of transgenic pork rich in omega-3 fatty acids.

    PubMed

    Tang, Maoxue; Qian, Lili; Jiang, Shengwang; Zhang, Jian; Song, Pengkun; Chen, Yaoxing; Cui, Wentao; Li, Kui

    2014-08-01

    Genetically modified animals rich in omega-3 unsaturated fatty acid offer a new strategy to improve the human health, but at the same time present a challenge in terms of food safety assessment. In this study, we evaluated the function and safety of sFat-1 transgenic pork rich in omega-3 fatty acids in mice by feeding basic diet and diets that contain wild type pork and sFat-1 transgenic pork. Blood biochemistry, haematology, peripheral T cell distributions, bacterial counts, gross necropsy, histopathology and organ weights were performed in mice fed with different doses of wild type and transgenic pork. Results indicated that both low and high dose of wild type and transgenic pork had no significant effect on blood biochemistry, T cell distribution, immunoglobulins and bacterial counts in intestine and feces. However, it was noted that both low and high dose of transgenic pork improved the liver immune system in mice, which is probably due to the beneficial contribution of high level of the "good" fatty acids in transgenic pork. There is no significant effect of transgenic pork on all other organs in mice. In summary, our study clearly demonstrated that feeding transgenic pork rich in omega-3 fatty acids did not cause any harm to mice, and in fact, improved the liver immune system. PMID:24700396

  19. A Review of Nanoliposomal Delivery System for Stabilization of Bioactive Omega-3 Fatty Acids

    PubMed Central

    Hadian, Zahra

    2016-01-01

    Currently, bioactive compounds are required in the design and production of functional foods, with the aim of improving the health status of consumers all around the world. Various epidemiological and clinical studies have demonstrated the salutary role of eicosapentaenoic acid (EPA, 22:6 n−3) and docosahexaenoic acid (DHA, 22:5 n−3) in preventing diseases and reducing mortality from cardiovascular diseases. The unsaturated nature of bioactive lipids leads to susceptibility to oxidation under environmental conditions. Oxidative deterioration of omega-3 fatty acids can cause the reduction in their nutritional quality and sensory properties. Encapsulation of these fatty acids could create a barrier against reaction with harmful environmental factors. Currently, fortification of foods containing bioactive omega-3 fatty acids has found great application in the food industries of different countries. Previous studies have suggested that nano-encapsulation has significant effects on the stability of physical and chemical properties of bioactive compounds. Considering the functional role of omega-3 fatty acids, this study has provided a literature review on applications of nanoliposomal delivery systems for encapsulation of these bioactive compounds. PMID:26955449

  20. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    SciTech Connect

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W. )

    1991-05-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication.

  1. Molecular Targets of Omega 3 and Conjugated Linoleic Fatty Acids – “Micromanaging” Cellular Response

    PubMed Central

    Visioli, Francesco; Giordano, Elena; Nicod, Nathalie Marie; Dávalos, Alberto

    2012-01-01

    Essential fatty acids cannot be synthesized de novo by mammals and need to be ingested either with the diet or through the use of supplements/functional foods to ameliorate cardiovascular prognosis. This review focus on the molecular targets of omega 3 fatty acids and conjugated linoleic acid, as paradigmatic molecules that can be exploited both as nutrients and as pharmacological agents, especially as related to cardioprotection. In addition, we indicate novel molecular targets, namely microRNAs that might contribute to the observed biological activities of such essential fatty acids. PMID:22393325

  2. Effects of Omega-3 Fatty Acids Supplement on Antioxidant Enzymes Activity in Type 2 Diabetic Patients

    PubMed Central

    TOORANG, Fatemeh; DJAZAYERY, Abolghassem; DJALALI, Mahmoud

    2016-01-01

    Background: Diabetes is a major cause of death. Oxidative stress mainly caused by hyperglycemia is the primary reason of related complications. Omega-3 fatty acids are prescribed in diabetes but the effect on antioxidant defense is controversial. This study investigated effects of omega-3 supplementation on antioxidant enzymes activity in type 2 diabetic patients. Methods: A randomized, placebo controlled, double blind clinical trial was performed on 90 type2 diabetic patients. The treatment group took, daily, three capsules of omega-3 for two mo, which totally provided 2714mg omega-3 (EPA=1548 mg, DHA=828 mg and 338 mg of other omega=3 fatty acids). Placebo contained 2100 mg sunflower oil (12% SFA, 65% linoleic acid, 23% MUFA), which is the main oil used in the study population. Food intakes, anthropometric and demographic characteristics, and therapeutic regimen data were recorded before and after the intervention. Fasting blood samples were taken before and after the intervention to measure super oxide dismutase, glutathione peroxidase, glutathione reductase, catalase and total antioxidant capacity in erythrocytes. Results: A total of 81 subjects completed the study. Two study groups were similar as regards duration of diabetes, age and the enzymes at baseline. Energy and macro- and micronutrients intakes, weight and hypoglycemic agent consumption were similar in the two groups at baseline and did not change. Supplementation had no effect on antioxidant enzyme status. Glycated hemoglobin showed a significant reduction by supplementation. Conclusion: Daily supplementation of 2714 mg mega-3 for two mo results in a significant reduction in HbA1c level in type2 diabetic patients with no effects on antioxidant enzymes activity. PMID:27141496

  3. Altered erythrocyte membrane fatty acid profile in typical Rett syndrome: effects of omega-3 polyunsaturated fatty acid supplementation.

    PubMed

    Signorini, Cinzia; De Felice, Claudio; Leoncini, Silvia; Durand, Thierry; Galano, Jean-Marie; Cortelazzo, Alessio; Zollo, Gloria; Guerranti, Roberto; Gonnelli, Stefano; Caffarelli, Carla; Rossi, Marcello; Pecorelli, Alessandra; Valacchi, Giuseppe; Ciccoli, Lucia; Hayek, Joussef

    2014-11-01

    This study mainly aims at examining the erythrocyte membrane fatty acid (FAs) profile in Rett syndrome (RTT), a genetically determined neurodevelopmental disease. Early reports suggest a beneficial effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on disease severity in RTT. A total of 24 RTT patients were assigned to ω-3 PUFAs-containing fish oil for 12 months in a randomized controlled study (average DHA and EPA doses of 72.9, and 117.1mg/kgb.w./day, respectively). A distinctly altered FAs profile was detectable in RTT, with deficient ω-6 PUFAs, increased saturated FAs and reduced trans 20:4 FAs. FAs changes were found to be related to redox imbalance, subclinical inflammation, and decreased bone density. Supplementation with ω-3 PUFAs led to improved ω-6/ω-3 ratio and serum plasma lipid profile, decreased PUFAs peroxidation end-products, normalization of biochemical markers of inflammation, and reduction of bone hypodensity as compared to the untreated RTT group. Our data indicate that a significant FAs abnormality is detectable in the RTT erythrocyte membranes and is partially rescued by ω-3 PUFAs. PMID:25240461

  4. Oxidized omega-3 fatty acids in fish oil inhibit leukocyte-endothelial interactions through activation of PPAR alpha.

    PubMed

    Sethi, Sanjeev; Ziouzenkova, Ouliana; Ni, Heyu; Wagner, Denisa D; Plutzky, Jorge; Mayadas, Tanya N

    2002-08-15

    Omega-3 fatty acids, which are abundant in fish oil, improve the prognosis of several chronic inflammatory diseases although the mechanism for such effects remains unclear. These fatty acids, such as eicosapentaenoic acid (EPA), are highly polyunsaturated and readily undergo oxidation. We show that oxidized, but not native unoxidized, EPA significantly inhibited human neutrophil and monocyte adhesion to endothelial cells in vitro by inhibiting endothelial adhesion receptor expression. In transcriptional coactivation assays, oxidized EPA potently activated the peroxisome proliferator-activated receptor alpha (PPAR alpha), a member of the nuclear receptor family. In vivo, oxidized, but not native, EPA markedly reduced leukocyte rolling and adhesion to venular endothelium of lipopolysaccharide (LPS)-treated mice. This occurred via a PPAR alpha-dependent mechanism because oxidized EPA had no such effect in LPS-treated PPAR alpha-deficient mice. Therefore, the beneficial effects of omega-3 fatty acids may be explained by a PPAR alpha-mediated anti-inflammatory effect of oxidized EPA. PMID:12149216

  5. Past and Present Insights on Alpha-linolenic Acid and the Omega-3 Fatty Acid Family.

    PubMed

    Stark, Aliza H; Reifen, Ram; Crawford, Michael A

    2016-10-25

    Alpha-linolenic acid (ALA) is the parent essential fatty acid of the omega-3 family. This family includes docosahexaenoic acid (DHA), which has been conserved in neural signaling systems in the cephalopods, fish, amphibian, reptiles, birds, mammals, primates, and humans. This extreme conservation, in spite of wide genomic changes of over 500 million years, testifies to the uniqueness of this molecule in the brain and affirms the importance of omega-3 fatty acids. While DHA and its close precursor, eicosapentaenoic acids (EPA), have received much attention by the research community, ALA, as the precursor of both, has been considered of little interest. There are many papers on ALA requirements in experimental animals. Unlike humans, rats and mice can readily convert ALA to EPA and DHA, so it is unclear whether the effect is solely due to the conversion products or to ALA itself. The intrinsic role of ALA has yet to be defined. This paper will discuss both recent and historical findings related to this distinctive group of fatty acids, and will highlight the physiological significance of the omega-3 family. PMID:25774650

  6. Omega-3 fatty acids and ginger in maternal health: pharmacology, efficacy, and safety.

    PubMed

    Dennehy, Cathi

    2011-01-01

    Dietary supplements may be used by pregnant women if they perceive them to be natural and healthy products, if they are fearful of using prescription drugs, or if they are recommended by a health care provider. Usage surveys indicate that midwives feel comfortable in recommending some herbal products to their patients. There are sufficient data from randomized controlled trials on omega-3 fatty acids and ginger that their pharmacologic properties, efficacy, and safety data for specific indications in maternal health can be evaluated. Requests for information regarding these substances are likely to be encountered by health care providers who care for pregnant women. Omega-3 fatty acids benefit gestation, infant vision, and neurodevelopment, while effects on major depression in pregnancy and postpartum depression are less clear. Ginger is efficacious for nausea and vomiting in pregnancy but is limited in its safety data. Pharmacologic properties of each supplement and pathophysiology related to each indication are reviewed. It is recommended that pregnant and lactating women be advised to take an omega-3 fatty acid supplement daily, while the recommendation to use ginger is tentative and will likely be based on each practitioner's comfort level with the safety data that are presented. PMID:22060218

  7. Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells

    PubMed Central

    Koskela, Ali; Reinisalo, Mika; Petrovski, Goran; Sinha, Debasish; Olmiere, Céline; Karjalainen, Reijo; Kaarniranta, Kai

    2016-01-01

    Impaired autophagic and proteasomal cleansing have been documented in aged retinal pigment epithelial (RPE) cells and age-related macular degeneration (AMD). Omega-3 fatty acids and resveratrol have many positive homeostatic effects in RPE cells. In this work, ARPE-19 cells were treated with 288 ng of Resvega, containing 30 mg of trans resveratrol and 665 mg of omega-3 fatty acids, among other nutrients, with proteasome inhibitor MG-132 or autophagy inhibitor bafilomycin A1 up to 48 h. Autophagy markers p62/SQSTM1 (p62) and LC3 (microtubule-associated protein 1A/1B-light chain 3) were analyzed by Western blotting. Fluorescence microscopy with mCherry-GFP-LC3 plasmid was applied to study the autophagy flux, and cytoprotective effects were investigated with colorimetric MTT and LDH assays. Resvega induced autophagy by showing increased autolysosome formation and autophagy flux, and the change in the p62 and LC3 protein levels further confirmed the fluorescent microscopy results. Moreover, Resvega provided a clear cytoprotection under proteasome inhibition. These findings highlight the potential of the nutraceuticals containing resveratrol, omega-3 fatty acids and other nutrients in the prevention of ARPE-19 cell damage. PMID:27187449

  8. [Polyunsaturated omega-3 fatty acids and systemic lupus erythematosus: what do we know?].

    PubMed

    Borges, Mariane Curado; Santos, Fabiana de Miranda Moura; Telles, Rosa Weiss; Correia, Maria Isabel Toulson Davisson; Lanna, Cristina Costa Duarte

    2014-01-01

    Various studies have demonstrated the impact of omega-3 fatty acids on the concentration of C reactive protein (CRP), pro-inflammatory eicosanoids, cytokines, chemokines and other inflammatory mediators. Therefore, the supplementation of these types of lipids may represent additional option treatment for chronic systemic diseases, such as Systemic Lupus Erythematous and other rheumatic diseases. The role of these lipids has not been well established, yet. However, it seems there is a direct relationship between its intake and the decrease of the disease clinical manifestations as well as of the inflammatory status of the patients. Thus, the aim of this manuscript is to present a thorough review on the effects of omega-3 fatty acids in patients with SLE. Bibliographic data set as the Medical Literature Analysis and Retrieval System Online (MEDLINE) and Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) were searched using as key words: systemic lupus erythematous (SLE), polyunsaturated fatty acids omega-3, eicosapentanoic acid (EPA), docosahexanoic acid (DHA), antioxidants and diet. Manuscripts published up to September 2013 were included. There were 43 articles related to the topic, however only 15 pertained human studies, with three review articles and 12 clinical studies. PMID:25445629

  9. Nutraceutical with Resveratrol and Omega-3 Fatty Acids Induces Autophagy in ARPE-19 Cells.

    PubMed

    Koskela, Ali; Reinisalo, Mika; Petrovski, Goran; Sinha, Debasish; Olmiere, Céline; Karjalainen, Reijo; Kaarniranta, Kai

    2016-01-01

    Impaired autophagic and proteasomal cleansing have been documented in aged retinal pigment epithelial (RPE) cells and age-related macular degeneration (AMD). Omega-3 fatty acids and resveratrol have many positive homeostatic effects in RPE cells. In this work, ARPE-19 cells were treated with 288 ng of Resvega, containing 30 mg of trans resveratrol and 665 mg of omega-3 fatty acids, among other nutrients, with proteasome inhibitor MG-132 or autophagy inhibitor bafilomycin A1 up to 48 h. Autophagy markers p62/SQSTM1 (p62) and LC3 (microtubule-associated protein 1A/1B-light chain 3) were analyzed by Western blotting. Fluorescence microscopy with mCherry-GFP-LC3 plasmid was applied to study the autophagy flux, and cytoprotective effects were investigated with colorimetric MTT and LDH assays. Resvega induced autophagy by showing increased autolysosome formation and autophagy flux, and the change in the p62 and LC3 protein levels further confirmed the fluorescent microscopy results. Moreover, Resvega provided a clear cytoprotection under proteasome inhibition. These findings highlight the potential of the nutraceuticals containing resveratrol, omega-3 fatty acids and other nutrients in the prevention of ARPE-19 cell damage. PMID:27187449

  10. Omega 3 Fatty Acids Supplementation and Oxidative Stress in HIV-Seropositive Patients. A Clinical Trial.

    PubMed

    Amador-Licona, Norma; Díaz-Murillo, Teresa A; Gabriel-Ortiz, Genaro; Pacheco-Moises, Fermín P; Pereyra-Nobara, Texar A; Guízar-Mendoza, Juan M; Barbosa-Sabanero, Gloria; Orozco-Aviña, Gustavo; Moreno-Martínez, Sandra C; Luna-Montalbán, Rafael; Vázquez-Valls, Eduardo

    2016-01-01

    HIV-seropositive patients show high incidence of coronary heart disease and oxidative stress has been described as relevant key in atherosclerosis development. The aim of this study was to assess the effect of omega 3 fatty acids on different markers of oxidative stress in HIV-seropositive patients. We performed a randomized parallel controlled clinical trial in The Instituto Mexicano del Seguro Social, a public health hospital. 70 HIV-seropositive patients aged 20 to 55 on clinical score A1, A2, B1 or B2 receiving highly active antiretroviral therapy (HAART) were studied. They were randomly assigned to receive omega 3 fatty acids 2.4 g (Zonelabs, Marblehead MA) or placebo for 6 months. At baseline and at the end of the study, anthropometric measurements, lipid profile, glucose and stress oxidative levels [nitric oxide catabolites, lipoperoxides (malondialdehyde plus 4-hydroxialkenals), and glutathione] were evaluated. Principal HAART therapy was EFV/TDF/FTC (55%) and AZT/3TC/EFV (15%) without difference between groups. Treatment with omega 3 fatty acids as compared with placebo decreased triglycerides (-0.32 vs. 0.54 mmol/L; p = 0.04), but oxidative stress markers were not different between groups. PMID:27015634

  11. Increased tissue levels of omega-3 polyunsaturated fatty acids prevents pathological preterm birth.

    PubMed

    Yamashita, Aki; Kawana, Kei; Tomio, Kensuke; Taguchi, Ayumi; Isobe, Yosuke; Iwamoto, Ryo; Masuda, Koji; Furuya, Hitomi; Nagamatsu, Takeshi; Nagasaka, Kazunori; Arimoto, Takahide; Oda, Katsutoshi; Wada-Hiraike, Osamu; Yamashita, Takahiro; Taketani, Yuji; Kang, Jing X; Kozuma, Shiro; Arai, Hiroyuki; Arita, Makoto; Osuga, Yutaka; Fujii, Tomoyuki

    2013-01-01

    Omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) have anti-inflammatory effects. Preterm birth is an important problem in modern obstetrics and one of the main causes is an inflammation. We here showed that abundance of omega-3 fatty acids reduced the incidence of preterm birth induced by LPS with fat-1 mice, capable of converting omega-6 to omega-3 fatty acids. We also indicated that the gene expression of IL-6 and IL-1β in uteruses and the number of cervical infiltrating macrophages were reduced in fat-1 mice. The analyses of lipid metabolomics showed the high level of 18-hydroxyeicosapentaenoate in fat-1 mice, which was derived from EPA and was metabolized to anti-inflammatory product named resolvin E3 (RvE3). We finally showed that the administration of RvE3 to LPS-exposed pregnant wild type mice lowered the incidence of preterm birth. Our data suggest that RvE3 could be a potential new therapeutic for the prevention of preterm birth. PMID:24177907

  12. Omega 3 Fatty Acids Supplementation and Oxidative Stress in HIV-Seropositive Patients. A Clinical Trial

    PubMed Central

    Amador-Licona, Norma; Díaz-Murillo, Teresa A.; Pereyra-Nobara, Texar A.; Guízar-Mendoza, Juan M.; Barbosa-Sabanero, Gloria; Orozco-Aviña, Gustavo; Moreno-Martínez, Sandra C.; Luna-Montalbán, Rafael; Vázquez-Valls, Eduardo

    2016-01-01

    HIV-seropositive patients show high incidence of coronary heart disease and oxidative stress has been described as relevant key in atherosclerosis development. The aim of this study was to assess the effect of omega 3 fatty acids on different markers of oxidative stress in HIV-seropositive patients. We performed a randomized parallel controlled clinical trial in The Instituto Mexicano del Seguro Social, a public health hospital. 70 HIV-seropositive patients aged 20 to 55 on clinical score A1, A2, B1 or B2 receiving highly active antiretroviral therapy (HAART) were studied. They were randomly assigned to receive omega 3 fatty acids 2.4 g (Zonelabs, Marblehead MA) or placebo for 6 months. At baseline and at the end of the study, anthropometric measurements, lipid profile, glucose and stress oxidative levels [nitric oxide catabolites, lipoperoxides (malondialdehyde plus 4-hydroxialkenals), and glutathione] were evaluated. Principal HAART therapy was EFV/TDF/FTC (55%) and AZT/3TC/EFV (15%) without difference between groups. Treatment with omega 3 fatty acids as compared with placebo decreased triglycerides (-0.32 vs. 0.54 mmol/L; p = 0.04), but oxidative stress markers were not different between groups. Trial Registration ClinicalTrials.gov NCT02041520 PMID:27015634

  13. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence

    PubMed Central

    Klek, Stanislaw

    2016-01-01

    Intravenous lipid emulsions are an essential component of parenteral nutrition regimens. Originally employed as an efficient non-glucose energy source to reduce the adverse effects of high glucose intake and provide essential fatty acids, lipid emulsions have assumed a larger therapeutic role due to research demonstrating the effects of omega-3 and omega-6 polyunsaturated fatty acids (PUFA) on key metabolic functions, including inflammatory and immune response, coagulation, and cell signaling. Indeed, emerging evidence suggests that the effects of omega-3 PUFA on inflammation and immune response result in meaningful therapeutic benefits in surgical, cancer, and critically ill patients as well as patients requiring long-term parenteral nutrition. The present review provides an overview of the mechanisms of action through which omega-3 and omega-6 PUFA modulate the immune-inflammatory response and summarizes the current body of evidence regarding the clinical and pharmacoeconomic benefits of intravenous n-3 fatty acid-containing lipid emulsions in patients requiring parenteral nutrition. PMID:26959070

  14. Increased tissue levels of omega-3 polyunsaturated fatty acids prevents pathological preterm birth

    PubMed Central

    Yamashita, Aki; Kawana, Kei; Tomio, Kensuke; Taguchi, Ayumi; Isobe, Yosuke; Iwamoto, Ryo; Masuda, Koji; Furuya, Hitomi; Nagamatsu, Takeshi; Nagasaka, Kazunori; Arimoto, Takahide; Oda, Katsutoshi; Wada-Hiraike, Osamu; Yamashita, Takahiro; Taketani, Yuji; Kang, Jing X.; Kozuma, Shiro; Arai, Hiroyuki; Arita, Makoto; Osuga, Yutaka; Fujii, Tomoyuki

    2013-01-01

    Omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) have anti-inflammatory effects. Preterm birth is an important problem in modern obstetrics and one of the main causes is an inflammation. We here showed that abundance of omega-3 fatty acids reduced the incidence of preterm birth induced by LPS with fat-1 mice, capable of converting omega-6 to omega-3 fatty acids. We also indicated that the gene expression of IL-6 and IL-1β in uteruses and the number of cervical infiltrating macrophages were reduced in fat-1 mice. The analyses of lipid metabolomics showed the high level of 18-hydroxyeicosapentaenoate in fat-1 mice, which was derived from EPA and was metabolized to anti-inflammatory product named resolvin E3 (RvE3). We finally showed that the administration of RvE3 to LPS-exposed pregnant wild type mice lowered the incidence of preterm birth. Our data suggest that RvE3 could be a potential new therapeutic for the prevention of preterm birth. PMID:24177907

  15. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles.

    PubMed

    Coelho, Carla R V; Pernollet, Franck; van der Werf, Hayo M G

    2016-01-01

    A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1) modifying diets by changing the quantities and proportions of foods and 2) increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets. PMID:27504959

  16. Environmental Life Cycle Assessment of Diets with Improved Omega-3 Fatty Acid Profiles

    PubMed Central

    Coelho, Carla R. V.; Pernollet, Franck; van der Werf, Hayo M. G.

    2016-01-01

    A high incidence of cardiovascular disease is observed worldwide, and dietary habits are one of the risk factors for these diseases. Omega-3 polyunsaturated fatty acids in the diet help to prevent cardiovascular disease. We used life cycle assessment to analyse the potential of two strategies to improve the nutritional and environmental characteristics of French diets: 1) modifying diets by changing the quantities and proportions of foods and 2) increasing the omega-3 contents in diets by replacing mainly animal foods with equivalent animal foods having higher omega-3 contents. We also investigated other possibilities for reducing environmental impacts. Our results showed that a diet compliant with nutritional recommendations for macronutrients had fewer environmental impacts than the current average French diet. Moving from an omnivorous to a vegetarian diet further reduced environmental impacts. Increasing the omega-3 contents in animal rations increased Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) in animal food products. Providing these enriched animal foods in human diets increased their EPA and DHA contents without affecting their environmental impacts. However, in diets that did not contain fish, EPA and DHA contents were well below the levels recommended by health authorities, despite the inclusion of animal products enriched in EPA and DHA. Reducing meat consumption and avoidable waste at home are two main avenues for reducing environmental impacts of diets. PMID:27504959

  17. Serum omega-3 fatty acids are associated with ultimatum bargaining behavior.

    PubMed

    Emanuele, Enzo; Brondino, Natascia; Re, Simona; Bertona, Marco; Geroldi, Diego

    2009-01-01

    In the ultimatum game (UG), two players are involved to bargain over a division of a given sum of money. The proposer makes an ultimatum offer of a fraction of money, while the responder can either accept or reject the proposer's decision. In case of rejection of the proposed splitting by the responder, neither player gets anything. Adverse psychological reactions are deemed to play a role in the rejection of unfair offers. Low serum levels of omega-3 polyunsaturated fatty acids have been linked to impulse control and hostility. This study examined the serum omega-3 and omega-6 fractions in relation to the ultimatum bargaining behavior. Participants were sixty economy students (31 males and 29 females, mean age: 24.4+/-2.3 years) who played a euro 10 ultimatum game. Ultimatum offers were constrained to be euro 5 (proposer keeps euro 5) or euro 1 (proposer keeps euro 9) to generate a roughly even split between fair (5:5) and unfair (1:9) offers. Fasting serum alpha-linolenic (ALA), eicosapentaenoic (EPA), docosahexaenoic acid (DHA), linoleic acid (LA) and arachidonic acid (AA) were assayed with gas chromatography. In participants who rejected unfair offers there was a significant depletion of ALA, EPA and DHA. Moreover, the ratio of serum omega-3/omega-6 fatty acids was significantly lower in patients who rejected unfair offers as compared to those who did not. The results of this study suggest that a depletion of the serum omega-3 fatty acids is associated with rejections of unfair ultimatum offers in an experimental neuroeconomic setting. PMID:18940191

  18. Synergistic cosolubilization of omega-3 fatty acid esters and CoQ10 in dilutable microemulsions.

    PubMed

    Deutch-Kolevzon, Rivka; Aserin, Abraham; Garti, Nissim

    2011-10-01

    Water-dilutable microemulsions were prepared and loaded with two types of omega-3 fatty acid esters (omega-3 ethyl esters, OEE; and omega-3 triacylglycerides, OTG), each separately and together with ubiquinone (CoQ(10)). The microemulsions showed high and synergistic loading capabilities. The linear fatty acid ester (OEE) solubilization capacity was greater than that of the bulky and robust OTG. The location of the guest molecules within the microemulsions at any dilution point were determined by electrical conductivity, viscosity, DSC, SAXS, cryo-TEM, SD-NMR, and DLS. We found that OEE molecules pack well within the surfactant tails to form reverse micelles that gradually, upon water dilution, invert into bicontinuous phase and finally into O/W droplets. The CoQ(10) increases the stabilization and solubilization of the omega-3 fatty acid esters because it functions as a kosmotropic agent in the micellar system. The hydrophobic and bulky OTG molecule strongly interferes with the tail packing and spaces them significantly - mainly in the low and medium range water dilutions. When added to the micellar system, CoQ(10) forms some reverse hexagonal mesophases. The inversion into direct micelles is more difficult in comparison to the OEE system and requires additional water dilution. The OTG with or without CoQ(10) destabilizes the structures and decreases the solubilization capacity since it acts as a chaotropic agent to the micellar system and as a kosmotropic agent to hexagonal packing. These results explain the differences in the behavior of these molecules with vehicles that solubilize them in aqueous phases. Temperature disorders the bicontinuous structures and reduces the supersaturation of the system containing OEE with CoQ(10); as a result CoQ(10) crystallization is retarded. PMID:21723268

  19. The Effect of Omega-3 Fatty Acids on ARDS: A Randomized Double-Blind Study

    PubMed Central

    Parish, Masoud; Valiyi, Farnaz; Hamishehkar, Hadi; Sanaie, Sarvin; Asghari Jafarabadi, Mohammad; Golzari, Samad EJ; Mahmoodpoor, Ata

    2014-01-01

    Purpose: The aim of this study was to evaluate the effect of an enteral nutrition diet, enriched with omega-3 fatty acids because of its anti-inflammatory effects on treatment of patients with mild to moderate ARDS. Methods: This randomized clinical trial was performed in two ICUs of Tabriz University of Medical Sciences from Jun 2011 until Sep 2013 in north west of Iran. Fifty-eight patients with mild to moderate ARDS were enroled in this clinical trial. All patients received standard treatment for ARDS based on ARDS network trial. In intervention group, patients received 6 soft-gels of omega-3/day in addition to the standard treatment. Results: Tidal volume, PEEP, pH, PaO2/FiO2 , SaO2, P platue and PaCO2 on the 7th and 14th days didn’t have significant difference between two groups. Indices of lung mechanics (Resistance, Compliance) had significant difference between the groups on the 14th day. Pao2 had significant difference between two groups on both 7th and 14th days. Trend of PaO2 changes during the study period in two groups were significant. We showed that adjusted mortality rate did not have significant difference between two groups. Conclusion: It seems that adding omega-3 fatty acids to enteral diet of patients with ARDS has positive results in term of ventilator free days, oxygenation, lung mechanic indices; however, we need more multi center trials with large sample size and different doses of omega-3 fatty acids for their routine usage as an adjuant for ARDS treatment. PMID:25671189

  20. Omega-3 fatty acids for treatment of non-alcoholic fatty liver disease: design and rationale of randomized controlled trial

    PubMed Central

    2013-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome since obesity and insulin resistance are the main pathogenic contributors for both conditions. NAFLD carries increased risk of atherosclerosis and cardiovascular diseases. There is an urgent need to find effective and safe therapy for children and adults with NAFLD. Data from research and clinical studies suggest that omega-3 fatty acids may be beneficial in metabolic syndrome-related conditions and can reduce the risk of cardiovascular disease. Methods/design We are conducting a randomized, multicenter, double-blind, placebo-controlled trial of treatment with omega-3 fatty acids in children with NAFLD. Patients are randomized to receive either omega-3 fatty acids containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) or placebo for 24 weeks. The dose of omega-3 (DHA+ EPA) ranges from 450 to 1300 mg daily. Low calorie diet and increased physical activity are advised and monitored using validated questionnaires. The primary outcome of the trial is the number of patients who decreased ALT activity by ≥ 0,3 of upper limit of normal. The main secondary outcomes are improvement in the laboratory liver tests, liver steatosis on ultrasound, markers of insulin resistance and difference in fat/lean body mass composition after 6 months of intervention. Discussion Potential efficacy of omega-3 fatty acids in the treatment of NAFLD will provide needed rationale for use of this safe diet supplement together with weight reduction therapy in the growing population of children with NAFLD. Trial registration NCT01547910 PMID:23702094

  1. Beneficial effects of omega-3 fatty acids and vitamin B12 supplementation on brain docosahexaenoic acid, brain derived neurotrophic factor, and cognitive performance in the second-generation Wistar rats.

    PubMed

    Rathod, Richa S; Khaire, Amrita A; Kale, Anvita A; Joshi, Sadhana R

    2015-01-01

    In vegetarian population, vitamin B12 deficiency coexists with suboptimal levels of omega-3 fatty acids. Studies indicate a need for supplementation/fortification of vitamin B12 and omega-3 fatty acids to reduce the risk of brain disorders. We have described the effects of vitamin B12 and omega-3 fatty acid supplementation on brain development in F1 generation animals. The current study investigates the effects of vitamin B12 and omega-3 fatty acids supplementation on brain function and cognition. Pregnant Wistar rats were assigned the following groups: control, vitamin B12 deficient (BD), vitamin B12 deficient + omega-3 fatty acid (BDO), vitamin B12 supplemented (BS), vitamin B12 supplemented + omega-3 fatty acid (BSO). The same diets were continued for two generations. BDO group showed higher (P < 0.05) levels of BDNF (brain derived neurotrophic factor) and DHA (docosahexaenoic acid) in the cortex and hippocampus as compared with the BD group. The cognitive performance was also normalized in this group. BS showed comparable levels of DHA, BDNF (protein and mRNA), and CREB mRNA (cAMP response element-binding protein) to that of control group while Tropomyosin receptor kinase mRNA levels were higher. The combined vitamin B12 and omega-3 fatty acid supplementation further enhanced the levels of DHA (P < 0.05) and BDNF (P < 0.05) in the hippocampus and CREB mRNA (P < 0.01) in the cortex as compared with BS group. The cognitive performance of these animals was higher (P < 0.05) as compared with BS group. Our data indicates the beneficial effects of vitamin B12 and omega-3 fatty acid supplementation across two generations on brain development and function. PMID:26249019

  2. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer's Disease

    PubMed Central

    Thomas, J.; Thomas, C. J.; Radcliffe, J.; Itsiopoulos, C.

    2015-01-01

    Alzheimer's disease (AD) is the leading cause of dementia and the most common neurodegenerative disease in the elderly. Furthermore, AD has provided the most positive indication to support the fact that inflammation contributes to neurodegenerative disease. The exact etiology of AD is unknown, but environmental and genetic factors are thought to contribute, such as advancing age, family history, presence of chronic diseases such as cardiovascular disease (CVD) and diabetes, and poor diet and lifestyle. It is hypothesised that early prevention or management of inflammation could delay the onset or reduce the symptoms of AD. Normal physiological changes to the brain with ageing include depletion of long chain omega-3 fatty acids and brains of AD patients have lower docosahexaenoic acid (DHA) levels. DHA supplementation can reduce markers of inflammation. This review specifically focusses on the evidence in humans from epidemiological, dietary intervention, and supplementation studies, which supports the role of long chain omega-3 fatty acids in the prevention or delay of cognitive decline in AD in its early stages. Longer term trials with long chain omega-3 supplementation in early stage AD are warranted. We also highlight the importance of overall quality and composition of the diet to protect against AD and dementia. PMID:26301243

  3. Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain.

    PubMed

    Gupta, Adarsha; Abraham, Reinu E; Barrow, Colin J; Puri, Munish

    2015-05-01

    In this work, a newly isolated marine thraustochytrid strain, Schizochytrium sp. DT3, was used for omega-3 fatty acid production by growing on lignocellulose biomass obtained from local hemp hurd (Cannabis sativa) biomass. Prior to enzymatic hydrolysis, hemp was pretreated with sodium hydroxide to open the biomass structure for the production of sugar hydrolysate. The thraustochytrid strain was able to grow on the sugar hydrolysate and accumulated polyunsaturated fatty acids (PUFAs). At the lowest carbon concentration of 2%, the PUFAs productivity was 71% in glucose and 59% in the sugars hydrolysate, as a percentage of total fatty acids. Saturated fatty acids (SFAs) levels were highest at about 49% of TFA using 6% glucose as the carbon source. SFAs of 41% were produced using 2% of SH. This study demonstrates that SH produced from lignocellulose biomass is a potentially useful carbon source for the production of omega-3 fatty acids in thraustochytrids, as demonstrated using the new strain, Schizochytrium sp. DT3. PMID:25497057

  4. A diet high in omega-3 fatty acids does not improve or protect cognitive performance in Alzheimer's transgenic mice.

    PubMed

    Arendash, G W; Jensen, M T; Salem, N; Hussein, N; Cracchiolo, J; Dickson, A; Leighty, R; Potter, H

    2007-10-26

    Although a number of epidemiologic studies reported that higher intake of omega-3 fatty acids (largely associated with fish consumption) is protective against Alzheimer's disease (AD), other human studies reported no such effect. Because retrospective human studies are problematic and controlled longitudinal studies over decades are impractical, the present study utilized Alzheimer's transgenic mice (Tg) in a highly controlled study to determine whether a diet high in omega-3 fatty acid, equivalent to the 13% omega-3 fatty acid diet of Greenland Eskimos, can improve cognitive performance or protect against cognitive impairment. Amyloid precursor protein (APP)-sw+PS1 double transgenic mice, as well as nontransgenic (NT) normal littermates, were given a high omega-3 supplemented diet or a standard diet from 2 through 9 months of age, with a comprehensive behavioral test battery administered during the final 6 weeks. For both Tg and NT mice, long-term n-3 supplementation resulted in cognitive performance that was no better than that of mice fed a standard diet. In NT mice, the high omega-3 diet increased cortical levels of omega-3 fatty acids while decreasing omega-6 levels. However, the high omega-3 diet had no effect on cortical fatty acid levels in Tg mice. Irrespective of diet, no correlations existed between brain omega-3 levels and cognitive performance for individual NT or Tg mice. In contrast, brain levels of omega-6 fatty acids were strongly correlated with cognitive impairment for both genotypes. Thus, elevated brain levels of omega-3 fatty acids were not relevant to cognitive function, whereas high brain levels of omega-6 were associated with impaired cognitive function. In Tg mice, the omega-3 supplemental diet did not induce significant changes in soluble/insoluble Abeta within the hippocampus, although strong correlations were evident between hippocampal Abeta(1-40) levels and cognitive impairment. While these studies involved a genetically manipulated

  5. Data on gender and subgroup specific analyses of omega-3 fatty acids in the Ludwigshafen Risk and Cardiovascular Health Study.

    PubMed

    Kleber, Marcus E; Delgado, Graciela E; Lorkowski, Stefan; März, Winfried; von Schacky, Clemens

    2016-09-01

    This paper contains additional data related to the research article "Omega-3 fatty acids and mortality in patients referred for coronary angiography - The Ludwigshafen Risk and Cardiovascular Health Study" (Kleber et al., in press) [1]. The data shows characteristics of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study according to tertiles of omega-3 fatty acids as well as stratified by gender. The association of proportions of omega-3 fatty acids measured in erythrocyte membranes with different causes of death is investigated with a special focus on modeling the association of EPA with mortality in a nonlinear way. Further, the association of omega-3 fatty acids with all-cause mortality adjusted for high-sensitive C-reactive protein as a marker of systemic inflammation is examined as well as the association of EPA with cause-specific death. PMID:27570810

  6. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    DOE PAGESBeta

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; Inmon, Jay J.; Millhollon, Jon C.; Liechty, Zach; Page, Justin T.; Jenks, Matthew A.; Chapman, Kent D.; Udall, Joshua A.; et al

    2014-11-18

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior

  7. Serum long-chain omega-3 polyunsaturated fatty acids and risk of orthostatic hypotension.

    PubMed

    Nyantika, Asenath N; Tuomainen, Tomi-Pekka; Kauhanen, Jussi; Voutilainen, Sari; Virtanen, Jyrki K

    2016-07-01

    Long-chain omega-3 polyunsaturated fatty acids (PUFAs) from fish have been shown to lower blood pressure. However, there is little information about the association with orthostatic hypotension, for which hypertension is a risk factor. We investigated the associations between serum long-chain omega-3 PUFAs and orthostatic hypotension in 1666 middle-aged or older men and women free of cardiovascular disease (CVD), diabetes or hypertension in 1998-2001 in the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD) in eastern Finland. We also investigated the associations with mercury exposure, a major source of which is fish, and which has been associated with higher CVD risk in KIHD. Orthostatic hypotension was defined as decrease in systolic blood pressure of at least 20 mm Hg or diastolic blood pressure of at least 10 mm Hg within 1 min of standing. Orthostatic hypotension was found in 146 participants (8.8%). The mean serum concentrations were 1.67% (s.d. 0.92) for eicosapentaenoic acid, 0.79% (s.d. 0.16) for docosapentaenoic acid (DPA) and 2.78 (s.d. 0.92) for docosahexaenoic acid of all serum fatty acids. The mean pubic hair mercury concentration was 1.5 μg g(-1) (s.d. 1.6). We did not find statistically significant associations between the serum long-chain omega-3 PUFAs or pubic hair mercury and risk of orthostatic hypotension, except for DPA. Those in the highest vs. the lowest serum DPA tertile had multivariate-adjusted 41% lower odds for orthostatic hypotension (95% confidence interval 7-63%, P-trend=0.02). Serum long-chain omega-3 PUFAs or mercury exposure were not associated with the risk of orthostatic hypotension, except for the inverse association with DPA. PMID:26911234

  8. Omega-3 fatty acids prevent early-life antibiotic exposure-induced gut microbiota dysbiosis and later-life obesity.

    PubMed

    Kaliannan, K; Wang, B; Li, X-Y; Bhan, A K; Kang, J X

    2016-06-01

    Early-life antibiotic exposure can disrupt the founding intestinal microbial community and lead to obesity later in life. Recent studies show that omega-3 fatty acids can reduce body weight gain and chronic inflammation through modulation of the gut microbiota. We hypothesize that increased tissue levels of omega-3 fatty acids may prevent antibiotic-induced alteration of gut microbiota and obesity later in life. Here, we utilize the fat-1 transgenic mouse model, which can endogenously produce omega-3 fatty acids and thereby eliminates confounding factors of diet, to show that elevated tissue levels of omega-3 fatty acids significantly reduce body weight gain and the severity of insulin resistance, fatty liver and dyslipidemia resulting from early-life exposure to azithromycin. These effects were associated with a reversal of antibiotic-induced dysbiosis of gut microbiota in fat-1 mice. These results demonstrate the beneficial effects of omega-3 fatty acids on antibiotic-induced gut dysbiosis and obesity, and suggest the potential utility of omega-3 supplementation as a safe and effective means for the prevention of obesity in children who are exposed to antibiotics. PMID:26876435

  9. Efficacy and Safety of Omega-3/6 Fatty Acids, Methylphenidate, and a Combined Treatment in Children With ADHD.

    PubMed

    Barragán, Eduardo; Breuer, Dieter; Döpfner, Manfred

    2014-01-24

    Objective: To compare efficacy of Omega-3/6 fatty acids (Equazen eye q™) with methylphenidate (MPH) and combined MPH + Omega-3/6 in children with ADHD. Method: Participants (N = 90) were randomized to Omega-3/6, long-acting MPH, or combination for 12 months. ADHD symptoms were assessed using the ADHD Rating Scale and Clinical Global Impressions-Severity (CGI-S) scale. Results: ADHD symptoms decreased in all treatment arms. Although significant differences favoring Omega + MPH over Omega-3/6 alone were found for ADHD Total and Hyperactivity-Impulsivity subscales, results on the Inattention subscale were similar. CGI-S scores decreased slowly and consistently with Omega-3/6, compared with a rapid decrease and subsequent slight increase in the MPH-containing arms. Adverse events were numerically less frequent with Omega-3/6 or MPH + Omega-3/6 than MPH alone. Conclusion: The tested combination of Omega-3/6 fatty acids had similar effects to MPH, whereas the MPH + Omega combination appeared to have some tolerability benefits over MPH. PMID:24464327

  10. Pork as a Source of Omega-3 (n-3) Fatty Acids.

    PubMed

    Dugan, Michael E R; Vahmani, Payam; Turner, Tyler D; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D; Zijlstra, Ruurd T; Patience, John F; Aalhus, Jennifer L

    2015-01-01

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority. PMID:26694475

  11. Role of Long-Chain Omega-3 Fatty Acids in Psychiatric Practice.

    PubMed

    McNamara, Robert K; Strawn, Jeffrey R

    2013-04-01

    Nutrition plays a minor role in psychiatric practice which is currently dominated by a pharmacological treatment algorithm. An accumulating body of evidence has implicated deficits in the dietary essential long-chain omega-3 (LCn-3) fatty acids, eicosapenaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology of several major psychiatric disorders. LCn-3 fatty acids have an established long-term safety record in the general population, and existing evidence suggests that increasing LCn-3 fatty acid status may reduce the risk for cardiovascular disease morbidity and mortality. LCn-3 fatty acid supplementation has been shown to augment the therapeutic efficacy of antidepressant, mood-stabilizer, and second generation antipsychotic medications, and may additionally mitigate adverse cardiometabolic side-effects. Preliminary evidence also suggests that LCn-3 fatty acid supplementation may be efficacious as monotherapy for primary and early secondary prevention and for perinatal symptoms. The overall cost-benefit ratio endorses the incorporation of LCn-3 fatty acids into psychiatric treatment algorithms. The recent availability of laboratory facilities that specialize in determining blood LCn-3 fatty acid status and emerging evidence-based consensus guidelines regarding safe and efficacious LCn-3 fatty acid dose ranges provide the infrastructure necessary for implementation. This article outlines the rationale for incorporating LCn-3 fatty acid treatment into psychiatric practice. PMID:23607087

  12. Pork as a Source of Omega-3 (n-3) Fatty Acids

    PubMed Central

    Dugan, Michael E.R.; Vahmani, Payam; Turner, Tyler D.; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D.; Zijlstra, Ruurd T.; Patience, John F.; Aalhus, Jennifer L.

    2015-01-01

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority. PMID:26694475

  13. Mercury concentrations and omega-3 fatty acids in fish and shrimp: Preferential consumption for maximum health benefits.

    PubMed

    Smith, Katrina L; Guentzel, Jane L

    2010-09-01

    The consumption of fish and shrimp containing omega-3 fatty acids can result in protective health effects including a reduced risk of cardiovascular disease, stroke, and diabetes. These protective effects may be decreased by the presence of mercury in the muscle tissue of fish and shellfish. Mercury can increase the risk of cardiovascular problems and impede neurological development. The objective of this project was to determine appropriate consumption amounts of selected fish species and shrimp based on mercury levels and recommended intake levels of omega-3 fatty acids. Species that are high in omega-3s and low in mercury include salmon, trout, and shrimp. Species with both high levels of mercury and omega-3 fatty acids include tuna, shark, and halibut, swordfish, and sea bass. PMID:20633905

  14. Differential effects of omega-3 and omega-6 Fatty acids on gene expression in breast cancer cells.

    PubMed

    Hammamieh, Rasha; Chakraborty, Nabarun; Miller, Stacy-Ann; Waddy, Edward; Barmada, Mohsen; Das, Rina; Peel, Sheila A; Day, Agnes A; Jett, Marti

    2007-01-01

    Essential fatty acids have long been identified as possible oncogenic factors. Existing reports suggest omega-6 (omega-6) essential fatty acids (EFA) as pro-oncogenic and omega-3 (omega-3) EFA as anti-oncogenic factors. The omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), inhibit the growth of human breast cancer cells while the omega-6 fatty acids induces growth of these cells in animal models and cell lines. In order to explore likely mechanisms for the modulation of breast cancer cell growth by omega-3 and omega-6 fatty acids, we examined the effects of arachidonic acid (AA), linoleic acid (LA), EPA and DHA on human breast cancer cell lines using cDNA microarrays and quantitative polymerase chain reaction. MDA-MB-231, MDA-MB-435s, MCF-7 and HCC2218 cell lines were treated with the selected fatty acids for 6 and 24 h. Microarray analysis of gene expression profiles in the breast cancer cells treated with both classes of fatty acids discerned essential differences among the two classes at the earlier time point. The differential effects of omega-3 and omega-6 fatty acids on the breast cancer cells were lessened at the late time point. Data mining and statistical analyses identified genes that were differentially expressed between breast cancer cells treated with omega-3 and omega-6 fatty acids. Ontological investigations have associated those genes to a broad spectrum of biological functions, including cellular nutrition, cell division, cell proliferation, metastasis and transcription factors etc., and thus presented an important pool of biomarkers for the differential effect of omega-3 and omega-6EFAs. PMID:16823509

  15. The Effects of Phosphatidylserine and Omega-3 Fatty Acid-Containing Supplement on Late Life Depression

    PubMed Central

    Komori, Teruhisa

    2015-01-01

    Late life depression is often associated with a poor response to antidepressants; therefore an alternative strategy for therapy is required. Although several studies have reported that phosphatidylserine (PS) may be effective for late life depression and that omega-3 fatty acids DHA and EPA have also proven beneficial for many higher mental functions, including depression, no concrete conclusion has been reached. This study was performed to clarify the effect of PS and omega-3 fatty acid-containing supplement for late life depression by not only clinical evaluation but also salivary cortisol levels. Eighteen elderly subjects with major depression were selected for the study. In all, insufficient improvement had been obtained by antidepressant therapy for at least 6 months. The exclusion criteria from prior brain magnetic resonance images (MRI) included the presence of structural MRI findings compatible with stroke or other gross brain lesions or malformations, but not white matter hypersensitivities. They took a supplement containing PS 100 mg, DHA 119 mg and EPA 70 mg three times a day for 12 weeks. The effects of the supplement were assessed using the 17-item Hamilton depression scale (HAM-D17) and the basal levels and circadian rhythm of salivary cortisol. The study adopted them as indices because: salivary cortisol levels are high in patients with depression, their circadian rhythm related to salivary cortisol is often irregular, and these symptoms are alleviated as depression improves. The mean HAM-D17 in all subjects taking the supplement was significantly improved after 12 weeks of taking the supplement. These subjects were divided into 10 non-responders and 8 responders. The basal levels and circadian rhythm of salivary cortisol were normalized in the responders while not in non-responders. PS and omega-3 fatty acids, or other elements of the supplement, may be effective for late life depression, associated with the correction of basal levels and circadian

  16. Inhibitory activities of omega-3 Fatty acids and traditional african remedies on keloid fibroblasts.

    PubMed

    Olaitan, Peter B; Chen, I-Ping; Norris, James E C; Feinn, Richard; Oluwatosin, Odunayo M; Reichenberger, Ernst J

    2011-04-01

    Keloids develop when scar tissue responds to skin trauma with proliferative fibrous growths that extend beyond the boundaries of the original wound and progress for several months or years. Keloids most frequently occur in individuals of indigenous sub-Saharan African origin. The etiology for keloids is still unknown and treatment can be problematic as patients respond differently to various treatment modalities. Keloids have a high rate of recurrence following surgical excision. Some West African patients claim to have had successful outcomes with traditional African remedies-boa constrictor oil (BCO) and shea butter-leading the authors to investigate their effects on cultured fibroblasts. The effects of emulsions of BCO, fish oil, isolated omega-3 fatty acids, and shea butter were tested in comparison to triamcinolone regarding inhibition of cell growth in keloid and control fibroblast cultures. In a series of controlled studies, it was observed that fish oil and BCO were more effective than triamcinolone, and that cis-5, 8, 11, 14, 17-eicosapentaenoic acid was more effective than -linolenic acid. While cell counts in control cultures continuously decreased over a period of 5 days, cell counts in keloid cultures consistently declined between day 1 and day 3, and then increased between day 3 and day 5 for all tested reagents except for fish oil. These results suggest that oils rich in omega-3 fatty acids may be effective in reducing actively proliferating keloid fibroblasts. Additional studies are warranted to investigate whether oils rich in omega-3 fatty acids offer effective and affordable treatment for some keloid patients, especially in the developing world. PMID:24489452

  17. Omega-3 fatty acids and cardiovascular disease: new developments and applications.

    PubMed

    Harris, William S; Dayspring, Thomas D; Moran, Terrance J

    2013-11-01

    The omega-3 fatty acids (FA) found in fish oils, eicosapentaenoic and docosahexaenoic acids (EPA and DHA, respectively), have been extensively studied therapeutically in a wide variety of disease conditions, but in none more than cardiovascular disease (CVD). Our review summarizes mechanisms of action, recent meta-analyses of CVD outcome trials, sources (fish and supplements), and recommendations for use of omega-3 FA in clinical practice. With the ability to now measure the omega-3 FA biostatus through blood tests, patients can achieve cardioprotective levels by either taking fish oil supplements or simply eating more oily fish. Two omega-3 FA formulations (both in the ethyl ester form) have been approved by the US Food and Drug Administration (FDA) for the treatment of patients with very high triglyceride levels (> 500 mg/dL); one contains both EPA and DHA, whereas the other contains only EPA. The agents have been extensively tested in 2 patient populations, those with very high triglycerides and those with triglycerides between 200 and 500 mg/dL while on background statin therapy. In general, treatment with EPA+DHA appears to lower patient triglycerides more effectively, but in those patients with very high triglyceride levels, use of EPA+DHA also raised low-density lipoprotein cholesterol levels, whereas EPA alone did not. Both formulations, at doses that do not lower triglycerides, have been shown to reduce CVD events in some, but not all, studies. Given the favorable risk-to-benefit ratio for these essentially nutritional agents, use is expected to continue to expand. PMID:24200766

  18. Marine-derived omega-3 fatty acids: fishing for clues for cancer prevention.

    PubMed

    Fabian, Carol J; Kimler, Bruce F

    2013-01-01

    Omega-3 fatty acids (FA) are polyunsaturated essential FA with anti-inflammatory properties. The most potent are the marine-derived eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which counteract the pro-inflammatory omega-6 FA. Americans take in an average of only 100 mg of EPA plus DHA per day resulting in a low omega-3:omega-6 intake ratio of 1:10 favoring inflammation. Cohort and/or case control studies suggest EPA and DHA are promising for breast, colon, and prostate cancer risk reduction. Mechanistic studies largely in preclinical models suggest EPA and DHA reduce synthesis of prostaglandin E2 and other inflammatory cytokines, decrease aromatase activity and proliferation, promote differentiation and apoptosis, and enhance insulin sensitivity. Animal models using 7% to 20% omega-3 added to chow are promising; however, this amount of omega-3 in a diet is unlikely to be acceptable to humans. The optimal EPA:DHA ratio or the lowest effective dose of EPA and DHA for cancer prevention is unclear, but it is likely to be more than 600 mg/day, which is six times the average American intake. Most phase II prevention trials use 1 to 3.3 g of EPA and DHA, which is safe and well tolerated. Two grams of EPA was associated with fewer polyps in individuals with familial adenomatous polyposis in a randomized, placebo-controlled trial. Identification of serum risk biomarkers modulated by EPA and DHA in healthy humans has remained elusive, but phase II prevention trials with tissue obtained for risk and response biomarkers are ongoing. PMID:23714467

  19. Omega-3 fatty acids differentially modulate enzymatic anti-oxidant systems in skeletal muscle cells.

    PubMed

    da Silva, E P; Nachbar, R T; Levada-Pires, A C; Hirabara, S M; Lambertucci, R H

    2016-01-01

    During physical activity, increased reactive oxygen species production occurs, which can lead to cell damage and in a decline of individual's performance and health. The use of omega-3 polyunsaturated fatty acids as a supplement to protect the immune system has been increasing; however, their possible benefit to the anti-oxidant system is not well described. Thus, the aim of this study was to evaluate whether the omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) can be beneficial to the anti-oxidant system in cultured skeletal muscle cells. C2C12 myocytes were differentiated and treated with either eicosapentaenoic acid or docosahexaenoic acid for 24 h. Superoxide content was quantified using the dihydroethidine oxidation method and superoxide dismutase, catalase, and glutathione peroxidase activity, and expression was quantified. We observed that the docosahexaenoic fatty acids caused an increase in superoxide production. Eicosapentaenoic acid induced catalase activity, while docosahexaenoic acid suppressed superoxide dismutase activity. In addition, we found an increased protein expression of the total manganese superoxide dismutase and catalase enzymes when cells were treated with eicosapentaenoic acid. Taken together, these data indicate that the use of eicosapentaenoic acid may present both acute and chronic benefits; however, the treatment with DHA may not be beneficial to muscle cells. PMID:26386577

  20. Omega-3 fatty acids for the treatment of non-alcoholic fatty liver disease

    PubMed Central

    Di Minno, Matteo Nicola Dario; Russolillo, Anna; Lupoli, Roberta; Ambrosino, Pasquale; Di Minno, Alessandro; Tarantino, Giovanni

    2012-01-01

    Non-alcoholic fatty liver disease (NAFLD) has been recognized as a major health burden. It is the most important cause of chronic liver disease and a major independent cardiovascular risk factor. Lacking a definite treatment for NAFLD, a specific diet and an increase in physical activity represent the most commonly used therapeutic approaches. In this review, major literature data about the use of omega-3 polyunsaturated fatty acids (n-3 PUFAs) as a potential treatment of NAFLD have been described. n-3 PUFAs, besides having a beneficial impact on most of the cardio-metabolic risk factors (hypertension, hyperlipidemia, endothelial dysfunction and atherosclerosis) by regulating gene transcription factors [i.e., peroxisome proliferator-activated receptor (PPAR) α, PPARγ, sterol regulatory element-binding protein-1, carbohydrate responsive element-binding protein], impacts both lipid metabolism and on insulin sensitivity. In addition to an enhancement of hepatic beta oxidation and a decrease of the endogenous lipid production, n-3 PUFAs are able to determine a significant reduction of the expression of pro-inflammatory molecules (tumor necrosis factor-α and interleukin-6) and of oxygen reactive species. Further strengthening the results of the in vitro studies, both animal models and human intervention trials, showed a beneficial effect of n-3 PUFAs on the severity of NAFLD as expressed by laboratory parameters and imaging measurements. Despite available results provided encouraging data about the efficacy of n-3 PUFAs as a treatment of NAFLD in humans, well-designed randomized controlled trials of adequate size and duration, with histological endpoints, are needed to assess the long-term safety and efficacy of PUFA, as well as other therapies, for the treatment of NAFLD and non-alcoholic steatohepatitis patients. It is worthwhile to consider that n-3 PUFAs cannot be synthesized by the human body and must be derived from exogenous sources (fish oil, flaxseeds, olive

  1. Omega-3 and dyslexia

    PubMed Central

    Zelcer, Michal; Goldman, Ran D.

    2015-01-01

    Abstract Question In light of the increase in the number of school-aged children diagnosed with dyslexia, what is the role of omega-3 supplements in the management of this condition? Answer Dyslexia is the most common learning disability and is known to have multifactorial causes. Recent evidence suggests that there is a connection between defects in highly unsaturated fatty acid metabolism and neurodevelopmental disorders such as dyslexia. While the benefit of omega-3 supplementation for children with dyslexia has been studied, evidence remains limited. Unified diagnostic criteria for dyslexia, objective measures of fatty acid deficiency, and close monitoring of dietary intake are some of the factors that would improve the quality of research in the field. PMID:26371100

  2. Chronic Omega-3 Polyunsaturated Fatty Acid Treatment Variably Affects Cellular Repolarization in a Healed Post-MI Arrhythmia Model

    PubMed Central

    Bonilla, Ingrid M.; Nishijima, Yoshinori; Vargas-Pinto, Pedro; Baine, Stephen H.; Sridhar, Arun; Li, Chun; Billman, George E.; Carnes, Cynthia A.

    2016-01-01

    Introduction: Over the last 40 years omega-3 polyunsaturated fatty acids (PUFAs) have been shown to be anti-arrhythmic or pro-arrhythmic depending on the method and duration of administration and model studied. We previously reported that omega-3 PUFAs do not confer anti-arrhythmic properties and are pro-arrhythmic in canine model of sudden cardiac death (SCD). Here, we evaluated the effects of chronic omega-3 PUFA treatment in post-MI animals susceptible (VF+) or resistant (VF−) to ventricular tachyarrhythmias. Methods: Perforated patch clamp techniques were used to measure cardiomyocyte action potential durations (APD) at 50 and 90% repolarization and short term variability of repolarization. The early repolarizing transient outward potassium current Ito was also studied. Results: Omega-3 PUFAs prolonged the action potential in VF− myocytes at both 50 and 90% repolarization. Short term variability of repolarization was increased in both untreated and treated VF− myocytes vs. controls. Ito was unaffected by omega-3 PUFA treatment. Omega-3 PUFA treatment attenuated the action potential prolongation in VF+ myocytes, but did not return repolarization to control values. Conclusions: Omega-3 PUFAs do not confer anti-arrhythmic properties in the setting of healed myocardial infarction in a canine model of SCD. In canines previously resistant to ventricular fibrillation (VF−), omega-3 PUFA treatment prolonged the action potential in VF− myocytes, and may contribute to pro-arrhythmic responses. PMID:27378936

  3. Pancreatic islet function in omega3 fatty acid-depleted rats: Glucose metabolism and nutrient-stimulated insulin release.

    PubMed

    Oguzhan, Berrin; Zhang, Ying; Louchami, Karim; Courtois, Philippe; Portois, Laurence; Chardigny, Jean-Michel; Malaisse, Willy J; Carpentier, Yvon A; Sener, Abdullah

    2006-06-01

    In order to gain information on the determinism of the perturbation of fuel homeostasis in situations characterized by a depletion in long-chain polyunsaturated omega3 fatty acids (omega3), the metabolic and hormonal status of omega3-depleted rats (second generation) was examined. When required, these rats were injected intravenously 120 min before sacrifice with a novel medium-chain triglyceride-fish oil emulsion able to provoke a rapid and sustained increase of the omega3 content in cell phospholipids. The measurement of plasma glucose, insulin, phospholipid, triglyceride, and unesterified fatty acid concentration indicated modest insulin resistance in the omega3-depleted rats. The plasma triglyceride and phospholipid concentrations were decreased in the omega3-depleted rats with abnormally low contribution of omega3 in both circulating and pancreatic islet lipids. The protein, insulin, and lipid content of the islets, as well as their intracellular and extracellular spaces, were little affected in the omega3-depleted rats. The metabolism of D-glucose in the islets of omega3-depleted rats was characterized by a lesser increase in D-[5-3H]glucose utilization and D-[U-14C]glucose oxidation in response to a given rise in hexose concentration and an abnormally low ratio between D-glucose oxidation and utilization. These abnormalities could be linked to an increased metabolism of endogenous fatty acids with resulting alteration of glucokinase kinetics. The release of insulin evoked by D-glucose, at a close-to-physiological concentration (8.3 mM), was increased in the omega3-depleted rats, this being considered as consistent with their insulin resistance. Relative to such a release, that evoked by a further rise in D-glucose concentration or by non-glucidic nutrients was abnormally high in omega3-depleted rats, and restored to a normal level after of the intravenous injection of the omega3-rich medium-chain triglyceride-fish oil emulsion. Because the latter procedure

  4. EFFECT OF OMEGA-3 FATTY ACID IN THE HEALING PROCESS OF COLONIC ANASTOMOSIS IN RATS

    PubMed Central

    de CASTILHO, Tiago Jacometo Coelho; CAMPOS, Antônio Carlos Ligocki; MELLO, Eneri Vieira de Souza Leite

    2015-01-01

    Background : The use of long-chain polyunsaturated fatty acids has been studied in the context of healing and tissue regeneration mainly due to its anti-inflammatory, immunoregulatory and antioncogenic properties. Previous studies have demonstrated beneficial effects with the use of enteral immunonutrition containing various farmaconutrients such as L-arginine, omega-3, trace elements, but the individual action of each component in the healing of colonic anastomosis remains unclear. Aim : To evaluate the influence of preoperative supplementation with omega-3 fatty acids on the healing of colonic anastomoses of well-nourished rats. Methods : Forty Wistar adult male rats, weighing 234.4±22.3 g were used. The animals were divided into two groups: the control group received for seven days olive oil rich in omega-9 oil through an orogastric tube, while the study group received isocaloric and isovolumetric omega-3 emulsion at a dose of 100 mg/kg/day, also for seven days. Both groups were submitted to two colotomies followed by anastomosis, in the right and left colon, respectively. Parameters evaluated included changes in body weight, anastomotic complications and mortality, as well as maximum tensile strength by using a tensiometer and collagen densitometry at the anastomotic site. Results : There were no differences in body weight or mortality and morbidity between groups. The value of the maximum tensile strength of the control group was 1.9±0.3 N and the study group 1.7±0.2, p=0.357. There was, however, a larger amount of type I collagen deposition in the study group (p=0.0126). The collagen maturation índex was 1.74±0.71 in the control group and 1.67±0.5 in the study group; p=0,719). Conclusions : Preoperative supplementation of omega-3 fatty acid in rats is associated with increased collagen deposition of type I fibers in colonic anastomoses on the 5th postoperative day. No differences were observed in the tensile strength or collagen maturation index. PMID

  5. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    SciTech Connect

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-02-15

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6{omega}-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-{kappa}B (NF-{kappa}B). A{sub 4}/J{sub 4}-neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH{sub 4}), which concurrently abrogated A{sub 4}/J{sub 4}-NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A{sub 4}/J{sub 4} NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5{omega}-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A{sub 4}/J{sub 4}-NPs as mediators of omega-3 fatty acid-mediated protection against the

  6. Effect of a diet enriched with omega-6 and omega-3 fatty acids on the pig liver transcriptome.

    PubMed

    Szostak, Agnieszka; Ogłuszka, Magdalena; Te Pas, Marinus F W; Poławska, Ewa; Urbański, Paweł; Juszczuk-Kubiak, Edyta; Blicharski, Tadeusz; Pareek, Chandra Shekhar; Dunkelberger, Jenelle R; Horbańczuk, Jarosław O; Pierzchała, Mariusz

    2016-01-01

    The optimal ratio of omega-6 to omega-3 polyunsaturated fatty acids (PUFAs) is important for keeping the homeostasis of biological processes and metabolism, yet the underlying biological mechanism is poorly understood. The objective of this study was to identify changes in the pig liver transcriptome induced by a diet enriched with omega-6 and omega-3 fatty acids and to characterize the biological mechanisms related to PUFA metabolism. Polish Landrace pigs (n = 12) were fed diet enriched with linoleic acid (LA, omega-6) and α-linolenic acid (ALA, omega-3) or standard diet as a control. The fatty acid profiling was assayed in order to verify how feeding influenced the fatty acid content in the liver, and subsequently next-generation sequencing (NGS) was used to identify differentially expressed genes (DEG) between transcriptomes between dietary groups. The biological mechanisms and pathway interaction networks were identified using DAVID and Cytoscape tools. Fatty acid profile analysis indicated a higher contribution of PUFAs in the liver for LA- and ALA-enriched diet group, particularly for the omega-3 fatty acid family, but not omega-6. Next-generation sequencing identified 3565 DEG, 1484 of which were induced and 2081 were suppressed by PUFA supplementation. A low ratio of omega-6/omega-3 fatty acids resulted in the modulation of fatty acid metabolism pathways and over-representation of genes involved in energy metabolism, signal transduction, and immune response pathways. In conclusion, a diet enriched with omega-6 and omega-3 fatty acids altered the transcriptomic profile of the pig liver and would influence animal health status. PMID:27482299

  7. Omega-3 Fatty Acids Inhibit Tumor Growth in a Rat Model of Bladder Cancer

    PubMed Central

    Parada, Belmiro; Reis, Flávio; Cerejo, Raquel; Garrido, Patrícia; Sereno, José; Xavier-Cunha, Maria; Neto, Paula; Mota, Alfredo; Figueiredo, Arnaldo; Teixeira, Frederico

    2013-01-01

    Omega-3 (ω-3) fatty acids have been tested on prevention and treatment of several cancer types, but the efficacy on “in vivo” bladder cancer has not been analyzed yet. This study aimed at evaluating the chemopreventive efficacy of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) mixture in an animal model of bladder cancer. Forty-four male Wistar rats were divided into 4 groups during a 20-week protocol: control; carcinogen—N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN); ω-3 (DHA + EPA); and ω-3 + BBN. BBN and ω-3 were given during the initial 8 weeks. At week 20 blood and bladder were collected and checked for the presence of urothelium lesions and tumors, markers of inflammation, proliferation, and redox status. Incidence of bladder carcinoma was, control (0%), ω-3 (0%), BBN (65%), and ω-3 + BBN (62.5%). The ω-3 + BBN group had no infiltrative tumors or carcinoma in situ, and tumor volume was significantly reduced compared to the BBN (0.9 ± 0.1 mm3 versus 112.5 ± 6.4 mm3). Also, it showed a reduced MDA/TAS ratio and BBN-induced serum CRP, TGF-β1, and CD31 were prevented. In conclusion, omega-3 fatty acids inhibit the development of premalignant and malignant lesions in a rat model of bladder cancer, which might be due to anti-inflammatory, antioxidant, anti-proliferative, and anti-angiogenic properties. PMID:23865049

  8. Long-chain Omega-3 Fatty Acids and Optimization of Cognitive Performance

    PubMed Central

    Muldoon, Matthew F.; Ryan, Christopher M.; Yao, Jeffrey K.; Conklin, Sarah M.; Manuck, Stephen B.

    2016-01-01

    Low consumption of the omega-3 fatty acids, eicosapentaenoic (EPA) and docosahexaenonic acids (DHA), is linked to delayed brain development and, in late life, increased risk for Alzheimers Disease. The current review focuses on cognitive functioning during mid-life and summarizes available scientific evidence relevant to the hypothesis that adequate dietary consumption of the long-chain, omega-3 fatty acids is necessary for optimal cognitive performance. Taken together, the findings suggest that raising the currently low consumption among healthy adults may improve some aspects of cognitive performance. Nonetheless, evidence from randomized clinical trials is comparatively sparse and leaves unclear: a) whether such effects are clinically significant, b) whether effects of EPA and DHA differ, c) which dimensions of cognitive function are affected, d) the dose-response relationships, or e) the time course of the response. Clarification of these issues through both laboratory and clinical investigations is a priority given the broad implications for public health, as well as for military personnel and other positions of high performance demand and responsibility. PMID:25373092

  9. Separation of dietary omega-3 and omega-6 fatty acids in food by capillary electrophoresis.

    PubMed

    Soliman, Laiel C; Donkor, Kingsley K; Church, John S; Cinel, Bruno; Prema, Dipesh; Dugan, Michael E R

    2013-10-01

    A lower dietary omega-6/omega-3 (n-6/n-3) fatty acid ratio (<4) has been shown to be beneficial in preventing a number of chronic illnesses. Interest exists in developing more rapid and sensitive analytical methods for profiling fatty acid levels in foods. An aqueous CE method was developed for the simultaneous determination of 15 n-3 and n-6 relevant fatty acids. The effect of pH and concentration of buffer, type and concentration of organic modifier, and additive on the separation was investigated in order to determine the best conditions for the analysis. Baseline separations of the 15 fatty acids were achieved using 40 mM borate buffer at pH 9.50 containing 50 mM SDS, 10 mM β-cyclodextrin, and 10% acetonitrile. The developed CE method has LODs of <5 mg/L and good linearity (R(2) > 0.980) for all fatty acids studied. The proposed method was successfully applied to the determination of n-3 and n-6 fatty acids in flax seed, Udo® oils and a selection of grass-fed and grain-fed beef muscle samples. PMID:23943402

  10. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity.

    PubMed

    Gupta, Adarsha; Singh, Dilip; Byreddy, Avinesh R; Thyagarajan, Tamilselvi; Sonkar, Shailendra P; Mathur, Anshu S; Tuli, Deepak K; Barrow, Colin J; Puri, Munish

    2016-03-01

    The marine environment harbours a vast diversity of microorganisms, many of which are unique, and have potential to produce commercially useful materials. Therefore, marine biodiversity from Australian and Indian habitat has been explored to produce novel bioactives, and enzymes. Among these, thraustochytrids collected from Indian habitats were shown to be rich in saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), together constituting 51-76% of total fatty acids (TFA). Indian and Australian thraustochytrids occupy separate positions in the dendrogram, showing significant differences exist in the fatty acid profiles in these two sets of thraustochytrid strains. In general, Australian strains had a higher docosahexaenoic acid (DHA) content than Indian strains with DHA at 17-31% of TFA. A range of enzyme activities were observed in the strains, with Australian strains showing overall higher levels of enzyme activity, with the exception of one Indian strain (DBTIOC-1). Comparative analysis of the fatty acid profile of 34 strains revealed that Indian thraustochytrids are more suitable for biodiesel production since these strains have higher fatty acids content for biodiesel (FAB, 76%) production than Australian thraustochytrids, while the Australian strains are more suitable for omega-3 (40%) production. PMID:26580151

  11. Gastrointestinal bleeding after high intake of omega-3 fatty acids, cortisone and antibiotic therapy: a case study.

    PubMed

    Detopoulou, Paraskevi; Papamikos, Vasilios

    2014-06-01

    Omega-3 fatty acids exert a plethora of physiological actions including triglycerides lowering, reduction of inflammatory indices, immunomodulation, anti- thrombotic effects and possibly promotion of exercise performance. Their use is widespread and for commonly ingested doses their side- effects are minimal. We report a case of a 60 y amateur athlete who consumed about 20 g omega-3 fatty acids daily from supplements and natural sources for a year. After the intake of cortisone and antibiotics he presented duodenum ulcer and bleeding although he had no previous history of gastrointestinal problems. Although several animal data support gastro-protective effects of omega-3 fatty acids in the present case they were not able to prevent ulcer generation. The present observation may be explained by (i) the high dose of omega-3 fatty acids and their effect on bleeding, (ii) the fact that cortisone increases their oxidation and may render them proinflammatory, (iii) other antithrombotic microconstituents included in the consumed cod-oil and/or the diet of the subject and (iv) the differences in the coagulation and fibrinolytic systems of well- trained subjects. Further studies are needed to substantiate any possible interaction of cortisone and omega-3 fatty acids in wide ranges of intake. PMID:24281788

  12. Combination of omega-3 Fatty acids, lithium, and aripiprazole reduces oxidative stress in brain of mice with mania.

    PubMed

    Arunagiri, Pandiyan; Rajeshwaran, Krishnamoorthy; Shanthakumar, Janakiraman; Tamilselvan, Thangavel; Balamurugan, Elumalai

    2014-09-01

    Manic episode in bipolar disorder (BD) was evaluated in the present study with supplementation of omega-3 fatty acids in combination with aripiprazole and lithium on methylphenidate (MPD)-induced manic mice model. Administration of MPD 5 mg/kg bw intraperitoneally (i.p.) caused increase in oxidative stress in mice brain. To retract this effect, supplementation of omega-3 fatty acids 1.5 ml/kg (p.o.), aripiprazole 1.5 mg/kg bw (i.p.), and lithium 50 mg/kg bw (p.o) were given to mice. Omega-3 fatty acids alone and in combination with aripiprazole- and lithium-treated groups significantly reduced the levels of superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation products (thiobarbituric acid reactive substances) in the brain. MPD treatment significantly decreased the reduced glutathione (GSH) level and glutathione peroxidase (GPx) activity, and they were restored by supplementation of omega-3 fatty acids with aripiprazole and lithium. There is no remarkable difference in the effect of creatine kinase (CK) activity between MPD-induced manic model and the treatment groups. Therefore, our results demonstrate that oxidative stress imbalance and mild insignificant CK alterations induced by administration of MPD can be restored back to normal physiological levels through omega-3 fatty acids combined with lithium and aripiprazole that attributes to effective prevention against mania in adult male Swiss albino mice. PMID:25035188

  13. Qualitative analysis of hippocampal plastic changes in rats with epilepsy supplemented with oral omega-3 fatty acids.

    PubMed

    Cysneiros, Roberta M; Ferrari, Danuza; Arida, Ricardo M; Terra, Vera C; de Almeida, Antonio-Carlos G; Cavalheiro, Esper A; Scorza, Fulvio A

    2010-01-01

    Studies have provided evidence of the important effects of omega-3 fatty acid on the brain in neurological conditions, including epilepsy. Previous data have indicated that omega-3 fatty acids lead to prevention of status epilepticus-associated neuropathological changes in the hippocampal formation of rats with epilepsy. Omega-3 fatty acid supplementation has resulted in extensive preservation of GABAergic cells in animals with epilepsy. This study investigated the interplay of these effects with neurogenesis and brain-derived neurotrophic factor (BDNF). The results clearly showed a positive effect of long-term omega-3 fatty acid supplementation on brain plasticity in animals with epilepsy. Enhanced hippocampal neurogenesis and BDNF levels and preservation of interneurons expressing parvalbumin were observed. Parvalbumin-positive cells were identified as surviving instead of newly formed cells. Additional investigations are needed to determine the electrophysiological properties of the newly formed cells and to clarify whether the effects of omega-3 fatty acids on brain plasticity are accompanied by functional gain in animals with epilepsy. PMID:19969506

  14. Increased production of omega-3 fatty acids protects retinal ganglion cells after optic nerve injury in mice.

    PubMed

    Peng, Shanshan; Shi, Zhe; Su, Huanxing; So, Kwok-Fai; Cui, Qi

    2016-07-01

    Injury to the central nervous system causes progressive degeneration of injured axons, leading to loss of the neuronal bodies. Neuronal survival after injury is a prerequisite for successful regeneration of injured axons. In this study, we investigated the effects of increased production of omega-3 fatty acids and elevation of cAMP on retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) crush injury in adult mice. We found that increased production of omega-3 fatty acids in mice enhanced RGC survival, but not axonal regeneration, over a period of 3 weeks after ON injury. cAMP elevation promoted RGC survival in wild type mice, but no significant difference in cell survival was seen in mice over-producing omega-3 fatty acids and receiving intravitreal injections of CPT-cAMP, suggesting that cAMP elevation protects RGCs after injury but does not potentiate the actions of the omega-3 fatty acids. The observed omega-3 fatty acid-mediated neuroprotection is likely achieved partially through ERK1/2 signaling as inhibition of this pathway by PD98059 hindered, but did not completely block, RGC protection. Our study thus enhances our current understanding of neural repair after CNS injury, including the visual system. PMID:27264241

  15. Dietary lipids from marine unicellular algae enhance the amount of liver and blood omega-3 fatty acids in rats.

    PubMed

    Sukenik, A; Takahashi, H; Mokady, S

    1994-01-01

    The nutritional effect of omega-3 (omega 3) polyenoic fatty acids, originating from marine unicellular algae or from fish oil, on the liver and blood lipids was studied in weanling rats fed for 2 weeks on control or experimental diets. Isolipid experimental diets containing either 10% marine microalgae or algal lipids or fish (capelin) oil substituting part (40%) or all of the soybean oil of the control diet. The algae employed were Nannochloropsis sp. or Isochrysis galbana, which are rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. Cell disruption improved the digestibility of the Nannochloropsis biomass. Diets containing algal meal significantly reduced the relative abundance of arachidonic acid (AA) in the blood and liver lipids and caused a significant increase in the percentage of the omega 3 polyunsaturated fatty acids (PUFA). Feeding Nannochloropsis lipids resulted in a similar effect on the plasma and liver fatty acid pattern as that of a diet containing disrupted cells of Nannochloropsis biomass. In comparison, the response of the plasma and liver lipids to capelin oil was characterized by a further reduction in the abundance of AA and a significant elevation in the percentage of EPA and DHA. These differences are probably due to the variations in the fatty acid composition and not to the fact that omega 3 fatty acids are associated with different lipid classes in these lipid sources. Based on the present study, it is postulated that certain marine unicellular algae can be used as a nutritional source for omega 3 PUFA. PMID:8067689

  16. Omega-6 and omega-3 fatty acids predict accelerated decline of peripheral nerve function in older persons

    PubMed Central

    Lauretani, F.; Bandinelli, S.; Benedetta, B.; Cherubini, A.; Iorio, A. D.; Blè, A.; Giacomini, V.; Corsi, A. M.; Guralnik, J. M.; Ferrucci, L.

    2009-01-01

    Pre-clinical studies suggest that both omega-6 and omega-3 fatty acids have beneficial effects on peripheral nerve function. Rats feed a diet rich in polyunsaturated fatty acids (PUFAs) showed modification of phospholipid fatty acid composition in nerve membranes and improvement of sciatic nerve conduction velocity (NCV). We tested the hypothesis that baseline plasma omega-6 and omega-3 fatty acids levels predict accelerated decline of peripheral nerve function. Changes between baseline and the 3-year follow-up in peripheral nerve function was assessed by standard surface ENG of the right peroneal nerve in 384 male and 443 female participants of the InCHIANTI study (age range: 24–97 years). Plasma concentrations of selected fatty acids assessed at baseline by gas chromatography. Independent of confounders, plasma omega-6 fatty acids and linoleic acid were significantly correlated with peroneal NCV at enrollment. Lower plasma PUFA, omega-6 fatty acids, linoleic acid, ratio omega-6/omega-3, arachidonic acid and docosahexanoic acid levels were significantly predicted a steeper decline in nerve function parameters over the 3-year follow-up. Low plasma omega-6 and omega-3 fatty acids levels were associated with accelerated decline of peripheral nerve function with aging. PMID:17594339

  17. Omega-6 and omega-3 fatty acids predict accelerated decline of peripheral nerve function in older persons.

    PubMed

    Lauretani, F; Bandinelli, S; Bartali, B; Benedetta, B; Cherubini, A; Iorio, A D; Blè, A; Giacomini, V; Corsi, A M; Guralnik, J M; Ferrucci, L

    2007-07-01

    Pre-clinical studies suggest that both omega-6 and omega-3 fatty acids have beneficial effects on peripheral nerve function. Rats feed a diet rich in polyunsaturated fatty acids (PUFAs) showed modification of phospholipid fatty acid composition in nerve membranes and improvement of sciatic nerve conduction velocity (NCV). We tested the hypothesis that baseline plasma omega-6 and omega-3 fatty acids levels predict accelerated decline of peripheral nerve function. Changes between baseline and the 3-year follow-up in peripheral nerve function was assessed by standard surface ENG of the right peroneal nerve in 384 male and 443 female participants of the InCHIANTI study (age range: 24-97 years). Plasma concentrations of selected fatty acids assessed at baseline by gas chromatography. Independent of confounders, plasma omega-6 fatty acids and linoleic acid were significantly correlated with peroneal NCV at enrollment. Lower plasma PUFA, omega-6 fatty acids, linoleic acid, ratio omega-6/omega-3, arachidonic acid and docosahexanoic acid levels were significantly predicted a steeper decline in nerve function parameters over the 3-year follow-up. Low plasma omega-6 and omega-3 fatty acids levels were associated with accelerated decline of peripheral nerve function with aging. PMID:17594339

  18. Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration.

    PubMed

    Model, Camila S; Gomes, Lara M; Scaini, Giselli; Ferreira, Gabriela K; Gonçalves, Cinara L; Rezin, Gislaine T; Steckert, Amanda V; Valvassori, Samira S; Varela, Roger B; Quevedo, João; Streck, Emilio L

    2014-03-01

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidences indicate that omega-3 (ω3) fatty acids play several important roles in brain development and functioning. Moreover, preclinical and clinical evidence suggests roles for ω3 fatty acids in BD. Considering these evidences, the present study aimed to investigate the effects of ω3 fatty acids on locomotor behavior and oxidative stress parameters (TBARS and protein carbonyl content) in brain of rats subjected to an animal model of mania induced by fenproporex. The fenproporex treatment increased locomotor behavior in saline-treated rats under reversion and prevention model, and ω3 fatty acids prevented fenproporex-related hyperactivity. Moreover, fenproporex increased protein carbonyls in the prefrontal cortex and cerebral cortex, and the administration of ω3 fatty acids reversed this effect. Lipid peroxidation products also are increased in prefrontal cortex, striatum, hippocampus and cerebral after fenproporex administration, but ω3 fatty acids reversed this damage only in the hippocampus. On the other hand, in the prevention model, fenproporex increased carbonyl content only in the cerebral cortex, and administration of ω3 fatty acids prevented this damage. Additionally, the administration of fenproporex resulted in a marked increased of TBARS in the prefrontal cortex, hippocampus, striatum and cerebral cortex, and prevent this damage in the prefrontal cortex, hippocampus and striatum. In conclusion, we are able to demonstrate that fenproporex-induced hyperlocomotion and damage through oxidative stress were prevented by ω3 fatty acids. Thus, the ω3 fatty acids may be important adjuvant therapy of bipolar disorder. PMID:24385143

  19. Omega-3 Fatty Acid Status Enhances the Prevention of Cognitive Decline by B Vitamins in Mild Cognitive Impairment.

    PubMed

    Oulhaj, Abderrahim; Jernerén, Fredrik; Refsum, Helga; Smith, A David; de Jager, Celeste A

    2015-01-01

    A randomized trial (VITACOG) in people with mild cognitive impairment (MCI) found that B vitamin treatment to lower homocysteine slowed the rate of cognitive and clinical decline. We have used data from this trial to see whether baseline omega-3 fatty acid status interacts with the effects of B vitamin treatment. 266 participants with MCI aged ≥70 years were randomized to B vitamins (folic acid, vitamins B6 and B12) or placebo for 2 years. Baseline cognitive test performance, clinical dementia rating (CDR) scale, and plasma concentrations of total homocysteine, total docosahexaenoic and eicosapentaenoic acids (omega-3 fatty acids) were measured. Final scores for verbal delayed recall, global cognition, and CDR sum-of-boxes were better in the B vitamin-treated group according to increasing baseline concentrations of omega-3 fatty acids, whereas scores in the placebo group were similar across these concentrations. Among those with good omega-3 status, 33% of those on B vitamin treatment had global CDR scores >0 compared with 59% among those on placebo. For all three outcome measures, higher concentrations of docosahexaenoic acid alone significantly enhanced the cognitive effects of B vitamins, while eicosapentaenoic acid appeared less effective. When omega-3 fatty acid concentrations are low, B vitamin treatment has no effect on cognitive decline in MCI, but when omega-3 levels are in the upper normal range, B vitamins interact to slow cognitive decline. A clinical trial of B vitamins combined with omega-3 fatty acids is needed to see whether it is possible to slow the conversion from MCI to AD. PMID:26757190

  20. Dietary Omega-3 Fatty Acids Modulate Large-Scale Systems Organization in the Rhesus Macaque Brain

    PubMed Central

    Kroenke, Christopher D.; Neuringer, Martha; Fair, Damien A.

    2014-01-01

    Omega-3 fatty acids are essential for healthy brain and retinal development and have been implicated in a variety of neurodevelopmental disorders. This study used resting-state functional connectivity MRI to define the large-scale organization of the rhesus macaque brain and changes associated with differences in lifetime ω-3 fatty acid intake. Monkeys fed docosahexaenoic acid, the long-chain ω-3 fatty acid abundant in neural membranes, had cortical modular organization resembling the healthy human brain. In contrast, those with low levels of dietary ω-3 fatty acids had decreased functional connectivity within the early visual pathway and throughout higher-order associational cortex and showed impairment of distributed cortical networks. Our findings illustrate the similarity in modular cortical organization between the healthy human and macaque brain and support the notion that ω-3 fatty acids play a crucial role in developing and/or maintaining distributed, large-scale brain systems, including those essential for normal cognitive function. PMID:24501348

  1. Impact of Omega-3 Fatty Acid Supplementation on Memory Functions in Healthy Older Adults.

    PubMed

    Külzow, Nadine; Witte, A Veronica; Kerti, Lucia; Grittner, Ulrike; Schuchardt, Jan Philipp; Hahn, Andreas; Flöel, Agnes

    2016-01-01

    As the process of Alzheimer's disease (AD) begins years before disease onset, searching for prevention strategies is of major medical and economic importance. Nutritional supplementation with long-chain polyunsaturated omega-3 fatty acids (LC-n3-FA) may exert beneficial effects on brain structure and function. However, experimental evidence in older adults without clinical dementia is inconsistent, possibly due to low sensitivity of previously employed test batteries for detecting subtle improvements in cognition in healthy individuals. Here we used LOCATO, recently described as a robust and sensitive tool for assessing object-location memory (OLM) in older adults, to evaluate the impact of LC-n3-FA supplementation on learning and memory formation. In a double-blind placebo-controlled proof-of-concept study, 44 (20 female) cognitively healthy individuals aged 50-75 years received either LC-n3-FA (2,200 mg/day, n = 22) or placebo (n = 22) for 26 weeks. Before and after intervention, memory performance in the OLM-task (primary) was tested. As secondary outcome parameters, performance in Rey Auditory Verbal Learning Test (AVLT), dietary habits, omega-3-index, and other blood-derived parameters were assessed. Omega-3 index increased significantly in the LC-n3-FA group compared with the placebo group. Moreover, recall of object locations was significantly better after LC-n3-FA supplementation compared with placebo. Performance in the AVLT was not significantly affected by LC-n3-FA. This double-blind placebo-controlled proof-of-concept study provides further experimental evidence that LC-n3-FA exert positive effects on memory functions in healthy older adults. Our findings suggest novel strategies to maintain cognitive functions into old age. PMID:26890759

  2. Effect of Omega-3 fatty acids on blood pressure and serum lipids in continuous ambulatory peritoneal dialysis patients

    PubMed Central

    Naini, Afsoon Emami; Keyvandarian, Nooshin; Mortazavi, Mojgan; Taheri, Shahram; Hosseini, Sayed Mohsen

    2015-01-01

    Objective: Hypertension and hyperlipidemia are two major risk factors for cardiovascular disease in continuous ambulatory peritoneal dialysis (CAPD) patients. This study was designed to investigate the effect of omega-3 fatty acids on blood pressure (BP) and serum lipids in CAPD patients. Methods: This study was a randomized double-blind clinical trial in which 90 CAPD patients were randomly assigned to either the omega-3 or the placebo group. Patients in omega-3 group received 3 g/day omega-3 for 8 weeks, whereas patients in the control group received placebo. At baseline and at the end of 8 weeks, the patients’ BP was controlled, and serum biochemistry was measured. Findings: Mean systolic BP decreased (–22.2 ± 14.2 mmHg) in the omega-3 group at the end of the study while in the placebo group increased (+0.5 ± 30.2 mmHg) (P < 0.0001). Mean diastolic BP of the omega-3 group decreased more (–11.95 ± 11.9 mmHg) comparing with the placebo group (–1.1 ± 17.3 mmHg) (P = 0.001). There were no significant differences between the two groups in mean changes in serum triglyceride, and total, high-density lipoprotein, and low-density lipoprotein cholesterol. Conclusion: The results of this study indicate that omega-3 reduced BP significantly but had no effect on lipid profile in our CAPD patients. PMID:26312252

  3. Greasing the wheels of managing overweight and obesity with omega-3 fatty acids.

    PubMed

    Golub, N; Geba, D; Mousa, S A; Williams, G; Block, R C

    2011-12-01

    The epidemic of overweight and obesity around the world and in the US is a major public health challenge, with 1.5 billion overweight and obese adults worldwide, and 68% of US adults and 31% of US children and adolescents overweight or obese. Obesity leads to serious health consequences, including an increased risk of type 2 diabetes mellitus and heart disease. Current preventive and medical treatments include lifestyle modification, medication, and bariatric surgery in extreme cases; however, they are either not very efficacious or are very expensive. Obesity is a complex condition involving the dysregulation of several organ systems and molecular pathways, including adipose tissue, the pancreas, the gastrointestinal tract, and the CNS. The role of the CNS in obesity is receiving more attention as obesity rates rise and treatments continue to fail. While the role of the hypothalamus in regulation of appetite and food intake has long been recognized, the roles of the CNS reward systems are beginning to be examined as the role of environmental influences on energy balance are explored. Omega-3 polyunsaturated fatty acids are essential nutrients that play a beneficial role in several disease processes due to their anti-inflammatory effects, modulation of lipids, and effects on the CNS. Omega-3 fatty acids, specifically EPA and DHA, have shown promising preliminary results in animal and human studies in the prevention and treatment of obesity. Given their effects on many of the pathways involved in obesity, and specifically in the endocannabinoid and mesocorticolimbic pathways, we hypothesize that EPA and DHA supplementation in populations can reduce the reward associated with food, thereby reduce appetite and food intake, and ultimately contribute to the prevention or reduction of obesity. If these fatty acids do harbor such potential, their supplementation in many parts of the world may hold great promise in reducing the global burden of obesity. PMID:21981905

  4. Greasing the Wheels of Managing Overweight and Obesity with Omega-3 Fatty Acids

    PubMed Central

    Golub, N; Geba, D; Mousa, SA; Williams, G; Block, RC

    2011-01-01

    The epidemic of overweight and obesity around the world and in the US is a major public health challenge, with 1.5 billion overweight and obese adults worldwide, and 68% of US adults and 31% of US children and adolescents overweight or obese. Obesity leads to serious health consequences, including an increased risk of type 2 diabetes mellitus and heart disease. Current preventive and medical treatments include lifestyle modification, medication, and bariatric surgery in extreme cases; however, they are either not very efficacious or are very expensive. Obesity is a complex condition involving the dysregulation of several organ systems and molecular pathways, including adipose tissue, the pancreas, the gastrointestinal tract, and the CNS. The role of the CNS in obesity is receiving more attention as obesity rates rise and treatments continue to fail. While the role of the hypothalamus in regulation of appetite and food intake has long been recognized, the roles of the CNS reward systems are beginning to be examined as the role of environmental influences on energy balance are explored. Omega-3 polyunsaturated fatty acids are essential nutrients that play a beneficial role in several disease processes due to their anti-inflammatory effects, modulation of lipids, and effects on the CNS. Omega-3 fatty acids, specifically EPA and DHA, have shown promising preliminary results in animal and human studies in the prevention and treatment of obesity. Given their effects on many of the pathways involved in obesity, and specifically in the endocannabinoid and mesocorticolimbic pathways, we hypothesize that EPA and DHA supplementation in populations can reduce the reward associated with food, thereby reduce appetite and food intake, and ultimately contribute to the prevention or reduction of obesity. If these fatty acids do harbor such potential, their supplementation in many parts of the world may hold great promise in reducing the global burden of obesity. PMID:21981905

  5. Dietary Long-Chain Omega-3 Fatty Acids Do Not Diminish Eosinophilic Pulmonary Inflammation in Mice

    PubMed Central

    Bratt, Jennifer M.; Jiang, Xiaowen; Pedersen, Theresa L.; Grapov, Dmitry; Adkins, Yuriko; Kelley, Darshan S.; Newman, John W.; Kenyon, Nicholas J.; Stephensen, Charles B.

    2014-01-01

    Although the effects of fish oil supplements on airway inflammation in asthma have been studied with varying results, the independent effects of the fish oil components, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), administered separately, are untested. Here, we investigated airway inflammation and hyperresponsiveness using a mouse ovalbumin exposure model of asthma assessing the effects of consuming EPA (1.5% wt/wt), DHA (1.5% wt/wt), EPA plus DHA (0.75% each), or a control diet with no added omega-3 polyunsaturated fatty acids. Consuming these diets for 6 weeks resulted in erythrocyte membrane EPA contents (molar %) of 9.0 (± 0.6), 3.2 (± 0.2), 6.8 (± 0.5), and 0.01 (± 0.0)%; DHA contents were 6.8 (± 0.1), 15.6 (± 0.5), 12.3 (± 0.3), and 3.8 (± 0.2)%, respectively. The DHA group had the highest bronchoalveolar lavage (BAL) fluid eosinophil and IL-6 levels (P < 0.05). Similar trends were seen for macrophages, IL-4, and IL-13, whereas TNF-α was lower in omega-3 polyunsaturated fatty acid groups than the control (P < 0.05). The DHA group also had the highest airway resistance, which differed significantly from the EPA plus DHA group (P < 0.05), which had the lowest. Oxylipins were measured in plasma and BAL fluid, with DHA and EPA suppressing arachidonic acid–derived oxylipin production. DHA-derived oxylipins from the cytochrome P450 and 15-lipoxygenase pathways correlated significantly with BAL eosinophil levels. The proinflammatory effects of DHA suggest that the adverse effects of individual fatty acid formulations should be thoroughly considered before any use as therapeutic agents in asthma. PMID:24134486

  6. Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA.

    PubMed

    Doughman, Scott D; Krupanidhi, Srirama; Sanjeevi, Carani B

    2007-08-01

    Long-chain EPA/DHA omega-3 fatty acid supplementation can be co-preventative and co-therapeutic. Current research suggests increasing accumulated long chain omega-3s for health benefits and as natural medicine in several major diseases. But many believe plant omega-3 sources are nutritionally and therapeutically equivalent to the EPA/DHA omega-3 in fish oil. Although healthy, precursor ALA bio-conversion to EPA is inefficient and production of DHA is nearly absent, limiting the protective value of ALA supplementation from flax-oil, for example. Along with pollutants certain fish acquire high levels of EPA/DHA as predatory species. However, the origin of EPA/DHA in aquatic ecosystems is algae. Certain microalgae produce high levels of EPA or DHA. Now, organically produced DHA-rich microalgae oil is available. Clinical trials with DHA-rich oil indicate comparable efficacies to fish oil for protection from cardiovascular risk factors by lowering plasma triglycerides and oxidative stress. This review discusses 1) omega-3 fatty acids in nutrition and medicine; 2) omega-3s in physiology and gene regulation; 3) possible protective mechanisms of EPA/DHA in major diseases such as coronary heart disease, atherosclerosis, cancer and type 2 diabetes; 4) EPA and DHA requirements considering fish oil safety; and 5) microalgae EPA and DHA-rich oils and recent clinical results. PMID:18220672

  7. Fortification of dahi (Indian yoghurt) with omega-3 fatty acids using microencapsulated flaxseed oil microcapsules.

    PubMed

    Goyal, Ankit; Sharma, Vivek; Sihag, Manvesh Kumar; Singh, A K; Arora, Sumit; Sabikhi, Latha

    2016-05-01

    The objective of the study was to develop and characterize omega-3 dahi (Indian yoghurt) through fortification of microencapsulated flaxseed oil powder (MFOP). Four different formulations of MFOP were fortified in dahi @ 1, 2 and 3 % levels and the level of addition was optimized on the basis of sensory scores. Dahi fortified at 2 % level was observed comparable to control, which was further studied for titratable acidity, syneresis, firmness, stickiness, oxidative stability (peroxide value), α-linolenic acid (ALA, ω-3) content and sensory attributes during 15d of storage. MFOP fortified dahi showed significantly (p < 0.05) higher acidity and percent syneresis after 12d of storage. However, peroxide value remained well below (~0.41) to the maximum permissible limit (5 meq peroxides/kg oil) prescribed by Codex Alimentarius Commission (1999). Gas-liquid chromatography profile showed ~21 % decrease in ALA content in fortified dahi after 15d of storage. Overall, it can be concluded that flaxseed oil microcapsules could be successfully incorporated in dahi; which could serve as a potential delivery system of omega-3 fatty acids. PMID:27407209

  8. Differences in Pop Levels between Conventional and Omega-3 Fatty Acid-Enriched Milk and Dairy Products

    PubMed Central

    Guerranti, Cristiana; Focardi, Silvano Ettore

    2011-01-01

    Conventional and omega-3 fatty acid-enriched milk and cheese were analyzed for persistent organic pollutants (POPs). Omega-3-enriched products are usually supplemented with fish oil which is potentially contaminated. All classes of the considered POPs (PCBs, DDT, HCB, PBDEs, and PCDD/Fs) were found in the samples, with average concentrations higher in omega-3-enriched products than in conventional ones. For PCBs, DDT, and HCB, differences were statistically significant and, therefore, cannot be ascribed to normal variability. With regard to all classes of compounds, the highest levels in individual samples were always found in omega-3 products, in line with the hypothesis that these foods are potentially more contaminated than conventional ones. PMID:23724286

  9. Prescription omega-3 fatty acid products: considerations for patients with diabetes mellitus

    PubMed Central

    Tajuddin, Nadeem; Shaikh, Ali; Hassan, Amir

    2016-01-01

    Type 2 diabetes mellitus (T2DM) and metabolic syndrome contribute to hypertriglyceridemia, which may increase residual risk of cardiovascular disease in patients with elevated triglyceride (TG) levels despite optimal low-density lipoprotein cholesterol (LDL-C) levels with statin therapy. Prescription products containing the long-chain omega-3 fatty acids (OM3FAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are an effective strategy for reducing TG levels. This article provides an overview of prescription OM3FAs, including relevant clinical data in patients with T2DM and/or metabolic syndrome. Prescription OM3FAs contain either combinations of DHA and EPA (omega-3-acid ethyl esters, omega-3-carboxylic acids, omega-3-acid ethyl esters A) or EPA alone (icosapent ethyl). These products are well tolerated and can be used safely with statins. Randomized controlled trials have demonstrated that all prescription OM3FAs produce statistically significant reductions in TG levels compared with placebo; however, differential effects on LDL-C levels have been reported. Products containing DHA may increase LDL-C levels, whereas the EPA-only product did not increase LDL-C levels compared with placebo. Because increases in LDL-C levels may be unwanted in patients with T2DM and/or dyslipidemia, the EPA-only product should not be replaced with products containing DHA. Available data on the effects of OM3FAs in patients with diabetes and/or metabolic syndrome support that these products can be used safely in patients with T2DM and have beneficial effects on atherogenic parameters; in particular, the EPA-only prescription product significantly reduced TG, non-high-density lipoprotein cholesterol, Apo B, remnant lipoprotein cholesterol, and high-sensitivity CRP levels without increasing LDL-C levels compared with placebo. Ongoing studies of the effects of prescription OM3FAs on cardiovascular outcomes will help determine whether these products will emerge as effective add

  10. Mitigation of Inflammation-Induced Mood Dysregulation by Long-Chain Omega-3 Fatty Acids

    PubMed Central

    McNamara, Robert K.

    2015-01-01

    Although evidence suggests that chronic elevations in immune-inflammatory signaling can precipitate mood symptoms in a subset of individuals, associated risk and resilience mechanisms remain poorly understood. Long-chain omega-3 (LCn-3) fatty acids, including eicosapentaenic acid (EPA) and docosahexaenoic acid (DHA), have anti-inflammatory and inflammation-resolving properties which maintain immune-inflammatory signaling homeostasis. Cross-sectional evidence suggests that the mood disorders major depressive disorder and bipolar disorder are associated with low EPA and/or DHA biostatus, elevations in the LCn-6/LCn-3 fatty acid ratio, and elevated levels of pro-inflammatory eicosanoids, cytokines, and acute-phase proteins. Medications that are effective for reducing depressive symptoms or stabilizing manic-depressive oscillations may act in part by down-regulating immune-inflammatory signaling and are augmented by anti-inflammatory medications. Recent prospective longitudinal evidence suggests that elevations in the LCn-6/LCn-3 fatty acid ratio are a modifiable risk factor for the development of mood symptoms, including depression and irritability, in response to immune-inflammatory signaling. Together these data suggest that increasing LCn-3 fatty acid intake and biostatus represents a feasible strategy to mitigate the negative impact of elevated immune-inflammatory signaling on mood stability. PMID:26400435

  11. Resveratrol and Omega-3 Fatty Acid: Its Implications in Cardiovascular Diseases

    PubMed Central

    Kakoti, Bibhuti Bhusan; Hernandez-Ontiveros, Diana G.; Kataki, Manjir Sarma; Shah, Kajri; Pathak, Yashwant; Panguluri, Siva Kumar

    2015-01-01

    The present review aims at summarizing the major therapeutic roles of resveratrol and omega-3 fatty acids (O3FAs) along with their related pathways. This article reviews some of the key studies involving the health benefits of resveratrol and O3FAs. Oxidative stress has been considered as one of the most important pathophysiological factors associated with various cardiovascular disease conditions. Resveratrol, with the potent antioxidant and free radical scavenging properties, has been proven to be a significantly protective compound in restoring the normal cardiac health. A plethora of research also demonstrated the reduction of the risk of coronary heart disease, hypertension, and stroke, and their complications by O3FAs derived from fish and fish oils. This review describes the potential cardioprotective role of resveratrol and O3FAs in ameliorating the endoplasmic reticulum stress. PMID:26697434

  12. Erythrocyte Omega-6 and Omega-3 Fatty Acids and Mammographic Breast Density

    PubMed Central

    Hudson, Alana G.; Reeves, Katherine W.; Modugno, Francesmary; Wilson, John W.; Evans, Rhobert W.; Vogel, Victor G.; Gierach, Gretchen L.; Simpson, Jennifer; Weissfeld, Joel L.

    2013-01-01

    Diets low in omega-6 (n-6) polyunsaturated fatty acids (PUFAs) and high in omega-3 (n-3) PUFAs may protect against breast cancer development. Associations of PUFA intake with mammographic density, an intermediate marker of breast cancer risk, have been inconsistent; however, prior studies have relied on self-reported dietary PUFA intake. We examined the association between circulating erythrocyte n-6 and n-3 PUFAs with mammographic density in 248 postmenopausal women who were not taking exogenous hormones. PUFAs in erythrocytes were measured by gas-liquid chromatography, and mammographic density was assessed quantitatively by planimetry. Spearman’s correlation coefficients and generalized linear models were used to evaluate the relationships between PUFA measures and mammographic density. None of the erythrocyte n-6 or n-3 PUFA measures were associated with percent density or dense breast area. PMID:23530640

  13. Acne vulgaris, mental health and omega-3 fatty acids: a report of cases.

    PubMed

    Rubin, Mark G; Kim, Katherine; Logan, Alan C

    2008-01-01

    Acne vulgaris is a common skin condition, one that is associated with significant psychological disability. The psychological impairments in acne include higher rates of depression, anxiety, anger and suicidal thoughts. Despite a paucity of clinical research, patients with skin conditions and/or mental health disorders are frequent consumers of dietary supplements. An overlap may exist between nutrients that potentially have both anti-acne and mood regulating properties; examples include omega-3 fatty acids from fish oil, chromium, zinc and selenium. Here we report on five cases of acne treated with eicosapentaenoic acid and antioxidant nutrients. Self-administration of these nutrients may have improved inflammatory acne lesions and global aspects of well-being; the observations suggest a need for controlled trials. PMID:18851733

  14. New layers in understanding and predicting α-linolenic acid content in plants using amino acid characteristics of omega-3 fatty acid desaturase.

    PubMed

    Zinati, Zahra; Zamansani, Fatemeh; Hossein KayvanJoo, Amir; Ebrahimi, Mahdi; Ebrahimi, Mansour; Ebrahimie, Esmaeil; Mohammadi Dehcheshmeh, Manijeh

    2014-11-01

    α-linolenic acid (ALA) is the most frequent omega-3 in plants. The content of ALA is highly variable, ranging from 0 to 1% in rice and corn to >50% in perilla and flax. ALA production is strongly correlated with the enzymatic activity of omega-3 fatty acid desaturase. To unravel the underlying mechanisms of omega-3 diversity, 895 protein features of omega-3 fatty acid desaturase were compared between plants with high and low omega-3. Attribute weighting showed that this enzyme in plants with high omega-3 content has higher amounts of Lys, Lys-Phe, and Pro-Asn but lower Aliphatic index, Gly-His, and Pro-Leu. The Random Forest model with Accuracy criterion when run on the dataset pre-filtered with Info Gain algorithm was the best model in distinguishing high omega-3 content based on the frequency of Lys-Lys in the structure of fatty acid desaturase. Interestingly, the discriminant function algorithm could predict the level of omega-3 only based on the six important selected attributes (out of 895 protein attributes) of fatty acid desaturase with 75% accuracy. We developed "Plant omega3 predictor" to predict the content of α-linolenic acid based on structural features of omega-3 fatty acid desaturase. The software calculates the 6 key structural protein features from imported Fasta sequence of omega-3 fatty acid desaturase or utilizes the imported features and predicts the ALA content using discriminant function formula. This work unravels an underpinning mechanism of omega-3 diversity via discovery of the key protein attributes in the structure of omega-3 desaturase offering a new approach to obtain higher omega-3 content. PMID:25199845

  15. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia.

    PubMed

    Backes, James; Anzalone, Deborah; Hilleman, Daniel; Catini, Julia

    2016-01-01

    Hypertriglyceridemia (triglycerides > 150 mg/dL) affects ~25 % of the United States (US) population and is associated with increased cardiovascular risk. Severe hypertriglyceridemia (≥ 500 mg/dL) is also a risk factor for pancreatitis. Three omega-3 fatty acid (OM3FA) prescription formulations are approved in the US for the treatment of adults with severe hypertriglyceridemia: (1) OM3FA ethyl esters (OM3EE), a mixture of OM3FA ethyl esters, primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Lovaza®, Omtryg™, and generics); (2) icosapent ethyl (IPE), EPA ethyl esters (Vascepa®); and (3) omega-3 carboxylic acids (OM3CA), a mixture of OM3FAs in free fatty acid form, primarily EPA, DHA, and docosapentaenoic acid (Epanova®). At approved doses, all formulations substantially reduce triglyceride and very-low-density lipoprotein levels. DHA-containing formulations may also increase low-density lipoprotein cholesterol. However, this is not accompanied by increased non-high-density lipoprotein cholesterol, which is thought to provide a better indication of cardiovascular risk in this patient population. Proposed mechanisms of action of OM3FAs include inhibition of diacylglycerol acyltransferase, increased plasma lipoprotein lipase activity, decreased hepatic lipogenesis, and increased hepatic β-oxidation. OM3CA bioavailability (area under the plasma concentration-time curve from zero to the last measurable concentration) is up to 4-fold greater than that of OM3FA ethyl esters, and unlike ethyl esters, the absorption of OM3CA is not dependent on pancreatic lipase hydrolysis. All three formulations are well tolerated (the most common adverse events are gastrointestinal) and demonstrate a lack of drug-drug interactions with other lipid-lowering drugs, such as statins and fibrates. OM3FAs appear to be an effective treatment option for patients with severe hypertriglyceridemia. PMID:27444154

  16. Omega-3 fatty acids: a review of the effects on adiponectin and leptin and potential implications for obesity management.

    PubMed

    Gray, B; Steyn, F; Davies, P S W; Vitetta, L

    2013-12-01

    An increase in adiposity is associated with altered levels of biologically active proteins. These include the hormones adiponectin and leptin. The marked change in circulating concentrations of these hormones in obesity has been associated with the development of insulin resistance and metabolic syndrome. Variations in dietary lipid consumption have also been shown to impact obesity. Specifically, omega-3 fatty acids have been correlated with the prevention of obesity and subsequent development of chronic disease sequalae. This review explores animal and human data relating to the effects of omega-3 fatty acids (marine lipids) on adiponectin and leptin, considering plausible mechanisms and potential implications for obesity management. Current evidence suggests a positive, dose-dependent relationship between omega-3 fatty acid intake and circulating levels of adiponectin. In obese subjects, this may translate into a reduced risk of developing cardiovascular disease, metabolic syndrome and diabetes. In non-obese subjects, omega-3 is observed to decrease circulating levels of leptin; however, omega-3-associated increases in leptin levels have been observed in obese subjects. This may pose benefits in the prevention of weight regain in these subjects following calorie restriction. PMID:24129365

  17. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance.

    PubMed

    Calder, Philip C

    2015-04-01

    Inflammation is a condition which contributes to a range of human diseases. It involves a multitude of cell types, chemical mediators, and interactions. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are omega-3 (n-3) fatty acids found in oily fish and fish oil supplements. These fatty acids are able to partly inhibit a number of aspects of inflammation including leukocyte chemotaxis, adhesion molecule expression and leukocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid, production of inflammatory cytokines, and T-helper 1 lymphocyte reactivity. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of marine n-3 fatty acids include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor kappa B so reducing expression of inflammatory genes, activation of the anti-inflammatory transcription factor peroxisome proliferator activated receptor γ and binding to the G protein coupled receptor GPR120. These mechanisms are interlinked, although the full extent of this is not yet elucidated. Animal experiments demonstrate benefit from marine n-3 fatty acids in models of rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and asthma. Clinical trials of fish oil in RA demonstrate benefit, but clinical trials of fish oil in IBD and asthma are inconsistent with no overall clear evidence of efficacy. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance". PMID:25149823

  18. Breast Cancer Genetic and Molecular Subtype Impacts Response to Omega-3 Fatty Acid Ethyl Esters.

    PubMed

    Chen, Ching Hui; Fabian, Carol; Hursting, Stephen; deGraffenried, Linda A

    2016-01-01

    Epidemiological studies have correlated frequent omega-3 (n-3) fatty acid consumption with a lower risk for breast cancer; however, recent prospective studies have been less conclusive. Efforts in the preventive setting have focused on the use of n-3 fatty acids, and the pharmaceutical ethyl esters (EE) of these natural compounds, for high-risk patient populations. Limited understanding of specific mechanisms by which these agents function has hampered identification of the cancer subtype(s) that would gain the greatest therapeutic benefit. In this study, we investigated the in vitro effects of n-3 EEs in four distinct breast cancer subtypes and explored how they affect not only breast cancer cell survival but also modulate the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptor gamma signaling pathways. Similar to the high variance in response observed in human studies, we found that the effectiveness of n-3 EEs depends on the molecular characteristics of the MCF-7, CAMA-1, MDA-MB-231, and SKBR3 breast cancer cell lines and is closely associated with the suppression of NF-κB. These data strongly suggest that the use of n-3 fatty acids and their pharmaceutical ether esters in the prevention and therapeutic setting should be guided by specific tumor characteristics. PMID:27367296

  19. Cardioprotective effect of resveratrol analogue isorhapontigenin versus omega-3 fatty acids in isoproterenol-induced myocardial infarction in rats.

    PubMed

    Abbas, Amr M

    2016-09-01

    Myocardial infarction (MI) is a common cause of mortality worldwide. Isorhapontigenin is a derivative of stilbene with chemical structure similar to resveratrol. The omega-3 fatty acids (FA) have beneficial effects on neurodegenerative, inflammatory, and cardiovascular diseases. The aim of this study was to investigate the effects of pretreatment with isorhapontigenin and omega-3 FA on rat model of isoproterenol-induced MI. Fifty-six rats were divided into seven groups: normal, normal + isorhapontigenin, normal + omega-3 FA, MI, MI + isorhapontigenin, MI + omega-3 FA, and MI + isorhapontigenin + omega-3 FA. Serum levels of cardiac marker enzymes [lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB)], cardiac troponin I (cTnI), inflammatory markers [tumor necrosis factor-alpha (TNF-α) and interleukin-6], and lipid profile [triglycerides, total cholesterol (T.Ch), high and low density lipoproteins (HDL, LDL), and phospholipids] as well as cardiac levels of malondialdehyde and anti-oxidants [reduced glutathione (GSH), superoxide dismutase (SOD), and catalase)] were measured in all rats. ECG and histopathological examination were performed. Isoproterenol caused a significant elevation of ST segment, decreased R wave amplitude, HDL, and anti-oxidants, and increased LDH, CK-MB, cTnI, TNF-α, interleukin-6, malondialdehyde, triglycerides, T.Ch, LDL, and phospholipids. Omega-3 FA or isorhapontigenin significantly decreased the ST segment elevation, LDH, CK-MB, cTnI, TNF-α, interleukin-6, malondialdehyde, and phospholipids and increased R wave amplitude and anti-oxidants. The effects of combined omega-3 FA and isorhapontigenin were more significant than either of them alone. Therefore, we conclude that omega-3 FA and isorhapontigenin have a cardioprotective effect on rats with isoproterenol-induced MI through their anti-oxidant and anti-inflammatory actions. PMID:27193109

  20. Enrichment of poultry products with omega3 fatty acids by dietary supplementation with the alga Nannochloropsis and mantur oil.

    PubMed

    Nitsan, Z; Mokady, S; Sukenik, A

    1999-12-01

    Experiments were conducted to evaluate the efficiency of the microalga Nannochloropsis sp. (Nanno.), as a supplement to laying hens' diet, for the production of enriched eggs and meat with omega3 fatty acids (FA). Nanno. has a unique FA composition, namely, the occurrence of a high concentration of eicosapentaenoic acid (EPA; 20:5 omega3) and the absence of other omega3 FA. The effect of supplementing diets with Nanno. on omega3 FA levels in eggs, plasma, liver, and thigh muscle was compared to that of mantur oil, high in alpha-linolenic acid (LNA; 18:3 omega3). Nanno. is rich also in carotenoids, which may be useful for egg yolk pigmentation. The observed effect of Nanno. supplementation on yolk pigmentation was dose responsive, in both the rate of coloration and the color intensity. Addition of enzyme preparations (glucanase plus cellulase or glucanase plus pectinase) slightly elevated the yolk color score. The most prominent changes in the level of omega3 FA in egg yolk were evident when the diets were supplemented with 1% Nanno. or mantur lipid extracts. Levels of dietary algal meal (0.1-1.0%) had low and inconsistent effects on the level of yolk omega3 FA. Algal EPA is not accumulated in the liver or in the egg yolk; it is apparently converted and deposited as docosahexaenoic acid (DHA). LNA from mantur oil was partially converted to DHA, and both DHA and LNA were deposited in egg yolks and livers. It is suggested that the absence of DHA and EPA from thigh muscle is due to the small amount of dietary omega3 FA used in this work, compared to other studies, and to the possibility that in laying hens the egg yolk has a priority on dietary FA over that of muscles. PMID:10606584

  1. Inactivating Mutations in MFSD2A, Required for Omega-3 Fatty Acid Transport in Brain, Cause a Lethal Microcephaly Syndrome

    PubMed Central

    Guemez-Gamboa, Alicia; Nguyen, Long N.; Yang, Hongbo; Zaki, Maha S.; Kara, Majdi; Ben-Omran, Tawfeg; Akizu, Naiara; Rosti, Rasim Ozgur; Rosti, Basak; Scott, Eric; Schroth, Jana; Copeland, Brett; Vaux, Keith K.; Cazenave-Gassiot, Amaury; Quek, Debra Q.Y.; Wong, Bernice H.; Tan, Bryan C.; Wenk, Markus R.; Gunel, Murat; Gabriel, Stacey; Chi, Neil C.; Silver, David L.; Gleeson, Joseph G.

    2015-01-01

    Docosahexanoic acid (DHA) is the most abundant omega-3 fatty acid in brain, and although considered essential, deficiency has not been linked to disease1,2. Despite the large mass of DHA in phospholipids, the brain does not synthesize it. DHA is imported across the blood-brain barrier (BBB) through the Major Facilitator Superfamily Domain 2a (Mfsd2a)3. Mfsd2a transports DHA as well as other fatty acids in the form of lysophosphatidylcholine (LPC). We identify two families displaying MFSD2A mutations in conserved residues. Patients exhibited a lethal microcephaly syndrome linked to inadequate uptake of LPC lipids. The MFSD2A mutations impaired transport activity in a cell-based assay. Moreover, when expressed in mfsd2aa zebrafish morphants, mutants failed to rescue microcephaly, BBB breakdown and lethality. Our results establish a link between transport of DHA and LPCs by MFSD2A and human brain growth and function, presenting the first evidence of monogenic disease related to transport of DHA in humans. PMID:26005868

  2. Omega-3 polyunsaturated fatty acid supplementation and white matter changes in major depression.

    PubMed

    Chhetry, Binod Thapa; Hezghia, Adrienne; Miller, Jeffrey M; Lee, Seonjoo; Rubin-Falcone, Harry; Cooper, Thomas B; Oquendo, Maria A; Mann, J John; Sublette, M Elizabeth

    2016-04-01

    White matter abnormalities are implicated in major depressive disorder (MDD). As omega-3 polyunsaturated fatty acids (PUFAs) are low in MDD and affect myelination, we hypothesized that PUFA supplementation may alleviate depression through improving white matter integrity. Acutely depressed MDD patients (n = 16) and healthy volunteers (HV, n = 12) had 25-direction diffusion tensor imaging before and after 6 weeks of fish oil supplementation. Plasma phospholipid omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and omega-6 PUFA arachidonic acid (AA) levels were determined before and after supplementation using high-throughput extraction and gas chromatography and expressed as a percentage of total phospholipids (PUFA%). Fractional anisotropy (FA) was computed using a least-squares-fit diffusion tensor with non-linear optimization. Regression analyses were performed with changes in PUFA levels or Hamilton Depression Rating Scale scores as predictors, voxel-wise difference maps of FA as outcome, covariates age and sex, with family-wise correction for multiple comparisons. Increases in plasma phospholipid DHA% (but not EPA% or AA%) after fish oil predicted increases in FA in MDD but not HV, in a cluster including genu and body of the corpus callosum, and anterior corona radiata and cingulum (cluster-level p < 0.001, peak t-score = 8.10, p = 0.002). There was a trend for greater change in FA in MDD responders over nonresponders (t = -1.874, df = 13.56, p = 0.08). Decreased depression severity predicted increased FA in left corticospinal tract and superior longitudinal fasciculus (cluster-level p < 0.001, peak t-score = 5.04, p = 0.0001). Increased FA correlated with increased DHA% and decreased depression severity after fish oil supplementation suggests therapeutic effects of omega-3 PUFAs may be related to improvements in white matter integrity. PMID:26802812

  3. Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean

    PubMed Central

    Andreu, Vanesa; Alfonso, Miguel

    2012-01-01

    This study analysed the contribution of each omega-3 desaturase to the cold response in soybean. Exposure to cold temperatures (5 °C) did not result in great modifications of the linolenic acid content in leaf membrane lipids. However, an increase in the GmFAD3A transcripts was observed both in plant leaves and soybean cells whereas no changes in GmFAD3B or GmFAD3C expression levels were detected. This increase was reversible and accompanied by the accumulation of an mRNA encoding a truncated form of GmFAD3A (GmFAD3A-T), which originated from alternative splicing of GmFAD3A in response to cold. When the expression of plastidial omega-3 desaturases was analysed, a transient accumulation of GmFAD7-2 mRNA was detected upon cold exposure in mature soybean trifoliate leaves while GmFAD7-1 transcripts remained unchanged. No modification of the GmFAD8-1 and GmFAD8-2 transcripts was observed. The functionality of GmFAD3A, GmFAD3B, GmFAD3C and GmFAD3A-T was examined by heterologous expression in yeast. No activity was detected with GmFAD3A-T, consistent with the absence of one of the His boxes necessary for desaturase activity. The linolenic acid content of Sacharomyces cerevisiae cells overexpressing GmFAD3A or GmFAD3B was higher when the cultures were incubated at cooler temperatures, suggesting that reticular desaturases of the GmFAD3 family, and more specifically GmFAD3A, may play a role in the cold response, even in leaves. The data point to a regulatory mechanism of omega-3 fatty acid desaturases in soybean affecting specific isoforms in both the plastid and the endoplasmic reticulum to maintain appropriate levels of linolenic acid under low temperature conditions. PMID:22865909

  4. Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells.

    PubMed

    Schley, Patricia D; Jijon, Humberto B; Robinson, Lindsay E; Field, Catherine J

    2005-07-01

    The omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), inhibit the growth of human breast cancer cells in animal models and cell lines, but the mechanism by which this occurs is not well understood. In order to explore possible mechanisms for the modulation of breast cancer cell growth by omega-3 fatty acids, we examined the effects of EPA and DHA on the human breast cancer cell line MDA-MB-231. Omega-3 fatty acids (a combination of EPA and DHA) inhibited the growth of MDA-MB-231 cells by 30-40% (p<0.05) in both the presence and absence of linoleic acid, an essential omega-6 fatty acid. When provided individually, DHA was more potent than EPA in inhibiting the growth of MDA-MB-231 cells (p<0.05). EPA and DHA treatment decreased tumor cell proliferation (p<0.05), as estimated by decreased [methyl-(3)H]-thymidine uptake and expression of proliferation-associated proteins (proliferating cell nuclear antigen, PCNA, and proliferation-related kinase, PRK). In addition, EPA and DHA induced apoptosis, as indicated by a loss of mitochondrial membrane potential, increased caspase activity and increased DNA fragmentation (p<0.05). Cells incubated with omega-3 fatty acids demonstrated decreased Akt phosphorylation, as well as NFkappaB DNA binding activity (p<0.05). The results of this study indicate that omega-3 fatty acids decrease cell proliferation and induce apoptotic cell death in human breast cancer cells, possibly by decreasing signal transduction through the Akt/NFkappaB cell survival pathway. PMID:15986129

  5. Effect of dietary supplementation of omega-3 fatty acids and high levels of dietary protein on performance of sows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effect of dietary supplementation of omega-3 fatty acids (O3FA), with or without high levels of protein, on the performance of sows during first and subsequent parity. Sixty-four pregnant gilts with BW of 195.0 ± 2.1 kg and backfat (BF) thickness of 12.9 ± 0.2 ...

  6. Effect of dietary supplementation of omega-3 fatty acids and high levels of dietary protein on performance of sows.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the effect of dietary supplementation of omega-3 fatty acids (O3FA), with or without high levels of dietary protein supplementation, on the performance of sows and their litters during first and subsequent parities. Sixty-four pregnant gilts with body weight (BW...

  7. Effects of Omega-3 Fatty Acids on Erectile Dysfunction in a Rat Model of Atherosclerosis-induced Chronic Pelvic Ischemia

    PubMed Central

    Kim, Dae Hee; Bae, Jae Hyun

    2016-01-01

    The aim of this study was to investigate whether the omega-3 fatty acids help to improve erectile function in an atherosclerosis-induced erectile dysfunction rat model. A total of 20 male Sprague-Dawley rats at age 8 weeks were divided into three groups: Control group (n = 6, untreated sham operated rats), Pathologic group (n = 7, untreated rats with chronic pelvic ischemia [CPI]), and Treatment group (n = 7, CPI rats treated with omega-3 fatty acids). For the in vivo study, electrical stimulation of the cavernosal nerve was performed and erectile function was measured in all groups. Immunohistochemical antibody staining was performed for transforming growth factor beta-1 (TGF-β1), endothelial nitric oxide synthase (eNOS), and hypoxia inducible factor 1-alpha (HIF-1α). In vivo measurement of erectile function in the Pathologic group showed significantly lower values than those in the Control group, whereas the Treatment group showed significantly improved values in comparison with those in the Pathologic group. The results of western blot analysis revealed that systemically administered omega-3 fatty acids ameliorated the cavernosal molecular environment. Our study suggests that omega-3 fatty acids improve intracavernosal pressure and have a beneficial role against pathophysiological consequences such as fibrosis or hypoxic damage on a CPI rat model, which represents a structural erectile dysfunction model. PMID:27051243

  8. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    PubMed Central

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-01-01

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A4/J4-neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH.. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH4), which concurrently abrogated A4/J4-NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1)by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A4/J4NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2)and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A4/J4-NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs. PMID:21130106

  9. Fish oil omega-3 fatty acids and cardio-metabolic health, alone or with statins.

    PubMed

    Minihane, Anne Marie

    2013-05-01

    The impact of the fish-derived omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular disease (CVD) and type 2 diabetes incidence and risk has been widely investigated. Although the balance of evidence suggests substantial benefits with respect to CVD mortality, there is little evidence for an impact of these fatty acids on insulin sensitivity and diabetes incidence, despite very promising data from animal models. The focus here will be the plasma lipid modulatory effects of EPA and DHA and will include an exploration of the potential and demonstrated complementarity between statins and EPA/DHA on overall CVD risk and the plasma cholesterol and triglyceride profile. Although there is some justification for greater general population and patient EPA+DHA intakes, an often overlooked major obstacle is that global fish stocks are limited and insufficient to meet demands. The potential of emerging 'non-fish foods' to provide affordable and sustainable sources of EPA+DHA will also be briefly discussed. PMID:23403872

  10. Multi-targeted therapy of cancer by omega-3 fatty acids.

    PubMed

    Berquin, Isabelle M; Edwards, Iris J; Chen, Yong Q

    2008-10-01

    Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are essential fatty acids necessary for human health. Currently, the Western diet contains a disproportionally high amount of n-6 PUFAs and low amount of n-3 PUFAs, and the resulting high n-6/n-3 ratio is thought to contribute to cardiovascular disease, inflammation, and cancer. Studies in human populations have linked high consumption of fish or fish oil to reduced risk of colon, prostate, and breast cancer, although other studies failed to find a significant association. Nonetheless, the available epidemiological evidence, combined with the demonstrated effects of n-3 PUFAs on cancer in animal and cell culture models, has motivated the development of clinical interventions using n-3 PUFAs in the prevention and treatment of cancer, as well as for nutritional support of cancer patients to reduce weight loss and modulate the immune system. In this review, we discuss the rationale for using long-chain n-3 PUFAs in cancer prevention and treatment and the challenges that such approaches pose in the design of clinical trials. PMID:18479809

  11. Omega-3 Fatty Acid Supplementation for the Treatment of Children with Attention-Deficit/Hyperactivity Disorder Symptomatology: Systematic Review and Meta-Analysis

    ERIC Educational Resources Information Center

    Bloch, Michael H.; Qawasmi, Ahmad

    2011-01-01

    Objective: Several studies have demonstrated differences in omega-3 fatty acid composition in plasma and in erythrocyte membranes in patients with attention-deficit/hyperactivity disorder (ADHD) compared with unaffected controls. Omega-3 fatty acids have anti-inflammatory properties and can alter central nervous system cell membrane fluidity and…

  12. Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: a randomised placebo controlled trial

    PubMed Central

    Kesse-Guyot, Emmanuelle; Czernichow, Sébastien; Briancon, Serge; Blacher, Jacques; Hercberg, Serge

    2010-01-01

    Objective To investigate whether dietary supplementation with B vitamins or omega 3 fatty acids, or both, could prevent major cardiovascular events in patients with a history of ischaemic heart disease or stroke. Design Double blind, randomised, placebo controlled trial; factorial design. Setting Recruitment throughout France via a network of 417 cardiologists, neurologists, and other physicians. Participants 2501 patients with a history of myocardial infarction, unstable angina, or ischaemic stroke. Intervention Daily dietary supplement containing 5-methyltetrahydrofolate (560 μg), vitamin B-6 (3 mg), and vitamin B-12 (20 μg) or placebo; and containing omega 3 fatty acids (600 mg of eicosapentanoic acid and docosahexaenoic acid at a ratio of 2:1) or placebo. Median duration of supplementation was 4.7 years. Main outcome measures Major cardiovascular events, defined as a composite of non-fatal myocardial infarction, stroke, or death from cardiovascular disease. Results Allocation to B vitamins lowered plasma homocysteine concentrations by 19% compared with placebo, but had no significant effects on major vascular events (75 v 82 patients, hazard ratio, 0.90 (95% confidence interval 0.66 to 1.23, P=0.50)). Allocation to omega 3 fatty acids increased plasma concentrations of omega 3 fatty acids by 37% compared with placebo, but also had no significant effect on major vascular events (81 v 76 patients, hazard ratio 1.08 (0.79 to 1.47, P=0.64)). Conclusion This study does not support the routine use of dietary supplements containing B vitamins or omega 3 fatty acids for prevention of cardiovascular disease in people with a history of ischaemic heart disease or ischaemic stroke, at least when supplementation is introduced after the acute phase of the initial event. Trial registration Current Controlled Trials ISRCTN41926726. PMID:21115589

  13. Healing fats of the skin: the structural and immunologic roles of the omega-6 and omega-3 fatty acids.

    PubMed

    McCusker, Meagen M; Grant-Kels, Jane M

    2010-01-01

    Linoleic acid (18:2omega6) and alpha-linolenic acid (18:3omega3) represent the parent fats of the two main classes of polyunsaturated fatty acids: the omega-6 (n-6) and the omega-3 (n-3) fatty acids, respectively. Linoleic acid and alpha-linolenic acid both give rise to other long-chain fatty acid derivatives, including gamma-linolenic acid and arachidonic acid (omega-6 fatty acids) and docosahexaenoic acid and eicosapentaenoic acid (omega-3 fatty acids). These fatty acids are showing promise as safe adjunctive treatments for many skin disorders, including atopic dermatitis, psoriasis, acne vulgaris, systemic lupus erythematosus, nonmelanoma skin cancer, and melanoma. Their roles are diverse and include maintenance of the stratum corneum permeability barrier, maturation and differentiation of the stratum corneum, formation and secretion of lamellar bodies, inhibition of proinflammatory eicosanoids, elevation of the sunburn threshold, inhibition of proinflammatory cytokines (tumor necrosis factor-alpha, interferon-gamma, and interleukin-12), inhibition of lipoxygenase, promotion of wound healing, and promotion of apoptosis in malignant cells, including melanoma. They fulfill these functions independently and through the modulation of peroxisome proliferator-activated receptors and Toll-like receptors. PMID:20620762

  14. Enrichment of omega-3 fatty acids in cod liver oil via alternate solvent winterization and enzymatic interesterification.

    PubMed

    Lei, Qiong; Ba, Sai; Zhang, Hao; Wei, Yanyan; Lee, Jasmine Yiqin; Li, Tianhu

    2016-05-15

    Enrichment of omega-3 fatty acids in cod liver oil via alternate operation of solvent winterization and enzymatic interesterification was attempted. Variables including separation method, solvent, oil concentration, time and temperature were optimized for the winterization. Meanwhile, Novozyme 435, Lipozyme RM IM and Lipozyme TL IM were screened for interesterification efficiency under different system air condition, time and temperature. In optimized method, alternate winterization (0.1g/mL oil/acetone, 24h, -80°C, precooled Büchner filtration) and interesterification (Lipozyme TL IM, N2 flow, 2.5h, 40°C) successfully doubled the omega-3 fatty acid content to 43.20 mol%. (1)H NMR was used to determine omega-3 fatty acid content, and GC-MS to characterize oil product, which mainly contained DHA (15.81 mol%) and EPA (20.23 mol%). The proposed method offers considerable efficiency and reduce production cost drastically. Oil produced thereof is with high quality and of particular importance for the development of omega-3 based active pharmaceutical ingredients. PMID:26775983

  15. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants.

    PubMed

    Ruiz-López, Noemi; Sayanova, Olga; Napier, Johnathan A; Haslam, Richard P

    2012-04-01

    Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described. PMID:22291131

  16. Omega-3 long chain fatty acid "bioavailability": a review of evidence and methodological considerations.

    PubMed

    Ghasemifard, Samaneh; Turchini, Giovanni M; Sinclair, Andrew J

    2014-10-01

    This review considers the bioavailability of different forms of omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA), including ethyl esters (EEs), free fatty acids (FFAs), triacylglycerols (TAGs) and phospholipids (PLs). The retrieved studies include short-term and longer-term studies in humans, and a number of animal studies, which were highly heterogeneous in their design making it difficult to draw substantiated conclusions. The apparent bioavailability (as defined by the authors of these studies) seems to be lowest for the EE form and highest for the FFA form, whilst no conclusion can be made for TAG versus PL from human data. Animal studies suggest that there are substantial differences in the bioavailability of PL form of LC-PUFA compared with the TAG form. This apparent limited knowledge and understanding is fundamentally driven by methodological limitations of these studies. The major limitations with the studies to date include: (between studies) loose definition of the term "bioavailability", lack of standardisation of analytical methodology, and differences in which blood compartment was analysed; (within a study) failure to provide equal amounts the n-3 LC-PUFA of the different forms being compared, failure to provide the dose of n-3 LC-PUFA on a body weight basis, failure to measure fatty acid excretion, failure to control the total fat intake, and failure to adequately power the studies from a statistical point of view. This review has laid out a set of suggestions and criteria for conducting future studies on the bioavailability of different chemical forms of n-3 LC-PUFA. PMID:25218856

  17. Suicide Deaths of Active Duty U.S. Military and Omega-3 Fatty Acid Status: A Case Control Comparison

    PubMed Central

    Lewis, Michael D.; Hibbeln, Joseph R.; Johnson, Jeremiah E.; Lin, Yu Hong; Hyun, Duk Y.; Loewke, James D.

    2011-01-01

    Background The recent escalation of US Military suicide deaths to record numbers has been an sentinel for impaired force efficacy and has accelerated the search for reversible risk factors. Objective Determine if deficiencies of neuroactive highly unsaturated omega-3 essential fatty acids (n-3 HUFA), in particular docosahexaenoic acid (DHA), are associated with increased risk of suicide death among a large random sample of active duty US military. Methods Serum fatty acids were quantified as % of total fatty acids, among US military suicide deaths (n= 800) and controls (n=800) matched for age, date of collection, sex, rank and year of incident. Participants were Active Duty US Military personnel (2002–2008). Outcome measures, included death by suicide, post deployment health assessment questionnaire and ICD-9 mental health diagnosis data. Results Risks of suicide death was 14% higher, per standard deviation [SD] lower DHA % (OR =1.14, 95% CI; 1.02–1.27, p<0.03), in adjusted logistic regressions. Among men risk of suicide death was 62% greater with low serum DHA status (adjusted Odds Ratio [OR] =1.62, 95% CI 1.12–2.34, p<0.01, comparing DHA below 1.75% [n=1,389] to above [n=141]). Risk of suicide death was 54% greater in those who reported having seen wounded, dead or killed coalition personnel (OR = 1.54, 95% CI; 1.12–2.12, p< 0.007.) Conclusion This US military population had a very low and narrow range of n-3 HUFA status. Although these data suggest that low serum DHA may be a risk factor for suicides, well designed intervention trials are needed to evaluate causality. PMID:21903029

  18. Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids☆

    PubMed Central

    Hamilton, Mary L.; Haslam, Richard P.; Napier, Johnathan A.; Sayanova, Olga

    2014-01-01

    We have engineered the diatom Phaeodactylum tricornutum to accumulate the high value omega-3 long chain polyunsaturated fatty acid docosahexaenoic acid (DHA). This was achieved by the generation of transgenic strains in which the Δ5-elongase from the picoalga Ostreococcus tauri was expressed to augment the endogenous fatty acid biosynthetic pathway. Expression of the heterologous elongase resulted in an eight-fold increase in docosahexaenoic acid content, representing a marked and valuable change in the fatty acid profile of this microalga. Importantly, DHA was shown to accumulate in triacylglycerols, with several novel triacylglycerol species being detected in the transgenic strains. In a second iteration, co-expression of an acyl-CoA-dependent Δ6-desaturase with the Δ5-elongase further increased DHA levels. Together, this demonstrates for the first time the potential of using iterative metabolic engineering to optimise omega-3 content in algae. PMID:24333273

  19. Basal omega-3 fatty acid status affects fatty acid and oxylipin responses to high-dose n3-HUFA in healthy volunteers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Baseline concentrations of highly unsaturated omega-3 fatty acid (n3-HUFA) may influence the ability of dietary n3-HUFA to affect changes in concentrations of esterified fatty acids and their metabolites. This study evaluates the influence of basal n3-HUFA and n3-HUFA metabolite status ...

  20. Omega-3 fatty acids improve behavioral coping to stress in multiparous rats.

    PubMed

    Gonzales, Elisa; Barrett, Douglas W; Shumake, Jason; Gonzalez-Lima, F; Lane, Michelle A

    2015-02-15

    Behavioral coping refers to the ability to modify behavior to escape from stress, and is protective against the development of depressive disorders. Omega-3 fatty acid (n-3 FA) intake is inversely correlated with anxiety and depression in humans. The objective of this study was to determine if consumption of n-3 FAs promotes adaptive coping behaviors in a multiparous rat model. Twenty female rats were randomly assigned to diets with or without n-3 FA containing menhaden oil or sunflower oil as the fat source, respectively. Rats experienced two cycles of gestation and lactation. Behavioral testing began on the second day after the last parturition. Rats consuming n-3 FAs displayed improved escape learning in the shuttle box test. Specifically, rats consuming n-3 FAs escaped footshock more quickly and had a greater number of successful escapes in the shuttle box than rats not consuming n-3 FAs. Diet did not affect general activity in the open field, but rats consuming n-3 FAs showed less reactivity and habituation to novelty in the open field than rats not consuming n-3 FAs. Immobility and swimming in the forced swim test, risk-taking assessed by the light/dark test, sucrose drinking, and motor coordination were not significantly affected by diet. A diet enriched with n-3 FAs promoted behavioral escape changes consistent with increased adaptive coping to stressful events, suggesting that n-3 FAs may help prevent the development of stress-related depressive disorders. PMID:25446767

  1. Insulin-Sensitizing Effects of Omega-3 Fatty Acids: Lost in Translation?

    PubMed Central

    Lalia, Antigoni Z.; Lanza, Ian R.

    2016-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) of marine origin, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have been long studied for their therapeutic potential in the context of type 2 diabetes, insulin resistance, and glucose homeostasis. Glaring discordance between observations in animal and human studies precludes, to date, any practical application of n-3 PUFA as nutritional therapeutics against insulin resistance in humans. Our objective in this review is to summarize current knowledge and provide an up-to-date commentary on the therapeutic value of EPA and DHA supplementation for improving insulin sensitivity in humans. We also sought to discuss potential mechanisms of n-3 PUFA action in target tissues, in specific skeletal muscle, based on our recent work, as well as in liver and adipose tissue. We conducted a literature search to include all preclinical and clinical studies performed within the last two years and to comment on representative studies published earlier. Recent studies support a growing consensus that there are beneficial effects of n-3 PUFA on insulin sensitivity in rodents. Observational studies in humans are encouraging, however, the vast majority of human intervention studies fail to demonstrate the benefit of n-3 PUFA in type 2 diabetes or insulin-resistant non-diabetic people. Nevertheless, there are still several unanswered questions regarding the potential impact of n-3 PUFA on metabolic function in humans. PMID:27258299

  2. Omega-3 Fatty Acid Intervention Suppresses Lipopolysaccharide-Induced Inflammation and Weight Loss in Mice

    PubMed Central

    Liu, Ying-Hua; Li, Xiang-Yong; Chen, Chih-Yu; Zhang, Hong-Man; Kang, Jing X.

    2015-01-01

    Bacterial endotoxin lipopolysaccharide (LPS)-induced sepsis is a critical medical condition, characterized by a severe systemic inflammation and rapid loss of muscle mass. Preventive and therapeutic strategies for this complex disease are still lacking. Here, we evaluated the effect of omega-3 (n-3) polyunsaturated fatty acid (PUFA) intervention on LPS-challenged mice with respect to inflammation, body weight and the expression of Toll-like receptor 4 (TLR4) pathway components. LPS administration induced a dramatic loss of body weight within two days. Treatment with n-3 PUFA not only stopped loss of body weight but also gradually reversed it back to baseline levels within one week. Accordingly, the animals treated with n-3 PUFA exhibited markedly lower levels of inflammatory cytokines or markers in plasma and tissues, as well as down-regulation of TLR4 pathway components compared to animals without n-3 PUFA treatment or those treated with omega-6 PUFA. Our data demonstrate that n-3 PUFA intervention can suppress LPS-induced inflammation and weight loss via, at least in part, down-regulation of pro-inflammatory targets of the TLR4 signaling pathway, and highlight the therapeutic potential of n-3 PUFA in the management of sepsis. PMID:25689565

  3. Omega-3 Polyunsaturated Fatty Acids: Structural and Functional Effects on the Vascular Wall

    PubMed Central

    Zanetti, Michela; Grillo, Andrea; Losurdo, Pasquale; Panizon, Emiliano; Mearelli, Filippo; Cattin, Luigi; Barazzoni, Rocco; Carretta, Renzo

    2015-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) consumption is associated with reduced cardiovascular disease risk. Increasing evidence demonstrating a beneficial effect of n-3 PUFA on arterial wall properties is progressively emerging. We reviewed the recent available evidence for the cardiovascular effects of n-3 PUFA focusing on structural and functional properties of the vascular wall. In experimental studies and clinical trials n-3 PUFA have shown the ability to improve arterial hemodynamics by reducing arterial stiffness, thus explaining some of its cardioprotective properties. Recent studies suggest beneficial effects of n-3 PUFA on endothelial activation, which are likely to improve vascular function. Several molecular, cellular, and physiological pathways influenced by n-3 PUFA can affect arterial wall properties and therefore interfere with the atherosclerotic process. Although the relative weight of different physiological and molecular mechanisms and the dose-response on arterial wall properties have yet to be determined, n-3 PUFA have the potential to beneficially impact arterial wall remodeling and cardiovascular outcomes by targeting arterial wall stiffening and endothelial dysfunction. PMID:26301252

  4. Omega-3 polyunsaturated fatty acids in Alzheimer's disease: key questions and partial answers.

    PubMed

    Calon, F

    2011-08-01

    The current rise in the prevalence of Alzheimer's disease (AD) is unfortunately not matched by new treatment options. In the last 10 years, epidemiological, preclinical and clinical data have enlightened the possible preventive action of omega-3 polyunsaturated fatty acids (n-3 PUFA) in AD and other diseases. While the contribution of recent studies to our general knowledge is priceless, many important new questions have been raised. In the present review, we aim at addressing some of these timely interrogations. First, the transport of n-3 PUFA across the blood-brain barrier is underscored based on preclinical data. Second, the relative contribution of two neuroactive n-3 PUFA found in fish oil, docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA, 20:5 n-3), remains unclear and is reviewed. Third, clinical trials on neurodegenerative diseases consistently remind us that treating early is critical, and this is likely to be the case with n-3 PUFA in AD as well. Fourth, we draw attention to the possibility that the current knowledge translation approach to make health recommendations might have to be adapted to non-patentable endogenous compounds like n-3 PUFA. We propose that answers to these critical questions will be instrumental toward a rational use of n-3 PUFA in AD. PMID:21605051

  5. Beneficial effects of omega-3 fatty acids in the proteome of high-density lipoprotein proteome

    PubMed Central

    2012-01-01

    Background Omega-3 poly-unsaturated fatty acids (ω-3 PUFAs) have demonstrated to be beneficial in the prevention of cardiovascular disease, however, the mechanisms by which they perform their cardiovascular protection have not been clarified. Intriguingly, some of these protective effects have also been linked to HDL. The hypothesis of this study was that ω-3 PUFAs could modify the protein cargo of HDL particle in a triglyceride non-dependent mode. The objective of the study was to compare the proteome of HDL before and after ω-3 PUFAs supplemented diet. Methods A comparative proteomic analysis in 6 smoker subjects HDL before and after a 5 weeks ω-3 PUFAs enriched diet has been performed. Results Among the altered proteins, clusterin, paraoxonase, and apoAI were found to increase, while fibronectin, α-1-antitrypsin, complement C1r subcomponent and complement factor H decreased after diet supplementation with ω-3 PUFAs. Immunodetection assays confirmed these results. The up-regulated proteins are related to anti-oxidant, anti-inflammatory and anti-atherosclerotic properties of HDL, while the down-regulated proteins are related to regulation of complement activation and acute phase response. Conclusions Despite the low number of subjects included in the study, our findings demonstrate that ω-3 PUFAs supplementation modifies lipoprotein containing apoAI (LpAI) proteome and suggest that these protein changes improve the functionality of the particle. PMID:22978374

  6. Maternal dietary imbalance between omega-6 and omega-3 polyunsaturated fatty acids impairs neocortical development via epoxy metabolites.

    PubMed

    Sakayori, Nobuyuki; Kikkawa, Takako; Tokuda, Hisanori; Kiryu, Emiko; Yoshizaki, Kaichi; Kawashima, Hiroshi; Yamada, Tetsuya; Arai, Hiroyuki; Kang, Jing X; Katagiri, Hideki; Shibata, Hiroshi; Innis, Sheila M; Arita, Makoto; Osumi, Noriko

    2016-02-01

    Omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are essential nutrients. Although several studies have suggested that a balanced dietary n-6:n-3 ratio is essential for brain development, the underlying cellular and molecular mechanism is poorly understood. Here, we found that feeding pregnant mice an n-6 excess/n-3 deficient diet, which reflects modern human diets, impairsed neocortical neurogenesis in the offspring. This impaired neurodevelopment occurs through a precocious fate transition of neural stem cells from the neurogenic to gliogenic lineage. A comprehensive mediator lipidomics screen revealed key mediators, epoxy metabolites, which were confirmed functionally using a neurosphere assay. Importantly, although the offspring were raised on a well-balanced n-6:n-3 diet, they exhibited increased anxiety-related behavior in adulthood. These findings provide compelling evidence that excess maternal consumption of n-6 PUFAs combined with insufficient intake of n-3 PUFAs causes abnormal brain development that can have long-lasting effects on the offspring's mental state. PMID:26580686

  7. Omega-3 Fatty Acids, Oxidative Stress, and Leukocyte Telomere Length: A Randomized Controlled Trial

    PubMed Central

    Kiecolt-Glaser, Janice K.; Epel, Elissa S.; Belury, Martha A.; Andridge, Rebecca; Lin, Jue; Glaser, Ronald; Malarkey, William B.; Hwang, Beom Seuk; Blackburn, Elizabeth

    2012-01-01

    Shorter telomeres have been associated with poor health behaviors, age-related diseases, and early mortality. Telomere length is regulated by the enzyme telomerase, and is linked to exposure to proinflammatory cytokines and oxidative stress. In our recent randomized controlled trial, omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation lowered the concentration of serum proinflammatory cytokines. This study assessed whether n-3 PUFA supplementation also affected leukocyte telomere length, telomerase, and oxidative stress. In addition to testing for group differences, changes in the continuous n-6:n-3 PUFA ratio were assessed to account for individual differences in adherence, absorption, and metabolism. The double-blind 4-month trial included 106 healthy sedentary overweight middle-aged and older adults who received (1) 2.5 g/day n-3 PUFAs, (2) l.25 g/day n-3 PUFAs, or (3) placebo capsules that mirrored the proportions of fatty acids in the typical American diet. Supplementation significantly lowered oxidative stress as measured by F2-isoprostanes (p=0.02). The estimated geometric mean log-F2-isoprostanes values were 15% lower in the two supplemented groups compared to placebo. Although group differences for telomerase and telomere length were nonsignificant, changes in the n-6:n-3 PUFA plasma ratios helped clarify the intervention’s impact: telomere length increased with decreasing n-6:n-3 ratios, p=0.02. The data suggest that lower n-6:n-3 PUFA ratios can impact cell aging. The triad of inflammation, oxidative stress, and immune cell aging represents important pre-disease mechanisms that may be ameliorated through nutritional interventions. This translational research broadens our understanding of the potential impact of the n-6:n-3 PUFA balance. ClinicalTrials.gov identifier: NCT00385723 PMID:23010452

  8. Recombinant production of omega-3 fatty acids by probiotic Escherichia coli Nissle 1917.

    PubMed

    Amiri-Jami, Mitra; Abdelhamid, Ahmed Ghamry; Hazaa, Mahmoud; Kakuda, Yukio; Griffths, Mansel W

    2015-10-01

    Omega-3 fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on human health. The probiotic bacterium Escherichia coli Nissle is unable to produce either EPA or DHA. Escherichia coli Nissle was transformed with the pfBS-PS plasmid carrying the EPA/DHA gene cluster, previously isolated from a marine bacterium. The transgenic E. coli Nissle produced EPA when grown at 10ºC (16.52 ± 1.4 mg g(-1) cell dry weight), 15ºC (31.36 ± 0.25 mg g(-1) cell dry weight), 20ºC (13.71 ± 2.8 mg g(-1) cell dry weight), 25ºC (11.33 ± 0.44 mg g(-1) cell dry weight) or 30ºC (0.668 ± 0.073 mg g(-1) cell dry weight). Although DHA was also produced at all these temperatures, it comprised less than 0.2% of total extracted fatty acids. Transcriptomic analysis using Reverse Transcription qPCR showed upregulation of the entire gene cluster in E. coli Nissle. Among EPA/DHA genes, pfaB, pfaC and pfaD were overexpressed (expression ratio of 181.9, 39.86 and 131.61, respectively) as compared to pfaA (expression ratio of 3.40) and pfaE (expression ratio of 4.05). The EPA/DHA-producing probiotic E. coli Nissle may be used as a safe, alternative and economic source for the industrial and pharmaceutical production of EPA and DHA. PMID:26371149

  9. Omega-3/Omega-6 Fatty Acids for Attention Deficit Hyperactivity Disorder: A Randomized Placebo-Controlled Trial in Children and Adolescents

    ERIC Educational Resources Information Center

    Johnson, Mats; Ostlund, Sven; Fransson, Gunnar; Kadesjo, Bjorn; Gillberg, Christopher

    2009-01-01

    Objective: The aim of the study was to assess omega 3/6 fatty acids (eye q) in attention deficit hyperactivity disorder (ADHD). Method: The study included a randomized, 3-month, omega 3/6 placebo-controlled, one-way crossover trial with 75 children and adolescents (8-18 years), followed by 3 months with omega 3/6 for all. Investigator-rated ADHD…

  10. Omega-3 Fatty Acid Enriched Chevon (Goat Meat) Lowers Plasma Cholesterol Levels and Alters Gene Expressions in Rats

    PubMed Central

    Rajion, Mohamed Ali; Meng, Goh Yong; Soleimani Farjam, Abdoreza

    2014-01-01

    In this study, control chevon (goat meat) and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA) in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon) that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n = 10 in each group) for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA) in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased (P < 0.05) in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR-γ and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR-γ and SREBP-1c genes expression. PMID:24719886

  11. Omega-3 fatty acid enriched chevon (goat meat) lowers plasma cholesterol levels and alters gene expressions in rats.

    PubMed

    Ebrahimi, Mahdi; Rajion, Mohamed Ali; Meng, Goh Yong; Soleimani Farjam, Abdoreza

    2014-01-01

    In this study, control chevon (goat meat) and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA) in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon) that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n = 10 in each group) for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA) in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased (P < 0.05) in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR-γ and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR-γ and SREBP-1c genes expression. PMID:24719886

  12. Hormonal and metabolic effects of polyunsaturated fatty acid (omega-3) on polycystic ovary syndrome induced rats under diet

    PubMed Central

    Ouladsahebmadarek, Elaheh; Khaki, Arash; Khanahmadi, Sharareh; Ahmadi Ashtiani, Hamidreza; Paknejad, Pooya; Ayubi, Mohammad Reza

    2014-01-01

    Objective(s): PCOS (polycystic ovary syndrome) produces symptoms in approximately 5% to 10% of women of reproductive age (12–45 years old). It is thought to be one of the leading causes of female subfertility. This study aimed to confirm the role of nutrition containing omega-3 (polyunsaturated fatty acid) on control of experimental PCO induced by estradiol-valerat in rats. Materials and Methods: Wistar female rats (n=40) were allocated into control (n=10) and test groups (n= 30), test group was subdivided into 3 groups: G1, received omega-3 (240 mg/kg/orally/daily); G2 and G3 groups were induced PCO by single injection of estradiol-valerate (16 mg/kg/IM). Group 3 received omega-3 (240 mg/kg/orally/daily) and low carbohydrate feeding for 60 subsequent days; on sixtieth day 5 ml blood samples and ovarian tissues of all rats in the group were removed and prepared for biochemical and hormonal analysis. Results: Catalase, GPX (Glutathione peroxidase), SOD (Superoxide dismutase) in groups that received omega-3 showed higher levels, but MDA (malondialdehyde) level was significantly decreased (P<0.05) in comparison with other experimental groups. Ovarian weights in both experimental and control groups were similar (P<0.05). Level of serum FSH (follicle stimulating hormone) was decreased, but level of testosterone was significantly increased (P<0.05) in PCO group in comparison with control and omega-3 groups. Conclusion: Results revealed that administration of omega-3 plus lower carbohydrate food significantly controlled   PCO syndrome and balanced FSH and testosterone. PMID:24711896

  13. Effects of omega-3 fatty acids on tobacco craving in cigarette smokers: A double-blind, randomized, placebo-controlled pilot study.

    PubMed

    Rabinovitz, Sharon

    2014-08-01

    Cigarette smoke induces oxidative stress with subsequent polyunsaturated fatty acids (PUFAs) peroxidation. Low concentrations of omega-3 PUFAs can affect neurotransmission, resulting in hypofunctioning of the mesocortical systems associated with reward and dependence mechanisms and thus may increase cigarette craving, hampering smoking cessation efforts. PUFA deficiency, in particular eicosapentaenoic acid (EPA; 20:5 n-3) and docosahexaenoic acid (DHA; 22:6 n-3), has also been linked to reduced psychological health and ability to cope with stress. Although stress is well linked to smoking urges and behavior, no research to date has examined the effects of PUFA supplementation on tobacco craving. In this double-blind, randomized, placebo-controlled pilot study, performed in regular cigarette smokers (n=48), administration of 2710 mg EPA/day and 2040 mg DHA/day for one month was accompanied by a significant decrease in reported daily smoking and in tobacco craving following cigarette cue exposure. Craving did not return to baseline values in the month that followed treatment discontinuation. This is the first study demonstrating that omega-3 PUFA supplementation reduces tobacco craving in regular smokers, compared to placebo treatment. Thus, omega-3 PUFAs may be of benefit in managing tobacco consumption. Further studies are needed on larger samples to explore the possible therapeutic implications for heavy cigarette smokers. PMID:24899596

  14. Enteral Omega-3 Fatty Acid, γ-Linolenic Acid, and Antioxidant Supplementation in Acute Lung Injury

    PubMed Central

    Rice, Todd W.; Wheeler, Arthur P.; Thompson, B. Taylor; deBoisblanc, Bennett P.; Steingrub, Jay; Rock, Peter

    2013-01-01

    Context The omega-3 (n-3) fatty acids docosahexaenoic acid and eicosapentaenoic acid, along with γ-linolenic acid and antioxidants, may modulate systemic inflammatory response and improve oxygenation and outcomes in patients with acute lung injury. Objective To determine if dietary supplementation of these substances to patients with acute lung injury would increase ventilator-free days to study day 28. Design, Setting, and Participants The OMEGA study, a randomized, double-blind, placebo-controlled, multicenter trial conducted from January 2, 2008, through February 21, 2009. Participants were 272 adults within 48 hours of developing acute lung injury requiring mechanical ventilation whose physicians intended to start enteral nutrition at 44 hospitals in the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. All participants had complete follow-up. Interventions Twice-daily enteral supplementation of n-3 fatty acids, γ-linolenic acid, and antioxidants compared with an isocaloric control. Enteral nutrition, directed by a protocol, was delivered separately from the study supplement. Main Outcome Measure Ventilator-free days to study day 28. Results The study was stopped early for futility after 143 and 129 patients were enrolled in the n-3 and control groups. Despite an 8-fold increase in plasma eicosapentaenoic acid levels, patients receiving the n-3 supplement had fewer ventilator-free days (14.0 vs 17.2; P=.02) (difference, -3.2 [95% CI, -5.8 to -0.7]) and intensive care unit-free days (14.0 vs 16.7; P=.04). Patients in the n-3 group also had fewer nonpulmonary organ failure-free days (12.3 vs 15.5; P=.02). Sixty-day hospital mortality was 26.6% in the n-3 group vs 16.3% in the control group (P=.054), and adjusted 60-day mortality was 25.1% and 17.6% in the n-3 and control groups, respectively (P=.11). Use of the n-3 supplement resulted in more days with diarrhea (29% vs 21%; P=.001). Conclusions Twice-daily enteral supplementation of n-3

  15. Omega-3 polyunsaturated fatty acid and ursodeoxycholic acid have an additive effect in attenuating diet-induced nonalcoholic steatohepatitis in mice

    PubMed Central

    Kim, Ja Kyung; Lee, Kwan Sik; Lee, Dong Ki; Lee, Su Yeon; Chang, Hye Young; Choi, Junjeong; Lee, Jung Il

    2014-01-01

    Nonalcoholic steatohepatitis (NASH) can progress into liver cirrhosis; however, no definite treatment is available. Omega-3 polyunsaturated fatty acid (omega-3) has been reported to alleviate experimental NASH, although its beneficial effect was not evident when tested clinically. Thus, this study aimed to investigate the additive effect of omega-3 and ursodeoxycholic acid (UDCA) on diet-induced NASH in mice. C57BL/6 mice were given a high-fat diet (HFD) for 24 weeks, at which point the mice were divided into three groups and fed HFD alone, HFD with omega-3 or HFD with omega-3 in combination with UDCA for another 24 weeks. Feeding mice an HFD and administering omega-3 improved histologically assessed liver fibrosis, and UDCA in combination with omega-3 further attenuated this disease. The assessment of collagen α1(I) expression agreed with the histological evaluation. Omega-3 in combination with UDCA resulted in a significant attenuation of inflammation whereas administering omega-3 alone failed to improve histologically assessed liver inflammation. Quantitative analysis of tumor necrosis factor α showed an additive effect of omega-3 and UDCA on liver inflammation. HFD-induced hepatic triglyceride accumulation was attenuated by omega-3 and adding UDCA accentuated this effect. In accordance with this result, the expression of sterol regulatory binding protein-1c decreased after omega-3 administration and adding UDCA further diminished SREBP-1c expression. The expression of inducible nitric oxide synthase (iNOS), which may reflect oxidative stress-induced tissue damage, was suppressed by omega-3 administration and adding UDCA further attenuated iNOS expression. These results demonstrated an additive effect of omega-3 and UDCA for alleviating fibrosis, inflammation and steatosis in diet-induced NASH. PMID:25523099

  16. A randomized, double-masked study to evaluate the effect of omega-3 fatty acids supplementation in meibomian gland dysfunction

    PubMed Central

    Oleñik, Andrea; Jiménez-Alfaro, Ignacio; Alejandre-Alba, Nicolás; Mahillo-Fernández, Ignacio

    2013-01-01

    Background Dysfunction of the meibomian gland (MG) is among the most frequent causes of ophthalmological symptoms. The inflammation seen in meibomian gland dysfunction (MGD) is part of its pathogenesis, and evidence of the antioxidant-inflammatory properties of omega-3 fatty acids suggests this to be an appropriate treatment for MGD. Objective We aimed to assess the effectiveness of omega-3 fatty acids versus placebo, in improving the symptoms and signs of MGD. Methods We conducted a randomized and double-mask trial of 3 months duration. We enrolled 61 patients who presented with symptomatic MGD and no tear instability (defined as tear breakup time [TBUT] <10 seconds). Participants were randomly assigned to two homogeneous subgroups. For patients in group A, the study treatment included cleaning the lid margins with neutral baby shampoo and use of artificial tears without preservatives, plus a placebo oral agent. For patients in group B, the study treatment included cleaning the lid margins with neutral baby shampoo and use of artificial tears without preservatives, plus oral supplementation with omega-3 fatty acids. We performed the following tests: (1) TBUT; (2) Schirmer I test; (3) Ocular Surface Disease Index© (OSDI©; Allergan, Inc., Irvine, CA, USA); (4) MG expression; (5) evaluation of lid margin inflammation; and (6) interpalpebral and corneal dye staining. Results After 3 months of evaluation, the mean OSDI, TBUT, lid margin inflammation, and MG expression presented improvement from the baseline values, in group B (P < 0.01, P < 0.001, P < 0.0001, P < 0.0001, respectively). The Schirmer test results were also improved and statistically significant (P < 0.01). Conclusion Oral omega-3 fatty acids, 1.5 grams per day, may be beneficial in the treatment of MGD, mainly by improving tear stability. PMID:24039409

  17. Critical appraisal of omega-3 fatty acids in attention-deficit/hyperactivity disorder treatment.

    PubMed

    Königs, Anja; Kiliaan, Amanda J

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. The classical treatment of ADHD where stimulant medication is used has revealed severe side effects and intolerance. Consequently, the demand to search for alternative treatment has increased rapidly. When comparing levels of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in ADHD patients with those in age-matching controls, lower levels are found in ADHD patients' blood. ω-3 PUFAs are essential nutrients and necessary for a proper brain function and development. Additionally, there are strong indications that ω-3 PUFA supplements could have beneficial effects on ADHD. However, the results of ω-3 PUFA supplementation studies show a high variability. Therefore, we reviewed recent studies published between 2000 and 2015 to identify effective treatment combinations, the quality of design, and safety and tolerability of ω-3-containing food supplements. We searched the databases MEDLINE, PubMed, and Web of Science with keywords such as "ADHD" and "ω-3/6 PUFA" and identified 25 studies that met the inclusion and exclusion criteria. The results of these ω-3 PUFA studies are contradictory but, overall, show evidence for a successful treatment of ADHD symptoms. Tolerability of the given supplements was high, and only mild side effects were reported. In conclusion, there is evidence that a ω-3 PUFA treatment has a positive effect on ADHD. It should be added that treatment could be more effective in patients with mild forms of ADHD. Moreover, the dosage of stimulant medication could be reduced when used in combination with ω-3 PUFA supplements. Further studies are necessary to investigate underlying mechanisms that can lead to a reduction of ADHD symptoms due to ω-3 PUFA treatments and also to determine the optimal concentrations of ω-3 PUFAs, whether used as single treatment or in combination with other medication. PMID:27555775

  18. Overexpression of endoplasmic reticulum omega-3 fatty acid desaturase gene improves chilling tolerance in tomato.

    PubMed

    Yu, Chao; Wang, Hua-Sen; Yang, Sha; Tang, Xian-Feng; Duan, Ming; Meng, Qing-Wei

    2009-01-01

    An endoplasmic reticulum-localized tomato omega-3 fatty acid desaturase gene (LeFAD3) was isolated and characterized with regard to its sequence, response to various temperatures and function in transgenic tomato plants. Northern blot analysis showed that LeFAD3 was expressed in all organs tested and was markedly abundant in roots. Meanwhile, the expression of LeFAD3 was induced by chilling stress (4 degrees C), but inhibited by high temperature (40 degrees C). The transgenic plants were obtained under the control of the cauliflower mosaic virus 35S promoter (35S-CaMV). Northern and western blot analyses confirmed that sense LeFAD3 was transferred into tomato genome and overexpressed. Level of linolenic acids (18:3) increased and correspondingly level of linoleic acid (18:2) decreased in leaves and roots. After chilling stress, the fresh weight of the aerial parts of transgenic plants was higher than that of the wild type (WT) plants, and the membrane system ultrastructure of chloroplast in leaf cell and all the subcellular organelles in root tips of transgenic plants kept more intact than those of WT. Relative electric conductivity increased less in transgenic plants than that in WT, and the respiration rate of the transgenic plants was notably higher than that of WT. The maximal photochemical efficiency of PSII (F(v)/F(m)) and the O(2) evolution rate in WT decreased more than those in transgenic plants under chilling stress. Together with other data, results showed that the overexpression of LeFAD3 led to increased level of 18:3 and alleviated the injuries under chilling stress. PMID:19648018

  19. Omega-3 polyunsaturated fatty acids and cognition in a college-aged population.

    PubMed

    Karr, Justin E; Grindstaff, Tyler R; Alexander, Joel E

    2012-06-01

    The cognitive influences of omega-3 polyunsaturated fatty acids (n-3 PUFA) remain unclear throughout the life span. Dietary n-3 PUFA appear cognitively beneficial prenatally and neuroprotective at later age; however, researchers using supplementation designs have reported disparate findings across age groups. Few studies have examined the cognitive impact of n-3 PUFA during young adulthood. This study assessed the cognitive effects of fish oil supplementation at college age, hypothesizing benefits on affect, executive control, inhibition, and verbal learning and memory. College-aged participants were assigned to active (n = 20, 5 men; age = 19.9, sage = 1.8) or placebo (n = 21, 7 men; age = 20.4, sage = 1.6) treatments, receiving fish oil (480 mg DHA/720 mg EPA) or coconut oil, respectively. Both groups completed four weeks of supplementation. At baseline and posttreatment, the researchers administered the Rey Auditory Verbal Learning Test (RAVLT; Lezak, 1995), Stroop Color and Word Test (SCWT; Golden & Freshwater, 2002), Trail Making Test (TMT; Corrigan & Hinkeldey, 1987; Gaudino, Geisler, & Squires, 1995; Lezak, 1995), and Positive and Negative Affect Schedule (PANAS; Watson, Clark, & Tellegen, 1988). Repeated-measures ANOVAs indicated no benefits of fish oil on the SCWT, RAVLT Stages 1 to 5, or PANAS. An interaction occurred between condition and time of measurement (i.e., baseline and posttreatment) on RAVLT Stages 6 and 7, and placebo significantly improved TMT performance over fish oil. The benefits of n-3 PUFA on RAVLT performance derived more from depreciated placebo performance than improved performance due to fish oil. The placebo gain on TMT performance likely derived from a learning effect. Together, these results present limited cognitive benefits of n-3 PUFA at college age; however, the treatment may have been subtherapeutic, with a larger sample needed to generalize these results. PMID:22250656

  20. Omega-3 fatty acids inhibit the up-regulation of endothelial chemokines in maintenance hemodialysis patients

    PubMed Central

    Hung, Adriana M.; Booker, Cindy; Ellis, Charles D.; Siew, Edward D.; Graves, Amy J.; Shintani, Ayumi; Abumrad, Naji N.; Himmelfarb, Jonathan; Ikizler, Talat Alp

    2015-01-01

    Background Chronic systemic inflammation is common in patients with chronic kidney disease on dialysis (CKD5D) and has been considered a key mediator of the increased cardiovascular risk in this patient population. In this study, we tested the hypothesis that supplementation of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) will attenuate the systemic inflammatory process in CKD5D patients. Methods The design was a randomized, double-blinded, placebo controlled pilot trial (NCT00655525). Thirty-eight patients were randomly assigned in a 1 : 1 fashion to receive 2.9 g of eicosapentaenoic acid (C20:5, n-3) plus docosahexaenoic acid (C22:6, n-3) versus placebo for 12 weeks. The primary outcome was change in pro-inflammatory chemokines measured by lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs). Secondary outcomes were changes in systemic inflammatory markers. Analysis of covariance was used to compare percent change from baseline to 12 weeks. Results Thirty-one patients completed 12 weeks and three patients completed 6 weeks of the study. Median age was 52 (interquartile range 45, 60) years, 74% were African-American and 79% were male. Supplementation of ω-3 PUFAs effectively decreased the LPS-induced PBMC expression of RANTES (Regulated upon Activation, Normal T cell Expressed and Secreted) and MCP-1 (Monocyte Chemotactic Protein-1; unadjusted P = 0.04 and 0.06; adjusted for demographics P = 0.02 and 0.05, respectively). There was no significant effect of the intervention on serum inflammatory markers (C-reactive protein, interleukin-6 and procalcitonin). Conclusions The results of this pilot study suggest that supplementation of ω-3 PUFAs is beneficial in decreasing the levels of endothelial chemokines, RANTES and MCP-1. Studies of larger sample size and longer duration are required to further evaluate effects of ω-3 PUFAs on systemic markers of inflammation, other metabolic parameters and clinical outcomes, particularly

  1. The possible role of long-chain, omega-3 fatty acids in human brain phylogeny.

    PubMed

    Chamberlain, J G

    1996-01-01

    I propose that one of the key factors in human encephalization was increased HUFA intake, especially long-chain, omega-3 fatty acids from aquatic and terrestial meat source. This provided the needed neural membrane fluidity and transmitter/receptor functions for rapid acquisition of more advanced human traits and allowed the expansion of H. erectus into more northern climates. The human brain initially could build ecophenotypically, or adaptive/directed mutationally upon previously evolved mammalian sensor/motor structures, and could rapidly expand cognitive functions within a few million years; as more niches were invaded, more brain diversity was needed to guarantee reproductive success. The metabolically expensive and expanding brain was nutritionally and biochemically set, as it were, for rapid accommodation to tool making, rock throwing, culture language, electronics, and the eventual endless discussion and writings about the brain itself, the evolution of consciousness, and the mid-bran problem [107]. All of this fits, no matter which theory of human evolution one adheres to--i.e., out of Africa, multiregional, etc.--or even the precis fossil chronology [108]. This proposal, based as it is on known facts and certain assumptions appears logical, simple, and satisfying, but it may be wrong. Yet Charles Darwin himself would have approved, because as he so aptly said: false facts are highly injurious to the progress of science, for they often endure long; but false views, if supported by some evidence do little harm for everyone takes a salutory pleasure in providing their falseness; and when this is done our path toward error is closed and the road to truth is often opened. [109]. PMID:8657555

  2. Dietary supplementation of omega-3 fatty acids rescues fragile X phenotypes in Fmr1-Ko mice.

    PubMed

    Pietropaolo, Susanna; Goubran, Mina G; Joffre, Corinne; Aubert, Agnes; Lemaire-Mayo, Valerie; Crusio, Wim E; Layé, Sophie

    2014-11-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are known to critically influence brain development and functions. Dietary supplementation with n-3 PUFAs has been suggested as a non-pharmacological therapy for a number of developmental disorders, e.g., autistic spectrum disorders (ASD), but human studies so far have led to conflicting results. Furthermore, it has been hypothesized that the therapeutic impact of n-3 PUFAs on these disorders might be explained by their anti-inflammatory properties and their promoting effects on synaptic function and plasticity, but no clear evidence has been produced in this direction. We evaluated the impact of n-3 PUFA dietary supplementation in a mouse model of fragile X syndrome (FXS), i.e., a major developmental disease and the most frequent monogenic cause of ASD. Fmr1-KO and wild-type mice were provided with a diet enriched or not with n-3 PUFAs from weaning until adulthood when they were tested for multiple FXS-like behaviors. The brain expression of several cytokines and of brain-derived neurotrophic factor (BDNF) was concomitantly assessed as inflammatory and synaptic markers. n-3 PUFA supplementation rescued most of the behavioral abnormalities displayed by Fmr1-KO mice, including alterations in emotionality, social interaction and non-spatial memory, although not their deficits in social recognition and spatial memory. n-3 PUFAs also rescued most of the neuroinflammatory imbalances of KOs, but had a limited impact on their BDNF deficits. These results demonstrate that n-3 PUFAs dietary supplementation, although not a panacea, has a considerable therapeutic value for FXS and potentially for ASD, suggesting a major mediating role of neuroinflammatory mechanisms. PMID:25080404

  3. Neurorestorative targets of dietary long-chain omega-3 fatty acids in neurological injury.

    PubMed

    Figueroa, Johnny D; De Leon, Marino

    2014-08-01

    Long-chain omega-3 polyunsaturated fatty acids (LC-O3PUFAs) exhibit therapeutic potential for the treatment and prevention of the neurological deficits associated with spinal cord injury (SCI). However, the mechanisms implicated in these protective responses remain unclear. The objective of the present functional metabolomics study was to identify and define the dominant metabolic pathways targeted by dietary LC-O3PUFAs. Sprague-Dawley rats were fed rodent purified chows containing menhaden fish oil-derived LC-O3PUFAs for 8 weeks before being subjected to sham or spinal cord contusion surgeries. We show, through untargeted metabolomics, that dietary LC-O3PUFAs regulate important biochemical signatures associated with amino acid metabolism and free radical scavenging in both the injured and sham-operated spinal cord. Of particular significance, the spinal cord metabolome of animals fed with LC-O3PUFAs exhibited reduced glucose levels (-48 %) and polar uncharged/hydrophobic amino acids (less than -20 %) while showing significant increases in the levels of antioxidant/anti-inflammatory amino acids and peptides metabolites, including β-alanine (+24 %), carnosine (+33 %), homocarnosine (+27 %), kynurenine (+88 %), when compared to animals receiving control diets (p < 0.05). Further, we found that dietary LC-O3PUFAs impacted the levels of neurotransmitters and the mitochondrial metabolism, as evidenced by significant increases in the levels of N-acetylglutamate (+43 %) and acetyl CoA levels (+27 %), respectively. Interestingly, this dietary intervention resulted in a global correction of the pro-oxidant metabolic profile that characterized the SCI-mediated sensorimotor dysfunction. In summary, the significant benefits of metabolic homeostasis and increased antioxidant defenses unlock important neurorestorative pathways of dietary LC-O3PUFAs against SCI. PMID:24740740

  4. Critical appraisal of omega-3 fatty acids in attention-deficit/hyperactivity disorder treatment

    PubMed Central

    Königs, Anja; Kiliaan, Amanda J

    2016-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. The classical treatment of ADHD where stimulant medication is used has revealed severe side effects and intolerance. Consequently, the demand to search for alternative treatment has increased rapidly. When comparing levels of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in ADHD patients with those in age-matching controls, lower levels are found in ADHD patients’ blood. ω-3 PUFAs are essential nutrients and necessary for a proper brain function and development. Additionally, there are strong indications that ω-3 PUFA supplements could have beneficial effects on ADHD. However, the results of ω-3 PUFA supplementation studies show a high variability. Therefore, we reviewed recent studies published between 2000 and 2015 to identify effective treatment combinations, the quality of design, and safety and tolerability of ω-3-containing food supplements. We searched the databases MEDLINE, PubMed, and Web of Science with keywords such as “ADHD” and “ω-3/6 PUFA” and identified 25 studies that met the inclusion and exclusion criteria. The results of these ω-3 PUFA studies are contradictory but, overall, show evidence for a successful treatment of ADHD symptoms. Tolerability of the given supplements was high, and only mild side effects were reported. In conclusion, there is evidence that a ω-3 PUFA treatment has a positive effect on ADHD. It should be added that treatment could be more effective in patients with mild forms of ADHD. Moreover, the dosage of stimulant medication could be reduced when used in combination with ω-3 PUFA supplements. Further studies are necessary to investigate underlying mechanisms that can lead to a reduction of ADHD symptoms due to ω-3 PUFA treatments and also to determine the optimal concentrations of ω-3 PUFAs, whether used as single treatment or in combination with other medication. PMID:27555775

  5. Neurorestorative targets of dietary long-chain omega-3 fatty acids in neurological injury

    PubMed Central

    Figueroa, Johnny D.; De Leon, Marino

    2014-01-01

    Long-chain omega-3 polyunsaturated fatty acids (LC-O3PUFAs) exhibit therapeutic potential for the treatment and prevention of the neurological deficits associated with spinal cord injury (SCI). However, the mechanisms implicated in these protective responses remain unclear. The objective of the present functional metabolomics study was to identify and define the dominant metabolic pathways targeted by dietary LC-O3PUFAs. Sprague-Dawley rats were fed rodent purified chows containing menhaden fish oil-derived LC-O3PUFAs for 8 weeks before being subjected to sham or spinal cord contusion surgeries. We show, through untargeted metabolomics, that dietary LC-O3PUFAs regulate important biochemical signatures associated with amino acid metabolism and free radical scavenging in both the injured and sham-operated spinal cord. Of particular significance, the spinal cord metabolome of animals fed with LC-O3PUFAs exhibited reduced glucose levels (−48%) and polar uncharged/hydrophobic amino acids (<−20%) while showing significant increases in the levels of antioxidant/anti-inflammatory amino acids and peptides metabolites, including β-alanine (+24%), carnosine (+33%), homocarnosine (+27%), kynurenine (+88%), when compared to animals receiving control diets (p < 0.05). Further, we found that dietary LC-O3PUFAs impacted the levels of neurotransmitters and the mitochondrial metabolism, as evidenced by significant increases in the levels of N-acetylglutamate (+43%) and acetyl-CoA levels (+27%), respectively. Interestingly, this dietary intervention resulted in a global correction of the pro-oxidant metabolic profile that characterized the SCI-mediated sensorimotor dysfunction. In summary, the significant benefits of metabolic homeostasis and increased antioxidant defenses unlock important neurorestorative pathways of dietary LC-O3PUFAs against SCI. PMID:24740740

  6. Study on the use of omega-3 fatty acids as a therapeutic supplement in treatment of psoriasis.

    PubMed

    Balbás, G Márquez; Regaña, M Sánchez; Millet, P Umbert

    2011-01-01

    Previous studies have suggested a benefit for patients with plaque psoriasis when omega-3 fatty acids are added to topical treatment. This study evaluated the efficacy of a nutritional complement rich in omega-3 fatty acids in patients with mild or moderate plaque psoriasis. Thirty patients were recruited, 15 of whom were given topical treatment with tacalcitol, forming the control group. The remaining 15 patients were given topical tacalcitol and 2 capsules of Oravex(®) daily. Three visits, the baseline, intermediate (week 4), and final (week 8), were held over an 8-week period. The main efficacy endpoints were the Psoriasis Area and Severity Index (PASI), Nail Psoriasis Severity Index (NAPSI) and Dermatological Life Quality Index (DLQI). A clear and significant improvement was observed in all the efficacy endpoints in both groups between the baseline visit and the end visit. This improvement was significantly greater in the group treated additionally with Oravex(®) than in the control group. Supplementary treatment with omega-3 fatty acids complements topical treatment in psoriasis, and makes a significant contribution to reducing PASI and NAPSI and improving DLQI; and to reducing scalp lesion and pruritus, erythema, scaling, and infiltration of the treated areas. PMID:21760742

  7. The clinical benefits of long-term supplementation with omega-3 fatty acids in cystic fibrosis patients - A pilot study.

    PubMed

    Hanssens, L; Thiébaut, I; Lefèvre, N; Malfroot, A; Knoop, C; Duchateau, J; Casimir, G

    2016-05-01

    Effectiveness of omega-3 supplementation in cystic fibrosis (CF) remains controversial. This study sought to evaluate clinical status, exercise tolerance, inflammatory parameters, and erythrocyte fatty acid profile after 1 year of oral omega-3 supplementation in CF patients. Fifteen ΔF508-homozygous patients undergoing chronic azithromycin were randomized to receive omega-3 fish oil supplementation at a dose of 60mg/Kg/day or placebo. In comparison with the previous year, in the supplemented group, the number of pulmonary exacerbations decreased at 12 months (1.7 vs. 3.0, p<0.01), as did the duration of antibiotic therapy (26.5 days vs. 60.0 days, p<0.025). Supplementation significantly increased the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as early as <3 months of administration, with concomitant decreases in arachidonic acid (AA) levels. This pilot study suggests that long-term omega-3 supplementation offers several clinical benefits as to the number of exacerbations and duration of antibiotic therapy in CF patients. PMID:27154364

  8. Lipase-catalyzed interesterification of soybean oil with an omega-3 polyunsaturated fatty acid concentrate prepared from sardine oil.

    PubMed

    Akimoto, Masamichi; Izawa, Maki; Hoshino, Kazumi; Abe, Ken-Ichi; Takahashi, Hiromi

    2003-02-01

    To reduce the content of linoleoyl moiety in soybean oil, soybean oil that contains 53.0% linoleoyl moiety as molar acyl moiety composition was interesterified with an omega-3 polyunsaturated fatty acid (PUFA) concentrate (24.0 mol% eicosapentaenoic acid [EPA], 40.4 mol% docosahexaenoic acid [DHA]) prepared from sardine oil, using an immobilized sn-1,3-specific lipase from Rhizomucor miehei (Lipozyme IM). The reaction was carried out in a batch reactor at 37 degrees C under the following conditions: 500 micromol of soybean oil, molar ratio of omega-3 PUFA concentrate to soybean oil = 1.0-6.0,5.0 mL of heptane, and 30 batch interesterification units of enzyme. After the reaction time of 72 h, modified soybean oil, which contains 34.9% linoleoyl, 10.1% eicosapentaenoyl, and 14.2% docosahexaenoyl moieties, was produced at the molar reactant ratio of 6.0. In this oil, the total omega-3 acyl moiety composition reached 34.1%; the molar ratio of omega-3 to omega-6 acyl moieties was enhanced by five times compared with soybean oil. Compared with palmitic acid, DHA was kinetically six times less reactive, although the EPA was by 16% more reactive. PMID:12603099

  9. Perturbation and age-related changes in the fatty acid pattern of soleus muscle phospholipids and triglycerides in rats depleted in long-chain polyunsaturated omega3 fatty acids.

    PubMed

    Malaisse, Willy J; Portois, Laurence; Sener, Abdullah; Carpentier, Yvon A

    2007-12-01

    Altered D-glucose metabolism prevails in the soleus muscle of rats depleted in long-chain polyunsaturated omega3 fatty acids (omega3). In these animals, the prior intravenous injection of an omega3-rich medium-chain triglyceride:fish oil emulsion (omega3-FO rats), as compared to that of an omega3-poor medium-chain triglyceride:olive oil emulsion (omega3-OO rats), may either correct or aggravate selected metabolic variables. This study deals with the fatty acid pattern of soleus phospholipids and triglycerides in control animals versus omega3-depleted rats not injected with any lipid emulsion (omega3-NI rats) and in omega3-OO versus omega3-FO rats. In each group of omega3-depleted rats, age-related changes were also monitored. The omega3-depleted rats displayed low long-chain polyunsaturated omega3 fatty acid content, facilitated metabolism of long-chain polyunsaturated omega6 fatty acids, and increased Delta9-desaturase activity. Both the age-related changes in lipid variables and those attributable to the prior intravenous injection of the omega3-rich lipid emulsion consisted either in a move towards normalization or in the opposite direction, i.e. towards aggravation of the defect found in the omega3-depleted rats. Emphasis is placed, therefore, on the unusual situation found in the soleus muscle of omega3-depleted rats, in which both lipid and metabolic variables may be either favourably or adversely affected by the same environmental factor(s). PMID:17982700

  10. Generation and Dietary Modulation of Anti-Inflammatory Electrophilic Omega-3 Fatty Acid Derivatives

    PubMed Central

    Cipollina, Chiara; Salvatore, Sonia R.; Muldoon, Matthew F.; Freeman, Bruce A.; Schopfer, Francisco J.

    2014-01-01

    Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,β-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2-dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial. Methods Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30–55 years of age with a reported EPA+DHA consumption of ≤300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments. Results 5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels. Conclusions The endogenous detection of these electrophilic ω-3 fatty acid ketone derivatives supports the

  11. Dietary uptake of omega-3 fatty acids in mouse tissue studied by time-of-flight secondary ion mass spectrometry (TOF-SIMS).

    PubMed

    Sjövall, Peter; Rossmeisl, Martin; Hanrieder, Jörg; Kuda, Ondrej; Kopecky, Jan; Bryhn, Morten

    2015-07-01

    Dietary intake of omega-3 fatty acids is associated with considerable health benefits, including the prevention of metabolic disorders such as cardiovascular disease and type 2 diabetes. Furthermore, incorporation of the main omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), at the systemic level has been found to be more efficient when these fatty acids are supplied in the form of marine phospholipids compared to triglycerides. In this work, the uptake of omega-3 fatty acids and their incorporation in specific lipids were studied in adipose, skeletal muscle, and liver tissues of mice given high-fat diets with or without omega-3 supplements in the form of phospholipids or triglycerides using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The results demonstrate significant uptake of EPA and DHA, and the incorporation of these fatty acids in specific lipid molecules, in all three tissue types in response to the dietary omega-3 supplements. Moreover, the results indicate reduced concentrations of arachidonic acid (AA) and depletion of lipids containing AA in tissue samples from mice given supplementary omega-3, as compared to the control mice. The effect on the lipid composition, in particular the DHA uptake and AA depletion, was found to be significantly stronger when the omega-3 supplement was supplied in the form of phospholipids, as compared to triglycerides. TOF-SIMS was found to be a useful technique for screening the lipid composition and simultaneously obtaining the spatial distributions of various lipid classes on tissue surfaces. PMID:25694146

  12. Cell type-specific modulation of lipid mediator's formation in murine adipose tissue by omega-3 fatty acids.

    PubMed

    Kuda, Ondrej; Rombaldova, Martina; Janovska, Petra; Flachs, Pavel; Kopecky, Jan

    2016-01-15

    Mutual interactions between adipocytes and immune cells in white adipose tissue (WAT) are involved in modulation of lipid metabolism in the tissue and also in response to omega-3 polyunsaturated fatty acids (PUFA), which counteract adverse effects of obesity. This complex interplay depends in part on in situ formed anti- as well as pro-inflammatory lipid mediators, but cell types engaged in the synthesis of the specific mediators need to be better characterized. We used tissue fractionation and metabolipidomic analysis to identify cells producing lipid mediators in epididymal WAT of mice fed for 5 weeks obesogenic high-fat diet (lipid content 35% wt/wt), which was supplemented or not by omega-3 PUFA (4.3 mg eicosapentaenoic acid and 14.7 mg docosahexaenoic acid per g of diet). Our results demonstrate selective increase in levels of anti-inflammatory lipid mediators in WAT in response to omega-3, reflecting either their association with adipocytes (endocannabinoid-related N-docosahexaenoylethanolamine) or with stromal vascular cells (pro-resolving lipid mediator protectin D1). In parallel, tissue levels of obesity-associated pro-inflammatory endocannabinoids were suppressed. Moreover, we show that adipose tissue macrophages (ATMs), which could be isolated using magnetic force from the stromal vascular fraction, are not the major producers of protectin D1 and that omega-3 PUFA lowered lipid load in ATMs while promoting their less-inflammatory phenotype. Taken together, these results further document specific roles of various cell types in WAT in control of WAT inflammation and metabolism and they suggest that also other cells but ATMs are engaged in production of pro-resolving lipid mediators in response to omega-3 PUFA. PMID:26707880

  13. Suppressed liver tumorigenesis in fat-1 mice with elevated omega-3 fatty acids is associated with increased omega-3 derived lipid mediators and reduced TNF-α

    PubMed Central

    Weylandt, Karsten H.; Krause, Lena F.; Gomolka, Beate; Chiu, Cheng-Ying; Bilal, Süleyman; Nadolny, Anja; Waechter, Simon F.; Fischer, Andreas; Rothe, Michael

    2011-01-01

    Liver tumors, particularly hepatocellular carcinoma (HCC), are a major cause of morbidity and mortality worldwide. The development of HCC is mostly associated with chronic inflammatory liver disease of various etiologies. Previous studies have shown that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) dampen inflammation in the liver and decrease formation of tumor necrosis factor (TNF)-α. In this study, we used the fat-1 transgenic mouse model, which endogenously forms n-3 PUFA from n-6 PUFA to determine the effect of an increased n-3 PUFA tissue status on tumor formation in the diethylnitrosamine (DEN)-induced liver tumor model. Our results showed a decrease in tumor formation, in terms of size and number, in fat-1 mice compared with wild-type littermates. Plasma TNF-α levels and liver cyclooxygenase-2 expression were markedly lower in fat-1 mice. Furthermore, there was a decreased fibrotic activity in the livers of fat-1 mice. Lipidomics analyses of lipid mediators revealed significantly increased levels of the n-3 PUFA-derived 18-hydroxyeicosapentaenoic acid (18-HEPE) and 17-hydroxydocosahexaenoic acid (17-HDHA) in the livers of fat-1 animals treated with DEN. In vitro experiments showed that 18-HEPE and 17-HDHA could effectively suppress lipopolysacharide-triggered TNF-α formation in a murine macrophage cell line. The results of this study provide evidence that an increased tissue status of n-3 PUFA suppresses liver tumorigenesis, probably through inhibiting liver inflammation. The findings also point to a potential anticancer role for the n-3 PUFA-derived lipid mediators 18-HEPE and 17-HDHA, which can downregulate the important proinflammatory and proproliferative factor TNF-α. PMID:21421544

  14. Identification and functional characterization of genes encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular microalgae.

    PubMed

    Vaezi, Royah; Napier, Johnathan A; Sayanova, Olga

    2013-12-01

    In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative "front-end" desaturases (Δ6 and Δ4) from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs) in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15). These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in marine microalgae. PMID:24351909

  15. Heterotrophic Production of Omega-3 Long-Chain Polyunsaturated Fatty Acids by Trophically Converted Marine Diatom Phaeodactylum tricornutum

    PubMed Central

    Hamilton, Mary L.; Powers, Stephen; Napier, Johnathan A.; Sayanova, Olga

    2016-01-01

    We have created via metabolic engineering a heterotrophic strain of Phaeodactylum tricornutum that accumulates enhanced levels of the high value omega-3 long chain polyunsaturated fatty acid (LC-PUFAs) docosahexaenoic acid (DHA). This was achieved by generation of transgenic strains in which the Δ5-elongase from Ostreococcus tauri was co-expressed with a glucose transporter from the moss Physcomitrella patens. This double transformant has the capacity to grow in the dark in liquid medium supplemented with glucose and accumulate substantial levels of omega-3 LC-PUFAs. The effects of glucose concentrations on growth and LC-PUFA production of wild type and transformed strains cultivated in the light and dark were studied. The highest omega-3 LC-PUFAs accumulation was observed in cultures grown under mixotrophic conditions in the presence of 1% glucose (up to 32.2% of total fatty acids, TFA). Both DHA and EPA are detected at high levels in the neutral lipids of transgenic cells grown under phototrophic conditions, averaging 36.5% and 23.6% of TFA, respectively. This study demonstrates the potential for P. tricornutum to be developed as a viable commercial strain for both EPA and DHA production under mixo- and heterotrophic conditions. PMID:27005636

  16. Heterotrophic Production of Omega-3 Long-Chain Polyunsaturated Fatty Acids by Trophically Converted Marine Diatom Phaeodactylum tricornutum.

    PubMed

    Hamilton, Mary L; Powers, Stephen; Napier, Johnathan A; Sayanova, Olga

    2016-03-01

    We have created via metabolic engineering a heterotrophic strain of Phaeodactylum tricornutum that accumulates enhanced levels of the high value omega-3 long chain polyunsaturated fatty acid (LC-PUFAs) docosahexaenoic acid (DHA). This was achieved by generation of transgenic strains in which the Δ5-elongase from Ostreococcus tauri was co-expressed with a glucose transporter from the moss Physcomitrella patens. This double transformant has the capacity to grow in the dark in liquid medium supplemented with glucose and accumulate substantial levels of omega-3 LC-PUFAs. The effects of glucose concentrations on growth and LC-PUFA production of wild type and transformed strains cultivated in the light and dark were studied. The highest omega-3 LC-PUFAs accumulation was observed in cultures grown under mixotrophic conditions in the presence of 1% glucose (up to 32.2% of total fatty acids, TFA). Both DHA and EPA are detected at high levels in the neutral lipids of transgenic cells grown under phototrophic conditions, averaging 36.5% and 23.6% of TFA, respectively. This study demonstrates the potential for P. tricornutum to be developed as a viable commercial strain for both EPA and DHA production under mixo- and heterotrophic conditions. PMID:27005636

  17. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    PubMed Central

    Vaezi, Royah; Napier, Johnathan A.; Sayanova, Olga

    2013-01-01

    In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4) from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs) in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15). These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in marine microalgae. PMID:24351909

  18. Effects of omega-3 and omega-6 fatty acids on IGF-I receptor signalling in colorectal cancer cells.

    PubMed

    Seti, Hila; Leikin-Frenkel, Alicia; Werner, Haim

    2009-07-01

    The insulin-like growth factor (IGF) system plays a critical role in normal growth and development as well as in malignant states. Most of the biological activities of the IGFs are mediated by the IGF-IR, which is over-expressed in most tumours and cancer cell lines. Fatty acids have critical roles in both systemic physiological processes (e.g. metabolism) and cellular events (e.g. proliferation, apoptosis, signal transduction, and gene expression). Alpha-linolenic acid (ALA) and linoleic acid (LA) are essential fatty acids of the omega-3 and omega-6 families, respectively. The aim of this study was to investigate the potential interactions between fatty acids and the IGF signal transduction pathways, and to evaluate the impact of this interplay on colon cancer cells survival and proliferation. Results of Western blot analyses revealed that ALA and LA enhanced the ligand-induced IGF-IR phosphorylation and, in addition, increased receptor phosphorylation in an IGF-I independent manner. Furthermore, fatty acid treatment led to phosphorylation of downstream signalling molecules, including Akt and Erk. In addition, FACS analysis and apoptosis measurements indicated that ALA and LA have a potential mitogenic effect on HCT116 cells, as reflected by the number of cells in S phase and by a reduction of PARP cleavage, implying a reduction in apoptotic activity. In summary, our results provide evidence that omega-3 and omega-6 fatty acids modulate IGF-I action in colon cancer cells. PMID:19480565

  19. Omega-3 Fatty Acid Attenuates Cardiovascular Effects in Healthy Older Volunteers Exposed to Concentrated Ambient Fine and UltrafineParticulate Matter

    EPA Science Inventory

    Rationale: Ambient particulate matter (PM) exposure has been associated with adverse cardiovascular effects. A recent epidemiology study reported that omega-3 polyunsaturated fatty acid (fish oil) supplementation blunted the response of study participants to PM. Our study was des...

  20. Omega-3 Fatty Acid Supplementation Appears to Attenuate Particulate Air Pollution-induced Cardiac Effects and Lipid Changes in Healthy Middle-aged Adults.

    EPA Science Inventory

    Context: Air pollution exposure has been associated with adverse cardiovascular effects. A recent epidemiologic study reported that omega-3 fatty acid (fish oil) supplementation blunted the cardiac responses to air pollution exposure. Objective: To evaluate in a randomized contro...

  1. Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium

    SciTech Connect

    Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; Inmon, Jay J.; Millhollon, Jon C.; Liechty, Zach; Page, Justin T.; Jenks, Matthew A.; Chapman, Kent D.; Udall, Joshua A.; Gore, Michael A.; Dyer, John M.

    2014-11-18

    The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterize the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species (G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes (FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes (FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level

  2. Dietary long-chain omega-3 fatty acids do not diminish eosinophilic pulmonary inflammation in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of fish oil supplements on diminishing airway inflammation in asthma have been studied in mouse models and human intervention trials with varying results. However, the independent effects of the main omega-3 PUFAs found in fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (D...

  3. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species

    PubMed Central

    McGraw, Joseph E.; Jensen, Brittany J.; Bishop, Sydney S.; Lokken, James P.; Dorff, Kellen J.; Ripley, Michael P.; Munro, James B.

    2015-01-01

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. PMID:26497452

  4. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species.

    PubMed

    Dailey, Frank E; McGraw, Joseph E; Jensen, Brittany J; Bishop, Sydney S; Lokken, James P; Dorff, Kellen J; Ripley, Michael P; Munro, James B

    2016-01-01

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. PMID:26497452

  5. Retina and Omega-3

    PubMed Central

    Querques, Giuseppe; Forte, Raimondo; Souied, Eric H.

    2011-01-01

    Over the last decade, several epidemiological studies based on food frequency questionnaires suggest that omega-3 polyunsaturated fatty acids could have a protective role in reducing the onset and progression of retinal diseases. The retina has a high concentration of omega-3, particularly DHA, which optimizes fluidity of photoreceptor membranes, retinal integrity, and visual function. Furthermore, many studies demonstrated that DHA has a protective, for example antiapoptotic, role in the retina. From a nutritional point of view, it is known that western populations, particularly aged individuals, have a higher than optimal omega-6/omega-3 ratio and should enrich their diet with more fish consumption or have DHA supplementation. This paper underscores the potential beneficial effect of omega-3 fatty acids on retinal diseases. PMID:22175009

  6. The effects of omega 3 fatty acid supplementation on brain tissue oxidative status in aged wistar rats

    PubMed Central

    Avramovic, N; Dragutinovic, V; Krstic, D; Colovic, MB; Trbovic, A; de Luka, S; Milovanovic, I; Popovic, T

    2012-01-01

    Background: The omega 3 fatty acids play an important role in many physiological processes. Their effect is well documented in neurodegenerative diseases and inflammatory diseases. Also, aging as a biophysiological process could be influenced by eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) components of fish oil. However there are not many studies showing the effect of PUFA (polyunsaturated FA) suplementation in eldery brain functions and the response to oxidative strees. The aim of this study was to investigate the effects of dietary omega-3 fatty acid supplementation on levels of lipid peroxidation and oxidant/antioxidant status of brain tissue in aged (24 months old) Wistar rats. Methods: Animals were divided in two groups. Control group (n=8) was fed with standard laboratory food and received water ad libitum. Treated group (n=8) was also fed with standard laboratory food, water ad libitum and received fish oil capsules (EPA+DHA) for 6 weeks. Daily dose was 30mg EPA and 45mg DHA (capsules: 200mg EPA and 300mg DHA; in-house method). At the end of treatment animals were sacrificed and brains were collected and frozen on -80ºC. The levels of lipid peroxidation (malondialdehyde - MDA), activity of catalase (CAT) and activity of superoxide dismutase (SOD) were examined in cerebral cortex. Catalase activity was determined by measuring the decrease in absorbance (H2O2 degradation) at 240 nm for 3 min and expressed as U/mg protein. Total SOD (superoxide dismutase) activity was performed at room temperature according to the method of Misra and Fridovich. The extent of lipid peroxidation (LPO) was estimated as the concentration of thiobarbituric acid reactive product malondialdehyde (MDA) by using the method of Aruoma et al. The incorporation of fatty acids in cellular membranes was confirmed by gas chromatography. Results: Our results showed that lipid peroxidation significantly decreased in treated animal group, where MDA concentration was 0.38±0.001 vs

  7. Long-Chain Omega-3 fatty acids associated with better cognitive function and less depressive symptoms in a population of Puerto Rican adults in Boston, MA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) found in fatty fish are increasingly recommended for promoting brain health with aging. Studies have reported protective associations between dietary DHA/EPA or fatty fish and incident dementia, but few have reported ...

  8. The Effects of Dietary Changes in the Ratio of Omega-3 to Omega-6 Polyunsaturated Fatty Acids on Lung Carcinogenesis in A/J Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyunsaturated fatty acid metabolites are known to be involved in inflammation, and fatty acid precursors and metabolites may also exert genomic control over the expression of genes involved in proliferation and differentiation. Some researchers suggest that a higher ratio of omega-3/omega-6 fatty ...

  9. High serum levels of proinflammatory markers during epileptogenesis. Can omega-3 fatty acid administration reduce this process?

    PubMed

    Gouveia, Telma Luciana Furtado; Vieira de Sousa, Paula Viviane; de Almeida, Sandro Soares; Nejm, Mariana Bocca; Vieira de Brito, Joíse Marques; Cysneiros, Roberta Monterazzo; de Brito, Marlon Vilela; Salu, Bruno Ramos; Oliva, Maria Luiza Vilela; Scorza, Fúlvio Alexandre; Naffah-Mazzacoratti, Maria da Graça

    2015-10-01

    During the epileptogenic process, several events may occur, such as an important activation of the immune system in the central nervous system. The response to seizure activity results in an inflammation in the brain as well as in the periphery. Moreover, CRP and cytokines may be able to interact with numerous ligands in response to cardiac injury caused by sympathetic stimulation in ictal and postictal states. Based on this, we measured the serum levels of C-reactive protein (CRP) and cytokines during acute, silent, and chronic phases of rats submitted to the pilocarpine model of epilepsy. We have also analyzed the effect of a chronic treatment of these rats with omega-3 fatty acid in CRP and cytokine levels, during an epileptic focus generation. C-reactive protein and cytokines such as IL-1β, IL-6, and TNF-α presented high concentration in the blood of rats, even well after the occurrence of SE. We found reduced levels of CRP and all proinflammatory cytokines in the blood of animals with chronic seizures, treated with omega-3, when compared with those treated with vehicle solution. Taken together, our results strongly suggest that the omega-3 is an effective treatment to prevent SUDEP occurrence due to its capability to act as an anti-inflammatory compound, reducing the systemic inflammatory parameters altered by seizures. PMID:26318793

  10. The Omega-3 Fatty Acid Eicosapentaenoic Acid Accelerates Disease Progression in a Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Gladman, Stacy; Biggio, Maria Luigia; Marino, Marianna; Jayasinghe, Maduka; Ullah, Farhan; Dyall, Simon C.; Malaspina, Andrea; Bendotti, Caterina; Michael-Titus, Adina

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease characterised by loss of motor neurons that currently has no cure. Omega-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), have many health benefits including neuroprotective and myoprotective potential. We tested the hypothesis that a high level of dietary EPA could exert beneficial effects in ALS. The dietary exposure to EPA (300 mg/kg/day) in a well-established mouse model of ALS expressing the G93A superoxide dismutase 1 (SOD1) mutation was initiated at a pre-symptomatic or symptomatic stage, and the disease progression was monitored until the end stage. Daily dietary EPA exposure initiated at the disease onset did not significantly alter disease presentation and progression. In contrast, EPA treatment initiated at the pre-symptomatic stage induced a significantly shorter lifespan. In a separate group of animals sacrificed before the end stage, the tissue analysis showed that the vacuolisation detected in G93A-SOD1 mice was significantly increased by exposure to EPA. Although EPA did not alter motor neurone loss, EPA reversed the significant increase in activated microglia and the astrocytic activation seen in G93A-SOD1 mice. The microglia in the spinal cord of G93A-SOD1 mice treated with EPA showed a significant increase in 4-hydroxy-2-hexenal, a highly toxic aldehydic oxidation product of omega-3 fatty acids. These data show that dietary EPA supplementation in ALS has the potential to worsen the condition and accelerate the disease progression. This suggests that great caution should be exerted when considering dietary omega-3 fatty acid supplements in ALS patients. PMID:23620776

  11. Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum

    PubMed Central

    Hamilton, Mary L.; Warwick, Joanna; Terry, Anya; Allen, Michael J.; Napier, Johnathan A.; Sayanova, Olga

    2015-01-01

    The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA) eicosapentaenoic acid (EPA) and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA). Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA) by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA) in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO), supplemented with F/2 nutrients (F2N) under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1) on a 16:8h light:dark cycle, in natural seawater

  12. Production and Enhancement of Omega-3 Fatty Acid from Mortierella alpina CFR-GV15: Its Food and Therapeutic Application

    PubMed Central

    Vadivelan, Ganesan; Venkateswaran, Govindarajulu

    2014-01-01

    Mortierella sp. has been known to produce polyunsaturated fatty acids (PUFAs) such as GLA and AA under normal growth medium conditions. Similarly, under the stress condition, this fungus produces EPA and DHA in their mycelial biomass. Among the 67 soil samples screened from the Western Ghats of India, 11 Mortierella isolates showed the presence of omega-6 and omega-3 fatty acid, mainly GLA, AA, EPA, and DHA in starch, yeast-extract medium. Nile red and TTC strains were used for screening their qualitative oleaginesity. Among the representative isolates, when Mortierella sp. is grown in a fat-producing basal medium, a maximum lipid content of 42.0 ± 1.32% in its mycelia, 6.72 ± 0.5% EPA, and 4.09 ± 0.1% DHA was obtained. To understand the Mortierella sp. CFR-GV15, to the species level, its morphology was seen under the light microscope and scanning electron microscope, respectively. These microscopic observations showed that isolate Mortierella sp. CFR-GV15 produced coenocytic hyphae. Later on, its 18S rRNA and the internal transcribed spacer (ITS) sequences were cloned, sequenced, and analyzed phylogenetically to 18S rRNA and ITS1 and ITS4 sequences of related fungi. This newly isolated Mortierella alpina CFR-GV15 was found to be promising culture for the development of an economical method for commercial production of omega-3 fatty acid for food and therapeutical application. PMID:24982900

  13. Omega-3 fatty acids are able to modulate the painful symptoms associated to cyclophosphamide-induced-hemorrhagic cystitis in mice.

    PubMed

    Freitas, Raquel D S; Costa, Kesiane M; Nicoletti, Natália F; Kist, Luiza W; Bogo, Maurício R; Campos, Maria M

    2016-01-01

    This study investigated the effects of the long-term dietary fish oil supplementation or the acute administration of the omega-3 fatty acid docosahexaenoic acid (DHA) in the mouse hemorrhagic cystitis (HC) induced by the anticancer drug cyclophosphamide (CYP). HC was induced in mice by a single CYP injection (300mg/kg ip). Animals received four different diets containing 10% and 20% of corn or fish oil, during 21days. Separated groups received DHA by ip (1μmol/kg) or intrathecal (i.t.; 10μg/site) routes, 1h or 15min before CYP. The behavioral tests (spontaneous nociception and mechanical allodynia) were carried out from 1h to 6h following CYP injection. Bladder inflammatory changes, blood cell counts and serum cytokines were evaluated after euthanasia (at 6h). Immunohistochemistry analysis was performed for assessing spinal astrocyte and microglia activation or GPR40/FFAR1 expression. Either fish oil supplementation or DHA treatment (ip and i.t.) markedly prevented visceral pain, without affecting CYP-evoked bladder inflammatory changes. Moreover, systemic DHA significantly prevented the neutrophilia/lymphopenia caused by CYP, whereas this fatty acid did not significantly affect serum cytokines. DHA also modulated the spinal astrocyte activation and the GPR40/FFAR1 expression. The supplementation with fish oil enriched in omega-3 fatty acids or parenteral DHA might be interesting nutritional approaches for cancer patients under chemotherapy schemes with CYP. PMID:26482705

  14. Marine omega-3 highly unsaturated fatty acids: From mechanisms to clinical implications in heart failure and arrhythmias.

    PubMed

    Glück, Tobias; Alter, Peter

    2016-07-01

    Therapeutic implications of marine omega-3 highly unsaturated fatty acids (HUFA) in cardiovascular disease are still discussed controversially. Several clinical trials report divergent findings and thus leave ambiguity on the meaning of oral omega-3 therapy. Potential prognostic indications of HUFA treatment have been predominantly studied in coronary artery disease, sudden cardiac death, ventricular arrhythmias, atrial fibrillation and heart failure of various origin. It is suspected that increased ventricular wall stress is crucially involved in the prognosis of heart failure. Increased wall stress and an unfavorable myocardial remodeling is associated with an increased risk of arrhythmias by stretch-activated membrane ion channels. Integration of HUFA into the microenvironment of cardiomyocyte ion channels lead to allosteric changes and increase the electrical stability. Increased ventricular wall stress appears to be involved in the local myocardial as well as in the hepatic fatty acid metabolism, i.e. a cardio-hepatic syndrome. Influences of an altered endogenous HUFA metabolism and an inverse shift of the fatty acid profile was underrated in the past. A better understanding of these interacting endogenous mechanisms appears to be required for interpreting the findings of recent experimental and clinical studies. The present article critically reviews major studies on basic pathophysiological mechanisms and treatment effects in clinical trials. PMID:27080538

  15. Omega-3 fatty acids in the management of autism spectrum disorders: findings from an open-label pilot study in Singapore.

    PubMed

    Ooi, Y P; Weng, S-J; Jang, L Y; Low, L; Seah, J; Teo, S; Ang, R P; Lim, C G; Liew, A; Fung, D S; Sung, M

    2015-08-01

    The goal of this open-label trial was to examine the efficacy and safety of a 12-week omega-3 fatty acids supplementation among children suffering with Autism Spectrum Disorders (ASD). A total of 41 children and adolescents aged 7-18 years (36 boys, 5 girls; mean age = 11.66, s.d. = 3.05) diagnosed with ASD participated in the study. At post-treatment, participants showed significant improvements on all subscales of the Social Responsiveness Scale (P < 0.01) and the Social and Attention Problems syndrome scales of the Child Behavior Checklist (P < 0.05). Blood fatty acid levels were significantly correlated with changes in the core symptoms of ASD. Baseline levels of blood fatty acid levels were also predictive of response to the omega-3 treatment. Omega-3 fatty acids supplementation was well-tolerated and did not cause any serious side effects. Our findings lend some preliminary support for the use of omega-3 fatty acids supplementation in addressing ASD. Future randomized controlled trials of omega-3 fatty acids in ASD with blood fatty acid measurements with a larger sample and longer follow-up period is warranted. PMID:25804268

  16. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer's disease.

    PubMed

    Shinto, Lynne; Quinn, Joseph; Montine, Thomas; Dodge, Hiroko H; Woodward, William; Baldauf-Wagner, Sara; Waichunas, Dana; Bumgarner, Lauren; Bourdette, Dennis; Silbert, Lisa; Kaye, Jeffrey

    2014-01-01

    Oxidative stress, inflammation, and increased cholesterol levels are all mechanisms that have been associated with Alzheimer's disease (AD) pathology. Several epidemiologic studies have reported a decreased risk of AD with fish consumption. This pilot study was designed to evaluate the effects of supplementation with omega-3 fatty acids alone (ω-3) or omega-3 plus alpha lipoic acid (ω-3 + LA) compared to placebo on oxidative stress biomarkers in AD. The primary outcome measure was peripheral F2-isoprostane levels (oxidative stress measure). Secondary outcome measures included performance on: Mini-Mental State Examination (MMSE), Activities of Daily Living/Instrumental Activities of Daily Living (ADL/IADL), and Alzheimer Disease Assessment Scale-cognitive subscale (ADAS-cog). Thirty-nine AD subjects were randomized to one of three groups: 1) placebo, 2) ω-3, or 3) ω-3 + LA for a treatment duration of 12 months. Eighty seven percent (34/39) of the subjects completed the 12-month intervention. There was no difference between groups at 12 months in peripheral F2-isoprostane levels (p = 0.83). The ω-3 + LA and ω-3 were not significantly different than the placebo group in ADAS-cog (p = 0.98, p = 0.86) and in ADL (p = 0.15, p = 0.82). Compared to placebo, the ω-3 + LA showed less decline in MMSE (p < 0.01) and IADL (p = 0.01) and the ω-3 group showed less decline in IADL (p < 0.01). The combination of ω-3 + LA slowed cognitive and functional decline in AD over 12 months. Because the results were generated from a small sample size, further evaluation of the combination of omega-3 fatty acids plus alpha-lipoic acid as a potential treatment in AD is warranted. PMID:24077434

  17. Quantitative Approach for Incorporating Methylmercury Risks and Omega-3 Fatty Acid Benefits in Developing Species-Specific Fish Consumption Advice

    PubMed Central

    Ginsberg, Gary L.; Toal, Brian F.

    2009-01-01

    Background Despite general agreement about the toxicity of methylmercury (MeHg), fish consumption advice remains controversial. Concerns have been raised that negative messages will steer people away from fish and omega-3 fatty acid (FA) benefits. One approach is to provide advice for individual species that highlights beneficial fish while cautioning against riskier fish. Objectives Our goal in this study was to develop a method to quantitatively analyze the net risk/benefit of individual fish species based on their MeHg and omega-3 FA content. Methods We identified dose–response relationships for MeHg and omega-3 FA effects on coronary heart disease (CHD) and neurodevelopment. We used the MeHg and omega-3 FA content of 16 commonly consumed species to calculate the net risk/benefit for each species. Results Estimated omega-3 FA benefits outweigh MeHg risks for some species (e.g., farmed salmon, herring, trout); however, the opposite was true for others (swordfish, shark). Other species were associated with a small net benefit (e.g., flounder, canned light tuna) or a small net risk (e.g., canned white tuna, halibut). These results were used to place fish into one of four meal frequency categories, with the advice tentative because of limitations in the underlying dose–response information. Separate advice appears warranted for the neurodevelopmental risk group versus the cardiovascular risk group because we found a greater net benefit from fish consumption for the cardiovascular risk group. Conclusions This research illustrates a framework for risk/benefit analysis that can be used to develop categories of consumption advice ranging from “do not eat” to “unlimited,” with the caveat that unlimited may need to be tempered for certain fish (e.g., farm-raised salmon) because of other contaminants and end points (e.g., cancer risk). Uncertainties exist in the underlying dose–response relationships, pointing in particular to the need for more research on

  18. Omega-3 fatty acids are inversely related to callous and unemotional traits in adolescent boys with attention deficit hyperactivity disorder.

    PubMed

    Gow, Rachel V; Vallee-Tourangeau, Frederic; Crawford, Michael Angus; Taylor, Eric; Ghebremeskel, Kebreab; Bueno, Allain A; Hibbeln, Joseph R; Sumich, Alexander; Rubia, Katya

    2013-06-01

    A number of research studies have reported abnormal plasma fatty acid profiles in children with ADHD along with some benefit of n-3 to symptoms of ADHD. However, it is currently unclear whether (lower) long chain-polyunsaturated fatty acids (LC-PUFAs) are related to ADHD pathology or to associated behaviours. The aim of this study was to test whether (1) ADHD children have abnormal plasma LC-PUFA levels and (2) ADHD symptoms and associated behaviours are correlated with LC-PUFA levels. Seventy-two, male children with (n=29) and without a clinical diagnosis of ADHD (n=43) were compared in their plasma levels of LC-PUFA. Plasma DHA was higher in the control group prior to statistical correction. Callous-unemotional (CU) traits were found to be significantly negatively related to both eicosapentaenoic acid (EPA), and total omega-3 in the ADHD group. The findings unveil for the first time that CU and anti-social traits in ADHD are associated with lower omega-3 levels. PMID:23664595

  19. A database of chromatographic properties and mass spectra of fatty acid methyl esters from omega-3 products.

    PubMed

    Wasta, Ziar; Mjøs, Svein A

    2013-07-19

    Fatty acids in products claimed to contain oils with the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were analyzed as fatty acid methyl esters by gas chromatography-mass spectrometry using electron impact ionization. To cover the variation in products on the market, the 20 products that were studied in detail were selected from a larger sample set by statistical methodology. The samples were analyzed on two different stationary phases (polyethylene glycol and cyanopropyl) and the fatty acid methyl esters were identified by methodology that combines the mass spectra and retention indices into a single score value. More that 100 fatty acids had a chromatographic area above 0.1% of the total, in at least one product. Retention indices are reported as equivalent chain lengths, and overlap patterns on the two columns are discussed. Both columns were found suitable for analysis of major and nutritionally important fatty acids, but the large number of minor compounds that may act as interferents will be problematic if low limits of quantification are required in analyses of similar sample types. A database of mass spectral libraries and equivalent chain lengths of the detected compounds has been compiled and is available online. PMID:23773584

  20. Fatty acids in ADHD: plasma profiles in a placebo-controlled study of Omega 3/6 fatty acids in children and adolescents.

    PubMed

    Johnson, Mats; Månsson, Jan-Eric; Ostlund, Sven; Fransson, Gunnar; Areskoug, Björn; Hjalmarsson, Kerstin; Landgren, Magnus; Kadesjö, Björn; Gillberg, Christopher

    2012-12-01

    The aim of this study was to assess baseline levels and changes in plasma fatty acid profiles in children and adolescents with ADHD, in a placebo-controlled study with Omega 3/6 supplementation, and to compare with treatment response. Seventy-five children and adolescents aged 8-18 years with DSM-IV ADHD were randomized to 3 months of Omega 3/6 (Equazen eye q) or placebo, followed by 3 months of open phase Omega 3/6 for all. n-3, n-6, n-6/n-3 ratio, EPA and DHA in plasma were measured at baseline, 3 and 6 months. Subjects with more than 25 % reduction in ADHD symptoms were classified as responders. At baseline, no significant differences in mean fatty acid levels were seen across active/placebo groups or responder/non-responder groups. The 0-3 month changes in all parameters were significantly greater in the active group (p < 0.01). Compared to non-responders, the 6-month responders had significantly greater n-3 increase at 3 months and decrease in n-6/n-3 ratio at 3 and 6 months (p < 0.05). Omega 3/6 supplementation had a clear impact on fatty acid composition of plasma phosphatidyl choline in active versus placebo group, and the fatty acid changes appear to be associated with treatment response. The most pronounced and long-lasting changes for treatment responders compared to non-responders were in the n-6/n-3 ratio. PMID:22753087

  1. Associations between variants of FADS genes and omega-3 and omega-6 milk fatty acids of Canadian Holstein cows

    PubMed Central

    2014-01-01

    Background Fatty acid desaturase 1 (FADS1) and 2 (FADS2) genes code respectively for the enzymes delta-5 and delta-6 desaturases which are rate limiting enzymes in the synthesis of polyunsaturated omega-3 and omega-6 fatty acids (FAs). Omega-3 and-6 FAs as well as conjugated linoleic acid (CLA) are present in bovine milk and have demonstrated positive health effects in humans. Studies in humans have shown significant relationships between genetic variants in FADS1 and 2 genes with plasma and tissue concentrations of omega-3 and-6 FAs. The aim of this study was to evaluate the extent of sequence variations within these two genes in Canadian Holstein cows as well as the association between sequence variants and health promoting FAs in milk. Results Thirty three SNPs were detected within the studied regions of genes including a synonymous mutation (FADS1-07, rs42187261, 306Tyr > Tyr) in exon 8 of FADS1, a non-synonymous mutation (FADS2-14, rs211580559, 294Ala > Val) within FADS2 exon 7, a splice site SNP (FADS2-05, rs211263660), a 3′UTR SNP (FADS2-23, rs109772589), and another 3′UTR SNP with an effect on a microRNA binding site within FADS2 gene (FADS2-19, rs210169303). Association analyses showed significant relations between three out of seven tested SNPs and several FAs. Significant associations (FDR P < 0.05) were recorded between FADS2-23 (rs109772589) and two omega-6 FAs (dihomogamma linolenic acid [C20:3n6] and arachidonic acid [C20:4n6]), FADS1-07 (rs42187261) and one omega-3 FA (eicosapentaenoic acid, C20:5n3) and tricosanoic acid (C23:0), and one intronic SNP, FADS1-01 (rs136261927) and C20:3n6. Conclusion Our study has demonstrated positive associations between three SNPs within FADS1 and FADS2 genes (a SNP within the 3’UTR, a synonymous SNP and an intronic SNP), with three milk PUFAs of Canadian Holstein cows thus suggesting possible involvement of synonymous and non-coding region variants in FA synthesis. These SNPs may serve as

  2. TEMPERATURE-SENSITIVE, POST-TRANSLATIONAL REGULATION OF PLANT OMEGA-3 FATTY ACID DESATURASES IS MEDIATED BY THE ER-ASSOCIATED DEGRADATION PATHWAY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plants, the endoplasmic reticulum (ER)-localized omega-3 fatty acid desaturases (Fad3s) increase the production of polyunsaturated fatty acids at cooler temperatures, but the FAD3 genes themselves are typically not upregulated during this adaptive response. Here, we expressed two closely related ...

  3. Omega-3 Fatty Acid Status Enhances the Prevention of Cognitive Decline by B Vitamins in Mild Cognitive Impairment

    PubMed Central

    Oulhaj, Abderrahim; Jernerén, Fredrik; Refsum, Helga; Smith, A. David; de Jager, Celeste A.

    2016-01-01

    A randomized trial (VITACOG) in people with mild cognitive impairment (MCI) found that B vitamin treatment to lower homocysteine slowed the rate of cognitive and clinical decline. We have used data from this trial to see whether baseline omega-3 fatty acid status interacts with the effects of B vitamin treatment. 266 participants with MCI aged ≥70 years were randomized to B vitamins (folic acid, vitamins B6 and B12) or placebo for 2 years. Baseline cognitive test performance, clinical dementia rating (CDR) scale, and plasma concentrations of total homocysteine, total docosahexaenoic and eicosapentaenoic acids (omega-3 fatty acids) were measured. Final scores for verbal delayed recall, global cognition, and CDR sum-of-boxes were better in the B vitamin-treated group according to increasing baseline concentrations of omega-3 fatty acids, whereas scores in the placebo group were similar across these concentrations. Among those with good omega-3 status, 33% of those on B vitamin treatment had global CDR scores >0 compared with 59% among those on placebo. For all three outcome measures, higher concentrations of docosahexaenoic acid alone significantly enhanced the cognitive effects of B vitamins, while eicosapentaenoic acid appeared less effective. When omega-3 fatty acid concentrations are low, B vitamin treatment has no effect on cognitive decline in MCI, but when omega-3 levels are in the upper normal range, B vitamins interact to slow cognitive decline. A clinical trial of B vitamins combined with omega-3 fatty acids is needed to see whether it is possible to slow the conversion from MCI to AD. PMID:26757190

  4. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells

    PubMed Central

    Liu, Guangming; Bibus, Douglas M.; Bode, Ann M.; Ma, Wei-Ya; Holman, Ralph T.; Dong, Zigang

    2001-01-01

    Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the ω3 fatty acids EPA and DHA and of the ω6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of ω3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of ω6 to ω3 fatty acids may be a significant factor in mediating tumor development. PMID:11416221

  5. Exploring the Effects of Omega-3 and Omega-6 Fatty Acids on Allergy Using a HEK-Blue Cell Line

    PubMed Central

    Ahmed, Nayyar; Barrow, Colin J.; Suphioglu, Cenk

    2016-01-01

    Background: Allergic reactions can result in life-threatening situations resulting in high economic costs and morbidity. Therefore, more effective reagents are needed for allergy treatment. A causal relationship has been suggested to exist between the intake of omega-3/6 fatty acids, such as docosahexanoic acid (DHA), eicosapentanoic acid (EPA), docosapentanoic acid (DPA) and arachidonic acid (AA), and atopic individuals suffering from allergies. In allergic cascades, the hallmark cytokine IL-4 bind to IL-4 receptor (IL-4R) and IL-13 binds to IL-13 receptor (IL-13R), this activates the STAT6 phosphorylation pathway leading to gene activation of allergen-specific IgE antibody production by B cells. The overall aim of this study was to characterize omega-3/6 fatty acids and their effects on STAT6 signaling pathway that results in IgE production in allergic individuals. Methods: The fatty acids were tested in vitro with a HEK-Blue IL-4/IL-13 reporter cell line model, transfected with a reporter gene that produces an enzyme, secreted embryonic alkaline phosphatase (SEAP). SEAP acts as a substitute to IgE when cells are stimulated with bioactive cytokines IL-4 and/or IL-13. Results: We have successfully used DHA, EPA and DPA in our studies that demonstrated a decrease in SEAP secretion, as opposed to an increase in SEAP secretion with AA treatment. A statistical Student’s t-test revealed the significance of the results, confirming our initial hypothesis. Conclusion: We have successfully identified and characterised DHA, EPA, DPA and AA in our allergy model. While AA was a potent stimulator, DHA, EPA and DPA were potential inhibitors of IL-4R/IL-13R signalling, which regulates the STAT6 induced pathway in allergic cascades. Such findings are significant in the future design of dietary therapeutics for the treatment of allergies. PMID:26861314

  6. Release mechanism of omega-3 fatty acid in κ-carrageenan/polydextrose undergoing glass transition.

    PubMed

    Paramita, Vilia Darma; Bannikova, Anna; Kasapis, Stefan

    2015-08-01

    A high-solid matrix of κ-carrageenan with polydextrose was developed to entrap α-linolenic acid, which is an omega-3 bioactive compound. Physicochemical analysis of this system utilised modulated DSC, dynamic oscillation in shear, ESEM, FTIR and WAX diffraction. The carbohydrate matrix was conditioned through an extensive temperature range to induce changes in molecular morphology and identify the network glass transition temperature. Thermally induced variation in phase morphology was employed to rationalise transportation patterns of the bioactive compound within the high-solid preparation. Thus, experimental observations using UV-vis spectroscopy modelled diffusion kinetics to document the mobility arresting effect of the vitrifying matrix on the micro-constituent. Within the glass transition region, results argue that free volume theory is the molecular process governing structural relaxation. Further, Less Fickian diffusion follows well the rate of molecular transport of α-linolenic acid as a function of time and temperature of observation in the condensed matrix. PMID:25933532

  7. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.

    PubMed

    Ranjan Moharana, Tushar; Byreddy, Avinesh R; Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids. PMID:26978518

  8. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1

    PubMed Central

    Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids. PMID:26978518

  9. Biological mechanism of antidepressant effect of omega-3 fatty acids: how does fish oil act as a 'mind-body interface'?

    PubMed

    Su, Kuan-Pin

    2009-01-01

    The unsatisfactory results of monoamine-based antidepressant therapy and the high occurrence of somatic symptoms and physical illness in patients with depression imply that the serotonin hypothesis is insufficient to approach the aetiology of depression. Depressive disorders with somatic presentation are the most common form of depression. Somatization, the bodily symptoms without organic explanation, is similar to cytokine-induced sickness behaviour. Based on recent evidence, omega-3 polyunsaturated fatty acids (n-3 PUFAs, or n-3 fatty acids) are enlightening a promising path to discover the unsolved of depression, sickness behaviour and to link the connection of mind and body. The PUFAs are classified into n-3 (or omega-3) and n-6 (or omega-6) groups. Eicosapentaenoic acid and docosahexaenoic acid, the major bioactive components of n-3 PUFAs, are not efficiently synthesized in humans and should therefore be obtained directly from the diet, particularly by consuming fish. Docosahexaenoic acid deficiency is associated with dysfunctions of neuronal membrane stability and transmission of serotonin, norepinephrine and dopamine, which might connect to the aetiology of mood and cognitive dysfunction of depression. Likewise, eicosapentaenoic acid is important in balancing the immune function and physical health by reducing membrane arachidonic acid (an n-6 PUFA) and prostaglandin E(2) synthesis, which might be linked to the somatic manifestations and physical comorbidity in depression. The role of n-3 PUFAs in immunity and mood function supports the promising hypothesis of psychoneuroimmunology of depression and provides an excellent interface between 'mind' and 'body'. This review is to provide an overview of the evidence about the role of n-3 PUFAs in depression and its common comorbid physical conditions and to propose mechanisms by which they may modulate molecular and cellular functions. PMID:19190401

  10. Demographic Profiles, Mercury, Selenium, and Omega-3 Fatty Acids in Avid Seafood Consumers on Long Island, NY.

    PubMed

    Monastero, Rebecca; Karimi, Roxanne; Silbernagel, Susan; Meliker, Jaymie

    2016-02-01

    Seafood consumption is known to confer nutritional benefits and risks from contaminant exposure. Avid seafood consumers are neither well-characterized with regard to their demographic profile nor their underlying risk-benefit profile. Contaminants [e.g., mercury (Hg)] and nutrients [e.g., selenium (Se), omega-3 fatty acids] are prevalent in some seafood. Participants (N = 285) recruited on Long Island, NY, completed food frequency and health questionnaires and received blood draws analyzed for Hg, omega-3s, and Se. Participants were categorized based on frequency and type of seafood consumption. Logistic regression analyses evaluated relationships between seafood consumption and demographics, and were age- and sex-adjusted. t tests assessed relationships between seafood consumption patterns and biomarkers Hg, omega-3s, and Se. Consumption of both tuna and salmon was associated with older age: those aged 55-75 and over 75 years old were more likely than participants aged 18-34 to eat tuna and salmon (OR 2.27; 95% CI 1.05, 4.89 and OR 3.67; 95% CI 1.20, 11.20, respectively). Males were less likely than females to eat fish other than tuna or salmon (OR 0.58; 95% CI 0.34, 0.97). Caucasians were more likely to consume tuna (OR 0.31; 95% CI 0.10, 0.96) or salmon and tuna (OR 0.34; 95% CI 0.12, 0.91), while non-Caucasians were more likely to consume other fish types (OR 2.73; 95% CI 1.45, 5.12). Total blood Hg was associated with weekly consumption of any type of fish (p = 0.01) and with salmon and tuna consumption (p = 0.01). Salmon was associated with plasma omega-3s (p = 0.01). Se was not associated with fish intake categories. Risk communicators can use these findings to influence seafood preferences of different demographic groups. PMID:26318872

  11. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder

    PubMed Central

    Mocking, R J T; Harmsen, I; Assies, J; Koeter, M W J; Ruhé, H G; Schene, A H

    2016-01-01

    Omega-3 polyunsaturated fatty acid (PUFA) supplementation has been proposed as (adjuvant) treatment for major depressive disorder (MDD). In the present meta-analysis, we pooled randomized placebo-controlled trials assessing the effects of omega-3 PUFA supplementation on depressive symptoms in MDD. Moreover, we performed meta-regression to test whether supplementation effects depended on eicosapentaenoic acid (EPA) or docosahexaenoic acid dose, their ratio, study duration, participants' age, percentage antidepressant users, baseline MDD symptom severity, publication year and study quality. To limit heterogeneity, we only included studies in adult patients with MDD assessed using standardized clinical interviews, and excluded studies that specifically studied perinatal/perimenopausal or comorbid MDD. Our PubMED/EMBASE search resulted in 1955 articles, from which we included 13 studies providing 1233 participants. After taking potential publication bias into account, meta-analysis showed an overall beneficial effect of omega-3 PUFAs on depressive symptoms in MDD (standardized mean difference=0.398 (0.114–0.682), P=0.006, random-effects model). As an explanation for significant heterogeneity (I2=73.36, P<0.001), meta-regression showed that higher EPA dose (β=0.00037 (0.00009–0.00065), P=0.009), higher percentage antidepressant users (β=0.0058 (0.00017–0.01144), P=0.044) and earlier publication year (β=−0.0735 (−0.143 to 0.004), P=0.04) were significantly associated with better outcome for PUFA supplementation. Additional sensitivity analyses were performed. In conclusion, present meta-analysis suggested a beneficial overall effect of omega-3 PUFA supplementation in MDD patients, especially for higher doses of EPA and in participants taking antidepressants. Future precision medicine trials should establish whether possible interactions between EPA and antidepressants could provide targets to improve antidepressant response and its prediction. Furthermore

  12. Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder.

    PubMed

    Mocking, R J T; Harmsen, I; Assies, J; Koeter, M W J; Ruhé, H G; Schene, A H

    2016-01-01

    Omega-3 polyunsaturated fatty acid (PUFA) supplementation has been proposed as (adjuvant) treatment for major depressive disorder (MDD). In the present meta-analysis, we pooled randomized placebo-controlled trials assessing the effects of omega-3 PUFA supplementation on depressive symptoms in MDD. Moreover, we performed meta-regression to test whether supplementation effects depended on eicosapentaenoic acid (EPA) or docosahexaenoic acid dose, their ratio, study duration, participants' age, percentage antidepressant users, baseline MDD symptom severity, publication year and study quality. To limit heterogeneity, we only included studies in adult patients with MDD assessed using standardized clinical interviews, and excluded studies that specifically studied perinatal/perimenopausal or comorbid MDD. Our PubMED/EMBASE search resulted in 1955 articles, from which we included 13 studies providing 1233 participants. After taking potential publication bias into account, meta-analysis showed an overall beneficial effect of omega-3 PUFAs on depressive symptoms in MDD (standardized mean difference=0.398 (0.114-0.682), P=0.006, random-effects model). As an explanation for significant heterogeneity (I(2)=73.36, P<0.001), meta-regression showed that higher EPA dose (β=0.00037 (0.00009-0.00065), P=0.009), higher percentage antidepressant users (β=0.0058 (0.00017-0.01144), P=0.044) and earlier publication year (β=-0.0735 (-0.143 to 0.004), P=0.04) were significantly associated with better outcome for PUFA supplementation. Additional sensitivity analyses were performed. In conclusion, present meta-analysis suggested a beneficial overall effect of omega-3 PUFA supplementation in MDD patients, especially for higher doses of EPA and in participants taking antidepressants. Future precision medicine trials should establish whether possible interactions between EPA and antidepressants could provide targets to improve antidepressant response and its prediction. Furthermore, potential

  13. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    SciTech Connect

    Kusunoki, Chisato; Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi; Nishio, Yoshihiko; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  14. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015.

    PubMed

    Sprague, M; Dick, J R; Tocher, D R

    2016-01-01

    As the global population and its demand for seafood increases more of our fish will come from aquaculture. Farmed Atlantic salmon are a global commodity and, as an oily fish, contain a rich source of the health promoting long-chain omega-3 fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Replacing the traditional finite marine ingredients, fishmeal and fish oil, in farmed salmon diets with sustainable alternatives of terrestrial origin, devoid of EPA and DHA, presents a significant challenge for the aquaculture industry. By comparing the fatty acid composition of over 3,000 Scottish Atlantic salmon farmed between 2006 and 2015, we find that terrestrial fatty acids have significantly increased alongside a decrease in EPA and DHA levels. Consequently, the nutritional value of the final product is compromised requiring double portion sizes, as compared to 2006, in order to satisfy recommended EPA + DHA intake levels endorsed by health advisory organisations. Nevertheless, farmed Scottish salmon still delivers more EPA + DHA than most other fish species and all terrestrial livestock. Our findings highlight the global shortfall of EPA and DHA and the implications this has for the human consumer and examines the potential of microalgae and genetically modified crops as future sources of these important fatty acids. PMID:26899924

  15. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015

    PubMed Central

    Sprague, M.; Dick, J.R.; Tocher, D.R.

    2016-01-01

    As the global population and its demand for seafood increases more of our fish will come from aquaculture. Farmed Atlantic salmon are a global commodity and, as an oily fish, contain a rich source of the health promoting long-chain omega-3 fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Replacing the traditional finite marine ingredients, fishmeal and fish oil, in farmed salmon diets with sustainable alternatives of terrestrial origin, devoid of EPA and DHA, presents a significant challenge for the aquaculture industry. By comparing the fatty acid composition of over 3,000 Scottish Atlantic salmon farmed between 2006 and 2015, we find that terrestrial fatty acids have significantly increased alongside a decrease in EPA and DHA levels. Consequently, the nutritional value of the final product is compromised requiring double portion sizes, as compared to 2006, in order to satisfy recommended EPA + DHA intake levels endorsed by health advisory organisations. Nevertheless, farmed Scottish salmon still delivers more EPA + DHA than most other fish species and all terrestrial livestock. Our findings highlight the global shortfall of EPA and DHA and the implications this has for the human consumer and examines the potential of microalgae and genetically modified crops as future sources of these important fatty acids. PMID:26899924

  16. Comparison between omega-3 and omega-6 polyunsaturated fatty acid intakes as assessed by a food frequency questionnaire and erythrocyte membrane fatty acid composition in young children

    PubMed Central

    Orton, Heather D.; Szabo, Nancy J.; Clare-Salzler, Michael; Norris, Jill M.

    2010-01-01

    Objective We conducted a dietary validation study in youth aged 1 to 11 years by comparing dietary intake of omega-3 and omega-6 polyunsaturated fatty acids (PUFA) as assessed by a parent-completed semi-quantitative food frequency questionnaire (FFQ) over time to erythrocyte membrane composition of the same fatty acids. Design The study population included youth aged 1 to 11 years who were participants in the Diabetes Autoimmunity Study in the Young (DAISY), a longitudinal study in Denver, Colorado that is following a cohort of youth at risk for developing Type I diabetes. Four hundred four children who had erythrocyte membrane fatty acid data matched to an FFQ corresponding to the same time frame for a total of 917 visits (matches) were included. PUFA intake was expressed as both g/day (adjusted for total energy) and as percent of total fat intake. We used mixed models to test the association and calculate the correlation between the erythrocyte membrane estimates and PUFA intake using all records of data for each youth. Results Intakes of total omega-3 fatty acids (β=0.52, p<0.0001, ρ=0.23) and marine PUFAs (β=1.62, p<0.0001, ρ=0.42), as a percent of total fat in the diet, were associated with percent of omega-3 and marine PUFAs in the erythrocyte membrane. Intakes of omega-6 PUFAs (β=0.04, p=0.418, ρ=0.05) and arachidonic acid (β=0.31, p=0.774, ρ=0.01) were not associated. Conclusions In these young children, a FFQ using parental report provided estimates of average long-term intakes of marine PUFAs that correlated well with their erythrocyte cell membrane fatty acid status. PMID:17440518

  17. Oiling the Brain: A Review of Randomized Controlled Trials of Omega-3 Fatty Acids in Psychopathology across the Lifespan

    PubMed Central

    Sinn, Natalie; Milte, Catherine; Howe, Peter R. C.

    2010-01-01

    Around one in four people suffer from mental illness at some stage in their lifetime. There is increasing awareness of the importance of nutrition, particularly omega-3 polyunsaturated fatty acids (n-3 PUFA), for optimal brain development and function. Hence in recent decades, researchers have explored effects of n-3 PUFA on mental health problems over the lifespan, from developmental disorders in childhood, to depression, aggression, and schizophrenia in adulthood, and cognitive decline, dementia and Alzheimer’s disease in late adulthood. This review provides an updated overview of the published and the registered clinical trials that investigate effects of n-3 PUFA supplementation on mental health and behavior, highlighting methodological differences and issues. PMID:22254013

  18. Oiling the brain: a review of randomized controlled trials of omega-3 fatty acids in psychopathology across the lifespan.

    PubMed

    Sinn, Natalie; Milte, Catherine; Howe, Peter R C

    2010-02-01

    Around one in four people suffer from mental illness at some stage in their lifetime. There is increasing awareness of the importance of nutrition, particularly omega-3 polyunsaturated fatty acids (n-3 PUFA), for optimal brain development and function. Hence in recent decades, researchers have explored effects of n-3 PUFA on mental health problems over the lifespan, from developmental disorders in childhood, to depression, aggression, and schizophrenia in adulthood, and cognitive decline, dementia and Alzheimer's disease in late adulthood. This review provides an updated overview of the published and the registered clinical trials that investigate effects of n-3 PUFA supplementation on mental health and behavior, highlighting methodological differences and issues. PMID:22254013

  19. Omega-3 fatty acids incorporated colloidal systems for the delivery of Angelica gigas Nakai extract.

    PubMed

    Lee, Jeong-Jun; Park, Ju-Hwan; Lee, Jae-Young; Jeong, Jae Young; Lee, Song Yi; Yoon, In-Soo; Kang, Wie-Soo; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-04-01

    Omega-3 (ω-3) fish oil-enriched colloidal systems were developed for the oral delivery of Angelica gigas Nakai (AGN) extract (ext). By constructing a pseudo-ternary phase diagram, the composition of oil-in-water (o/w) microemulsion (ME) systems based on ω-3 (oil), Labrasol (surfactant), and water was determined. AGN ext was dissolved into the ME system and d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) was added to the ME formulation in order to enhance the mucosal absorption of the pharmacologically active ingredients in the AGN ext. The droplet size of AGN-loaded MEs was 205-277 nm and their morphology was spherical. The release of major components of AGN, decursin (D) and decursinol angelate (DA), from ME formulations in pH 1.2 and 6.8 buffers was significantly greater (P<0.05) than that from the AGN suspension group. The pharmacokinetic properties of AGN-loaded MEs in rats were evaluated by measuring decursinol (DOH) concentrations in plasma after oral administration. TPGS-included ME (F2) resulted in significantly greater (P<0.05) systemic exposure of DOH than that with ME without TPGS (F1), AGN ext+TPGS, and AGN in suspension. Severe toxicity of F1 and F2 on the intestinal epithelium was not observed by histological staining. The colloidal carriers described herein are promising delivery systems for oral administration of AGN ext. PMID:26764107

  20. Omega-3 Fatty Acids: Possible Neuroprotective Mechanisms in the Model of Global Ischemia in Rats.

    PubMed

    Nobre, Maria Elizabeth Pereira; Correia, Alyne Oliveira; Mendonça, Francisco Nilson Maciel; Uchoa, Luiz Ricardo Araújo; Vasconcelos, Jessica Tamara Nunes; de Araújo, Carlos Ney Alencar; Brito, Gerly Anne de Castro; Siqueira, Rafaelly Maria Pinheiro; Cerqueira, Gilberto Dos Santos; Neves, Kelly Rose Tavares; Arida, Ricardo Mário; Viana, Glauce Socorro de Barros

    2016-01-01

    Background. Omega-3 (ω3) administration was shown to protect against hypoxic-ischemic injury. The objectives were to study the neuroprotective effects of ω3, in a model of global ischemia. Methods. Male Wistar rats were subjected to carotid occlusion (30 min), followed by reperfusion. The groups were SO, untreated ischemic and ischemic treated rats with ω3 (5 and 10 mg/kg, 7 days). The SO and untreated ischemic animals were orally treated with 1% cremophor and, 1 h after the last administration, they were behaviorally tested and euthanized for neurochemical (DA, DOPAC, and NE determinations), histological (Fluoro jade staining), and immunohistochemical (TNF-alpha, COX-2 and iNOS) evaluations. The data were analyzed by ANOVA and Newman-Keuls as the post hoc test. Results. Ischemia increased the locomotor activity and rearing behavior that were partly reversed by ω3. Ischemia decreased striatal DA and DOPAC contents and increased NE contents, effects reversed by ω3. This drug protected hippocampal neuron degeneration, as observed by Fluoro-Jade staining, and the increased immunostainings for TNF-alpha, COX-2, and iNOS were partly or totally blocked by ω3. Conclusion. This study showed a neuroprotective effect of ω3, in great part due to its anti-inflammatory properties, stimulating translational studies focusing on its use in clinic for stroke managing. PMID:27313881

  1. Omega-3 Fatty Acids: Possible Neuroprotective Mechanisms in the Model of Global Ischemia in Rats

    PubMed Central

    Correia, Alyne Oliveira; Mendonça, Francisco Nilson Maciel; Uchoa, Luiz Ricardo Araújo; Vasconcelos, Jessica Tamara Nunes; de Araújo, Carlos Ney Alencar; Siqueira, Rafaelly Maria Pinheiro; Neves, Kelly Rose Tavares; Arida, Ricardo Mário

    2016-01-01

    Background. Omega-3 (ω3) administration was shown to protect against hypoxic-ischemic injury. The objectives were to study the neuroprotective effects of ω3, in a model of global ischemia. Methods. Male Wistar rats were subjected to carotid occlusion (30 min), followed by reperfusion. The groups were SO, untreated ischemic and ischemic treated rats with ω3 (5 and 10 mg/kg, 7 days). The SO and untreated ischemic animals were orally treated with 1% cremophor and, 1 h after the last administration, they were behaviorally tested and euthanized for neurochemical (DA, DOPAC, and NE determinations), histological (Fluoro jade staining), and immunohistochemical (TNF-alpha, COX-2 and iNOS) evaluations. The data were analyzed by ANOVA and Newman-Keuls as the post hoc test. Results. Ischemia increased the locomotor activity and rearing behavior that were partly reversed by ω3. Ischemia decreased striatal DA and DOPAC contents and increased NE contents, effects reversed by ω3. This drug protected hippocampal neuron degeneration, as observed by Fluoro-Jade staining, and the increased immunostainings for TNF-alpha, COX-2, and iNOS were partly or totally blocked by ω3. Conclusion. This study showed a neuroprotective effect of ω3, in great part due to its anti-inflammatory properties, stimulating translational studies focusing on its use in clinic for stroke managing. PMID:27313881

  2. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis

    PubMed Central

    Chowdhury, Rajiv; Stevens, Sarah; Gorman, Donal; Pan, An; Warnakula, Samantha; Chowdhury, Susmita; Ward, Heather; Johnson, Laura; Crowe, Francesca; Hu, Frank B

    2012-01-01

    Objective To clarify associations of fish consumption and long chain omega 3 fatty acids with risk of cerebrovascular disease for primary and secondary prevention. Design Systematic review and meta-analysis. Data sources Studies published before September 2012 identified through electronic searches using Medline, Embase, BIOSIS, and Science Citation Index databases. Eligibility criteria Prospective cohort studies and randomised controlled trials reporting on associations of fish consumption and long chain omega 3 fatty acids (based on dietary self report), omega 3 fatty acids biomarkers, or supplementations with cerebrovascular disease (defined as any fatal or non-fatal ischaemic stroke, haemorrhagic stroke, cerebrovascular accident, or transient ischaemic attack). Both primary and secondary prevention studies (comprising participants with or without cardiovascular disease at baseline) were eligible. Results 26 prospective cohort studies and 12 randomised controlled trials with aggregate data on 794 000 non-overlapping people and 34 817 cerebrovascular outcomes were included. In cohort studies comparing categories of fish intake the pooled relative risk for cerebrovascular disease for 2-4 servings a week versus ≤1 servings a week was 0.94 (95% confidence intervals 0.90 to 0.98) and for ≥5 servings a week versus 1 serving a week was 0.88 (0.81 to 0.96). The relative risk for cerebrovascular disease comparing the top thirds of baseline long chain omega 3 fatty acids with the bottom thirds for circulating biomarkers was 1.04 (0.90 to 1.20) and for dietary exposures was 0.90 (0.80 to 1.01). In the randomised controlled trials the relative risk for cerebrovascular disease in the long chain omega 3 supplement compared with the control group in primary prevention trials was 0.98 (0.89 to 1.08) and in secondary prevention trials was 1.17 (0.99 to 1.38). For fish or omega 3 fatty acids the estimates for ischaemic and haemorrhagic cerebrovascular events were broadly

  3. Role of Omega-3 Polyunsaturated Fatty Acids in the Production of Prostaglandin E2 and Nitric Oxide during Experimental Murine Paracoccidioidomycosis

    PubMed Central

    Sargi, S. C.; Dalalio, M. M. O.; Moraes, A. G.; Visentainer, J. E. L.; Morais, D. R.; Visentainer, J. V.

    2013-01-01

    There has recently been increased interest in the potential health effects of omega-3 polyunsaturated fatty acids on the immune system. Paracoccidioidomycosis is the most important endemic mycosis in Latin America. Macrophages have a fundamental role and act as first line of organism defense. The purpose of this study was to analyze the effect of n-3 fatty acids on the production of PGE2 and NO by mice infected with Pb18 and fed a diet enriched with LNA for 8 weeks. To study the effect of omega-3 fatty acids on macrophage activity during experimental paracoccidioidomycosis, mice were infected with Pb18 and fed a diet supplemented with LNA. PGE2 in the serum of animals was analyzed and NO in the supernatants of macrophages cultured and challenged in vitro with Pb18 was measured. Omega-3 fatty acids seemed to decrease the production of PGE2 in vivo in the infected group fed an LNA-supplemented diet during the 4th and 8th weeks of the experiment. At the same time, we observed an increase in synthesis of NO by peritoneal macrophages in this group. Omega-3 fatty acids thus appear to have an immunomodulatory effect in paracoccidioidomycosis. PMID:24455741

  4. Characterization and authentication of a novel vegetable source of omega-3 fatty acids, sacha inchi (Plukenetia volubilis L.) oil.

    PubMed

    Maurer, Natalie E; Hatta-Sakoda, Beatriz; Pascual-Chagman, Gloria; Rodriguez-Saona, Luis E

    2012-09-15

    Consumption of omega-3 fatty acids (ω-3's), whether from fish oils, flax or supplements, can protect against cardiovascular disease. Finding plant-based sources of the essential ω-3's could provide a sustainable, renewable and inexpensive source of ω-3's, compared to fish oils. Our objective was to develop a rapid test to characterize and detect adulteration in sacha inchi oils, a Peruvian seed containing higher levels of ω-3's in comparison to other oleaginous seeds. A temperature-controlled ZnSe ATR mid-infrared benchtop and diamond ATR mid-infrared portable handheld spectrometers were used to characterize sacha inchi oil and evaluate its oxidative stability compared to commercial oils. A soft independent model of class analogy (SIMCA) and partial least squares regression (PLSR) analyzed the spectral data. Fatty acid profiles showed that sacha inchi oil (44% linolenic acid) had levels of PUFA similar to those of flax oils. PLSR showed good correlation coefficients (R(2)>0.9) between reference tests and spectra from infrared devices, allowing for rapid determination of fatty acid composition and prediction of oxidative stability. Oils formed distinct clusters, allowing the evaluation of commercial sacha inchi oils from Peruvian markets and showed some prevalence of adulteration. Determining oil adulteration and quality parameters, by using the ATR-MIR portable handheld spectrometer, allowed for portability and ease-of-use, making it a great alternative to traditional testing methods. PMID:23107745

  5. Omega-3 Polyunsaturated Fatty Acids Intake to Regulate Helicobacter pylori-Associated Gastric Diseases as Nonantimicrobial Dietary Approach

    PubMed Central

    Park, Jong-Min; Jeong, Migyeong; Kim, Eun-Hee; Han, Young-Min; Kwon, Sung Hun; Hahm, Ki-Baik

    2015-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs), commonly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been acknowledged as essential long-chain fatty acids imposing either optimal health promotion or the rescuing from chronic inflammatory diseases such as atherosclerosis, fatty liver, and various inflammatory gastrointestinal diseases. Recent studies dealing with EPA and DHA have sparked highest interests because detailed molecular mechanisms had been documented with the identification of its receptor, G protein coupled receptor, and GPR120. In this review article, we have described clear evidences showing that n-3 PUFAs could reduce various Helicobacter pylori- (H. pylori-) associated gastric diseases and extended to play even cancer preventive outcomes including H. pylori-associated gastric cancer by influencing multiple targets, including proliferation, survival, angiogenesis, inflammation, and metastasis. Since our previous studies strongly concluded that nonantimicrobial dietary approach for reducing inflammation, for instance, application of phytoceuticals, probiotics, natural products including Korean red ginseng, and walnut plentiful of n-3 PUFAs, might be prerequisite step for preventing H. pylori-associated gastric cancer as well as facilitating the rejuvenation of precancerous atrophic gastritis, these beneficial lipids can restore or modify inflammation-associated lipid distortion and correction of altered lipid rafts to send right signaling to maintain healthy stomach even after chronic H. pylori infection. PMID:26339635

  6. Omega-3 Polyunsaturated Fatty Acids Intake to Regulate Helicobacter pylori-Associated Gastric Diseases as Nonantimicrobial Dietary Approach.

    PubMed

    Park, Jong-Min; Jeong, Migyeong; Kim, Eun-Hee; Han, Young-Min; Kwon, Sung Hun; Hahm, Ki-Baik

    2015-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs), commonly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been acknowledged as essential long-chain fatty acids imposing either optimal health promotion or the rescuing from chronic inflammatory diseases such as atherosclerosis, fatty liver, and various inflammatory gastrointestinal diseases. Recent studies dealing with EPA and DHA have sparked highest interests because detailed molecular mechanisms had been documented with the identification of its receptor, G protein coupled receptor, and GPR120. In this review article, we have described clear evidences showing that n-3 PUFAs could reduce various Helicobacter pylori- (H. pylori-) associated gastric diseases and extended to play even cancer preventive outcomes including H. pylori-associated gastric cancer by influencing multiple targets, including proliferation, survival, angiogenesis, inflammation, and metastasis. Since our previous studies strongly concluded that nonantimicrobial dietary approach for reducing inflammation, for instance, application of phytoceuticals, probiotics, natural products including Korean red ginseng, and walnut plentiful of n-3 PUFAs, might be prerequisite step for preventing H. pylori-associated gastric cancer as well as facilitating the rejuvenation of precancerous atrophic gastritis, these beneficial lipids can restore or modify inflammation-associated lipid distortion and correction of altered lipid rafts to send right signaling to maintain healthy stomach even after chronic H. pylori infection. PMID:26339635

  7. Enrichment of wheat chips with omega-3 fatty acid by flaxseed addition: textural and some physicochemical properties.

    PubMed

    Yuksel, Ferhat; Karaman, Safa; Kayacier, Ahmed

    2014-02-15

    In the present study, wheat chips enriched with flaxseed flour were produced and response surface methodology was used for the studying the simultaneous effects of flaxseed level (10-20%), frying temperature (160-180 °C) and frying time (40-60 s) on some physicochemical, textural and sensorial properties and fatty acid composition of wheat chips. Ridge analysis was conducted to determine the optimum levels of processing variables. Predictive regression equations with adequate coefficients of determination (R² ≥ 0.705) to explain the effect of processing variables were constructed. Addition of flaxseed flour increased the dry matter and protein content of samples and increase of frying temperature decreased the hardness values of wheat chips samples. Increment in flaxseed level provided an increase in unsaturated fatty acid content namely omega-3 fatty acids of wheat chips samples. Overall acceptability of chips increased with the increase of frying temperature. Ridge analysis showed that maximum taste score would be at flaxseed level = 10%, frying temperature = 180 °C and frying time = 50 s. PMID:24128563

  8. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults.

    PubMed

    Stark, Ken D; Van Elswyk, Mary E; Higgins, M Roberta; Weatherford, Charli A; Salem, Norman

    2016-07-01

    Studies reporting blood levels of the omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were systematically identified in order to create a global map identifying countries and regions with different blood levels. Included studies were those of healthy adults, published in 1980 or later. A total of 298 studies met all inclusion criteria. Studies reported fatty acids in various blood fractions including plasma total lipids (33%), plasma phospholipid (32%), erythrocytes (32%) and whole blood (3.0%). Fatty acid data from each blood fraction were converted to relative weight percentages (wt.%) and then assigned to one of four discrete ranges (high, moderate, low, very low) corresponding to wt.% EPA+DHA in erythrocyte equivalents. Regions with high EPA+DHA blood levels (>8%) included the Sea of Japan, Scandinavia, and areas with indigenous populations or populations not fully adapted to Westernized food habits. Very low blood levels (≤4%) were observed in North America, Central and South America, Europe, the Middle East, Southeast Asia, and Africa. The present review reveals considerable variability in blood levels of EPA+DHA and the very low to low range of blood EPA+DHA for most of the world may increase global risk for chronic disease. PMID:27216485

  9. The Omega-3 Fatty Acid Eicosapentaenoic Acid Is Required for Normal Alcohol Response Behaviors in C. elegans

    PubMed Central

    Raabe, Richard C.; Mathies, Laura D.; Davies, Andrew G.; Bettinger, Jill C.

    2014-01-01

    Alcohol addiction is a widespread societal problem, for which there are few treatments. There are significant genetic and environmental influences on abuse liability, and understanding these factors will be important for the identification of susceptible individuals and the development of effective pharmacotherapies. In humans, the level of response to alcohol is strongly predictive of subsequent alcohol abuse. Level of response is a combination of counteracting responses to alcohol, the level of sensitivity to the drug and the degree to which tolerance develops during the drug exposure, called acute functional tolerance. We use the simple and well-characterized nervous system of Caenorhabditis elegans to model the acute behavioral effects of ethanol to identify genetic and environmental factors that influence level of response to ethanol. Given the strong molecular conservation between the neurobiological machinery of worms and humans, cellular-level effects of ethanol are likely to be conserved. Increasingly, variation in long-chain polyunsaturated fatty acid levels has been implicated in complex neurobiological phenotypes in humans, and we recently found that fatty acid levels modify ethanol responses in worms. Here, we report that 1) eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, is required for the development of acute functional tolerance, 2) dietary supplementation of eicosapentaenoic acid is sufficient for acute tolerance, and 3) dietary eicosapentaenoic acid can alter the wild-type response to ethanol. These results suggest that genetic variation influencing long-chain polyunsaturated fatty acid levels may be important abuse liability loci, and that dietary polyunsaturated fatty acids may be an important environmental modulator of the behavioral response to ethanol. PMID:25162400

  10. Pancreatic islet function in omega-3 fatty acid-depleted rats: alteration of calcium fluxes and calcium-dependent insulin release.

    PubMed

    Zhang, Y; Oguzhan, B; Louchami, K; Chardigny, J-M; Portois, L; Carpentier, Y A; Malaisse, W J; Herchuelz, A; Sener, A

    2006-09-01

    Considering the insufficient supply of long-chain polyunsaturated omega-3 fatty acids often prevailing in Western populations, this report deals mainly with alterations of Ca(2+) fluxes and Ca(2+)-dependent insulin secretory events in isolated pancreatic islets from omega-3-depleted rats. In terms of (45)Ca(2+) handling, the islets from omega-3-depleted rats, compared with those from normal animals, displayed an unaltered responsiveness to an increase in extracellular K(+) concentration, a lower inflow rate and lower fractional outflow rate of the divalent cation, and higher (45)Ca(2+)-labeled cellular pool(s) at isotopic equilibrium. The latter anomaly was corrected 120 min after intravenous injection of a novel medium-chain triglyceride-fish oil (MCT:FO) emulsion, distinct from a control omega-3-poor MCT-olive oil (MCT:OO) emulsion. At 8.3 mM D-glucose, insulin release was higher in islets from omega-3-depleted rats vs. control animals, coinciding with a higher cytosolic Ca(2+) concentration. The relative magnitude of the increase in insulin output attributable to a rise in D-glucose as well as extracellular Ca(2+) or K(+) concentration, to the absence vs. presence of verapamil and to the presence vs. absence of extracellular Ca(2+), theophylline, phorbol 12-myristate 13-acetate, or Ba(2+), was always more pronounced in islets from omega-3-depleted rats injected with the MCT:OO compared with the MCT:FO emulsion. A comparable situation prevailed when comparing islets from noninjected omega-3-depleted and normal rats. In light of these and previous findings, we propose that an impairment of Na(+),K(+)-ATPase activity plays a major, although not an exclusive, role in the perturbation of Ca(2+) fluxes and Ca(2+)-dependent secretory events in the islets from omega-3-depleted rats. PMID:16912059

  11. Omega-3 long-chain fatty acids strongly induce angiopoietin-like 4 in humans.

    PubMed

    Brands, Myrte; Sauerwein, Hans P; Ackermans, Mariette T; Kersten, Sander; Serlie, Mireille J

    2013-03-01

    Angiopoietin-like 4 (ANGPTL4) is a regulator of LPL activity. In this study we examined whether different fatty acids have a differential effect on plasma ANGPTL4 levels during hyperinsulinemia in healthy lean males. In 10 healthy lean males, 3 hyperinsulinemic euglycemic clamps were performed during concomitant 6 h intravenous infusion of soybean oil (Intralipid® rich in PUFA), olive oil (Clinoleic® rich in MUFA) and control saline. In 10 other healthy lean males, 2 hyperinsulinemic clamps were performed during infusion of a mixed lipid emulsion containing a mixture of fish oil (FO), medium-chain triglycerides (MCTs), and long-chain triglycerides (LCTs) (FO/MCT/LCT; SMOFlipid®) or saline. FFA levels of approximately 0.5 mmol/l were reached during each lipid infusion. Plasma ANGPTL4 decreased during hyperinsulinemia by 32% (18-52%) from baseline. This insulin-mediated decrease in ANGPTL4 concentrations was partially reduced during concomitant infusion of olive oil and completely blunted during concomitant infusion of soybean oil and FO/MCT/LCT. The reduction in insulin sensitivity was similar between all lipid infusions. In accordance, incubation of rat hepatoma cells with the polyunsaturated fatty acid C22:6 increased ANGPTL4 expression by 70-fold, compared with 27-fold by the polyunsaturated fatty acid C18:2, and 15-fold by the monounsaturated fatty acid C18:1. These results suggest that ANGPTL4 is strongly regulated by fatty acids in humans, and is also dependent on the type of fatty acid. PMID:23319744

  12. Dietary Omega-3 Polyunsaturated Fatty Acids Improve the Neurolipidome and Restore the DHA Status while Promoting Functional Recovery after Experimental Spinal Cord Injury

    PubMed Central

    Figueroa, Johnny D.; Cordero, Kathia; llán, Miguel S.

    2013-01-01

    Abstract Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome. PMID:23294084

  13. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury.

    PubMed

    Figueroa, Johnny D; Cordero, Kathia; Llán, Miguel S; De Leon, Marino

    2013-05-15

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome. PMID:23294084

  14. Effect of dietary supplementation with omega-3 fatty acid and gamma-linolenic acid on acne vulgaris: a randomised, double-blind, controlled trial.

    PubMed

    Jung, Jae Yoon; Kwon, Hyuck Hoon; Hong, Jong Soo; Yoon, Ji Young; Park, Mi Sun; Jang, Mi Young; Suh, Dae Hun

    2014-09-01

    This study was undertaken to evaluate the clinical efficacy, safety, and histological changes induced by dietary omega-3 fatty acid and γ-linoleic acid in acne vulgaris. A 10-week, randomised, controlled parallel dietary intervention study was performed in 45 participants with mild to moderate acne, which were allocated to either an omega-3 fatty acid group (2,000 mg of eicosapentaenoic acid and docosahexaenoic acid), a γ-linoleic acid group (borage oil containing 400 mg γ-linoleic acid), or a control group. After 10 weeks of omega-3 fatty acid or γ-linoleic acid supplementation, inflammatory and non-inflammatory acne lesions decreased significantly. Patient subjective assessment of improvement showed a similar result. Heamatoxylin & eosin staining of acne lesions demonstrated reductions in inflammation and immunohistochemical staining intensity for interleukin-8. No severe adverse effect was reported. This study shows for the first time that omega-3 fatty acid and γ-linoleic acid could be used as adjuvant treatments for acne patients. PMID:24553997

  15. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior.

    PubMed

    Patrick, Rhonda P; Ames, Bruce N

    2015-06-01

    Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction. PMID:25713056

  16. Omega-3 fatty acids from fish oil supplements, but not alpha-linolenic acid benefit cardiovascular disease outcomes in primary & secondary prevention studies: a systematic review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship between dietary omega-3 fatty acids and cardiovascular disease is uncertain. The published literature is replete with studies of varying methodological quality and sometimes contradictory results. The objective of this work was to conduct a systematic review and critical appraisal ...

  17. The omega-3 fatty acid DHA dose-dependently reduces atherosclerosis: a putative role for F4-neuroprostanes a specific class of peroxidized metabolites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective. Consumption of long chain omega-3 polyunsaturated fatty acids is associated with reduced risks of cardiovascular disease but the role of their oxygenated metabolites remains unclear. We hypothesized that peroxidized metabolites of docosahexaenoic acid (DHA, 22:6 n-3) could play a role in ...

  18. Temperature-sensitive, Post-translational Regulation of Plant Omega-3 Fatty-acid Desaturases is Mediated by the Endoplasmic Reticulum-associated Degradation Pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in ambient temperature represent a major physiological challenge to poikilothermic organisms that requires rapid adjustments in the composition of cellular membranes in order to preserve overall membrane dynamics and integrity. In plants, the endoplasmic reticulum-localized omega-3 fatty ac...

  19. Effect of dietary fat and omega-3 fatty acids on urinary eicosanoids and sex hormone concentrations in postmenopausal women: a randomized controlled feeding trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Substantial evidence relates increased sex hormone concentrations with increased breast cancer risk. Varying omega-3 fatty acid (n-3) intake may lead to alterations in eicosanoid balance and subsequent changes in circulating sex hormones that reduce risk. To clarify effects of dietary fat and n-3 i...

  20. OMEGA-3 FATTY ACIDS IN SALMON PRESERVED BY NATIVE ALASKAN METHODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional Native Alaskan diets included salmon as a major source of n-3 long-chain polyunsaturated fatty acids (PUFA). However, in the last 250 years, profound changes have influenced the people of interior Alaska. Departure from ancestral dietary practices has led to a rise in obesity and Type-2 ...

  1. Individual Variation in Lipidomic Profiles of Healthy Subjects in Response to Omega-3 Fatty Acids

    PubMed Central

    Nording, Malin L.; Yang, Jun; Georgi, Katrin; Hegedus Karbowski, Christine; German, J. Bruce; Weiss, Robert H.; Hogg, Ronald J.; Trygg, Johan; Hammock, Bruce D.; Zivkovic, Angela M.

    2013-01-01

    Introduction Conflicting findings in both interventional and observational studies have resulted in a lack of consensus on the benefits of ω3 fatty acids in reducing disease risk. This may be due to individual variability in response. We used a multi-platform lipidomic approach to investigate both the consistent and inconsistent responses of individuals comprehensively to a defined ω3 intervention. Methods The lipidomic profile including fatty acids, lipid classes, lipoprotein distribution, and oxylipins was examined multi- and uni-variately in 12 healthy subjects pre vs. post six weeks of ω3 fatty acids (1.9 g/d eicosapentaenoic acid [EPA] and 1.5 g/d docosahexaenoic acid [DHA]). Results Total lipidomic and oxylipin profiles were significantly different pre vs. post treatment across all subjects (p=0.00007 and p=0.00002 respectively). There was a strong correlation between oxylipin profiles and EPA and DHA incorporated into different lipid classes (r2=0.93). However, strikingly divergent responses among individuals were also observed. Both ω3 and ω6 fatty acid metabolites displayed a large degree of variation among the subjects. For example, in half of the subjects, two arachidonic acid cyclooxygenase products, prostaglandin E2 (PGE2) and thromboxane B2 (TXB2), and a lipoxygenase product, 12-hydroxyeicosatetraenoic acid (12-HETE) significantly decreased post intervention, whereas in the other half they either did not change or increased. The EPA lipoxygenase metabolite 12-hydroxyeicosapentaenoic acid (12-HEPE) varied among subjects from an 82% decrease to a 5,000% increase. Conclusions Our results show that certain defined responses to ω3 fatty acid intervention were consistent across all subjects. However, there was also a high degree of inter-individual variability in certain aspects of lipid metabolism. This lipidomic based phenotyping approach demonstrated that individual responsiveness to ω3 fatty acids is highly variable and measurable, and could be

  2. Omega-3 Fatty Acid Consumption and Prostate Cancer: A Review of Exposure Measures and Results of Epidemiological Studies.

    PubMed

    Dinwiddie, Michael T; Terry, Paul D; Whelan, Jay; Patzer, Rachel E

    2016-07-01

    Animal studies have shown that dietary omega-3 polyunsaturated fatty acids (n-3) may play a role in the development of prostate cancer, but the results of epidemiologic studies have been equivocal. Associations in humans may vary depending on study design, measurement methodology of fatty acid intake, intake ranges, and stage of cancer development. To address this, we identified 36 published studies through PubMed (Medline) from 1993 through 2013 on long-chain n-3s and prostate cancer. Exposure measurements included dietary assessment and biomarker levels. Associations for total, early, and late stage prostate cancer were examined by subgroup of study design and exposure measure type and by using forest plots to illustrate the relative strength of associations within each subgroup. We also tested for potential threshold effects by considering studies that included measurement cut-points that met intake levels recommended by the American Heart Association. We found no consistent evidence supporting a role of n-3s in either the causation or prevention of prostate cancer at any stage or grade. Results did not vary appreciably by study design, exposure measurement, intake level, or stage of cancer development. PMID:26595854

  3. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology.

    PubMed

    McNamara, Robert K; Vannest, Jennifer J; Valentine, Christina J

    2015-03-22

    Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies. PMID:25815252

  4. Meta-Analysis of Long-Chain Omega-3 Polyunsaturated Fatty Acids (LCω-3PUFA) and Prostate Cancer

    PubMed Central

    Alexander, Dominik D.; Bassett, Julie K.; Weed, Douglas L.; Barrett, Erin Cernkovich; Watson, Heather; Harris, William

    2015-01-01

    We conducted a systematic review and meta-analysis to estimate the potential association between LCω-3PUFAs and prostate cancer (PC). A comprehensive literature search was performed through 2013 to identify prospective studies that examined dietary intakes of long-chain omega-3 polyunsaturated fatty acids (LCω-3PUFA) or blood biomarkers of LCω-3PUFA status and risk of PC. Random-effects meta-analyses were conducted to generate summary relative risk estimates (SRREs) for LCω-3PUFAs and total PC, and by stage and grade. Subgroup analyses were also conducted for specific fatty acids and other study characteristics. Twelve self-reported dietary intake and 9 biomarker studies from independent study populations were included in the analysis, with 446,243 and 14,897 total participants, respectively. No association between LCω-3PUFAs and total PC was observed (SRRE = 1.00, 95% CI: 0.93–1.09) for the dietary intake studies (high vs. low LCω-3PUFAs category comparison) or for the biomarker studies (SRRE of 1.07, 95% CI: 0.94–1.20). In general, most summary associations for the dietary intake studies were in the inverse direction, whereas the majority of summary associations for the biomarker studies were in the positive direction, but all were weak in magnitude. The results from this meta-analysis do not support an association between LCω-3PUFAs and PC. PMID:25826711

  5. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: Mechanisms and implications for psychopathology

    PubMed Central

    McNamara, Robert K; Vannest, Jennifer J; Valentine, Christina J

    2015-01-01

    Accumulating translational evidence suggests that the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) plays a role in the maturation and stability of cortical circuits that are impaired in different recurrent psychiatric disorders. Specifically, rodent and cell culture studies find that DHA preferentially accumulates in synaptic and growth cone membranes and promotes neurite outgrowth, dendritic spine stability, and synaptogenesis. Additional evidence suggests that DHA may play a role in microglia-mediated synaptic pruning, as well as myelin development and resilience. In non-human primates n-3 fatty acid insufficiency during perinatal development leads to widespread deficits in functional connectivity in adult frontal cortical networks compared to primates raised on DHA-fortified diet. Preterm delivery in non-human primates and humans is associated with early deficits in cortical DHA accrual. Human preterm birth is associated with long-standing deficits in myelin integrity and cortical circuit connectivity and increased risk for attention deficit/hyperactivity disorder (ADHD), mood, and psychotic disorders. In general, ADHD and mood and psychotic disorders initially emerge during rapid periods of cortical circuit maturation and are characterized by DHA deficits, myelin pathology, and impaired cortical circuit connectivity. Together these associations suggest that early and uncorrected deficits in fetal brain DHA accrual may represent a modifiable risk factor for cortical circuit maturation deficits in psychiatric disorders, and could therefore have significant implications for informing early intervention and prevention strategies. PMID:25815252

  6. Determination of digestibility, tissue deposition, and metabolism of the omega-3 fatty acid content of krill protein concentrate in growing rats.

    PubMed

    Bridges, Kayla M; Gigliotti, Joseph C; Altman, Stephanie; Jaczynski, Jacek; Tou, Janet C

    2010-03-10

    Krill protein concentrate (KPC) consists of high-quality protein (77.7% dry basis) and lipids (8.1% dry basis) that are rich (27% of total fatty acids) in omega-3 polyunsaturated fatty acids (omega-3 PUFAs). The objective of the study was to determine digestibility, tissue deposition, metabolism, and tissue oxidative stability of the omega-3 PUFAs provided by KPC. Young female Sprague-Dawley rats (n = 10/group) were fed ad libitum isocaloric diets for 4 weeks with either 10% freeze-dried KPC or 10% casein. The casein diet contained 5.3% added corn oil (CO), whereas the KPC contained 5.3% total lipids from 0.9% krill oil (KO) provided by KPC and 4.4% added corn oil (KO + CO). Fatty acid compositions of various tissues were analyzed by gas chromatography. Lipid peroxidation was determined by thiobarbituric acid reactive substances (TBARS). Total antioxidant capacity and urinary eicosanoid metabolites were determined by enzyme immunoassay. The omega-3 PUFAs provided in KO from KPC increased (P = 0.003) docosahexaenoic acid (DHA) concentration in the brain. DHA and eicosapentaenoic acid (EPA) content in fat pads and liver were increased (P < 0.01), whereas the omega-6 PUFA, arachidonic acid (AA), was decreased (P < 0.01) in rats fed the KPC diet containing the KO + CO mixture compared to rats fed the casein diet containing pure CO. Feeding the KPC diet decreased pro-inflammatory 2-series prostaglandin and thromboxane metabolites. There was no significant difference in TBARS or total antioxidant capacity in the tissues of rats fed the different diets. On the basis of the study results, the low amount of omega-3 PUFAs provided by the KO content of KPC provides beneficial effects of increasing tissue EPA and DHA deposition and reduced AA-derived 2-series eicosanoid metabolites without increasing lipid peroxidation. Therefore, consumption of KPC has the potential to provide a healthy and sustainable source of omega-3 PUFAs. PMID:20131797

  7. Are the Adaptogenic Effects of Omega 3 Fatty Acids Mediated via Inhibition of Proinflammatory Cytokines?

    PubMed Central

    Bradbury, Joanne; Brooks, Lyndon; Myers, Stephen P.

    2012-01-01

    The study was undertaken to estimate the size of the impact of n-3 fatty acids in psychological stress and the extent to which it is mediated via proinflammatory cytokines. Structural equation modeling (SEM) was used to analyze data from 194 healthy Australians. Biomarkers used were erythrocyte polyunsaturated fatty acids (docosahexaenoic acid (DHA) and arachidonic acid (AA)), ex-vivo stimulated secretion of proinflammatory cytokines (interleukins (IL-1 and IL-6), and tumor necrosis factor (TNF)). Stress was measured with the perceived stress scale (PSS-10), found to comprise three factors: Coping (items 4, 7, 5), Overwhelm (2, 10, 6 and 8), and Emotional (1, 9 and 3). This modeling demonstrated that the effects of DHA on coping are largely direct effects (0.26, t = 2.05) and were not significantly mediated via the suppression of proinflammatory cytokines. Future modeling should explore whether adding EPA to the model would increase the significance of the mediation pathways. PMID:22007258

  8. The VITamin D and OmegA-3 TriaL (VITAL): rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease.

    PubMed

    Manson, Joann E; Bassuk, Shari S; Lee, I-Min; Cook, Nancy R; Albert, Michelle A; Gordon, David; Zaharris, Elaine; Macfadyen, Jean G; Danielson, Eleanor; Lin, Jennifer; Zhang, Shumin M; Buring, Julie E

    2012-01-01

    Data from laboratory studies, observational research, and/or secondary prevention trials suggest that vitamin D and marine omega-3 fatty acids may reduce risk for cancer or cardiovascular disease (CVD), but primary prevention trials with adequate dosing in general populations (i.e., unselected for disease risk) are lacking. The ongoing VITamin D and OmegA-3 TriaL (VITAL) is a large randomized, double-blind, placebo-controlled, 2 x 2 factorial trial of vitamin D (in the form of vitamin D(3) [cholecalciferol], 2000 IU/day) and marine omega-3 fatty acid (Omacor fish oil, eicosapentaenoic acid [EPA]+docosahexaenoic acid [DHA], 1g/day) supplements in the primary prevention of cancer and CVD among a multi-ethnic population of 20,000 U.S. men aged ≥ 50 and women aged ≥ 55. The mean treatment period will be 5 years. Baseline blood samples will be collected in at least 16,000 participants, with follow-up blood collection in about 6000 participants. Yearly follow-up questionnaires will assess treatment compliance (plasma biomarker measures will also assess compliance in a random sample of participants), use of non-study drugs or supplements, occurrence of endpoints, and cancer and vascular risk factors. Self-reported endpoints will be confirmed by medical record review by physicians blinded to treatment assignment, and deaths will be ascertained through national registries and other sources. Ancillary studies will investigate whether these agents affect risk for diabetes and glucose intolerance; hypertension; cognitive decline; depression; osteoporosis and fracture; physical disability and falls; asthma and other respiratory diseases; infections; and rheumatoid arthritis, systemic lupus erythematosus, thyroid diseases, and other autoimmune disorders. PMID:21986389

  9. Omega-3 enriched egg production: the effect of α -linolenic ω -3 fatty acid sources on laying hen performance and yolk lipid content and fatty acid composition.

    PubMed

    Antruejo, A; Azcona, J O; Garcia, P T; Gallinger, C; Rosmini, M; Ayerza, R; Coates, W; Perez, C D

    2011-12-01

    1. Diets high in total lipids, saturated fatty acids, trans fatty acids, and having high ω-6:ω-3 fatty acid ratios, have been shown to be related to increased instances of coronary heart disease, while diets high in ω-3 fatty acids have been shown to decrease the risk. 2. Feeding ω-3 fatty acid diets to laying hens has been shown to improve the quality of eggs produced in terms of saturation and ω-3 content. 3. A study was undertaken to determine if the ω-3 fatty acid source, when fed to hens, influences the amount transferred to eggs. 4. Flaxseed and flaxseed oil, along with chia seed and chia seed oil, were the two main sources of ω-3 fatty acid examined during the 84 d trial. 5. All α-linolenic enriched treatments yielded significantly higher ω-3 fatty acid contents per g of yolk and per yolk, than the non-α-linolenic enriched diets. Chia oil and chia seed yielded 54·5 and 63·5% more mg of ω-3 fatty acid per g of yolk for the 56 d test period, and 13·4 and 66·2% more for the 84 d test period, than flaxseed oil and flaxseed, respectively. 6. The differences in omega-3 content were significant, except for the chia oil compared with the flax oil, at the end of the trial. 7. This trial has shown that differences in conversion exist among ω-3 fatty acid sources, at least when fed to hens, and indicates that chia may hold a significant potential as a source of ω-3 fatty acid for enriching foods, thereby making these foods a healthier choice for consumers. PMID:22221241

  10. Role of Omega-3 Fatty Acids in the Treatment of Depressive Disorders: A Comprehensive Meta-Analysis of Randomized Clinical Trials

    PubMed Central

    Grosso, Giuseppe; Pajak, Andrzej; Marventano, Stefano; Castellano, Sabrina; Galvano, Fabio; Bucolo, Claudio; Drago, Filippo; Caraci, Filippo

    2014-01-01

    Background Despite omega-3 polyunsaturated fatty acids (PUFA) supplementation in depressed patients have been suggested to improve depressive symptomatology, previous findings are not univocal. Objectives To conduct an updated meta-analysis of randomized controlled trials (RCTs) of omega-3 PUFA treatment of depressive disorders, taking into account the clinical differences among patients included in the studies. Methods A search on MEDLINE, EMBASE, PsycInfo, and the Cochrane Database of RCTs using omega-3 PUFA on patients with depressive symptoms published up to August 2013 was performed. Standardized mean difference in clinical measure of depression severity was primary outcome. Type of omega-3 used (particularly eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) and omega-3 as mono- or adjuvant therapy was also examined. Meta-regression analyses assessed the effects of study size, baseline depression severity, trial duration, dose of omega-3, and age of patients. Results Meta-analysis of 11 and 8 trials conducted respectively on patients with a DSM-defined diagnosis of major depressive disorder (MDD) and patients with depressive symptomatology but no diagnosis of MDD demonstrated significant clinical benefit of omega-3 PUFA treatment compared to placebo (standardized difference in random-effects model 0.56 SD [95% CI: 0.20, 0.92] and 0.22 SD [95% CI: 0.01, 0.43], respectively; pooled analysis was 0.38 SD [95% CI: 0.18, 0.59]). Use of mainly EPA within the preparation, rather than DHA, influenced final clinical efficacy. Significant clinical efficacy had the use of omega-3 PUFA as adjuvant rather than mono-therapy. No relation between efficacy and study size, baseline depression severity, trial duration, age of patients, and study quality was found. Omega-3 PUFA resulted effective in RCTs on patients with bipolar disorder, whereas no evidence was found for those exploring their efficacy on depressive symptoms in young populations, perinatal depression

  11. Long-term omega-3 fatty acid supplementation prevents expression changes in cochlear homocysteine metabolism and ameliorates progressive hearing loss in C57BL/6J mice.

    PubMed

    Martínez-Vega, Raquel; Partearroyo, Teresa; Vallecillo, Néstor; Varela-Moreiras, Gregorio; Pajares, María A; Varela-Nieto, Isabel

    2015-12-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are essential nutrients well known for their beneficial effects, among others on cognitive development and maintenance, inflammation and oxidative stress. Previous studies have shown an inverse association between high plasma levels of PUFAs and age-related hearing loss, and the relationship between low serum folate and elevated plasma homocysteine levels and hearing loss. Therefore, we used C57BL/6J mice and long-term omega-3 supplementation to evaluate the impact on hearing by analyzing their auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) thresholds. The omega-3 group showed significantly lower ABR hearing thresholds (~25 dB sound pressure level) and higher DPOAE amplitudes in mid-high frequencies when compared to the control group. These changes did not correlate with alterations between groups in plasma homocysteine or serum folate levels as measured by high-performance liquid chromatography and a microbiological method, respectively. Aging in the control group was associated with imbalanced cytokine expression toward increased proinflammatory cytokines as determined by quantitative reverse transcriptase polymerase chain reaction; these changes were prevented by omega-3 supplementation. Genes involved in homocysteine metabolism showed decreased expression during aging of control animals, and only alterations in Bhmt and Cbs were significantly prevented by omega-3 feeding. Western blotting showed that omega-3 supplementation precluded the CBS protein increase detected in 10-month-old controls but also produced an increase in BHMT protein levels. Altogether, the results obtained suggest a long-term protective role of omega-3 supplementation on cochlear metabolism and progression of hearing loss. PMID:26321228

  12. Attenuation of niacin-induced prostaglandin D2 generation by omega-3 fatty acids in THP-1 macrophages and Langerhans dendritic cells

    PubMed Central

    VanHorn, Justin; Altenburg, Jeffrey D; Harvey, Kevin A; Xu, Zhidong; Kovacs, Richard J; Siddiqui, Rafat A

    2012-01-01

    Niacin, also known as nicotinic acid, is an organic compound that has several cardio-beneficial effects. However, its use is limited due to the induction of a variable flushing response in most individuals. Flushing occurs from a niacin receptor mediated generation of prostaglandins from arachidonic acid metabolism. This study examined the ability of docosahexaenoic acid, eicosapentaenoic acid, and omega-3 polyunsaturated fatty acids (PUFAs), to attenuate niacin-induced prostaglandins in THP-1 macrophages. Niacin induced both PGD2 and PGE2 generation in a dose-dependent manner. Niacin also caused an increase in cytosolic calcium and activation of cytosolic phospholipase A2. The increase in PGD2 and PGE2 was reduced by both docosahexaenoic acid and eicosapentaenoic acid, but not by oleic acid. Omega-3 PUFAs efficiently incorporated into cellular phospholipids at the expense of arachidonic acid, whereas oleic acid incorporated to a higher extent but had no effect on arachidonic acid levels. Omega-3 PUFAs also reduced surface expression of GPR109A, a human niacin receptor. Furthermore, omega-3 PUFAs also inhibited the niacin-induced increase in cytosolic calcium. Niacin and/or omega-3 PUFAs minimally affected cyclooxygenase-1 activity and had no effect on cyclooxygenase -2 activity. The effects of niacin on PGD2 generation were further confirmed using Langerhans dendritic cells. Results of the present study indicate that omega-3 PUFAs reduced niacin-induced prostaglandins formation by diminishing the availability of their substrate, as well as reducing the surface expression of niacin receptors. In conclusion, this study suggests that the regular use of omega-3 PUFAs along with niacin can potentially reduce the niacin-induced flushing response in sensitive patients. PMID:22442634

  13. Omega-6 and omega-3 polyunsaturated fatty acids and allergic diseases in infancy and childhood.

    PubMed

    Miles, Elizabeth A; Calder, Philip C

    2014-01-01

    There may be a causal relationship between intake of n-6 polyunsaturated fatty acids (PUFAs) and childhood allergic diseases. This can be explained by plausible biological mechanisms involving eicosanoid mediators produced from the n-6 PUFA arachidonic acid. Long chain n-3 PUFAs are found in fish and fish oils. These fatty acids act to oppose the actions of n-6 PUFAs. Thus, it is considered that n-3 PUFAs will lower the risk of developing allergic diseases. In support of this, protective associations have been reported between maternal fish intake during pregnancy and allergic outcomes in infants and children from those pregnancies. However, studies of fish intake during infancy and childhood and allergic outcomes in those infants or children are inconsistent, although some reported a protective association. Supplementing pregnant women with fish oil can induce immunologic changes in cord blood. This supplementation has been reported in some studies to decrease sensitisation to common food allergens and to lower the prevalence and severity of atopic dermatitis in the first year of life. The protective effect of maternal n-3 PUFAs may last until adolescence of the offspring. Fish oil supplementation in infancy may decrease the risk of developing some manifestations of allergic disease, although this benefit may not persist. Whether fish oil is a useful therapy in children with asthma receiving standard therapy is not clear from studies performed to date and this requires further exploration. PMID:23701554

  14. Anger induced by interferon-alpha is moderated by ratio of arachidonic acid to omega-3 fatty acids

    PubMed Central

    Lotrich, Francis E.; Sears, Barry; McNamara, Robert K.

    2013-01-01

    Objective Anger worsens in some patients during interferon-alpha (IFN-α) therapy. Elevated anger has also been associated with lower long-chain omega-3 (LCn-3) fatty acid levels. We examined whether fatty acids could influence vulnerability to anger during IFN-α exposure. Methods Plasma arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) levels were determined prior to IFN-α therapy by mass spectroscopy. Repeated-measure analyses examined the relationship between AA/EPA+DHA and the subsequent development of labile anger and irritability in 82 subjects who prospectively completed the Anger, Irritability, and Assault Questionnaire (AIAQ) during the first eight weeks of IFN-α therapy. Results Prior to IFN-α therapy, AA/EPA+DHA did not correlate with either labile anger or irritability. Pre-treatment AA/EPA+DHA did correlate with the subsequent maximal increase in labile anger during IFN-α therapy (r=0.33; p=0.005). Over time, labile anger increased more in subjects with above median AA/EPA+DHA ratios (p<0.05). Of the 17 subjects ultimately requiring psychiatric intervention for anger, 14/17 had above-median AA/EPA+DHA ratios (p=0.009). There was also an interaction with the tumor necrosis factor-alpha (TNF-α) promoter polymorphism (A-308G), such that only those with both elevated AA/EPA+DHA and the A allele had increased labile anger (p=0.001). In an additional 18 subjects, we conversely observed that selective serotonin reuptake inhibitor treatment was associated with increased irritability during IFN-α therapy. Conclusion LCn-3 fatty acid status may influence anger development during exposure to elevated inflammatory cytokines, and may interact with genetic risk for increased brain TNF-α. LCn-3 supplements may be one strategy for minimizing this adverse side effect of IFN-α. PMID:24182638

  15. The Effect of Omega-3 Fatty Acids in Patients With Active Rheumatoid Arthritis Receiving DMARDs Therapy: Double-Blind Randomized Controlled Trial

    PubMed Central

    Rajaei, Elham; Mowla, Karim; Ghorbani, Ali; Bahadoram, Sara; Bahadoram, Mohammad; Dargahi-Malamir, Mehrdad

    2016-01-01

    Background: Rheumatoid arthritis is a symmetric peripheral polyarthritis of unknown etiology that, untreated or if unresponsive the therapy, typically leads to deformity and destruction of joints due to erosion of cartilage and bone. Omega-3 fatty acids have been shown to reduce morning stiffness, the number of tender joints and swollen joints in patients with rheumatoid arthritis. This study is designed for evaluation of omega-3 effects on disease activity and remission of rheumatoid arthritis in DMARDs treated patients and on weight changes and reduction of analgesic drugs consumption versus placebo. Methods: Sixty patients with active rheumatoid arthritis (49 female and 11 male) underwent rheumatologist examination and disease activity score were calculated. Then patients were enrolled in this 12 week, double blind, randomized, placebo- controlled study. The patients in both groups continued their pre study standard treatment. The patients were visited every 4 weeks, 4 times and data were recorded. Results: Significant improvement in the patient’s global evaluation and in the physician’s assessment of disease was observed in those taking omega-3. The proportions of patients who improved and of those who were able to reduce their concomitant analgesic medication were significantly greater with omega-3 consumption. There were no weight changes. Conclusion: Daily supplementation with omega-3 results has significant clinical benefit and may reduce the need for concomitant analgesic consumption without weight changes. PMID:26925896

  16. Involvement of omega-3 fatty acids in emotional responses and hyperactive symptoms.

    PubMed

    Lavialle, Monique; Denis, Isabelle; Guesnet, Philippe; Vancassel, Sylvie

    2010-10-01

    Biochemical evidence suggests a role for n-3 polyunsaturated fatty acids (n-3 PUFAs) in the regulation of behavioral disturbances. A number of studies have revealed an association between reduced n-3 PUFA levels and attention-deficit hyperactivity disorder or depression. Here, we summarize the main findings regarding the association between n-3 PUFA and hyperactive and emotional disorders, and discuss potential mechanisms of action. Because the basal ganglia are involved in the control of locomotion and emotion, we examined published data regarding the role of n-3 PUFA in dopamine (DA) regulation in the basal ganglia. These results are discussed in the light of recent data from our laboratory suggesting an association between the drop in melatonin in the pineal gland and the increase in DA in the striatum and nucleus accumbens of n-3 PUFA-deprived rodents. PMID:20434321

  17. Efficacy of the Omega-3 Index in predicting non-alcoholic fatty liver disease in overweight and obese adults: a pilot study.

    PubMed

    Parker, Helen M; O'Connor, Helen T; Keating, Shelley E; Cohn, Jeffrey S; Garg, Manohar L; Caterson, Ian D; George, Jacob; Johnson, Nathan A

    2015-09-14

    Non-alcoholic fatty liver disease (NAFLD) is an independent predictor of CVD in otherwise healthy individuals. Low n-3 PUFA intake has been associated with the presence of NAFLD; however, the relationship between a biomarker of n-3 status - the Omega-3 Index - and liver fat is yet to be elucidated. A total of eighty overweight adults (fifty-six men) completed the anthropometric and biochemical measurements, including the Omega-3 Index, and underwent proton magnetic resonance spectroscopy assessment of liver fat. Bivariate correlations and multiple regression analyses were performed with reference to prediction of liver fat percentage. The mean Omega-3 Index was high in both NAFLD (intrahepatic lipid concentration≥5·5 %) and non-NAFLD groups. The Omega-3 Index, BMI, waist circumference, glucose, insulin, TAG, high-sensitive C-reactive protein (hsCRP) and alanine aminotransferase (ALT) were positively correlated, and HDL and erythrocyte n-6:n-3 ratio negatively correlated with liver fat concentration. Regression analysis found that simple anthropometric and demographic variables (waist, age) accounted for 31 % of the variance in liver fat and the addition of traditional cardiometabolic blood markers (TAG, HDL, hsCRP and ALT) increased the predictive power to 43 %. The addition of the novel erythrocyte fatty acid variable (Omega-3 Index) to the model only accounted for a further 3 % of the variance (P=0·049). In conclusion, the Omega-3 Index was associated with liver fat concentration but did not improve the overall capacity of demographic, anthropometric and blood markers to predict NAFLD. PMID:26202539

  18. Anthracycline-induced cardiac toxicity is not increased by dietary omega-3 fatty acids.

    PubMed

    Germain, E; Bonnet, P; Aubourg, L; Grangeponte, M C; Chajès, V; Bougnoux, P

    2003-02-01

    Exogenous n-3 polyunsaturated fatty acids (PUFA) and specially docosahexaenoic acid (DHA) have been previously reported to potentiate the efficacy of anticancer agents that generate an oxidative stress, such as anthracyclines, by enhancing the susceptibility of cell membranes to lipid peroxidation. Since lipid peroxidation has also been suggested to mediate anthracycline-induced heart failure, we designed a study aimed at investigating whether a DHA-enriched diet coupled with controlled oxidative conditions prevents or aggravates this serious side effect in vivo. Female Sprague-Dawley rats were submitted for at least 3 weeks to diet enriched in DHA, which was provided either as natural oil (sardine oil, experiment 1) or in a purified form (DHASCO, experiment 2). At the same time, to constrain the nutritional oxidative status, the anti-oxidant Vitamin E or the pro-oxidant menadione/sodium ascorbate redox mixture was added. Then, epirubicin was administered weekly at two cumulative doses, 9 mg x kg(-1) (experiment 1) or 15 mg x kg(-1) (experiment 2). Cardiotoxicity was assessed by electrocardiographic (ECG) and hemodynamic measurements, completed with histological examination. Epirubicin-induced dose-dependent mortality, alterations of hemodynamic parameters and histological damages, all features characterizing the occurrence of congestive heart failure. Moreover, the addition of anti- or pro-oxidant did not change the hemodynamics either at the lowest (experiment 1) or the highest dose (experiment 2). Similarly, the ECG measurements and histological examinations did not reveal any difference. DHA was actually incorporated, as evaluated through the adipose tissue fatty acid composition. All these observations indicated that the DHA-enriched diet, placed under controlled oxidative conditions, did not appear to prevent but neither to aggravate epirubicin-induced cardiotoxicity. These findings support the idea that DHA improves the anthracycline therapeutic index. PMID

  19. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop.

    PubMed

    Ruiz-Lopez, Noemi; Haslam, Richard P; Napier, Johnathan A; Sayanova, Olga

    2014-01-01

    Omega-3 (also called n-3) long-chain polyunsaturated fatty acids (≥C20; LC-PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega-3 LC-PUFAs, i.e. eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega-3 LC-PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non-native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis. PMID:24308505

  20. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    PubMed Central

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease. PMID:26796668

  1. The effect of omega-3 fatty acids on expression of connexin-40 in Wistar rat aorta after lipopolysaccharide administration.

    PubMed

    Frimmel, K; Vlkovicova, J; Sotnikova, R; Navarova, J; Bernatova, I; Okruhlicova, L

    2014-02-01

    Connexin (Cx)-channels can represent one of targets of omega-3 fatty acids (n-3 PUFA) in protection of cardiovascular system against injury. We investigated the anti-inflammatory effect of 10-day n-3 PUFA intake (30 mg/kg/day for 10 days) on expression of Cx40 isoform in the aorta of Wistar rats injected with a single dose of lipopolysaccharide (LPS, 1 mg/kg, i.p.). LPS resulted in up-regulation of Cx40 expression in the aorta associated with reduced endothelium-dependent relaxation. LPS increased levels of inflammatory markers C-reactive protein and malondialdehyde in circulation as well as NOS activity and CD68 expression in aortic tissue indicating presence of moderate inflammation. N-3 PUFA supplementation decreased expression of both Cx40 and CD68 in aortic tissue and suppressed concentrations of C-reactive protein and malondialdehyde of endotoxemic rats. N-3 PUFA did not improve NO-dependent relaxation of aorta and NOS activity in LPS rats. The results indicate the involvement of Cx40 in development of LPS-induced endothelium-dependent functional impairment of the aorta and partial health benefits of n-3 PUFA diet associated with improved Cx40 expression. PMID:24622833

  2. Randomized placebo-controlled trials of omega-3 polyunsaturated fatty acids in psychiatric disorders: a review of the current literature.

    PubMed

    Politi, Pierluigi; Rocchetti, Matteo; Emanuele, Enzo; Rondanelli, Mariangela; Barale, Francesco

    2013-09-01

    A growing body of evidence suggests that omega (ω)-3 polyunsaturated fatty acids (PUFAs) are clinically useful in patients with psychiatric disorders. In the present review, we summarize the findings of randomized, placebo-controlled clinical trials that have focused on the potential therapeutic utility of ω-3 PUFAs in patients with mental illnesses. We searched the PubMed database for placebo-controlled clinical trials using the keywords "PUFAs", "omega-3", "eicosapentaenoic acid", and "docosahexaenoic acid" in combination with the following terms: "anxiety disorders", "mood disorders", "autism", "attention-deficit hyperactivity disorder" (ADHD), "personality disorders", and "schizophrenia". The literature review indicated that personality disorders, autism, and anxiety disorders have been investigated less frequently than mood disorders, schizophrenia, and ADHD. Although no definite conclusions can be drawn on the therapeutic efficacy of ω-3 PUFAs in the majority of the psychiatric illnesses examined here, the evidence suggests that these molecules have a potential preventive role in people at extremely high risk for developing psychosis. Future studies in the field should examine ω-PUFAs turnover in neural membranes. Moreover, special attention should be paid to potential confounds, such as smoking and dietary habits. PMID:21838664

  3. Purslane Weed (Portulaca oleracea): A Prospective Plant Source of Nutrition, Omega-3 Fatty Acid, and Antioxidant Attributes

    PubMed Central

    Uddin, Md. Kamal; Juraimi, Abdul Shukor; Hossain, Md Sabir; Nahar, Most. Altaf Un; Ali, Md. Eaqub; Rahman, M. M.

    2014-01-01

    Purslane (Portulaca oleracea L.) is an important plant naturally found as a weed in field crops and lawns. Purslane is widely distributed around the globe and is popular as a potherb in many areas of Europe, Asia, and the Mediterranean region. This plant possesses mucilaginous substances which are of medicinal importance. It is a rich source of potassium (494 mg/100 g) followed by magnesium (68 mg/100 g) and calcium (65 mg/100 g) and possesses the potential to be used as vegetable source of omega-3 fatty acid. It is very good source of alpha-linolenic acid (ALA) and gamma-linolenic acid (LNA, 18 : 3 w3) (4 mg/g fresh weight) of any green leafy vegetable. It contained the highest amount (22.2 mg and 130 mg per 100 g of fresh and dry weight, resp.) of alpha-tocopherol and ascorbic acid (26.6 mg and 506 mg per 100 g of fresh and dry weight, resp.). The oxalate content of purslane leaves was reported as 671–869 mg/100 g fresh weight. The antioxidant content and nutritional value of purslane are important for human consumption. It revealed tremendous nutritional potential and has indicated the potential use of this herb for the future. PMID:24683365

  4. Influence of Obesity on Breast Density Reduction by Omega-3 Fatty Acids: Evidence from a Randomized Clinical Trial.

    PubMed

    Sandhu, Narinder; Schetter, Susann E; Liao, Jason; Hartman, Terryl J; Richie, John P; McGinley, John; Thompson, Henry J; Prokopczyk, Bogdan; DuBrock, Cynthia; Signori, Carina; Hamilton, Christopher; Calcagnotto, Ana; Trushin, Neil; Aliaga, Cesar; Demers, Laurence M; El-Bayoumy, Karam; Manni, Andrea

    2016-04-01

    Preclinical data indicate that omega-3 fatty acids (n-3FA) potentiate the chemopreventive effect of the antiestrogen (AE) tamoxifen against mammary carcinogenesis. The role of n-3FA in breast cancer prevention in humans is controversial. Preclinical and epidemiologic data suggest that n-3FA may be preferentially protective in obese subjects. To directly test the protective effect of n-3FA against breast cancer, we conducted a 2-year, open-label randomized clinical trial in 266 healthy postmenopausal women (50% normal weight, 30% overweight, 20% obese) with high breast density (BD; ≥25%) detected on their routine screening mammograms. Eligible women were randomized to one of the following five groups (i) no treatment, control; (ii) raloxifene 60 mg; (iii) raloxifene 30 mg; (iv) n-3FA lovaza 4 g; and (v) lovaza 4 g plus raloxifene 30 mg. The 2-year change in BD, a validated biomarker of breast cancer risk, was the primary endpoint of the study. In subset analysis, we tested the prespecified hypothesis that body mass index (BMI) influences the relationship between plasma n-3FA on BD. While none of the interventions affected BD in the intention-to-treat analysis, increase in plasma DHA was associated with a decrease in absolute breast density but only in participants with BMI >29. Our results suggest that obese women may preferentially experience breast cancer risk reduction from n-3FA administration. PMID:26714774

  5. Effects of Omega-3 Fatty Acid Supplementation on Diabetic Nephropathy Progression in Patients with Diabetes and Hypertriglyceridemia

    PubMed Central

    Kim, Gyuri; Lee, Yong-ho; Wang, Hye Jin; Lee, Byung-Wan; Cha, Bong Soo; Kim, Beom Seok

    2016-01-01

    Beneficial effects of omega-3 fatty acid (O3FA) supplementation in a wide range of disease condition have been well studied. However, there is limited information regarding the effects of O3FAs on chronic kidney disease (CKD), especially in diabetic nephropathy (DN) with hypertriglyceridemia. We investigate whether O3FA supplementation could help maintain renal function in patients with diabetes and hypertriglyceridemia. Total 344 type 2 diabetic patients with a history of O3FA supplementation for managing hypertriglyceridemia were included. Reduction in urine albumin to creatinine ratio (ACR) and glomerular filtrate rate (GFR) were examined. Subgroup analyses were stratified according to the daily O3FA doses. Serum total cholesterol, triglyceride, and urine ACR significantly reduced after O3FA supplementation. Overall, 172 (50.0%) patients did not experience renal function loss, and 125 (36.3%) patients had a GFR with a positive slope. The patients treated with O3FAs at 4g/day showed greater maintenance in renal function than those treated with lower dosages (p < 0.001). This dose dependent effect remains significant after adjustment for multiple variables. O3FA supplementation in diabetic patients with hypertriglyceridemia shows benefits of reducing albuminuria and maintaining renal function. The effects are dependent on the dose of daily O3FA supplementation. PMID:27135947

  6. Long-term Effects of Prenatal Omega-3 Fatty Acid Intake on Visual Function in School-Age Children

    PubMed Central

    Jacques, Caroline; Levy, Emile; Muckle, Gina; Jacobson, Sandra W.; Bastien, Célyne; Dewailly, Éric; Ayotte, Pierre; Jacobson, Joseph L.; Saint-Amour, Dave

    2010-01-01

    Objective To assess the long-term effect of omega-3 polyunsaturated fatty acids (n-3 PUFA) intake during gestation on visual development. Study design We examined the long-term effects in 136 school-age Inuit children exposed to high levels of n-3 PUFAs during gestation using visual evoked potentials (VEPs). VEP protocols using color and motion stimuli were used to assess parvo- and magnocellular responses. Concentrations of the two major n-3 PUFAs (DHA and EPA) were measured in umbilical cord and child plasma phospholipids, reflecting pre- and postnatal exposure, respectively. Results After adjustment for confounders, cord plasma DHA was associated with shorter latencies of the N1 and P1 components of the color VEPs. No effects were found for current n-3 PUFA body burden or motion-onset VEPs. Conclusion This study demonstrates beneficial effects of DHA intake during gestation on visual system function at school age. DHA is particularly important for the early development and long-term function of the visual parvocellular pathway. PMID:20797725

  7. Effects of Omega-3 Fatty Acid Supplementation on Diabetic Nephropathy Progression in Patients with Diabetes and Hypertriglyceridemia.

    PubMed

    Han, Eugene; Yun, Yujung; Kim, Gyuri; Lee, Yong-Ho; Wang, Hye Jin; Lee, Byung-Wan; Cha, Bong Soo; Kim, Beom Seok; Kang, Eun Seok

    2016-01-01

    Beneficial effects of omega-3 fatty acid (O3FA) supplementation in a wide range of disease condition have been well studied. However, there is limited information regarding the effects of O3FAs on chronic kidney disease (CKD), especially in diabetic nephropathy (DN) with hypertriglyceridemia. We investigate whether O3FA supplementation could help maintain renal function in patients with diabetes and hypertriglyceridemia. Total 344 type 2 diabetic patients with a history of O3FA supplementation for managing hypertriglyceridemia were included. Reduction in urine albumin to creatinine ratio (ACR) and glomerular filtrate rate (GFR) were examined. Subgroup analyses were stratified according to the daily O3FA doses. Serum total cholesterol, triglyceride, and urine ACR significantly reduced after O3FA supplementation. Overall, 172 (50.0%) patients did not experience renal function loss, and 125 (36.3%) patients had a GFR with a positive slope. The patients treated with O3FAs at 4g/day showed greater maintenance in renal function than those treated with lower dosages (p < 0.001). This dose dependent effect remains significant after adjustment for multiple variables. O3FA supplementation in diabetic patients with hypertriglyceridemia shows benefits of reducing albuminuria and maintaining renal function. The effects are dependent on the dose of daily O3FA supplementation. PMID:27135947

  8. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  9. Supplementation with omega-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction.

    PubMed

    Walser, Buddy; Giordano, Rose M; Stebbins, Charles L

    2006-06-01

    Omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have beneficial effects on the heart and vasculature. We tested the hypothesis that 6 weeks of dietary supplementation with DHA (2.0 g/day) and EPA (3.0 g/day) enhances exercise-induced increases in brachial artery diameter and blood flow during rhythmic exercise. In seven healthy subjects, blood pressure, heart rate and brachial artery diameter, blood flow, and conductance were assessed before and during the last 30 s of 90 s of rhythmic handgrip exercise (30% of maximal handgrip tension). Blood pressure (MAP), heart rate (HR), and brachial artery vascular conductance were also determined. This paradigm was also performed in six other healthy subjects who received 6 weeks of placebo (safflower oil). Placebo treatment had no effect on any variable. DHA and EPA supplementation enhanced contraction-induced increases in brachial artery diameter (0.28+/-0.04 vs. 0.14+/-0.03 mm), blood flow (367+/-65 vs. 293+/-55 ml min-1) and conductance (3.86+/-0.71 vs. 2.89+/-0.61 ml min-1 mmHg-1) (P<0.05). MAP and HR were unchanged. Results indicate that treatment with DHA and EPA enhances brachial artery blood flow and conductance during exercise. These findings may have implications for individuals with cardiovascular disease and exercise intolerance (e.g., heart failure). PMID:16770472

  10. Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy

    PubMed Central

    D’Eliseo, Donatella; Velotti, Francesca

    2016-01-01

    Cancer is a major disease worldwide. Despite progress in cancer therapy, conventional cytotoxic therapies lead to unsatisfactory long-term survival, mainly related to development of drug resistance by tumor cells and toxicity towards normal cells. n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can exert anti-neoplastic activity by inducing apoptotic cell death in human cancer cells either alone or in combination with conventional therapies. Indeed, n-3 PUFAs potentially increase the sensitivity of tumor cells to conventional therapies, possibly improving their efficacy especially against cancers resistant to treatment. Moreover, in contrast to traditional therapies, n-3 PUFAs appear to cause selective cytotoxicity towards cancer cells with little or no toxicity on normal cells. This review focuses on studies investigating the cytotoxic activity of n-3 PUFAs against cancer cells via apoptosis, analyzing the molecular mechanisms underlying this effective and selective activity. Here, we highlight the multiple molecules potentially targeted by n-3 PUFAs to trigger cancer cell apoptosis. This analysis can allow a better comprehension of the potential cytotoxic therapeutic role of n-3 PUFAs against cancer, providing specific information and support to design future pre-clinical and clinical studies for a better use of n-3 PUFAs in cancer therapy, mainly combinational therapy. PMID:26821053

  11. Influences of micronutrient and omega-3 fatty acid supplementation on cognition, learning, and behavior: methodological considerations and implications for children and adolescents in developed societies.

    PubMed

    Frensham, Lauren J; Bryan, Janet; Parletta, Natalie

    2012-10-01

    The purpose of this review is to outline the current evidence regarding the effects of micronutrient and omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation on the cognition, learning, and behavior of children and adolescents living in developed societies. Existing evidence suggests that children and adolescents in developed countries may perform better on tests of nonverbal intelligence and on behavioral measures after receiving vitamin and mineral supplements with or without n-3 PUFA supplementation compared with those receiving placebo, regardless of age and supplementation formula. The strongest effects were observed in trials that lasted over 3 months and in subgroups of children with low socioeconomic status, symptoms of attention deficit hyperactivity disorder, and/or learning disabilities. Future studies should focus on children and adolescents who have a low socioeconomic status or are likely to be suffering nutritional deficiencies to determine the impact of vitamin and mineral supplements with or without n-3 PUFA supplementation on their cognitive and behavioral functioning. These studies should ideally include blood sample analyses to help determine if nutritional status influences the response to supplementation and whether changes in blood status account for effects on cognition and behavior. PMID:23035806

  12. A randomized clinical trial to determine the efficacy of manufacturers’ recommended doses of omega-3 fatty acids from different sources in facilitating cardiovascular disease risk reduction

    PubMed Central

    2014-01-01

    Background Omega-3 fatty acids confer beneficial health effects, but North Americans are lacking in their dietary omega-3-rich intake. Supplementation is an alternative to consumption of fish; however, not all omega-3 products are created equal. The trial objective was to compare the increases in blood levels of omega-3 fatty acids after consumption of four different omega-3 supplements, and to assess potential changes in cardiovascular disease risk following supplementation. Methods This was an open-label, randomized, cross-over study involving thirty-five healthy subjects. Supplements and daily doses (as recommended on product labels) were: Concentrated Triglyceride (rTG) fish oil: EPA of 650 mg, DHA of 450 mg Ethyl Ester (EE) fish oil: EPA of 756 mg, DHA of 228 mg Phospholipid (PL) krill oil: EPA of 150 mg, DHA of 90 mg Triglyceride (TG) salmon oil: EPA of 180 mg, DHA of 220 mg. Subjects were randomly assigned to consume one of four products, in random order, for a 28-day period, followed by a 4-week washout period. Subsequent testing of the remaining three products, followed by 4-week washout periods, continued until each subject had consumed each of the products. Blood samples before and after supplementation were quantified for fatty acid analysis using gas chromatography, and statistically analysed using ANOVA for repeated measures. Results At the prescribed dosage, the statistical ranking of the four products in terms of increase in whole blood omega-3 fatty acid levels was concentrated rTG fish oil > EE fish oil > triglyceride TG salmon oil > PL krill oil. Whole blood EPA percentage increase in subjects consuming concentrated rTG fish oil was more than four times that of krill and salmon oil. Risk reduction in several elements of cardiovascular disease was achieved to a greater extent by the concentrated rTG fish oil than by any other supplement. Krill oil and (unconcentrated) triglyceride oil were relatively unsuccessful in this aspect of the

  13. Relationship between Erythrocyte Fatty Acid Composition and Psychopathology in the Vienna Omega-3 Study

    PubMed Central

    Kim, Sung-Wan; Jhon, Min; Kim, Jae-Min; Smesny, Stefan; Rice, Simon; Berk, Michael; Klier, Claudia M.; McGorry, Patrick D.; Schäfer, Miriam R.; Amminger, G. Paul

    2016-01-01

    This study investigated the relationship between erythrocyte membrane fatty acid (FA) levels and the severity of symptoms of individuals at ultra-high risk (UHR) for psychosis. Subjects of the present study consisted of 80 neuroleptic-naïve UHR patients. Partial correlation coefficients were calculated between baseline erythrocyte membrane FA levels, measured by gas chromatography, and scores on the Positive and Negative Syndrome Scale (PANSS), Global Assessment of Functioning Scale, and Montgomery–Asberg Depression Rating Scale (MADRS) after controlling for age, sex, smoking and cannabis use. Subjects were divided into three groups according to the predominance of positive or negative symptoms based on PANSS subscale scores; membrane FA levels in the three groups were then compared. More severe negative symptoms measured by PANSS were negatively correlated with two saturated FAs (myristic and margaric acids), one ω-9 monounsaturated FA (MUFA; nervonic acid), and one ω-3 polyunsaturated FA (PUFA; docosapentaenoic acid), and were positively correlated with two ω-9 MUFAs (eicosenoic and erucic acids) and two ω-6 PUFAs (γ-linolenic and docosadienoic acids). More severe positive symptoms measured by PANSS were correlated only with nervonic acid. No associations were observed between FAs and MADRS scores. In subjects with predominant negative symptoms, the sum of the ω-9 MUFAs and the ω-6:ω-3 FA ratio were both significantly higher than in those with predominant positive symptoms, whereas the sum of ω-3 PUFAs was significantly lower. In conclusion, abnormalities in FA metabolism may contribute to the neurobiology of psychopathology in UHR individuals. In particular, membrane FA alterations may play a role in negative symptoms, which are primary psychopathological manifestations of schizophrenia-related disability. PMID:26963912

  14. Relationship between Erythrocyte Fatty Acid Composition and Psychopathology in the Vienna Omega-3 Study.

    PubMed

    Kim, Sung-Wan; Jhon, Min; Kim, Jae-Min; Smesny, Stefan; Rice, Simon; Berk, Michael; Klier, Claudia M; McGorry, Patrick D; Schäfer, Miriam R; Amminger, G Paul

    2016-01-01

    This study investigated the relationship between erythrocyte membrane fatty acid (FA) levels and the severity of symptoms of individuals at ultra-high risk (UHR) for psychosis. Subjects of the present study consisted of 80 neuroleptic-naïve UHR patients. Partial correlation coefficients were calculated between baseline erythrocyte membrane FA levels, measured by gas chromatography, and scores on the Positive and Negative Syndrome Scale (PANSS), Global Assessment of Functioning Scale, and Montgomery-Asberg Depression Rating Scale (MADRS) after controlling for age, sex, smoking and cannabis use. Subjects were divided into three groups according to the predominance of positive or negative symptoms based on PANSS subscale scores; membrane FA levels in the three groups were then compared. More severe negative symptoms measured by PANSS were negatively correlated with two saturated FAs (myristic and margaric acids), one ω-9 monounsaturated FA (MUFA; nervonic acid), and one ω-3 polyunsaturated FA (PUFA; docosapentaenoic acid), and were positively correlated with two ω-9 MUFAs (eicosenoic and erucic acids) and two ω-6 PUFAs (γ-linolenic and docosadienoic acids). More severe positive symptoms measured by PANSS were correlated only with nervonic acid. No associations were observed between FAs and MADRS scores. In subjects with predominant negative symptoms, the sum of the ω-9 MUFAs and the ω-6:ω-3 FA ratio were both significantly higher than in those with predominant positive symptoms, whereas the sum of ω-3 PUFAs was significantly lower. In conclusion, abnormalities in FA metabolism may contribute to the neurobiology of psychopathology in UHR individuals. In particular, membrane FA alterations may play a role in negative symptoms, which are primary psychopathological manifestations of schizophrenia-related disability. PMID:26963912

  15. Omega-3 fatty acid supplementation enhances stroke volume and cardiac output during dynamic exercise.

    PubMed

    Walser, Buddy; Stebbins, Charles L

    2008-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have beneficial effects on cardiovascular function. We tested the hypotheses that dietary supplementation with DHA (2 g/day) + EPA (3 g/day) enhances increases in stroke volume (SV) and cardiac output (CO) and decreases in systemic vascular resistance (SVR) during dynamic exercise. Healthy subjects received DHA + EPA (eight men, four women) or safflower oil (six men, three women) for 6 weeks. Both groups performed 20 min of bicycle exercise (10 min each at a low and moderate work intensity) before and after DHA + EPA or safflower oil treatment. Mean arterial pressure (MAP), heart rate (HR), SV, CO, and SVR were assessed before exercise and during both workloads. HR was unaffected by DHA + EPA and MAP was reduced, but only at rest (88 +/- 5 vs. 83 +/- 4 mm Hg). DHA + EPA augmented increases in SV (14.1 +/- 6.3 vs. 32.3 +/- 8.7 ml) and CO (8.5 +/- 1.0 vs. 10.3 +/- 1.2 L/min) and tended to attenuate decreases in SVR (-7.0 +/- 0.6 vs. -10.1 +/- 1.6 mm Hg L(-1) min(-1)) during the moderate workload. Safflower oil treatment had no effects on MAP, HR, SV, CO or SVR at rest or during exercise. DHA + EPA-induced increases in SV and CO imply that dietary supplementation with these fatty acids can increase oxygen delivery during exercise, which may have beneficial clinical implications for individuals with cardiovascular disease and reduced exercise tolerance. PMID:18563435

  16. [Omega-3 and health].

    PubMed

    Herbaut, C

    2006-09-01

    N-3 PUFA (omega-3), and the n-6 PUFA (omega-6) are essential fatty acids. They must be absorbed by alimentation and play a very important role in the coagulation (inhibition of platelets aggregation) and in the inflammatory reaction (anti-inflammatory effects). Their effects have been studied in different sicknesses. In cardiovascular diseases, particularly in coronary diseases, studies demonstrated a decreased mortality in populations who eat an omega-3 rich diet or who take an omega-3 supplement. Among others, sudden death after myocardial infarction is decreased. In inflammatory diseases an effect seem to be found in some studies. In rheumatoid arthritis a decrease of different biological markers of inflammation and in some case a clinical improvement has been noticed. It may be the same in COPD. On the other hand, they seem not to give any protection against cancer in general. At this moment the recommendations for healthy people are to eat twice a week fat fish and to take omega-3 rich oils. For pathological cases, recommendations exist only for coronary disease: 1 g of fish oils : mixture of eicosapentaenoic and docosahexaenoic acids (EPA/DHA) should be given after a myocardial infarction. PMID:17091903

  17. Omega-3 fatty acids enriched chocolate spreads using soybean and coconut oils.

    PubMed

    Jeyarani, T; Banerjee, T; Ravi, R; Krishna, A G Gopala

    2015-02-01

    Chocolate spreads were developed by incorporating two different soybean oil margarines, fat phases prepared using 85 % soybean oil (M1) and 1:1 blend of soybean oil and coconut oil (M2) with commercial palm stearin. Eight formulations were tried by varying skim milk powder (SMP)/fluid skimmed milk (FSM), type of fats (M1, M2, a commercial margarine and a table spread), sugar and cocoa powder and their quality characteristics were compared with a commercial hazelnut cocoa spread. The moisture and fat content were 5-6.1 % and 31.4-32.8 % for formulations with SMP and 21.5-24.7 % and 15.6-21.4 % respectively for those with FSM. Rheological studies of FSM spreads showed higher G″ value (loss modulus) than G' (storage modulus) indicating better spreadability. Descriptive sensory analysis revealed that the products had acceptability score of 8.3 to 10.5 (maximum score: 15). Fat extracted from spreads prepared using M1 and M2 was found to contain 43.9 and 22.3 % linoleic acid and 2.1 and 4.4 % linolenic acid respectively, were free from trans fat while the commercial hazelnut spread had 9.8 % linoleic acid but did not contain linolenic acid. Hence, the developed chocolate spreads have the potential to overcome ω-3 deficiency, ω-6/ω-3 imbalance and to enhance the health standard of people. PMID:25694722

  18. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1.

    PubMed

    Zhang, Meijuan; Wang, Suping; Mao, Leilei; Leak, Rehana K; Shi, Yejie; Zhang, Wenting; Hu, Xiaoming; Sun, Baoliang; Cao, Guodong; Gao, Yanqin; Xu, Yun; Chen, Jun; Zhang, Feng

    2014-01-29

    Ischemic stroke is a debilitating clinical disorder that affects millions of people, yet lacks effective neuroprotective treatments. Fish oil is known to exert beneficial effects against cerebral ischemia. However, the underlying protective mechanisms are not fully understood. The present study tests the hypothesis that omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate ischemic neuronal injury by activating nuclear factor E2-related factor 2 (Nrf2) and upregulating heme oxygenase-1 (HO-1) in both in vitro and in vivo models. We observed that pretreatment of rat primary neurons with docosahexaenoic acid (DHA) significantly reduced neuronal death following oxygen-glucose deprivation. This protection was associated with increased Nrf2 activation and HO-1 upregulation. Inhibition of HO-1 activity with tin protoporphyrin IX attenuated the protective effects of DHA. Further studies showed that 4-hydroxy-2E-hexenal (4-HHE), an end-product of peroxidation of n-3 PUFAs, was a more potent Nrf2 inducer than 4-hydroxy-2E-nonenal derived from n-6 PUFAs. In an in vivo setting, transgenic mice overexpressing fatty acid metabolism-1, an enzyme that converts n-6 PUFAs to n-3 PUFAs, were remarkably resistant to focal cerebral ischemia compared with their wild-type littermates. Regular mice fed with a fish oil-enhanced diet also demonstrated significant resistance to ischemia compared with mice fed with a regular diet. As expected, the protection was associated with HO-1 upregulation, Nrf2 activation, and 4-HHE generation. Together, our data demonstrate that n-3 PUFAs are highly effective in protecting the brain, and that the protective mechanisms involve Nrf2 activation and HO-1 upregulation by 4-HHE. Further investigation of n-3 PUFA neuroprotective mechanisms may accelerate the development of stroke therapies. PMID:24478369

  19. Consumption of different sources of omega-3 polyunsaturated fatty acids by growing female rats affects long bone mass and microarchitecture.

    PubMed

    Lukas, Robin; Gigliotti, Joseph C; Smith, Brenda J; Altman, Stephanie; Tou, Janet C

    2011-09-01

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) consumption has been reported to improve bone health. However, sources of ω-3 PUFAs differ in the type of fatty acids and structural form. The study objective was to determine the effect of various ω-3 PUFAs sources on bone during growth. Young (age 28d) female Sprague-Dawley rats were randomly assigned (n=10/group) to a high fat 12% (wt) diet consisting of either corn oil (CO) or ω-3 PUFA rich, flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) for 8 weeks. Bone mass was assessed by dual-energy X-ray absorptiometry (DXA) and bone microarchitecture by micro-computed tomography (μCT). Bone turnover markers were measured by enzyme immunoassay. Lipid peroxidation was measured by calorimetric assays. Results showed that rats fed TO, rich in docosahexaenoic acid (DHA, 22:6ω-3) had higher (P<0.009) tibial bone mineral density (BMD) and bone mineral content (BMC) and lower (P=0.05) lipid peroxidation compared to the CO-fed rats. Reduced lipid peroxidation was associated with increased tibial BMD (r2=0.08, P=0.02) and BMC (r2=0.71, P=0.01). On the other hand, rats fed FO or MO, rich in alpha-linolenic acid (ALA, 18:3ω-3), improved bone microarchitecture compared to rats fed CO or SO. Serum osteocalcin was higher (P=0.03) in rats fed FO compared to rats fed SO. Serum osteocalcin was associated with improved trabecular bone microarchitecture. The animal study results suggest consuming a variety of ω-3 PUFA sources to promote bone health during the growth stage. PMID:21672645

  20. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.

    PubMed

    Hixson, Stefanie M; Arts, Michael T

    2016-08-01

    Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems. PMID:27070119

  1. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803

    PubMed Central

    2014-01-01

    Background Polyunsaturated fatty acids (PUFAs), which contain two or more double bonds in their backbone, are the focus of intensive global research, because of their nutritional value, medicinal applications, and potential use as biofuel. However, the ability to produce these economically important compounds is limited, because it is both expensive and technically challenging to separate omega-3 polyunsaturated fatty acids (ω-3 PUFAs) from natural oils. Although the biosynthetic pathways of some plant and microalgal ω-3 PUFAs have been deciphered, current understanding of the correlation between fatty acid desaturase content and fatty acid synthesis in Synechocystis sp. PCC6803 is incomplete. Results We constructed a series of homologous vectors for the endogenous and exogenous expression of Δ6 and Δ15 fatty acid desaturases under the control of the photosynthesis psbA2 promoter in transgenic Synechocystis sp. PCC6803. We generated six homologous recombinants, harboring various fatty acid desaturase genes from Synechocystis sp. PCC6803, Gibberella fujikuroi and Mortierella alpina. These lines produced up to 8.9 mg/l of α-linolenic acid (ALA) and 4.1 mg/l of stearidonic acid (SDA), which are more than six times the corresponding wild-type levels, at 20°C and 30°C. Thus, transgenic expression of Δ6 and Δ15 fatty acid desaturases enhances the accumulation of specific ω-3 PUFAs in Synechocystis sp. PCC6803. Conclusions In the blue-green alga Synechocystis sp. PCC6803, overexpression of endogenous and exogenous genes encoding PUFA desaturases markedly increased accumulation of ALA and SDA and decreased accumulation of linoleic acid and γ-linolenic acid. This study lays the foundation for increasing the fatty acid content of cyanobacteria and, ultimately, for producing nutritional and medicinal products with high levels of essential ω-3 PUFAs. PMID:24581179

  2. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids.

    PubMed

    Ameur, Adam; Enroth, Stefan; Johansson, Asa; Zaboli, Ghazal; Igl, Wilmar; Johansson, Anna C V; Rivas, Manuel A; Daly, Mark J; Schmitz, Gerd; Hicks, Andrew A; Meitinger, Thomas; Feuk, Lars; van Duijn, Cornelia; Oostra, Ben; Pramstaller, Peter P; Rudan, Igor; Wright, Alan F; Wilson, James F; Campbell, Harry; Gyllensten, Ulf

    2012-05-01

    Omega-3 and omega-6 long-chain polyunsaturated fatty acids (LC-PUFAs) are essential for the development and function of the human brain. They can be obtained directly from food, e.g., fish, or synthesized from precursor molecules found in vegetable oils. To determine the importance of genetic variability to fatty-acid biosynthesis, we studied FADS1 and FADS2, which encode rate-limiting enzymes for fatty-acid conversion. We performed genome-wide genotyping (n = 5,652 individuals) and targeted resequencing (n = 960 individuals) of the FADS region in five European population cohorts. We also analyzed available genomic data from human populations, archaic hominins, and more distant primates. Our results show that present-day humans have two common FADS haplotypes-defined by 28 closely linked SNPs across 38.9 kb-that differ dramatically in their ability to generate LC-PUFAs. No independent effects on FADS activity were seen for rare SNPs detected by targeted resequencing. The more efficient, evolutionarily derived haplotype appeared after the lineage split leading to modern humans and Neanderthals and shows evidence of positive selection. This human-specific haplotype increases the efficiency of synthesizing essential long-chain fatty acids from precursors and thereby might have provided an advantage in environments with limited access to dietary LC-PUFAs. In the modern world, this haplotype has been associated with lifestyle-related diseases, such as coronary artery disease. PMID:22503634

  3. Efficacy of omega-3 fatty acids in the treatment of borderline personality disorder: a study of the association with valproic acid.

    PubMed

    Bellino, Silvio; Bozzatello, Paola; Rocca, Giuseppe; Bogetto, Filippo

    2014-02-01

    Omega-3 fatty acids have received increasing interest due to their effects in stabilizing plasmatic membranes and regulating cell signaling. The efficacy of omega-3 fatty acids in psychiatric disorders, in particular mood disorders, has been studied. There have been two trials on eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) in the treatment of borderline personality disorder (BPD). The present 12-week controlled trial aimed to assess the efficacy of the association of EPA and DHA with valproic acid, compared to single valproic acid, in 43 consecutive BPD outpatients. Participants were evaluated at baseline and after 12 weeks with: Clinical Global Impression - Severity (CGI-S), Hamilton Scales for depression and anxiety (HAM-D, HAM-A), Social and Occupational Functioning Assessment Scale (SOFAS), borderline personality disorder severity index (BPDSI), Barratt Impulsiveness Scale - version 11 (BIS-11), Modified Overt Aggression Scale (MOAS), Self-Harm Inventory (SHI) and Dosage Record Treatment Emergent Symptom Scale (DOTES). PMID:24196948

  4. Chemical Composition and Yield of Six Genotypes of Common Purslane (Portulaca oleracea L.): An Alternative Source of Omega-3 Fatty Acids.

    PubMed

    Petropoulos, Spyridon Α; Karkanis, Anestis; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel C F R; Ntatsi, Georgia; Petrotos, Konstantinos; Lykas, Christos; Khah, Ebrahim

    2015-12-01

    Common purslane (Portulaca oleracea L.) is an annual weed rich in omega-3 fatty acids which is consumed for its edible leaves and stems. In the present study six different genotypes of common purslane (A-F) were evaluated for their nutritional value and chemical composition. Nutritional value and chemical composition depended on genotype. Oxalic acid content was the lowest for genotype D, whereas genotypes E and F are more promising for commercial cultivation, since they have low oxalic acid content. Genotype E had a very good antioxidant profile and a balanced composition of omega-3 and omega-6 fatty acids. Regarding yield, genotype A had the highest yield comparing to the other genotypes, whereas commercial varieties (E and F) did not differ from genotypes B and C. This study provides new information regarding common purslane bioactive compounds as affected by genotype and could be further implemented in food industry for products of high quality and increased added value. PMID:26510561

  5. Clearance of fear memory from the hippocampus through neurogenesis by omega-3 fatty acids: a novel preventive strategy for posttraumatic stress disorder?

    PubMed Central

    2011-01-01

    Not only has accidental injury been shown to account for a significant health burden on all populations, regardless of age, sex and geographic region, but patients with accidental injury frequently present with the psychiatric condition of posttraumatic stress disorder (PTSD). Prevention of accident-related PTSD thus represents a potentially important goal. Physicians in the field of psychosomatic medicine and critical care medicine have the opportunity to see injured patients in the immediate aftermath of an accident. This article first briefly reviews the prevalence and associated factors of accident-related PTSD, then focuses on a conceptual model of fear memory and proposes a new, rationally hypothesized translational preventive intervention for PTSD through promoting hippocampal neurogenesis by omega-3 fatty acid supplementation. The results of an open-label pilot trial of injured patients admitted to the intensive care unit suggest that omega-3 fatty acid supplementation immediately after accidental injury can reduce subsequent PTSD symptoms. PMID:21303552

  6. Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: Possible involvement of G protein-coupled receptor 120/β-arrestin2/TGF-β activated kinase-1 binding protein-1 signaling pathway.

    PubMed

    Yin, Jia; Li, Haiying; Meng, Chengjie; Chen, Dongdong; Chen, Zhouqing; Wang, Yibin; Wang, Zhong; Chen, Gang

    2016-06-01

    Omega-3 fatty acids have been reported to improve neuron functions during aging and in patients affected by mild cognitive impairment, and mediate potent anti-inflammatory via G protein-coupled receptor 120 (GPR120) signal pathway. Neuron dysfunction and inflammatory response also contributed to the progression of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). This study was to examine the effects of omega-3 fatty acids on SAH-induced EBI. Two weeks before SAH, 30% Omega-3 fatty acids was administered by oral gavage at 1g/kg body weight once every 24h. Specific siRNA for GPR120 was exploited. Terminal deoxynucleotidyl transferase dUTP nick end labeling, fluoro-Jade B staining, and neurobehavioral scores and brain water content test showed that omega-3 fatty acids effectively suppressed SAH-induced brain cell apoptosis and neuronal degradation, behavioral impairment, and brain edema. Western blot, immunoprecipitation, and electrophoretic mobility shift assays results showed that omega-3 fatty acids effectively suppressed SAH-induced elevation of inflammatory factors, including cyclooxygenase-2, monocyte chemoattractant protein-1, and inducible nitric oxide synthase. In addition, omega-3 fatty acids could inhibit phosphorylation of transforming growth factor β activated kinase-1 (TAK1), MEK4, c-Jun N-terminal kinase, and IkappaB kinase as well as activation of nuclear factor kappa B through regulating GPR120/β-arrestin2/TAK1 binding protein-1 pathway. Furthermore, siRNA-induced GPR120 silencing blocked the protective effects of omega-3 fatty acids. Here, we show that stimulation of GPR120 with omega-3 fatty acids pretreatment causes anti-apoptosis and anti-inflammatory effects via β-arrestin2/TAK1 binding protein-1/TAK1 pathway in the brains of SAH rats. Fish omega-3 fatty acids as part of a daily diet may reduce EBI in an experimental rat model of SAH. PMID:27000704

  7. The synthesis and accumulation of stearidonic acid in transgenic plants: a novel source of 'heart-healthy' omega-3 fatty acids.

    PubMed

    Ruiz-López, Noemí; Haslam, Richard P; Venegas-Calerón, Mónica; Larson, Tony R; Graham, Ian A; Napier, Johnathan A; Sayanova, Olga

    2009-09-01

    Dietary omega-3 polyunsaturated fatty acids have a proven role in reducing the risk of cardiovascular disease and precursor disease states such as metabolic syndrome. Although most studies have focussed on the predominant omega-3 fatty acids found in fish oils (eicosapentaenoic acid and docosahexaenoic acid), recent evidence suggests similar health benefits from their common precursor, stearidonic acid. Stearidonic acid is a Delta6-unsaturated C18 omega-3 fatty acid present in a few plant species (mainly the Boraginaceae and Primulaceae) reflecting the general absence of Delta6-desaturation from higher plants. Using a Delta6-desaturase from Primula vialii, we generated transgenic Arabidopsis and linseed lines accumulating stearidonic acid in their seed lipids. Significantly, the P. vialiiDelta6-desaturase specifically only utilises alpha-linolenic acid as a substrate, resulting in the accumulation of stearidonic acid but not omega-6 gamma-linolenic acid. Detailed lipid analysis revealed the accumulation of stearidonic acid in neutral lipids such as triacylglycerol but an absence from the acyl-CoA pool. In the case of linseed, the achieved levels of stearidonic acid (13.4% of triacylglycerols) are very similar to those found in the sole natural commercial plant source (Echium spp.) or transgenic soybean oil. However, both those latter oils contain gamma-linolenic acid, which is not normally present in fish oils and considered undesirable for heart-healthy applications. By contrast, the stearidonic acid-enriched linseed oil is essentially devoid of this fatty acid. Moreover, the overall omega-3/omega-6 ratio for this modified linseed oil is also significantly higher. Thus, this nutritionally enhanced linseed oil may have superior health-beneficial properties. PMID:19702757

  8. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content

    PubMed Central

    2016-01-01

    To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce. PMID:27015405

  9. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content.

    PubMed

    Welter, Katiéli Caroline; Martins, Cristian Marlon de Magalhães Rodrigues; de Palma, André Soligo Vizeu; Martins, Mellory Martinson; Dos Reis, Bárbara Roqueto; Schmidt, Bárbara Laís Unglaube; Saran Netto, Arlindo

    2016-01-01

    To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce. PMID:27015405

  10. Statin Use Mitigate the Benefit of Omega-3 Fatty Acids Supplementation-A Meta-Regression of Randomized Trials.

    PubMed

    Sethi, Ankur; Bajaj, Anurag; Khosla, Sandeep; Arora, Rohit R

    2016-01-01

    During last 2 decades, multiple studies have evaluated omega-3 polyunsaturated fatty acids (ω-3 PUFA) supplementation for cardiovascular prevention. The benefit found in previous studies was not demonstrated in more contemporary trials. We aimed to investigate effect of study characteristics, particularly concomitant statin therapy on results of randomized controlled trials. We systematically searched electronic databases for randomized controlled trials evaluating ω-3 PUFA supplementation and reporting clinical outcomes. A meta-analysis was performed using a random effect model, followed by a meta-regression of dose, docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratio, and duration of treatment and use of lipid-lowering/statin therapy in control group. Twenty-three studies with 77,776 patients (38,910 PUFA; 38,866 controls) were included. PUFA had no effect on total mortality [risk ratio (RR) = 0.96; 95% confidence interval (CI), 0.92-1.01] and myocardial infarction (RR = 0.87; 95% CI, 0.73-1.02), but marginally reduced cardiovascular mortality (RR = 0.93; 95% CI, 0.87-0.98). Lower control group statin use (b = 0.222, P = 0.027) and higher DHA/EPA (b = -0.105, P = 0.033) ratio was associated with higher reduction in total mortality. Duration and dose had no effect. None of the variables except duration had significant effect on reduction in cardiovascular mortality by PUFA supplementation. There was evidence of publication bias. Statin use may mitigate, and higher DHA/EPA ratio is associated with the beneficial effect of PUFA supplementation. PMID:25036814

  11. Effect of omega-3 polyunsaturated fatty acid treatment over mechanical allodynia and depressive-like behavior associated with experimental diabetes.

    PubMed

    Redivo, Daiany D B; Schreiber, Anne K; Adami, Eliana R; Ribeiro, Deidiane E; Joca, Samia R L; Zanoveli, Janaína M; Cunha, Joice M

    2016-02-01

    Neuropathic pain and depression are very common comorbidities in diabetic patients. As the pathophysiological mechanisms are very complex and multifactorial, current treatments are only symptomatic and often worsen the glucose control. Thus, the search for more effective treatments are extremely urgent. In this way, we aimed to investigate the effect of chronic treatment with fish oil (FO), a source of omega-3 polyunsaturated fatty acid, over the mechanical allodynia and in depressive-like behaviors in streptozotocin-diabetic rats. It was observed that the diabetic (DBT) animals, when compared to normoglycemic (NGL) animals, developed a significant mechanical allodynia since the second week after diabetes induction, peaking at fourth week which is completely prevented by FO treatment (0.5, 1 or 3g/kg). Moreover, DBT animals showed an increase of immobility frequency and a decrease of swimming and climbing frequencies in modified forced swimming test (MFST) since the second week after diabetes injection, lasting up at the 4th week. FO treatment (only at a dose of 3g/kg) significantly decreased the immobility frequency and increased the swimming frequency, but did not induce significant changes in the climbing frequency in DBT rats. Moreover, it was observed that DBT animals had significantly lower levels of BDNF in both hippocampus and pre frontal cortex when compared to NGL rats, which is completely prevented by FO treatment. In conclusion, our study demonstrates that FO treatment was able to prevent the mechanical allodynia and the depressive-like behaviors in DBT rats, which seems to be related to its capacity of BDNF level restoration. PMID:26546881

  12. Omega-3 polyunsaturated fatty acids selectively inhibit growth in neoplastic oral keratinocytes by differentially activating ERK1/2

    PubMed Central

    Parkinson, Eric Kenneth

    2013-01-01

    The long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs)—eicosapentaenoic acid (EPA) and its metabolite docosahexaenoic acid (DHA)—inhibit cancer formation in vivo, but their mechanism of action is unclear. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation and inhibition have both been associated with the induction of tumour cell apoptosis by n-3 PUFAs. We show here that low doses of EPA, in particular, inhibited the growth of premalignant and malignant keratinocytes more than the growth of normal counterparts by a combination of cell cycle arrest and apoptosis. The growth inhibition of the oral squamous cell carcinoma (SCC) lines, but not normal keratinocytes, by both n-3 PUFAs was associated with epidermal growth factor receptor (EGFR) autophosphorylation, a sustained phosphorylation of ERK1/2 and its downstream target p90RSK but not with phosphorylation of the PI3 kinase target Akt. Inhibition of EGFR with either the EGFR kinase inhibitor AG1478 or an EGFR-blocking antibody inhibited ERK1/2 phosphorylation, and the blocking antibody partially antagonized growth inhibition by EPA but not by DHA. DHA generated more reactive oxygen species and activated more c-jun N-terminal kinase than EPA, potentially explaining its increased toxicity to normal keratinocytes. Our results show that, in part, EPA specifically inhibits SCC growth and development by creating a sustained signalling imbalance to amplify the EGFR/ERK/p90RSK pathway in neoplastic keratinocytes to a supraoptimal level, supporting the chemopreventive potential of EPA, whose toxicity to normal cells might be reduced further by blocking its metabolism to DHA. Furthermore, ERK1/2 phosphorylation may have potential as a biomarker of n-3 PUFA function in vivo. PMID:23892603

  13. Omega-3 polyunsaturated fatty acids mitigate blood-brain barrier disruption after hypoxic-ischemic brain injury.

    PubMed

    Zhang, Wenting; Zhang, Hui; Mu, Hongfeng; Zhu, Wen; Jiang, Xiaoyan; Hu, Xiaoming; Shi, Yejie; Leak, Rehana K; Dong, Qiang; Chen, Jun; Gao, Yanqin

    2016-07-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been shown to protect the neonatal brain against hypoxic/ischemic (H/I) injury. However, the mechanism of n-3 PUFA-afforded neuroprotection is not well understood. One major determinant of H/I vulnerability is the permeability of the blood-brain barrier (BBB). Therefore, we examined the effects of n-3 PUFAs on BBB integrity after neonatal H/I. Female rats were fed a diet with or without n-3 PUFA enrichment from day 2 of pregnancy to 14days after parturition. H/I was introduced in 7day-old offspring. We observed relatively rapid BBB penetration of the small molecule cadaverine (640Da) at 4h post-H/I and a delayed penetration of larger dextrans (3kD-40kD) 24-48h after injury. Surprisingly, the neonatal BBB was impermeable to Evans Blue or 70kD dextran leakage for up to 48h post-H/I, despite evidence of IgG extravasation at this time. As expected, n-3 PUFAs ameliorated H/I-induced BBB damage, as shown by reductions in tracer efflux and IgG extravasation, preservation of BBB ultrastructure, and enhanced tight junction protein expression. Furthermore, n-3 PUFAs prevented the elevation in matrix metalloproteinase (MMP) activity in the brain and blood after H/I. Thus, n-3 PUFAs may protect neonates against BBB damage by blunting MMPs activation after H/I. PMID:26921472

  14. Omega-3 fatty acid supplementation improves dry eye symptoms in patients with glaucoma: results of a prospective multicenter study

    PubMed Central

    Tellez-Vazquez, Jesús

    2016-01-01

    Purpose The purpose of this study is to assess the effectiveness and tolerability of a dietary supplement with a combination of omega-3 fatty acids and antioxidants on dry eye symptoms caused by chronic instillation of antihypertensive eye drops in patients with glaucoma. Patients and methods A total of 1,255 patients with glaucoma and dry eye symptoms related to antiglaucoma topical medication participated in an open-label, uncontrolled, prospective, and multicenter study and were instructed to take three capsules a day of the nutraceutical formulation (Brudypio® 1.5 g) for 12 weeks. Dry eye symptoms (graded as 0–3 [none to severe, respectively]), conjunctival hyperemia, tear breakup time, Schirmer I test, Oxford grading scheme, and intraocular pressure were assessed. Results After 12 weeks of administration of the dietary supplement, all dry eye symptoms improved significantly (P<0.001) (mean 1.3 vs 0.6 for scratching, 1.4 vs 0.7 for stinging sensation, 1.6 vs 0.7 for grittiness, 1.0 vs 0.4 for tired eyes, 1.1 vs 0.5 for grating sensation, and 0.8 vs 0.3 for blurry vision). The Schirmer test scores and the tear breakup time also increased significantly. There was an increase in the percentage of patients grading 0–I in the Oxford scale and a decrease in those grading IV–V. Compliance was recorded in 62.5% of patients. In compliant patients, the mean differences at 12 weeks vs baseline of dry eye symptoms were statistically significant as compared to noncompliant patients. Conclusion Dietary supplementation with Brudypio® may be a clinically valuable additional option for the treatment of dry eye syndrome in patients with glaucoma using antiglaucoma eye drops. These results require confirmation with an appropriately designed randomized controlled study. PMID:27103781

  15. Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos.

    PubMed

    Wonnacott, K E; Kwong, W Y; Hughes, J; Salter, A M; Lea, R G; Garnsworthy, P C; Sinclair, K D

    2010-01-01

    The evidence that omega-3 (n-3) and -6 (n-6) polyunsaturated fatty acids (PUFAs) have differential effects on ovarian function, oocytes and embryo quality is inconsistent. We report on the effects of n-3 versus n-6 PUFA-enriched diets fed to 36 ewes over a 6-week period, prior to ovarian stimulation and follicular aspiration, on ovarian steroidogenic parameters and embryo quality. Follicle number and size were unaltered by diet, but follicular-fluid progesterone concentrations were greater in n-3 PUFA-fed ewes than in n-6 PUFA-fed ewes. The percentage of saturated FAs (mostly stearic acid) was greater in oocytes than in either granulosa cells or plasma, indicating selective uptake and/or de novo synthesis of saturated FAs at the expense of PUFAs by oocytes. High-density lipoproteins (HDLs) fractionated from sera of these ewes increased granulosa cell proliferation and steroidogenesis relative to the FA-free BSA control during culture, but there was no differential effect of n-3 and n-6 PUFAs on either oestradiol or progesterone production. HDL was ineffective in delivering FAs to embryos during culture, although n-6 PUFA HDL reduced embryo development. All blastocysts, irrespective of the treatment, contained high levels of unsaturated FAs, in particular linoleic acid. Transcripts for HDL and low-density lipoprotein (LDL) receptors (SCARB1 and LDLR) and stearoyl-CoA desaturase (SCD) are reported in sheep embryos. HDL reduced the expression of transcripts for LDLR and SCD relative to the BSA control. The data support a differential effect of n-3 and n-6 PUFAs on ovarian steroidogenesis and pre-implantation development, the latter in the absence of a net uptake of FAs. PMID:19789173

  16. Improvement of moistness and texture of high omega-3 fatty acid mackerel nuggets by inclusion of moisture-releasing ingredients.

    PubMed

    Lee, K H; Joaquin, H; Lee, C M

    2007-03-01

    In developing mince-based nugget products using mackerel, an abundant, underutilized, high omega-3 fatty acid species, attention was given to moistness and texture improvement with moisture-releasing ingredients. Three basic approaches were used: added water level variation (0 to 35%), varying added water-moisture-releasing vegetable combination (28/0, 21/7, 14/14, 7/21, 0/28), and varying milk-water combination (0/21, 7/14, 14/7, 21/0). Main ingredients of nugget included mackerel mince, mild cheddar cheese, and hydrated textured soy protein concentrate. The formulated products were molded, lightly battered, flash fried, and frozen until tested. Frozen nuggets were cooked to 65 degrees C and subjected to the Instron texture analysis (compressive force CF at 70% deformation, expressible fluid EF) and sensory analysis (firmness F, moistness M, overall desirability OD). The 28% added water, 7% moisture-releasing vegetable at 21% water, and 14:7 and 21:0 milk-water combinations were preferred (P < 0.05). Among the vegetables, onion and mushroom were preferred. Positive correlations were M-OD (r= 0.82), EF-OD (r= 0.54), and EF-M (r= 0.49), and negative correlations were F-OD (r=-0.83) and CF-OD (r=-0.34). Milk was more effective than water in rendering moistness and tender texture. The vegetable was effective in forming and making the cooked product moist with less liquid added by holding moisture release during forming and liquid cells after cooking. During warming under the lamps, the least decreases in sensory score, compressive force, and expressible fluid were observed in nuggets made with vegetable and milk. PMID:17995852

  17. Omega-3 Fatty Acid Ethyl Esters do not Improve Clopidogrel Associated P2Y12 Inhibition in Stroke Patients

    PubMed Central

    Li, Ping; Kamal, Haris; Baxter, Melissa; Mehta, Bijal K.

    2015-01-01

    The specific action of omega-3 fatty acid ethyl esters (OFA) in preventing cerebrovascular disease remains unknown, but research has demonstrated multiple possible mechanisms. In addition to altering lipid profiles, OFA may inhibit platelet aggregation. Clopidogrel inhibits platelets via the P2Y12 receptor. OFA may alter clopidogrel-associated platelet-inhibition via a possible combined effect on P2Y12 inhibition. To determine if OFA affects clopidogrel associated P2Y12 platelet receptor inhibition by comparing the percentage of responders in patients with cerebrovascular disease who were taking clopidogrel with or without OFA. We retrospectively reviewed data from adult patients with cerebrovascular disease or cerebral aneurysms and taking clopidogrel, who were seen at a single hospital between March 2010 to September 2011. We included 438 subjects in the study. For the 67 subjects who received loading doses of both clopidogrel and OFA, 71.6% had a P2Y12 inhibition response more than 20%, which is considered a positive response. For the 55 subjects who received just clopidogrel load, 67.2% of subjects were responders. There were 70.4% responders in the 274 subjects who were taking 75 mg of clopidogrel alone at home, and 73.8% responders in the 42 subjects who were taking both clopidogrel and OFA at home. However, these percentage differences were not statistically significant. This study did not find additional P2Y12 platelet inhibition when patients were given OFA, either given as a loading dose or taking it daily. PMID:26294943

  18. Theoretical dietary modelling of Australian seafood species to meet long-chain omega 3 fatty acid dietary recommendations

    PubMed Central

    Grieger, Jessica A.; McLeod, Catherine; Chan, Lily; Miller, Michelle D.

    2013-01-01

    Background Several agencies recommend seafood to be consumed 2–3 times per week. In Australia, there is a lack of nutrient composition data for seafood species and it is not known whether including different seafood species in a diet would provide sufficient long-chain omega 3 fatty acids (LC n–3 PUFA) to meet various national recommendations. Objective To utilise recent nutrient composition data for major Australian seafood groups (n=24) with the addition of two tuna options (total n=26) to: (1) determine whether including these species into a diet based on the Australian Guide to Healthy Eating (AGHE) will achieve LC n–3 PUFA recommendations [Adequate Intake (AI: 160 mg/d men, 90 mg/d women)], Suggested Dietary Target (SDT), 500 mg/d Heart Foundation (HF) recommendation and (2) determine the weekly number of servings of seafood to meet recommendations using either lower fat (n=23, <10% total fat) or higher fat (n=3, ≥10% total fat) seafood. Design Two simulation models incorporated all 26 species of seafood or only lower fat seafood into a diet based on the AGHE. Two further models identified the number of servings of lower or higher fat seafood required to meet recommendations. Results Including 2 and 3 servings/week of any seafood would enable 89% of women and 66% of men to meet the AI. Including only lower fat seafood would enable 83% of women and 47% of men to meet the AI. Half a serving/week of higher fat seafood would enable 100% of men and women to meet the AI. Conclusions Including the recommended 2–3 servings of seafood/week requires at least some higher fat seafood to be consumed in order for most men and women to meet the AI. Further messages and nutrition resources are needed which provide options on how to increase intake of LC n–3 PUFA, specifically through consumption of the higher fat seafood. PMID:24179469

  19. Omega-3 fatty acid concentrate from Dunaliella salina possesses anti-inflammatory properties including blockade of NF-κB nuclear translocation.

    PubMed

    Chitranjali, T; Anoop Chandran, P; Muraleedhara Kurup, G

    2015-02-01

    The health benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFA), mainly eicosapentaenoic acid (EPA 20:5) and docosahexaenoic acid (DHA, 22:6), have been long known. Although various studies have demonstrated the health benefits of ω-3 PUFA, the mechanisms of action of ω-3 PUFAs are still not completely understood. While the major commercial source is marine fish oil, in this study we suggest the marine micro algae, Dunaliella salina as an alternate source of omega-3 fatty acids. Treatment with this algal omega-3 fatty acid concentrate (Ds-ω-3 FA) resulted in significant down-regulation of LPS-induced production of TNF-α and IL-6 by peripheral blood mononuclear cells (PBMCs). The concentrate was also found to be a potent blocker of cyclooxygenase (COX-2) and matrix metalloproteinase (MMP-2 and MMP-9) expression. The present study reveals the anti-inflammatory properties of Ds-ω-3 FA concentrate including the inhibition of NF-κB translocation. PMID:25391558

  20. Reduced Symptoms of Inattention after Dietary Omega-3 Fatty Acid Supplementation in Boys with and without Attention Deficit/Hyperactivity Disorder.

    PubMed

    Bos, Dienke J; Oranje, Bob; Veerhoek, E Sanne; Van Diepen, Rosanne M; Weusten, Juliette Mh; Demmelmair, Hans; Koletzko, Berthold; de Sain-van der Velden, Monique Gm; Eilander, Ans; Hoeksma, Marco; Durston, Sarah

    2015-09-01

    Attention deficit/hyperactivity disorder (ADHD) is one of the most common child psychiatric disorders, and is often treated with stimulant medication. Nonpharmacological treatments include dietary supplementation with omega-3 fatty acids, although their effectiveness remains to be shown conclusively. In this study, we investigated the effects of dietary omega-3 fatty acid supplementation on ADHD symptoms and cognitive control in young boys with and without ADHD. A total of 40 boys with ADHD, aged 8-14 years, and 39 matched, typically developing controls participated in a 16-week double-blind randomized placebo-controlled trial. Participants consumed 10 g of margarine daily, enriched with either 650 mg of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) each or placebo. Baseline and follow-up assessments addressed ADHD symptoms, fMRI of cognitive control, urine homovanillic acid, and cheek cell phospholipid sampling. EPA/DHA supplementation improved parent-rated attention in both children with ADHD and typically developing children. Phospholipid DHA level at follow-up was higher for children receiving EPA/DHA supplements than placebo. There was no effect of EPA/DHA supplementation on cognitive control or on fMRI measures of brain activity. This study shows that dietary supplementation with omega-3 fatty acids reduces symptoms of ADHD, both for individuals with ADHD and typically developing children. This effect does not appear to be mediated by cognitive control systems in the brain, as no effect of supplementation was found here. Nonetheless, this study offers support that omega-3 supplementation may be an effective augmentation for pharmacological treatments of ADHD (NCT01554462: The Effects of EPA/DHA Supplementation on Cognitive Control in Children with ADHD; http://clinicaltrials.gov/show/NCT01554462). PMID:25790022

  1. Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: Making fish oil substitutes in plants

    PubMed Central

    Usher, Sarah; Haslam, Richard P.; Ruiz-Lopez, Noemi; Sayanova, Olga; Napier, Johnathan A.

    2015-01-01

    The global consumption of fish oils currently exceeds one million tonnes, with the natural de novo source of these important fatty acids forming the base of marine foodwebs. Here we describe the first field-based evaluation of a terrestrial source of these essential nutrients, synthesised in the seeds of transgenic Camelina sativa plants via the heterologous reconstitution of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway. Our data demonstrate the robust nature of this novel trait, and the feasibility of making fish oils in genetically modified crops. Moreover, to our knowledge, this is the most complex example of plant genetic engineering to undergo environmental release and field evaluation. PMID:27066395

  2. Food as medicine in psychiatric care: which profession should be responsible for imparting knowledge and use of omega-3 fatty acids in psychiatry.

    PubMed

    Johannessen, Berit; Skagestad, Ingjerd; Bergkaasa, Anne Mari

    2011-05-01

    The effect of omega-3 fatty acids on depression is well documented. The purpose of this study was to determine if and how food is used as medicine in psychiatric care, especially how omega-3 fatty acids are used as a supplement in the treatment of depression. This is a pilot study with a qualitative design using questionnaires and interviews among nursing students, tutor nurses and psychiatrists. Three main categories emerged: 1. Nutrition is considered important but few evaluations are made. 2. There was a lack of knowledge of the effects of Omega 3. 3. There was an unclear division of responsibility among health personnel. A change in knowledge paradigms and clarification of responsibility is called for if food-as-medicine is to take its true place in psychiatric care. It is also necessary to include CAM and holistic perspectives. Further research is needed to determine why health education and health workers do not focus on nutrition therapy in psychiatric care. Further research is also needed to reveal both the patients, the GPs and the CAM practitioners' knowledge and attitude to the use of dietary supplements. PMID:21457901

  3. Protective Role of Omega-3 Polyunsaturated Fatty Acid against Lead Acetate-Induced Toxicity in Liver and Kidney of Female Rats

    PubMed Central

    Abdou, Heba M.; Hassan, Mohamed A.

    2014-01-01

    The present study was conducted to investigate the protective role of Omega-3 polyunsaturated fatty acids against lead acetate-induced toxicity in liver and kidney of female rats. Animals were divided into four equal groups; group 1 served as control while groups 2 and 3 were treated orally with Omega-3 fatty acids at doses of 125 and 260 mg/kg body weight, respectively, for 10 days. These groups were also injected with lead acetate (25 mg/kg body weight) during the last 5 days. Group 4 was treated only with lead acetate for 5 days and served as positive control group. Lead acetate increased oxidative stress through an elevation in MDA associated with depletion in antioxidant enzymes activities in the tissues. Moreover, the elevation of serum enzymes activities (ALT, AST, ALP, and LDH) and the levels of urea and creatinine were estimated but total proteins were decreased. Also, lead acetate-treatment induced hyperlipidemia via increasing of lipid profiles associated with decline in HDL-c level. Significant changes of Hb, PCV, RBCs, PLT, and WBCs in group 4 were recorded. The biochemical alterations of lead acetate were confirmed by histopathological changes and DNA damage. The administration of Omega-3 provided significant protection against lead acetate toxicity. PMID:25045676

  4. Design and methods for the Better Resiliency Among Veterans and non-Veterans with Omega-3's (BRAVO) study: A double blind, placebo-controlled trial of omega-3 fatty acid supplementation among adult individuals at risk of suicide.

    PubMed

    Marriott, Bernadette P; Hibbeln, Joseph R; Killeen, Therese K; Magruder, Kathryn M; Holes-Lewis, Kelly; Tolliver, Bryan K; Turner, Travis H

    2016-03-01

    Suicide remains the 10th leading cause of death among adults in the United States (U.S.). Annually, approximately 30 per 100,000 U.S. military Veterans commit suicide, compared to 14 per 100,000 U.S. civilians. Symptoms associated with suicidality can be treatment resistant and proven-effective pharmaceuticals may have adverse side-effects. Thus, a critical need remains to identify effective approaches for building psychological resiliency in at-risk individuals. Omega-3 highly unsaturated fatty acids (n-3 HUFAs) are essential nutrients, which must be consumed in the diet. N-3 HUFAs have been demonstrated to reduce symptoms of depression, anxiety, and impulsivity - which are associated with suicide risk. Here we present the design and methods for the Better Resiliency Among Veterans and non-Veterans with Omega-3's (BRAVO) study, which is a double blind, randomized, controlled trial among individuals at risk of suicide of an n-3 HUFA versus placebo supplementation in the form of all natural fruit juice beverages. The BRAVO study seeks to determine if dietary supplementation with n-3 HUFAs reduces the risk for serious suicidal behaviors, suicidal thinking, negative emotions, and symptoms associated with suicide risk. Sub-analyses will evaluate efficacy in reducing depressive symptoms, alcohol, and nicotine use. A sub-study utilizes functional magnetic resonance imaging (fMRI) to evaluate the neuropsychological and neurophysiological effects of n-3 HUFAs. We also outline selection of appropriate proxy outcome measures for detecting response to treatment and collection of ancillary data, such as diet and substance use, that are critical for interpretation of results. PMID:26855120

  5. Omega-6 and omega-3 fatty acids metabolism pathways in the body of pigs fed diets with different sources of fatty acids.

    PubMed

    Skiba, Grzegorz; Poławska, Ewa; Sobol, Monika; Raj, Stanisława; Weremko, Dagmara

    2015-01-01

    This study was carried out on 24 gilts (♀ Polish Large White × ♂ Danish Landrace) grown with body weight (BW) of 60 to 105 kg. The pigs were fed diets designed on the basis of a standard diet (appropriate for age and BW of pigs) where a part of the energy content was replaced by different fat supplements: linseed oil in Diet L, rapeseed oil in Diet R and fish oil in Diet F (6 gilts per dietary treatment). The fat supplements were sources of specific fatty acids (FA): in Diet L α-linolenic acid (C18:3 n-3, ALA); in Diet R linoleic acid (C18:2 n-6, LA) and in Diet F eicosapentaenoic acid (C20:5 n-3, EPA), docosapentaenoic acid (C22:5 n-3, DPA) and docosahexaenoic acid (C22:6 n-3, DHA). The protein, fat and total FA contents in the body did not differ among groups of pigs. The enhanced total intake of LA and ALA by pigs caused an increased deposition of these FA in the body (p < 0.01) and an increased potential body pool of these acids for further metabolism/conversions. The conversion efficiency of LA and ALA from the feed to the pig's body differed among groups (p < 0.01) and ranged from 64.4% to 67.2% and from 69.4% to 81.7%, respectively. In Groups L and R, the level of de novo synthesis of long-chain polyunsaturated FA was higher than in Group F. From the results, it can be concluded that the efficiency of deposition is greater for omega-3 FA than for omega-6 FA and depends on their dietary amount. The level of LA and ALA intake influences not only their deposition in the body but also the end products of the omega-3 and omega-6 pathways. PMID:25530317

  6. Burden of Ischemic Heart Disease Attributable to Low Omega-3 Fatty Acids Intake in Iran: Findings from the Global Burden of Disease Study 2010

    PubMed Central

    Nejatinamini, Sara; Ataie-Jafari, Asal; Ghasemian, Anoosheh; Kelishadi, Roya; Khajavi, Alireza; Kasaeian, Amir; Djalalinia, Shirin; Saqib, Fahad; Majidi, Somayye; Abdolmaleki, Roxana; Hosseini, Mehrnaz; Asayesh, Hamid; Qorbani, Mostafa

    2016-01-01

    Background: Dietary risk factors constitute some of the leading risk factors for cardiovascular disease in Iran. The current study reports the burden of ischemic heart disease (IHD) attributable to a low omega-3 fatty acids intake in Iran using the data of the Global Burden of Disease (GBD) Study 2010. Methods: We used data on Iran for the years 1990, 2005, and 2010 derived from the GBD Study conducted by the Institute for Health Metrics and Evaluation (IHME) in 2010. Using the comparative risk assessment, we calculated the proportion of death, years of life lost, years lived with disability, and disability-adjusted life years (DALYs) caused by IHD attributable to a low omega-3 fatty acids intake in the GBD studies from 1990 to 2010. Results: In 1990, a dietary pattern low in seafood omega-3 fatty acids intake was responsible for 423 (95% uncertainty interval [UI], 300 to 559), 3000 (95% UI, 2182 to 3840), and 4743 (95% UI, 3280 to 6047) DALYs per 100000 persons in the age groups of 15 to 49 years, 50 to 69 years, and 70+ years — respectively — in both sexes. The DALY rates decreased to 250 (95% UI, 172 to 331), 2078 (95% UI, 1446 to 2729), and 3911 (95% UI, 2736 to 5142) in 2010. The death rates per 100000 persons in the mentioned age groups were 9 (95% UI, 6 to 12), 113 (95% UI, 82 to 144), and 366 (95% UI, 255 to 469) in 1990 versus 6 (95% UI, 4 to 7), 76 (95% UI, 53 to 99), and 344 (95% UI, 241 to 453) in 2010. The burden of IHD attributable to diet low in seafood omega-3 was 1.3% (95% UI, 0.97 to 1.7) of the total DALYs in 1990 and 2.0% (95% UI, 1.45 to 2.63) in 2010 for Iran. Conclusion: The findings of the GBD Study 2010 showed a declining trend in the burden of IHD attributable to a low omega-3 fatty acids intake in a period of 20 years. Additional disease burden studies at national and sub-national levels in Iran using more data sources are suggested for public health priorities and planning public health strategies. PMID:27403186

  7. Omega-3 fatty acids reduce obesity-induced tumor progression independent of GPR120 in a mouse model of postmenopausal breast cancer.

    PubMed

    Chung, H; Lee, Y S; Mayoral, R; Oh, D Y; Siu, J T; Webster, N J; Sears, D D; Olefsky, J M; Ellies, L G

    2015-07-01

    Obesity and inflammation are both risk factors for a variety of cancers, including breast cancer in postmenopausal women. Intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) decreases the risk of breast cancer, and also reduces obesity-associated inflammation and insulin resistance, but whether the two effects are related is currently unknown. We tested this hypothesis in a postmenopausal breast cancer model using ovariectomized, immune-competent female mice orthotopically injected with Py230 mammary tumor cells. Obesity, whether triggered genetically or by high-fat diet (HFD) feeding, increased inflammation in the mammary fat pad and promoted mammary tumorigenesis. The presence of tumor cells in the mammary fat pad further enhanced the local inflammatory milieu. Tumor necrosis factor-alpha (TNF-α) was the most highly upregulated cytokine in the obese mammary fat pad, and we observed that TNF-α dose-dependently stimulated Py230 cell growth in vitro. An ω-3 PUFA-enriched HFD (referred to as fish oil diet, FOD) reduced inflammation in the obese mammary fat pad in the absence of tumor cells and inhibited Py230 tumor growth in vivo. Although some anti-inflammatory effects of ω-3 PUFAs were previously shown to be mediated by the G-protein-coupled receptor 120 (GPR120), the FOD reduced Py230 tumor burden in GPR120-deficient mice to a similar degree as observed in wild-type mice, indicating that the effect of FOD to reduce tumor growth does not require GPR120 in the host mouse. Instead, in vitro studies demonstrated that ω-3 PUFAs act directly on tumor cells to activate c-Jun N-terminal kinase, inhibit proliferation and induce apoptosis. Our results show that obesity promotes mammary tumor progression in this model of postmenopausal breast cancer and that ω-3 PUFAs, independent of GPR120, inhibit mammary tumor progression in obese mice. PMID:25220417

  8. Modulation of blood oxylipin levels by long-chain omega-3 fatty acid supplementation in hyper- and normolipidemic men

    PubMed Central

    Schuchardt, Jan Philipp; Schmidt, Simone; Kressel, Gaby; Willenberg, Ina; Hammock, Bruce D; Hahn, Andreas; Schebb, Nils Helge

    2014-01-01

    Introduction Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) such as EPA and DHA have been shown to possess beneficial health effects, and it is believed that many of their effects are mediated by their oxygenated products (oxylipins). Recently, we have shown that serum levels of several hydroxy, epoxy, and dihydroxy FAs are dependent on the individual status of the parent FAs in a cohort of normo- and hyperlipidemic subjects. So far, the effect of an increased dietary LC n-3 PUFA intake on hydroxy, epoxy, and dihydroxy FA levels has not been investigated in subjects with mild combined hyperlipidemia. Subjects and Methods In the present study, we compared oxylipin patterns of 10 hyperlipidemic (cholesterol >200 mg/dl; triglyceride >150 mg/ml) and 10 normolipidemic men in response to twelve weeks of LC n-3 PUFA intake (1.14 g DHA and 1.56 g EPA). Levels of 44 free hydroxy, epoxy and dihydroxy FAs were analyzed in serum by LC-MS. Additionally, oxylipin levels were compared with their parent PUFA levels in erythrocyte membranes; a biomarker for the individual PUFA status. Results Differences in the oxylipin pattern between normo- and hyperlipidemic subjects were minor before and after treatment. In all subjects, levels of EPA-derived oxylipins (170–4,800 pM) were considerably elevated after LC n-3 PUFA intake (150–1,400 %), the increase of DHA-derived oxylipins (360–3,900 pM) was less pronounced (30–130 %). The relative change of EPA in erythrocyte membranes is strongly correlated (r ≥ 0.5; p<0.05) with the relative change of corresponding epoxy and dihydroxy FA serum levels. The effect on arachidonic acid (AA)-derived oxylipin levels (140–27,100 pM) was inconsistent. Discussion and Conclusions The dietary LC PUFA composition has a direct influence on the endogenous oxylipin profile, including several highly biological active EPA- and DHA-derived lipid mediators. The shift in oxylipin pattern appears to be dependent on the initial LC PUFA

  9. Omega-3 fatty acids in ileal effluent after consuming different foods containing microencapsulated fish oil powder - an ileostomy study.

    PubMed

    Sanguansri, Luz; Shen, Zhiping; Weerakkody, Rangika; Barnes, Mary; Lockett, Trevor; Augustin, Mary Ann

    2013-01-01

    The intestinal absorption of omega-3 long chain polyunsaturated fatty acids (ω3 LCPUFA), [eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA)], after consuming fish oil gelatine capsules or different food products fortified with microencapsulated fish oil, was determined using human ileostomates. The total amount of ω3 LCPUFA consumed per dose of fish oil capsule was 266 mg while that for fortified orange juice, yoghurt and cereal bar was 284 mg per serving of food product. In a time course experiment ω3 LCPUFA was measured in ileal effluent over 24 h post ingestion. Only 0.58-0.73% of the total ω3 LCPUFA dose was recovered in the ileal effluent irrespective of whether the fish oil was delivered in a gelatine capsule or in the form of a microencapsulated powder incorporated into fortified foods. Excretion of ω3 LCPUFA was detected in the 2-18 h effluent collections with none detected at 0 h or 24 h. post ingestion. The transit time of the minimal amount of ω3 LCPUFA that remained in the ileal effluent was dependent on the method of delivery of the fish oil. The ω3 LCPUFA content in the ileal effluent peaked at 2-8 h and declined after 10 h after consumption of fish oil capsules and fortified orange juice. In contrast, two peaks in ω3 LCPUFA content were observed in the ileal effluent, first at 2-8 h and again at 14-16 h, after consumption of fortified yoghurt and cereal bar. The highest recovery of the small amount of ω3 LCPUFA in the ileal effluent at 14-16 h was obtained when fortified cereal bar was consumed. The results suggest that the delivery of fish oil through food products fortified with microencapsulated fish oil does not compromise the bioavailability of the ω3 LCPUFA as evidence by no statistical differences detected in the remaining portion of ω3 LCPUFA in the ileal effluent (p = 0.58). However, the food matrix in which the microencapsulated oil was delivered may alter the transit kinetics of the ω3 LCPUFA through the small intestine

  10. A Double-Blind, Placebo-Controlled Trial of Omega-3 Fatty Acids in Tourette’s Disorder

    PubMed Central

    Babb, James S.; Klein, Rachel G.; Panzer, Aviva M.; Katz, Yisrael; Alonso, Carmen M.; Petkova, Eva; Wang, Jing; Coffey, Barbara J.

    2012-01-01

    OBJECTIVE: Clinical observations have suggested therapeutic effects for omega-3 fatty acids (O3FA) in Tourette’s disorder (TD), but no randomized, controlled trials have been reported. In a placebo-controlled trial, we examined the efficacy of O3FA in children and adolescents with TD. METHODS: Thirty-three children and adolescents (ages 6–18) with TD were randomly assigned, double-blind, to O3FA or placebo for 20 weeks. O3FA consisted of combined eicosapentaenoic acid and docosahexaenoic acid. Placebo was olive oil. Groups were compared by using (1) intent-to-treat design, with the last-observation-carried-forward controlling for baseline measures and attention-deficit/hyperactivity disorder via (a) logistic regression, comparing percentage of responders on the primary Yale Global Tic Severity Scale (YGTSS)-Tic and secondary (YGTSS-Global and YGTSS-Impairment) outcome measures and (b) analysis of covariance; and (2) longitudinal mixed-effects models. RESULTS: At end point, subjects treated with O3FA did not have significantly higher response rates or lower mean scores on the YGTSS-Tic (53% vs 38%; 15.6 ± 1.6 vs 17.1 ± 1.6, P > .1). However, significantly more subjects on O3FA were considered responders on the YGTSS-Global measure (53% vs 31%, P = .05) and YGTSS-Impairment measure (59% vs 25%, P < .05), and mean YGTSS-Global scores were significantly lower in the O3FA-treated group than in the placebo group (31.7 ± 2.9 vs 40.9 ± 3.0, P = .04). Obsessive-compulsive, anxiety, and depressive symptoms were not significantly affected by O3FA. Longitudinal analysis did not yield group differences on any of the measures. CONCLUSIONS: O3FA did not reduce tic scores, but it may be beneficial in reduction of tic-related impairment for some children and adolescents with TD. Limitations include the small sample and the possible therapeutic effects of olive oil. PMID:22585765

  11. Effects of high-fat diets rich in either omega-3 or omega-6 fatty acids on UVB-induced skin carcinogenesis in SKH-1 mice

    PubMed Central

    Lou, You-Rong; Peng, Qing-Yun; Medvecky, Christopher M.; Shih, Weichung Joe; Conney, Allan H.; Shapses, Sue; Wagner, George C.; Lu, Yao-Ping

    2011-01-01

    Our previous studies reported that caffeine or voluntary exercise decreased skin tumor multiplicity, in part, by decreasing fat levels in the dermis. These data suggest that tissue fat may play an important role in regulating ultraviolet light (UV) B-induced skin tumor development. In the present study, we explored the effects of high-fat diets rich in either omega-3 or omega-6 fatty acids on UVB-induced skin carcinogenesis. SKH-1 mice were irradiated with 30 mJ/cm2 of UVB once a day, two times per week for 39 weeks. During UVB treatment, one group of mice was given a high-fat fish oil (HFFO) diet rich in omega-3 fatty acids and the other group of mice was given a high-fat mixed-lipids (HFMLs) diet rich in omega-6 fatty acids. The results showed that, compared with HFML diet, HFFO treatment (i) increased latency for the development of UVB-induced skin tumors; (ii) decreased the formation of papilloma, keratoacanthoma and carcinoma by 64, 52 and 46%, respectively and (iii) decreased the size of papilloma, keratoacanthoma and carcinoma by 98, 80 and 83%, respectively. Mechanistic studies with antibody array revealed that compared with HFML diet, administration of HFFO to the mice significantly decreased the UVB-induced increases in the levels of TIMP-1, LIX and sTNF R1 as well as other several proinflammatory cytokines and stimulated the UVB-induced apoptosis in the epidermis. Our results indicate that omega-3 fatty acids in HFFO diet have beneficial effects against UVB-induced skin carcinogenesis, and these effects may be associated with an inhibition on UVB-induced inflammatory response. PMID:21525235

  12. Long-chain omega-3 fatty acids, fibrates and niacin as therapeutic options in the treatment of hypertriglyceridemia: a review of the literature.

    PubMed

    Ito, Matthew K

    2015-10-01

    Hypertriglyceridemia affects approximately 33% of the US population. Elevated triglyceride levels are independently associated with cardiovascular disease (CVD) risk, and severe hypertriglyceridemia is a risk factor for acute pancreatitis. Guidelines for the management of severe hypertriglyceridemia (≥5.6 mmol/L [≥500 mg/dL]) recommend immediate use of triglyceride-lowering agents; however, statins remain the first line of therapy for the management of mild to moderate hypertriglyceridemia (1.7-5.6 mmol/L [150-499 mg/dL]). Statins primarily target elevated low-density lipoprotein cholesterol levels, but have also been shown to reduce mean triglyceride levels by up to 18% (or 43% in patients with triglyceride levels≥3.1 mmol/L [≥273 mg/dL]). However, individuals with hypertriglyceridemia may need additional reduction in triglyceride-rich lipoproteins and remnant particles to further reduce residual CVD risk. A number of guidelines recommend the addition of fibrates, niacin, or long-chain omega-3 fatty acids if elevated triglyceride or non-high-density lipoprotein cholesterol levels persist despite the use of high-intensity statin therapy. This review evaluates the impact of fibrates, niacin, and long-chain omega-3 fatty acids on lipid profiles and cardiovascular outcomes in patients with hypertriglyceridemia. It also assesses the adverse effects and drug-drug interactions associated with these triglyceride-lowering agents, because although they have all been shown to effectively reduce triglyceride levels in patients with hypertriglyceridemia, they differ with regard to their associated benefit-risk profiles. Long-chain omega-3 fatty acids may be a well-tolerated and effective alternative to fibrates and niacin, yet further large-scale clinical studies are required to evaluate their effects on cardiovascular outcomes and CVD risk reduction in patients with hypertriglyceridemia. PMID:26296750

  13. A Combined Supplementation of Omega-3 Fatty Acids and Micronutrients (Folic Acid, Vitamin B12) Reduces Oxidative Stress Markers in a Rat Model of Pregnancy Induced Hypertension

    PubMed Central

    Kemse, Nisha G.; Kale, Anvita A.; Joshi, Sadhana R.

    2014-01-01

    Objectives Our earlier studies have highlighted that an altered one carbon metabolism (vitamin B12, folic acid, and docosahexaenoic acid) is associated with preeclampsia. Preeclampsia is also known to be associated with oxidative stress and inflammation. The current study examines whether maternal folic acid, vitamin B12 and omega-3 fatty acid supplementation given either individually or in combination can ameliorate the oxidative stress markers in a rat model of pregnancy induced hypertension (PIH). Materials and Methods Pregnant Wistar rats were assigned to control and five treatment groups: PIH; PIH + vitamin B12; PIH + folic acid; PIH + Omega-3 fatty acids and PIH + combined micronutrient supplementation (vitamin B12 + folic acid + omega-3 fatty acids). L-Nitroarginine methylester (L-NAME; 50 mg/kg body weight/day) was used to induce hypertension during pregnancy. Blood Pressure (BP) was recorded during pregnancy and dams were dissected at d20 of gestation. Results Animals from the PIH group demonstrated higher (p<0.01 for both) systolic and diastolic BP; lower (p<0.01) pup weight; higher dam plasma homocysteine (p<0.05) and dam and offspring malondialdehyde (MDA) (p<0.01), lower (p<0.05) placental and offspring liver DHA and higher (p<0.01) tumor necrosis factor–alpha (TNF–ά) levels as compared to control. Individual micronutrient supplementation did not offer much benefit. In contrast, combined supplementation lowered systolic BP, homocysteine, MDA and placental TNF-ά levels in dams and liver MDA and protein carbonyl in the offspring as compared to PIH group. Conclusion Key constituents of one carbon cycle (folic acid, vitamin B12 and DHA) may play a role in reducing oxidative stress and inflammation in preeclampsia. PMID:25405347

  14. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA

    PubMed Central

    Dyall, Simon C.

    2015-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) exhibit neuroprotective properties and represent a potential treatment for a variety of neurodegenerative and neurological disorders. However, traditionally there has been a lack of discrimination between the different omega-3 PUFAs and effects have been broadly accredited to the series as a whole. Evidence for unique effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and more recently docosapentaenoic acid (DPA) is growing. For example, beneficial effects in mood disorders have more consistently been reported in clinical trials using EPA; whereas, with neurodegenerative conditions such as Alzheimer’s disease, the focus has been on DHA. DHA is quantitatively the most important omega-3 PUFA in the brain, and consequently the most studied, whereas the availability of high purity DPA preparations has been extremely limited until recently, limiting research into its effects. However, there is now a growing body of evidence indicating both independent and shared effects of EPA, DPA and DHA. The purpose of this review is to highlight how a detailed understanding of these effects is essential to improving understanding of their therapeutic potential. The review begins with an overview of omega-3 PUFA biochemistry and metabolism, with particular focus on the central nervous system (CNS), where DHA has unique and indispensable roles in neuronal membranes with levels preserved by multiple mechanisms. This is followed by a review of the different enzyme-derived anti-inflammatory mediators produced from EPA, DPA and DHA. Lastly, the relative protective effects of EPA, DPA and DHA in normal brain aging and the most common neurodegenerative disorders are discussed. With a greater understanding of the individual roles of EPA, DPA and DHA in brain health and repair it is hoped that appropriate dietary recommendations can be established and therapeutic interventions can be more targeted and refined. PMID:25954194

  15. The potential for military diets to reduce depression, suicide, and impulsive aggression: a review of current evidence for omega-3 and omega-6 fatty acids.

    PubMed

    Hibbeln, Joseph R; Gow, Rachel V

    2014-11-01

    The current burden of psychological distress and illness poses as a significant barrier to optimal force efficacy. Here we assess nutrients in military diets, specifically highly unsaturated essential fatty acids, in the reduction of risk or treatment of psychiatric distress. Moderate to strong evidence from several meta-analyses of prospective cohort trials indicate that Mediterranean diet patterns reduce risk of clinical depressions. Specific nutrients and foods of biological interest in relation to mental health outcomes are then discussed and evaluated. Moderate evidence indicates that when fish consumption decreases and simultaneously omega-6 increases, the risk of clinical depressive symptoms are elevated. One meta-analysis examining tissue compositions provides moderate to strong evidence that higher levels of omega-3 highly unsaturated fatty acids (HUFAs) (eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) are associated with decreased risk of clinical depressions. Other meta-analytic reviews of randomized placebo-controlled trials provide moderate to strong evidence of significantly improving clinically depressive symptoms when the formulation given was >50% in eicosapentaenoic acid. Finally, a meta-analysis of omega-3 HUFAs provides modest evidence of clinical efficacy for attention-deficit hyperactivity disorder. This article recommends that a rebalancing of the essential fatty acid composition of U.S. military diets, achieve tissue compositions of HUFAs consistent with traditional Mediterranean diets, may help reduce military psychiatric distress and simultaneously increase force efficacy substantially. PMID:25373095

  16. Combining nutrition, food science and engineering in developing solutions to Inflammatory bowel diseases--omega-3 polyunsaturated fatty acids as an example.

    PubMed

    Ferguson, Lynnette R; Smith, Bronwen G; James, Bryony J

    2010-10-01

    The Inflammatory bowel diseases, Crohn's disease and ulcerative colitis, are debilitating conditions, characterised by lifelong sensitivity to certain foods, and often a need for surgery and life-long medication. The anti-inflammatory effects of long chain omega-3 polyunsaturated acids justify their inclusion in enteral nutrition formulas that have been associated with disease remission. However, there have been variable data in clinical trials to test supplementary omega-3 polyunsaturated fatty acids in inducing or maintaining remission in these diseases. Although variability in trial design has been suggested as a major factor, we suggest that variability in processing and presentation of the products may be equally or more important. The nature of the source, and rapidity of getting the fish or other food source to processing or to market, will affect the percentage of the various fatty acids, possible presence of heavy metal contaminants and oxidation status of the various fatty acids. For dietary supplements or fortified foods, whether the product is encapsulated or not, whether storage is under nitrogen or not, and length of time between harvest, processing and marketing will again profoundly affect the properties of the final product. Clinical trials to test efficacy of these products in IBD to date have utilised the relevant skills of pharmacology and gastroenterology. We suggest that knowledge from food science, nutrition and engineering will be essential to establish the true role of this important group of compounds in these diseases. PMID:21776456

  17. Low Blood Long Chain Omega-3 Fatty Acids in UK Children Are Associated with Poor Cognitive Performance and Behavior: A Cross-Sectional Analysis from the DOLAB Study

    PubMed Central

    Montgomery, Paul; Burton, Jennifer R.; Sewell, Richard P.; Spreckelsen, Thees F.; Richardson, Alexandra J.

    2013-01-01

    Background Omega-3 long-chain polyunsaturated fatty acids (LC-PUFA), especially DHA (docosahexaenonic acid) are essential for brain development and physical health. Low blood Omega-3 LC-PUFA have been reported in children with ADHD and related behavior/learning difficulties, as have benefits from dietary supplementation. Little is known, however, about blood fatty acid status in the general child population. We therefore investigated this in relation to age-standardized measures of behavior and cognition in a representative sample of children from mainstream schools. Participants 493 schoolchildren aged 7–9 years from mainstream Oxfordshire schools, selected for below average reading performance in national assessments at age seven. Method Whole blood fatty acids were obtained via fingerstick samples. Reading and working memory were assessed using the British Ability Scales (II). Behaviour (ADHD-type symptoms) was rated using the revised Conners’ rating scales (long parent and teacher versions). Associations were examined and adjusted for relevant demographic variables. Results DHA and eicosapentaenoic acid (EPA), accounted for only 1.9% and 0.55% respectively of total blood fatty acids, with DHA showing more individual variation. Controlling for sex and socio-economic status, lower DHA concentrations were associated with poorer reading ability (std. OLS coeff. = 0.09, p = <.042) and working memory performance (0.14, p = <.001). Lower DHA was also associated with higher levels of parent rated oppositional behavior and emotional lability (−0.175, p = <.0001 and −0.178, p = <.0001). Conclusions In these healthy UK children with below average reading ability, concentrations of DHA and other Omega-3 LC-PUFA were low relative to adult cardiovascular health recommendations, and directly related to measures of cognition and behavior. These findings require confirmation, but suggest that the benefits from dietary supplementation with Omega-3 LC

  18. Effects of omega-3 polyunsaturated fatty acid supplementation in patients with chronic chagasic cardiomyopathy: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Chronic chagasic cardiomyopathy is an inflammatory disease that occurs in approximately 30% of patients infected by the protozoan Trypanosoma cruzi, and it has a profile of high morbidity and mortality. The worst prognosis and the progression of this cardiomyopathy are associated with an exacerbated immune response and the production of proinflammatory cytokines, which also occur in other cardiomyopathies. Some nutrients, including omega-3 polyunsaturated fatty acids (PUFAs), promote the inhibition and/or stimulation of cytokine production. The objective of this trial is to study the effects of omega-3 PUFA supplementation on the inflammatory response and lipid profile in patients with chronic chagasic cardiomyopathy. Methods/Design This is a parallel, randomized, placebo-controlled, double-blind clinical trial with 40 patients that will be conducted at a reference unit for Chagas disease patients, where the patients will be selected. The study will include patients with chronic chagasic cardiomyopathy who are 18 years of age or older. The exclusion criteria are (a) ongoing diarrheal disease, (b) inflammatory bowel disease, (c) diabetes or other endocrine disease, (d) use of fibrates, niacin, or statins, (e) use of anti-inflammatory drugs, (f) pregnant and lactating women, (g) use of vitamin, mineral, or omega-3 supplementation during the previous 30 days, (h) hospital admission during the study, and (i) other associated cardiomyopathies. The intervention will be treatment with omega-3 PUFAs at a dose of 3 g/day for 8 weeks, compared to placebo (corn oil). The primary endpoints will be the concentrations of inflammatory markers (interleukin (IL)-1, IL-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF)α, interferon (IFN)γ, and transforming growth factor (TGF)β). Secondary endpoints will be the fasting glucose, lipid, and anthropometric profiles. For statistical analysis, we plan to run either a t test or Wilcoxon test (numerical variables) and

  19. Effect of zeolite (clinoptilolite) as feed additive in Tunisian broilers on the total flora, meat texture and the production of omega 3 polyunsaturated fatty acid

    PubMed Central

    2012-01-01

    Background Increasing consumer demand for healthier food products has led to the development of governmental policies regarding health claims in many developed countries. In this context, contamination of poultry by food-borne pathogens is considered one of the major problems facing the progress of the poultry industry in Tunisia. Result Zeolite (Clinoptilolites) was added to chicken feed at concentrations 0,5% or 1% and was evaluated for its effectiveness to reduce total flora in chickens and its effects on performance of the production. The broilers were given free and continuous access to a nutritionally non-limiting diet (in meal form)that was either a basal diet or a' zeolite diet' (the basal diet supplemented with clinoptilolite at a level of 0,5% or 1%). It was found that adding zeolite in the broiler diet significantly (p < 0,05) reduced total flora levels, as compared to the control, on the chicken body. In addition, it was found that zeolite treatment had a positive effect on performance production and organoleptic parameters that were measured and mainly on the increase level of Omega 3 fatty acid. Conclusion This study showed the significance of using zeolite, as a feed additive for broilers, as part of a comprehensive program to control total flora at the broiler farm and to increase level of Omega 3 fatty acid on the chicken body. PMID:22394592

  20. Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype

    PubMed Central

    Lenihan-Geels, Georgia; Bishop, Karen S.; Ferguson, Lynnette R.

    2016-01-01

    Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production of inflammatory eicosanoids, thereby influencing local inflammatory status, which is important in cancer development. Although in vitro studies have demonstrated inhibition of tumour cell growth and proliferation by LCn-3 PUFA, results from human studies have been mainly inconsistent. Genes involved in the desaturation of fatty acids, as well as the genes encoding enzymes responsible for eicosanoid production, are known to be implicated in tumour development. This review discusses the current evidence for an interaction between genetic polymorphisms and dietary LCn-3 PUFA in the risk for breast, prostate and colorectal cancers, in regards to inflammation and eicosanoid synthesis. PMID:26891335

  1. Feeding laying hens seal blubber oil: effects on egg yolk incorporation, stereospecific distribution of omega-3 fatty acids, and sensory aspects.

    PubMed

    Schreiner, M; Hulan, H W; Razzazi-Fazeli, E; Böhm, J; Iben, C

    2004-03-01

    Seventy-two 26-wk-old Single Comb White Leghorn laying hens were randomly assigned to 36 cages (2 per cage) in a 3-orthogonal 4 x 4 latin square, with the fourth row suppressed, to assess the effect of feeding refined seal blubber oil (SBO, containing 22.2% omega-3 fatty acids) on the fatty acid composition and position in the egg yolk lipids. The experiment was conducted over a period of 9 wk. Eggs were collected and numbered, and the weights were recorded for each week and cage. Eggs collected at wk 5 and 9 were used for total lipid, lipid class, fatty acid, and positional analyses. Sensory evaluation was carried out on eggs collected at wk 6 and 7. Feeding SBO at 1.25% led to an increase (P < 0.0001) in the long-chain omega-3 polyunsaturated fatty acids (LCn3PUFA) and a concomitant decrease (P < 0.0001) in arachidonic acid (ARA) in the egg yolk lipids. Yet this amount of SBO in the diet had no effect (P > 0.1) on the sensory attributes of the egg and on production parameters such as egg weight, number of eggs laid, and feed intake (P > 0.05). When feeding SBO in amounts higher than 1.25% proportionately, a plateau effect of the LCn3PUFA content of the eggs was observed. This appears to be because the PUFA content in the sn-2 position of the phospholipids cannot exceed a certain amount. When this amount is reached, the LCn3PUFA will be increasingly stored in triglycerides. The results presented here clearly indicate how eggs can be produced with optimized composition of LCn3PUFA without affecting (P > 0.1) the sensory properties of the eggs. The procedures elaborated herein provide directly applicable consequences for the food industry. PMID:15049501

  2. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century123

    PubMed Central

    Blasbalg, Tanya L; Hibbeln, Joseph R; Ramsden, Christopher E; Majchrzak, Sharon F; Rawlings, Robert R

    2011-01-01

    Background: The consumption of omega-3 (n–3) and omega-6 (n–6) essential fatty acids in Western diets is thought to have changed markedly during the 20th century. Objective: We sought to quantify changes in the apparent consumption of essential fatty acids in the United States from 1909 to 1999. Design: We calculated the estimated per capita consumption of food commodities and availability of essential fatty acids from 373 food commodities by using economic disappearance data for each year from 1909 to 1999. Nutrient compositions for 1909 were modeled by using current foods (1909-C) and foods produced by traditional early 20th century practices (1909-T). Results: The estimated per capita consumption of soybean oil increased >1000-fold from 1909 to 1999. The availability of linoleic acid (LA) increased from 2.79% to 7.21% of energy (P < 0.000001), whereas the availability of α-linolenic acid (ALA) increased from 0.39% to 0.72% of energy by using 1909-C modeling. By using 1909-T modeling, LA was 2.23% of energy, and ALA was 0.35% of energy. The ratio of LA to ALA increased from 6.4 in 1909 to 10.0 in 1999. The 1909-T but not the 1909-C data showed substantial declines in dietary availability (percentage of energy) of n−6 arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Predicted net effects of these dietary changes included declines in tissue n--3 highly unsaturated fatty acid status (36.81%, 1909-T; 31.28%, 1909-C; 22.95%, 1999) and declines in the estimated omega-3 index (8.28, 1909-T; 6.51, 1909-C; 3.84, 1999). Conclusion: The apparent increased consumption of LA, which was primarily from soybean oil, has likely decreased tissue concentrations of EPA and DHA during the 20th century. PMID:21367944

  3. Pig feeds rich in rapeseed products and organic selenium increased omega-3 fatty acids and selenium in pork meat and backfat

    PubMed Central

    Gjerlaug-Enger, Eli; Haug, Anna; Gaarder, Mari; Ljøkjel, Kari; Stenseth, Ragna Sveipe; Sigfridson, Kerstin; Egelandsdal, Bjørg; Saarem, Kristin; Berg, Per

    2015-01-01

    The concentration of omega-3 fatty acids and selenium (Se) is generally too low in the Western diet. But as the nutrient composition of pork meat and adipose tissue is influenced by the feed given to the animals, the product can be changed to support nutrient demands. Half (297/594) the pigs were given a feed concentrate based on low-glucosinolate rapeseed products (RS), while the other half was fed a traditional concentrate (Contr): The RS feed had an omega-6/omega-3 ratio of 3.6:1, and the Contr feed had a ratio of 8.9:1, and both feeds were supplemented with 0.4 mg Se/kg (organic Se: inorganic Se, 1:1). There was a small difference in growth rate, but no differences in feed conversion ratio, lean meat percentage, carcass value, and margin per pig for the two groups. There were no differences in meat quality between the two groups, but there were differences in technological fat quality. The RS pigs contained about 2 times more alpha-linolenic acid in the backfat and 41% more in the meat (M. longissimus dorsi) compared to the controls. The concentration of EPA, DPA, and DHA were 42% and 20% higher in backfat and meat of the RS pigs compared to the control pigs respectively. The ratio between omega-6/omega-3 fatty acids were 4.7 in the meat and 4.0 in the backfat in the RS pigs, and the corresponding values were 6.6 and 8.0 in the control pigs. The selenium content was 0.3 mg/kg meat in both groups. The study showed that a portion of the present pig meat (175 g) provided the daily recommended intake of Se for men and women and about 1/6 of proposed reference intake of omega-3 LCPUFA (250 mg/day) to reduce the risk of CVD thereby providing a meat that is somewhat healthier for the consumer. PMID:25838890

  4. Intake of n-3 Polyunsaturated Fatty Acids Increases Omega-3 Index in Aged Male and Female Spontaneously Hypertensive Rats

    PubMed Central

    Bačová, Barbara; Seč, Peter; Čertik, Milan

    2013-01-01

    The purpose of this study was to examine whether n-3 PUFA intake affects n-3 and n-6 FA levels in plasma and red blood cells as well as omega-3 index in old male and female spontaneously hypertensive (SHR) and healthy rats. Plasma linoleic acid and eicosapentaenoic acid increased due to n-3 PUFA intake in SHR and healthy rats. Comparing to healthy rats the levels of PUFA in red blood cells of SHR were lower in males and higher in females with exception of arachidonic acid, which was high in males and low in females. Feeding of rats with n-3 PUFA resulted in increase of red blood cells levels of eicosapentaenoic acid and/or docosahexaenoic acid in a sex- and strain-dependent manner. Moreover, n-3 PUFA intake decreased arachidonic acid in healthy female rats but increased it in SHR and did not affect it in males. Omega-3 index was lower in SHR comparing to healthy rats and it increased due to the consumption of n-3 PUFA. Results point out sex- and strain-related differences in red blood cells levels of n-3 and n-6 PUFA in basal conditions as well as in response to n-3 PUFA intake. PMID:24967252

  5. Serum omega-3 polyunsaturated fatty acids and risk of incident type 2 diabetes in men: the Kuopio Ischemic Heart Disease Risk Factor study.

    PubMed

    Virtanen, Jyrki K; Mursu, Jaakko; Voutilainen, Sari; Uusitupa, Matti; Tuomainen, Tomi-Pekka

    2014-01-01

    OBJECTIVE The relationship between fish or omega-3 polyunsaturated fatty acids (PUFAs) and type 2 diabetes is inconclusive. Even contaminants in fish, such as mercury, may modify the effects. We investigated the associations between serum omega-3 PUFAs eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), α-linolenic acid (ALA), hair mercury, and risk of incident type 2 diabetes in middle-aged and older Finnish men. RESEARCH DESIGN AND METHODS A total of 2,212 men from the prospective, population-based Kuopio Ischemic Heart Disease Risk Factor study, aged 42-60 years and free of type 2 diabetes at baseline in 1984-1989, were investigated. Serum PUFA and hair mercury were used as biomarkers for exposure. Dietary intakes were assessed with 4-day food recording. Type 2 diabetes was assessed by self-administered questionnaires and fasting and 2-h oral glucose tolerance test blood glucose measurement at re-examination rounds 4, 11, and 20 years after the baseline and by record linkage to hospital discharge registry and reimbursement register on diabetes medication expenses. Cox proportional hazards models were used to analyze associations. RESULTS During the average follow-up of 19.3 years, 422 men developed type 2 diabetes. Men in the highest versus the lowest serum EPA + DPA + DHA quartile had 33% lower multivariate-adjusted risk for type 2 diabetes (95% CI 13-49; P trend 0.01). No statistically significant associations were observed with serum or dietary ALA, dietary fish or EPA + DHA, or hair mercury. CONCLUSIONS Serum long-chain omega-3 PUFA concentration, an objective biomarker for fish intake, was associated with long-term lower risk of type 2 diabetes. PMID:24026545

  6. Vitamin E and omega-3 fatty acids independently attenuate plasma concentrations of proinflammatory cytokines and prostaglandin E3 in Escherichia coli lipopolysaccharide-challenged growing-finishing pigs.

    PubMed

    Upadhaya, S D; Kim, J C; Mullan, B P; Pluske, J R; Kim, I H

    2015-06-01

    This study tested the hypothesis that vitamin E (Vit E) and omega-3 fatty acids will additively attenuate the production of proinflammatory cytokines and PGE2 in immune system–stimulated growing–finishing pigs. A total of 80 mixed sex pigs weighing 50.7 ± 0.76 kg (mean ± SE) were blocked and stratified based on sex and BW to a 2 × 2 factorial design with the respective factors being 1) without and with 300 IU Vit E and 2) without and with 25% replacement of tallow to linseed oil as a source of n-3 fatty acids. Each treatment consisted of 4 replicate pens with 5 pigs (3 barrows and 2 gilts) per pen. All pigs were challenged with an intramuscular injection of Escherichia coli lipopolysaccharide (LPS; O111:B4) twice weekly over the 6-wk experiment. After LPS challenge, pigs fed a diet supplemented with n-3 fatty acids had fewer (P < 0.05) white blood cells and tended to show both a reduced (P < 0.10) proportion of lymphocytes and IgG concentration compared with pigs fed a diet without any supplements. Supplementation of n-3 fatty acids reduced (P < 0.01 and P < 0.05) serum concentrations of cortisol and tumor necrosis factor α (TNF-α), respectively. The serum concentration of PGE2 was decreased (P < 0.05) with supplementation of both Vit E and n-3 fatty acids; however, the extent of the reduction was greater (P < 0.001) in pigs fed an n-3 fatty acid–supplemented diet. However, there were no additive effects of the combined supplementation of Vit E and n-3 fatty acids on serum concentrations of proinflammatory cytokines and PGE2. The results suggest that n-3 fatty acids independently attenuate production of TNF-α and PGE2 in immune system–stimulated growing–finishing pigs. PMID:26115279

  7. The role of long chain omega-3 polyunsaturated fatty acids in reducing lipid peroxidation among elderly patients with mild cognitive impairment: a case-control study.

    PubMed

    Lee, Lai Kuan; Shahar, Suzana; Rajab, NorFadilah; Yusoff, Noor Aini Mohd; Jamal, Rahman A; Then, Sue Mian

    2013-05-01

    The present work explores the effect of dietary omega-3 polyunsaturated fatty acids (PUFAs) intake on lipid peroxidation among mild cognitive impairment (MCI) patients. The plasma lipid hydroperoxide (LPO) levels in 67 MCI patients were compared to those of 134 healthy elderly controls. Omega-3 PUFA intake was assessed using an interviewer-administered food frequency questionnaire. Apolipoprotein E genotyping was performed using polymerase chain reaction and restriction enzyme digestion. The association between various confounders and lipid peroxidation was evaluated using regression analysis. The influence of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) intake on LPO level was investigated. The results revealed that LPO levels were significantly higher in the MCI group than in the control group. Inverse correlations were found between DHA and EPA intake and LPO level among the MCI group. LPO levels decreased significantly with increasing DHA and EPA intake. In summary, the findings revealed that DHA and EPA can play a role in alleviating oxidative stress and reducing the risk of neurodegenerative diseases. PMID:22898566

  8. Intensive lifestyle intervention provides rapid reduction of serum fatty acid levels in women with severe obesity without lowering omega-3 to unhealthy levels.

    PubMed

    Lin, C; Andersen, J R; Våge, V; Rajalahti, T; Mjøs, S A; Kvalheim, O M

    2016-08-01

    Serum fatty acid (FA) levels were monitored in women with severe obesity during intensive lifestyle intervention. At baseline, total FA levels and most individual FAs were elevated compared to a matching cohort of normal and overweight women (healthy controls). After 3 weeks of intensive lifestyle intervention, total level was only 11-12% higher than in the healthy controls and with almost all FAs being significantly lower than at baseline, but with levels of omega-3 being similar to the healthy controls. This is contrary to observations for patients subjected to bariatric surgery where omega-3 levels dropped to levels significantly lower than in the lifestyle patients and healthy controls. During the next 3 weeks of treatment, the FA levels in lifestyle patients were unchanged, while the weight loss continued at almost the same rate as in the first 3 weeks. Multivariate analysis revealed that weight loss and change of serum FA patterns were unrelated outcomes of the intervention for lifestyle patients. For bariatric patients, these processes were associated probably due to reduced dietary input and increased input from the patients' own fat deposits, causing a higher rate of weight loss and simultaneous reduction of the ratio of serum eicosapentaenoic to arachidonic acid. PMID:27334055

  9. Supplementation of glutamine and omega-3 polyunsaturated fatty acids as a novel therapeutic intervention targeting metabolic dysfunction and exercise intolerance in patients with heart failure.

    PubMed

    Shahzad, Khurram; Chokshi, Aalap; Schulze, P Christian

    2011-11-01

    With its increasing prevalence throughout the world, heart failure continues to be associated with high morbidity and mortality. Patients with heart failure develop progressive metabolic abnormalities, inflammation, and atrophy in the myocardium and skeletal muscle. Improvement in functional capacity as defined by exercise tolerance is essential for better quality of life and potentially survival of these patients. Therapeutic management options aimed at improving peripheral organ function are limited. Nutritional approaches with dietary supplementation in addition to current therapies are particularly appealing as they are novel and mechanistically different. In this article, we review the role of glutamine and omega-3 polyunsaturated fatty acids on metabolism and functional capacity in heart failure. These two compounds are of particular interest due to their synergistic role on oxidative metabolism, lipolysis and inflammation. PMID:22082326

  10. Polyunsaturated fatty acid status in attention deficit hyperactivity disorder, depression, and Alzheimer's disease: towards an omega-3 index for mental health?

    PubMed

    Milte, Catherine M; Sinn, Natalie; Howe, Peter R C

    2009-10-01

    Interest in the role of polyunsaturated fatty acids (PUFAs), particularly long-chain (LC) omega-3 (n-3) PUFAs, in mental health is increasing. This review investigates whether n-3 PUFA levels are abnormal in people with three prevalent mental health problems - attention deficit hyperactivity disorder, depression, and dementia. Data sources included PubMed, Web of Science, and bibliographies of papers published in English that describe PUFA levels in the circulation of individuals who have these mental health conditions. Although abnormal blood PUFA levels were reported in a number of studies, weighted comparisons of PUFA status showed no significant differences overall between people with mental health problems and controls. Whether those with low n-3 PUFA status are likely to be more responsive to n-3 PUFA supplementation is not yet resolved. Further studies assessing PUFA levels and mental status with greater uniformity are required in order to clarify the relationship between LC n-3 PUFA status and mental health. PMID:19785689

  11. Omega-3 Long Chain Polyunsaturated Fatty Acids for Treatment of Parenteral Nutrition–Associated Liver Disease: A Review of the Literature

    PubMed Central

    Tillman, Emma M; Helms, Richard A

    2011-01-01

    Parenteral nutrition–associated liver disease (PNALD) is a complex disease that is diagnosed by clinical presentation, biochemical markers of liver injury, concurrent use of parenteral nutrition (PN), and negative workup for other causes of liver disease. For the past 30 years, clinicians have had few effective treatments for PNALD and when disease progressed to liver cirrhosis it was historically associated with poor outcomes. Within the past 5 years there has been some encouraging evidence for the potential benefits of fish oils, rich in omega-3 long-chain polyunsaturated fatty acids (ω3PUFA), in reversing liver injury associated with PN. This article reviews the current literature relating to ω3PUFA and PNALD. PMID:22477822

  12. Associations between serum omega-3 fatty acid levels and cognitive functions among community-dwelling octogenarians in Okinawa, Japan: The KOCOA study

    PubMed Central

    Nishihira, Junko; Tokashiki, Takashi; Higashiuesato, Yasushi; Willcox, Donald Craig; Mattek, Nora; Shinto, Lynne; Ohya, Yusuke; Dodge, Hiroko H.

    2016-01-01

    Background Epidemiological studies have found frequent consumption of fatty fish is protective against cognitive decline. However, the association between circulating omega-3 polyunsaturated fatty acid (PUFA) levels and cognitive functions among the oldest old is not well known. Objective To examine the association between serum PUFA levels and cognitive function among community-dwelling, non-demented elderly aged over 80 years old. Methods The data came from the Keys to Optimal Cognitive Aging (KOCOA) study; an ongoing cohort of relatively healthy volunteers aged over 80 years old, living in Okinawa, Japan. One hundred eighty five participants (mean age 84.1 ± 3.4 years) assessed in 2011 who were free from frank dementia (defined as Clinical Dementia Rating < 1.0) were used for the current cross-sectional study. We examined whether serum omega-3 PUFAs (docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA]), arachidonic acid (AA), EPA/AA ratio, DHA/AA ratio and DHA+EPA are associated with (1) age and (2) global cognitive function (Japanese MMSE) and executive function (Verbal Fluency Letters). Data was analyzed univariately by t-test and multivariately by cumulative logistic regression models controlling for age, gender, years of education, obesity, hypertension, diabetes, and dyslipidemia. Results Serum DHA levels decreased with increasing age (p = 0.04). Higher global cognitive function was associated with higher levels of serum EPA (p = 0.03) and DHA + EPA (p = 0.03) after controlling for confounders. Conclusions Higher serum EPA and DHA + EPA levels were independently associated with better scores on global cognitive function among the oldest old, free from dementia. Longitudinal follow-up studies are warranted. PMID:26890763

  13. Increases in ambient particulate matter air pollution, acute changes in platelet function, and effect modification by aspirin and omega-3 fatty acids: A panel study.

    PubMed

    Becerra, Adan Z; Georas, Steve; Brenna, J Thomas; Hopke, Philip K; Kane, Cathleen; Chalupa, David; Frampton, Mark W; Block, Robert; Rich, David Q

    2016-01-01

    Increased particulate matter (PM) air pollutant concentrations have been associated with platelet activation. It was postulated that elevated air pollutant concentrations would be associated with increases in measures of platelet function and that responses would be blunted when taking aspirin and/or fish oil. Data from a sequential therapy trial (30 subjects with type 2 diabetes mellitus), with 4 clinic visits (first: no supplements, second: aspirin, third: omega-3 fatty acid supplements, fourth: aspirin and omega-3 fatty acids) per subject, were utilized. Using linear mixed models, adjusted for relative humidity, temperature, visit number, and season, changes in three platelet function measures including (1) aggregation induced by adenosine diphosphate (ADP), (2) aggregation induced by collagen, and (3) thromboxane B2 production were associated with interquartile range (IQR) increases in mean concentrations of ambient PM2.5, black carbon, ultrafine particles (UFP; 10-100 nm), and accumulation mode particles (AMP; 100-500 nm) in the previous 1-96 h. IQR increases in mean UFP and AMP concentrations were associated with significant decreases in platelet response, with the largest being a -0.43 log(pg/ml) decrease in log(thromboxane B2) (95% CI = -0.8, -0.1) associated with each 582-particles/cm(3) increase in AMP, and a -1.7 ohm reduction in collagen-induced aggregation (95% CI = -3.1, -0.3) associated with each 2097-particles/cm(3) increase in UFP in the previous 72 h. This UFP effect on thromboxane B2 was significantly muted in diabetic subjects taking aspirin (-0.01 log[pg/ml]; 95% CI = -0.4, 0.3). The reason for this finding remains unknown, and needs to be investigated in future studies. PMID:27029326

  14. Benefits of omega-3 fatty acid dietary supplementation on health-related quality of life in patients with meibomian gland dysfunction

    PubMed Central

    Oleñik, Andrea; Mahillo-Fernández, Ignacio; Alejandre-Alba, Nicolás; Fernández-Sanz, Guillermo; Pérez, María Alarcón; Luxan, Sol; Quintana, Silvia; Martínez de Carneros Llorente, Alfonso; García-Sandoval, Blanca; Jiménez-Alfaro, Ignacio

    2014-01-01

    Background We assessed the impact of a dietary supplement based on the combination of omega-3 essential fatty acids and antioxidants on health-related quality of life in patients with meibomian gland dysfunction (MGD). Methods Patients of either sex (aged 18–85 years) diagnosed with MGD according to criteria identified at a 2011 International Workshop on Meibomian Gland Dysfunction participated in this randomized, double-masked, placebo-controlled study. Group A patients (controls) received an oral placebo supplement and group B patients received the oral study supplement (Brudysec® 1.5 g; Brudy Laboratories, Barcelona, Spain). At baseline and at 3-month follow-up, the patients completed the 36-Item Short Form Health Survey questionnaire using a Spanish validated version. The Physical (PCS) and Mental (MCS) Component Summary scores were the main outcome variables. Results A total of 61 patients completed the study (group A, n=31; group B, n=30). There were no significant differences in PCS and MCS scores at baseline between the two study groups, but after 3 months of treatment, significantly higher mean PCS and MSC scores were observed in patients treated with the active omega-3 dietary supplement as compared with controls (mean [standard deviation] PCS score 53.33±5.57 versus 47.46±7.31, P=0.008; mean MCS score 54.60±5.64 versus 47.80±8.45, P=0.0005). Moreover, mean differences between values at 3 months as compared with baseline were statistically significant for patients in group B (PCS score 7.14±5.81, 95% confidence interval 4.97–9.31, P=0.000; MCS score 5.96±7.64, 95% confidence interval 3.10–8.81, P=0.0002), whereas mean differences in patients assigned to group A were not statistically significant. Conclusion Dietary supplementation with a combination of omega-3 essential fatty acids and antioxidants had a significant beneficial effect on HRQoL (health-related quality of life) in patients with MGD. PMID:24812490

  15. The effects of omega-3 polyunsaturated fatty acids and genetic variants on methylation levels of the interleukin-6 gene promoter

    PubMed Central

    Ma, Yiyi; Smith, Caren E.; Lai, Chao-Qiang; Irvin, Marguerite R.; Parnell, Laurence D.; Lee, Yu-Chi; Pham, Lucia D.; Aslibekyan, Stella; Claas, Steven A.; Tsai, Michael Y.; Borecki, Ingrid B.; Kabagambe, Edmond K.; Ordovás, José M.; Absher, Devin M.; Arnett, Donna K.

    2016-01-01

    Scope Omega-3 PUFAs (n-3 PUFAs) reduce IL-6 gene expression, but their effects on transcription regulatory mechanisms are unknown. We aimed to conduct an integrated analysis with both population and in vitro studies to systematically explore the relationships among n-3 PUFA, DNA methylation, single nucleotide polymorphisms (SNPs), gene expression, and protein concentration of IL6. Methods and results Using data in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study and the Encyclopedia of DNA Elements (ENCODE) consortium, we found that higher methylation of IL6 promoter cg01770232 was associated with higher IL-6 plasma concentration (p = 0.03) and greater IL6 gene expression (p = 0.0005). Higher circulating total n-3 PUFA was associated with lower cg01770232 methylation (p = 0.007) and lower IL-6 concentration (p = 0.02). Moreover, an allele of IL6 rs2961298 was associated with higher cg01770232 methylation (p = 2.55 × 10−7). The association between n-3 PUFA and cg01770232 methylation was dependent on rs2961298 genotype (p = 0.02), but higher total n-3 PUFA was associated with lower cg01770232 methylation in the heterozygotes (p = 0.04) not in the homozygotes. Conclusion Higher n-3 PUFA is associated with lower methylation at IL6 promoter, which may be modified by IL6 SNPs. PMID:26518637

  16. Antioxidant activity of phenolic compounds added to a functional emulsion containing omega-3 fatty acids and plant sterol esters.

    PubMed

    Espinosa, Raquel Rainho; Inchingolo, Raffaella; Alencar, Severino Matias; Rodriguez-Estrada, Maria Teresa; Castro, Inar Alves

    2015-09-01

    The effect of eleven compounds extracted from red propolis on the oxidative stability of a functional emulsion was evaluated. Emulsions prepared with Echium oil as omega 3 (ω-3 FA) source, containing 1.63 g/100mL of α-linolenic acid (ALA), 0.73 g/100 mL of stearidonic acid (SDA) and 0.65 g/100mL of plant sterol esters (PSE) were prepared without or with phenolic compounds (vanillic acid, caffeic acid, trans-cinnamic acid, 2,4-dihydroxycinnamic acid, p-coumaric acid, quercetin, trans-ferulic acid, trans,trans-farnesol, rutin, gallic acid or sinapic acid). tert-Butylhydroquinone and a mixture containing ascorbic acid and FeSO4 were applied as negative and positive controls of the oxidation. Hydroperoxide, thiobarbituric acid reactive substances (TBARS), malondialdehyde and phytosterol oxidation products (POPs) were evaluated as oxidative markers. Based on hydroperoxide and TBARS analysis, sinapic acid and rutin (200 ppm) showed the same antioxidant activity than TBHQ, representing a potential alternative as natural antioxidant to be applied in a functional emulsion containing ω-3 FA and PSE. PMID:25842314

  17. Intake of Fish and Omega-3 (n-3) Fatty Acids: Effect on Humans During Actual and Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Pierson, D. L.; Mehta, S. K.; Zwart, S. R.

    2011-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. Bone and muscle are two systems that are positively affected by dietary intake of fish and n-3 fatty acids. The mechanism is likely to be related to inhibition by n-3 fatty acids of inflammatory cytokines (such as TNF) and thus inhibition of downstream NF-kB activation. We have documented this effect in a 3-dimensional cell culture model, where NF-kB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have also indentified that NF-kB activation in peripheral blood mononuclear cells of Space Shuttle crews. We found that after Shuttle flights of 2 wk, expression of the protein p65 (evidence of NF-kB activation) was increased at landing (P less than 0.001). When evaluating the effects of n-3 fatty acid intake on bone breakdown after 60 d of bed rest (a weightlessness analog). We found that after 60 d of bed rest, greater intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). We also evaluated the relationship of fish intake and bone loss in astronauts after 4 to 6 mo missions on the International Space Station. Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = 0.46, P less than 0.05). Together, these findings provide evidence of the cellular mechanism by which n-3 fatty acids can inhibit bone loss, and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with space flight. This study was supported by the NASA Human Research Program.

  18. Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3 PUFA

    PubMed Central

    Schuchardt, Jan Philipp; Schneider, Inga; Willenberg, Ina; Yang, Jun; Hammock, Bruce D.; Hahn, Andreas; Schebb, Nils Helge

    2014-01-01

    Introduction Several supplementation studies with long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) describe an increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acids in blood, while changes in levels of other LC n-3 and n-6 PUFA-derived oxylipins were minor. In order to investigate the kinetics of changes in oxylipin levels in response to LC n-3 PUFA ingestion, we conducted a single dose treatment study with healthy subjects. Subjects and methods In the present kinetic study, we compared patterns of hydroxy, epoxy and dihydroxy fatty acids in plasma of 6 healthy men before and after 6, 8, 24, and 48 h of fish oil (1008 mg EPA and 672 mg DHA) ingestion. Levels of EPA- as well as other LC PUFA-derived hydroxy, epoxy and dihydroxy fatty acids were analyzed in plasma by LC–MS. Additionally, levels of these oxylipins were compared with their parent PUFA levels in plasma phospholipids. Results All EPA-derived oxylipin levels were significantly increased 6 h after LC n-3 PUFA ingestion and gradually drop thereafter reaching the baseline levels about 48 h after treatment. The relative increase in EPA plasma phospholipid levels highly correlated with the increase of plasma EPA-derived oxylipin levels at different time points. In contrast, plasma levels of arachidonic acid- and DHA-derived oxylipins as well as parent PUFA levels in plasma phospholipids were hardly changed. Discussion and conclusions Our findings demonstrate that a single dose of LC n-3 PUFAs can rapidly induce a shift in the EPA oxylipin profile of healthy subjects within a few hours. Taking the high biological activity of the EPA-derived epoxy fatty acids into account, even short-term treatment with LC n-3 PUFAs may cause systemic effects, which warrant further investigation. PMID:24667634

  19. Predictors of treatment response in young people at ultra-high risk for psychosis who received long-chain omega-3 fatty acids

    PubMed Central

    Amminger, G P; Mechelli, A; Rice, S; Kim, S-W; Klier, C M; McNamara, R K; Berk, M; McGorry, P D; Schäfer, M R

    2015-01-01

    Previous efforts in the prospective evaluation of individuals who experience attenuated psychotic symptoms have attempted to isolate mechanisms underlying the onset of full-threshold psychotic illness. In contrast, there has been little research investigating specific predictors of positive outcomes. In this study, we sought to determine biological and clinical factors associated with treatment response, here indexed by functional improvement in a pre–post examination of a 12-week randomized controlled intervention in individuals at ultra-high risk (UHR) for psychosis. Participants received either long-chain omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) or placebo. To allow the determination of factors specifically relevant to each intervention, and to be able to contrast them, both treatment groups were investigated in parallel. Univariate linear regression analysis indicated that higher levels of erythrocyte membrane α-linolenic acid (ALA; the parent fatty acid of the ω-3 family) and more severe negative symptoms at baseline predicted subsequent functional improvement in the treatment group, whereas less severe positive symptoms and lower functioning at baseline were predictive in the placebo group. A multivariate machine learning analysis, known as Gaussian Process Classification (GPC), confirmed that baseline fatty acids predicted response to treatment in the ω-3 PUFA group with high levels of sensitivity, specificity and accuracy. In addition, GPC revealed that baseline fatty acids were predictive in the placebo group. In conclusion, our investigation indicates that UHR patients with higher levels of ALA may specifically benefit from ω-3 PUFA supplementation. In addition, multivariate machine learning analysis suggests that fatty acids could potentially be used to inform prognostic evaluations and treatment decisions at the level of the individual. Notably, multiple statistical analyses were conducted in a relatively small sample, limiting the

  20. VITAL-Bone Health: rationale and design of two ancillary studies evaluating the effects of vitamin D and/or omega-3 fatty acid supplements on incident fractures and bone health outcomes in the VITamin D and OmegA-3 TriaL (VITAL)

    PubMed Central

    LeBoff, Meryl S.; Yue, Amy Y.; Copeland, Trisha; Cook, Nancy R.; Buring, Julie E.; Manson, JoAnn E.

    2015-01-01

    Rationale Although vitamin D is widely used to promote skeletal health, definitive data on benefits and risks of supplemental vitamin D alone on bone are lacking. Results from large, randomized controlled trials in the general population are sparse. Data on the effects of supplemental omega-3 fatty acids (FAs) on bone are also limited. Design The VITamin D and OmegA-3 TriaL (VITAL) is a double-blind, placebo-controlled trial assessing the role of vitamin D3 (2000 IU/d) and omega-3 FA (1 g/d) supplements in reducing risks of cancer and cardiovascular disease among U.S. men aged ≥50 and women aged ≥55. To comprehensively test effects of supplemental vitamin D and/or omega-3 FAs on skeletal health, the VITAL: Effects on Fractures ancillary study is determining the effects of these supplements on incident fractures among 25,875 participants enrolled in the parent trial. Study investigators adjudicate fractures through detailed review of medical records and radiological images (hip and femur). In a complementary ancillary, VITAL: Effects on Structure and Architecture is determining the effects of supplemental vitamin D and/or omega-3 FAs on bone with detailed phenotyping during in-person visits. Comprehensive assessments of bone density, turnover, structure/architecture, body composition, and physical performance are being performed at baseline and 2 years post-randomization. Conclusion Results from these studies will clarify the relationship between supplemental vitamin D and/or omega-3 FAs on bone health outcomes, and inform clinical care and public health guidelines on the use of supplemental vitamin D for the primary prevention of fractures in women and men. PMID:25623291

  1. Omega-3 long-chain fatty acids strongly induce angiopoietin-like 4 in humans12[S

    PubMed Central

    Brands, Myrte; Sauerwein, Hans P.; Ackermans, Mariette T.; Kersten, Sander; Serlie, Mireille J.

    2013-01-01

    Angiopoietin-like 4 (ANGPTL4) is a regulator of LPL activity. In this study we examined whether different fatty acids have a differential effect on plasma ANGPTL4 levels during hyperinsulinemia in healthy lean males. In 10 healthy lean males, 3 hyperinsulinemic euglycemic clamps were performed during concomitant 6 h intravenous infusion of soybean oil (Intralipid® rich in PUFA), olive oil (Clinoleic® rich in MUFA) and control saline. In 10 other healthy lean males, 2 hyperinsulinemic clamps were performed during infusion of a mixed lipid emulsion containing a mixture of fish oil (FO), medium-chain triglycerides (MCTs), and long-chain triglycerides (LCTs) (FO/MCT/LCT; SMOFlipid®) or saline. FFA levels of approximately 0.5 mmol/l were reached during each lipid infusion. Plasma ANGPTL4 decreased during hyperinsulinemia by 32% (18–52%) from baseline. This insulin-mediated decrease in ANGPTL4 concentrations was partially reduced during concomitant infusion of olive oil and completely blunted during concomitant infusion of soybean oil and FO/MCT/LCT. The reduction in insulin sensitivity was similar between all lipid infusions. In accordance, incubation of rat hepatoma cells with the polyunsaturated fatty acid C22:6 increased ANGPTL4 expression by 70-fold, compared with 27-fold by the polyunsaturated fatty acid C18:2, and 15-fold by the monounsaturated fatty acid C18:1. These results suggest that ANGPTL4 is strongly regulated by fatty acids in humans, and is also dependent on the type of fatty acid. PMID:23319744

  2. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of the skeletal musculature to use amino acids to build or renew constitutive proteins is gradually lost with age and this is partly due to a decline in skeletal muscle insulin sensitivity. Since long-chain omega-3 polyunsaturated fatty acids (LC"n"-3PUFA) from fish oil are known to impr...

  3. Effects of vitamin A, C and E, or omega-3 fatty acid supplementation on the level of paraoxonase and arylesterase activity in streptozotocin-induced diabetic rats: an investigation of activities in plasma, and heart and liver homogenates

    PubMed Central

    Zarei, Mahnaz; Fakher, Shima; Tabei, Seyed Mohammad Bagher; Javanbakht, Mohammad Hassan; Derakhshanian, Hoda; Farahbakhsh-Farsi, Payam; Sadeghi, Mohammad Reza; Mostafavi, Ebrahim; Djalali, Mahmoud

    2016-01-01

    INTRODUCTION This study was designed and conducted to evaluate the effects of vitamin A, C and E supplementation, and omega-3 fatty acid supplementation on the activity of paraoxonase and arylesterase in an experimental model of diabetes mellitus. METHODS A total of 64 male Sprague Dawley® rats, each weighing 250 g, were randomly distributed into four groups: (a) normal control; (b) diabetic control; (c) diabetic with vitamin A, C and E supplementation; and (d) diabetic with omega-3 fatty acid supplementation. The animals were anaesthetised after four weeks of intervention, and paraoxonase and arylesterase activity in blood plasma, and liver and heart homogenates were measured. RESULTS Arylesterase activity in the heart and liver homogenates was significantly lower in the diabetic control group than in the normal control group (p < 0.01). Vitamin A, C and E supplementation, and omega-3 fatty acid supplementation significantly increased liver arylesterase activity (p < 0.05). No significant change was observed in paraoxonase activity and other investigated factors. CONCLUSION Vitamin A, C and E, or omega-3 fatty acid supplementation were found to increase liver arylesterase activity in streptozotocin-induced diabetic rats. These supplements may be potential agents for the treatment of diabetes mellitus complications. PMID:26996784

  4. Omega-3 Polyunsaturated Fatty Acids May Attenuate Streptozotocin-Induced Pancreatic β-Cell Death via Autophagy Activation in Fat1 Transgenic Mice

    PubMed Central

    Hwang, Won-Min; Bak, Dong-Ho; Kim, Dong Ho; Hong, Ju Young; Han, Seung-Yun; Park, Keun-Young; Lim, Kyu; Kang, Jae Gu

    2015-01-01

    Background Inflammatory factors and β-cell dysfunction due to high-fat diets aggravate chronic diseases and their complications. However, omega-3 dietary fats have anti-inflammatory effects, and the involvement of autophagy in the etiology of diabetes has been reported. Therefore, we examined the protective effects of autophagy on diabetes using fat-1 transgenic mice with omega-3 self-synthesis capability. Methods Streptozotocin (STZ) administration induced β-cell dysfunction in mice; blood glucose levels and water consumption were subsequently measured. Using hematoxylin and eosin (H&E) and Masson's trichrome staining, we quantitatively assessed STZ-induced changes in the number, mass, and fibrosis of pancreatic islets in fat-1 and control mice. We identified the microtubule-associated protein 1A/1B light chain 3-immunoreactive puncta in β-cells and quantified p62 levels in the pancreas of fat-1 and control mice. Results STZ-induced diabetic phenotypes, including hyperglycemia and polydipsia, were attenuated in fat-1 mice. Histological determination using H&E and Masson's trichrome staining revealed the protective effects of the fat-1 expression on cell death and the scarring of pancreatic islets after STZ injection. In the β-cells of control mice, autophagy was abruptly activated after STZ treatment. Basal autophagy levels were elevated in fat-1 mice β-cells, and this persisted after STZ treatment. Together with autophagosome detection, these results revealed that n-3 polyunsaturated fatty acid (PUFA) enrichment might partly prevent the STZ-related pancreatic islet damage by upregulating the basal activity of autophagy and improving autophagic flux disturbance. Conclusion Fat-1 transgenic mice with a n-3 PUFA self-synthesis capability exert protective effects against STZ-induced β-cell death by activating autophagy in β-cells. PMID:26790385

  5. Enhancing highly unsaturated omega-3 fatty acids in phase-fed rainbow trout (Oncorhynchus mykiss) using Alaskan fish oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to investigate differences in the kinetics of fatty acids (FA) deposition in fillets of market-sized (approximately 450g) rainbow trout (Oncorhynchus mykiss) fed diets containing commercial Alaskan fish oils versus menhaden oil. Comparisons were made with FA leve...

  6. Intake of Fish and Omega-3 (N-3) Fatty Acid: Effect on Humans during Actual and Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Mehta, Satish K.; Pierson, Duane L.; Zwart, Sara R.

    2009-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. These are some of the systems on which intakes of fish and n-3 fatty acids have positive effects. These effects are likely to occur through inhibition of inflammatory cytokines (such as TNFalpha) and thus inhibition of downstream NF-KB activation. We documented this effect in a 3D cell culture model, where NF-KB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have extended these studies and report here (a) NF-KB expression in peripheral blood mononuclear cells of Space Shuttle crews on 2-wk missions, (b) the effects of n-3 fatty acid intake after 60 d of bed rest (a weightlessness analog), and (c) the effects of fish intake in astronauts after 4 to 6 mo on the International Space Station. After Shuttle flights of 2 wk, NFKB p65 expression at landing was increased (P less than 0.001). After 60 d of bed rest, higher intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = -0.46, P less than 0.05). Together with our earlier findings, these data provide mechanistic cellular and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with spaceflight. This study was supported by the NASA Human Research Program.

  7. Effects of two different dietary sources of long chain omega-3, highly unsaturated fatty acids on incorporation into the plasma, red blood cell, and skeletal muscle in horses.

    PubMed

    Hess, T M; Rexford, J K; Hansen, D K; Harris, M; Schauermann, N; Ross, T; Engle, T E; Allen, K G D; Mulligan, C M

    2012-09-01

    The objective of this study was to examine the effects of different sources of dietary omega-3 (n-3) fatty acid supplementation on plasma, red blood cell, and skeletal muscle fatty acid compositions in horses. Twenty-one mares were blocked by age, BW, and BCS and assigned to 1 of 3 dietary treatments with 7 mares per treatment. Dietary treatments were: 1) control or no fatty acid supplement (CON), 2) 38 g of n-3 long chain, highly unsaturated fatty acid (LCHUFA) supplement/d provided by algae and fish oil (MARINE) containing alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA), and 3) 38 g of n-3 LCHUFA supplement